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Summary

Multiobjective Stochastic Linear Programming is a relevant topic. As a matter of fact,

many real life problems ranging from portfolio selection to water resource management

may be cast into this framework.

There are severe limitations in objectivity in this field due to the simultaneous presence

of randomness and conflicting goals. In such a turbulent environment, the mainstay of

rational choice does not hold and it is virtually impossible to provide a truly scientific

foundation for an optimal decision.

In this thesis, we resort to the bounded rationality and chance-constrained principles to

define satisficing solutions for Multiobjective Stochastic Linear Programming problems.

These solutions are then characterized for the cases of normal, exponential, chi-squared

and gamma distributions.

Ways for singling out such solutions are discussed and numerical examples provided for

the sake of illustration.

Extension to the case of fuzzy random coefficients is also carried out.
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Introduction

Many concrete real-life situations, including engineering, industrial and economic prob-

lems, involve the challenging task of incorporating conflicting goals as well as random

data into an optimization setting, giving rise to mathematical programs with complicated

structure. Among those complex optimization problems, linear models are the most pop-

ular, mainly because they are simple to understand and easy to represent [11], [63], [92],

[114].

Competing objective functions cannot be arbitrarily squeezed within the narrow frame-

work of a single utility function without running the risk of invalidating all implications

that are supposed to be drawn from the analysis. Simple examples (see e.g., [52], [72],

[145]) are in line with the endorsed paradox [127] and the Arrow’s impossibility Theorem

[14], where there are no good ways of aggregating conflicting objective functions into a

single one. This has given rise to the field of Multiobjective Programming (MOP) [74],

[121], [123], [146].

Moreover, the above mentioned problems may include some level of uncertainty about

the values to be assigned to various parameters. In this connection the noted philosopher

Nietzche was quoted as saying,

“No one is gifted with immaculate perception”.

False certainty is bad science and it could be dangerous if it stunts articulation of critical

choices. Interested readers are referred to [90], [120], [135], [148] for problems where

uncertainty should be accommodated in an optimization framework.

Uncertainty presents unique difficulties in constrained optimization problems, because

decision makers are faced with doubtful situations, requiring an analysis of multiple out-

comes in different state of nature. When the uncertainty in question is stochastic in

nature, then we are in the realm of Multiobjective Stochastic Programming (MOSP).

The problem under consideration in this thesis is that of solving the following multiob-

jective program:

(P1)

{
min

x∈D(ω)

(
c1x, . . . , cKx

)
where c1, . . . , cK are random vectors defined on a Probability space (Ω,F ,P). That is, for

all k ∈ {1, . . . , K}

ck : Ω 7→ Rn

ω 7→ ck(ω)

1



is a measurable function and

D(ω) = {x ∈ Rn | A(ω)x− b(ω) ≤ 0, x ≥ 0}

where A(ω), b(ω) are respectively m× n and m× 1 random matrices.

As examples of concrete problems that may be put into the form of (P1), we mention:

• The automated manufacturing system in a production planning situation [1], [34],

[57], [147].

• Water use planning [29], [36], [41], [45]

• Financial and banking planning [9], [16], [20], [30], [38]

• Distributed energy resources and power systems planning [10], [131], [132], [133],

[136].

Owing to the presence of conflicting goals and the randomness surrounding data, the

mathematical program described in (P1) is an ill-stated problem. Therefore, neither the

notion of feasibility nor that of optimality is clearly defined for this problem.

A look at the literature reveals that most existing solution concepts for MOSP problems

rely heavily on the expected, pessimistic and optimistic values of involved random vari-

ables [31], [33].

Findings from several research works [90], [100], [116] leave no doubt about the fact that

these values may be useful in providing the range of possible outcomes. Nevertheless,

they ignore such important factors as the size and the probability of deviations outside

the likely range. They also neglect other aspects concerning the dispersion of involved

random variables. As a result, these values often, offer a short-sighted view of the under

consideration.

This has motivated a search for more flexible formulations of optimization problems, that,

although remains rigorous, bridge the gap between mathematical programming models

and real decision-making situations, through introduction of uncertainty and conflicting

objective functions.

