SYNCHRONIZE AND STABILIZE: A FRAMEWORK FOR BEST PRACTICES

NALIN SATHIPARSAD

Submitted in part fulfilment of the requirements
tfor the degree of

MASTER OF SCIENCE

in the subject

INFORMATION SYSTEMS

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: MR. TOBIAS VAN DYK
CO-SUPERVISOR: MRS. ALTA VAN DER MERWE

JANUARY 2003

Table of Contents i

Table of Contenis

ACKNOWLEDGEMENTS....ciciiiiicicnericsescanrsessescsssnsssssssarssnssassssssnsansasssse

IIIII FEFRERSFS 1

1.1 THE PROBLEM DOMAIN - SOFTWARE ENGINEERING IN THE SMALL......c.covtvneveercroriorssnssrsrnrseseresssssssnnenidh
1.2 VALUE OF THE RESEARCH ...vtvtvietuertsscrsareciassrnsssnsssnnssesenssrsesssnsssssesssessssssssosnsennnsesnsssnnsesnseansmmnemmnsemnssssns 6
1.3 THE PURPOSE OF THE RESEARCHiietuetteetrietrisisassisrrersrisesssssnesessnssassssssstsensssmssonsseesssssnsstnnssnssssmnssmmsmeons. 6
14 THE RESEARCH IMETHODS ...cotuvreieierieisosusirssiossssssssssostorsstsnecerasssssssssesssssstasssnsosnsernsssnssssensnssenssssnnsseensenss 7
1.4.1 LIIETQIUTE REVIEWcc.\cciceeiirieicrveitverciiieesvattataenestrenstrscssssvrsttassossasesstnesesstasessseseessnnesnnsesssensnnnnsneesers 7
1.4.2 OIDSEFVAIION . v everirerreteieiereeiieiie s teitbsesiessasistesstsstsasssastsssseenstonsteserssssonssessanssanssseresnnnsessssssssnsssnssmnnns 7
1.5 DIATA ANALYSIS it iviiurenieesersiinrmiesssorssesossssseseessessetsesssssssnssssssssssssnsssassenssostsstsssnnessssssssssassssssessnsssnsmmnennenns s 7
1.6 LIMITATIONS OF THE RESEARCHcuittitttieeiiiitoiietsiseessesisiassasssusssassassttnrsrsnsnnsensssnssssssnsssssssstmnem s 7
1.7 CHAPTER STRUCTURE OF THE DISSERTATIONc.cocvvreerreerererirrerereresemereesesssasseonsmrsnserereressssssssesessssmsnsseesses 8
L8 SUMMARY ciiiiiiiiieeisircresrererernttteeterserssssessreneraretsessssseresisssastasessesasesonersersnsssnnnnnnsesessnssssssssassssssssnsnsnsssnsssssns 8
2 SYNCHRONIZE AND STABILIZE — A LITERATURE REVIEWcciceiimimmmmsmsmrsnsarsasssssssorsoresenssasassd
2.1 INTRODUCTION ..uuiiiiiterinnumnmurcsssiosssisrssnssetsestnrisersisssrsssssssonsessnensnrnannensensssaosioressssssrassrsenorssssssssosssssseseesnesd
2.2 THE CONCEPTUAL THEORY OF SYNCHRONIZE AND STABILIZEcccuvvvivirererermreiroscesconeossisessessesnsnnssnsseses 9
2.3 THE CONCEPTS OF THE INCREMENTAL DEVELOPMENT MODELciitiiirtteiunninssesressnssssersrssssssssssesnssreenn .. 14
24 SYNCHRONIZE AND STABILIZE — IMPLEMENTATION VARIATIONS. . tvvtvvuereetrreranerereeressssseseessasssssssesssrnnsnns 16
2.4.1 INCremental DEVELOPIMEIEuvvuvivveeiviiieiieiiieieriieiieiresrer i rrarereratesetrraerearaesessertrtetersestomsarssnrnesranns 17
2.4.2 Evolutionary Project MANQGEMENEveviveivvinreereeiinieieeerensiiuiseissssssesssessssisssssssssssostansarsess 18
2.4.3 EXIreme ProgramiMiNgc..ccccvvevveervsvsesviieiirmnnresmosicsiuemisianseinioisnsiotsesorssssonssorssssssorssassessosssnsssasanssass 19
2.4.4 The Scrum SOftware DevelOpIEnt PrOCESScueeveiviiieeiiiiseireeseseiresnisessesessssiossssssessessessssssesseens 20
2.4.5 Product Line Concepts......ccccccoevisiisiniosiannes e eeure e b b e et b e rabae et e rae et e e enasasnrtrbaetnsees 22
24.6 IMproviSation TECANMIQUEScccovervviveienireitiriraecrreesireesraesesrssssesiseresnassrabsesssssesstsasbessnensannes 23
2.4.7 Whitewater Interactive System Development with Object Models (Wisdom).......ovevueuveveceeireeninnn.. 24
2.4.8 AN INLEGrated APPYOGCHvvcevviviiiiiiiiinaetinrarriiersissvtierarerares vttt s rasanrrtssssesrarassisrestrsroaresssetsesnnnns 25
2.4.9 AQile SOfIWATE PrOCESS (ASP) ...ttt et es ettt sttt es s ireseessaset s asssastastaasarasstnansannes 26
2.4.10 Synchronize and Stabilize using COMPONENLScoveevvvremviviecriisicssininineraireecivessnivieiesesseissssesans 28
2.5 OBSERVATIONSccciiivtiiiiiiiieieriersssrisrsssesisssssiosssnsrsraresasasenssensssssseonssessssssssssssassnsssrnsssssssssonssssrsasasasnsssssees 29
2.5.1 COMPMUURUCHEION ovvuvveereveseriiesassrssisssesiosaiessssianiarsesssasisessaresssssonisaesosssssnssssematsonsesseetsenssnsssssnsnssssassessses 30
2.5.2 INCOMPLELE REGUITEMIENEScooaeooeeeeeeieveiiie e eerereeeraas et e ars s eesa e ssssas s sastsastssasanssvasessnnnenransens 30
2.5.3 DIOCUINEIIAIION c.vvveviivviuisiesesirenneinimierinenmrierisserseeimiemreraestenioes iorsemarrersteeaseeriosessssessnssesssassasssssenssosenns 31
2,54 FURCHORALTY GFOUPING . .ocoviviiiieiiiireiiieenimneiirisimiinimmmateresmsisstortsiissisisiermessenmessssssiossserssssssssssssnsasess 31

Table of Contents i

2.5.5 USEr FeedDACK ARA REVIEWScoeiiiicieeieitiietieeiieieieesiieseseiasiesiasensssesiassessassssssrssssnnsssnsssssnessensens 31
2.5.6 Product Ling DevelOpPment........c..uuvvveieiereviersiriereemreinriisssssressssscosssesesmnesssssssannssssssessssssssssssninsarenss 32
2.5.7 TOATIWOTK ccovviivveiiireiseriesirersiseteetis isiersteissetessasstensisssntasssrinssnnsnnsssnsnsressassstssstssenessesnsnnesenteenssenss 32
2.5.8 oM D ONICIIES sv1vseeirsireesireisieeiertereraeestonsssastosserasstsessionssessarasssstossasssnssnnessesstnsnsssnstonsvennnsnnteesonssssossnss 33
2.53.9 Development SIANAATASoovvvveiiiviniiiiiiniiiiiiitie s eerreeseseseresesssssnssrsntssssssnesens 34
2,0 CONCLUSION .otiiviiiersesrerecssoersrassasssassrsssssseronsstassestensasssaisssesess sasonssesssnsssassassuenessresasessssessssnsssssssaseesasssass 34
2.6.1 Organizational Effects OF TNE SSA ...ttt ieetereiiire s tes st isasts s b atsasasanerarsaseseseraranosnssesens 34
2.6.2 SOIVING COMIMOR PFODICINS ..ottt e tcee sttt st ss et teesees s astasensssssenssnnsssssssuansanssers 36

3 SYNCHRONIZE AND STABILIZE — A CRITICAL ANALYSIS ...cciittrcrnmemmsosesosorcssssssvsassoesesssensassesens 38
3.1 INTRODUCTION iiiiivirriercsseneessararenessinieresesnerornsiorsensnesssatnmesssnessosssnsssssens sesstunensssnassssesasassssssssnessssasesosssnoss 38
3.2 GENERAL COMPARISON OF THE SSA ...oomvveoreenereeerssresessseoseseessmmsessseseassseeesansmsssssssasesssssesssssssssssss oo 38
3.3 COMMON CHARACTERISTICS OF THE SSA ...oorriiicrrieicrrniesirrensnniressenneisssunsmisssanessrenssnesassassessstssessanseses 40
34 COMBINING CONCEPTS AMONG THE SSA ..iiiiiviivniiniscninierieiminiessmosieesesmaninnmeseassiseseersinsrsssssvnsereseivassasss 41
3.5 STRENGTHS AND WEAKNESSES OF THE SSA......cccoiveiiriimmenimisionmiiiesirnesossinesimnmmssmmmmesimsnsteeitssessasiiens 44
3.6 SOFTWARE DEVELOPMENT ADVANTAGES . urvtiieeiiitreiriiesieeestnneeeionsiesseiessmsaesssesssssessssssssasassorsssssossanneese 46
3.6.1 Improved Requirements ELICITALION.ovevviiriiieeisviniieinisiiiiieinncsssiiiiniessiosisssessacasasivnssssssessarsaseess 46
3.6.2 EQELY FERADACK «..o.ooooeeevvvieeiirireieneairiieieieieesisiistessisstataesesessnranaesesenstensriosiossessneseressasssssessioosssansinn 46
3.6.3 Knowledge Gained IS “Re-INVESIEU”ueceieieeeiieieieserieeietettiecisiiserieassesesssenesasessessssissssssissains 47
3.6.4 Ability to Cope with Changes in the ENVIFORMENLc.cccvvevnreirereeireiiieiieeiereeireessesisseremesererarirsnion. 47
3.6.5 Impact of error corrections can be redUCed................uuveviieieiiiiceiii e st s 48
3.6.6 Improved Management Of SYSIEM SCOPEuuueeecreiereniiecesicneniceressereeessssssrerierssirstsssnesiessestaseese 48
3.6.7 MANGZE COMPLEXTLY «.ouvverreeeeerarrereerertrevireererrstsssatesesatsssiseas testes st baeeastessesiarasestesnsssessanssasesiansass 49
3.6.8 MOBIVALION ... ovvevierieiierieierarenessessinistereasesseranateesessostnbats e 00 s0esstnrt eessiennsassretasarssnsesnsnsinsansensesesnsisntrns 49
3.7 SOFTWARE DEVELOPMENT DIFFICULTIES......ccceccorrertrerorureesoinsrersssssssssssissssaranssasanssossssesssssnsnssssisanensnaes 50
3.7.1 Architecture Decisions are diffiCultvuuvreviviiiiiiiiniiiimiii i rarassarae s saeens 50
3.7.2 Increment Sets are difficult 10 define....cuvicviviieicciiiiiiiniiriiierirrnicrenri e e ses e e s by |
3.7.3 Defining an Infrastructure early is diffiCultcooivcievrinriciiniiiiiiiiicrrccrereiserr e s ereceneeneene. 51
3.7.4 Performance Problems QUiSe........occovveviiiiriiiciiieieiniiioninieeiinionieoioionsisnmnssnnissrmstronsenmmssssersrsne 52
3.7.5 Software Integration is DiffiCUll.........c.cc.ooooireiiiiivoimriiiiieeiciiicn iy e ectegasaas e asiesaneeeteesr e e, 52
3.7.6 Multiple Maintenaree SYRATOME. ...covurviveiiiereeesecericieiaiereisereerereainreeieressasstassrsionsantasieressnnesessen 53
3.7.7 The process may degenerate into a Build and Fix Approach............ueeveeveviiiccreeceeieririreeieianens 54
3.8 BUSINESS ADVANTAGES ...vvteceirioercseniersorenerorsentonsorstssostassarissisisisassisssastossssasesosssnsssssorssss ssssneasssssenssnontons 54
3.9 APPLYING GENERAL SOFTWARE ENGINEERING PRINCIPLESouuvviiiiitimimimmiircrrinecsiorsmimncescoscosomsanenoceons 53
3.9.1 FOTMAIIEY c.oaoioivei oo ieeises e sseistieiresetenetes s tar s tes s s rereseavenssesosanereasthont besesnssnestestenssetseneneresesenttoerererios 35
3.9.2 Reduction of COMPIEXITY ..o ..cieeiceecciiiee s reeesiesisssiiisieieioraresessar e se st ae s ssaas e seatar e s netss b asassbstassstbnnses 56
3.9.3 Generalization Of the SOIUTION........cvvveivervcceerrericrcine e rerrnertvssssssrirsirtsesssarsretaeaesinieseeesssssinveransasronnos 56
3.9.4 InCremental DevelOPMENEuuevviccreiiciiineirecrrsissisisssisisisassasiesse s rerssssssntarsessrseesssstnrssssstnsssnnes 56

3.9.5 Re-Usability and Maintainability........cceveeieivemiieeneireniereroreeiesennreesessvasiensesssnsnessscsssssessesnasssassassases 57

Table of Contents v

3,10 A TYPICAL SYNCHRONIZE AND STABILIZE WORKFLOWccitiiivtmreeeisserseronersentorsostasssnsssesrsrsresenssornosssnnss 57
3.11 CRITICAL SUCCESS FACTORS.....citietirennrisrernireimnrmescramsesontorserasssmsseiossisssssssntonsonsssersnnessersessisissesesssesessansens 61
3. 11,1 COMIIIMENL ...coooeeveeeeeeeeeereeeee st cesi s i s i st satv e tab st be e s esaseeesesiessostsstestnetsessesnsasarerssnnsresassensesnsnrens 61
3.11.2 QUality HUBIAN RESOUTCES....uuveeeeeeeeertiiitieiceecceeriivieiacisssisisansiescresesasrestasessissssesssssnentssnesossssnsesens 61
3,113 KEEP UP 10 QQLE........ueereeeiieeeieireireieiiieeiiciceieiiiereseesesasiatnnsessserssssstesststesiesiasasssstssasossssnsonntassessessassines 61
Z AL PUANRIRG ..ottt ettt s et et er st s s bbb aesrrea st tasiars sar s es s aRebanretnnsanesaneesansrasnsens 62
3.11.5 Go0d Resource MARGGEMERALcoccioviviivrieiviiiierniietinrieseraesseseessioiotsesismiteienisiescrasserrassastssssssnss 62

3.11.6 Clearly Defined VISIONcoovivivviveiirovioriorirrisioriisisiesesssisssissssssssssssmssrssarsussesssssssssensansessossarssssanes 62
3.11.7 Clear Defirtition Of ROLES.......c.vveivveiireiiniiuririisiisisinssrersstmsisiiieiiesssssaisosiststsssmismenessessensennsssasssasares 62
3,12 CONCLUSION L\ .ieeeieireeeeariieseisaesessaasnscrssestsessesseatanssssensesssanretessssnsssnsasssssnsnssesssssssasssssssssesunsensassenessessseseses 62

4 A SET OF FRAMEWORKS . cccicccnnniarencscscssrsrssssssasssssrsssoscssesssorsssrssansses vesarevssressesesssasesarssnassassassasernarsesacsesO4

4.1 INTRODUCTION . tiutuerenrersesrssssossesrossennsasssstasssssoustassasssssssrssssstssssssrsssssnssnssesennssssssessssssssassosssossssssnnsesensnss 64
4.2 A PROPOSAL FOR A SOFTWARE ENGENEERING ENVIRONMENT {(SEE)....ouvueiirciiieririccerisnsensssessseresesenss. 04

4.2.1 Environmental Influences and Application CROrACIETISHICS.....vvveieivieisiionieririsiiiersermersirisesssrssnonnes 64
4.2.2 The Metamorphic Software Engineering ERVIFORIMENLuueeeuveevieiviiiviiivioeireniiiiniensireiriserecsissasias 66

4.2.3 Implementing a Metamorphic Software Engineering ERVIFORMENTuueeivvveiiiviceiinreririicrenneinnenes 68

4.2.3,1 Strategic Management DeCISION. ..o iisseas e rrmnnssesresseerssssrsssssssessssssans s D8
4.2.3.2 Team BUilding.....o.ccveiieeeiiieciiiieieec e iieen s csessesseee e nesseesssaeesaaneseassnartreersmsnserrensrrantnesrssraessssssssesss OO
4233 Identifying the Development ACHVItES ... ccberceseeneeseseee.. 69
4,2.3.4 Selection and Evaluation ProCess......ccc. e imesiceesesnniorsssisssesnassssesssraossessssssess 0
4,2.3.5 Continuous MOMIEOTIIEcocvviiiiieeiiiiiiireriiircirienreeiiisineseceesseieesssneessesessuneresnrersesorsersrnsnastersersirsesnesssoessss 10
4,23.6 A MSEE EXamPIe ..oocooiviiriri it n vt tnnesaeseesss s ranennnsenareeresssesssvossssasesnnnitssastanesssasassssessnsnens J0

4.2.4 Advantages Of the MSEEicviiiiieiieiiiiiiiiiineiieiesiaisssisisissesiasstetassansarsvessisinassnasanesseisessoresinns 73
4.2.4.1 Promotes a Technically Up f0 Date EnvirOnmentccvcvvcviimniiciniverornrninnrennestiseisessvssssresssisessirsessosssosssss 1.3

4,242 IMProved ProdUCiVALYcccccenuiiiiiiiiiniiinmmiiiniienesisensseossiemssinicis esisecssssisessssossssssossvannresrrsners .3

4.2.4.3 ITmProved QUALILY v s et e e s e rs e e Ereeas b S e R e Ehe o b bt aaeeee 73
4.2.4.4 Provides Choice and FIeXIDIHLYcccoeiiiiiiiirrertnscnerriierreresrissriseeriesrrssemeersreiisresiniseasessisnssriissevirsssesenss 74

4.2.5 Disadvantages Of the MSELE...........ceiioiiieeiceeiieresresesnssas e sssscsrerassessasnassessseatosessssnnstesossasnsons 74

4,2,5.1 Costly t0 MaiItAIN......oreiiiniivriiiiissiiisimmimienissiisimnniemmssrssrsest e cronmsses s reiustssstasssresssssssssnsosnssnrsnavsrrs 14
4,252 Requires SKilled Personnel........cccviiiimimmmenimmimmmmenicnimesse e sessoisisssssasscsssrosssessassosossevesssssavenses 14
4.2.5.3 Chasing the Latest FIavOurscciiviiiimimeininninommeeimmen s omemimsssmsesssenssisnmsiinseessssecsress 14
4,2.5.4 Problem t0 cOpe With ChangeS.........ccciiiiiriniirinreenreecnrerccnere s rerat s sesennacseccnnarssssessresessnnsescsssnnsnes 1.9

4.3 A.PROPOSAL FOR A SOFTWARE PROTCESS MODEL......cvvuueceiemieniiiiermsessessessaseseissaseesssesesssaseesrsssestossnssreteres 76
4.3.1 An Iterated Meta Process MOdel..............viivieororvieeiiiicrieninisinniissssnsninroniersssssssssssesneessssssssanseese 77
4.3.2 Applying the Iterated Meta Process MOAEL................oeioeeeieeeorieenciieeirercenieeceitneceraisseesasssnassnssens 80
4.3.3 Motivation for the Iterated Meta Process Modelccomeierarecoireiicnriieeercioreisecennvevenecsnvensnens 84

4.3.3.1 Fundamental System CONCEPLS ..c.coiceiimiiiiiiinciiiniiinmieeiniesmesimeoninmesto saneeciensee s nersessnessssssossssssnnseness G
4.3.3.2 Churchman’s TREOIV ... inmsssiimssresrnrenissss s i sesresssnssarsssssssssssseensss OF
4.3.3.3 Supports General System ArchiteCtire ..., e e s e 0

Table of Contents ' y

4.3.3.4 VieWws ReEal WOrld Problems (v e iirrrecrnnsrscsrsesrsesssesrrnsstessesnesesssssssesestassesssssessosssesrsssrasserssenssosssensessseenss 87
4.4 A PROPOSED FRAMEWORK FOR BEST PR A CTICES. . et teieteeiareaestsrssssssssssssssssssessssssssaesrnsossemn e on e eens 88

4.4.1 A BeSt PYACHCE FHAMEWOTK cocoaeoeveeeeeeeiiereeeeiieasiceeessassesrsresostssensssanssstsessassssnnsssssssssonssessssessnnsenmsns 89

4.4.1,1 The Motivation Tor a Best Practice FrameEwWOTIK ... cvveiricrrressccrrensisesrsesessressssseessossresssssrosrssersessssssseensssesese 30

A.4.1.2 THe PrameWOLK ..cccierreiireiieeerireersrestsssesseesssenesserssnessssstnsssnnsssesssesssessessssensssesssssrnressssssssssssensessesensesnosresseasss 0

4.4.1.3 Applying the Frameworkc..ccrimimminrisrecsioeaeiiesisessiscssinssessraesssaesss 34
4.5 CONCLUSION corvieivireencrnersresssssnsssssssnssssrsessssssasnssesessssssssnsssasnnsssrtssnenssasssssesessssensssssssnsssssnssssssssssssssssnmnnmns 07

5 CONCLUSION uiiiiciiesssseessesssssersessserasssassascnaanssssesssessssssssassssssssassosssssesasessrasssussonssssssssarersesenressssssnsssssssssssssses 39

5.1 IS CTUSSTON iuvnrrevensrsvnestnsessssssssnsesnsasesnssnsssasosensssssasessssnssnsnssensassrsssnsnnsensssssssnsessssssssetesnntnsenneneensseseessnss 100
3.1.1 Developmertt CRAILENGESuveeeiiiiiiiiiiriiieiiciiirerieie sttt et s s aietse s ee s s ssabereesssers 101
5.1.2 e LY €.oooeeneereeeresessetasasesesssensesssnnssstasssssasnsssnsesnnentsensosnssssensasssnsnssssssssssnsnnsmnmntnmtonmneseseseei 102

ACKNOWLEDGEMENTS

| would like to express my appreciation to the following people:

My supervisor Mr. Tobias van Dyk for offering insights and for his understanding, guidance and
support throughout the study.

My co-supervisor Mrs. Alta van der Merwe for her suggestions and recommendations.
My wife Gudrun Maria, for her patience, understanding and support during this enduring time.

My sister Reshma Sathiparsad, for her valuable recommendations, and advice and support in the
study.

The author would like to express his appreciation to the management of Quark Inc. for their support
and consent to refer to the organization in this study. The reference to Quark is to indicate, by
example, the practical experience of software development practices and problems of a leading
software organization. Finally my gratitude to Quark for the permission granted to access all manuals,
documents and data, which were used as supporting material in this work.

ABOUT QUARK

Founded in 1981, Quark Inc. has been on the leading edge of publishing software since 1987 when
QuarkXPress™, the world’'s most popular layout and publication software, debuted. Today Quark
maintains its industry leadership with a product line that ties together electronic and Internet publishing
with information management, storage, and retrieval. From its headquarters in Denver, Colorado,
Quark™ reaches around the world, providing communication software and systems to over 2 million
users on six continents and in 18 languages. Employees in the United States, Europe and Asia give
Quark a diverse and global perspective that is a key element of the success of the organization.
QuarkXPress helped spark the revolution in desktop publishing. With avenue.quark™, Quark Digital
Media System™ (QuarkDMS™), QuarkWrapture™, and other products still in development, the
objective is to bring organization and efficiency to. information management and publishing in the

Internet age.

Quark, QuarkXPress, QuarkXPress Passport, Quark Digital Media System, QuarkXTensions and XTensions, amongst others,
are trademarks of Quark Inc. and all applicable afffliated organizations, Reg. U.S. Pat. & Tm. Off., and in many other countries.
The Quark logo, QuarkDMS, avenue.quark, QuarkWrapture, Quark eStage, Quark Merchandise Manager and other Quark
related marks which Quark may adopt from time to time, are trademarks of Quark, Inc. and all appliicable affiliated organizations.

More information about Quark Inc. can be found on their website www.quark.com

ABSTRACT

Software Engineering in the Small problems are neglected and are overlooked in the literature by
software engineering societies and computing institutes. Smali and Medium sized Organizations
(SMO) are confronted with these problems and are required to revise their development strategy to
overcome them. Software Engineering in the Small problems support the synchronize and stabilize
development approach as an effective solution because the slow linear development process of the
waterfall model is not suitable. The conceptual theory of Synchronize and Stabilize Approaches (SSA)
is studied in depth and their variations are surveyed and thoroughly analysed. The software
development advantages, disadvantages and the critical success factors of the SSA are also
discussed. Three frameworks are proposed, namely, a software engineering environment, a software
process model and a framework for best practices. In order to maintain a balance between theory and
practice the author cites practical examples from his working envircnment,

Key terms:
Agile Software Process; Architecture; Best Practices; Components; Framework; Incremental
Development; Process Model; Software Engineering Environment; Software Engineering in the Small;

Synchronize and Stabilize

1 INTRODUCTION

in Fredericks P. Brooks's famous article “No Silver Bullet” (Brooks, 1987), he emphasized the
difficulties associated with software development. Three years later Brad J. Cox published an article
“There /s a Silver Bullet” (Cox, 1990). In this article he portrayed his optimism by emphasizing object

oriented technology and the use of components as means to cope with the consequences of the “No
Silver Bullet” syndrome. Although these respected professionals have different opinions, it can be
inferred that these difficulties continue to haunt the software industry. Some general reasons for their
continuing existence are listed in Table 1.0.

o e A T T e R P R T e e S e S B R e S e
gy A SR P R e) R, e -t . P e e e e B o oy N e T gy g T T) P T L e,
'a;.i.;,j‘.-:;._l:.:.‘_rﬁ::.' e, e i e s R "'1:'5.""2"""-".‘ e '.:-: SR v 2 e e e -.af:::::"-.a Y -'"-’.-:i:r-_"-,::‘ "'-E-!'-'}!i!-l!'-'.’-:-‘l R e S S .-!;.I;;.. o =t
a lﬂ-f & o % 3 A g o0 EF e 2yl ook O G ool S o LR W K iy 3 0T § e 1 i»..{'
- i . w i i ... ¥ F 2otk o8 oaacd SR WO o0 i 33 g n | W r 3w
rem o F i i, - NN Crgi ey Ak i e e N . e = e SR - ol b el Y = L ! L ;: !
") e L N = . P R LE, R Lo, v . s o a 2. i = A g rm e AR . -
P T e e A e it e o e B e e G

The constan
challenging.

rle 2

ment difficult and

The complexity of sofiware applications is constantly growing as compared to the last
decade. Architecture is more open today; as a result interfacing and integration increases a
system’s complexity. -

The user community is very diverse and their increasing demand for Personal Computer
(PC) software and expectations of usability and functionality are high.

The software industry is highly competitive and delivery time is of the essence.
Table 1.0: Reasons for software development difficulties.

Apart from the abovementioned difficulties, the advancement of the Internet augments the demand for
software at a global level. This was reflected in the following articles which appeared in the September
2000 Association for Computing Machinery (ACM) News:

e “China to Lead Asian Internet Growth”

e “Blair Package Backs internet Businesses”

¢ “Pakistan boosts Internet Access”

e “UN: Net Growing Third World Biz"

e ‘“Users With Disabilities Push High-Tech Limits”

e “Demand for PCs ‘Continue to Expand’ “.

These articles strongly emphasized the increasing global demand and importance of Information
Technology (IT)} in many facets of business and daily life. There is also increasing evidence that
governments of the major world economies have began to recognize the global impact of the Internet.
Since the challenges of the information age will continue to increase and is significant for economic
growth, governments and businesses are have increased their involvement and commitment to
advancement in this sector. Their involvement includes increased investment, innovation and public

educational programmes in IT.

The PC and Internet software markets are diverse and Small and Medium sized Organizations (SMO)
which operate in the domain are confronted with the following problems:

e They operate in a dynamic and an unpredictable environment.

4

W

e A greater degree of flexibility and adaptability is required to survive in this environment.

e They are required to employ flexible development techniques in order to enable them to bring
new products faster into the market.

e They must react rapidly to consumer needs, while retaining their competitive advantage and
increasing their mafket share.

¢ Their resources are limited, for example, financial and personnel resources.

These problems have an impact on their software engineering practices. To cope with them the
software development strategy must be re-formulated to deliver quality products and services. Within
the ambit of software engineering, the traditional waterfall development model became unsuitable
some time ago because it is a linear and inflexible development process. An inherently flexible model
is favoured, referred to as “Synchronize and Stabilize” (Cusumano and Yoffie, 1999; Cusumano and
Selby, 1997). Basically this means that the product is developed in manageable increments. The work
of the development team is continuously synchronized and periodically the system is incrementally
stabilized. Because it is a sophisticated software development approach, the underlying concepts, its
practical application, advantages and the disadvantages must be well understood in order to apply it.
The application of the Synchronize and Stabilize Approaches (SSA) can appear to be deceivingly
straightforward and simple but this is not the case. A misapplication of this approach would actually
leave one in a worse situation than before.

