
ARIMA FORECASTS OF THE NUMBER OF

BENEFICIARIES OF SOCIAL SECURITY GRANTS IN

SOUTH AFRICA

by

FULULEDZANI LUCY LURULI

submitted in accordance with requirements for the degree of

MASTER OF SCIENCE

in the subject

STATISTICS

at the

UNIVERSITY OF SOUTH AFRICA

Supervisor: PROFESSOR P NDLOVU

DECEMBER 2011



Abstract

The main objective of the thesis was to investigate the feasibility of accurately and precisely fore-

casting the number of both national and provincial beneficiaries of social security grants in South

Africa, using simple autoregressive integrated moving average (ARIMA) models. The series of the

monthly number of beneficiaries of the old age, child support, foster care and disability grants from

April 2004 to March 2010 were used to achieve the objectives of the thesis. The conclusions from

analysing the series were that: (1) ARIMA models for forecasting are province and grant-type spe-

cific; (2) for some grants, national forecasts obtained by aggregating provincial ARIMA forecasts

are more accurate and precise than those obtained by ARIMA modelling national series; and (3)

for some grants, forecasts obtained by modelling the latest half of the series were more accurate

and precise than those obtained from modelling the full series.
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Chapter 1

Introduction

1.1 Background

The South African Social Security Agency (SASSA) of the National Department of Social Devel-

opment (NDSD) was established in April 2006 for the purpose of implementing the norms and

standards set by the NDSD for improving the delivery of social assistance grants to deserving

South Africans. Deserving South Africans are those individuals and families who are unable to

avoid poverty because of various disabilities and circumstances. The purpose of giving social se-

curity grants to these South Africans is to prevent and alleviate poverty for social compensation

and income distribution.

In 1995, there were 2 848 344 beneficiaries of all types of social security grants. This means that

about 7 out of every 100 South Africans were the recipients of government social assistance grants.

At that time, the amounts of social assistance grants were very low in relation to the cost of living.

Previously, the types and amounts of social assistance grants, as well as the range of social services

available, were determined on racial grounds. Furthermore, many people were unaware of their

rights to social security. Parity in the amounts of all grants given to people was achieved in 1993.

Subsequently, in 1997, regulations were formulated for the uniformity and integration of grants

(White paper for social welfare; 1997).

The constitution of the Republic of South Africa (Act No. 108; 1996) affirms that everyone has a

right to have access to social security if they are economically unable to support themselves. The

constitution is the highest law in South Africa. Therefore in attempting to fulfill the obligations

of the constitution the NDSD has actively engaged in providing grants to eligible beneficiaries. A

grant is a cash transfer from the state to people who are unable to provide for themselves. It is paid

to poor people to provide for basic necessities that may have a basic quality of life in sustaining

a minimum livelihood. Grants are provided in support of the mission of the Department of Social

Development, which is to empower the poor and to secure a better life for those in need. A person

is entitled to the appropriate social assistance if he or she, in terms of section 17, is resident in the

republic, and is a South African. These are requirements which have to be met in order to qualify
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for social assistance grant. Means testing officers check if the applicants meet the requirements to

qualify for the social assistance grants.

Currently in South Africa there are eight social security grants, namely, old age, child support, dis-

ability, foster child, care dependency, war veteran, grant-in-aid and social relief of distress grants.

Three of these grants have been developed especially for children, namely, the foster care grant,

the care dependency grant and the child support grant. According to Social Assistance Act No.

13; 2004, a person is eligible for a disability grant, if he or she has attained the prescribed age,

and is owing to a physical or mental disability, unfit to obtain by virtue to any service, employ-

ment or profession the means needed to enable him or her to provide for his or her maintenance.

There are two types of disability grants, permanent disability grant, this grant paid to the peo-

ple who are permanently disabled where the disability will continue for more than 12 months.

Temporary disability grant, this grant also paid to people whose disability is temporary where

they are disabled for not less than 6 months and no longer than 12 months. The temporary dis-

ability grant lapses anytime if the Doctor confirms that this grant beneficiary is no longer disabled.

Child support grant means a person is eligible for a child support grant if he or she is a parent,

primary care giver of that child. The child support grant lapses when the child turns 18 years of

age. A person is eligible to older persons grant if in the case of a woman, she has attained the

age of 60 years and in the case of a man, he has attained the age of 65 years. Social assistance

amendment (Act No. 6; 2008) confirms that a man qualified for older person’s grant after 1 April

2008 if he attained the age of 63 years, 1 April 2009 if he attained the age of 61 years and 1 April

2010 if he attained the age of 60 years.

Foster care grant means any child who is in need of care and has been placed in the custody of any

foster parent. Foster parent, means any person, except a parent or guardian, in whose custody a

child has been placed in terms of (Criminal Procedure Act No. 51; 1977). The foster parents and

children need not be necessarily be South African citizens, the child must be under 18 years, the

foster parents and the foster child must live in South Africa during the time of the application.

The foster care grant lapses when the child turns 18 years of age, the eligible of this grant can be

extended to 21 years if the child provide the proof of school registration.

The NDSD has now decided to address the problem of the huge unexpected increase in the num-

ber of social security grant beneficiaries, from 6.4 million in 2004 to 14 million in 2010. One of

the problems to be addressed is that of obtaining accurate and precise forecasts of the number of

beneficiaries of the various types of social security grant. Such forecasts would help the NDSD

and the National Department of Treasury (NDT) in making future policy decisions, drawing up

management plans and doing financial planning.

One of the proposed methods of forecasting the number of beneficiaries of the various types of social

security grant is here termed autoregressive integrated moving average (ARIMA) forecasting. This

is not a new forecasting method. Reikard (2009), for example, used ARIMA forecasting to obtain
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short-term forecasts of daily solar power radiation for operational planning, switching sources,

programming back up, short-term power purchases, as well as for planning for reserve usage and

peak load matching. This author reported that the ARIMA model with time varying coefficients

obtained accurate forecasts mainly due to the model’s ability to capture the diurnal cycle more

effectively than other methods. In this thesis, the performance of the ARIMA forecasting method

in obtaining accurate and precise forecasts of the number of beneficiaries of social security grants

in South Africa is investigated.

1.2 Objectives of the thesis

The major objective of this thesis is to investigate the feasibility of accurately and precisely fore-

casting the number of both national and provincial beneficiaries of various types of social grant

using autoregressive integrated moving average (ARIMA) models. In particular, the objectives of

the thesis are the following:

1. Find simple ARIMA models for accurately and precisely forecasting the number of both

national and provincial beneficiaries of various types of social grant. These models, if found,

will be used by the NDSD and the NDT to obtain forecasts for planning and making policy

decisions.

2. Confirm the hypothesis that the simple ARIMA models for accurately and precisely fore-

casting the number of provincial beneficiaries of various types of social grant are province

and type of social grant specific. If confirmed, then for each type of social grant, separate

models for forecasting the number of national beneficiaries and for forecasting the number

of beneficiaries in each province would have to be developed for use by the NDSD and the

NDT.

3. Compare the accuracy and the precision of the forecasts of the number of national beneficia-

ries of social grants obtained using simple ARIMA models with those obtained by aggregating

forecasts of the number of provincial beneficiaries of social grants. If the latter forecasts of

the number of national beneficiaries of social grants turn out to be more accurate and pre-

cise, then the NDSD and the NDT will be advised to use these forecasts rather than those

obtained from ARIMA modelling the number of national beneficiaries of social grants.

4. Investigate the effect of the length of social grant series on the accuracy and precision of

the forecasted numbers of national and provincial beneficiaries. The null hypothesis here is

that there is no difference between national beneficiaries and provincial beneficiaries of social

grant series in terms of the accuracy and precision of forecasts. The alternative hypothesis is

that there is a difference between the national beneficiaries and the provincial beneficiaries

of social grant series on the accuracy and precision of forecasts.
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1.3 Data

The data used in this thesis to achieve the objectives mentioned in Section 1.2 were obtained from

SASSA. The data consist of records of the monthly and yearly numbers of national beneficia-

ries (Republic of South Africa)[RSA] and provincial beneficiaries (Eastern Cape [EC], Free State

[FS], Gauteng [GP], KwaZulu-Natal [KZN], Limpopo [LP], Mpumalanga [MP], North West [NW],

Northern Cape [NC] and Western Cape [WC]) of various types of social grant from April 2004 to

March 2010. The social grant types in the data are the care dependency grant, the child support

grant, the foster care grant, the grant-in-aid, the old age grant, the disability grant and the war

veteran grant. The data exclude the grant for social relief of distress, because this grant is paid

out to beneficiaries only in the event of a disaster. Therefore, in this thesis only the old age, the

child support, the foster care, and the disability grants were investigated.

The data used in this thesis refer to the social security grant and are available in the Social Pension

System (SOCPEN) of SASSA. These data were collected from the provinces of South Africa (SA),

which in turn were collected from provincial district and regional offices. The reliability of the

SOCPEN data depends on the fact that the applicants for social security grants must produce their

national identity books when submitting the application forms and that SASSA officers conduct a

means tests on the applicants. Furthermore, all new applicants as well lapsed beneficiaries owing to

death, children being over the age limit, and the recovery of the previously disabled, are recorded

by SASSA officers in the SOCPEN (Social Pension System Database; 2010).