In this thesis, we resort to the bounded rationality principle [125], to present satisficing

solution for (P1). These solutions concepts, are based on the chance constrained para-

digm [43]. Chance constrained applies for the purpose of limiting the probability that a

constraint will be violated. In this form, it adds considerably to both the flexibility and

the reality of the stochastic model under consideration.

Mathematical characterization of the above mentioned solution concepts are provided

for the case of normal, exponential, chi-squared and gamma distributions and ways for

singling out these satisficing solutions are also addressed.

In some applications, input data of a Multiobjective Programming problem may be af-

2



fected by a relatively large amount of both randomness and fuzziness [144], [148]. In

portfolio selection, for example, the returns on security may be expressed as a fuzzy

random variable in a way to couple stock experts’ judgements and investors’ conflicting

opinions. Some methodological approaches, for dealing with situations where randomness

and fuzziness are under one roof in a multiobjective optimization setting maybe found

in [21], [76], [79], [81], [89], [91], [108], [142] and in references therein. In these papers,

the spotlight is on Multiobjective Programming problems with flexible relationships and

random data containing fuzzy parameters [21].

In the last part of this thesis, we add to the spectrum of methods on Multiobjective Pro-

gramming problems under randomness and fuzziness, a complementary method of coping

with situations where fuzzy random variables are to be incorporated into a Multiobjective

Programming framework.

The thesis is organized as follows. In Chapter 1 we provide some preliminary materials. In

Chapter 2, we present an overview of what has been done in the field of Multiobjective Sto-

chastic Linear Programming, emphasizing the limitations of previous studies. In Chapter

3 we endeavor to overcome these limitations by introducing satisficing solution concepts

for Multiobjective Stochastic Linear Programming problems. An extension to Multiob-

jective Programming problems with fuzzy random coefficients is discussed in Chapter 4.

We end up with some concluding remarks along with lines for further developments in

this field.

3



Chapter 1

Preliminaries

In this chapter, we present some preliminary notions on Probability Theory and Mathe-

matical Programming that will be needed in the sequel.

1.1 Elements of Probability Theory

1.1.1 Probability space

1.1.1 Definition. Let Ω be a set. A family F = (Ai)i∈I of subset of Ω is called a

σ−algebra on Ω if the following three properties hold:

1. Ω ∈ F

2. for any sequence A1, A2, . . . of elements of F ,
⋃∞

i=1An ∈ F

3. for any A ∈ Ω, the complement Ā = Ω− A ∈ F .

If F is a σ−algebra on Ω, then (Ω,F) is called a measurable space. The elements of F
are termed F−measurable sets or simply measurable sets.

If H is a family of subsets of Ω then there exists at least one σ−algebra on Ω containing

H. The smallest σ−algebra on Ω containing H is called the σ−algebra generated by H.

1.1.2 Definition. Let (Ω,F) be a measurable space. A measure on (Ω,F) is a function

µ from F into the set [0,∞] such that the following properties hold:

1. for any sequence A1, A2, . . . , An, . . . of mutually exclusive elements of F ,

µ(
∞⋃

n=1

An) =
∞∑

n=1

µ(An).

2. µ(φ) = 0.

4



If µ is a measure on a measurable space (Ω,F), then (Ω,F , µ) is called a measure space.

1.1.3 Definition. A probability on a measurable space (Ω,F) is a measure P on (Ω,F)

verifying the condition P(Ω) = 1.

If P is a probability on (Ω,F), then (Ω,F ,P) is called a probability space.

1.1.4 Definition. A topological space is a set E endowed with a family T of subsets of

E such that the following three properties hold:

1. the empty subset and E belong to T

2. if (Oi)i∈I is a family of elements of T then
⋃

i∈I Oi ∈ T

3. if O1, . . . , On are elements of T then
⋂n

i=1Oi ∈ T .

Elements of T are called the open subsets of E.

A complement of an open subset is called a closed subset.

A neighborhood of a point x ∈ E is any subset of E that contains an open set containing

the point x.

The closure of a subset A of E is the smallest closed subset of E containing A.

If E and F are topological spaces, a map f : E → F is continuous if for any open subset

O of F , f−1 is also continuous, f is called a homeomorphism.

The space Rn is an example of a separable locally compact space. A subset of this space

is compact if and only if it is bounded and closed.