The problems which confront Small and Medium sized Organizations (SMO) are referred to as the
Software Engineering in the Small problems and supports the SSA as a solution (Moitra, 1999). A
good understanding of these problems is important in order to apply the SSA as an effective solution.
In the next section the Software Engineering in the Small problems are discussed.

1.1 The Problem Domain - Software Engineering in the Small

Small and Medium sized Organizations develop smaller, but complex systems with rapidly evolving

requirements and execution environments. They are challenged through rapid changes in technology,
which may result in their system being outdated as early as the first release. Although it may be an
unhealthy practice, they are very often required to adopt the latest flavours in technology in order to
remain competitive. Therefore they do need a methodology suitable for large-scale projects. However,
not all of the methodology is required. The reason for this is that SMO also experience the same
software management problems in their environments as those of large organizations (Fayad, L.aitinen
and Ward, 2000b). System requirements must be well managed and good software project
management principles must be applied. Discipline is certainly required during the development
process 10 overcome a resistance to change, bureaucracy and delays, as experienced in large-scale
software development. Software Engineering in the Small is required to have a different viewpoint as
compared to Software Engineering in the Large in order to cope with this situation. Hence the SSA
was identified as an effective solution to the problems.

Software Engineering in the Small refers to SMO, which require a tailored application of Software
Engineering (SE) principles and practices according to their size and type of business (Fayad, Laitinen
and Ward, 2000a). The main problems with large-scale methodologies are that they are time intensive
and do not scale down efficiently. SE practices for smaller organizations were ignored in the past as
the focus was mainly on larger organizations. Software Engineering in the Small is a neglected area
and is overlooked in the literature by software engineering societies and by computing institutes
(Fayad, Laitinen and Ward, 2000b; Graham, 1989). With the rapid advancement in Web Engineering
(Brusilovsky and Maybury, 2002) and Agile Software Development (Aoyama, 1998a; Aoyama, 1998b),
this attitude should change in the future.

Historically mainly large organizations and defence ministries have benefited from advances in SE
(Moitra, 1999). Most organizations were unsuccessful in applying SE principles and practices, the
main reason being its application in an incorrect context. Unfortunately the essence of these principles
is still not well understood and continues to be misapplied. Many SMO also find that the current SE
principles do not integrate well into their business environment. The following are the main reasons for
this:

e Operating budgets and resources are limited.

o Organizations are constantly faced with fierce competition and market uncertainty.

e A high degree of innovation is required within a short period.

e The correct mix of new features, cost, quality and reliability are speedily required.

s The business environment is volatile and global (the problem is to satisfy an increasingly

diverse set of users).

Due to these operational constraints, they must adjust their SE techniques accordingly. Gusumano
and Yoffie (1999) also hold similar views that is, they operate in a competitive, dynamic and
unpredictable market. Therefore they clearly require an alternative software development approach to
the waterfall model. For example as Internet applications are characterized as being nimble, flexible
and adaptable (Lutz, 2001). The traditional SE principles and practices are too cumbersome to build
such applications. Since some of these systems are large, complex and always evolutionary, a SSA is
considered to be better suited for their development.

Aithough Software Engineering in the Small has a different viewpoint and the SSA is considered to be
an effective solution, it is not a magic solution. As previously noted, SMO experience many software
management problems which are common to large organizations (Fayad, Laitinen and Ward, 2000b).
However, their solution would be tailored according to the nature of the problem, the SE principles and
practices and the nature of the business. An important difference is that any decisions made to
implement a solution will occur within a shorter time frame for the smaller organizations.

The core Software Engineering in the Small problems to be addressed by this research is as follows:
e Non-bureaucratic and flexible approaches in order to rapidly develop software in a disciplined

manner.

e An increased attention on the Software Engineering in the Small problems is needed by the
software industry as these are often ignored.

e Small and Medium sized Organizations operate under difficult conditions (as mentioned
previously); and they require simpler SE principles, which is in tune with their business
environment,

o Small and Medium sized Organizations must be able to manage their development problems
effectively and efficiently under difficult operating conditions.

In the rapidly growing [nformation Technology (IT) industry, continued research in software
engineering techniques and development methodologies is of paramount importance.

1.2 Value of the Research

The specific value of the research is a contribution in partially solving some of the major Software
Engineering in the Small problems and to focus attention on a “neglected area® of software
development. It is envisaged that the study should provide organizations with additional information to

effectively manage their problems under the stressful conditions in which they operate.

In addition, it is intended that the research’s contents may stimulate debate in this problem domain
among information systems students. As a result further research may develop, especially in software
engineering environments and software process models, which are aligned to SSA.

1.3 The Purpose of the Research

The purpose of the research is to propose a means to address the core set of Software Engineering in
the Small problems as discussed. The study aims to provide balanced information about SSA that will
be useful to support organizations that may decide to apply it. The author believes that through the
correct application of the “Synchronize and Stabilize” concepts, it is possible to accelerate software
development in a disciplined manner without sacrificing quality. The study further strives to
demonstrate that an appropriate software engineering environment and software process model can
be tailored to an organisation’s requirements, thus facilitating the efficiency of the software
development process.

The objectives of the study are to:

e Consolidate an understanding of the underlying theory and concepts of SSA in a non-
superficial manner.

e Study the existing SSA and provide a critical analysis.

« Propose a Software Engineering Environment (based on the critical analysis) that is suitable
for SSA. The author is of the opinion that current approaches seem to neglect this area.

¢ Propose a Software Process Model that is apt for the SSA. Current approaches also appear to
neglect this aspect.

¢ Steer away from best practice hype by proposing a framework for best practices to support the

I4

m

application of SSA. The author's observation is that this aspect is also neglected with respect
to SSA.

e Demonstrate the conceptual theory of SSA through practical examples from the author's
working environment,

1.4 The Research Methods

The following research methods will be applied:

* A detailed, in-depth analysis of the literature has been undertaken. Literature published by
various authors on how they view and address the Software Engineering in the Small
. problems has been reviewed. The intention is to analyse the current solutions suggested and
provide an evaluative report.
 Observation based approaches will also be used. They are based on the author's working
environment (Quark Deutschland GmbH) and include overall development processes, project
management, quality management and system development strategy.

1.4.1 Literature Review

Primary literature sources on the various SSA are:
e Selected text books

¢ Digital libraries such as the Institute of Electricians and Electronic Engineers (IEEE) and the
ACM

e Publications of academic institutions and research organizations

¢ Diverse computing journals

¢ Internet search engines and Web directories.

The literature sources accessed and retrieved have been analysed and forms the basis for the
literature review section of the study.

1.4.2 Observation

Observations made by the author on the application of synchronize and stabilize in his current working
environment were cited as practical examples in this study. More information from this source will be in
the form of documents, tables and diagrams.

1.5 Data Analysis

Since this is not a statistical study, the data from the literature review will be analysed manually. The
resulits will be presented textually and where appropriate tables will be used.

1.6 Limitations of the Research

Only a selected subset — namely those that apply directly to the research goals - of existing SSA from

the literature will be analysed. The author is of the opinion that it is adequate to meet the research’s

defined goals and objectives.

With reference to best practices, only a framework is proposed. The analysis of specific best practices
is beyond the scope of the dissertation.

Although Quark will be cited as a practical example during the discussion, neither a case study of
Quark is intended, nor does it suggest an implementation of a best practice framework.

1.7 Chapter Structure of the Dissertation

The dissertation is divided into the following chapters:
Chapter 1 discusses the problem domain in detail and explains the value of the research. The

intended goals and objectives to be attained are listed. The research’s methods and limitations are
outlined.

In chapter 2 literature on the SSA is reviewed. The key objective is to thoroughly understand the
commonality and differences among them. A further aim is to identify trends and gaps in the literature
and make recommendations. Observations made by the author in his working environment with
respect to topics presented in the literature are also discussed in this chapter. The review will be the
basis for the discussion in chapter 3.

Based on the literature review, a critical analysis of the synchronize and stabilize approach is
presented in chapter 3. The methods are compared by a set of criteria and then discussed. Through
an enriched analysis of the SSA that is supported by real world experience, it is possible to exploit the
advantages of the SSA and implement a means to overcome its shortcomings. This critical analysis
will be the basis to propose the set of frameworks, which is the topic of chapter 4.

Three frameworks are developed in chapter 4. The intention is to address Software Engineering in the
Small problems namely, a software engineering environment, a software process model and a
framework for best practices.

Chapter five summarizes the problems encountered, goals achieved and stated objectives. The main
findings and areas where further research may be focused are discussed.

1.8 Summary

This chapter introduced the study's subject matter and identified the core Software Engineering in the
Small problems to be addressed. The specific value of the study was outlined and the objectives to be
achieved were stated. The research methods that will be used and the constraints imposed in this
study were also discussed. The structure of the discussion and the topic of the subsequent chapters

are summarized in section 1.7.

2 SYNCHRONIZE AND STABILIZE —~ A Literature Review

2.1 Introduction

In this chapter literature on the Software Engineering in the Small problems is reviewed. The review is
necessary to gain insight into the dissertation’s subject matter. It is important to include it because
many experiments and implementations on the subject have already been conducted previously and it
avoids repeating them. it will also guide the direction of the research and lay the foundation for the
analysis of problems and solutions which were previously researched. These would include identifying

trends, gaps, understanding what works and what does not, and proposing solutions to address the
Software Engineering in the Small problems. Therefore in this respect, the review is focused on
acquiring more knowledge about the current problems and exploring ways to solve them.

In addition to the literature review, the author's observation on overall software development
processes, project management and product strategy in his working environment is an important part
of the research. The observations relate to the practical implications and aim to provide a balanced
discussion between theory and practice.

To ease understanding and provide clarity, the discussion is presented under the following headings:
e The Conceptual Theory of Synchronize and Stabilize
e The Concepts of the Incremental Development Model
¢ Synchronize and Stabilize — Implementation variations
e Observations.

Although the discussion is presented under the separate headings, it should be considered holistically
because of the close relationship between the aspects covered.

2.2 The Conceptual Theory of Synchronize and Stabilize

The SSA is more complicated as the name may suggest. Therefore it is imperative to understand the
concepts and the philosophy that it is based on. This understanding helps to gain a clearer insight of

the implementation of the various SSA in the literature, which are discussed later. Another advantage
is that knowledge is gained on how to proceed with this approach in systems development.

At this point it is appropriate to consider Brooks’s statement (Brooks, 1987), “/ believe the hard part of
building software to be the specification, design, and the testing of the conceptual construct, not the
labour of representing it and testing the fidelity of the representation.” Despite the wide acceptance of
the object oriented paradigm and advancement in technology, the reality of this statement lies in the
fact that the software industry continues to experience these problems. Despite the waterfall model’s
(Royce, 1970) weaknesses it is mature. It has gained a wide acceptance and a great degree of

success in practice to develop large systems. It has also helped to alleviate the difficulties that Brooks
had expressed. However, this process is linear and too elaborate for Small and Medium size

10

Organizations (SMQO). These organizations cannot afford the long waiting time caused by an extensive
development cycle to bring a product to the market. Therefore an alternative development approach is
required.

The SSA is an alternative development strategy to shorten a long development cycle and to accelerate
the time to market. The concepts are based on a disciplined management of uncertainties, exploration,
and the implementation of a divide and conquer process in software development.
The uncertainties experienced are influenced by several factors such as:

¢ Unknown complexity.

e Uncertainty in the requirements and specifications.

¢ What will the market acceptance be?

e Whatis a competitor developing in same problem domain?

» Whatis the payoft?

 Risks, sudden push / pull in technology.

¢ How much time to ship the product?

* Financial bottlenecks.

The list is not exhaustive. The nature of problems confronted by small Internet organizations that are
trying to develop a product should be clear. Brooks's statement appears to be relevant to both large
and small software development projects,

With regard to a divide and conquer strategy, the objective is to manage complexity and hedge against
uncertainties. With this technique the system is divided into manageable increments which are
prioritised and developed. The duration of the development of an increment is about six to eight
weeks, however, there is no universal agreement on it.

The impact of divide and conquer propagates exploration and cumulative learning about the system
during each increment. Knowledge which is accumulated during development may be applied to
improve software management and deliver a high quality system. Exploration and cumulative learning
also provides the basis for an organization to create a knowledge base. This knowledge may be
applied to identify uncertainties and plan a defence against them. In principle the SSA is an
incremental software development approach, which spawns many desirable side effects and are
beneficial to alleviate the problems stated above. Organizations such as Quark, Microsoft, Netscape
and Mozilla apply the SSA.

In order not to sound misleading, the development phases of the SSA are similar to those of the

traditional waterfall model. They are as follows:
* Requirements Specification
e System Design
¢ Detail Design

e Implementation and Test

11

* Integration and Test.

However, there is an important difference to observe, namely, that each increment of the synchronize
and stabilize development cycle is an iteration of the all phases of the waterfall model. Thus the SSA
“inherits” its development phases from the waterfall model. Through the iteration of short development
cycles, software development should be more manageable and accelerated. Both these approaches
are used where appropriate in the industry and each has their merits. This is best explained by an

illustration:

Diagram A
- Fteqmraments Specification
5I
o System ﬁesagn
|
a‘? Dstail Dasign
) % @j?é gs E:Lﬁw“ﬁﬂ{vt{w% eeee EL RN Eﬂﬁﬁuﬁ wﬁuéJ
3 3y f_iﬁ-i{;-ﬁ.xf
§ Eﬁafmfg A jsa%t:;ﬁ g ﬁﬁmﬁ@ m;ﬁ' fhfi gL
i .. I:-.. : e '..- -:-.. .;I:I.' : FE o 'gc.'}‘_ﬂ:.-_ :-: 'I'E_
e swﬁ’i' =.; Ei Rt nay E=Ef=j-=r~555=’ *" ...1 ’l::“ i B é& Egé” :
Requirements Requirements Requirements Hegquirements -y
Speclfication Spacliication Spaclﬂc:ahnn Spovification [
Systern stam System - E..
Deslgn Deslgn. g
Detall o
Design -
ot B el TR R A e A Y ;f‘ g
D
L
/2

5 " - Lu, o L T 0
b S B PR oY T 'T e it "" e ',' ::{ by i e s A
" e e T ey R R e S Oorle= 2 R e S 2 Cr'u

Figure 2.0: The waterfall and incremental models.

In Figure 2.0, diagram A illustrates the monolithic sequence of the traditional waterfall development
model. With this development approach the specifications are frozen. The implementation of the target
system is followed by a large testing and integration cycle. Diagram B illustrates the breakdown of the
monolithic waterfall model into smaller self-contained increments to be implemented. Another way to
view this is that at the end of the development, the target system will be an aggregation of a number of
planned finite increments. In theory, assuming everything being equal, a system developed following
the approach in Diagram B should aggregate to diagram A. An important practice at Quark is that the
Quality Assurance (QA) department scrutinizes each phase of an increment. The objective is to

ensure high quality throughout the development cycle.

The concept of an increment is simple to understand and should be clear. The question is what must
be synchronized and stabilized ? An indispensable control and co-ordination mechanism of the SSA is
the daily build (CGusumano and Selby, 1995; Cusumano and Yoffie, 1999; McConnell, 1996). The work
of the developers is checked in daily at some stipulated time, a build is created and a series of smoke
tests are performed (McConnell, 1996). A smoke test is a test script or test procedures that tests basic
system operations. Smoke testing maybe manual or automated. An important objective of the smoke

12

test is to check that each increment of code to the system harmonizes with the existing code. If the
build breaks, then the presumption is that the code that was last added is the cause. In this manner
the work of the development team is continuously synchronized and periodically the system is
incrementally stabilized. Stabilization will depend on the quality of code added during synchronization.
The stabilization phase deals with software issues such as performance, system stress, system
resource consumption and fine-tuning. If the stabilization phase is not well managed then the potential
danger is that the system will degrade. The system should execute without any crashes and produce
consistent results, which are repeatable and reproducible. The techniques of creating a daily build and
smoke testing are practised by many organizations such as Quark, Microsoft, Netscape and Mozilla.

As a result, the work is performed in parallel and in small phases. For example, the specification,
coding, testing and integration activities are done in parallel as compared to the waterfall models
sequential execution of tasks. The SSA aims for speed, however, without jeopardizing usability and
quality. As an advanced developed technigue it requires excellent co-ordination skilis and increases
the responsibilities on the entire development team. It can be stressful if it is not well managed.
Although the SSA evoived from a hacker development style, (Cusumano and Selby, 1985; Cusumano
and Yoffie, 1999), it is no longer a pure hacker approach because good software engineering
disciplines are being applied. Since there is a need to launch a product on the market fast, schedules
are tight and good Software Engineering (SE) principles are essential. Slipped schedules are costly.

Depending on the severity of problems, the level of programming faults encountered and system
performance, additional builds may be created for system testing. During a cntical situation (the
system cannot converge) three builds were created daily at Quark. This meant that the builds were
smoke tested frequently than usual in order to detect and eliminate faults. In McConnell (2000), a
controversial argument for and against the daily build is presented in relationship to incremental
development. In the author’s opinion and experience the daily build is the “heart beat” of the system
being developed and also agrees with Dave Card's views (McConnell, 2000) that the build is a “brute
force” system integration.

During the initial increment of Quark’'s E-Commerce application, system integration problems were
experienced despite the creation of daily builds and performance of smoke tests. The causes of the
problems were that the developers tested only their own sub systems and neglected to test across the
system. The strategy to resolve this problem fast was to set up a test laboratory that was managed by
a process-testing manager. Integration test cases were created and the process flows of the
application were tested and documented. Several builds were created daily in order to accelerate the
progress. In extreme cases when nothing functioned, check-in stop mode resulted; no new code is
allowed to be checked-in until the system is fixed. All efforts are expended on fixing faults in order to
bring the system to an accepted level of stability. This would appear to be “brute force” integration, but
it was necessary. "Brute force” integration is the persistence to ensure that the system functions
before proceeding with the next increment. Although there were delays, the laboratory testing method

had reduced the impact of faults because its formal approach. According to Cusumano and Yoffie

13

(1999) the theory is to give the developers more autonomy in their work. However, Quark’s experience
in this specific regard (testing) reflected that the developers required supervision. This is a classical
situation that is commonly experienced; namely, developers do not test adequately because they tend
to focus only on their own code.

By managing complexity through the SSA, system integration problems were easily resolved. The test
laboratory was set up without a lengthy bureaucratic process. The lightweight formal testing approach
was well accepted and was not considered to be tedious. At the end of each integrated test session
the team discussed their progress. Therefore the application of simple SE principles blended well with
the development environment and Quark was able to manage its problems effectively.

Another observation made at Quark was that the duration ot an increment is usually ionger than six to
eight weeks. The duration may be of any length from three to twelve months. For example,
QuarkXPress 5.0 was released in December 2001; however, the planned release date for version 6.0
is December 2002, which is one year later. An increment may be viewed as a minor release and a
version as a major release. The usability and added value of a major release influences the system’s
competitiveness. During the development of Quark's E-Commerce application, some incremental
cycles were seven weeks long. There is no hard and fast rule because much depends on the scope of
the release. The planned feature set for a release also determines the schedule. The general intention
is to produce a feature rich release that would encourage users to upgrade. That is, the users want to
see significant new functionality in the product, which are useful in solving their business problems.
Hence, the six to eight weeks is too short for a significant release. On the contrary, it is well suited for
an intermediate release (or patches or service packs) with reported faults being corrected.

Strohm (1991) quoted in Rautenberg (1992) identified four types of software, which are important
factors for software development. They are as follows:

o Type A: Specific application for internal use of an organization

o Type B: Specific application for an external user

e Type C: Standard application for an external user

s Type D: Standard application for an anonymous user.

The applications, which are developed by Internet software organizations, are mostly ot Type D and
are release driven. That is each release is an increment and these organizations may benefit from the
SSA. In-house development is of types A, B and C. Although a strong focus has been on rapid
software development by SMO, an opinion that SSA is solely restricted to them should be avoided.
Organizations which fall into types A, B and C can also apply the SSA for software development.
Generally the choice of a process model is subject to the problem statement. Because Internet
software organizations are faced with the Software Engineering in the Small problems SSA has
become a viable solution for them.

it can be concluded that the incremental model forms the key pillar on which the SSA is based while it

14

has its roots in the waterfall model. In the next section the incremental development model is
discussed in order to better understand the various applications of it in the literature.

2.3 The Concepts of the iIncremental Development Model

The development of the incremental model emerged from the practical realization that software is
engineered step by step (Schach, 1993). The model pivots around this development philosophy and
the development process is also evolutionary. As noted in Figure 2.0, a system is divided into a finite
number of incremental units. These are developed and tested in a series of incremental builds and the
process stops when the target system satisfies all requirements (Cusumano and Yoffie, 1999; Russ
and McGreggor, 2000). Thus the development process is bottom up, which iterates the waterfall
lifecycle (Dunn and Ullman, 1994). This important point should be remembered at all times. Therefore
in reality the development principles and habits practised by using the waterfall model should not be
considered to be obsolete and useless. It is these traditional principles and habits that are innovatively
applied by the SSA to address Software Engineering in the Small problems.

Graham (1989) provides a detailed discussion on incremental development and proposes several
incremental life-cycle models. The following problems of the monoilithic lifecycle, as in the waterfall
model were identified:

o Software resource (labour, material, personnel) estimations are weak.

» All requirements cannot be accurately and completely defined.

e Reaction to changes is long and costly.

e System testing and integration is difficult.

o Software maintenance is costly.

He dismisses the view that the incremental model can result in sub-optimal systems development and
strongly favours the incremental software process model. The above problems are also those which
small software organizations experience today. A pbsitive side effect of incremental development is
evolutionary delivery because an increment may be delivered to customers as a useful version of the

system.

Ahituv and Neumann (1990) refer to it as an evolutionary approach and distinguish it from an ad hoc
approach, because the system planning process (short, medium and longj} is vital, whereas an ad hoc
approach is arbitrary. They identify two forms of evolution, one the comprehensive information system
evolves with changing needs, and two a specific subsystem evolves over time in response to changing
operational needs and to the change of the comprehensive information system. Aoyama (1998a)
refers to the above changes as major and minor enhancements respectively. In practice it is common
that some sub-systems incur more changes than others.

As with other development models, a clear statement of the system’s intentions must be provided to
establish the scope and effort (Powers, Cheney and Crow, 1990). This is similar to a product vision

15

statement that is produced to define the product goal (Cusumano and Yoffie, 1999). Such a statement
is used to steer the requirements definition process. In practice it is difficult to define the complete
scope and the objectives comprehensively in the beginning because the problem statement is often
not clearly understood. Through the concept of iteration and layering during development the problem
statement becomes more precise iteratively as a deeper level of understanding is reached.

Rational Software [W1] discusses the application of incremental software development in favour of the
traditional waterfall approach in detail. They refer to their incremental approach as the Rational Unified
Process (RUP). Their discussion is interesting since it emerges from industrial experience instead of
an academic environment. In the discussion Kruchten [W1] states “it makes sense to try to see how
the two apparently conflicting lifecycle models might pair up...” However, what exactly is the conflict is
not explained. The author does not agree that these are "conflicting lifecycle models’, but is of opinion
that they are different life cycles or software process models. A close examination shows that RUP
inherits its phases from the waterfall model. The steps and iteration of an increment are actually “small
doses” of the waterfall model and RUP does exactly that. It has its own terminology for each phase
which in the author's opinion is confusing and adds little value.

The preceding discussion emphasized on the concepts of the incremental development model.
Motoyoshi and Otsuki (1998) exploit the concept of incremental development further by proposing an
Incremental Development Project Planning Approach (IDPA). With the IDPA method, the technology
to be used is assessed, decomposed and scheduled according to technical dependency at the time of
introduction. That is, the project is planned in increments and technology is also introduced
incrementally. The model is aimed at embracing changes in the development environment in order to
increase its acceptability, improve communication and improve productivity of the development team.
Therefore the focus is strongly on people and it is suggested personnel must satisfy some perquisites
before they are required to learn new technical issues. The IDPA method provides a strategy to adapt
to technological changes in the development environment by explicitly incorporating them into the
project-planning task. Since organizations developing in Internet time are faced with rapid changes in
technology the ideas suggested by the IDPA method may be beneficial.

Yoshioka, Suzuki and Katayama (1998) propose a method called Incremental Software Development
method that is based on Data Reification (ISDR). It focuses on writing programs incrementally. The
concept is based on the premise that a program can be constructed before its specification is
completed. Their incremental development process is as follows:

 Reifying the data that is used. That is, abstract data is defined in concrete terms during each

increment.
e Refining the program according to the data reified.
o Executing the program using abstract interpretation.

With this technique a program is stepwise refined as the specification becomes clearer. As a result it

can be executed in its intermediate and incomplete form with the advantage of early error detection.

16

This concept is consistent with the fact that since system requirements are not always complete, the
program specifications are also unlikely to be clear and well understood. This programming style is
flexible and adaptable to changes. A flexible software development style is necessary to cope with
Software Engineering in the Small problems.

From the above discussion it can be concluded that the concept of the incremental model does not
necessarily apply only to iterating the waterfall model. It was further exploited and applied in project
management and programming, which are equally important in software development. The
development of the Agile Methods, Aoyama (1998a, 1998b) and Extreme Programming, Beck (1999),
is an indication that incremental techniques are favoured to overcome the restrictions of the waterfall
maodel.

Over time many variations of the SSA have emerged 10 overcome the restrictions of a linear
development process. These variations have adopted the incremental model as their core

development process and are discussed in detail in the next section.

2.4 Synchronize and Stabilize - Implementation Variations

In this section literature on the implementation of the various SSA is reviewed. The underlying
concepts and principles of the approaches are examined with respect to the problems they address
within the scope of Software Engineering in the Smalt and the solutions proposed.
The following variations are discussed:

e Incremental Development

e FEvolutionary Project management

o Extreme Programming

e The Scrum Software Development Process

* Product Line Concepts

 Improvisation Techniques

¢ Whitewater Interactive System Development with Object Models (WISDOM)

» An Integrated Approach

o Agile Software Process (ASP)

e Synchronize and Stabilize using Gomponents.

The abbreviations that are used to refer to the SSA during the discussion are listed in Table 2.0.

17

WA« o o P e bl rere n oo B bm e+ A w B e o el e My = T = g Sm A= S0 VO me O N m O e nade m o e EE R e

':. :::.' . ‘l.';:_r:=. ';::.;::] ::I. o l:r _ lZ:,.:l:. :::.' .-.:: (=X ‘l.'l:::: .:: o =1t ‘l.'-.-' U L, e, e el] o o = O T e O G T W T e ATl e, D e S et o e

oreQo WE
..........

=

A e o e R e e e A i A a7 o] R e e A Rty S S e B e o K i e e At e e O D e e e VPR LA, S o e O R G D i e R ol R e i R i A DR O b, 2R DR RO o o o i O e ey DT SO L SO

EMP } ‘E‘vﬁtutiﬁnary Project Management

)(p T Extreme Progran:ﬁ%i‘h‘g)

SCR Scrum Software t}léfelnpment Process B

PLE | Product Line Engineering "

-IMP lmprowiééffdr; Techniques -

'WéM .Whiteﬁafér Interactive System Develbi:)ment with Object Models(WISDOM)
.-|N‘p o _Integrated Approach

ASP Agile Software Process

ssc | Synchronization and Stabilization using Components

Table 2.0: The SSA abbreviations and their explanations.

2.4.1 Incremental Development

Graham (1989) provides a detailed discussion on the application of the incremental model and
presents his framework for an incremental life-cycle model. Generally he concentrates on the
incremental process and prototyping in incremental development. The benefits of incremental
development are viewed in relationship to a typical monolithic life-cycle model such as the waterfall
model and a shift from it is proposed. The reason for this is that the waterfall model is inflexible and
cannot adapt easily to changes during the development cycle. However, changes are easier to
incorporate with the incremental model.

He clearly distinguishes between the concepts of incremental development and incremental delivery.
In this paper an increment is defined as “a self-contained unit of software with all supporting material
such as requirements and design documentation, test plans, cases and results and user manuals and
training”. The definition is easy to understand and consistent with Sofiware Research’s differentiation

between programming and software development [W2]. The distinction is defined as “the difference
between programming and software development Is that the latter deliver documented, tested and
maintainable software. The first just delivers a program.” This distinction is important for SMO
because the former impacts on the quality and usability of their deliverables and influences the value
they offer to customers. The implication of incremental development is that user manuals and
documentation are also created by increments. Therefore an increment must deliver value to the user.

Incremental development in this paper is presented as what may be referred to as its “early standard
form”. That is, the "development of a system in a series of increments throughout the project time
scale”. The incremental life cycle model presented here is identical to the first three phases of the
waterfall model, namely, requirements specification, system design and detailed design. The
difference lies in the code test and integration test phases, which are performed incrementally. 1t is in

the last two phases that the system is developed by a series of build and test increments. Prototyping
and formalism are also proposed in conjunction with the incremental model. However, Graham does
not consider the effect of project management and an appropriate software engineering environment

for his incremental development maodel.

18

According to Graham incremental development can be used with or without incremental delivery.
Incremental delivery is defined as “The delivery of increments to the customer or user at intervals
throughout the project timescale.” He favours evolutionary delivery (which includes incremental
delivery and incremental development) because early customer feedback received is useful in learning
and understanding the system. This feedback is also useful input for future increments.