1.4 Organisation of the thesis

This thesis consists of four chapters. This chapter gave some background about the social security

grants in South Africa and discussed the objectives of the thesis. The chapter also briefly reviewed

related studies. Chapter 2 describes the theories of ARIMA modelling and forecasting. In particu-

lar, the theories of ARIMA model identification, model estimation methods, model diagnostics and

forecasting are discussed. Chapter 3 examines ARIMA modelling and forecasting of the number

of national and provincial beneficiaries of the selected social security grants. This is done with the

help of the Proc ARIMA procedure in SAS Version 9.2 (2004). The results of the analysis are used

to answer the questions implied by the objectives of this thesis. Chapter 4 contains the conclusions

reached and the recommendations made by this thesis.
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Chapter 2

Theory of ARIMA Modelling and

Forecasting

2.1 Introduction

The major objective of this thesis is to investigate the feasibility of accurately and precisely predict-

ing (forecasting) the number of both national and provincial beneficiaries of various types of social

grant using autoregressive integrated moving average (ARIMA) models. The theories relevant to

ARIMA modelling and forecasting are discussed in this chapter. Definitions and notation in this

regard are given in Section 2.2, the theory of ARIMA modelling is discussed in Section 2.3, model

identification, estimation and diagnostics are discussed in Section 2.4 and forecasting is discussed

in Section 2.5.

2.2 Definitions and notations

In discussing the theory of ARIMA modeling, the following definitions and notations will be used:

1. {Xt}nt=1 or simply Xt where t is time and represents a time series such as the number of

beneficiaries of a social grant in year t.

2. Xt−k, where k = 0,±1,±2, ... is called the lag period and is the observation/measurement at

k units of time before time t if k > 0 or at k units of time after time t if k < 0.

For example, number of beneficiaries in k years before year t if k > 0 or in k years after year t if

k > 0.

3. The backshift operator is B such that Bk Xt = Xt−k where k = 0,±1,±2, ... is the lag

period.

4. The autocorrelation function (ACF), ρk = Correlation(Xt, Xt+k) is given by

ρk =
γ(t+ k, t)√

γ(t+ k, t+ k)γ(t, t)
, k = 0, 1, 2, ... (2.2.1)
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where γ(t+ k, t) = Covariance(Xt, Xt+k) and γ(t+ k, t+ k) = Variance(Xt+k), and γ(t, t) =

Variance(Xt) (Montgomery et al., 2008, pp28−30).

ρk measures the correlation between Xt and Xt+k and has the usual properties of correlations

(Box, 1976, p30). The estimator of ρk is the sample ACF given by

ρ̂k =
γ̂(t+ k, t)√

γ̂(t+ k, t+ k)γ̂(t, t)
, k = 0, 1, 2, ... (2.2.2)

where γ̂(t+ k, t) = 1
n−k

∑n−k
t=1 (Xt− X̄t)(Xt+k − X̄t), γ̂(t+ k, t+ k) = 1

n−k
∑n−k
t=1 (Xt+k − X̄t)

2 and

γ̂(t, t) = 1
n

∑n
t=1(Xt − X̄t)

2.

5. A series Xt is said to be second-order stationary or covariance stationary if the ACF ρk =

Correlation(Xt, Xt+k) does not depend on t but depends only on k. In this case (2.2.2)

becomes

ρ̂k =

∑n−k
t=1 (Xt − X̄t)(Xt+k − X̄t)∑n

t=1(Xt − X̄t)2
, k = 1, 2, ... (2.2.3)

Possible causes of the nonstationarity of Xt are the presence of trend (long-term change in E[Xt]),

seasonality (constant changes in E[Xt] at regular periods), and nonconstant variance of the random

errors in Xt. Possible remedial measures to stationarise Xt are differencing Xt to remove the trend

and/or seasonality (Chatfield, 2004, p19) and/or transforming Xt to achieve constant variance of

the random component of the series (Diggle, 1990, p31).

6. Differencing is a special type of filtering, which is particularly useful for removing trend

and/or seasonality in a series. For d a positive integer, the differencing filter ∇dXt = (1 −
B)dXt removes the trend of the polynomial of degree d in the series Xt if present, and the

differencing filter (1 −Bd)Xt = Xt −Xt−d removes seasonality of period d in the series Xt

if present.

For example, if Xt = β0+βt+εt, then (1−B)Xt = Xt−Xt−1 = β0+βt+εt−β0−β(t−1)−εt−1 =

β + εt − εt−1, is free of the linear trend.

2.3 Theory of ARIMA modelling

In this section, the theories of ARIMA modeling are briefly discussed. In the discussion, it is

assumed that the series Xt is second-order stationary (see definition in Section 2.2, item 5). In

this case, there are three basic types of ARIMA model, namely

• the autoregressive model of order p a positive integer, denoted by AR(p)

• the moving average model of order q a positive integer, denoted by MA(q)

• the autoregressive moving average of order (p,q), denoted by ARMA(p,q)
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2.3.1 Autoregressive models of order p (AR(p))

The AR(p) model for a time series Xt is given by

Xt = α1Xt−1 + α2Xt−2 + ...+ αpXt−p + εt (2.3.1)

where p is a nonnegative integer, α1, α2, ..., αp are model parameters to be estimated, and εt is a

series of random errors each with zero mean and constant variance σ2. Using the backshift operator

B (defined in Section 2.2, item 3), the AR(p) model may be written as

α(B)Xt = εt (2.3.2)

where α(B) = 1− α1B− α2B
2 − ...− αpBp is a polynomial in B of order p. An AR(p) process is

said to be stationary provided that the absolute roots of the polynomial in B, α(B) = 0, are all

greater than 1 (Wei, 2006, p40).

The ACF of a time series Xt that is generated by an AR(p) process decays exponentially with lag

k. Thus, if a time series Xt is generated by an AR(p) process, then its sample ACF (see definition

in Section 2.2, item 5) should decrease exponentially with lag k.

2.3.2 Moving average models of order q (MA(q))

The MA(q) model for a time series Xt is given by

Xt = εt − β1εt−1 − β2εt−2 − ...− βqεt−q. (2.3.3)

where q is a nonnegative integer, β1, β2, ..., βq are model parameters to be estimated, and εt is a

series of random errors each with zero mean and constant variance σ2. Alternatively, the MA(q)

model may be written as

Xt = β(B)εt (2.3.4)

where β(B) = 1 − β1B − β2B2 − ... − βqBq is a polynomial in B of order q. An MA process of

order q is invertible if the roots of the polynomial in B, β(B) = 0, all lie outside the unit circle

(Box and Jenkins, 1970, p50).

The ACF of an MA(q) process is given by

ρk =


1 if k = 0∑q−k

i=1 βiβi+k∑q
i=0 βiβi

if k ≤ q
ρ−k if k < 0

0 if k > q

(2.3.5)

Note that the ACF cuts off at lag k = q which is a special feature of MA processes. Thus, if the

series Xt is generated by an MA(q) process, then the sample ACF (see definition in Section 2.2,

item 5) of the series should ‘cut off’ at lag k.
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2.3.3 Autoregressive moving average models of order (p,q) (ARMA(p,q))

The model for the series Xt can be an AR(p) model or an MA(q) model or a combination of both

the AR(p) and the MA(q) models. The latter model is called an autoregressive moving average of

order (p,q), denoted by ARMA(p,q), and is given by

Xt = α1Xt−1 + ...+ αpXt−p + εt − β1εt−1 − ...− βqεt−q (2.3.6)

where α1, α2, ..., αp, β1, β2, ..., βq are model parameters to be estimated, and εt is a series of ran-

dom errors each with zero mean and constant variance σ2 (Box, 1976, p74). Alternatively, the

ARMA(p,q) model may be written as

α(B)Xt = β(B)εt (2.3.7)

where α(B) = 1 − α1B − α2B
2 − ... − αpB

p is a polynomial in B of order p, and β(B) =

1 − β1B − β2B2 − ... − βqBq is a polynomial in B of order q. Note that the AR(p) and MA(q)

models are special ARMA(p,q) models, For example, the AR(p) is the ARMA(p,0) model, and the

MA(q) model is the ARMA(0,q) model.

The ACF of an ARMA(p,q) process decays exponentially after lag 1. Thus, if the series Xt is

generated by an ARMA(p,q) process, then the sample ACF of the series Xt generally attenuates

as the lag increases rather than ‘cutting off’ at some lag. For example, case ρ1 is significantly

different from zero, thus the subsequent ρk gets closer and closer to zero (Chatfield, 2004, p58).

2.3.4 Autoregressive integrated moving average models of order (p,d,q)

(ARIMA(p,d,q))

In practice, most time series are nonstationary and, hence, ARMA(p,q) models cannot be fitted to

the series despite their having nice properties. In order to exploit the nice properties of ARMA(p,q)

models, it is necessary to first stationarise the nonstationary series, and then fit ARMA(p,q) mod-

els to the resultant stationary series. This is done as follows:

Suppose that the observed time series Yt is nonstationary only in the mean, and the mean is a

polynomial in t of degree d, then the time series

Xt = (1−B)dYt (2.3.8)

is trendless and, hence, stationary. The optimal order of differencing is d, for which the standard

deviation of (1 − B)dYt is the smallest. The general model for the differenced series (2.3.8) is

ARMA(p,q)) since the series is stationary. Thus,

α(B)Xt = α(B)(1−B)dYt = β(B)εt (2.3.9)

where α(B) = 1−α1B−α2B
2− ...−αpBp, β(B) = 1− β1B− β2B2− ...− βqBq and εt is a series

of random errors each with zero mean and constant variance σ2. Model (2.3.9) for the series Yt is
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referred to as the autoregressive integrated moving average model of order (p,d,q), and is denoted

by ARIMA(p,d,q) (Diggle, 1990, p165). Note that the AR(p), MA(q) and ARMA(p,q) models are

special ARIMA(p,d,q) models. For example, the ARMA(p,q) model is the ARIMA(p,0,q) model,

the AR(p) model is the ARIMA(p,0,0) model and the MA(q) model is the ARIMA(0,0,q) model.