1.1.5 Definition. Let E be a topological space and T be the set of open subsets of E.

The σ−algebra on E generated by T is called the Borel σ−algebra on E.

When a topological space is considered as a measurable space, measurable sets are mem-

bers of the Borel σ−algebra.

1.1.6 Definition. Let B be the Borel σ−algebra on Rn. There exists a measure µ on

(Rn,B) such that for any intervals Ai = (ai, bi) of R with ai ≤ bi

µ(A1 × A2 × . . . ,×An) = (b1 − a1)(b2 − a2) . . . (bn − an).

This measure is called the Lebesgue measure on Rn.

The σ−algebra generated by a family (Xi)i∈I of functions Xi : Ω → (E, E) is the

smallest σ−algebra on Ω for which all the functions Xi are measurable. It is equal to the

σ−algebra on Ω generated by the sets of the form X−1(Ai), where for any i ∈ I, Ai ∈ E .

1.1.2 Integration

1.1.7 Definition. Let (Ω,F , µ) be a measure space. A measurable function f : Ω → R is

said to be a step function if there exists a partition A1, . . . , An of Ω such that the subsets

Ai are measurable and f is constant on each of them.

5



If f = ai on Ai, then the integral of the function f is defined by∫
fdµ =

n∑
i=1

aiµ(Ai).

For any A ∈ F and any step function f ,∫
A

fdµ =

∫
f.1Adµ

where 1A is the characteristic function of A.

1.1.8 Definition. Let f : Ω → R be a nonnegative measurable function. It can be shown

that there exists a nondecreasing sequence (fn) of nonnegative measurable step functions

that converges to f . The integral of the function f is∫
fdµ = lim

n→∞

∫
fndµ.

1.1.9 Definition. Let f : Ω → R be a measurable function. If∫
|f |dµ <∞,

then the function f is said to be µ−integrable.

The integral of the function f is∫
fdµ =

∫
f+dµ−

∫
f−dµ

where

f+ = sup(f, 0), f− = inf(−f, 0).

The integral
∫
fdµ is also denoted by f(x)dµ(x).

1.1.3 Random variables, Random vectors

A random variable is a function, which maps events or outcomes of a random experiment

to real numbers. A random variable’s possible values might represent the possible out-

comes of a yet-to-be-performed experiment, or the potential values of a quantity whose

already-existing value is uncertain (e.g. as a result of incomplete information or imprecise

measurements). A more rigorous definition of a random variable is given below.

6



1.1.10 Definition. A random variable on a probability space (Ω,F ,P) is a function

Y : Ω 7→ R

ω 7→ Y (ω)

such that for any Borel subset A of R, the inverse image

Y −1(A) = {ω ∈ Ω : Y (ω) ∈ A} ∈ F .

In the sequel Y −1(A) is merely denoted by {y ∈ A}.

It is an obvious fact that Y : Ω 7→ R is a random variable if and only if for any a ∈ Rn,

the set

Y −1[a,∞) = {ω ∈ Ω : Y (ω) ≥ a} ∈ F .

1.1.11 Definition. An n−dimensional random vector on (Ω,F ,P) is a function

Y : Ω 7→ Rn

ω 7→ Y (ω)

such that Y −1(A) ∈ F , for any Borel subset A of Rn.

Observe that every component of a random vector is itself a random variable. It is worth

making a distinction between discrete and continuous random variables.

A discrete random variable is one whose set of assumed values is countable. A continuous

random variable is one whose set of assumed values is uncountable.

1.1.4 Probability distribution of a random variable

1.1.12 Definition. Let Y be a random variable defined on a probability space (Ω,F ,P).

The Cumulative Distribution Function of Y is the function:

FY : R → R

defined by:

FY (y) = P{ω ∈ Ω | Y (ω) ≤ y}.

If P̄ is absolutely continuous with respect to the Lebesgue measure P [118], by the Radon-

Nikodym Theorem [77], there is a Probability Density Function fY (τ) defined on R such

that

P̄(B) =

∫
B

fY (τ)dP

7



for all B ∈ B.

1.1.13 Definition. A Cumulative Distribution Function FY is absolutely continuous if

there exists a non-negative, Lebesgue integrable function f [118] such that

FY (b)− FY (a) =

∫ b

a

f(y)dy for all a < b.