2.4.2 Evolutionary Project Management

Gilb (1988) presents a detailed discussion on the Evolutionary Project Management (EPM) model. He
makes an important distinction between Incremental Development and EPM. He views the
Incremental Development model as follows, “...in the ‘Incremental Development’ model multiple build-
and-test steps are based on detailed requirements and design specifications. These are more or less
'frozen’. The point is gradual delivery of partial results. Incremental project management models might
be forced to revise their requirements and design, but they do not infend to, and it is not a regular part
of the process”.

According to Gilb the above differs with EPM in the following respect, “In the Evolutionary
Development model, less effort is put into the initial overall system level requirements and design
specification, initially. These specifications are, however, continually updated as step experience
dictates. At each step, delailed requirements and désign for that step are specified. “ As a result the
following activities may resulit:

e new experience gained to date

e new user needs are defined

s new technology may be required

e economical influences experienced and new market insights.

The emphasis is on learning rapidly and applying the lessons for improved customer satisfaction and
ability of the developer to manage the project. Since SMO must manage their problems effectively
under difficult conditions, EPM appears to be appropriate because it heips to guide the development in
a disciplined manner. Furthermore EPM may be used in various types of projects [W3].

Graham (1989) also acknowledged that the implementation of each increment might result in changes,
for example, in the requirements, design and code. In practice whether they are really “frozen” and not
part of the ‘intended process” is a development philosophy. This is further influenced by an
organization's priorities as to what would add value to the software and how its competitive advantage
will be affected. The importance is what must be incremented and to what extent. These are some of
the issues confronting SMO. Very often the situation on hand influences the decision making process.
A closer study of the Incremental Model and Evolutionary Project Management indicates that they are
based on the basic concept of incrementing. The important difference is what must be incremented

and 1o what extent.

19

In a case study titled “Evolutionary Project Management” Woodward (1999) describes the adoption of
EPM to deliver software rapidly. Based on the fact that a software project is rarely completed, but
evolves, he found that by using EPM such evolution could be better managed. This was achieved by
shorter development cycles (with logically related functionality considered) being implemented
iteratively in small increments. According to Woodward, the basic idea was to provide frequent
deliveries (six to eight weeks duration) of the product so that it could be installed as a self-contained
entity. This view is similar to the definition of an increment stated by Graham (1989). In their

discussion on the SSA, the development period is also between six to eight weeks (Cusumano and
Yoffie, 1999; Cusumano and Selby, 1997). Therefore with EPM the delivery of a cycle is not the final
product, but an existing cycle with increased functionality. That is each evolution builds upon the
previous ones. EPM also emphasizes on the importance of regular feedback from users which helps
to identify problems to be solved. Gilb also refers to this method of learning about the system and
consequent adaptation as the key idea of EPM.

In Woodward’s project, Order Management and Routing (OMAR) strong emphasis was placed on the
software being traceable and this was regarded to be an important contributor to quality software. That
is, the systems must be traceable to the requirements and functional specification. However, Royce
(2000) views this as a “principle that didnt make the cut®. The author is of the opinion that software
traceability is important for organizations confronted with the Software Engineering in the Small

problems because it affects future software releases and its quality.

The development teams and the testers worked in close co-operation on the OMAR project. They
were also given a fair degree of autonomy, such as deciding on the initial features to develop and
objectives of each development cycle. This indicates that a good team relationship is a contributing
success factor. The daily build was used as a co-ordination and control mechanism during the

development. With EPM it was also possible to test the complete system frequently, which had a
positive impact on the quality of the system. The implication is that if anything went wrong then the
addition of an increment is most likely to be the cause.

EPM was considered superior because by providing an estimate for each cycle within the global
project plan, a continuous learning process occurred. As a result each time the estimates tended to be
more realistic. The major achievements which Woodward experienced were that the project was
completed ahead of schedule and the system included additional functionality than initially planned.
This is important for SMO because time, speed and quality are of essence for them.

2.4.3 Extreme Programming

Extreme Programming (XP) an agile method (Boehm, 2002) is currently a highly debated topic and a
full discussion on it is beyond the scope of the discussion. The first principle of the agile manifesto
states that, “Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.” This principle implies that speed and quality are important and development

priorities must be well defined. This section examines the application of XP as a technique to produce

20

quality software fast. Beck (1998), the founder of XP, also regards the sequential waterfall model as
being too rigid and its application is time consuming to produce a product fast for the market. His
reason was that the planning, analysis and design results produced by the waterfall mode! delved too
much into the future. He is also of the opinion that the problem domain is often not clear in the
beginning and changes later are costly. His proposal is to perform these activities “a little at a time”
throughout the development, which is the basic principle of XP. XP also adopts a radical philosophy,
that is “do what is required for now”.

XP leans towards producing a simple design and delivering the system in small releases. The features
to be implemented are referred to as stories. For each development cycle the customer decides on the
scope and releases and selects which stories must be implemented. The customer is free to pick the
stories. Once selected, they are transformed into subtasks and implemented by the programmer. The
aim is to implement the subtasks within a few days. During an iteration new stories which are tested
and ready for delivery are put into preduction. With XP a system may be put into production within a
few months, but without solving the complete problem domain. It is clear that XP also adopts EPM
concepts and the system will grow in functionality over time. A new release cycle will vary from daily to
monthly. Although XP is a radical and fast paced development approach, the involvement of users is
advantageous. Since they decide on the scope, the acceptability of a release is increased.

Furthermore, informal discussions also occur with the users and provide valuable information for future
system requirements. This is useful in designing an open architecture system because it helps the
designer to think ahead.

Speed is an important factor in XP and new code may be integrated with an existing system within few
hours. During integration the build is created from the beginning. If all tests are passed, then the build
is accepted, else the changes are discarded and the build is rejected. The build also serves as a
control mechanism to get the system to converge after each increment. In other words the
programmer tasks are frequently synchronized and the system being stabilized after each new story.

The most controversial aspect of XP is that the programmers collectively own the system and two
people (pair programming) write a program. This programming technique is considered to improve
productivity and code quality. The technique of re-factoring also makes it possible to improve code
quality and to reuse existing code. The team is free to set their working rules and can change them at
anytime. However, everybody must sign up to the rules. This implies that the team has a fair degree of
autonomy and is committed.

2.4.4 The Scrum Software Development Process

Scrum an agile lightweight development process, is based on defined and black box process
management. It is a methodology for the management, enhancement and maintenance of an existing
system and for new systems development. It also assumes that the analysis, design and development
processes are unpredictable and has a control mechanism to manage the unpredictability and risk.

Scrum considers that this unpredictability, risk and complexity is operating on the edge of chaos, and

21

the process is aimed at to avoid falling into chaos [W3]. Scrum (a sports term) is used as a metaphor
to indicate the co-operation of the team 1o reach a single common goal.

Rising and Janoff (2000) describes their experience in implementing the Scrum software development
process. They also found that the traditional approach was too rigid and that requirements are not
always known at the beginning and faster reaction 10 changes was required. Therefore Scrum was
applied to cope with requirement changes during the development life cycle in order to meet changes
- in business demands. Similar to EPM they also emphasized on learning about the system during the
development cycle. Scrum is also an incremental software development process. The fact that it
allows development to occur close to the edge of chaos implies that it has a common element with XP.
Organizations using Scrum were also found to experience an increase in productivity.

A Scrum team consists of 8 to10 people. Scrum is not recommended if the development requires large
complex team structures, because it is easier for smaller teams to work independently and effectively.
Project planning is considered an important phase during which the initial system architecture is
developed in conjunction with the project's vision. This vision would influence the addition of future
increments and how to synchronize and stabilize them over time. However, it is acknowledged that the
architecture can change during subsequent increments. Therefore it is important that the system's
architecture is designed for extensibility. The ability to react fast to these changes is challenging for
SMO because it impacts on the entire product.

After project planning short development phases called sprints are identified and are developed
incrementally. Since changes are inevitable during each increment planning is quick. Theretore Scrum
strongly focuses on accelerating the development process; as a result tangible system is visible faster.
This acts as a motivational factor for the team. In the Scrum process, the marketing group or the
customer will determine the release date. In order to establish a base product the features with the
highest value or which are important to the customer are given high priority. Thus the customer’s input
is important during this process.

Sprints are subdivided into tasks with the aim to be completed within less than a week. When a sprint
is completed it is merged with a previous version of the software. Each sprint, once incremented
produces a useable version of the software and this makes it possible to deliver the product at
anytime. In other words, a deliverable version of the software is always available. Hence delivery is
phased and any feedback {from customers and marketplace) is considered. Aiter each sprint a
decision may be made whether the project should be continued or stopped. The key objective of a
sprint is to deliver valuable functionality fast. |

A sprint is actually a time-box development procedure which is regarded as a best practice in software

development and is discussed in detail by McConnell (1996). The delivery date of a time-box chunk is
about 90 days. According to Avison and Fitzgerald {(1995) it is argued that a system cannot be divided
into 90 days chunks and the idea should be discarded. A sprint cycle lasts between one to four weeks

22

and an entire project only a few months. For this approach to work a radical change in the
development culture is necessary and a breakaway from strict formalized methodologies is required.
In order to meet the delivery date of a “sprint time-box’, functionality may be omitted from the
development schedule if the user agrees. However, the delivery date does not change. In this manner
Scrum is aggressive in preventing missed schedules. Once the Scrum closure phase is reached the
development is completed.

A Scrum Master is appointed to lead the team and acts as the control instrument during the
development. He controls and tracks the team’s progress and all procedures at the meeting. Although
control is necessary, the procedure in Scrum may have a negative effect because people may feel
intimidated that they are being closely watched. The meetings are short and are aimed to identify
problems and co-ordinate the development. Issues such as backlogs, progress, problems and the
setting of priorities are discussed. Project risks are also addressed and decisions in this respect are
taken. The Scrum process appears to be non-bureaucratic and flexible to develop software rapidly in a
disciplined manner as required by SMO.

2.4.5 Product Line Concepts

Knauber, Muthig, Schmid and Widen {2000) also found that small organizations must be flexible and
quick in reacting to customers needs and cannot operate like large organizations by taking a long
view. They propose the Product Line Engineering (PLE) concepts which aims at maximizing reuse of
core ideas. For example, common system functionality is developed and used across multiple
diversified systems. Thus saving time and distributing the development costs across systems. These
aspects are important for SMO because they can stretch their limited financial resources effectively
and speed up development. The core idea of PLE is to synchronize and organize the development of
multiple products based on a single reusable infrastructure. It is also imperative that there is a clear
vision of which products will be developed in the future. This suggests that management must have a
long-term plan of proposed systems. Therefore the system architecture must be open and extensible.
A careful study shows that PLE slants towards the modern development philosophy of using
components and a black box development approach. The common system functionality can be
developed as components or black boxes and integrated with other products of the product family.

The method used is called Pulse and was developed at the Fraunhofer Institute for Experimental
Software Engineering in Germany. The method is ¢ustomisable to support conception, construction,
usage and evolution of product lines. The Pulse method commences with the requirements definition
and is more comprenhensive than that of XP and Scrum. The reason may be that the requirements
influence individual products and are categorized as to what is common to all the products and what is
product specific. Therefore in the long-term it is recommended that more time be allocated during the
requirements definition phase. A commonality analysis is performed to filter out common requirements
among the products, which are proposed for development. Apart from analysing what is common, the
differences are aiso analysed. The entire procedure is informal and the structure is open. Those

involved can decide which structure to use. From the literature it can be inferred that the aim is to

23

W

create generic solutions as much as possible and treat exceptions accordingly. Another inference is
that several systems are developed in paraliel; as a result the development process is accelerated.

The product line core infrastructure is the reference architecture that is common to all systems in the
product line and ensures conceptual integrity. The benefits are high reuse, increased quality, reduced
cost and decreased time-to-market. Pulse uses also incremental development to develop the
reference architecture. The system is then built iteratively by adding increments at a time. System
refinement takes place as the development proceeds and the architecture is extended as required.
The development requires a great degree of flexibility and product line development flexibility is
difficult to conceptualise as compared to individual systems.

Since the complete requirements are not known at the beginning, the teams also worked closely with
their customers. This approach enabled them to react faster once they are known. The customers also
provided useful feedback for the implementation of subsequent increments. It was observed that SMO
have limited resources, lack proper documentation, employ no systematic development process and
focus on producing code. Through the Pulse method they succeeded in introducing discipline in the
overall development process.

Macala, Stuckey and Gross (1996), discusses similar experiences with the product line development
approach. They aiso emphasized that a solid architecture is a foundation for successful product line
development. Product line development requires skilled software engineers and this must not be
compromised. A new way of thinking is also necessary. Although product line development aims to
deliver quality software rapidly, good project management, a mature software development process

and strategic planning are essential.

2.4.6 Improvisation Techniques

Dyba (2000) suggests improvisation techniques for small software organizations. He proposes that
organizations should endeavour to find a balance between refining the use of existing skills and
experimenting on new ideas with a goal to improve on old ones. That is improvement is through
exploitation and exploration. A concentration on exploitation will result in an improved use of old
technologies, while concentration on exploration will cause an organization not to realize the
advantages of its discoveries. This is the key concept of improvisation as an instrument for
improvements in small software organizations. He also proposes a shift from a linear development
model as small software environments are non-deterministic and constant negotiations and re-
negotiations of the system prevail. His emphasis was on viewing the development environment
realistically because it is unpredictable. That is there are many unknowns, it changes constantly and it

is difficult to control.

Improvisation is an improvement approach to understand the relationships between action and
learning in small software organizations. It helps to deal with the unseen and through continuous

experiments new possibilities and innovation may be inspired to improve matters. As a result small

24

organizations may survive the increasing turbulence and complexities in their environments by
deploying their limited resources optimally. For example, old software modules may be re-examined
and exploited, and reworked with new features being added each time. In such a situation the
principles of code re-factoring would be an appropriate technique [W4]. Poorly written code has always
been a hindrance and time consuming. Re-factoring can contribute significantly to improve this.
Therefore instead of rewriting anything from the beginning, the suggestion is {0 use what is already
available by fully exploiting it. This is a viable and economical proposition when resources are limited.
A side effect of exploitation is a gain in development speed; however, no time frame is mentioned.
Improvisation also requires the development teams 0 be creative. The extent of their creativity will
depend on their interpretation of the environment and choice from alternatives.

There are no detail development plans in the beginning. Furthermore the results of the work cannot be
specified early in the project, but only a projection of the planned product can be produced. This
situation is common for most small softiware development organizations. However, the product
usability will evolve over time, and the time to market the product will determine its competitiveness.
Dyba warns that successful improvisation is difficult, because the concepts of exploitation and
exploration must be learnt and additional work is required in this field. The intention was to
demonstrate that through improvisation organizations could cope with changes and unpredictable
environments, which are hurdles in Software Engineering in the Small.

2.4.7 Whitewater Interactive System Development with Object
Models (Wisdom)

Wisdom is a lightweight software engineering method that was developed by Nunes and Cunha,
(2000). The method has three components, namely, a software process, conceptual modelling and
project management. It has its own modelling notation, which is a subset of the Unified Modelling
Language (UML). It is aimed at the needs of small teams that develop interactive systems. It also
addresses the needs of small organizations, which must be flexible and react fast to changes.
Furthermore small organizations have limited resources and cannot afford expensive high-end tools.
Wisdom addresses this problem with low cost tools and improves the development process from a
chaotic way to a methodical one. These objectives are common to Wisdom and Pulse.

During development the goal and evaluation cycles are based on the requirements, which are
exploratory processes conducted in multiple short sessions. The deliverables from this process is a
requirements workflow, with the purpose to develop a system that satisfies the user. The requirements
workflow is the product's high-level concept, user profile, task analysis, business model and
requirements model. The task flows are free from technology and the implementation details. They
describe the user’s intentions and the functionalities which are required to accomplish specific tasks.
Since Wisdom focuses on interactive applications, the interactive scenarios are defined by Use Cases

to guide the development.

25

An analysis workflow is then created to refine the structure of the requirements model. The results
produced are the requirements description, system internal interface definition and the User Interface
(Ul) definitions. Ul development accounts for about half the development effort of interactive systems.
During analysis the necessary classes are also identified to represent an abstraction of the system’s
requirements. Therefore knowledge of object oriented software development techniques is necessary.
An interaction model is also created to represent the interaction between the system and the actors in
order to indicate relationships and navigational paths.

The design workflow drives the implementation and refining of the system and architecture. During the
design workflow an incremental refinement of the analysis and interaction models is performed. Any
non-functional requirements for the system are also considered. The work is of a technical nature and
is focused around the development environment with respect to the programming language, database

and operating system.

Wisdom emphasizes strongly on system’s modelling. A series of workfiows and models which flow in a
logical refinement sequence are created. One of Wisdom’s philosophies is to design for reuse which
can contribute to rapid development in the long term. The development speed of Wisdom resuits from
avoiding chaos (improvement in the development process), unnecessary re-work (saving time) and
using simple tools (low cost and reduced complexity). Since the tools are simple, high training costs
may be avoided.

2.4.8 An Integrated Approach

The problems of incomplete requirements and rapid changes in the problem domain are a hindrance
to systems development. Russ and McGregor (2000) propose an integrated development process with
an aim to develop high quality software and timely results economically. Selected portions of several
standard process models were adapted to create a development process for small projects. Their
software development process integrates the following principles:

¢ |terative Development

¢ The Incremental Model

e QGuided Inspection {quality control)
o Measurement Framework.

The developers are guided during each project step and as to what emphasis to place on the activities
in each development phase. To save time and improve efficiency, some of the development processes
are logically re-arranged (or integrated). For example, guided inspection is integrated into the
development activities to eliminate the need for formal design reviews. The team structure is clearly
defined and the roles, tasks and responsibilities of the members are clarified at the beginning of the
project. The roles guide the interaction throughout the process cycle. Thus a clear communication
channel is established early in the project to avoid miscommunication. Some examples of roles are,

manager, domain exper, tester, programmer and customer. If special skills are required then they are

26

also acquired.

The Integrated Approach is methodical, well structured and tends to lay a sound foundation on which
the development must take place. Similar to Improvisation Techniques it encourages the principle of
reuse. In this regard existing software development phases (as listed below) are used optimally. This
is advantageous for small organizations, because it is easier to adjust the changes in an environment
as compared to for example, that of XP. The discipline that SMO seek in order to develop software
fast is available at an “affordable price” with the Integrated Approach.

The development phases which Russ and McGregor (2000) proposes comprises are as follows:
* Define the Requirements Scope |
¢« Domain Analysis
e Application Analysis
e Architecture
¢ Application Design
¢ Program Implementation
* |ntegration
e System Test.

These phases are similar to those of the waterfall model. The development is incremental and
iterative, thus speeding up the development process. An increment can be completed between one to
two months. Despite the speed factor their approach also aims to introduce more discipline and control
into the development process. This is similar to the Wisdom and Pulse approaches which were
discussed in the previous sections. It is recommended that if the team is small, then the increment
should be small. This is common sense because a team’s capacity is limited. Based on the feedback
from customers and experience from previous iterations, the requirements and design models are
modified because the understanding of the problem becomes clearer,

2.4.9 Agile Software Process (ASP)

The concept of agility was initially associated with the production of hardware and with low importance
to software development. In this section literature on the Agile Software Process (ASP) model is
reviewed. Aoyama (1998a) proposes and discusses the ASP and its experience in large-scale
software development. He also recognizes that the demand for software is increasing rapidly and that
the Internet has changed software development's priority from what to when (Aoyama, 1998b).
Furthermore due to the high operating costs in their home country, many organizations have offshore

development centres. In reality software development in a global development environment is difficult
to manage. He also indicates that there are communication problems which results in project delays.
He proposes the ASP model as a solution to manage faster software development and communication
difficulties over distributed environments. The ASP model is complex and a software engineering

environment is recommended for a problem-free operation.

27

The aim of the ASP model is to deliver software rapidly, but at the same time to be adaptable to
changes in software requirements and delivery schedules. It applies the concept of incremental
development and incremental delivery over a specified period of the project. With ASP the system is
broken into a number of lightweight modular processes to ease management. Similar to Scrum, a
time-box approach is used where the delivery times are fixed. As a result a large monolithic application
is developed incrementally and concurrently and is shipped in multiple releases. With this approach
the slow development progress that is experienced with the traditional waterfall model is alleviated. In
comparison to the waterfall process model the requirements are not frozen. The impact of a change in
the requirements is viewed as a change in product, process and environment and emphasizes on the
ability to react rapidly and adapt to changes.

ASP’s agility stems from its macro process architecture. As explained in Figure 2.0, each incremental
unit is based on the waterfali model and ASP recognizes this in terms of its architecture, which is
incremental and iterative. In ASP the unit development process was redesigned to make concurrent
development possible. As a result software development can evolve fast, adapt to changes and cope

with strict delivery schedules. Multiple processes can be started over multiple releases to speed up the
development. This makes it possible to develop multiple features in a fixed cycle time. An interesting
concept of ASP is that it distinguishes between major and minor releases. Based to the effort required

time is allocated appropriately. For example, a major release is allocated six months and a minor
release is allocated three months. It is possible to deliver a release every three months and Aoyama
has reported a reduction in development time by 75%, that is, from one year to three months. Such
reduction would appear to be drastic and aggressive.

ASP is divided into two parts, namely, an upper-stream process in which analysis and implementation
are performed, and a lower-stream process where integration testing and system testing are
performed. The output of the upper-stream process once completed is checked in and integrated into
the whole system as a release. The intended release then goes through the lower-stream process of
integration testing and system testing. This is the synchronize and stabilize part of the system.

According to Aoyama, the ASP model has the following major contributions, and are summarized as
follows:

e |tis a new process model which is time based.

* It promotes evolutionary delivery.

» The ASP model accommodates an architecture that integrates concurrent and asynchronous
processes. It is an incremental and iterative process and supports distributed multi-site
development. ASP is people oriented.

o |t provides recommendations for a process centred software engineering environment.

e Valuable experience in the use of ASP in large-scale systems for over a period of five years is
now made available to the software industry.

ASP is an effective solution to the Software Engineering in the Small problems that small

28

organizations may adopt. It recognizes the difficult conditions in which organizations operate and
addresses problems experienced in a global software development. As a solution it is based on sound
SE and management principles. Aoyama also proposes an Agile Software Engineering Environment
(ASEE) that is appropriate to ASP. Organizations may benefit from this proposal as system planning is
strongly emphasized. ASP is complex, non-bureaucratic and flexible. However, due to its complexity
there is a learning curve to follow. It is clear that a new way of thinking is required on software
development and an organization must embrace change if it wishes to implement ASP.

2.4.10 Synchronize and Stabilize using Components

Software development with components is a comprehensive subject on which a complete book can be
written. As a result a detailed discussion on it is beyond the scope of this discussion. Since
development with components can be an option to overcome the Software Engineering in the Small
problems, it is discussed. The basic concept is to accelerate the development process by using third
party software components to build a complete product or subsystems of it. Another advantage of
using components is to reduce cost and improve quality. However, an organization may develop its
own components which may be used across the spectrum of products it develops (Voas, 1998). For
example, a font selector component may be used in a word processor and a spreadsheet application.
A well known example is Microsoft's Words and Excel applications. These are ditferent products which
use a common fonts selector component.

An application may be created solely with components or the base application is developed and
specialised third party components are integrated with it. The former case is an ambitious option, while
the latter is common practice during development. The objective is to reduce the development time
and cost by using software (components) that is already available. Since components are tried and
tested, they are generally considered to function well and improve the reliability of a system. Therefore
all that is required is to manage the integration and interfacing of components. For example,
components which calculate sales tax and perform customer address verification are specialised
components which are used in many commercial applications.

Repenning et. al.(2001) provides a defailed discussion on using components as highly inter-
connectable software building blocks. Theoretically by using components the complexity of a system
maybe reduced, because the development team does not have to care about the internals functioning
of them. In other words certain aspects of the system has already being completed by a third party. All
that is required is to develop a clean interface with it. Component usage also fosters reusability and
modular design. They also discuss their development process, called Component Oriented Rapid
Development (CORD) to develop software with components. With the CORD approach activities are
performed in parallel by distributed teams working on sets of components. The components are small
and as a result of the distributed nature of CORD the development activities are small.

The use of components can accelerate software development and provide a competitive edge.

Components can also help to scale down the development process and help organizations to cope

29

with its limitation on human resources. It is interesting to note that components may be used in
conjunction with the SSA already discussed, for example, XP, PLE and ASP. The motivation behind
the SSA is to accelerate software development, however, in theory the use of components can
accelerate the synchronize and stabilize approaches.

Griss and Pour (2001) discuss the use of components to reduce development time and cost.
According to them component based software has the potential to do the following:
e Reduce development cost and time to market.
¢ Increase reliability of the system, since components are reusable and testing and review are
stringent.
e Improve maintainability.
¢ Enhance quality.

Software development with components will introduce new activities. For example, a component
selection and evaluation phase. These phases could be sometimes with risks because the right
choices are vital to the overall product. Therefore if components are used then the development life
cycle is extended with new activities. For example, the analysis phase may be extended with the
component selection and evaluation phase. During this phase it must be guaranteed that the selected
components can satisfy the requirements, else gaps will occur in the overall functionality of the
system. There are other considerations as well, such as:

e Technological Compatibility

e Localization

e Technical Support

e Ease of Integration.

Although the development costs may be reduced, organizations will encounter other costs associated
with components. If components are complex, then a specialist may be required for customization,
integration and support. In some cases royaities and licence fees must be paid when a component is
included in the system sold. Therefore a balance must be found and a proper cost analysis should be
made whether to make or buy.

The author has made many observations in his working environment which relate to some of the
topics discussed above. These observations aid in understanding the practical implications of software
development problems and are discussed in the next section.

2.5 Observations

Quark, a leading software product developer is also confronted with the Software Engineering in the
Small problems, which were discussed in the previous section. The discussion of the observations
made is intended to enrich the discussion of the literature review. In this section focus is on real

problems as encountered in the real world.

30

The following observations are examined:
¢ (Communication
e Incomplete Requirements
¢ Documentation
e Functionality Grouping
e User Feedback and Reviews
e Product Line Development
¢ Teamwork
o (Components

e Development Standards.

2.5.1 Communication

Aoyama (1998b) has noted that software development in a global development environment is difficult
to manage and communication problems result in project delays. Quark also has development centres
globally (America, Germany, India and Singapore), in order to keep its development costs low. The
organization also experiences difficulties to co-ordinate the work of developers at the Singaporean and
Indian sites due to the following reasons:

e Weak communication skKills.

* Poor language proficiency.

o Technical proficiency varies due to level of education.

¢ Poor infrastructure (especially in India). For example, unreliable telecommunication services.
e Ambiguity in software specitications.

e Time differences between countries.

e Cultural habits which influence working habits.

The most important aspect is communication. |In order to gain clarity during system development,
communication is oral and written. For example, a conference call discussion will be summarized and
distributed so that all participants are of the same mind to the subject matter. In the case of strategic
decisions, a visit 1o the respective couniry may be necessary. Recently videoconferences were
successfully conducted which helped to reduce the anonymity in communication. Sometimes it is
difficult to co-ordinate the participants due to the difference in time. Hence delays result. Generally the
teams cope and the regular submission of status reports is the project’s control mechanism. Quark
aims to employ high calibre people with good technical skills. Each candidate is thoroughly screened
and must pass a technical test.

2.5.2 Incomplete Requirements

The problems of incomplete, ambiguous and unclear system’s requirements were also experienced at

Quark. Although they require time to resolve them the development cannot be delayed. An interesting

observation is the manner in which the European and Indian developers handled this situation. The

31

p—— e e e e — " TR

European developers tend to wait until all required information is available. They experienced
difficulties in dealing with inconsistencies, because in contrast to the Indian developers, the perfect
situation is desired.

The Indian developers commenced development with whatever information (within reason) was
available. For each inconsistency that was encountered, they created a stub or inserted dummy code,
which is by-passed during execution. Once the situation has been clarified the stubs are systematically
replaced with the correct code. With this development style they are faster in producing visual results.
This programming approach is similar to the ISDR method, (Yoshioka, Suzuki and Katayama,1998).
The author has had an informal discussion with the developers about this subject and their response
was that in india they aré confronted with inconsistencies in their daily life and perhaps this helps them
to cope. It would appear that environmental characteristics and cultural habits have an impact on their
working habits.

2.5.3 Documentation

Graham (1989) emphasized that the implication of incremental development is that user manuals and
documentation are also created in increments. At Quark the documentation structure or the framework
of its contents is extracted from the code’s comments. Therefore the code must always be properly
commented and updated. Sometimes this is difficult to control. However, the method is a time saver
because it provides the technical writers a good framework to start with. When a release is shipped
the latest documentation accompanies the software. Any updates to it are published on their home

page.

2.5.4 Functionality Grouping

As with all the approaches discussed, shorter development cycles are implemented with the features
being logically grouped. The logical grouping of features is not simple because it affects the entire
system and the development schedule. To decide on the feaiure implementation set at Quark is not
trivial and conflicts arise because of the dependencies among them. For example, product
management may request certain features, however, they cannot be implemented because they
depend on other features, which were planned for a later date.