2.4 Model identification, estimation and diagnostics

The steps followed in the process of fitting ARIMA models to a given time series are

• model identification

• model estimation

• model diagnostics

These steps are discussed in this section.

2.4.1 Model identification

A tentative ARIMA model for a given time series is identified by various sample correlation func-

tions, such as the sample ACF and the sample partial autocorrelation functions (Gooijer et al.,

1985). For example, the AR(p), MA(q) and ARMA(p,q) models for a given time series are identi-

fied using the sample ACFs as explained at the ends of Sections 2.3.1, 2.3.2 and 2.3.3.

2.4.2 Model estimation methods

Once a tentative ARIMA model for a given series has been identified, the next step is to estimate

the model parameters. Typical methods for estimating the model parameters are either the least

squares method or the maximum likelihood methods (Box, 1976, p208). These methods are briefly

reviewed under the assumption that the identified tentative ARIMA model for a given time series

Xt is (2.3.7), which can be rewritten as

εt =
α(B)

β(B)
Xt (2.4.1)

where α(B) = 1−α1B−α2B
2− ...−αpBp, β(B) = 1− β1B− β2B2− ...− βqBq and εt is a series

of random errors each with zero mean and constant variance σ2. Let

SSE(α, β) =

n∑
t=1

ε2t (2.4.2)

and

L(α, β, σ2) = (2πσ2)
−n
2 exp(− 1

2σ2

n∑
t=1

ε2t ) (2.4.3)

where α = (α1, α2, . . αp)
T and β = (β1, β2, . . . βq)

T
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2.4.2.1 Least squares method

The least squares estimates of the parameters of the ARIMA model (2.3.7) are values of (αT , βT )T

which minimise the error sum of squares (2.4.2). The estimates are found using numerical methods

as there are no closed formulae for the estimators of the parameters from minimising SSE(α, β)

given by (2.4.2).

2.4.2.2 Maximum likelihood method

Under the assumption that the εt in (2.4.1) are iid N(0, σ2), the maximum likelihood estimates

of the parameters of the ARIMA model (2.3.7) are values of (σ2, αT , βT )T , which maximise the

likelihood function (2.4.3). As with the least squares method, the maximum likelihood estimates

of the model parameters are found using numerical methods as there are no closed formulae for

the estimators of the parameters from maximising L(α, β, σ2) given by (2.4.3).

2.4.3 Model diagnostics

Although the identified tentative ARIMA model may appear to be the best among those models

considered, it may be inadequate for a number of reasons which include:

• violation of the assumption of stationarity of Xt

• presence of outliers in Xt

• over- or under-parametrisation of the model

Descriptive and formal testing methods are used to check the adequacy of the fitted model. Both

methods involve checking/testing

• whether or not the residuals from fitting the model are white noise,

• whether or not the model is the simplest best model

2.4.3.1 Checking/testing the white noisiness of the residuals

If the ARIMA model adequately fits the given time series, then the residuals from fitting the model

should be white noise. Hence, a plot of the ACF of the residuals should show no significant spikes

(correlations) at all lags k.

One formal test of the null hypothesis that the residuals from fitting the ARIMA model are white

noise is the Portmanteau test (Chatfield, 2004, p68). The test for white noisiness of the residuals

uses the sample ACF of the residuals to test the null hypothesis:

H0 : ρ1 = ρ2 = ... = ρk = 0, for some k > 1 (2.4.4)

The test statistic for the hypothesis is:

Q = N(N − 2)

k∑
j=1

ρ̂2j
(N − k)

∼ χ2
k−p−q (2.4.5)

11



where N is the number of observations in the differenced series (to stationarise the original series).

The hypothesis that the residuals series is white noise is rejected at the α ∈ (0, 1) level of significance

if Q > χ2α
k−p−q - is the (1− α)100 percentile of the χ2

k−p−q distribution.

2.4.3.2 Testing the significance of the parameters in the ARIMA model

Provided that the series is long enough and that the residuals are white noise, the significance or

insignificance of the parameters in the model are tested using the statistic

t =
estimate

se(estimate)
(2.4.6)

which has an asymptotic standard normal distribution (Chatfield, 2004, p65). The decision rule

of the test is that a parameter is insignificantly different from zero at the α ∈ (0, 1) level of

significance if |t| > tα/2 - is the (1−α)100 percentile of the N(0, 1) distribution. Parameters which

are insignificant in the model are then removed and the reduced model is refitted to the series.

2.4.3.3 Choosing the best model among competing ARIMA models

There may be several competing ARIMA models that adequately describe the given time series.

However, the problem that arises is choosing the best among the competing models. Two criteria

for choosing the best model that are commonly used are the Akaike’s Information Criterion (AIC)

and the Bayesian Information Criterion (BIC) or Schwartz Bayesian criterion (SBC).

AIC = −2 ln(Likelihood) + 2r (2.4.7)

where likelihood is the likelihood given by (2.4.3) evaluated at the maximum likelihood estimates

of the model parameters, and r denotes the number of model parameters. The AIC increases with

the number of model parameters (r), and the best model is the one with the smallest AIC.

The BIC is an extension of the AIC, and is given by

BIC = −2 ln( Likelihood) + r ln(N) (2.4.8)

where N is the number of observations in the differenced series (to stationarise the original series).

As with the AIC, the best model among competing ARIMA(p,d,q) models is one with the smallest

BIC.

2.5 Forecasting

One of the primary objectives of building a model for a time series analysis is forecasting future

values of the series (Cryer and Chan, 2008, p191). Furthermore, the major objective of this thesis

(Section 1.2) is to investigate the feasibility of accurately and precisely forecasting the number

of national and provincial beneficiaries of social security grants in South Africa. In this section,

we discuss the minimum mean square error forecasting method using ARIMA models (Wei, 2006,

p181).
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In general, given the seriesX1, X2, ..., Xt, the forecasting problem is to predict the value ofXt+l (l =

1, 2, ...) of the series that will be observed at time t + l in the future. According to the minimum

mean square error criterion of forecasting, this value is X̂t(l), which minimises the conditional

mean square error

E[(Xt+l − X̂t(l))
2|X1, X2, ..., Xt] (2.5.1)

Differentiating (2.5.1) with respect to X̂t(l), equating the derivative to zero, and solving the resul-

tant equation for X̂t(l) gives

X̂t(l) = E[Xt+l|X1, X2, ..., Xt] (2.5.2)

as the minimiser of (2.5.1), and hence, as the minimum mean square error forecast of the value of

Xt+l. This section is focused on the calculation of X̂t(l) when the time series is generated by an

ARIMA process.

Recall (Section 2.3.3) that the ARMA(p,q) model for a times series is given by

Xt = α1Xt−1 + α2Xt−2 + ...+ αpXt−p + εt − β1εt−1 − β2εt−2 − ...− βqεt−q (2.5.3)

This means the unknown Xt+l is given by

Xt+l = α1Xt+l−1 +α2Xt+l−2 + ...+αpXt+l−p+εt+l−β1εt+l−1−β2εt+l−2− ...−βqεt+l−q (2.5.4)

Using (2.5.2) and (2.5.4), the minimum mean square error forecast of the value of Xt+l is given by

X̂t(l) = E[Xt+l|X1, ..., Xt]

= α1E[Xt+l−1|X1, ..., Xt] + α2E[Xt+l−2|X1, ..., Xt] + ...+ αpE[Xt+l−p|Xt, ..., Xt]

− β1E[εt+l−1|X1, ..., Xt]− β2E[εt+l−2|X1, ..., Xt]− ...− βqE[εt+l−q|X1, ..., Xt]

= α1X̂t(l − 1) + α2X̂t(l − 2) + ...+ αpX̂t(l − p)

− β1E[εt+l−1|X1, ..., Xt]− β2E[εt+l−2|X1, ..., Xt]− ...− βqE[εt+l−q|X1, ..., Xt](2.5.5)

where

E[εt+l−j |X1, ..., Xt] =

{
0 if l > j

εt+l−j if l ≤ j
(2.5.6)

and

X̂t(l − j) =

{
X̂t(l − j) if l > j

Xt+l−j if l ≤ j
(2.5.7)

For example, if l = 2 < p = q then

X̂t(2) = α1X̂t(1) + α2Xt + ...+ αpXt+2−p − β2εt − ...− βqεt+l−q (2.5.8)
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The forecast error in X̂t(l) given by (2.5.5) is given by

et(l) = Xt+l − X̂t(l)

=

l−1∑
j=0

ψjεt+l−j (2.5.9)

in random shock model form, where the ψj (j = 1, 2, ...) weights are functions of the ARMA(p,q)

model parameters. From (2.5.9),

V ar(et(l)) = σ2
l−1∑
j=0

ψ2
j (2.5.10)

which is used for constructing the confidence interval for Xt+l under the assumption that the

white noise errors εt are independent and normally distributed with mean 0 and variance σ2. If the

assumption holds, then for α ∈ (0, 1), the (1 − α/2) × 100% confidence interval for Xt+1 is given

by

X̂t(l)± zα/2
√
V ar(εt(l)) (2.5.11)

where zz/2 is the (1−α/2)× 100th percentile of the standard normal distribution. In practice, the

unknown parameters in the formulae for X̂t(l) and V ar(εt(l)) are replaced with estimates.