The function f is called the Probability Density Function of F. The area under the curve

between any two ordinates y = a and y = b is the probability that Y (ω) lies between a

and b.

∫ b

a

f(y)dy = P({ω ∈ Ω | a ≤ Y (ω) ≤ b})

For a discrete probability distribution, we have a Probability Mass Function, which is

a function that gives the probability that a discrete random variable is exactly equal to

some value.

1.1.14 Definition. Let Y be a random variable defined on a probability space (Ω,F ,P).

Then the Probability Mass Function

PY : R 7→ [0, 1]

for Y is defined as

PY (y) = P(Y = y) = P({ω ∈ Ω : Y (ω) = y}).

The total probability for all Y must be equal to 1.∑
PY (y) = 1

y = Y (ω)

ω ∈ Ω.

The discontinuity of Probability Mass Functions reflects the fact that the Cumulative

Distribution Function of a discrete random variable is also discontinuous. Where it is

differentiable, the derivative is zero, just as the Probability Mass Function is zero at all

such points.

To any given probability measure P on (R,R) we can associate a Cumulative Distribution

Function FY via the relation:

FY (b)− FY (a) = P({ω ∈ Ω | a < ω ≤ b}) for all a,b, −∞ < a ≤ b <∞,

and since P as well as FY are uniquely defined by their values on the rectangles.
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The joint distribution function of an n-dimensional random vector Y with components

Y1, . . . , Yn is the function FY : Rn → R defined by

FY (y1, . . . , yn) = P {ω ∈ Ω | Y1(ω) ≤ y1, . . . , Yn(ω) ≤ yn} .

In this thesis, we adopt the notation Y ∼ H for random variables Yi; i = 1, . . . , n that

follow the distribution H with Probability Density Function fY (y).

One of the central concepts in Probability Theory is independence, which we consider in

the next subsection.

1.1.5 Independence

Events or random variables are independent if they do not affect each other’s probabilities.

Random variables Y and V are independent if for all Borel sets S and S̄, the events Y −1(S)

and V −1(S̄) are independent, i.e.

P (Y ∈ S, V ∈ S̄) = P (Y ∈ S)P (V ∈ S̄).

More formally, we have the following definitions.

1.1.15 Definition. The random variables

Y1, . . . , Yn

are independent if and only if for arbitrary Borel sets

A1, . . . , An and for ω ∈ Ω

P

(
n⋂

j=1

{ω | Yj(ω) ∈ Aj}

)
=

n∏
j=1

P ({ω | Yj(ω) ∈ Aj}).

1.1.16 Definition. The random variables Y1, . . . , Yn are independent if and only if

FY (ω)(y) =
n∏

j=1

FYj(ω)(yj), for all y ∈ Rn, ω ∈ Ω.

Definitions (1.1.15) and (1.1.16) are equivalent. The second definition is implied by the

first, since the half-open infinite sets are a subclass of all measurable sets.

Moreover, functions of independent random variables are independent and independence

is preserved under deterministic transformation as stipulated in the next two results whose

proofs can be found in [65].

1.1.1 Theorem. 1. If Y and V are discrete random variables, then Y and V are
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independent if and only if

PY (ω),V (ω)(y, v) = PY (ω)(y) · PV (ω)(v) for all ω ∈ Ω, Y (ω), V (ω) ∈ R.

2. If Y and V are absolutely continuous, then Y and V are independent if and only if

fY (ω),V (ω)(y, v) = fY (ω)(y) · fV (ω)(v) for all ω ∈ Ω, Y (ω), V (ω) ∈ R.

1.1.2 Proposition. Let

Y1, . . . , Yn (1.1)

be random variables and

f1, . . . , fn

be measurable functions. If Y1, . . . , Yn are independent, then so are

f ◦ Y1, . . . , f ◦ Yn. (1.2)

Other important notions on Probability Theory that will be needed in the sequel include:

expected value, variance and moment generating function. We briefly discuss them in

what follows.

1.1.6 Expected value

1.1.17 Definition. Let y1, . . . , yn be real numbers, A1, . . . , An ∈ F such that

n⋃
i=1

Ai = Ω.