The same situation arises when features must be omitted in order to meet the schedule. Although the
user may agree to omit specific features, the number of features omitted may increase because of
system dependencies. The biggest problem is that these dependencies are not obvious to the users
and at the end they feel that the release has no added value. At Quark, through discussions and
reviews of Use Case documents by independent groups, most dependencies become known and
implementation is planned with minimal contlict.

2.5.5 User Feedback and Reviews

User feedback is an important software refinement instrument. Most of the SSA discussed place high

32

value on this information source. Customer views, their concerns and changing requirements are also
taken seriously at Quark. This was a driving force that has contributed to QuarkXPress being
successful.

As a standard practice Quark conducts periodic design reviews and the users are formally requested
to attend. The objectives are to identify problems and strive for excellence. During these sessions the
users get a chance to see visible development progress and clarify any misunderstandings. A typical
outcome is that a number of usability issues are uncovered. For example, the user interfaces are
confusing, human computer dialogues are tedious and specification deviations. Technical reviews are
conducted separately to address issues like program design and performance. Since Quark has
offshore development sites reviews are also conducted there.

2.5.6 Product Line Development

As Quark specialises in publishing software, the common functionality among its publishing
applications are exploited. The product Digital Media System (DMS), a content management is
integrated with its E-Commerce application. This simplifies the management of digital assets (graphic
images, documents, sound files), which are used in an electronic catalogue that is displayed on the
Internet in an E-Commerce application. This can be viewed as software reusability and software
component development. In this manner Quark can offer a smart business solution fast. DMS is also

sold as a standalone product. For example, a well known South African newspaper organization uses
DMS as a standalone content management system. Although from an architectural point of view the
publishing products share common software modules, the E-Commerce application’s architecture is
technically different. This tends to complicate the integration between two separate product lines,
namely publishing and E-Commerce. In this case reuse is limited across product lines.

2.5.7 Teamwork

As with most software projects delays are common and Quark is no exception. Based on the fact that
some parts of system have a lower workload than others, developers are assigned to assist the
overloaded teams when necessary. This is not a problem because most developers have worked
across the system. They also share their expertise during problem solving. This is important because it
is necessary that all members understand the system holistically. The strategy is to spread the
knowledge of the system and cope when resources are limited. The above average performance of

the developers is recognized and they are generously rewarded with a spot bonus,

To improve the quality of the developer's knowledge and skills, SE literature is purchased and is
accessible available to everyone. The developers also have an unlimited Internet access and use it
extensively 1o research problems. The Intranet is well structured and is used as knowledge base to

store SE documents, white papers and online books.

33

2.5.8 Components

In some application domains Quark does not have in-house expertise. Therefore in order to speed up
development and use specialised knowledge, third party components are integrated into a system. For

. example, in the E-Commerce application, a third party component is integrated to compute American
sales tax. Recently a third party warehouse component replaced its in-house developed warehouse
system. The reason was that the external warehouse component offered additional functionality and it
would be time consuming to develop them in-house.

|

Web CGiiant
Internet
Seryer
Vorification
Sales Order Pricing Sales Tax Calculation

Processing

Yl

Address Verfifcation

=

1 L2l
- "“'E lt! -
o] '_;Ei:- u

o
- ? -
)
1w T
L - T -
. 11:..-..%-._.'5‘_\I e b\?-zb'

Warshouse

Figure 2.1: An E-Commerce application and component integration.
Source: Adapted from: Quark's Business Architecture Document.

In Figure 2.1 a high-level view of Quark’s integrated E-Commerce application is illustrated. Full details
of database access and other sub-systems, such as financial accounting and purchasing are omitted,
as they are not relevant for the discussion. The objective is to illustrate system development with

34

W

components. The Sales Order Processing (SOP) system component is the main communicator with a
customer over the Internet. The figure shows the SOP receiving an order through the Internet. The
customer's credit card is verified by the services of an external credit card processor. The address is
verified by the Address Verification System component (AVS), while the price calculation system
component calls a third party component to calculate sales tax. The figure also shows the interface
between SOP and the third party warehouse component.

Quark is quick to seize a business opportunity as it develops components for its own systems which
may be sold. The Address Verification System (AVS) that is integrated with the E-Commerce
application was developed internally with the intention to be sold. Since the AVS is owned, the licence
costs are avoided and that helps to reduce the software cost. The interface layer is generic and is
designed to exchange data with almost any warehouse system. The adapter layer is system specific
and transfers the data from the interface layer to the warehouse component. The theoretical concept
of the adapter is that a customer can use the E-Commerce application independent of the warehouse
system that is installed. All that is required is a warehouse specific adapter to interface with the E-
* Commerce application.

2.5.9 Development Standards

Quark has its own SE development standards. They are defined as simple as possible in order not to
be tedious to follow. There is little bureaucracy and the standards state the minimal compliance that is
required. For example, major requirement changes must go through a change control procedure. The
procedure states the minimum amount of information that is required to ensure a successful change
control. Minor changes are documented and implemented. What may be regarded as a major or a
minor change is discretionary

2.6 Conclusion

Synchronize and Stabilize efficiently and Innovatively exploits the concepts of incremental
development. it inherits its core development process from the waterfall model and it indicates that old
techniques, when applied innovatively can bring about change. Although this is not Dyba's (2000)
improvisation technique, it would indicate the important relevance of his discussion, namely to explore.
Hence, out of an old idea, new ideas are created. As a result several methods have been found to
address the needs of SMO to develop quality software rapidly. The software development problems
confronting small organizations are gradually being identified and addressed. Many SSA have been
developed to propose ways 10 manage these problems - software development using components and
agile methods are the most recent approaches. Each approach deals with a different software problem
domain and has its own strategy to resolve it. They also exhibit their own organizational properties and
while solving common problems.

2.6.1 Organizational Effects of the SSA

In Table 2.1 the effects of the approaches on an organization are compared. Although some tools and

35

technique were specifically identified, it is presumed that additional development tools and techniques
are also applicable. PLE claims that no special tools are necessary, while Aoyama admits that ASP is
complex and a Software Engineering Environment (SEE) is necessary to avoid problems. The
complexity levels of the SSA are generally high while some are medium.

e

:5:::;;;;;::#:::5{;:::;:;?51:;.{;:. PN M e pee B e i e e S A e et S RS e e T S e s L
Application SV Desktop | Diverse i '
domain " Ing pUb. domains | system | small Commu | domains
example. system Projects | -nication
Complexity | Medium | High High High Medium | Low Medium | Medium | High High
level. -high -high

Learning | Medium | Medium | High High Medium | Medium | Medium | Low- High High
curve. -high Medium
SkillsJevel | Medium | Righ High High Medium | High Medium | High [High High
required. -high

| Changein | Medium | Medium | High High Medium | Medium | Medium | Medium | High | High
Environ- High
ment.
Tools and Proto- Project | Pairs Time- No tool | None 00, Structu- | Has Diverse
techniques | typing Man. Prog. Box support UML, red dev. | own Toolset
used. needed. GUI tool | siyle. SEE

Table 2.1: Organizational effects of the SSA.

For example, the development process of INP and ICM are by nature fraditional; which is a reason
why they are considered to be of medium complexity. The increase in the complexity level lies in their
exploitation of the incremental development concepts. It is interesting to observe that the learning
curve and the skills level synchronize with the complexity level. It stands to reason that the higher the
complexity of an approach is, the higher the learning curve will be. Similarly these factors will influence
the calibre of the development personnel that is required. tThe concepts of the SSA embody
sophisticated software development procedures. It certainly demands a change in development
strategy and insists on a skilled and committed team. The employment of specialists and the ability to
work under minimum supervision to produce results is highly desirable with the SSA. For example, the
SCR, XP and ASP approaches indicate this.

Software development does not take place in a vacuum, but within an environment. The three factors
complexity, learning curve and skKills level will influence the degree of changes that an organization
must undergo should it adopt the SSA. A single SSA cannot be regarded as the best one to follow.
The choice is relative and is influenced by the application domain. The SSA is not confined to
development in small organizations, but it can also be used for large-scale software development as
indicated by ASP. Furthermore, they maybe used in conjunction with one another. For example, XP
techniques can be incorporated with PLE. Improvisation techniques may be used with any approach.
This topic is discussed in detail in chapter 3. Therefore whatever approach is adopted; through careful

planning it is possible to select “the best of the breeds”. As a result SMO can attain optimal benefits.

Although there is a need to manage changes in the requirements and have a shorter cycle-time, the

£

36

SSA does not neglect basic SE principles. These principles are applied in various degrees of detail
and complexity. For example, the Integrated Approach, Scrum, EPM, Wisdom and PLE would appear
to be conservative and more methodical with regard to the development phases. That is, the phases
are simplified, while XP is more radical with a “just do it” development style. The software engineering
process of ASP is the most complex and may be difficult to implement. Thus a software engineering
environment is recommended for this approach. The ASP model has its own Software Engineering
Environment (SEE) that is compatible with its principles. The other approaches do not have their own
SEE and the emphasis was on the development process. The development tasks are concurrent and
the environment is volatile. Since development speed is an important factor errors must be avoided.
The motto is: “get it right the first time”. Therefore the adherence to good SE principles is important to
maintain control and discipline throughout the development process.

2.6.2 Solving Common Problems

It is interesting to observe that each variation of the SSA attempts to solve problems in a unique way.
Despite these differences, they generally converge to solve common problems in Software
Engineering in the Smali. In Table 2.2 exampies of these common problems are itlustrated. The
common focus of the approaches is the system’s requirements, disciplined development, management
of complexity, quick reaction to changes and a reduction in risk and cost. 1t is particularly noteworthy to
observe the importance of the human element the approaches, namely, improved teamwork and
communication. These aspects cannot be overlooked because a professional team behaviour and
communication is one of the major contributing success factors with this sophisticated development
style.

A R e e i o ¥ AR IR R R
=l R i‘{' i :‘*"i.":il'-‘: e “ﬂ:-. :r-:- - 3:'- i:h Sk R

e e o
[k Sy A A R
P - e =] -
B paprielltipil
e S R

o

AT, i ' e,
Sty ; ;ia.-:-'.'k:::::E:#:f:f: fom i e
e ek R R e e SR
S i e

i

s

anaga incomplete
Requirements.

Employ discipline
during development.

Manage system
complexity.

Quick reaction to
¢hangps.

Reduce cost, risk, use
resources effectively.

Maintain competitive — -
advantage. X X X X X

Software reuse, X X | | X X X

Improved planning
and estimation.

improir'ad teamwork
and communication.

Table 2.2: Common problems solved.

Although the SSA is used in practice by organizations such as Quark, Microsoft, Netscape and Moazilla
it is not mature. With the constant increasing demand to develop high quality software rapidly, this

software development trend will increase. It is a challenge for organizations to breakaway from the

37

traditional development approaches. A breakaway will spawn a new software development culture in
an organization’s environment.

Although the SSA may solve some problems, they also introduce new ones. The following are some
examples:

e |tis difficult to define the increment feature sets.

* An architecture decision early is difficult and is a key development factor.

o [ltis difficult to make estimates.

e Defining an infrastructure is difticult.

e There are performance problems with each increment.

e There may be software integration difficulties.

The presence of the above problems should not be a reason not to use a SSA. There is no perfect
development approach and therefore the advantages of the SSA should be exploited and the
problems managed. A sound project management policy and the correct implementation of SE
principles can contribute to success and manage problems. In essence the SSA attempts to achieve
what has already been explained by the acronym IRACIS (Gane and Sarson,1979). This translates to
Increase Revenue, Avoid Cost and Improve Service. The consequence of IRACIS for an organization
its that it is likely to strengthen its position.

In this chapter the theory and concepts of SSA were studied in depth. As incremental development
forms an important pillar of SSA it was discussed in order to enhance its understanding. Over time

numerous variations of SSA have emerged and apply the concepts of the incremental model. In order
to gain insight into SSA and how they address the Software Engineering in the Small problems a detail
iterature review on the SSA was conducted. Many observations and examples on software
development were cited from Quark’s development environment in order to provide a balanced
discussion between theory and practice.

Software development in SMO is a challenge in the constantly changing IT industry. The diversified
approaches promise 10 face these challenges and to cope with difficulties which may be encountered.

For a deeper perspective the SSA are analysed in detail in the next chapter.

38

3 SYNCHRONIZE AND STABILIZE — A Critical Analysis

3.1 Introduction

As previously noted, specific approaches were developed for help Small and Medium size
Organizations (SMO) to cope with their challenging operating conditions. In the previous chapter the
underlying principles of synchronize and stabilize and the incremental model were discussed. The
implementation of these principles by the various Synchronize and Stabilize Approaches (SSA) were
also examined. in this chapter the SSA are analysed in more detail. An analysis is important because
it will help to consolidate the understanding of the underlying theory and concepts of the SSA in a non-
superficial manner. As a result myths and misunderstandings about synchronize and stabilize may be
cleared. An analysis will provide information that may be useful to support organizations in their
decisions to adopt the approaches.

The discussion is presented in textual format and where appropriate tables and diagrams are used.
The chapter starts with a general comparison of the SAA and is followed by a discussion on the
common characteristics among them. The ability to combine development concepts among the
approaches is also analysed. The SSA has its strengths and weaknesses and offers SMO many
software development advantages. These are discussed and cognisance of the disadvantages is
taken. In addition there are business advantages which organizations may exploit. The need for
discipline with this rapid development approach is essential and basic software engineering principles
with respect to the SSA are discussed. In order to demonstrate the synchronize and stabilize process
practically a simplified version of the workflow that is used at Quark is described. Finally, the factors
influencing the successful implementation of the SSA are discussed.

The abbreviated names of the approaches that are defined in table 2.0 (chapter 2) will also be used
throughout this chapter.

3.2 General Comparison of the SSA

Although different SSA models consist of several common properies, for example, incremental
development, rapid delivery, management of complexity and reduction of development costs; they also
differ in many aspects. The following are some differences:

e Each approach has its own software development procedure.

o They apply different techniques.

e They consist of different phases and sub-phases.

* They have their own development terminologies.

39

st

PRI

ICM | Develop system in series of Poor estimations, requirements Schedules difficult to estimate,
increments over adtime scale. not clear, difficult to adapt to high staff turnover causes delays,
Deliver system incrementally, systems ¢hanges, integration and | resources not used optimally.

‘testing is problematic, costly
maintenance.)

EPM | Each increment is a-mini project. | Detail requirernents and design Lengthy procedure, can affect
Emphasis is on rapid learning and | are initially difficult. Too many productivity and motivation.
project management. Apply unknowns. Project estimates poor. | Continuous refinement of
knuwleglga? to make improveme nts. | System rarely finished when development not possible.

| Formality is progressive. ‘delivered — because it evolves. - , |

XP Satisfy customer early with { Problem domain not clear in 'the |- Too rigid and time consuming.
continuous delivery of valuable | beginning. Software must be | Delves too much inte the fuiure.
sofiware. Development speed is | delivered fast. System changes
important. are costly.

SCR | Assumes analysis, design and.] Systems are complex and Being a linear approach is its
development unpredictable and { unpredictable. Avoid risks and largest problem. Cannot respond
complicated. These are high risk | falling into chaos. Faster to the unexpected.

- and chaos. adaptation to requirements and
.| btisiness changes. o o
"PLE | Method is specifically for product Small organizations require fast | No views were expressed.
line SE. Large-scale reuse of reaction to customers needs and
functionality and distribute the cost | must be flexibility, Faster delivery
and effort. of software. h

IMT | Find a balance between exploiting | Small development environments | No views were expressed.
existing skills and experiment with | are non deterministic and
new ideas. multidirectional. Must cope with

unseen. Manage constant system
o . . changes. — —
WSM | Steers away from ¢haos. Requirements not clear. Financial | No views were expressed.
| Leverages on characteristic of and economical obstacles
small organizations--speed, " experienced. Improvements in
flexibility, and communication. development process required.
Software reusei e e rraprrrr—— r v Yrwrreee

INP | Produce high quality software and | Requirements are incomplete and | No views were expressed.
timely results with low overheads | the problem domain always
for small projects. changing. Process improvements

and optimal yse of resources. |
ASP | Develop software quickly, while | increased demand for software. { Process too slow. Based on
t maintaining’ flexibility and respond | Operating cost of development in | volume of requirements which
10 changing requirements. global environment is high. Project | causes delays, reduces flexibility
| delays. Quick adaptation to | and productivity. Scheduling
system changes and faster | problems caused due to poor
delivery. Manage requirements. estimates.

SSC | Accelerate development, reduce | increase software reuse and No views were expressed.

cost and improve quality. standardisation. Economical
development and improved
reliability and quality.

Table 3.0: A general comparison of the SSA.

Apart from these differences, each approach is based upon its own philosophy. It also identifies the
nature of the problems
approaches. The philosop

t intends to solve. Some of these problems are common among the
ny upon which an approach is based will influence the path that it takes to

solve the problem statement. As a result the problem solving methods and techniques which are

applied will vary. For example, PLE is more suitable for product line development and, while IMT has a

stronger focus on rationalization of existing resources and experimenting with new ideas. Both these

approaches apply different methods and techniques.

In Table 3.0 the philosophy of the SSA is summarized in relation to the problems they intend to solve.

Included is their point of view on the waterfall model. The philosophies vary, but they also share some

40

W

common beliefs. Some examples of them are, incremental development, rapid development, flexibility,
software reuse and high quality software. The management of the system’s requirements and fast
reaction to changes during the development process is a major common concern. This is not

surprising because it is a well-established fact that poor requirements have resulted in many software
project failures.

Although some of the approaches have not expressed any views on the waterfall model, their
philosophical views strongly imply its unsuitability. They do clearly emphasize that fast development
and flexibility is required, which the waterfall model lacks. This is evident with the PLE IMT, WSM, INP
and SSC approaches.

The flexibility of EPM is interesting as it can be applied to almost any type of project. According to Gilb
[W5] it has been applied to small and large-scale software engineering tasks, such as aircraft
engineering, telecommunications engineering and information system projects. The principles of EPM
may be a suitable project management technique for SMO.

3.3 Common Characteristics of the SSA

Although there are different philosophical views, the SSA have many common characteristics. in other
words the processes or procedures which are applied to solve the problem statement overlaps.
However, the fact that there are common characteristics among them does not mean that an approach
may be easily substituted for another. The implication is that overall an approach addresses similar
problems, but according to its philosophical view. The choice of an approach might be influenced by
several factors such as:

¢ The business philosophy

e Nature of the application

¢ The development environment

¢ Availability of resources.

The choice of a SSA is not simple. In Table 3.1 the common characteristics of the approaches are
illustrated. The first column of the table indicates the common characteristics. The ‘X’ associates the
\ characteristics with an approach. Although an approach did not explicitly mention a characteristic, it is
presumed that it would be present. For example, it is presumed that XP would employ some form of
project management procedures during development. IMT is unlike the other approaches as it focuses
on exploiting the environment and exploring new ideas in the development environment. The results or
side effects of these two factors are the catalyst for small organizations to cope with development
problems. In comparison with the other approaches its proposals are innovative and may be effectively

applied in conjunction with the other approaches.

41

e | % | [x [x | N N
User Participation X
Incremental | X X X X X X X X
Development
Fast development, X X X X X X X X X
delivery
Exploratory X X X X
Use | | | ~
X X X
Prototyping . . _ " "
fl'aa,ﬂ. ol:lantad X X X | X X) X
Uses some '
Formalism X X : X
Emphasis on-good
. X X
Architecture X " " " " " .
Management X X A .x X - “X X | : >

Table 3.1: Common characteristics of the SSA.

Although one of the intentions is to develop software in a non-bureaucratic manner, most approaches
apply some formalism during development. For example, EPM, SCR, PLE, INP ASP and SSC are
structured and formal in their development processes. Formal procedures are of short durations at
Quark and are a mechanism for control and structure during software engineering. Discussions are
focused strictly on the subject matter and meetings are kept short. Any topic that is not directly related
to the meeting’s scope is discussed outside among the interested parties. Large volumes of written
formal documentation are avoided because it is time consuming to write them and often they remain
unread. They are also quickly outdated. The software specifications are as brief as possible. In some
exceptional cases it is difficult to achieve brevity. As with the Use Case documents which are compiled
by the product management department. It is not easy to identify the system’s dependencies from
them and these become known later during the implementation phase. Some rework is likely to cause

project delays.

The SSA also considers good system architecture design an important characteristic. The goal is to
design an open architecture, however, it is difficult to foresee every system changes that may have an
impact on the architecture because the system evolves over time. In Quarks E-Commerce application,
the system's architecture design was a neglected area and it was not long before architectural
problems revealed their impact. The main problems encountered were module integration, system
performance and stability. A task force was appointed to address these problems. A lesson learnt was
that “repairing” a system’s architecture is not trivial. If the problem is addressed early then the task
may be less cumbersome, but there is no guarantee.

3.4 Combining Concepts among the SSA

Apart from the common characteristics the SSA possesses, it is possible to apply the concepts of an

approach in conjunction with another in order to exploit its good techniques. The advantage is that the

42

deficits of a SSA may be overcome by applying a technique of another. This process will require
careful planning in order not to conflict with the concepts and guidance offered by the approach that
was adopted.

X _ X.
EPM X X X X
XP X X X X X
| scn X X X X X X
| PLE X X X X X X X X X
,_'m . |
WSM X X X X X X
INP X X X X X X
asp | x| x | x X . Lox
8SC X | X X X X X |

Table 3.2: Combining concepts among the SSA.

In Table 3.2 the possibility to use the concepts of an approach in conjunction with another is
illustrated. The first column indicates the SSA which may use techniques from other SSA. They are
summarised as follows:
* The Incremental Model (ICM) may use EPM as a project management technique and apply
the principles of IMT. The ICM may adopt techniques from SSC.
e Evolutionary Project Management (EPM) can apply the incremental techniques of ICM and
‘ pairs programming from XP. EPM may adopt techniques from SSC and the principles of IMT
may be applied in its development environment.

e Extreme Programming (XP) can appiy the incremental techniques of ICM and use EPM as a
project management technigue. Means to manage chaos may be adopted from SCR. If the
application domain is a product line then some development strategy may be adopted from
PLE. If components are used then XP can adopt techniques from SSC. The principles of IMT
may also be applied.

¢ The Scrum Software Development Process (SCR) can apply the incremental techniques of
ICM and use EPM as a project management technique. The technique of pairs programming
from XP may also be applied. The concepts of PLE may be adopted if the application domain
is a product line. If components are used then SCR may benefit from concepts of SSC. The
principles of IMT may also be applied.

e Product Line Engineering (PLE) may apply the incremental techniques of ICM and use EPM
as a project management technique. The technique of pairs programming from XP may also

* be incorporated. Means to manage chaos may be adopted from SCR. A PLE project may also
adopt the concepts of WSM, INP and ASP during development. Since components are used
to build products tast, PLE can benefit from the concepts of SSC.

¢ |Improvisation Techniques (IMT) slants towards being a management technique to rationalize

43

an organization’s resources and its theory may be applied to any SSA. It is based on strategic
decision-making and a dedicated research team is required to identify what to explore and
exploit. A highly skilled team is required for this task.

e Wisdom (WSM) can apply the incremental techniques of ICM and use EPM as a project
management techniqgue. The technique of pairs programming from XP may also be applied.
The concepts of PLE may be adopted if the application domain is a product line. If
components are used then WSM can benefit from the development approach of SSC. The
principles of IMT may also be applied advantégeously.

e The Integrated Approach (INP) can apply the incremental techniques of ICM and use EPM as
a project management technigue. The concepts of WSM blend with those of INP as they have
much in common. The technique of pairs programming from XP can also be applied. If
components are used then INP can benefit from the development approach of SSC. The
principles of IMT may alsc be applied.

e The Agile Software Process (ASP) can apply the incremental techniques of [CM and use EPM
as a project management technique. The technique of pairs programming from XP can also
be applied. If components are used then ASP can benefit from the development approach of
SSC. The principles of IMT may also be applicable to the development environment.

s The Synchronization and Stabilization using Components (SSC) approach can apply the
incremental techniques of ICM and use EPM as a project management technique. The
technique of pairs programming from XP can be applied to develop components rapidly. The
concepts of ASP and INP may also be adopted for the development of a system with
components. The principles of IMT may also be applied.

The discussion above demonstrates that the SSA complements each other. It can be observed that
ICM, EPM, IMT and SSC are common to most of the approaches. Whether the concepts of the SSA
will be used in conjunction with one another in practice will depend on the development policies
practised. Nevertheless the possibility exists. Approaches such as SCR, ASP, WSM and XP may be
regarded as “methodologies” on their own and it is unlikely that they would be applied in conjunction
with others.

At Quark, many concepts from EPM, ICM, PLE, XP, SSC have been successiully applied in its E-
Commerce application. With regard to XP pair programming, code factoring, collective ownership and
continuous integration are practised. Unfortunately it is difficult to maintain a 40 hours working week as
suggested by XP and most developers in Research and Development (R&D) exceed it. The reason is
that the volume of work is high and skilled human resources are limited. With reference to IMT Quark
is always exploring new technologies in order to stay competitive. For example, Quark did not simply
introduce the .NET technology into its development environment. A team was assigned to evaluate the
technology before implementing it. However, once technology is considered to be outdated, no

attempt is made to exploit it because in Quark’s business environment it would not be economical.

44

w

3.5 Strengths and Weaknesses of the SSA

As with any methodology it is important to understand the strengtns and weaknesses in order to
exploit it and to plan a defence against potential problems respectively. In Table 3.3 the main
strengths and weaknesses of the approaches are summarized and are seli-explanatory. The likely
improvements of the approaches are also noted. The effort that is required to adopt an approach is
derived in conjunction with Table 2.2 (chapter 2). The strengths of the INP are interesting as it
combines the strengths of other standard development processes (Russ and McGregor, 2000).
Hence, since these are familiar processes, the usage of this approach may be easier. However, it is
difficult to find skilled personnel to fill the specific roles which are required by the INP. Generally, well-

trained personnel are essential with the SSA otherwise the advantage of speed in the development will
be diminished.

Proper development tools and a Software Engineering Environment (SEE) among the SSA would be
an improvement to them. For example, the PLE and WSM approaches do not really have a
comprehensive tool support. Since software development is a complex process and the development
activities increase with each increment, appropriate development tools are indispensable. They
contribute to the development speed and software quality. Russ and McGregor (2000), also found that
tools are helpful to automate the development process.

The effort to adopt a SSA ranges from medium to high. It is an organization’s strategic IT decision that
requires careful planning in order to avoid setbacks. A change in thinking is also necessary should an
organization make a transition to this development approach. Organizationa! changes are costly and
may be met with resistance. Therefore a sound change management process must be implemented to
ensure a harmonious transition and acceptance. !t is not trivial to make this transition and an
organization must be prepared to accept that there is a learning curve to follow. The Integrated
Approach, EPM, Wisdom and PLE may to be easier to adopt, while ASP, XP, Scrum and SSC are
more complex. Nevertheless, when new development methods are adopted they must be learnt and

proper training is essential.

k.

e

L)

ok

ICM Simpie to use, Unsuitable for A development The effort to adopt is
Based on sound modern software toolset and SEE may | medium.
engineering development. Can be useful. A process
principles and is easily degenerate model would be

. mature, into a build and fix useful.
approach,

EPM Strong in project The process ¢an A EPM tool could be | The effort to-adopt is
management, Focus | become iong drawn. | infegrated into a high. A commitment
on learning system. May be ditticult to SEE environment. to project
Better estimates. get management management is
Suitable for diverse rcommiln]ent. required from top
project types. Change in management,

environment
needed.

XpP Development is Pair programming The hybrid of SE The eftort to adopt is
rapid. Encourages can cause conflict- | practices used could | high. Viewed as a
team work. Quick programmers are be consolidated into | new development
reaction to change. individualist. Highly a process model, A | culture for the

skilled people - are SEE may be useful. | organization.
difficult to find,

SCR Has good planning User sets release Reduce Scrum The effort to adopt is
strategy. Considers date —~ potential for meetings — people high. Viewed as a
unknown, risk and conflict high. Can could feel being new development
complexity, easily fall into chaos | “policed”. culture for the
Designed to cope if process not well organization.
with changes. managed.

PLE Structured and Reuse can be Development can be | The effort to adopt is

- ENCOUrages reuse [imited- products in improved through a medium to high.
and good system range must be suitable tool support

architecture, Fast compatible for such as a SEE and

delivery with long- optimal reuse. No process model.

term vigion. tool support. |

IMT Good theory for Requires a special - | The method could The effort to adopt is
resource team for exploration | suggest a model for | low to medium. A
rationalization. -~ this resource is exploitation and skilled team is
Economical to adapt |- expensive. Process | exploration. needed 1o do
where resources are | can be siow for small research and make
scarce, organizations. recommendations..

WSM A well structured and | No high-end tools Development can be | The effort to adopt is
formal development | used - restrictive improved through medium. A change
process. Strong ~and can slow suitable tool support | in development
focus on usability development. such as a SEE. habils is required.
{GUI design),

IND Mixes strengths of The eight steps may | Development can be | The effort to adopt is
other standard slow development. improved with medium to high. A
process models, , . support of a SEE change in
Process simple to .»:'gﬂe'?’eﬁkgidhﬁfg 'ff and automation in development habits
understand, 1o use e : the development is required.
and well structured find fo fit the roles rocess

| allocated. P '

ASP Structured and Highly skilled people | The process could The effort to adopt is
highly disciplined., are hard to find. be simplified and high.
Has its own SEE. Complex, requires complexity reduced.
Successful in global | radical
development environmental
environment. changes. Is costly.