For a given time series there maybe several competing ARIMA models for forecasting. According

to (Wei, 2006, p181), the models can be compared for goodness-of-forecasting using four criteria

described below. Fit the ARIMA models to the t − l (0 < l ≤ t) observations of the time series

and use the fitted models to forecast the last l observed values of the series. Calculate:

εt(t− l + j) = Xt−l+j − X̂t−l+j , j = 1, 2, ..., l (2.5.12)

where j = 1, 2, ..., l X̂t−l+j is the forecast of Xt−l+j using any of the competing models; and

mean percentage error/bias given by

MPE =
1

l

l∑
j=1

εt(t− l + j)

Xt−l+j
× 100% (2.5.13)

mean square error given by

MSE =
1

l

l∑
j=1

ε2t (t− l + j) (2.5.14)

mean absolute error given by

MAE =
1

l

l∑
j=1

|εt(t− l + j)| (2.5.15)

and
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mean absolute percentage given by

MAPE =
1

l

l∑
j=1

∣∣∣∣εt(t− l + j)

Xt−l+j

∣∣∣∣× 100% (2.5.16)

for each of the competing models. Then the best model for forecasting is the one with the smallest

MPE, MSE, MAE or MAPE depending on the criterion/criteria one chooses to use.
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Chapter 3

ARIMA Forecasts of the Number

of Beneficiaries of Social Security

Grants in South Africa

3.1 Introduction

This chapter deals with the analysis of the data described in Section 1.3 in order to answer the

questions implied by the objectives of the thesis presented in Section 1.2. The theories of the

methods of analysis that are used in this chapter were briefly reviewed in Chapter 2. With the

help of the Proc ARIMA procedure in SAS Version 9.2, the methods are used to fit ARIMA

models to the number of national and provincial beneficiaries of selected social security grants.

The fitted models are then used to forecast the number of national and provincial beneficiaries of

these grants. Graphical methods and the descriptive statistics presented at the end of Section 2.5

are used to cross-validate the accuracy and precision of the forecasts, and to compare the accuracy

and precision of the national forecasts obtained using the two methods. Details on how this was

actually done are contained in Section 3.3.

3.2 Data selection

Recall (Section 1.3) that data consist of the monthly records of the number of national and provin-

cial beneficiaries of social security grants, namely, old age, child support, disability, foster care,

care dependency, war veteran and grant-in-aid from April 2004 to March 2010. Thus, the length

of each series is 72. It should be kept in mind that for each type of grant, the national series was

an aggregate of the provincial series.

For the purpose of meeting the objectives of this thesis, the old age, the child support, the foster

care and the disability grants were considered. The assumption was made that any inferences

made in terms of these grants would extend to the remaining grants. Besides, there are claims
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that there is some dependence of the grant-in-aid series on the old age, the disability, and the war

veteran grant series, and some dependence of the care dependency series on the child support and

the foster care grant series, which are still to be investigated.

The series are short (72). It is for this reason that ARIMA models were fitted to the first 59

observations of each series, and the remaining 13 observations were used to cross-validate the

accuracy and precision of the 13 months ahead forecasts, and to compare the accuracy and precision

of the national forecasts obtained using two methods. Subsequently, in Section 3.3.5 the effect of

the length of the series on the accuracy and precision of the forecasts is investigated.

3.3 Methods, results and discussion

3.3.1 The monthly number of old age grant beneficiaries in South Africa

Figure 3.1 displays the time series plot of the monthly number of beneficiaries of the old age grant

in South Africa from April 2004 to March 2010. Clearly, the series is not stationary as it has a

nonlinear trend. This suggests differencing in order to remove the trend and hence stationarise the

series.

 Figure 3.1: The monthly number of beneficiaries of the old age grant in South Africa versus time

(Month = 1 is April 2004 and Month = 72 is March 2010). No-RSA = number of beneficiaries of

the old age grant in South Africa
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The last thirteen observations of the series (March 2009 to March 2010) were deleted and the

remaining series (April 2004 to February 2009) ARIMA modelled. The fitted ARIMA models were

used to forecast the deleted last thirteen observations of the original series, and these were used to

cross-check the accuracy and precision of the forecasts.

Figure 3.1 also shows that the trend in the remaining series (Month = 1 to Month = 59) is almost

linear, suggesting one as the optimal order of differencing to remove the trend in this remaining

series. This order of differencing was confirmed using the method described in Section 2.3.4 (see

Table 3.4).

 
Figure 3.2: The autocorrelation function of the once differenced series of the monthly number of

beneficiaries of the old age grant in South Africa (April 2004 to February 2009)

Figure 3.2 displays the autocorrelation function (ACF) of the once differenced series, and Table 3.1

displays the Portmanteau test statistics for checking/testing whether or not the differenced series

is white noise. In Table 3.1, the chi-square statistics are approximately equal to the corresponding

degrees of freedom, and the p-values for testing the significance of the correlations are greater than

the 0.05 level of significance. This led to the conclusion that the differenced series was white noise.

However, the two significant autocorrelations in the ACF displayed in Figure 3.2 suggested the

moving average models (MA(q)) for the differenced series. Thus, the competing models for the

differenced series (1−B)Xt were:
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(1−B)Xt = µ+ εt − β1εt−1 − β7εt−7 (3.3.1)

(1−B)Xt = µ+ εt − β7εt−7 (3.3.2)

(1−B)Xt = µ+ εt (3.3.3)

Table 3.1: The Portmanteau test statistics for checking the white noisiness of the differenced series

of the monthly number of beneficiaries of the old age grant in South Africa (April 2004 to February

2009)

Autocorrelation check for white noise

To lag Chi-square DF p-value Autocorrelations

6 7.10 6 0.3115 0.254 0.087 0.097 0.085 0.061 0.144

12 17.09 12 0.1464 0.360 0.108 -0.026 -0.043 -0.042 0.022

18 18.20 18 0.4428 -0.069 -0.071 -0.020 -0.032 -0.023 0.046

24 19.61 24 0.7186 -0.059 -0.101 -0.005 -0.041 -0.011 0.001

Models (3.3.1), (3.3.2) and (3.3.3) were fitted to the differenced series and the model selection

criteria described in Section 2.4.3.3 were used to choose the best model. Table 3.2 contains the

statistics for choosing the best model, the parameter estimates, their standard errors ( ), as well

as the p-values [ ] for testing the significance of the model parameters. Model (3.3.2) was the best

with respect to both the AIC and the SBC criteria and was closely followed by model (3.3.1).

However, (3.3.1) was unstable and its β1 parameter was insignificantly different from zero at the

0.05 level of significance (p-value = 0.0919).

Table 3.2: The goodness-of-fit statistics from fitting models (3.3.1), (3.3.2) and (3.3.3) to the once

differenced series of the monthly number of beneficiaries of the old age grant in South Africa (April

2004 to February 2009)

Criterion Parameter estimate (Se)[p− value]
Model AIC SBC µ̂()[] β̂1()[] β̂7()[]

(3.3.1) 1196 1202 5854(1674)[0.0009] −0.2380(0.1387)[0.0919] −0.7620(0.1772)[< .0001]

(3.3.2) 1194 1199 5864(1401)[0.0001] −0.6283(0.1166)[< .0001]

(3.3.3) 1208 1210 5727(1050)[< .0001]

The residuals from fitting model (3.3.2) to the once differenced series were checked for white noise.

The ACF of the residuals had no significant spikes. Furthermore, in Table 3.3, the chi-square

statistics are approximately equal to the corresponding degrees of freedom, and the associated

p-values for testing the significance of the correlations are all greater than 0.1. This means that

the residuals from fitting model (3.3.2) to the once differenced series were white noise, hence, the
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model adequately described the series. The conclusion was that the fitted model (3.3.2) given by:

(1−B)Xt = 5864 + (1 + 0.6283B7)ε̂t (3.3.4)

was a good candidate for use to forecast the monthly number of beneficiaries of the old age grant

in South Africa.

Table 3.3: The Portmanteau test statistics for checking the white noisiness of residuals from fitting

model (3.3.2) to the once differenced series of the monthly number beneficiaries of the old age

grant in South Africa (April 2004 to February 2009)

Autocorrelation check for white noise

To lag Chi-square DF p-value Autocorrelations

6 8.70 5 0.1218 0.301 0.171 0.108 0.073 -0.065 -0.003

12 10.27 11 0.5064 0.048 0.016 -0.080 -0.065 -0.058 0.071

18 10.66 17 0.8738 -0.018 0.048 0.036 0.019 -0.004 -0.023

24 15.06 23 0.8924 -0.102 -0.124 -0.110 -0.088 -0.043 0.003

The performance of model (3.3.4) in forecasting the monthly number beneficiaries of the old age

grant in South Africa was checked by comparing the 13 forecasts from March 2009 to March 2010

using the model with the observed series over the same period. Furthermore, the forecasts using

the model were compared with the forecasts obtained using another approach described below.