88C High focus onreuse | Incompatibility and A SEE and a The effort to adopt is
and quality. Saves integration problems. | process model could | high.
development time — | Weak componenis help o manage the
use what is already | weakens a system. development.
available. Save on Hidden costs. Highly
development ‘skilled people
personnel. needed.

Table 3.3: The strengths and weaknesses of the SSA.

45

46

3.6 Software Development Advantages

SSA as a development philosophy has many advantages. It helps to cope with typical development
problems, which are experienced with other development models. The following advantages are
discussed in detail:

e Improved Requirements Elicitation

e Early Feedback

o Knowledge Gained is “Re-invested”

o Ability to Cope with Changes in the Environment

¢ Impact of error corrections can be reduced

e Improved Management of System Scope

o Manage Complexity

e Motivation.

3.6.1 Improved Requirements Elicitation

A decision on what must be developed and the scope of the requirements is a problem of uncertainty.
Normally product management decides on the scope of the system. The decision is usually based on
a business case, product research and product vision. However, these are inadequate to write a
complete system requirement specification. The application domain and customer’s preferences
change fast and the product must accommodate changes. Hence, writing a complete requirement
specification in the beginning is wasteful. Another problem is that there is never enough time 10 write
complete requirements since the time to market is accelerated. A solution to this problem is to specify
and developed only the features which are required for an increment. With this method the
requirements are clearly focused and rework is reduced. In practice the requirements of a feature can
be specified in ten pages. Should the functionality of a feature change in subsequent increments, then
only those changes are specified and implemented. Similarly, if new features are added, then the

requirements for them are specified.

Theoretically the requirements are likely to be complete because instead of creating volumes of
documents, the task is divided into manageable increments. Thus the requirements are managed in a
flexible manner. In this manner it is easier to incorporate changes and they are resolved iteratively.
These advantages are not easy to achieve with the waterfall model. Although an effort is made to
freeze the requirements, it rarely happens. With incremental requirements, the scope of the system’s

functionality would evolve cumulatively.

3.6.2 Early Feedback

After an increment has been shipped, customer feedback is received. The following are some
common scurces of feedback:
e Fairs and trade shows, for example, Cebit, COMDEX

¢ Directly from the customer

47

e Software distributors
e Analysis of calls made to an organization’s Call Centre.

Early feedback is valuable to improve the product and influence the development of future increments.
Customer feedback will be transformed into a requirements document in order to be specified for
implementation. Therefore the initial specifications can be constantly adjusted to accommodate
changes in market trends and remain competitive. As a result, only when the project is complete, are
the specifications considered to be complete. This is different from the waterfall model, where
development commences after the specification is complete (Cusumano and Yoffie, 1999). The
continuous tweaking of the system through the SSA can improve its quality and usability. It is likely
that the system will be up to date because of the constant adjustments made to it.

3.6.3 Knowledge Gained is “Re-Invested”

During the development of each increment, the system goes through several formal design review
cycles, presentations (to users and management} and informal discussions. Workshops and
brainstorming sessions are also conducted to discuss specific topics and problems. During these
sessions there is a refreshing exchange of views, ideas, suggestions and experiences since peopie
have different educational backgrounds. The system is viewed from a multi-dimensional perspective
and is valuable to initiate suggestions for improvements. For example, during a design review in 1999
in which the author participated, the Graphical User Interface (GUI) was reduced from nine screens to
one. In the alternative design the screens were replaced with a tabbed user interface in order to
simplify the interaction. Quark strives for a state of the art user interfaces and strongly emphasizes on
usability. It has prescribed Human Computer Interaction (HCI} and GUI guidelines which must be
followed. A specialised team is assigned 1o design them.

As a result each increment has a learning curve and knowledge gained can be "re-invested” into the
development process. Any knowledge that is gained is cumulative throughout the development and is
useful to reduce errors, improve quality and improve usability. The team also learns to avoid similar
mistakes and problems in the future. This results in reduced rework and faster development. Apart
from the general improvements experienced, good communication and co-operation are also fostered
among the teams.

3.6.4 Ability to Cope with Changes in the Environment

The continuous growth in the software industry and rapid changes in trends and technology are
indisputable. During the development process unforeseen technical changes can occur in hardware

and software. As a result the system must also support new technologies. With the introduction of
Windows XP Quark had to reschedule its development to support this platform. The task was not
simple because the new technology must be understood and is time consuming. The numerous
system compatibility issues must also be carefully analysed. Despite the problems encountered, these

changes may be accommodated without waiting until the system is completed. Since each increment

48

is a "complete system entity”, it helps to cope with these difficulties. Therefore throughout the
development cycle the probability that the system is technologically up to date is high and is a
competitive advantage.

3.6.5 Impact of error corrections can be reduced

Errors will certainly be introduced throughout the development and will reveal themselves at anytime in
various forms. These could be product errors where the expectations of the system have not been
met, or process errors where the system is not developed according to the requirements. Errors can
be identified under the foliowing circumstances and must be corrected:

® Testing

e Document reviews
e (Code review

e Design reviews

e User acceptance audits
e Quality assurance.

The early detection and correction of errors contributes to reducing the rippling effects they have in a
system. It is also economical. With SSA, errors are detected and corrected early in the development.
The daily build and the smoke tests (discussed eérlier) are important mechanisms for early error
detection and to monitor system stability. The side effects of system fixes may be reduced and
simultaneously stability is increased through the SSA. Should unusual system behaviour occur, the
latest changes are the most likely causes.

This situation was often experienced at Quark where most problems were caused by the latest system
changes. An extreme method to debug the system was to back out the changes and re-introduce them
incrementally. This method was faster than using a debugger. Apart from incremental software
development, error detection may also be incremental in extreme situations. The developers will
always make errors and is difficult to prevent. Therefore with the concepts of incremental techniques,
continuous corrections and improvements are effectively managed.

3.6.6 Improved Management of System Scope

An accurate system specification is difficult to define, as it is inevitable that changes will be required.
There is also an unbound enthusiasm and the potential danger to deviate from the scope by being
over ambitious. With constant synchronizing and stabilizing of the system is easy to detect a deviation
from the scope and take remedial action. On the contrary, early customer feedback may make it
necessary to deviate from or extend the scope in order to remain competitive. An early recognition of
these signs in manageable quantities enables improved management over them. Since the system is
developed in increments, deviations will also be in increments and are more manageable. This

situation is unlike the waterfall model where many changes are discovered much later in the

49

development. Therefore should there be any rework, the volume is likely to be reduced. Rework and
scope deviations are cost drivers which can be reduced if they are addressed early.

3.6.7 Manage Complexity

Complexity is one of the many daunting inherent properties of sofiware and will always remain
(Brooks, 1987). New techniques, languages and paradigms will not eradicate the situation. Although
they may solve some problems, however, others are introduced. Hence, the need to manage
complexity will always be required. The interdependence and complexity among the modules of a
system is difficult to understand and is difficult to communicate them to the project members.
However, by decomposing a system into manageable increments and limiting the focus on subsets of
the total functionality, complexity is reduced and information overload is controlled. In other words the
scope of an increment is limited and the focus is temporarily narrowed to that increment. Theoretically,
overall system complexity is reduced to increments in order to simplify its understanding. Although the
growth of complexity will increase in an unpredictable magnitude with each increment, the developers
will be able to learn the system in “manageable sections” and progressively increase their knowledge.

3.6.8 Motivation

The following are some echoes from the hallways of a typical development department:
¢ “Will this system ever be completed?”
o “If they keep on changing the requirement how can we finish...”
o ‘| feel that they do not know what they want...”

Even a top developer will be easily de-motivated when the development drags endlessly. Although IT
personnel can be creative and churn up the most nifty ideas and solutions, they can become easily de-
motivated, tired and bored when they get the impression that their efforts are being wasted. With the
SSA each incremental cycle produces visual results of the developer's efforts. They are proud when
the software is transferred on to the golden master CD ROM and shipped because their creation is on
it for the marketplace to use. They identify well with their contribution towards the development of a
product and are eager to enhance it in the next increment. Such a spirit can only have a positive effect
on a project and is difficult to experience with the waterfall approach.

The cumulative property of the SSA is briefly examined below as it helps to understand the discussion
of the previous sections. in Figure 3.0 the cumulative process of the synchronize and stabilize cycles
is illustrated. The total number of increments of the development cycle will depend on the application.

The first increment is a “bare bones” version of the system with limited functionality.

50

Customer

Customer
| Feedback

New Technology

— T
- rr
T
ey
O e e
SR ES
iR
- -)
o
.
r Jul

System New Technology System

First Increment Second Increment Third Increment

Figure 3.0: The cumulative process of the synchronize and stabilize cycles.

From the second increment onwards the development activities are more dynamic as compared to the
first increment. Customer feedback is expected to have been received and may be incorporated into
this increment. Thus the system is incremented to the nexi level of functionality. Knowledge gained
and suggestions from the development team are also incorporated. Errors which were detected are
also corrected. If there is a requirement to adapt the system to new technology, then it will also be
included. The figure also illustrates the phased increase of the system’s functionality and complexity
during each increment. In this manner the management of complexity is improved. All these activities
occur concurrently. In reality the development team is under increased pressure to complete the

development as scheduled. The third increment will also proceed in a similar manner and result in
increased growth of the system. Therefore it is evident that the SSA promotes continuous system
improvements throughout the development cycle which is difficult to achieve with the waterfall model.

3.7 Software Development Difficulties

Although there are many important advantages through the SSA, there are also disadvantages. It is
important to understand them so that they may be managed. The following are some of the
disadvantages which are encountered during practice:

o Architecture Decisions are difficult.

e Increment Sets are difficult to define.

e Defining an Infrastructure early is difficult.

* Performance Problems arise.

e Software Integration is difficult.

e Multiple Maintenance Syndrome.

e The process may degenerate into a build-and-fix approach.

3.7.1 Architecture Decisions are difficulit

The choice of system design and architecture cannot be easily determined during the implementation
of the first increment. Figure 3.0 clearly demonstrates a system’s evolution with each increment and.

changes may occur in complexity, functionality, performance, size and stability. These changes are

51

cumulative and the architecture is expected to seamlessly accommodate them. Changes may also
result in the architecture 1o lose its original clarity and integrity because it may have {0 be restructured
or partially recreated (Rajlich, Bennett, 2000). The architecture team will do its best to define an
extensible architecture that can evolve with future increments. However, it is difficult to make early
architectural decisions on which to base the future of the system. Therefore good architectural
decisions are essential for successful system evolution; otherwise a negative impact can cause it to
degenerate. In the worse case a damaged architecture cannot be “repaired” and may have to be re-
engineered.

3.7.2 Increment Sets are difficult to define

Although the SSA endeavours to deliver software rapidly, it is difficult to decide which system features
must be developed in an increment set. Generally product management decides on the systems
features and the scope of the increment sets. Sometimes this is difficult because competition demands

that some features be developed earlier than planned. [t is also possible that a feature that was
planned for an early increment may be exchanged with one that was planned for a later increment.
Although an increment set is clearly defined, it is a common occurrence that one of its features cannot
be developed because it is dependent on a feature that is scheduled in a later increment. Since there
are interdependencies among the features, they cannot be treated as Lego playing blocks because
they impact the whole system. |

During the development of Quarks E-Commerce application, it was decided that a function to pass
customer credit (credit memo) in the first increment was not required. However, four weeks before the
end of the schedule it was decided that a credit memo function was necessary. Since resources were
low to develop the new functionality, it ended as a “hack” in the system and the code was restructured
one year later. However, after the credit memo function was completed, it was realized that a debit
memo function was required to cancel a credit memo. Due to low resources this functionality was a
second “hack” to the system. Although the net result of the functionality was correct, the solution was
sub-optimal because it violated proper accounting procedures. Therefore careful planning of the
feature set is vital.

3.7.3 Defining an Infrastructure early is difficult

In addition to the difficulties experienced to make early architectural decisions, it is also difficult to
decide on a correct hardware infrastructure for the system early in the development cycle. Since the
scope of the first increment is limited, the infrastructure is also limited. As the system evolves with
increased functionality and complexity, the infrastructure must also evoive to accommodate change.
As a result new hardware must be purchased with added costs. Therefore although the final system is
not completed, the application must be migrated to a new technical infrastructure during the course of
the development. The infrastructure also has an impact on the quality of the system. This activity must
be well managed because the risk for an increase in errors is high. The importance of a good system

infrastructure cannot be neglected, because in modern software development infrastructure has

52

become critical in the new global economy (Jones, 2000). SMO are very active in the global economy.

A typical problem at Quark was that as the development progressed, the application could not run on
the existing hardware and still satisfy the specified performance requirements. For example the size of

the application, database tables and complexity increased. It was necessary to purchase new servers

with increased capacity. Although purchasing new equipment helps, there are often delays in the

development. The following are some of the reasons:

e The added cost must be justified and authorized by senior management. This process may
take several weeks.

¢ The equipment may not be immediately deliverable. Hence, there are increased delays.

¢ Once the equipment is received, it must be set up, the application must be migrated to it and
tested. All these activities are time intensive.

Therefore while the above acquisition process occurs, the development team is busy working with
slower hardware which causes delays.

3.7.4 Performance Problems arise

As the system evolves, its code size, integration, functionality and complexity will grow in an
unpredictable magnitude. The affect of these factors on the system’s performance is unpredictable
and modules may have 1o be redesigned to improve performance. Fur'thermore, the systems
architecture may have to be re-engineered and changes may introduce new errors. Depending on the
severity of the performance, an organization may have to delay the shipping of a release, which may
result in the delay of future releases. Optimization strategies are difficult and require skilled personnel.
Therefore such tasks should be assigned to specialists. At Quark this practised, namely, system
tuning and performance issues are assigned to specialists. The task of solving performance problems
will also require research, experimenting and appropriate toois.

The potential danger is that customers can become dissatisfied with degraded performance and lose
their confidence in the system. If the situation is not promptly rectified, a loss of business is envisaged
as they may seek alternative soiutions.

3.7.5 Software Integration is Difficult

The development of the first increment (sometimes including the second) may give a false impression
that the process is simple, because the development commences as a system of limited scope. The
difficulty is to increment the existing system in each cycle by integrating it with new modules and sub-

systems. This is represented by code at a lower level. This task is also subtle because an increment is
regarded as a functional self-contained entity of the system. Therefore incrementing what exists may
be also viewed as a form of “maintenance” of the previous increment. Although the development team
will not refer to it as “maintenance”, the characteristics are latently present. This aspect is also

transparent to the customer because it is simply regarded as a new version of the system. Historically

53

software integration and maintenance are known to be difficult with unpredictable impacts on the
gsysiem. These aspects make the SSA challenging. Since as changes are continuous with each
increment, it is difficult to seamlessly integrate them,

3.7.6 Multiple Maintenance Syndrome

Since an increment is a seli-contained functional entity of the software, it must be maintained because
there will be errors. The software fixes and patches to an existing release must also be inciuded in the
release that is being currently developed. That means that new functionality is added and faults are
corrected. To aggravate the situation, each release or version must be maintained separately and in
parallel, because customers do not always upgrade to the latest release. For example, not all Quark’s
customers have upgraded from QuarkXPress 4.0 to 5.0. Many of them did not consider it necessary
and were not prepared to disrupt their work rhythm. Therefore release 4.0 must be maintained and
residual fault fixes must be incorporated into release 5.0. Currently QuarkXPress 6.0 is being
developed and all fault corrections of previous releases must be incorporated in it as well.

Bug Fixes

Bug Fixes

Bug Fixes

=o Spe 0P
||||||||||||
i

System System System

Third Increment
Release 3

Second Increment
Release 2

First Increment
Release 1

|
)
1
)
]
]
I
i
I
|
]
I
I
I
i
I
I
|
|
I
|
I
I
I
I
|
I
I
|
I
I
I
1
1
|
1
1
I
I
I
I
I
i
]
I
)
i
1
’

Lk 3 & 3 F X 3 X F 3 F 7 T 0L & & & J2_ 1 1 =R ©§ 1§ [| L 7 1 X 3 ¢ ¥ 1 [J 1 B | 3 |

Figure 3.1: The complexity of maintenance of multiple software releases.

The complexity of maintenance of muiltipie releases is illustrated in Figure 3.1. The system is
progressively aggregated with new increments. This will resull in additional development resources
being deployed. The multiple maintenance syndrome is further aggravated if the system supports
multiple platforms. QuarkXPress supports Windows NT, Windows 2000, Windows XP and Apple
Macintosh. Multiple releases must be maintained for these platforms.

A good co-ordinating and tracking mechanism is essential to ensure that all reported faults are
corrected. The administration overheads are high and a good Software Configuration Management
(SCM) team and version control tools are required. Conradi and Westiechtel, (1998) discuss this
situation comprehensively and propose version models for SCM. They propose version models for

both commercial systems and research prototypes. The fundamental SCM concepts such as

54

revisions, variants, configurations and changes are examined and an overview and classification of
different versioning paradigms are provided.

3.7.7 The process may degenerate into a Build and Fix Approach

If the development process is not properly managed and control is lost, then the SSA can easily
degenerate to a build-and-fix approach (Schach, 1993). Such a situation is not well suited for
developing large products. A build-and-fix can result when staff is under pressure to meet deadlines.
As a result software engineering principles are neglected and the development process is gradually
transformed into a hacking of the system in order to make it function.

The author admits to this practice in order to meet a release deadline. However, a year later the
patches were removed and the system was restructured. In practice it is necessary to deviate from the
straight path, however, caution and discipline must be exercised. A senior team member should be
informed so that the situation may be justified and monitored. Unfortunately when developers take
shortcuts they rarely return to the problem area to rectify the situation. Their motto is simple: “never
change a working program.” If an organization impiements code review procedures, then a hack in the
code is likely to be discovered and a restructure can be requested. However, this practice should be
avoided. Sound project management and realistic project schedules can help to avoid the build-and-fix
approach.

The above difficulties are not trivial and good software management principles are required to
overcome them. Despite the software development advantages and disadvantages, the SSA offers
several business advantages.

3.8 Business Advantages

Small and Medium sized Organizations operate with limited financial and personnel resources. Their
budget is limited and overheads must be kept as low. As the market is competitive, an organization
cannot lag behind changes and trends if it wishes to improve its competitive advantage. One of the
intentions of the SSA is to enable early delivery of a product to the market. Therefore an early Return
on Investments (ROI) is experienced and helps to increase the confidence of the stakeholders and
employees. Early ROl may be applied to finance future releases and hedge against financial risks.
Since the development is phased, the capital outlay for the entire product is not required; only the part
of the system that is being developed must be financed.

Shipping a product in increments is a useful way to monitor customer’'s behaviour and market
movements. As a result the marketing department is provided with valuable feedback about the latest
trends and can decide on what action is necessary in order to remain on course. For example, it may
be necessary to adapt the marketing strategy in order to position the product. A constant monitoring of
the business environment is important for an organization to apply its resources profitably. The hedge

against market risks is improved because an organization can decide whether to continue with the

55

development or terminate it. Quark terminated its Site Midas application development after its first
release because after a research it concluded that the product would not be profitable. Since the SSA
adopts a phased development strategy, a ready version of the product is always available. It can be
delivered when required.

The early delivery of a system Is visual and tangible evidence of the team’s efforts and increases their
confidence. As a result they tend to stay longer with the organization. The advantage is that staff
turnover is low and high replacement costs can be avoided. An organization will not welcome
resignations of its key people right in the middle of its efforts to ship a release. Resignations are costly
and can cause project delays.

Disciplined software development will benefit from good software engineering principles. In the next
section some basic principles are discussed with respect to the SSA.

3.9 Applying General Software Engineering Principles

According to Moitra (1999) mainly large organizations and defence ministries have benefited from
advances in Software Engineering (SE). Most organizations were unsuccessful in applying SE
principles and practices, the main reason being their application in an incorrect context. Although the
current SE principles do not integrate well into their business environment, it does not imply that they
should be disregarded. The attempt of the SSA to produce results quickly does not mean that

development must be haphazard and chaotic. The idea of dispensing with complete specifications up
front does not suggest that they will not exist at all. It just means that they will be completed in phases.

lterative development is more challenging than the waterfall approach and a disciplined software
management and common sense are two important discriminators of SE success or failure (Royce,
2000). The application of good software engineering principles are indispensable for disciplined
software development. In this section the following general software engineering principles, which may
be applied with the approaches are discussed:

e Formality

 Reduction of Complexity

e (Generalization of the Solution

e Incremental Development

e Re-usability and Maintainability.

3.9.1 Formality

Software Engineering endeavours to apply strict formality during software development. This includes
applying formality in the analysis of the problem statement, system design and implementing a proper
plan of what to do. Formality in this context means defining a clear structure, rules, procedures and
techniques to execute the development tasks. Formalizing the development process includes:

e Setting Software Development Standards and Procedures

56

e (Conventions
¢ Quality Control
e Project Management and Costing.

Realistic project goals and objectives must be defined. They are essential to monitor the progress of
the development and to identify problems early. If there are deviations from the planned goals, then
appropriate action can be taken. The result of proper plans and controls contributes to lowering the
error rate to an understandable and controllable level and at the same time increasing productivity
(Goldberg, 1986). There is little doubt of the impact that these have on the approaches in modern
software development.

3.9.2 Reduction of Complexity

Software is complex, intricate and has many interdependent components, which interact together to
produce results. Complexity affects the management and maintenance process. The greater the
complexity, the greater is the difficulty to modify it or detect errors. Complexity is an inherent property
of software that makes it difficult to construct (Brooks, 1987). According to Parnas (1985), the
complexity of a software system is caused by a very large number of states contained in it. These
prohibit the developer from obtaining a complete understanding of the behaviour of the system.

The reduction of complexity can cause two gains; the code is likely to have fewer errors; and should it
be modified, it is easier to understand it in order to make the modifications (Jones, 1993). Software
Engineering aims to deal with complexity methodically. A problem is first abstracted in its generality in
order to understand the gist of it. Gradually it is decomposed into smaller problems and the fine points
are analysed. Through abstraction, step-wise refinement and modularisation, the essence of the
problem statement is easier understood and humanly manageable. The SSA attempt to manage
complexity through a divide and conquer software development process.

3.9.3 Generalization of the Solution

Instead of searching for an exact solution to the problem statement a general solution is sought.
Several soilutions are critically examined and the pros and cons are evaluated while focusing on the
problem statement. By initial generalization and then drilling down to an exact solution, an optimal
solution is likely to be found, rather than a haphazard one. Since the SSA is a phased development
process, finding a final solution to the problem statement applies an exploration and learning process.
This principle is appropriate to the SSA since the initial system requirements are not clear. Therefore
the requirements may be generalized in the initial phases and refined as the development proceeds.

3.9.4 Incremental Development

Through formalism the solution to the problem statement is solved incrementally, namely, in phases.
In reality, the boundaries of these phases overlap and there is never a clear cut off point before

proceeding to the next phase (although this is highly desired). It is only human to make mistakes and

57

they must be corrected before proceeding. By proceeding incrementally it is easier to backtrack and
make corrections. The incremental approach makes it easier to0 manage inputs and outputs of each
phase. It also helps to manage quality control, and to perform validation and verification of the
development. This software engineering principle is one of the pillars on which the SSA is built upon
and is indispensable.

3.9.5 Re-Usability and Maintainability

The environment in which the software operates might change and the system must be adapted
accordingly. The principles of software engineering can heip to overcome these problems by applying
modern software development techniques. For example, the object oriented paradigm supports
encapsulation and information hiding. This results in richer modules being developed because they
are loosely coupled, which makes them reusable. The SSA also seeks to promote reusability, such as
PLE, XP, WSM and SSC. The increased module independence and loose coupling are effective to
reduce the impact of changes on the whole system.

Although small software development organizations require a tailored application of software
engineering principles and practices, the above principles are not a hindrance. They are
straightforward and aligned with the SSA development philosophy.

To accelerate the development process, the workflow must be organised in a logical sequence. In the
next section, the workflow of a typical synchronize and stabilize process as experienced in practice is
discussed.

3.10 A Typical Synchronize and Stabilize Workflow

Earlier the turbulent conditions in which SMO operate were mentioned. Namely they operate in a
highly unpredictable and dynamic environment. To ensure minimum disruptions and high productivity
during the development process, the activities must be performed in clearly defined workflow. This is
essential for some of the following reasons:

e Helps to identify roles

e |mplies a channel of command

 |Indicates the path of information flow and backtracking

e Indicates the order in which the development proceeds

 Helps identify problem areas in the development procedure

e Suggests management control points

* Indicates the expected deliverables at each control point.

The above list is not exhaustive. The discussion that follows is based on an example that is used by
Quark. To simplify the discussion, unnecessary details have been omitted and the emphasis is on the

main activities. The following is a simplified version of the workflow activities:
PRODUCT MANAGEMENT ACTIVITIES

o8

M

¢ Environment Scanning

¢ Competitor Analysis

e Product Scope (product master feature list)
 Define Increment Sets (increment scope)

» Specify Use Cases for Increment Set.

DEVELOPMENT ACTIVITIES
¢ System Design
» Detail Design
e |mplementation and Test
 Build and Test (integration and test)

e System Reviews.

RELEASE MANAGEMENT ACTIVITIES
¢ Alpha release
 Alpha bug fixing and testing
e Betarelease
e Final development (final bug fixing, testing and tuning)
* Product shipping.

In Figure 3.2 a simplified workflow of the synchronize and stabilize activities is illustrated. The flow
commences with Product Management's (PM) activities. The PM department scans the environment in

order to identify a niche for a product. An analysis of competitors is also conducted in order to
determine who is doing what and what may be improved. Generally, PM attends trade fairs and
exhibitions to gather this information. After an extensive research a product and its scope are defined.
The scope is defined in a product master feature list and describes the features of the product. The
. features are divided into three classes, namely base features, nice to have features and Unique
Selling Points (USP). The USP is the most important and influences the product’'s competitive edge.

In the figure, PA indicates that the product master feature list is constantly revised in order to stay
abreast with competition. PM determines the increment sets that must be developed. PC indicates that
PM may change the scope of the increment set (add or remove features) with respect to the feature
master list. Therefore the requirements are difficult to freeze because PM will always change their
mind and a great degree of flexibility and co-operation is required. The requirements are specified as
Use Cases (UC) and are sent to the development department. The arrow labelled PB shows that the

UC may change because of changes to the increment set.

58

PRODUCT MANAGEMENT ACTIVITIES

RELEASE MANAGEMENT ACTIVITIES
e R,

: hplﬁ?. Bug .
Fixing

Qi |
Aasurance

Figure 3.2: A synchronize and stabilize workflow.
Source: Adapted from: Quark’s Business Architecture Document.

With respect to the Development Activities (DVA), a high level technical design is derived from the UC.
The arrow labelled DA indicates the communication flow between DVA and PM. The communication is
mainly in the form of queries and changes to the UC. Detail design follows and DB indicates that
changes or problems must be rectified higher up. The detail design is in the form of a technical

specification.

60

It is interesting to notice that the UG are transformed directly into technical specifications and the
Analysis and Design (AD) phase is skipped. This was a decision taken by PM that the UC are
comprehensive and that AD s not necessary. Unfortunately this method (still used) does not work well
because the developers are technically oriented and have difficulties to comprehend the business
requirements as stated in the UC. Previously AD formed the glue between PM and the developers.
Therefore the communication traffic between development and PM (indicated by arrows DA and DB)
is extremely high. This problem was discussed with management; however, there was a reluctance to
change. Based on the author's experience, AD should not be compromised.

The technical specifications are implemented and tested locally on the developer's computer. At a
defined time of day the source code is checked-in with Software Configuration Management (SCM)
team and the daily build is created. The build is smoke tested by the developers, domain experts and
Quality Assurance {QA). The build and the smoke test combination are paraliel to the integration and
test phase of the waterfall model. The arrow labelled DC indicates the main iterative development
cycle and is the core of the synchronization and stabilization process. Although it is not shown in the
figure design and code reviews occur in this cycle. An important point is that QA will smoke test a build
fo determine whether they can accept it to perform detail product validation and verification
procedures. The arrow labelled DD illustrates QA’s rejection of the build. it has happened that a
suitable build could not be produced for three weeks because of high rate of errors. However, once an
increment is Engineering Complete (EC) and QA accepts a build that passes all checks, it will be
released as an Alpha version. Quark has its own entry criteria to signoff an increment as EC. As an
example the first criteria is stated below:

“The requirements completely and accurately define the functionality that was intended to be
developed. Product Management (PM) should ask Research and Development (R&D) the following
question to determine EC, ‘If a totally different R&D Engineer were to implement this feature from
these requirements, would we have the same functionality that is currently implemented?’ ” The list of
criteria is comprehensive and a complete coverage of them is beyond the scope of the discussion.