3.3.1.1 The national forecasts from aggregated provincial forecasts

The modelling procedure described above was adopted for modelling the monthly number of ben-

eficiaries of the old age grant in each of the nine provinces of South Africa. For each province, the

best ARIMA model obtained was used to forecast the monthly number of beneficiaries of the old

age grant from March 2009 to March 2010. The provincial forecasts from March 2009 to March

2010 were aggregated to obtain the forecasts for South Africa as a whole. These forecasts were

compared with the ARIMA forecasts for South Africa obtained using model (3.3.4).

Table 3.4 displays the optimal orders of differencing for the monthly number of beneficiaries of the

old age grant in South Africa and in South Africa’s provinces. The optimal orders of differencing

were determined using the method described in Section 2.3.4. Table 3.4 shows that the trends in

the series were all linear except for the trend in the series for Gauteng and Mpumalanga, which

were quadratic.
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Table 3.4: The standard deviations of the differenced monthly number beneficiaries of the old age

grant in South Africa and in South Africa’s provinces (April 2004 to February 2009) versus the

order of differencing

Order (d) RSA EC FS GP KZN LP MP NW NC WC

0 82214 7789 4433 11760 19724 15628 5381 6264 6371 7355

1 7925 2077 620 931 2385 743 411 1625 1369 975

2 7925 2523 683 883 2785 795 408 2174 1974 1036

Boldfaced numbers are the smallest standard deviations associated with the optimal order of

differencing (d) to remove trend, RSA = South Africa, EC = Eastern Cape, FS = Free State,

GP = Gauteng, KZN = KwaZulu-Natal, LP = Limpopo, MP = Mpumalanga, NW = North West,

NC = Northern Cape, WC = Western Cape

The following Table 3.5 displays the models which were found to adequately describe the monthly

number of beneficiaries of the old age grant in the South Africa’s provinces (April 2004 to February

2009). Clearly, the models are province specific. The models in the table were used to forecast the

provincial monthly number of beneficiaries of the old age grant from March 2009 to March 2010.

The provincial forecasts from March 2009 to March 2010 were aggregated to get the forecasts for

South Africa as a whole. These forecasts were compared with ARIMA forecasts for South Africa

which were obtained using model (3.3.4), as was mentioned above.

Table 3.5: The fitted models to the monthly number of beneficiaries of the old age grant in South

Africa’s provinces (April 2004 to February 2009)

Province Fitted model

EC (1−B)Xt = 546(182)[0.0041] + (1− 0.3501(0.1577)[0.0305]B4)ε̂t

FS (1−B)Xt = 332(114)[0.0051] + (1 + 0.7439(0.1273)[0.0001]B7)ε̂t

GP (1−B)2Xt = 98(118)[0.4111] + ε̂t

KZN (1−B)Xt = 1366(437)[0.0028] + (1 + 0.5006(0.1775)[0.0066]B4)ε̂t

LP (1−B)Xt = 963(128)[0.0001] + (1 + 0.3833(0.1411)[0.0088]B)ε̂t

MP (1−B)2Xt = 42(54)[0.4388] + ε̂t

NW (1−B)Xt = 450(215)[0.0411] + ε̂t

NC (1−B)Xt = 322(181)[0.0812] + ε̂t

WC (1−B)Xt = 604(177)[0.0012] + (1 + 0.7012(0.1194)[0.0001]B7)ε̂t

( ) = standard error of the parameter estimate, [ ] = p-value for testing the significance of the

parameter, EC = Eastern Cape, FS = Free State, GP = Gauteng, KZN = KwaZulu-Natal, LP =

Limpopo, MP = Mpumalanga, NW = North West, NC = Northern Cape, WC = Western Cape

Figure 3.3 displays the graph of the actual monthly number of beneficiaries of the old age grant in

South Africa (March 2009 to March 2010), and the corresponding forecasts obtained using model

(3.3.4) and the aggregated provincial forecasts obtained using the models in Table 3.5. It is clear
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that the forecasts obtained by aggregating the provincial forecasts are better since they are closer to

the actual values than those obtained using model (3.3.4). This finding is confirmed by all criteria

(MSE, MAE, MPE and MAPE) for choosing good forecasting methods which were presented in

Section 2.5 (see Table 3.6). Therefore, it can be concluded that forecasting the national number

of beneficiaries of the old age grant by aggregating the provincial ARIMA forecasts is better than

forecasting via ARIMA modelling of the national number of beneficiaries of the old age grant.

 
Figure 3.3: The actual monthly number of beneficiaries of the old age grant in South Africa

(March 2009 to March 2010) and the corresponding forecasts obtained using model (3.3.4) and the

provincial models in Table 3.5

Table 3.6: A comparison of the forecasts of the monthly number of beneficiaries of the old age grant

in South Africa (March 2009 to March 2010) obtained using model (3.3.4) and those obtained by

aggregating the provincial forecasts

Forecasting method MSE MAE MPE MAPE

RSA forecasts using model (3.3.4) 1465840255 34907 1.3076 1.3983

Provincial forecasts using models in Table 3.5 147236556 10914 -0.2521 0.4389

MSE = mean square error, MAE = mean absolute error, MPE = mean percentage error, MAPE

= mean absolute percentage error
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3.3.2 The monthly number of beneficiaries of the child support grant in

South Africa

Exactly the same procedure for obtaining forecasts of the monthly number of beneficiaries of the old

age grant in South Africa using model (3.3.4), and by aggregating the provincial forecasts(described

in Section 3.3.1), was followed to obtain the forecasts of the number beneficiaries of the child sup-

port grant in South Africa through ARIMA modelling of the national series and the provincial

series.

Figure 3.4 displays the time series plot of the monthly number of beneficiaries of the child support

grant in South Africa from April 2004 to March 2010. The series is not stationary as it has a non-

linear trend. A comparison of this plot with that displayed in Figure 3.1 shows that the ARIMA

models for the national series of the monthly number of beneficiaries of the various types of grant

beneficiary are specific to the type of grant.

 Figure 3.4: The monthly number of beneficiaries of the child support grant in South Africa over

time (Month = 1 is April 2004 and Month = 72 is March 2010). No-RSA = number of beneficiaries

of the child support grant in South Africa

Table 3.7 displays the optimal orders of differencing of the monthly number of beneficiaries of the

child support grant in South Africa and South Africa’s provinces. The removed trends were all

linear except for the Eastern Cape series which was quadratic.
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Table 3.7: The standard deviations of the differenced number of beneficiaries of the child support

grant in South Africa and in South Africa’s provinces (April 2004 to February 2009) versus the

order of differencing
Order (d) RSA EC FS GP KZN LP MP NW NC WC

0 1225873 2489890 60585 126658 355779 159624 92053 91877 39875 65859

1 58107 15647 4294 6122 14978 13277 5377 9639 5727 7387

2 61285 14968 4397 6575 12661 15012 5489 12661 8262 12172

Boldfaced numbers are the smallest standard deviations associated with the optimal order of

differencing (d) to remove trend; RSA = South Africa, EC = Eastern Cape, FS = Free State,

GP = Gauteng, KZN = KwaZulu-Natal, LP = Limpopo, MP = Mpumalanga, NW = North West,

NC = Northern Cape, WC = Western Cape

Table 3.8 contains the models which were found to adequately describe the monthly number of

beneficiaries of the child support grant in South Africa as a whole and in South Africa’s provinces

(April 2004 to February 2009). Clearly, the models are province specific. Furthermore, a compar-

ison of these models with those in Table 3.5 shows that the models are also specific to the type of

grant.

Table 3.8: The fitted models to the monthly number of beneficiaries of the child support grant in

South Africa’s provinces (April 2004 to February 2009)

P/N. Fitted model

RSA (1−B)Xt =
77515(14765)[0.0001] + (1 + 0.5187(0.1244)[0.0001]B3)ε̂t

(1− 0.3746(0.1290)[0.0053]B)

EC (1−B)2Xt = (1− 0.7143(0.0989)[0.0001]B)ε̂t

FS (1−B)Xt =
3962(2685)[0.1458] + ε̂t

(1− 0.2739(0.1033)[0.0104]B− 0.6190(0.1090)[0.0001]B11)

GP (1−B)Xt =
8309(1861)[0.0.0001] + ε̂t

(1− 0.2945(0.1280)[0.0252]B− 0.3428(0.1273)[0.0094]B2)

KZN (1−B)Xt =
20347(3048)[0.0001] + ε̂t

(1− 0.4035(0.1248)[0.0021]B)

LP (1−B)Xt =
13352(5063)[0.0108] + (1 + 0.3271(0.1422)[0.0252]B)ε̂t

(1− 0.6488(0.1422)[0.0252]B3)

MP (1−B)Xt =
5575(1305)[0.0001] + (1 + 0.2620(0.1227)[0.0373]B2 + 0.4214(0.1205)[0.0009]B3)ε̂t

(1− 0.2808(0.1362)[0.0441]B)

NW (1−B)Xt = 5187(1277)[0.0001] + ε̂t

NC (1−B)Xt = 2145(759)[0.0064] + ε̂t

WC (1−B)Xt = 4087(664)[0.0001] + (1− 0.2960(0.1278)[0.0243]B)ε̂t

( ) = standard error of the parameter estimate, [ ] = p-value for testing the significance of the

parameter; P/N = Province/National, RSA = South Africa, EC = Eastern Cape, FS = Free State,

GP = Gauteng, KZN = KwaZulu-Natal, LP = Limpopo, MP = Mpumalanga, NW = North West,

NC = Northern Cape, WC = Western Cape
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The fitted provincial models in Table 3.8 were used to forecast the provincial monthly number

of beneficiaries of the child support grant from March 2009 to March 2010. Subsequently, these

forecasts were aggregated to obtain the forecasts for South Africa as a whole to be compared with

the ARIMA forecasts obtained from the model for South Africa (also in Table 3.8), as was done

in the previous section.