During the Release Management Activities (RMA), the Alpha build continues to undergo intensive
verification and validation procedures by QA. Fault fixing and fine-tuning will continue intensively as
QA progressively reports defects. The focus is to reduce the level of severe faults, such as
showstoppers. Cosmetic errors are allocated a low priority. The arrow labelled RA shows the Alpha
fault fixing and testing cycle. If the requirements are satisfied, then the Alpha build is declared as a
Beta version of the software and is installed and tested at appointed Beta sites. The PM department
works closely with the Beta customers, whose feedback is valuable in the production of a highly
useable and stable final release. The build is optimised for performance, stress tested and last minute
errors are corrected. The arrow labelled RB shows the Beta fauit fixing and testing cycle. QA also
performs a final check on the build and if it is accepted, it is shipped. it should be noted that the final
release is never fault free and is shipped with some residual faults. This is an accepted industry

practice and is aligned to the notion of “sufficient” rather than “perfect” quality.

61

Although the activities are described sequentially, they are performed in parallel. The rapid
development style of the SSA and the parallel performance of activities require good co-ordination
during development. The success through the SSA is influenced by several critical success factors
which are discussed next.

3.11 Critical Success Factors

With the adoption of any development approach a fair degree of success is expected and the same is
true for the SSA. However, success will not happen without management’s active role and proper
steps must be taken. These steps must be well understood and be within the context of the
organization’s development philosophy. They must also be attainable and practical. The following are

some critical success factors which management should consider:
e Commitment
e (Quality Human Resources
e Keep up to date
e Planning
e Good Resource Management
o (learly Defined Vision
e (Clear Definition of Roles.

3.11.1 Commitment

Once a SSA has been adopted, its development processes must be well understood by all concerned
and they must be committed to applying them correctly. Management must be convinced that the
correct approach has been selected and must be the catalyst in achieving success. Apart from being
committed, they must ensure enforcement.

3.11.2 Quality Human Resources

Since the SSA is a sophisticated development approach, a high calibre development team is
indispensable. Namely, they must be well trained and possess good practical experience. The team
must have a mature attitude and be able to work professionally under minimum supervision. Since the
development environment is fast paced, it is not suitable for trainees. Most of the engineers at Quark
are experienced graduates. This simplifies the task of assigning people to different tasks within short
notice without or little training.

3.11.3 Keep up to date

The IT world is constantly changing with new methods and technologies are introduced constantly.
Management must ensure that its organization is technically up to date and that its staff's skills are
also updated. They must also be informed about the changes in the business environment and
communicate this information within the organization. These changes have an impact on the systems

developed by an organization and its vision.

62

3.11.4 Planning

Planning is not new to an organization. However, it is surprising how many organizations fail to plan
eftectively. Planning must be balanced and not focused only oh project planning. For example, it is
also essential to focus on resource planning, financial planning and business planning. All these plans
influence each other. Therelore it is necessary 10 adopt a holistic approach to planning. The
turbulence and complexities that small organizations experience, is a reason enough to be meticulous
in this regard.

3.11.5 Good Resource Management

The limited resources of SMO must be well managed. For example, financial resources should be
carefully managed so that capital is available {0 survive weak economic conditions, or to take
advantage of opportunities. An organization can benefit in these situations. It is also important that
budgets are allocated to the projects that will provide the optimal payback. Similarly, human resources
should be well managed so that the work force is of high quality and stable. Human resource problems
are a hindrance to an organization that is trying to get a system on to the market.

3.11.6 Clearly Defined Vision

With the approaches there are many unknowns and management must have a clear defined vision of
their intentions. The product will evolve over time and management must look ahead to visualize what
the final product will look like. They should be able to forecast whether the objectives are achievable or

whether the resources should be applied elsewhere. Since environmental changes are frequent, a
vision for new opportunities and innovative development is necessary. However, plans and visions do
not always materialize as expected, therefore it is necessary to define fallback strategy.

3.11.7 Clear Definition of BRoles

The importance of who does what, when and why cannot be over emphasized. In a fast paced
development environment organizational clarity would reduce confusion and clarify the expected
responsibility of the team. Furthermore, it helps to define the expected deliverables from the team

members.

3.12 Conclusion

In this chapter the SSA were comprehensively analysed from various perspectives. As part of the
analysis the following aspects were examined:

 Distinguishing the underlying philosophy of the SSA

e Understanding the benefits offered by the SSA

e |dentifying problems and weaknesses

¢ |dentifying business opportunities

¢ (General characteristics of the SSA.

63

The discussion on the above aspects Is important because it provides useful information in
understanding the SSA. From a strategic point of view an appropriate decision will have an impact on
the organization. Namely, whether its development approach is suitable for its business. Another
impact is the effort that is required by an organization to adopt a SSA. For example, the effort required
to adopt Wisdom is medium, while the effort to adopt the Agile Software Process is high. As previously
noted, SMO requires flexible development techniques. An organization is not necessarily restricted to
adhere only to the principles of the SSA that it has adopted. As the analysis indicates, techniques may
be borrowed between the SSA. Therefore it is important to understand this flexibility of SSA for optimal
benefits. This is a clear implication that the value of the synchronize and stabilize techniques cannot
be ignored by SMO. There are shortcomings with the approaches; however, with good management
principles their impact may be reduced. The classic waterfall model minimizes the concepts of
incremental development and iteration. Unfortunately many projects of SMO do not lend themselves to
the waterfall structure.

The application of software engineering principles as mentioned is clearly understood and easy to
apply. The theory is supported with practical examples from the Quark development environment.
These examples are important to illustrate real world software development and to enhance the
understanding of the approaches. The workflow of the development activities, aithough simpilified, is a
clear indication of the complexity that is involved in developing a system and they rarely execute as
smoothly as expected. The development activities are fast paced and are performed concurrently.
Therefore a high degree of co-operation, maturity, independence, responsibility and professionalism is
absclutely essential with this development approach.

As an organization will want to succeed through the SSA, the critical success factors may be used as
a guideline. They are subjective and an organization must analyse them within the context of its own
objectives and environment. Whatever the factors are, top management must be involved and enforce
them in order to be workable. With this regard it is important for an organization to realize its ambitions
and limitations.

A critical analysis does not only reveal the benefits and shoricomings of the SSA, but also helps to
suggest the properties of an appropriate SEE and process model. In the next section a set of

frameworks for that may be applied with the SSA is discussed.

64

4 A SET OF FRAMEWORKS

4.1 Introduction

In the previous chapter a critical analysis of the Synchronize and Stabilize Approaches (SSA) was
discussed from multiple perspectives. The intention was to provide an enriched analysis of the SSA
that is supported by real world experience. Only through such an understanding it is possible to exploit
the advantages which this development technique offers and implement the means to overcome its
shortcomings. It was also seen that an appropriate Software Engineering Environment (SEE) and a
Software Process Model (SPM) for this sophisticated development style are usually neglected.
Because the development pace is fast and many activities are performed concurrently, a SEE and a
SPM are important supporting mechanisms for Software Engineering in the Small. The environment in
which Small and Medium size Organizations (SMO) operates is dynamic and an appropriate SEE and
SPM are vital to manage the development process in a disciplined manner throughout. The concept of
best practices has often been reduced to a buzzword level. In order to avoid this a framework for best
practices is proposed. This is another neglected area that needs to be addressed with respect to the
SSA.

In this chapter three frameworks are proposed to support Software Engineering in the Small. The three
frameworks discussed include:

e A proposal for a Software Engineering Environment (SEE)

e A proposal for a Software Process Model

e A proposed Framework for Best Practices.

4.2 A Proposal for a Software Engineering Environment (SEE)

One of the many objectives of software engineering as a discipline is the production and support of
quality software. By improving the quality of the development process, the quality of the end product is
positively influenced. The software industry is gradually witnessing the orientation towards quality and
the maturing of software engineering as a discipline. For example, The Malcolm Baldrige National
Quality Award3 has “Management of Process Quality” as one of its seven assessment categories. The
Capability Maturity Model (CMM), 4-6 produced by the Software Engineering Institute (SEI) at
Carnegie Mellon University, defines the maturity levels of an organization based on the quality of the
processes it employs (Heineman et. al.,, 1994). The ability to implement a quality development
processes to produce quality software is greatly influenced by the environment in which it is produced.

Small and Medium sized Organizations will certainly experience a competitive edge if they can deliver
optimal quality software under the difficult conditions in which they operate. In this section a SEE with
respect to the SSA is proposed.

4.2.1 Environmental Influences and Application Characteristics

Software Engineering in the Small is a challenge in the constantly changing |T industry, Constant

changes also means a change in the development environment and organizations must adapt to them.

65

Over the last four decades many changes have occurred in the development environment and in the
nature of software applications. For example, twenty years ago, the development environment was
mainly mainframe based and tools and methodologies were slow in being introduced. As a result the
availability of tools was limited. The most common method (and also tedious) to debug a simple
COBOL program was by reading its core dump. In the recent years many applications were scaled
down and mainframe development has been reduced, while client/server and desktop development
have increased. Most data base applications are now relational. The availability of tools and
techniqgues has increased and most development environments have become highly visual.
Techniques such as code re-factoring and design patterns have been introduced. Similarly
applications are becoming more specialised, for example, data mining, data warehouse and Web
portal development.

Many organizations develop several products with common characteristics among them. Product Line
Engineering (PLE) supports this type of development and aims to simplify the effort by exploiting the
concepts of standardisation and reusability. For example, Borland’'s C++ Builder wraps many of
Delphi's Visual Components Library (VCL) objects internally. These products have the same look and

feel and can share a common SEE. However, this is not always the case. Quark's DMS (Digital Media
System) application and its E-Commerce application do not share any common objects. Furthermore,
the development approach is different and it is difficult to completely standardize the development
environment across the organization.

Software development has also become more complex and diversified. The introduction of component

development is not a simple matter of “plug and play’. An application that has a high usage of
components will also have a high integration effort, namely, the “hand shake” between components
must be clean. A SEE for component-based applications is experimental. The activities are component
research, evaluation, selection, benchmarking and prototyping. In Web applications, such as E-
Commerce and Web Portals, a specialised SEE is required as compared to an Enterprise Resource
Planning (ERP) application. For example, in addition to supporting the typical analysis, design and
implementation phases, a SEE for Web engineering must also have tools to support document
integration into the site and to manage and prepare media for the Web (Powell, 1998).

Modern software development has become increasingly challenging. As a result the SEE that is
required today is beyond the selection of a single CASE (Computer Aided Software Engineering) tool.
However, a single CASE tool may be suitable for some environments, for example, financial

institutions and state departments who still run their legacy systems. Smaller organizations may not
find this to be optimal. They may have to short circuit the development process in order to gain speed
and flexibility. For example, Rational Rose is the prescribed SEE at Quark, however, the developers
mainly use it to perform object modelling and the software development cycle did not follow the
complete Rational process. Rational's Requsite Pro (a document management system) was replaced
by Quark's DMS application, while Visio was used to draw process flow and dataflow diagrams. it

might be argued that there were no cross references between the class diagrams and the process flow

66

diagrams. Actually nobody missed them. As a clarification the author is only implying that the
development approach is flexible and the team members did what was necessary to speed up the
development. The documents and diagrams were communicated across the teams during multiple
sessions and the ability to understand them in various formats was not a problem. Thus it is evident
that a skilled team in diverse methodologies and techniques is required.

System changes are not linear and as a resuit the development environment must be dynamic. A
system’s transition from one state to another must be smooth and the process must be flexible.

Therefore the SEE must support rapid changes and evolve with changes in the real world. In the next
section a SEE that exhibits these characteristics is discussed.

4.2.2 The Metamorphic Software Engineering Environment

The theory of the Metamorphic Software Engineering Environment (MSEE) (developed by the author)
is to constantly adjust the development environment to changes in order to maintain its efficiency and
effectiveness. This is achieved by eliminating the agents, which instead of being an aid to solve
problems, becomes a hindrance. Therefore the envircnment is constantly transformed over time. The
term “agents” is referred to something that is used to aid in the production of software. For example, a
modelling language such as Unified Modelling Language (UML), automated software-testing tools and
Graphic User Interface (GUI) tools are agents. The terms agents and tools are used interchangeably
during the discussion.

Eliminating an agent from the development environment means that the value it provides is no longer
optimal and must be replaced. Software development tools are innovative and competitive. What used
to be a state of the art is becomes outdated and cumbersome to use when compared to new ones on
the market. For example, Micrografix's ABC Fiowcharter was popular because flowcharts and models
could be drawn with a computer. However, Microsoft's drawing tool (Visio Professional) was
considered to be more sophisticated, easier t0 use and offered additional drawing capabilities. In an
organization where the author once worked, ABC Flowcharter was the standard diagramming tool.
However, over time it became obsolete and the development team proposed that there should be a
change to Visio. Management made the change one year later. Development with the approaches
cannot tolerate lengthy bureaucratic delays for a simple decision as the advantages of rapid
development is diminished.

Tools are constantly improving and over time new ones are introduced. For example, initially the
Object Modelling Technique (OMT) methodology used its own OMTool Editor to model a system.
Today, Rational Rose’s development environment provides the capability to do object modelfing using
OMT notation, Booch notation and UML. Hence, the users have a choice of widely accepted modelling
techniques. The important question is: What is the criteria to eliminate an agent? An agent is
eliminated based on the organization’s experience and judgement that it is no longer supportive of
changes in the development environment. The timing of elimination will vary from organization to

organization. Being restricted to fixed toolset SEE in modern software development can be counter-

67

productive. By reducing environmental restrictions, increasing environmental flexibility and maintaining
discipline, the concept of the MSEE ideally supports SMO. Therefore as the situation demands and
over time, the SEE will undergo a change of characteristics and conditions. Based on the nature of the
application it should be possible to choose the appropriate agents to reach a project’'s goals. For
example, prototyping techniques may be used in one project while Joint Application Development
(JAD) techniques in another. Thus the SEE must support a situational development approach.
Similarly, de-bugging a procedural language application and an object oriented language application is
different. An approach specific debugger will be more useful than a generic one. A modern software
development environment must also be flexible and place extra emphasis on automated development
procedures and administration tasks. This helps the developers to concentrate on what they do best.
Furthermore, systems will always undergo changes and the development environment must provide
the means to make them effectively.

Product A Product B

i

s

PLE

Figure 4.0: The application structures of PLE and SSC development.

In Figure 4.0 the simplified application structures of systems development using the PLE and the
Synchronize and Stabilize with Components (SSC) approaches are illustrated. Depending on the type
of systems that an organization develops, it is possible that both approaches may be used. The PLE
approach restilts in several self contained systems in a product family which runs on top of a common
base system. The systems are highly integrated and share common software modules. However, with
the SSC approach, apart irom the component evaluation and selection tasks, a high percentage of the
development task is focused on designing and implementing interfaces between the components and
the base system. The SSC approach is of a highly technical nature and mainly involves data exchange
and task delegation among components. Therefore the direction of development cannot always be
prescribed. During the development the usage of tools, technigues and methods will differ. The SEE
must be able to support such diversity and the MSEE is conceptually designed to address this

situation.

68

...
o e e e R e e e R P % o HM S R L

L - . o = 1Y ! 8 - -1 -
O wn O A 0, e e o O e e e e e e ol R oy Rn. 0 s e et et s O ol e R LR o N

GConceptual Explore new business concepts and the
Development application of new technology. Research
" _ | projects. A . N
New Systems Development | Development of new applications.
System Enhancement Major system enhancement. Namely,

adding new functionality, interfaces, tune
performance. Adjust to customer's
changing demands.

System Maintenance Make corrective, preventive, and adaptive
changes 1o the system as required.
System Re-engineering Redesign, restructure a part or the whole

system. Incorporates backwards and
forwards engineering.

——

Table 4.0: Basic types of systems development.

In Table 4.0 some of the basic types of systems development that an organization will undertake are
summarised. They are traditional in nature and most software organizations are bound to have already
encountered them. However, there are other related development activities as illustrated in Figure 3.2
(chapter 3). For example, software configuration management, quality assurance and system reviews.,
Nevertheless the MSEE should provide the essential support for the basic development types and the

other related activities.

Furthermore, an organization must rely on its own professional judgement as to how it will architect its
version of a MSEE. Most of the choices made would be influenced by many factors. In the next section
an example of implementing a MSEE is examined.

4.2.3 Implementing a Metamorphic Software Engineering
Environment

Since organizations are unique and have their own goals and objectives, their development
environments are also influenced accordingly. Therefore the appropriate agents must be selected
because software engineering is complex and the complete process must be optimally supported. The
foltowing basic key activities are considered necessary in order to establish a MSEE:

e Strategic Management Decision

e Team Building

* Identifying the Development Activities

e Selection and Evaluation Process

¢« Continuous Monitoring.

This list is not exhaustive and depending on the organization other key activities may be necessary.
These points are briefly discussed below.

4.2.3.1 Strateqgic Management Decision

The type of development that an organization will undertake is a strategic management decision that

69

must be carefully planned. Some visionary planning is required with regard to the type of software
projects it will undertake presently and in the future. Its development goals and objectives must be well
defined and verified whether they will be achieved in the development environment. The following
factors may influence management’s decision:

¢ lts line of business.

e [ts market share and competition.

e The volaltility of the business environment.

¢ The size of the organization.

¢ The availability of finance.

4.2.3.2 Team Building

Once the strategy for a development environment has been decided, the actual task of creating it must

be set in motion. The ability to select tools, techniques and methodologies requires specialized skills

and management must select the right team for this purpose. An appointed team should have the

following skills:

e Ability to conduct research

e (Good bench marking and evaluation technigues

o Good technical skills

¢ Be objective and have sound judgement.

Environment Scanning, Scope

e s e e T At

‘-;E:E;g:"-" SR S A o b Sy

i Tl r 7 e oA E e P = e

A XA R IR i h | o PR R

2V RIDLI 3 3} o) Fii ; 5‘ j;‘{ e S HE e

o e e o S P I T S b i oty e e e G

Ao oo
o

A ¥
‘t]. _}.
b

Market Database, Customer database,

Competitor Analysis) | Ad-hoc information, statistic analysers,
Planning Project Management Project management software

Requirements Datinltion

Product Management, Users, Analysts,
Domain Experts

Methodology, e.g. OMT or UML
CASE Tool

FrETEEr Y

Analysts, Domain Experts, Systems
Architects

Methodology, e.g. OMT or UML
CASE Tool,

Technical Dasign

Software Engineers, Software Architects

CASE Tool, Software specifications
tools

Implementation and Test
Build and Test {integration and test)

Software Engineers, Developers
Users

Development enviranment e.g. Delphi,
Powerbuilder. repository managet, test

data generator, testing tools

frprrey

Software Engineers, Analysts, Product

Methodology, e:g. OMT or UML‘

Maintenance
Management, Domain Experts CASE Tools
Quality Assurance Quality Assurance Team Test data generator, Automated test

{001, Bug tracking software

Software Configuration Management
Releasa Management

SCM Team (Technical Analysts and
Sottware Engineers

Build generation tools, Version controf

tools

Documentation

Whole Team, Technical Writer

Word processor, Document manager

Table 4.1: Typical development activities.

In order to implement a MSEE it is important to identify the basic development activities. The

70

identification of these activities will indicate the tools techniques and methodologies that are necessary
for a MSEE. With reference to Figure 3.2 (chapter 3) it is simple to identify some these typical system
development activities. In Table 4.1 these activities are summarised together with the team roles and
examples of development tocls. The table is a generalization and individual organizations will have
specific activities, roles and tools. A development team may consist of a database administrator, GUI
developer, and business-logic manager. Each team member utilizes different tools in the development
environments, and will share information such as database table information, user-interface

components, and business-logic rules (Shimmin, 1995).

4.2.3.4 Selection and Evaluation Process

The technical team must scan the market for appropriate tools, techniques and methadologies. The
tools, which are selected and evaluated, must be in sync with management’s strategic decisions. The
nature of this task is exploratory and constant experimentation is undertaken before a final selection is
made. Table 4.1 also indicates that the development environment must support the tasks of a variety
of people. Thus the selection and evaluation process is not trivial and the team must have a good
overall understanding of the organization’s scope. O'Brien (1995) provides some valuable hints on tool
selection in his article.

4.2.3.5 Continuous Monitoring

Once the environment is defined the team must continuously monitor its effectiveness. Any sub-
optimal agents must be replaced. Furthermore, the market environment must be constantly scanned
for new tools and techniques with regard to their usefulness in the development environment. As a
result of continuous monitoring the MSEE will undergo changes in its characteristics and conditions.

The basic key activities discussed serve as general guidelines for the effort that is required to establish
a MSEE. In the next section a comprehensive example of a MSEE is discussed.

4.2.3.6 A MSEE Example

As previously noted, the MSEE is designed to cope with changes. The degree of changes or the
desire to change will depend on an organization. In this section, an example of a MSEE is discussed
from a practical point of view. Based on the author’'s experience, the entire SEE will not change, but
parts of it will. Therefore a MSEE will have a base environment that will remain fairly stable. Generally
it consists of a methodology that has been adopted. It is possible that an organization may adopt more
than one methodology. For example, at 3M Deutschiand GmbH (the author consulted there) structured

analysis and design was used as a standard. However, the Jackson System Development (JSD)
methodology was also used because the earlier systems which were developed with it were still in
operation. Normally the CASE too! used supports the underlying methodology. Should an organization
decide to undertake object-oriented development, then a CASE tool that supports this paradigm may
also be introduced into the base environment. It can be seen that nowadays the software development

is diverse and the MSEE allows itself to be tailored to support this. Although a CASE environment

71

e s B ey gt

may incorporate a range of tools, the author had observed that organizations generally find that they
are not always suitable and hardly use them. They tend to use the methodology mainly for system
modelling. A full evaluation of CASE envircnments is a specialised topic and is beyond the scope of
the discussion.

The MSEE will also have a bucket of tools known as the variable environment. In this environment

most changes will occur and within a short time frame. The team mentioned in the previous section will
‘ spend most of their efforts in keeping the variable environment in a state of the art condition. As an

example, a typical environment will include agents such as:

e Integrated Development Environment (IDE), for example, Delphi, Visual Studio 86,

PowerBuilder, Oracle 2000

e Assemblers

e Code editor, for example, Codewright

¢ Object browser

¢ Debugger and code profiler, for example, Nu Mega bounds checker

¢ Version control software, for example, Visual Source Safe

e File Conversion Tools

e Bug tracking software, for example, Radar

* Test data generators and Automated Tester

e (Qraphic Tools

e Waeb Design Tools, for example Hot Metal, Web Sphere

o Report Writers, for example, Crystal Reports.

The above list of development tools and utilities is endless. However, it should provide a clear idea of
the variable environment of a MSEE. As a matter of fact, Web design can be a unique development
environment of its own. An organization may also develop its own tools. An engineer at Quark

developed a System Stresser tool that progressively stress tests a system and examines its
behaviour, With this regard, memory consumption, bottlenecks and optimisation problems are
resolved. Similarly, Quark uses its own content management system, DMS, to manage all system

documentation.

The variable environment tends to have a greater number of users than the base environment, Thus it
should be the state of the art, but practical, simple to use and extensible. An environment with these
qualities would contribute to speed and quality during the development. Although the variable
environment may appear to be a collection of ad-hoc tools and utilities, it is not really the case. By
‘ modern standards most tools integrate well because they have open interfaces. However, they must
be well researched, evaluated and selected. It should also be remembered that a change in an agent
might depend on another agent. For example, the Extended Hyper Text Markup Language (XHTML)
was intended to replace the Hyper Text Markup Language (HTML). However, upgrading a Web

application from version XHTML 1.0 to XHTML 1.1 is not simple because the Internet Explorer 5.5
does not support the full set of XHTML 1.1 features (Deitel, Deitel and Nieto, 2002). Therefore the

72

application will not function correctly until future versions of the Explorer provide this support.

BASE ENVIRONMENT

| ;l | VARIABLE ENVIRONMENT

AT

WL)
u
o .
i
h
-
L

e i . I
Loy s | [fﬂ?ﬁ“@iﬁ‘fﬂ ‘mwwaﬂ 8k mmwﬁ’*ﬁﬁéﬁﬁj
-:I:ﬂE ..-":-:g" : E i % ﬂH;":}' g-:i:-sﬁﬂ Eﬁﬁé%ﬁéﬁéﬂﬁ?‘a
e aiplb Bl QIR &0 B

-\.-\.-\.-\.-\.--\.-\.-\.-\.

I
-:hg-c-
EChaE

w;
o
[{=FFY

Report
Writer

Cross

ed: I ‘Bug Tracking
: PlatformTool

Tool

Figure 4.1: A model of the MSEE.

In Figure 4.1, a model of the MSEE is illustrated with its base and variable environments. It is a
general representation (and simplified) as there can be many variations of it. The boundary between
the environments is blurred and there is much communication between them. The arrows indicate the
communication paths. Depending on the integration capability of the tools the communication may be
manual or automated.

Quark recently switched to the .NET technology without any major interruptions in its development
process. The application framework for building client/server applications constantly changes as new
modules are added or removed. Similarly, the object library is also constantly updated. During the
previous years a number of Web design tools were also added to the bucket and were used as

required. However, over the past five years the Rational development environment was mainly used
~ for object modelling and design. The usage of UML and Use Cases had increased. Therefore over
time Quark’s variable environment had undergone the many changes to remain highly productive. |

In some cases the base environment can be comprehensive. The CASE tool such as information
Engineering Facility (IEF) has five toolsets, namely, planning toolset, analysis toolset, design toolset,

construction toolset and implementation toolset (Avison and Fitzgerald, 1995). As a result it can also

73

possess the capability to perform tasks of the variable environment because of the overlap in
functionality. Ultimately the concepts of the base and variable environments of the MSEE aims to
create a robust and flexible development environment that is well equipped to face software
engineering challenges. This concept also blends well with the philosophy of the SSA.

The MSEE does have its advantages and disadvantages and are discussed in the following sections.

4.2.4 Advantages of the MSEE

The MSEE has many important advantages for an organization that adopts the SSA. The following
advantages are discussed:

e Promotes a Technically Up to Date Environment

e Improved Productivity

e Improved Quality

¢ Provides Choice and Flexibility.

4.2.4.1 Promotes a Technically Up to Date Environment

Since the MSEE progressively changes over time, an organization is able to maintain a technically up
to date development environment. If the tools, methods and techniques are properly evaluated and
selected, then it is possible to achieve a modern, effective and efficient development environment. A
technically updated environment is a motivational factor because the development staff values the
importance to work with the latest technology. Being technically up to date is an important evaluation
criteria for a system’s success. For example, Quark adopted the industry standard Extensible Markup
Language (XML) format into its development environmeni. This made it possible for QuarkXPress
users to free their content data with the product Avenue.quark for reuse. Avenue.quark leverages the
rich pool of content data in QuarkXPress documents for re-use in multiple formats and delivery media.
Thus media independent publishing is supported.

4.2.4.2 Improved Productivity

Over time tools, techniques and methods also improve and have become more innovative. The
concept of the MSEE allows an organization to exploit these properties. With new and improved
agents being added to the development environment progressively, much of the work can be
simplified and automated. As a result an increase in productivity and an optimal use of time is
influenced. A simple drawing tool such as Visio Professional allows a developer to create diagrams
effortiessly as compared {0 similar tools of the past five 1o ten years. Similarly, an automatic software-
testing tool can also simplify and speed up the testing process.

4.2.4.3 Improved Quality

By adjusting and re-evaluating the development environment progressively improves its quality. A

quality development environment will contribute to the quality of the development process and system.

74

W

An appropriate CASE environment can assist in improving the analysis and formalising the process
thus improving the front-end development activities. Nowadays it is insufficient to rely only on the
debugger supplied with an IDE. With additional code analysis tools, faults such as dangling pointers
and memory leaks in the code can be detected and corrected early. As a result the quality of the
system is improved.

4.2.4.4 Provides Choice and Flexibility

The MSEE encourages an open development environment since nowadays tools have open interfaces
and tend to integrate well. Although integration problems still exist, there has been a great amount of
improvement in this area over the past years. Instead of being restricted o a “fixed” environment the
MSEE evolves and provides greater flexibility. Therefore the development team has a choice of agents
and can exercise their preference to meet their objectives. Generally people are more efficient when
they are not completely restricted.

4.2.5 Disadvantages of the MSEE

Although there are advantages with the MSEE, there are also some difficulties and it is important to
realize them. The following are some of the difficulties with this environment:

e (Costly to Maintain

e Requires Skilled Personnel

¢ (Chasing the Latest Flavours

¢ Problem to Cope with Changes.

4.2.5.1 Costly to Maintain

A MSEE can become costly to maintain, because it must be constantly updated. It is common for
software development tools to be outdated within a few months. This aspect can have an impact on
organizations with a very limited budget. A possible solution is to opt for simpler tools as practised by
the Wisdom approach. They are cheaper and high training costs can be avoided.

4.2.5.2 Requires Skilled Personnel

To maintain a MSEE in an organization is a specialised task. It requires someone with good technical
skills who can understand the development environment in its entirety. Well-trained personnel are not
easy to find and often recruitment is expensive.

4.2.5.3 Chasing the Latest Flavours

Through naive carelessness, possibly driven by well-intentioned enthusiasm, the selection of tools
may end up being a chase for the latest flavour. This can be caused by trying to satisfy an ego or a
misguided attempt to increase organizational maturity. Therefore management must be committed and

proper research must be conducted to avoid this pitfall.

75

m_E‘ﬁ-*—mﬂ“

4.2.5.4 Problem to cope with changes

Since the environment constantly changes, the developers may encounter difficulties in coping with
them. This is especially true if the differences between the old and new versions of the tools are vast.
Furthermore, the new version must be learnt and can be time consuming. If possible, changes should
be introduced during quiet periods, as a learning curve may be required.

The benefits of the MSEE outweigh the disadvantages. Through good management the negative
effects may be reduced or overcome. However, the scope of implementing a MSEE is organization
specific and will vary. Software development consists of a number of inter-dependant and complicated
activities. In order for the development to proceed in an orderly manner a software process model that

is suitable for the SSA is necessary. In the next section this software process model is discussed.

76

4.3 A Proposal for a Software Process Model

Organizations which are confronted with the Software Engineering in the Small problems develop
smaller, but complex systems with rapidly evolving requirements and operate in an unpredictable
environment. Apart from an appropriate SEE, an appropriate SPM is also necessary as it has a direct
influence on the quality of the system. The general nature of the development with the SSA is a rapid
system evolution with concurrent activities. The SPM must be flexible and adaptable to cope with
these conditions. As illustrated in Figure 4.0, the life cycle of each system can be different and the
SPM should support these differences.

In chapter 2 the following concerns with respect to the SSA were identified:
¢ Rapid changes in the environment and software requirements
e Development is against time
e (Good co-ordination and control is required
» (Cope with system diversity
e Remain competitive
¢ Good communication
¢ Manage complexity
e (Good resource management (financial and human)
¢ Use uncomplicated standards and apply good SE principles
» (Good systems architecture and high quality software.

The above are real world concerns and the development process must be capable of addressing
them. During the development of a system many questions are posed around the problem statement.
The following are some examples of them:

e What must be developed?

e Whyig it required?

e How will it be developed?

e Who will use it?

e When will it be available?

e Who will pay forit?

These important key questions have a strong impact on Software Engineering in the Small. Actually
they should be answered clearly before commencing any software development project. Comaford
(1995) examines nine interesting problems of software development and provides suggestions to
avoid them. Qut of the nine problems, the following are of particular interest:

¢ Better understanding of the business

* Better understanding the users

¢ Better management of the development staff

¢ Start testing.

77

The questions and problems are posed from different perspectives but are related. The SPM should
address them by guiding the development process in order to provide solutions. The objective of the
SPM is to support the development of quality software through a quality process. Since the
approaches exploit the concepts of incremental and iterative development, the SPM should also
embody these concepts. With these aspects 1o consider and with regard to the SSA, a SPM is
proposed in the next section.

4.3.1 An lterated Meta Process Model

Software aims to solve reat world problems. Before sofiware can be engineered, the 'system' in which
it resides must be understood. To accomplish this, the overall objectives of it must be determined.
Aspects such as the role of hardware, software, people, technology, procedures, and other system
elements must be identified. The operational requirements must be elicited, analysed, specified,
modelled, validated, and managed. It is these activities and relationships, which form the foundation of
system engineering. This Is a holistic view of a system and implies synergism (Powers, Cheney and
Crow, 1990). Information systems do not initiate from a vacuum. Factors such as the organization and
general infrastructure will influence the target system. The SPM model should reflect reality by
modelling real world development processes to provide real world solutions.

The proposed SPM is referred to as the Iterated Meta Process Model (IMPM) and has been developed
by the author. The concept of the IMPM is based on exploiting the use of models which are assigned
distinct roles. The models represent the problem statement visually at various levels of abstraction and
focuses on addressing the concerns and guestions mentioned in the previous section. The outputs of
the models aggregate to create a holistic view of the problem statement.

In a turbulent development environment it is difficult to immediately obtain full knowledge to solve the
problem statement. However, the [IMPM forces management, analysts and designers to focus their
attention on the key aspects of systems development by formally including them as an imperative part
of the software development process, for example, organizational needs, system ownetship and
human roles. In this manner knowledge that is required to develop the target system may gradually

extracted and documented.

78

ORGANIZATION MODEL

SOFTWARE
DEVELOPMENT MODEL

130N SAUVANVLS

sobtts i
ﬁ{fﬂgﬁﬁﬁ ﬂdéﬁﬁ%ﬁﬁ ﬁ.ﬁé £

e s ﬁw‘%

Figure 4.2: The lterated Meta Process Model (IMPM).

In Figure 4.2 the IMPM is illustrated and is comprised of the following six key imodels:
» Qrganization Model
e Standards Model
e Human Role Model
¢ Software Investment Model
* QOrganization Resource Model
o Software Development Model.

Each mode! has it own goals and objectives and its own set of processes to achieve them. It is
tempting to consider one model to be more important over an other, but it would be unwise to do that
because they influence each other. With regard to the key role they play in the software development
process a holistic and synergistic perspective is essential. However, in order to simplify their
understanding it would make sense to study them independently. What follows is a brief description of
the role of the models.

The organization model relates to the business analysis school of thought and focuses on what must
be developed. Its objective is to view the organization with respect to its business architecture and the
environments {micro and macro) in which it operates. By modelling the organization it its possible to
identify the data, information and systems that it requires to support its business. In other words, is the
correct system being built for the organization 1o support its objectives and further its aims?

The standards model is the organization’s mechanism to create and maintain order in its functioning.
The model helps to define guidelines and procedures for its diverse business functions across the
organization. Standards help to improve the channel of communication in the organization and ensure
that there is consistency and uniformity in doing things. It must be ensured that they do not conflict

across business functions. With respect to software engineering principles the standards model

79

supports formalism during the development.

it is the human rofe model that really gives an organization its life and motion. The people that it
employs are the cogs that drive the organization forward either into prosperity or backwards into
doom. The human role model represents the total human resource pool. It defines their objectives
within the framework of their co-operating roles, which must aggregate to meet the organization’s
objectives. These objectives must not conflict with each other. Humans require a varying degree of
information to make decisions and must have the appropriate information systems to provide them
this. Furthermore the human role model also specifically defines the human resource pool of expertise
that is required 1o realize soliware projects. The Human Computer Interiace school of thought
influences this model with regard to the usability of information systems.

Software costs money and the software investment model represents the various cost parameters of
software development. It identifies the owners and the stakeholders of the system and supports them
to make decisions as to whether a project is feasible. It addresses issues such as the development
budget, return on investment and value received. Therefore it supports the management of systems
development costs.

The organization resource model defines the technical resource infrastructure that is required to
support the software development process. These include hardware, software tools, techniques,
network structure and the development environments {local and global). The modei also defines the

management policies of the infrastructure.

The software development model focuses on how the problem statement must be solved to meet the
business objectives and the user's needs. It examines possible solutions to the problem statement.
The five models which were already described above strongly influence the scope of this model.
Which in turn influences the final solution to the problem statement. This model is also influenced by
the software engineering schoo!l of thought, namely, is the system being built right and is the right
system being built (that is validation and verification).

The following examples summarises the practical significance of the models:

» The organization model determines what the system must do to support its business.

* The standards model will guide the development with the essential development standards.

e The system must be developed from the user's perspective and is influenced by the human
role model. For example, a high degree of usability is required.

 The solution to the problem statement wiil certainly be influenced by the budget. Therefore the
software investment model plays a major role in allocating financial resources.

e Depending on the type of solution sought, the demand on organization resource model will
vary. For example, if a Web-based solution is required, then additional hardware and software
such as Web servers and firewall are required. Hence the infrastructure changes.

e The soffware development model focuses on implementing the solution.

8C

It can be seen that the IMPM provides a useful framework to define the development policies which
must be adhered to.

4.3.2 Applying the Iterated Meta Process Model

‘ Although each model has it own goals and objectives they work co-operatively towards a common
goal namely, to solve the problem statement. During the development, the analyst will examine the
problem statement and pose vital questions around the target system. Each model will be used in
conjunction with another to provide answers. The common systems analysis and design question is
the what and how of the development process.

What is the
;prqb!am? X X

Is it feasible, X F X
Make or buy?

Stakeholders and |
X X
_owner?

Who are the X . . X
users?

Development ¥
guidelines?

Skills and X X
Expertise?

What technology
Is required?

X

How {o
Implement?

X

X

iniel

Table 4.2: Examples of basic development questions in relationship to the IMPM.

In Table 4.2, the first column indicates examples of basic questions (stated in point form) which may
be asked during development. The columns two to seven indicates the models of the IMPM which are
needed to answer them. For example, a question on what téchnelogy to use may be addressed
through by the standards model, software investment model, organization resource model and
software development model. The standards model is relevant because an organization normally
defines its development standards to be followed. As an example one of Quarks technical standards is
to use Microsoft's technology and the development team must adhere to it. The resource model is
used to determine whether the technology already exists or whether it must be procured. If it must be
procured, then for obvious reasons it will have an impact on the software investment model. The

software development model will provide a final specification of the technology that is required once
the technical analysis has been completed.

In the above example it is clear that the models of the IMPM collaborate to address fundamental
questions around the problem statement. As a result the analysis is improved by a multi-dimensional
analysis of the problem statement, which helps to improve planning, reduce risks and cope with

uncertainty. The common problems that are listed in Table 2.2 {chapter 2, section 2.6.2) can also be

81

%

addressed by the IMPM.

The models of the IMPM are common to most types of software development and form a process
framework that supports the analysis, design and implementation activities. The specific procedures
and workflows for each model are defined as required by an organization. For example, the
organization model will define the integrated business processes and external interfaces. Thus
development process can be tailored and made flexible, which is a goal of the SSA. It is essential that
the development process occur within the framework of the IMPM because the inter-dependence of
the models is the control mechanism. Therefore the meta-model approach of the IMPM encourages a
holistic development process and contributes towards a re-formulated software development strategy
for Software Engineering in the Smaill.

Since the models are goals oriented, each will produce specific output that will be used during the
development. For example, the standards model will provide an appropriate development standards
document. The organization model will provide a clear definition of the problem statement, whereas

the human role model will indicate their system requirements. The human role model has an important
function in identifying the creator and the owner of the output produced. The stakeholder and the
project manager may create the development budget together, but the project manager will be the
owner of it and must ensure that the development is completed within it. The creator and owner can be
the same person. Since the SSA is incremental and iterative, the output of the models will also be
incremental and are aggregated to form the blueprint for the development process. The documents
(output) would be accumulated for each increment and collectively form the complete system
documentation at the end of the development. Any changes to them must be made through the

respective models.

The concept of a creator and an owner of output are useful to enforce commitment and accountability
of the development team. The output is a visible result of work completed and can be used to evaluate
the ability of the team. That is assessing the reliability of individuals who are ¢apable of getting the job

done. Software development with the SSA depends highly on the commitment, accountability, task
visibility and reliability of the development team.

Many changes occur from one increment to the next. For example, the standards might change or new
technology must be adopted. The iterative property of the IMPM allows changes to be incorporated by
iterating them during each incremental cycle. The new increment of the system will be developed
according to the updated state of the IMPM. In this manner the development will always apply the
latest processes. However, management must ensure that the IMPM is updated.

The IMPM aims to maintain formalism and good software development principles with reduced
bureaucracy and delays. The processes are simple and easy to adopt and fits in well with the SSA
development concepts. The IMPM may be extended to include other models if required. For exampie,

a project management model can be added.

82

w

. A careful observation will indicate that the first five models of IMPM discussed above, lay the
foundation for the development. These tasks are executed in parallel; however, their output must
converge. The activities supported by software development model cannot commence without this
foundation. Thus the IMPM provides a control to check that the development takes place on a firm
foundation.

In Figure 4.3 the software development model is illustrated in detail and is based on Figure 3.2
(chapter 3, section3.10). A closer study shows that it represents the “software manufacturing centre* of
the IMPM. The organization's mission is the key catalyst to the software development model. It gives
the “order” to the "software manufacturing centre”. The model’s activities are iterative and are divided
into three areas of responsibility; however, an organization is free to make its own divisions. The flows
of tasks within the activities are also dependent on the organization. The diagram illustrates the
deliverables (output) which are produced at each stage. The deliverables are used for control and
verification purposes and provide visibility of what has been achieved. An important deliverable (not
shown in the figure) after an increment has been completed is the post-mortem analysis document. It

records, mistakes made, suggdestions for improvements and problems which were encountered. This
document is used as input for future improvement during development.

The iterative nature of the model supports the rapid reaction that is required by the SSA, as
adjustments are possible at numerous points during the development of an increment. For example,
the changes may be required in the Beta release and must be programmed by the development team.
The feedback loop from the release management activities to the system development activities
indicates this backward flow. The feature trimming activity is important as it manages the omission of

features in order to meet the schedule. The omission of features affects the scope of an increment and
at Quark omissions are managed through a formal change control process.

With reference to the MSEE in Figure 4.1, the tasks of design and the creation of the Use Cases can
be associated with the base environment, Other tasks like coding, testing and build generation are
related to the variable environment. Carmel and Becker (1995), identifies the following special needs
which characterises a packaged software process:

e Addressing multiple user types

* Product differentiation

e |dentify remote customer

¢ Involving remote customer

¢ Speed in development

e (Create market interface

e Develop in iterative mode

e Deliver near defect-free release.

83

DELIVERABLES

Product Management Activities

Prﬂduf:t Scopewnsion Dncument
Competitor Analysis Document
Master Feature List
Use Cases
incrernem sats

Systems Development Aclivities

é‘fsiamﬂastgrf 00k ‘an SRR
Datail Design Ducumant
Tech, Specification
Software Modules
Smoke Test Scripts
Bug Statistics
Progress Report
Multlple Build Varsinns

e, %ﬁ% aggenen p R - Release Management Activities
k e : i : :
i %ﬁ% WEVE-E‘?E-&- & Aty %Ef
2] Alpha Bug b gl Alpha £ 2 System Ef.-
b 17 Fiking [eo % Release [N 0w !
.. S N Review |
" i . F{;f{ f‘:g@ R ”’f;jgﬁﬁfic__; HLJL Lﬁ’“;:i
Quality Alpha Release
BetaBug [¢ | _Bela . :
Fixing ™ Release Assurance System Review Report
Bug Report
l Beta Release
- Final Release
Versiofi Final Release Launch Plan
i j
Control [| Relsase Final System Documentation
ey R GnldenMasf @a{:ﬂ g
} Pt R .3.3-: ':"._:':'_ﬂ_f T Eﬁ_";-:'a{?i' ﬂ?fi
l e P Sk ey wﬁﬁﬁﬁ Tt i
Generate |50 | B nid
Golden |pxiifipl Ship |z
Release |]
a?%f
3

Figure 4.3: A detail view of the Software Development Model.

The IMPM supports packaged software development and the workflow of the software development
model is illustrated in Figure 4.3 and does map effectively to the above process. Quark develops

packaged software and follows similar development processes. In the case of a in-house development

84

environment the workflow of the software development model can be re-structured. The product
management and release management activities are not required and may be replaced with a version
migration procedure.

4.3.3 Motivation for the lterated Meta Process Model

The motivation for the IMPM hinges on the fact that it is supported by sound theoretical concepts and
aims to solve real world problems. In this section the following aspects are considered to be influential
for the motivation of the IMPM:

e Fundamental System Concepts

¢ Churchman’'s Theory

e Supports General System Architecture

e Views Real World Problems.

4.3.3.1 Fundamental System Concepts

An interesting property of the IMPM is that it supports fundamental system concepts. Ahituv and
Neumann (1990) identifies the following eight basic characteristics of a system:

e (Goals and purposes

e Inputs

¢ QOutputs

¢ Boundaries and environments

e Components and interrelations

e (Constraints.

The individual models of the IMPM have clearly defined goals and objectives, which aggregate to
construct the target system. The clear defined goals and objectives of the models, simplifies the
analysis and design tasks because each model has a precise role during the development. They
accept specific inputs and produce specific outputs to facilitate system construction.

Similar to a system, the IMPM has its own boundaries and environments, that is the development
framework is within the model's boundaries. The models and their interactions may be compared to
the components and their interrelations of a system. The models behave like specialised black boxes
whose concept is to reduce the overall complexity of the system construction process. Since an
information system possess these characteristics, the process model that is used to build it should
also contain these characteristics in order to uniformly support this type of thinking. Thus the
characteristics of the IMPM help to maintain this thread of thought.

4.3.3.2 Churchman’s Theory

According to Churchman’s theory (Churchman,1971) an entity must meet nine conditions in order to

be called a system. Although the theory dates back over three decades, the system fundamentals it

86

The concept of business architecture is 10 define a business strategy based on a strategic vision
(current and future capabilities) as defined by strategic capabilities architecture. The business strategy
is defined in terms of goals and objectives {short-term, medium-term and long-term), technological
environment, and external environment.

The business strategy is translated through a process of information systems planning. The
information needs, which must be provided by systems to meet the business objectives, are identified.
The information architecture includes application level aspects, for example, sales and accounting.
Any constraints which may be imposed by the business strategy are considered.

Strategic Capabilities Architecture:

Business Architecture

Information
Architecture

Figure 4.4: The general concepts of system architecture.
Source: Adapted from: Quark’'s Business Architecture Document.

Data architecture defines the data which will serve the information needs. It defines the current and
future needs of data, technology and data movement across system boundaries.

System architecture relates to information architecture, data architecture and computer architecture. It
involves specific systems, which must be deployed with regard to business applications, data
requirements and hard- and software needs.

Computer architecture is comprised mainly of specific hardware and software, which will form the
technological base for the above architectures. Therefore the choices and decisions made will be
influenced by the above and also influence the above.

During an incremental development process the system’s architecture will evolve. Thus it must be
developed on a sound architectural framework that can satisfy general architect requirements. The
IMPM aids in meeting this objective during development. For example, the organization model relates
to the strategic capabilities architecture as they both address common problems. Since there is a
close relationship between them, the IMPM contributes to analysing architectural requirements

naturally because the models drive it. As a result stable architectural requirements are possible. The

87

output of the models can also be used to generate and verify general architecture requirements.

Strategic-Capabilities Architecture Organization model

Business Architecture Organization model, Human Role Model
iInformation Architecture | Organizéﬁhn model, Human Role ﬁﬂdel, Standards mode!
Data Architecture Organization model, Human Role Modei, Standards mode
System Architecture Software development model, Standards model
Computer Architecture - Organization resource model

Table 4.4: The relationship between general system architecture and the IMPM.

Since the IMPM is iterative and complements the general architecture concepts, the development
team can constantly review the architecture through a natural iterative development process. The
relationship between general system architecture and the IMPM respective modeis are summarized in
Table 4.4.

4.3.3.4 Views Real Worid Problems

In section 4.3 numerous real world concerns, questions and problems were identified and are widely
experienced by many SMO. The models of the IMPM contribute to a real worldview development
process. In other words it enforces the asking of questions about the real world actors of the system.
For example, the organisation model will help the developers to better understand the business and

identify what must be developed. The human role model helps to understand the users and their
needs for the system.

The IMPM addresses the complete development life cycle. Its workflows can be tailored as required
and new models may be added. As a result it is flexible and suitable for Software Engineering in the
Small. It is also based on fundamental software engineering principles, which are easy to apply in
order to develop quality software.

Although there are many suggested best practices for software development, these suggestions are
always subjective. A framework for best practices is considered to be more usetul and is the topic of

the next section.

88

4.4 A Proposed Framework for Best Practices

The notion of Best Practices (BP) is becoming increasingly popular. Unfortunately, in order to increase

their sales, many software vendors claim that their software supports the industry’'s BP. This would
also appear to be a logical strategy to accelerate an organization’s performance (Petersen, 1999). It is
quite common to hear developers and managers debating over the latest BP, which are eventually
reduced to buzzwords. Some job vacancies require candidates to implement BP in an organization. In
this situation the potential for conflict has already been created because a candidate’s experience of
BP may differ from the organization’s point of view. This would imply that best practices are generic
and one size fits all. This is not the case.

McConnell (1996), recommends the spiral life-cycle model as one of the best practices for rapid
software development. However, McConnell (2000) made the following criticism about Boehm’s gpiral
life-cycle, “....the model is so complicated that only experts can use it. I'd give it the prize for the most
complicated and least understood software engineering diagram of the 20" century.” The criticism is
strong and implies that the spiral life-cycle should be avoided. The author is of the opinion that the
suggested BP is confusing and contradictory. In one instance the spiral life-cycle is recommended as
a BP, while in another it is cited to be very complex and least understood.

Best practices are a desirable concept. Unfortunately many software practitioners do not study them in
depth and in context with their objectives. They are viewed according to the success that has been
experienced by others. However, the situations in which others have applied a specific BP may be
quite different. To consider a best practice to be generic may not yield its optimal value. A drawback
with BP data is that it is seldom cross-domain or longitudinal. Few professionals compile them in
context with a specific problem and its solution {Andriole, 1995). Thus the process is a combination of
experimental, creative and problem solving activities with a subjective view. What may be good for the
creator of a BP may not be appropriate for someone else. There is no unanimous opinion on what
constitutes BP, and thus there is no unanimous opinion on how to choose them (Fenton, 1996).
Therefore caution must be exercised when adopting them. The important question Is: Who knows

best?

There are also no absolute definitions for the following concepts:
* Best Practice
e Basic Practice
¢ (Good Practice
¢ Best Influence
¢ Recommended Practice
e Current Practice or Trends.

The distinctions are blurred and their definitions overlap. However, they do have a common intention,

namely, to communicate to the software community improved ways of doing things. Opinions and

89

e =

experiences from many independent sources are important because they encourage debate and
innovative thinking. Organisations should certainly be cognisant of them and evaluate the relevancy to
their own environment. Comaford (1995), emphasizes that best practices are required to overcome
software development problems and avoid repeating mistakes. She discusses several software
problems and recommends general BP to solve them. However, it is more important that organizations
are able to define their own BP because it will influence the overall productivity of the environment and
the quality of the system.

Sometimes it is hard to determine where myths end and where reality begins; the same applies to BP.
As a result it is difficult to determine what to believe and it is easy to be confronted with a best practice
overioad. To overcome the above situations, organizations must reform their approach in adopting or
defining best practices. An approach is to define best practices based on a sound framework: this is
discussed in detail in the next section.

4.4.1 A Best Practice Framework

The general intention of best practices is to show how to apply specific development strategies and
how to avoid problems, thus improving the development process and productivity. Depending on their
rate of success and acceptance they may be adopted as an industry standard. The outline of this
section is as follows:
~ ¢ The Motivation for a Best Practice Framework
» The Framework
e Applying the Framework.

4.4.1.1 The Motivation for a Best Practice Framework

As noted in the previous section, it is difficult to define generic best practices because organizations
are diverse. Furthermore, BP must meet the organization’s specific goals and add value to the way it
operates. It is also important that best practices are viewed holistically in terms of systems
development. The author has observed that most discussions on BP concentrate on system
implementation activities. Unfortunately systems development does not only comprise of

implementation.

A framework is necessary for BP because it provides a conceptual structure that supports their
definition in a relational context. The framework is comprised of elements which indicate the areas of
focus and the structural relationship of these areas. It is important to understand this relationship
because it is useful to identify side effects when best practices are implemented. For example, best
practices that are implemented for resource management will affect productivity and the system'’s

quality. The framework also supports the development infrastructure and encourages a holistic
approach n implementing BP.

The framework is also a high level of abstraction of BP that helps to guide their definition by indicating

S0

their scope and boundaries. The elements of the framework can also be viewed as containers for the
BP in a specific problem area. Thus the definition of the goals and objectives of BP is more effective

because the focus is concentrated. The problem of best practice overload is avoided because an
organization can define them within the context of its own environment. Since the framework is a high

level of abstraction, it helps to simplify the understanding of the focus of BP to the team. When a
concept is well understood it is easier to gain acceptance and commitment from those who are
involved.

Although a framework forms a foundation, it is not restrictive. New elements may be added to extend it
to meet an organization's changing needs. The rapid changes in the Information Technology (IT)
industry makes it necessary for an organization to constantly revise the framework.

4.4.1.2 The Framework

Software development is comprised of multiple interdependent phases which are followed in a logical
sequence. The phases classify the nature of the effort that is required into specialised areas of
responsibility and conveys the concept of “division of labour” and specialization. As a result, the roles
and skills of the development team can be clearly assigned. Although the phases are separate, their
boundaries are blurred. The following are typical development phases:

¢ Requirements Analysis

e Specification

* Project Management

e Design

* |mplementation

e Maintenance

e Quality Assurance

¢ (Change Management.

The above is a generalization and other phases may also be included. Each phase has a set of
processes, activities and tasks which produces tangible output {(deliverables) as evidence of their
execution. The procedures employed by a phase to do the prescribed work would seriously reflect on
the quality of final system. Therefore it would be reasonable to define best practices for each phase of
software development. The framework's elements will support the definition of BP for the respective
phases. As a result the best practices are “specialised” and helps to improve problem solving. Another
advantage of a phase-oriented approach is that the domain and scope of a BP is clearly focused and
its effect may be is measured.

Although a phase guides the development it is influenced by other factors. For example, the calibre of
the systems analyst will influence the quality of the requirements analysis phase. The requirements
analysis phase will influence development problems such as complexity reduction and quality. These

factors are not always obvious.

91

The following are some typical development problems which may be confronted:
e Skilled personnel
e High guality
e Good management
e [ast reaction to changes
e Limited resources
¢ Reduce complexity
¢ Reduce cost
¢ (Good estimations
* |nnovation
e Lowrisk

¢ High productivity.

The organization’s BP framework should support the definition of best practices to cope with the
phase-problem association. Therefore the proposed framework is phase and problem oriented, as
there is a direct relationship between them. It is referred to as the Organization Best Practice
Framework {(OBPF) and has been developed by the author. The objective of OBPF is to support the
definition of BP across the organization. This approach aims at creating an organizational best
practice blue print on a sound framework that can be authoritative and binding by management.

The following questions posed illustrate the initiation of BP in an environment:
e What BP will improve the requirement analysis phase?
e What BP will help to reduce compiexity?

e What BP can improve quality?

Organization Culture Good management The whole development
_Software Development Management Good management, Lowrisk | Programming, Change management

Project Management Good-estimations, Low risk Project Management

H!.l;man Role Skilled personnel, High Productivily The whole development

Quality Assurance High Quality Quality assurance

Method High productivity, Fast reaction to Requirements Analysis, Specification,
changes Design, Implementation, Maintenance

Cost Controf Reduce Gost : The whole development

Standards High Quality, High productivity “The whole development

Resource Management High productivity, Limited resources The whole development

Research and D&velnpment _Innovation The whole development

Table 4.5: The Elements of the Organizational Best Practice Framework.

The first column of Table 4.5 lists the elements of the Organizational Best Practice Framework. It is

the high level structure that defines the BP. The development problems in the second column are
associated with the respective elements of the OBPF. The association indicates which elements of the

framework will influence the BP for these problems. For example, the best practice that is defined by

92

the Cost Control element will help the organization to manage its development costs. Similarly, an
organization’s BP on Research and Development will influence innovation. High productivity is
influenced by several elements; therefore it follows then that the overall BP of an organization will
influence productivity.

The typical development phases are presented in the third column. Similar to column two, they are

associated with the elements of the framework which will influence them. For example, the best
practices which are defined under the Organisation’s Culture will influence the whole development.
Likewise the BP for Method will have an impact on the requirements analysis, specification, design,
and implementation. In the table it is seen that the Cost Control element influences the whole

development. There may be a Cost Control best practice for requirements analysis and
implementation respectively. From a cost aspect, a BP may be to perform the requirements analysis
in-house, while it may be a BP to outsource the implementation because it is economical.

The OBPF supports the definition of BP for the development phases and problems. As table 4.5
illustrates, these aspects form a close relationship and should not be viewed in isolation. The elements
of the framework are briefly discussed below.

The Organization Culture defines those shared beliefs and values which unite people in an
organization towards a common goal. it is a set of basic assumptions that are deemed valid and are
accepted within the organization. These assumptions are regarded as the correct way to do things or
understand problems in an organization (Smit and Cronje, 1992). Senior management generally drives
an organization's culture and studies also show that this culture influences productivity (Dion, 1993).

Software Development Management is the driving force behind the development and is based on four
basic management functions: planning, organizing, leading and controlling. It helps to ensure that the
planned objectives are executed accordingly and achieved. It is also the basic framework to define
general management principles and policies. At Quark the software development manager is
responsible for all programming activities.

Project Management is a specialised management function that defines, plans, organizes, leads and
monitors the activities of the project. It is the driving force behind the success of a project. Good
project management is necessary to complete a project on time, within budget and of the prescribed
quality and functionality. At Quark project management receives an operating budget from the Cost
Control element (discussed below).

Human Role represents the significance of humans in the development. It represents their number,
calibre and role. A range of roles exist, such as management, developers and users. Humans are the
live wire of the organization and are influenced by its culture. A best practice may relate to deriving the

maximum benefit from them.

a3

Quality Assurance is also a specialised management function whose prime task is to assure that the
system satisfies the prescribed quality. The outcome is to reduce defects and increase customer
satisfaction. Good quality software will contribute to its success.

Method defines the procedures, tools and techniques, which are used to construct the system. It helps
to guide the development based on the method’s philosophy. Philosophy is the principle or a set of
principles on which the method is based. An improper choice of a method will have a negative impact
on the system.

Software is costly and an organization does not have unlimited resources. Cost Controf defines the
organization’s BP to manage its development cost and maintain a positive flow of funds. It addresses

problems such as the most effective ways to deploy capital, select projects and overall cost
management.