Figure 3.5 displays the graph of the actual monthly number of beneficiaries of the child support

grant in South Africa (March 2009 to March 2010) and the corresponding forecasts obtained using

the national ARIMA model in Table 3.8 as well as those obtained by aggregating the provincial

forecasts also obtained using the models in Table 3.8. Again, the forecasts obtained by aggregating

the provincial forecasts are better since they are closer to the actual series than those obtained

using the national ARIMA model.

Furthermore, the 95% confidence band for the forecasts obtained by aggregating the provincial fore-

casts is within that of the forecasts obtained using the national ARIMA model. This means that

the forecasts obtained by aggregating the provincial forecasts are more precise than those obtained

using the national ARIMA model. This finding is confirmed by all criteria (MSE, MAE, MPE and

MAPE) for choosing good forecasting methods which were presented in Section 2.5 (see Table 3.9).

Therefore, it can also be concluded in this section that forecasting the national number of bene-

ficiaries of the child support grant by aggregating the provincial ARIMA forecasts is better than

forecasting by means of ARIMA modelling of the national number of beneficiaries of the child

support grant.

Table 3.9: A comparison of the forecasts of the number beneficiaries of the child support grant in

South Africa (March 2009 to March 2010) obtained using the national ARIMA model in Table 3.8

and those obtained by aggregating the provincial forecasts obtained using the provincial ARIMA

models in Table 3.8
Forecasting method MSE MAE MPE MAPE

RSA forecasts using model in Table 3.8 28017847944 140461 -1.4527 1.5137

Provincial forecasts using models in Table 3.8 4366327091 51341 -0.3408 0.5545

MSE = mean square error, MAE = mean absolute error, MPE = mean percentage error, MAPE

= mean absolute percentage error
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 Figure 3.5: The actual monthly number of beneficiaries of the child support grant in South Africa

(March 2009 to March 2010) and the corresponding forecasts obtained using the national ARIMA

model and the provincial ARIMA models in Table 3.8

3.3.3 The monthly number of beneficiaries of the foster care grant in

South Africa

Figure 3.6 displays the time series plot of the monthly number of beneficiaries of the foster care

grant in South Africa from April 2004 to March 2010. The series is not stationary because of the

presence of a linear trend and seasonality. Furthermore, this plot is very different from the plots

displayed in Figures 3.1 and 3.4, which again means that the ARIMA models for the monthly

number of beneficiaries of the various types of grant are specific to the type of grant.

Differencing was used to remove the trend and seasonality from the monthly number of national and

provincial beneficiaries of the foster care grant in South Africa. Table 3.10 displays the optimal

order of differencing of the series. Table 3.10 shows that the optimal orders of differencing to

remove the trend and seasonality in the series Xt were all (1−B12)(1−B), except for the series

for KwaZulu-Natal, whose optimal order of differencing was (1 − B). That is, there was a linear

trend and seasonality for a period of 12 months in all the series except for that for KwaZulu-Natal

which had a linear trend but no seasonality.
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Figure 3.6: The monthly number of beneficiaries of the foster care grant in South Africa versus

time (Month = 1 is April 2004 and Month = 72 is March 2010). No-RSA = number of foster care

grant beneficiaries in South Africa

Table 3.10: The standard deviation of the differenced monthly number of beneficiaries of the foster

care grant in South Africa and South Africa’s provinces (April 2004 to February 2009) versus the

order of differencing

Order (d,D) RSA EC FS GP KZN LP MP NW NC WC

(0,0) 97416 18733 7937 11347 28856 11457 6313 8783 2693 2507

(1,0) 19980 4006 2298 2375 5337 2131 943 1419 730 1619

(2,0) 27944 5633 3158 3274 7405 3003 1326 2038 991 2228

(1,12) 19074 3968 1918 2345 5529 1977 902 1290 704 1638

Boldfaced numbers are the smallest standard deviations associated with the optimal order of differ-

encing (d, D) to remove trend (d) and seasonality (D), RSA = South Africa, EC = Eastern Cape,

FS = Free State, GP = Gauteng, KZN = Kwazulu-Natal, LP = Limpopo, MP = Mpumalanga,

NW = North West, NC = Northern Cape, WC = Western Cape

Figure 3.7 displays the autocorrelation function (ACF) of the differenced monthly number of foster

care grant beneficiaries in South Africa. The one significant autocorrelation in the ACF suggested

the moving average model (MA(q)) for the differenced series. Thus, the fitted model for the

differenced series (1−B12)(1−B)Xt was

(1−B12)(1−B)Xt = µ+ εt + β2εt−2 (3.3.5)

and the result was

(1−B12)(1−B)Xt = (1− 0.7238)(0.1156)[0.0001]B2ε̂t (3.3.6)

where (0.1156) is the standard error of the estimate 0.7238 of β2 and [0.0001] is the p-value for

testing the significance of β2. This model adequately described the series, as evidenced by the
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Portmanteau test statistics (in Table 3.11) for checking/testing whether or not the residuals from

fitting the model are white noise. In Table 3.11, the p-values for testing the significance of the

autocorrelations of the residuals are greater than 0.9.

 

Figure 3.7: The autocorrelation function of the differenced monthly number of beneficiaries of the

foster care grant in South Africa (April 2004 to February 2009)

Table 3.11: The Portmanteau test statistics for checking the white noisiness of the residuals from

fitting model (3.3.5) to the differenced monthly number of beneficiaries of the foster care grant in

South Africa (April 2004 to February 2009)

Autocorrelation check for white noise

To lag Chi-square DF p-value Autocorrelations

6 1.54 5 0.9086 -0.047 0.032 0.114 0.024 0.052 -0.099

12 3.23 11 0.9873 0.022 0.104 0.125 0.025 -0.013 0.030

18 4.20 17 0.9993 -0.031 -0.027 0.041 -0.066 -0.061 -0.039

24 6.68 23 0.9996 -0.080 -0.087 0.038 -0.056 -0.089 -0.037

ARIMA models were similarly fitted to each of the differenced provincial monthly number of ben-

eficiaries of the foster care grant in South Africa. The best fitted models are displayed in Table

3.12. The fitted models are not the same, which means that the ARIMA models for the series

of the monthly number of beneficiaries of the foster care grant in South Africa are also province

specific.
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Table 3.12: The models fitted to the differenced provincial number of monthly beneficiaries of the

foster care grant in South Africa (April 2004 to February 2009)

Province Fitted model

EC (1−B12)(1−B)Xt = ε̂t
(1+0.7384(0.1465)[0.0001]B2+0.5407(0.1680)[0.0024]B4+0.3081(0.1477)[0.0430]B6)

FS (1−B12)(1−B)Xt = (1−0.4965(0.1785)[0.0079]B4 ε̂t
(10.6761(0.1411)[0.0001]B2)

GP (1−B12)(1−B)Xt = ε̂t
(1+0.6082(0.1442)[0.0001]B2+0.3076(0.1623)[0.1448]B4)

KZN (1−B12)(1−B)Xt = 1383(464)[0.0042] + (1− 0.3228(0.1277)[0.0143]B2)ε̂t

LP (1−B12)(1−B)Xt = (1−0.6224(0.1820)[0.0014]B4 ε̂t
(10.7714(0.1353)[0.0001]B2)

MP (1−B12)(1−B)Xt = ε̂t
(1+7356(0.1389)[0.0001]B2+0.3999(0.1394)[0.0063]B4)

NW (1−B12)(1−B)Xt = (1− 0.4091(0.1369)[0.0045]B2)ε̂t

NC (1−B12)(1−B)Xt = (1−0.5415(0.1314)[0.0002]B2)ε̂t
(1+0.9524(0.0551)[0.0001]B12

WC (1−B12)(1−B)Xt = ε̂t
(1+0.7932(0.1459)[0.0001]B2+0.6396(0.1623)[0.0003]B4+0.3132(0.1450)[0.0363]B6)

( ) = standard error of the parameter estimate, [ ] = p-value for testing the significance of the

parameter, RSA = South Africa, EC = Eastern Cape, FS = Free State, GP = Gauteng, KZN =

Kwazulu-Natal, LP = Limpopo, MP = Mpumalanga, NW = North West, NC = Northern Cape,

WC = Western Cape

Model (3.3.6) was used to forecast the national monthly number of beneficiaries of the foster care

grant in South Africa from March 2009 to March 2010, and the forecasts of the provincial monthly

number of beneficiaries of the foster care grant were obtained using the models in Table 3.12.

The latter provincial forecasts were aggregated to obtain the national forecasts. Figure 3.8 displays

the graph of the actual monthly number of beneficiaries of the foster care grant beneficiaries in

South Africa (March 2009 to March 2010), and the corresponding national forecasts obtained using

model (3.3.6) and by aggregating the provincial forecasts obtained using the models in Table 3.12.

In this case, the national forecasts appear to be better, as they are closer to the actual series

than the aggregated provincial forecasts. These observations were confirmed by all the criteria

(MSE, MAE, MPE and MAPE) for choosing the best forecasting methods, which were presented

in Section 2.5 (see Table 3.13).