In the framework, the Standards element defines the organization’s BP in adopting development
standards. A BP may be to adopt Projects in Controlled Environments (PRINCE) as a project

management standard. Standards help to ensure good communication and uniformity in doing things.

Resource Management refers to the tools and technical resource infrastructure that is required to
support the software development process. It defines the practices on adopting new resources and
how to manage them.

Research and Development (R&D) is the knowledge element of the framework. It defines the
practices, which an organization can implement to gain and share knowledge.

There is no one BP framework as there are many possibilities to create them. An organization can
create its own framework, based on its specific needs. From the author's experience the elements of
the framework are based on these key areas where most development problems originate. Although
the above phases and problems can have different names they must be associated with the respective
elements {as shown in Table 4.5). As a result the organizational development infrastructure is
strengthenad. The OBPF acts as a reference and a guide to the elements and their relationship with
the phases and problems. The framework can be regarded to be generic since the elements are
common to many types of development., Therefore best practices which are specific to an organization
can be defined within a generic framework across development boundaries, thus adopting a holistic

approach.

The elements of the framework must be considered in conjunction with each other, because a BP

defined in an element can influence another. For example, R&D best practices can influence the
availability of knowledge to employees (Human Role). On the other hand, BP for Cost Control will

influence the amount of funds available for R&D.

04

STRATEGIC
MANAGEMENT
LEVEL
e SOFTWARE "
PROJECT DEVELOPMENT G{':JTST TACTICAL
il s - . oy LEVEL
o
. METHOD % i
> o OPERATIONAL
- “5."1?' ;g.'?.-_ .E-'-.'?é’ -a“_;w_ % MANAGEMENT
Tl _'., . : . .,.;. LT T . - LEVEL
i mendy S (BT .%%ﬁ%?ﬁ:*-”%? byl LRI -'
3 - b : ot ' - .f.a-rq,.;a-c r:-‘.- Pz B :
_. %% ﬁgé?}gigf&%%ﬁ;aﬁSUt}ﬁCE Mﬂ%ﬁ?ﬁm rglﬁgﬁ%:;%z?ﬁ e o E : 'l
kH! ’ J Sl -Eéﬁ;a‘:‘%?iﬁﬁﬁ-“ Fud ions vtﬁyﬁ:f;:‘iﬁ"%"v. L ::'fx - }
' %ﬁ%;iiigmiwf o s R e 2 Pl
'l"'i -F:H:FEP“&{EE --- .“‘-- £ T Im m -

PRODUCTIVITY

Figure 4.5: The Relational Structure of the Organizational Best Practice Framework.

In Figure 4.5 the structure of the framework is illustrated with its elements and their relationships.
Some elements can be mapped to the processes of a typical software process model, such as quality
assurance. However, in this case the motive is different. A high interaction among the elements is
indicated at the operational level. Therefore any best practices which are defined for an element at this
' level will have a strong impact on other elements. The framework helps to expose this property, so

that BP may be defined in harmony across the development environment. These interactions also act
as a prompter and can encourage management to adopt a holistic view in implementing BP.

An important feature of the framework is that it supports the three basic management levels, namely,
strategic, tactical and operational. In order to introduce changes it is necessary that all levels are

involved and communicate with each other. The framework is their common frame of reference and
helps to ensure that an alignment is established among the levels of management.

4.4.1.3 Applying the Framework

In this section the practical application of the OBPF is discussed. The framework cannot forcefully
prevent a weak decision ¢n best practices, but it can help to place it in a proper perspective in the
development environment. in other words it will be associated with the most suitable element. Due to

the structural relationship of the framework, an inappropriate BP will reveal its impact. The framework

g5

is strong in providing feedback on an implementation of a BP.

It is assumed that an organization adopts or defines a BP because it experiences problems or wishes
to make improvements in its environment. Normally once the situation is identified, it is discussed at
senior management level and a decision is taken. It is also assumed that management is actively
involved in its implementation and will follow it up. The application of the framework is case based and
several BP alternatives are possible. The case examples which are described below are based on

typical development problems which the author has encountered. In order to provide clarity, a suitable
best practice is discussed per case.

Case: The users experience difficulties to use the tool Widget Builder.

Best Practice proposals:
A. Ensure that people are able to use methods and tools to their fullest.
B. Purchase easy to use development tools in the future.

Decision: Option A.

Suitable Best Practice: Ensure that people are able to use methods and tools to their fullest.

Motivation:

A larger amount of an IT department’s budget is spent on software tools and utilities. Unfortunately
they are not used optimally because users lack the necessary training. The author has experienced
that an IT department installs the tools on a server, and then sends the installation instructions by e-
mail to the users. They are left alone to read examples, take an example tour and consult help files in
order to learn their usage. As a result these tools are not used effectively and efficiently, and are
criticised to be unfit for use. An effort must be made to train people to ensure that they have the
necessary knowledge to use them. Training may be time consuming and costly, but it is cheaper than
ignorance. A good approach is to appoint a super user who can provide training and first level support.
In this manner an organization can form its own assessment of the tools it uses to improve productivity
and solve problems.

Responsible Framework Element: Resource Management, Research and Development. Resource
management must ensure that when a new tool Is introduced; the difficulties of its usage are also
assessed. Training must be negotiated with the vendor. Research and Development must collaborate
with Resource Management during its research and recommendation of new tools.

Case: Improve the co-operation among the team members.

Best Practice proposals:
A. Introduce interpersonal skills training.
B. Redefine the concept ot a user.

Decision: Option B, as a sfart as it is economical and can be performed in-house.
Suitable Best Practice: Redefine the concept of a user.

Motivation:

96

Generally users are considered to be the end users of a system. A development department is always
trying to satisfy their end users by accommodating their demands and striving to meet deadlines. This
is a good attitude. However, the concept of a user is narrow and should be viewed from a broader
perspective. The members of a development team are also users among themselves. For example, if
a developer is required to create an Application Programmers interface (API) that will be used by other
developers, then they are actually the “users” of the APi’s creator. The APl's creator must ensure that
his "users” needs are satisfied and the service that he provides is acceptable. By viewing the concept
of a user from a broader perspective, it tends to increase the awareness of a member's commitment to
others. When this concept is implemented, those involved in the project will realize the
interdependence among them and work in an improved co-operative manner. The psychological
aspect is that the failure to “satisfy the user” will always be noticed. As a result people tend to become

results or goals oriented and be more responsible; this benefits the project. This concept is simple,
easy to implement and it works well.
Responsible Framework Element: Organization Culture, Human Role.

Case: The development team must be kept up to date on trends and technology because it is
important to improve productivity.
Best Practice proposals:

A. Send team members regularly on training courses.

B. Conduct regular workshops.

C. Create a centralized knowledge base that can be accessed by everybody.

Decision: All options are acceptable and are dealt with as follows:
Option A will be implemented if specialised knowledge is required and is not available in-
house.
Option B will be implemented as the situation demands.

Option C will be implemented because the knowledge base can be accessed across the
organization.
Suitable Best Practice: Maintain a centralized knowledge base.

Motivation:
In the context of this discussion, a centralized knowledge base is a collection of knowiedge from
various sources and on various mediums. The following are some simple ways to achieve this goal:

¢ Subscription to selected magazines.

o Membership of selected professional institutes.
e Anin-house technical library.
e Maintaining an Intranet with articles, documents and E-Books.

e A collection of useful links in the Internet.

Since books and magazines are expensive and many people cannot afford them. The above concept
is simple and effective and it can encourage people to read and be up to date with information. From a

cost point of view, it is an investment in its skills pool (with reference to Figure 4.5 - Human Role). E-

97

Books are also economical because they can be accessed simultaneously. It is also possible for an
organization to gain membership in professional institutes and take advantage of their research
publications. The knowledge base may be extended with a collection of video lectures and
development tips and tricks. Developers are creative and often discover very smart methods to solve
problems. By maintaining them on a database, knowledge can be shared in the organization.
Responsible Framework Element: Research and Development.

The three cases should provide a good understanding on applying the framework. By assigning the
implementation of a BP to a responsible element management can exercise better control. The
responsible elements are specialists in their field; for example, research and development and

resource management are specialised functional areas. The advice on BP from a “specialist” can be
relied upon and is in the best interest of the organization. The above cases also demonstrate the
interaction between the celements, for example, Research and Development and Resource
Management. This acis as an internal control and ensures integrity in BP implementation.

4.5 Conclusion

In this chapter the following three frameworks were proposed:
¢ The Metamorphic Software Engineering Environment (MSEE).
s The lterative Meta Process Model (IMPM).

e A Framework for Best Practices.

There will always be changes and the direction and magnitude of these changes are variable and
uncertain. SMO are confronted with constant changes during software development and supports the
SSA as a solution to cope with them. Although the SSA guides the development processes, the
development environment must also accommodate changes. The concepts of the MSEE support such
a development environment because it can adjust to changes to maintain its efficiency and
effectiveness. The MSEE adopts a real worldview of the development environment by differentiating
between a base environment and a variable environment. The variable environment undergoes most
changes and is conceptualised to adjust easily, thus ensuring high productivity. The MSEE helps to
maintain formalism and discipline during the development, while allowing much scalability and
flexibility in the environment. It attempts to eliminate restrictions in the development environment.
These properties blend well with the concepts of the SSA because an organization can tailor its
environment to cope with changes. The management of changes with the SSA and an adaptable SEE
contributes to a balanced strategy for SMO to remain competitive. Only change will remain stable, and
the MSEE encourages a best fit practice for a project. The creation of a MSEE is not trivial and
requires strategic management planning. This effort also requires skilled personnel to create a MSEE.
The advantages which a MSEE offers to SMO outweigh the disadvantages and should be exploited.
Although the MSEE has been discussed with regard to SMO and SSA, it is not restricted this to

domain.

Many important development issues, which should be addressed by a process model, were identified.

08

Since the SSA exploits the concepts of increments and iteration to cope with changes, a process
model should also possess these properties. The lterated Meta Process Model (IMPM) has this
propetrty. It exploits the concept of a model by abstracting key development areas which are common
to most software development types. This development approach views the development process as
individual areas of responsibility and as the big picture. The model exploits the concepts of holism and
synergism, and ultimately aids the development of quality software through a quality process. This is
an advantage for SMO because they are required to maintain good quality while reacting to changes.
The models of the IMPM are simple to use and they identify who is responsible to provide answers to
fundamental development questions. The model supports fundamental system concepts and satisfies
Churchman's nine conditions for a system (Churchman, 1971). The SSA strongly emphasizes the
importance of architecture and the IMPM assists the development process to identify basic
architecture requirements.

Currently there are a variety of development best practices which may be adopted. This is not a simple
task because organizations are diverse and best practice is not a one size fits all solution. In order to
move away from this situation, it is more useful to define best practices within a framework. The OBPF
framework forms the foundation for an organization’s best practices and can be tailored according to
its development environment. At a high level abstraction it helps to guide their definition by outlining
their scope. A major advantage is that it prevents best practices from being defined in isolation, but
rather in its used context. The nature of the framework leads to specialization in respective areas and
best practices from a “specialist” are more reliable. Since the framework is a visible model it provides a
common basis for communication at all levels. As a result problem analysis and decision-making are
improved. However, the framework cannot prevent weak decision-making. The relationship among the
elements of the framework enforces the impact of a best practice to be considered. This acts as an

internal control and ensures integrity in BP implementation.

89

5 CONCLUSION

During this study the core Software Engineering in the Small problems (chapter 1, section 1.1), which
confront Small and Medium sized Organizations (SMQO) were identified. As these problems support the
Synchronize and Stabilize Approaches (SSA) as a solution, a comprehensive understanding of them is
necessary in order to exploit their application. The study was conducted as described below:

» In chapter 2 the conceptual theory of the SSA and concepts of the incremental model were
discussed In depth In order to understand the essential principles of this sophisticated
software development technique. The various approaches in the literature were reviewed in
order to understand their concepts and principles. The review was also used to identify gaps

and trends in the literature, which formed the basis for the chapter's recommendations.

» Chapter three is a comprehensive critical analysis of the SSA. The approaches were
compared and their common characteristics were identified. The analysis also highlighted their
strengths and weaknesses, advantages, disadvantages, business advantages and critical
success factors. Basic Software Engineering (SE) principles were discussed within this
context.

» Based on the critical analysis of the approaches it was noted that an appropriate Software
Engineering Environment (SEE) and Software Process Model (SPM) are generally neglected.
In order to avoid being trapped in a web of Best Practices (BP) buzzwords, a framework for
best practices was considered to be more pragmatic. This is another neglected area.
Therefore three frameworks, namely, a Software Engineering Environment, a Software
Process Model and a Framework for Best Practices were developed in chapter 4.

The discussion was strengthened by examples and observations made from the Quark development

environment. This helped to enrich the study context by providing a balanced discussion between
theory and practice.

Some constraints were imposed on the study (Chapter 1, section 1.6). The selected subset of the
approaches (chapter 2, section 2.4) surveyed were considered to be adequate as a larger subset
would not have influenced the understanding of the essential principles, properties and impacts of the
SSA. One of the objectives of the study was to explicitly shift from a subjective view on best practices
(chapter 1, section 1.3). Therefore an extendable framework for best practices (chapter 4, section 4.4)
was deemed to be more useful; a discussion of specific bests practices would not have been
appropriate. A full case study of Quark is a separate area of study and with a different focus. The
intention was to study the approaches in depth and support the discussion with real world examples

extensively possible and in a generic manner.

100

5.1 Discussion

The constant metamorphosis of computer technology is directly related to its adaptability and flexibility.

This has been observed over the decades and has a great impact on SMO. Software engineering

through SSA, as indicated by the study, is a provably rapid process. Therefore in modern software

development it is imperative that organizations recognize and strive to create a development

environment that is more adaptive and collaborative. In order to apply the SSA as an effective solution

for SMO specific objectives were defined in chapter 1, section 1.3 and these were addressed as

follows in the research:

The study sought to consolidate the understanding of the underlying theory and concepts of
the SSA in a non-superficial manner. Understanding this theoretical foundation is a pre-
requisite to stimulate a cumulative exploration of the subject. In chapter 2, section 2.2, the

conceptual theory of the SSA was discussed. The literature review (chapter 2, section 2.4)
provided an insight and depth of the various approaches in practice and how they addressed
the Software Engineering in the Smali problems. The review was also useful to identify trends
and gaps in the literature, in order to propose solutions to address these problems. In chapter
3 the approaches were analysed and the critical analysis report produced provided a multi-
perspective of the SSA. As a result the information is balanced and may be useful to support
those organizations which may decide to adopt the SSA.

The study also aimed to propose a SEE and a software process model that is appropriate for
the SSA. In the critical analysis report (chapter 3}, the sfrengths and weaknesses of the SSA
(chapter 3, section 3.5) were discussed and summarized in table 3.3. The discussion revealed
that proper development tools and a SEE appear to be neglected among the approaches. In
chapter 4, section 4.2, the Metamorphic Software Engineering Environment (MSEE) was
proposed and motivated in detail in order to address this problem. The critical analysis report
also indicated that an appropriate software process model appeared to be lacking in the
approaches discussed. In chapter 4, section 4.3, the Iterated Meta Process Model (IMPM)
was developed and motivated in detail as an apt software process model for the approaches.

In chapter 2, section 2.4, the various other approaches were discussed. It was clearly
demonstrated that these approaches neglected the subject of current best practices. The
study also indicated that there was no unanimous opinion on what constituted best practice,
and there was no universal method on how to choose them. This also led to the important
question: “Who knows best?” Since best practices is subject to opinion, an important objective
of the study was to avoid the best practice hype, which was accomplished by the proposal of
the Organizational Best Practice Framework {(OBPF) discussed in chapter 4, section 4.4.1.

Throughout the discussion many practical examples were cited from Quark’s development
environment. This was in keeping with the study's objectives to make use of practical

examples from the author's work environment t0 demonstrate the conceptual theory of the

101

SSA. Many important observations made at Quark were discussed in chapter 2, section 2.5,
which helped to enrich the discussion of the literature review from an implementation point of
view. The discussion on Quark’s synchronizes and stabilize workflow (chapter 3, section 3.10)
provides an insight to a practical software development pkocess flow.

The study strongly emphasizes that embracing changes and employing adaptable and flexible
development techniques influence an organization's continuance in business. The proposed
frameworks are conceptualised to cope with changes by being adaptable and flexible. These
properties are also inherent to the Software Engineering in the Small problems, which make the
frameworks suitable for SMO. Furthermore, the frameworks adopt a holistic view of the development
environment and process and imply a great degree of synergism. Small and Medium sized
Organizations cannot greatly benefit from a fragmented development approach. The “big picture” must
always be in focus. Since these frameworks are iterative, they support these approaches which are
also inherently iterative.

The software development problems with SSA are many-fold. Although these approaches endeavour
to solve some of them, new problems are introduced, which are discussed below.

5.1.1 Development Challenges

Some of the main problems experienced included high risk, limited resources, strong competition and
innovation. As there is a no silver bullet solution 1o these problems, the approaches emphasized that
SMO are challenged to re-formulate their development strategy, by shifting away from a restrictive
sequential development process (e.g. the waterfall model) to incrementai development techniques. For
example, Agile Software Process, Extreme Programming and Scrum apply incremental techniques to
address problems such as incomplete requirements, cost, complexity and fast delivery (chapter 2,
section 2.4). Good SE principles are essential to ensure disciplined development and were discussed
in chapter 3, section 3.9.

Although the SSA helps to cope with the above probiems, other significant impediments are
introduced, such as the impact on the organization structure, the need for skilled personnel and
technical challenges. The implementation of an approach will result in a change in an organization’s
structure. For example, Extreme Programming, Scrum and The Integrated Approach require different
organization structures. A new way of thinking that is inspired by the SSA may be met with resistance
to change and a proper change management process must be implemented to make a smooth

transition. Furthermore, changes are costly, time consuming and there is often a steep learning curve.

Software engineering through these approaches requires experienced personnel. Since the
development activities are fast paced and concurrent, a high degree of co-operation, maturity,
independence, responsibility and professionalism is absolutely essential. The problem is that there are
not many people of the same calibre as Kent Beck and Mikio Aoyama to lead teams in this type of

development environment. Statistics indicate that about 50 percent of the world's software developers

102

are below average (Boehm, 2002). Hence, it is difficult and costly to recruit a proper balance of skills.

There are many technical challenges confronting development through the SSA. It is difficult to make
early architectural decisions because the system evolves with each increment and the architecture

must evolve accordingly. Therefore weak decisions will cause the system to decay and will be costly to
re-engineer. The integration of new increments is also not as simple as the SSA may imply and the
complexity increases progressively and is non-deterministic. However, from a positive note the
techniques of the SSA help to reduce complexity to manageable increments. Technical difficulties are
also aggravated by the current lack of skills in these approaches. |

SSA Software development requires that management have a clear vision of its direction and is able
to adapt to changes rapidly. it is important that a clear statement of its goals and objectives are
defined and communicated to all parties involved. The potential for conflict with the SSA is high
because interests differ at various organizational levels. For example, product management may want
to include certain features in a version of the software, but development management cannot
implement them due to technical reasons. Therefore management must work co-operatively towards a
common goal, practise priority management and implement conflict resolution management

Although the above factors may be generally considered and practised in many development
environments, SSA requires a stronger measure of them. Therefore competent software development
management must be practised.

5.1.2 The Future

With the increasing demand to produce high quality software rapidly, the use of SSA is likely to
increase in the future. In addition many SMO are scaling down their operations. The approaches are
beginning 10 receive increased attention in the industry; this is especially true for Agile Software
Process, Extreme Programming and software development with components. The software industry
will continue to introduce new tools and utilities to support rapid application development. However,
they are not mature and caution must be exercised in their selection. Many major organizations such
as Quark, Netscape, Alcatel, Microsoft and Moazilla successfully apply the SSA during development
and could serve as a good reference for newcomers.

The value of the study was previously defined and is summarized below:

e The material covered by the objectives of the study (section 1.3) can be seen as a general
contribution to the software engineering approach of synchronized and stabilized
development.

» The critical analysis report (chapter 3), discusses the strengths and weaknesses, advantages,
disadvantages, business advantages and critical success factors of these approaches, which
may be useful when managing problems within the SSA. A typical synchronize and stabilize

workflow (section 3.10) that reflects reality may also be considered useful.

103

» Although the approaches were comprehensively examined, it is not the final word. Information
systems students may find the discussion on the conceptual theory of the SSA (chapter 2,
section 2.1), the critical analysis report (chapter 3) and the proposed frameworks (chapter 4)
stimulating. As a result through debate and constructive dialogue the attention of the software
community may be drawn to this often neglected area of software development.

Further research is necessary to discover other similar approaches and to improve the existing ones.
In chapter 3, section 3.4, it was noted that the techniques associated with these approaches may be
applied in conjunction to one ariother. Studies on how to optimally combine best techniques from
these approaches and an analysis of their impact can be used to define a “best of the breed”
approach. As computer technology will continue to change rapidly, the requirements for adaptability
and flexibility in the SEE and development process will increase. Therefore further research on
adaptable software engineering environments and software process models will benefit the continued

adoption of the synchronize and stabilize development approach.

104

BIBLIOGRAPHY

References

Ahituv, N. & Neumann, S. 1990. Principles of Management Information Systems. Wm: C. Brown
Publishers. Third edition.

Andriole, S.J. 1995. Debatable Development: What Should We Believe?, IEEE Software.

Aoyama, M. 1998a. Agile Software Process and Its Experience, IEEE, The 20" International
Conference on Software Engingering.

Aoyama, M. 1998h. Web-Based Agiie Software development, IEEE Software, 58-65.

Avison, D.E. & Fitzgerald, G. 1995. Information Systems Development: Methodologies, Techniques
and Tools. McGraw-Hill Companies. Second edition.

Beck, K. 1999. Embracing Change with Extreme Programming, Computer, 60-686.
Boehim, B. 2002. Get Ready for Agile Methods, with Care, Computer, 64-69.

Brooks, F.P. Jr. April 1987. No Silver Bullet: Essence and Accidents of Software Engineering,
Computer, 10-19.

Brusilovsky, P. & Maybury, M. T. May 2002. From Adaptive Hypermedia to The Adaptive Web,
Communications of the ACM. 45(5).

Carmel, E. & Becker, 5. 1995. A process model for packaged software development, [EEE
Transactions on Engineering Management. 41(5). 50-61.

Churchman, CW. 1971. The Design of Inquiring Systems: Basic Concepts of Systems and

Organization. New York: Basic Books.

Comaford, C. 1995. What's Wrong with Software Development?, Software Development.

Conradi, R. & Westfechtel, B. 1998. Version Models for Software Configuration Management,
Communications of the ACM. 30(2).

Cox, B.J. 1990. There fs a Silver Bullet, BYTE, 209-218.

Cusumano, M.A. & Yofiie, D.B. 1999. Software Development on Internet Time, Computer, 60-66.

105

Cusumano, M.A. & Selby, R.W. 1897. How Microsolit Builds Software, Communications of the ACM.
40(6). 53-61.

Cusumano, M.A. & Selby, R.W. 1995. Microsoft Secrets. The Free Press.

Deitel, H.M., Deitel, P.J. & Nieto, T.R. 2002. Internet and World Wide Web-How to Program, Prentice-
Hall Inc. Second edition.

Dion, R. 1993. Process Improvement and the Corporate Balance, /IEEE Software, 28-35.

Dunn, R.H. & Ullman, R.S. 1994, TQM for Computer Software. McGraw-Hill Companies. Second
edition.

Dyba, T. 2000. Improvisation in Small Software Organisations, IEEE Software, 17(5); 82-87.

Fayad, M.E., Laitinen M. & Ward R.P. 2000a. Software Engineering in the Small, Communications of
the ACM, 43(3): 115-118.

Fayad, M.E., Laitinen M. & Ward R.P. 2000b. Management in the Small, Communications of the
ACM, 43(11): 113-116.

Fenton, N. 1996. Point — Counterpoint, IEEE Software.

Gane, C. & Sarson, T. 1979. Structured Systems Analysis: tools and techniques. Prentice Hall.

Gilb, T. 1988. Principles of Software Engineering Management Information Systems. Workingham:
Addison Wesley. UK.

Graham, D.R. 1989. Incremental Development: review of non-monolithic life-cycle development
models, Information and Software Technology, 31(1): 7-20.

Goldberg, R. 1986. Software Engineering an Emerging Discipline, /BM SYS Inc. 25(3/4).

Griss, M.L. & Pour, G. 2001. Accelerating Development with Agent Components, Computer, 37-43.

Heineman, G.T., Botsford, J.E., Caldiera, G., Kaiser, G.E., Kellner, M.l. & Madhaviji, N.H.
1994. Emerging technologies that support a software process life cycle, IBM Systems
Journal,33(3).

Jones, A. 2000. The Challenge of Building Survival Information Intensive Systems, Computer, 39-43.

106

Jones, R. 1993. Compiexity Made Simple, EXE: The Software Developers Magazine.

Knauber, P., Muthig, D., Schmid, K. & Widen, T. 2000. Applying Product Line Concepts in Small and
Medium-Sized Companies, /[EEE Software, 17(5): 88-95.

Lutz, M.J. 2001. Software Engineering on Internet Time, Computer, 36.

Macala, R.R., Stuckey, Jr.,, L.D. & Gross, D.C. 1896. Managing Domain-Specific, Product-Line
Development, IEEE Software, 13(3): 57-67.

McConnell, S. 2000. The Best Influences on Software Engineering, [EEE Software, 17(1): 10-17.
McConnell, S. 1996. Rapid Development: Taming Wild Software Schedules. Microsoft Press.
Moitra, D. October 1999. Software Engineering in the Small, Computer, 39-40.

Motoyoshi, Y., Otsuki, S. 1998. An Incremental Project Plan: Introducing Cleanroom Method and
Object-Oriented Development Method, /EEE, The 20" International Conference on Software
Engineering.

Nunes, N.J. & Cunha, J.F. 2000. Wisdom: A Software Engineering Method for Small Software
Development Companies, /IEEE Software, 17(5): 113-119.

O'Brien, L. 1995. The Ten Commandments of Tool Selection, Software Development.

Parnas, D.L. 1985. Software Aspects of Strategic Defense Systems, Communications of the ACM,
28(12): 1326-1335.

Petersen, G. 1999. Who Knows Best? Crosstalk: The Journal of Defence Software Engineering.
Powell, T.A. 1998. Web Site Engineering — beyond web page design. Prentice Hall.

Powers, M. J., Cheney, P.H. & Crow, G. 1990. Structured Systems Development — Analysis, Design,

Implementation. Boyd and Fraser. Second edition.
Rajlich, V.T. & Bennett, K.H. 2000. A Staged Model for the Software Lite Cycle, Computer, 66-71.

Rauterberg, M. 1992, An lterative-Cyclic Software Process Model, Work and Organisational
Psychology Unit, Swiss Federal Institute of Technology (ETH).

Repenning, A, et. al. 2001. Using Components for Rapid Distributed Software Development, /EEE

107

Software, 38-45.

Rising, L. & Janoff, N. S. 2000. The Scrum Software Development Process for Small Teams, IEEE
Software, 17(4): 28-32.

Royce, W. 2000. Software Management Renaissance, I[EEE Software, 17(4): 116-118, 121.

Royce, W. 1970. Managing the Development of Large Software Systems: Concepts and Techniques,
WESCON Technical Papers, Western Eiectronic Show and Convention, 1-9.

Russ, M.L. & McGregor, J.D. 2000. A Software Development Process for Small Projects, /[EEE
Software, 17(5): 96-101.

Schach, S.R., 1993. Software Engineering. Irwin and Aksen Associates. Second edition.
Shimmin, B. F. November 1995. IBM Soltware Suite Lets Developers Coliaborate, LAN Times.
Smit, P. J. & Cronje, G.J. de. J. 1992, Management Principles, Juta & Co., Ltd. First edition.

Strohm, O. 1991. Projektmanagement bei der Softwareentwickiung. In: Ackermann, D. und
Ulrich, E. (Ed.) Software-Ergonomie 1991. (Reports of the German Chapter of ACM, Vol. 33).

Stuttgart: Teubner. 46-48.
Voas, J.M. 1998. Certifying Off-the-Shelf Software Components, Computer, 53-59.
Woodward S. 1999. Evolutionary Project Management, Computer, 49-57.

Yoshioka, N., Suzuki, M. & Katayama, T. 2000. Incremental Software Development
Method Based on Abstract Interpretation, IEEE 9" International Workshop on Software Specification

and Design.

Web References

[W1] Kruchten, P. September 2001. Going Over the Waterfall with the RUP, The Rational
Edge, htip.//www therationaledge.com/content/sep 01/t waterfall pk.html January 2002

[W2] Software Development, Software Research
hitp://www.softwareresearch.com/SoftwareDevelopment/SoftwareDevelopment.htm

June 2002

108

[W3] SCRUM Software Development Process, hitp://www.controlchaos.com/scrumwp.htm
June 2002

[W4] Refactorings in Alphabetic Order, http:/www.refactoring.com/catalog/index.htmi
July 2002

[W5] Gilb, T. 1997. Evo Manuscript MIN! Version, hitp://www.result-planning.com
August 2002

	Title page
	Contents
	Acknowledgements
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Bibliography