Therefore, it can be concluded that forecasting using ARIMA modelling of the national number

of foster care grant beneficiaries is better than forecasting by aggregating the provincial ARIMA

forecasts.
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Figure 3.8: The actual monthly number of beneficiaries of the foster care grant in South Africa

(March 2009 to March 2010) and the corresponding national forecasts obtained using model (3.3.6)

and the provincial models in Table 3.12

Table 3.13: A comparison of forecasts of the monthly number of beneficiaries of the foster care

grant in South Africa (March 2009 to March 2010) obtained using the national ARIMA model

(3.3.6) and those obtained by aggregating the provincial forecasts obtained using the provincial

ARIMA models in Table 3.12
Forecasting method MSE MAE MPE MAPE

RSA forecasts using model in Table 3.8 13838545 7824 -1.3733 1.5671

Provincial forecasts using models in Table 3.8 300491343 14446 -2.8248 2.8698

MSE= mean square error, MAE = mean absolute error, MPE = mean percentage error, MAPE

= mean absolute percentage error

3.3.4 The monthly number of beneficiaries of the disability grant in

South Africa

The same procedure for obtaining the forecast number of beneficiaries of the old age grant in

South Africa (April 2004 to February 2009) obtained using model (3.3.4) and by aggregating the

provincial forecasts (described in Section 3.3.1) was followed to obtain forecasts of the number

of disability grant beneficiaries in South Africa (April 2004 to February 2009) through ARIMA
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modelling of national and provincial series.

Figure 3.9 displays the time series plot of the monthly number of disability grant beneficiaries in

South Africa from April 2004 to March 2010. The series is not stationary as it has a nonlinear

trend. Thus, differencing is done in order to remove the trend and, hence, stationarise the series.

 

Figure 3.9: The monthly number of beneficiaries of the disability grant in South Africa versus time

(Month = 1 is April 2004 and Month = 72 is March 2010). No-RSA = number of disability grant

beneficiaries in South Africa

Table 3.14 displays the optimal orders of differencing for the series of the number of beneficiaries

of the disability grant in South Africa and its provinces. The trends in the series were all linear

even though Figure 3.9 suggested quadratic trends.

Table 3.14: The standard deviation of the differenced number of beneficiaries of the disability grant

in South Africa and South Africa’s provinces (April 2004 to February 2009) versus the order of

differencing
Order (d) RSA EC FS GP KZN LP MP NW NC WC

0 54760 29181 5194 11024 42632 8781 6585 9365 4590 6909

1 15192 18903 2062 7199 14313 1884 3366 3836 1539 2153

2 21181 27856 2571 9996 19791 2557 5676 4570 2162 3209

Boldfaced numbers are the smallest standard deviations associated with the optimal order of

differencing (d) to remove trend/seasonality, RSA = South Africa, EC = Eastern Cape, FS =

Free State, GP = Gauteng, KZN = KwaZulu-Natal, LP = Limpopo, MP = Mpumalanga, NW =

North West, NC = Northern Cape, WC = Western Cape

Figure 3.10 displays the autocorrelation function (ACF) of the once differenced series of the monthly

number of beneficiaries of the disability grant in South Africa (April 2004 to February 2009). The
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ACF suggests a moving average model for the series. The fitted national model and the provincial

models to the once differenced series of the monthly number of beneficiaries of the disability grant

in South Africa (April 2004 to February 2009) are given in Table 3.5. These are all different.

 

Figure 3.10: The autocorrelation function of the once differenced series of the monthly number of

beneficiaries of the disability grant in South Africa (April 2004 to February 2009)

Table 3.15: The fitted models to the monthly number of beneficiaries of the disability grant in

South Africa (April 2004 to February 2009)

P/N. Fitted model

RSA (1−B)Xt = (1 + 0.4192(0.1255)[0.0015]B2)ε̂t

EC (1−B)Xt = (1− 0.3523(0.1247)[0.0065]B2)ε̂t

FS (1−B)Xt =
ε̂t

(1− 0.3096(0.1315[0.0220]B2

GP (1−B)Xt = (1− 0.6015(0.1161)[0.0001]B2)ε̂t

KZN (1−B)Xt = (1− 0.2782(0.1390)[0.0396]B2)ε̂t

LP (1−B)Xt = ε̂t

MP (1−B)Xt = 294(134)[0.0349] + (1− 0.6624(0.1077)[0.0001]B)ε̂t

NW (1−B)Xt =
ε̂t

(1− 0.2564(0.1247)[0.0445]B+ 0.2700(0.1246)[0.0346]B3)

NC (1−B)Xt = ε̂t

WC (1−B)Xt =
ε̂t

(1+0.3200(0.1335)[0.0198]B4)

( ) = standard error of the parameter estimate, [ ] = p-value for testing the significance of the

parameter, P/N = Province/National, RSA = South Africa, EC = Eastern Cape, FS = Free State,

GP = Gauteng, KZN = KwaZulu-Natal, LP = Limpopo, MP = Mpumalanga, NW = North West,

NC = Northern Cape, WC = Western Cape
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Figure 3.11: The actual monthly number of beneficiaries of the disability grant in South Africa

(March 2009 to March 2010) and the corresponding forecasts obtained using the national and

provincial models in Table 3.15

Figure 3.11 shows the graph of the actual monthly number of beneficiaries of the disability grant

in South Africa (March 2009 to March 2010) and the corresponding forecasts obtained using the

national ARIMA model in Table 3.15 and the aggregated provincial forecasts obtained using the

provincial models, also in Table 3.15. It is clear that the national forecasts are better since they are

closer to the actual series than the aggregated provincial forecasts. This observation is confirmed

by the MSE, MAE, MPE and MAPE statistics in Table 3.16. Thus, national forecasting using

the ARIMA model of the national number of beneficiaries of the disability grant is better than

forecasting by aggregating the provincial ARIMA forecasts.

Table 3.16: A comparison of the forecasts of the monthly number of beneficiaries of the disability

grant in South Africa (March 2009 to March 2010) obtained using the national ARIMA model in

Table 3.15 and those obtained by aggregating the provincial forecasts obtained using the provincial

ARIMA models in Table 3.15
Forecasting method MSE MAE MPE MAPE

RSA forecasts using model in Table 3.15 430626637 16059 0.9989 1.2377

Provincial forecasts using models in Table 3.15 971676740 28376 -2.0826 2.2160

MSE = mean square error, MAE = mean absolute error, MPE = mean percentage error, MAPE

= mean absolute percentage error
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3.3.5 Effect of length of series on the accuracy and precision of the

forecasts

This is the subsection of the section that follows: (1) the first 27 observations (April 2004 to June

2006) of the original series of the monthly number of beneficiaries of a grant in South Africa were

deleted from the series; and (2) the next 32 observations (July 2006 to February 2009) were used

to estimate an ARIMA model for forecasting the last 13 observations of the series (March 2009

to March 2010). The accuracy and the precision of the forecasts (March 2009 to March 2010)

obtained using the ARIMA model estimated from the 32 observations (July 2006 to February

2009) were compared with those obtained from ARIMA modelling the first 59 observations (April

2004 to February 2009), as was done in the previous section.

3.3.5.1 The monthly number of old age grant beneficiaries in South Africa

The ARIMA model which fitted the 32 observations (July 2006 to February 2009) of the series of

the monthly number of old age grant beneficiaries in South Africa is model (3.3.7). This model

was used to obtain the forecasts from March 2009 to March 2010. These forecasts were compared

with the actual observed values of the series during the same period, and also with the forecast of

the series from April 2004 to February 2009 (all 59 observations).

(1−B)Xt =
ε̂

(1− 0.3610(0.0009)[0.0001]B1 − 0.6390(0.0009)[0.0001]B7)
(3.3.7)

Table 3.17: A comparison of the forecasts of the monthly number of beneficiaries of the old age

grant in South Africa (March 2009 to March 2010) obtained from ARIMA modelling of the series

from April 2004 to February 2009 (all 59 observations) and the series from July 2006 to February

2009 (last 32 observations)

Forecasting method MSE MAE MPE MAPE

RSA forecasts using model (3.3.4) 1465840255 34907 1.3076 1.3983

RSA forecasts using model (3.3.7) 1429877970 31503 -1.1640 1.2626

MSE = mean square error, MAE = mean absolute error, MPE = mean percentage error, MAPE

= mean absolute percentage error

Figure 3.12 displays the graph of the actual monthly number of beneficiaries of the old age grant

in South Africa (March 2009 to March 2010) and the corresponding forecasts obtained using

model (3.3.7). The confidence limits of the forecasts in this figure appear to be wider than the

corresponding confidence limits displayed in Figure 3.3. However, the statistics in Table 3.17

indicate that the forecasts from ARIMA modelling the series from July 2006 to February 2009

(last 32 observations) are closer to the actual series than those obtained from ARIMA modelling

the series from April 2004 to February 2009 (all 59 observations).
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 Figure 3.12: The actual monthly number of beneficiaries of the old age grant in South Africa

(March 2009 to March 2010) and the corresponding forecasts obtained using model (3.3.7)

3.3.5.2 The monthly number of beneficiaries of the child support grant in South

Africa

When the ARIMA models were fitted to the 32 observations (July 2006 to February 2009) of the

series of the monthly number of beneficiaries of the child support grant in South Africa, model

(3.3.8) was obtained. This model was used to obtain the forecasts from March 2009 to March

2010. These forecasts were compared with the actual observed values of the series during the

same period, and also with the forecasts of the series from April 2004 to February 2009 (all 59

observations).

(1−B)Xt = 42112(7703)[0.0001] + (1 + 0.6866(0.1446)[0.0001]B1)ε̂ (3.3.8)

The statistics in Table 3.18 indicate that the forecasts from ARIMA modelling the series from April

2004 to February 2009 (all 59 observations) are closer to the actual series than those obtained from

ARIMA modelling the series from July 2006 to February 2009 (last 32 observations). A comparison

of the graphs of the actual monthly number of beneficiaries of the child support grant in South

Africa (March 2009 to March 2010) and the corresponding forecasts displayed in Figures 3.5 and

3.13 confirms this observation.
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 Figure 3.13: The actual monthly number of beneficiaries of the child support grant in South Africa

(March 2009 to March 2010) and the corresponding forecasts obtained using model (3.3.8)

Table 3.18: A comparison of the forecasts of the number beneficiaries of the child support grant

in South Africa (March 2009 to March 2010) obtained from ARIMA modelling of the series from

April 2004 to February 2009 (all 59 observations) and the series from July 2006 to February 2009

(last 32 observations)

Forecasting method MSE MAE MPE MAPE

RSA forecasts using model in Table 3.8 28017847944 140461 -1.4527 1.5137

RSA forecasts using model (3.3.8) 32080281982 162131 1.7524 1.7524

MSE = mean square error, MAE = mean absolute error, MPE = mean percentage error, MAPE

= mean absolute percentage error

3.3.5.3 The monthly number of beneficiaries of the foster care grant in South Africa

ARIMA modelling of 32 observations (July 2006 to February 2009) of the series of the monthly

number of beneficiaries of the foster care grant in South Africa obtained model (3.3.9), which was

then used to obtain the forecasts from March 2009 to March 2010. These forecasts were compared

with the actual observed values of the series during the same period, and also with the forecasts

of the series from April 2004 to February 2009 (all 59 observations).

(1−B12)(1−B)Xt = ε̂ (3.3.9)

The statistics in Table 3.19 indicate that the forecasts from ARIMA modelling the series from July

2006 to February 2009 (last 32 observations) are closer to the actual series than those obtained
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from ARIMA modelling the series from April 2004 to February 2009 (all 59 observations). A

comparison of the graphs of the actual monthly number of beneficiaries of the foster care grant

in South Africa (March 2009 to March 2010) and the corresponding forecasts displayed in Figures

3.8 and 3.14 is inconclusive other than that the confidence limits of the forecasts appear to be the

same.

 Figure 3.14: The actual monthly number of beneficiaries of the foster care grant in South Africa

(March 2009 to March 2010) and the corresponding national forecasts obtained using model (3.3.9)

Table 3.19: A comparison of forecasts of the monthly number beneficiaries of the foster care grant

in South Africa (March 2009 to March 2010) obtained from ARIMA modelling of the series from

April 2004 to February 2009 (all 59 observations) and the series from July 2006 to February 2009

(last 32 observations)

Forecasting method MSE MAE MPE MAPE

RSA forecasts using model in Table 3.8 13838545 7824 -1.3733 1.5671

RSA forecasts using model (3.3.9) 113961920 7803 -0.3617 1.5424

MSE = mean square error, MAE = mean absolute error, MPE = mean percentage error, MAPE

= mean absolute percentage error
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3.3.5.4 The monthly number of beneficiaries of the disability grant in South Africa

Finally, ARIMA modelling of 32 observations (July 2006 to February 2009) of the series of the

monthly number of beneficiaries of the disability grant in South Africa obtained model (3.3.10),

which was then used to obtain the forecasts from March 2009 to March 2010. These forecasts were

compared with the actual observed values of the series during the same period, and also with the

forecasts of the series from April 2004 to February 2009 (all 59 observations).

(1−B)Xt = ε̂ (3.3.10)

The statistics in Table 3.20 indicate that the forecasts from ARIMA modelling the series from July

2006 to February 2009 (last 32 observations) are closer to the actual series than those obtained

from ARIMA modelling of the series from April 2004 to February 2009 (all 59 observations). A

comparison of the graphs of the actual monthly number of beneficiaries of the disability grant in

South Africa (March 2009 to March 2010) and the corresponding forecasts displayed in Figures

3.11 and 3.15 indicates that the confidence limits of the forecasts in Figure 3.15 are more precise

than the corresponding confidence limits in Figure 3.11.

 
Figure 3.15: The actual monthly number of beneficiaries of the disability grant in South Africa

(March 2009 to March 2010) and the corresponding forecasts obtained using (3.3.10)
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Table 3.20: A comparison of the forecasts of the monthly number of beneficiaries of the disability

grant in South Africa (March 2009 to March 2010) obtained from ARIMA modelling of the series

from April 2004 to February 2009 (all 59 observations) and the series from July 2006 to February

2009 (last 32 observations)

Forecasting method MSE MAE MPE MAPE

RSA forecasts using model in Table 3.15 430626637 16059 0.9989 1.2377

RSA forecasts using model (3.3.10) 295170049 13959 -0.56901 1.08612

MSE = mean square error, MAE = mean absolute error, MPE = mean percentage error, MAPE

= mean absolute percentage error
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Chapter 4

Conclusion and Recommendations

To address disparity in the awarding of social security grants and to improve the welfare system,

the National Department of Social Development (NDSD) appointed the South African Social Se-

curity Agency (SASSA) as its agency for the purpose of implementing the norms and standards set

by the NDSD for improving the delivery of social assistance grants to deserving South Africans.

Success to date includes a huge increase in the number of social security grant beneficiaries from

6.4 million in 2004 to 14 million in 2010.

Given the crude analysis of social security grants in South Africa, the main objective of this the-

sis was to investigate the feasibility of accurately and precisely forecasting the number of both

national and provincial beneficiaries of social security grants in South Africa using autoregressive

integrated moving average (ARIMA) models. In particular, the objectives of this thesis were to:

(1) find simple ARIMA models for accurately and precisely forecasting the number of both national

and provincial beneficiaries of various types of social security grant to be used by the South African

government in planning and making policy decisions; (2) confirm the hypothesis that the simple

ARIMA models for accurately and precisely forecasting the number of provincial beneficiaries of

various types of social security grant are specific to province and the type of social security grant;

(3) compare the accuracy and precision of the forecasts of the number of national beneficiaries of

social security grants obtained from ARIMA modelling with those obtained by aggregating fore-

casts from ARIMA modelling of the number of provincial beneficiaries of social grants; and (4)

to investigate the effect of the length of the series of the number of beneficiaries of social security

grant series on the accuracy and precision of the forecasts of the future values of the series.

In this thesis, the social security grant data series of the monthly number of beneficiaries of the

old age, child support, foster care and disability grants from April 2004 to March 2010 were used

to achieve the objectives of the thesis. Graphs of actual series versus forecasts, the mean square

error, the mean absolute error, the mean percentage error, and the mean absolute percentage error

of the forecasts were used to evaluate the accuracy and precision of the forecasts and the fore-

casting methods. The results of the data analysed confirmed the hypothesis that: (1) the ARIMA

models for forecasting the number of provincial beneficiaries of various types of social security
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grant are specific to the province and type of social security grant and; (2) for some social security

grants (e.g. old age and child support) the forecasts of the national number of beneficiaries of

the grant obtained by aggregating the provincial ARIMA forecasts are better than those obtained

from ARIMA modelling the national series. However, forecasts of social grants (foster care and

disability) obtained by national ARIMA forecasts are better than those obtained by aggregated

provincial ARIMA forecasts.

The effect of length of old age grant, child support grant, foster care grant and disability grant

series on the accuracy and precision of the forecast number of national and provincial beneficiaries

was investigated. It is also concluded that for some social security grants (e.g. old age, foster

care and disability), the forecasts of the national number of beneficiaries obtained from ARIMA

modelling of the latest half of the national series are better than those obtained from ARIMA

modelling of the full series. However, forecasts of the national number of child support grant ben-

eficiaries obtained from ARIMA modelling of the full series of the national beneficiaries are better

than those obtained from ARIMA modelling of the latest half series.

Given the success in terms of the accuracy and precision of the forecast number of national ARIMA

forecasts on the social security grants, namely, (foster care, disability) and the aggregated provin-

cial ARIMA forecasts on the old age grant and child support grant, it is recommended that the

South African government should consider implementing methods for forecasting the number of

social security grants for both aggregated provincial ARIMA forecasts and national ARIMA fore-

casts to achieve better results in the distribution of social security grants.

It is also recommended that the government should consider the length of the social security grant

series forecasts of the number of beneficiaries obtained from ARIMA modelling of the latest half

series and full series of the national beneficiaries in order to choose the best ARIMA forecast re-

sult. The findings of this report illustrate that three social security grants, namely, the old age,

foster care and disability, provide success in terms of the accuracy and precision of the forecast

number of beneficiaries of ARIMA modelling the latest half series; whereas the full series of child

support grant beneficiaries is better. With all these findings, it is recommended that the South

African government should consider using ARIMA forecast results that are accurate and precise

for planning and making policy decisions in future.

There are number of limitations related to the study of this thesis. For example, the first differenc-

ing was used to accomplish stationarity in the series modelling. However, differencing only removes

polynomial trends and seasonality in the series, it does not remove nonlinear trends. As a result,

areas for further research include investing more highly developed methods to remove nonlinear

trends in the series. This further research will also include transformation to linearise nonlinear

trends to stabilise variances. Further direction of this study is also to use seasonal modelling and

the length of the series to analyse the data which need to be long enough.
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