The expected value of a random variable

Y =
n∑

j=1

yj1Aj

is defined as follows:

E

(
n∑

j=1

yj1Aj

)
=

n∑
j=1

yjP (Aj)

where {yj; 1 ≤ j ≤ n} are real numbers, and {Aj; 1 ≤ j ≤ n} is a finite partition of Ω,

and 1Aj
denotes the characteristic (indication) function of Aj.
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The expected value of a non-negative random variable is defined below.

1.1.18 Definition. Suppose Y is a non-negative random variable. The expected value

of Y is defined as

E(Y ) = limn→∞

n2n∑
j=1

j − 1

2n
P

(
{ω ∈ Ω | j − 1

2n
≤ Y (ω) <

j

2n
}
)
.

We consider arbitrary random variables which may be neither simple nor non-negative.

For such a random variables we may write

Y = Y + − Y −

where

Y + = max(Y, 0)

and

Y − = max(−Y, 0).

Both Y + and Y − are non-negative.

1.1.19 Definition. For an arbitrary random variable Y , the expected value of Y is

E(Y ) = E(Y +)− E(Y −)

provided at least one of E(Y +) and E(Y −) is finite.

We write

E(Y ) =

∫
Ω

Y (ω)dP (ω)or simply

∫
Y (ω)dP (ω)

If E(Y ) <∞, we say that Y is integrable.

The following lemma, the proof of which may be found in [119], highlights properties of

expectations of random variables.

1.1.3 Lemma. Let V and Y be random variables, then

1. E(V + Y ) = E(V ) + E(Y )

2. E(cV ) = cE(V ) where c is a constant

3. if V = 0 then E(V ) = 0

4. if V ≤ Y then E(V ) ≤ E(Y )

5. |E(V )| ≤ E(|V |)

6. if V and Y are independent, then E(XY ) = E(X)E(Y ).

Let (Ω,F) be a measurable space and P, P̄ be two measures defined on F . If P̄ is absolutely

11



continuous with respect to the Lebesgue measure P, by the Radon-Nikodym Theorem, the

expectation E(Y ) of a random vector Y is the vector of the integrals of the components

of Y . We write:

E(Y ) = (

∫
Ω

Y1dP, . . . ,
∫

Ω

YndP)T =

∫
Ω

Y dP.

Hence we have

E(Y ) =

∫
Ω

Y dP =

∫
Rn

ωdP̄ =

∫
Rn

ωdFY (ω)

where the last expression is the so-called Lebesgue-Stieltjes integral.

If Y has a Probability Density Function, we may also write

E(Y ) =

∫
Rn

ωfY (ω)dPn

where dPn refers to the Lebesgue measure on Bn.

1.1.7 Variance and standard deviation

1.1.20 Definition. Let Y be a random variable, the variance of Y denoted by V ar(Y ) or σ2

is defined as:

V ar(Y ) = E[Y − E(Y )]2.

Using the notation µ for E(Y ), we can also write:

V ar(Y ) = E[Y − µ]2.

It is an easy matter to see that:

V ar(Y ) = E(Y 2)− [E(Y )]2.

The square root of the variance of Y , denoted by
√
V ar(Y ), is called the standard devi-

ation of the probability distribution. Some properties of variance, are found in [119] and

are given below as follows:

1.1.4 Lemma. Let Y and V be independent random variables with finite variances, and

a, b ∈ R. Then

1. V ar(aY ) = a2V ar(Y )

2. V ar(Y + V ) = V ar(Y ) + V ar(V )

3. V ar(aY + bV ) = a2V ar(Y ) + b2V ar(V )

12



1.1.8 Moment generating function

1.1.21 Definition. Let Y be a random variable. The moment generating function of a

random variable Y is the function

MY (s) = E(esY ) =

∫ ∞

−∞
esydFY (y)

provided the expectation exists and s ∈ R.

A lot of information about the distribution of Y can be obtained from MY (s).

1.1.22 Definition. Let Y be a random variable, then

1. E(Y n); n = 1, . . . ; are called moments of Y

2. E(Y − E(Y ))n; n = 1, . . . ; are called central moments of Y

3. E|Y |n; n = 1, . . . ; are called absolute moments of Y

4. E|Y − E(Y )|n; n = 1, . . . ; are called absolute central moments of Y .

It is clear that moment of order 1 is the mean and the second central moment is the vari-

ance. The third and the fourth moments are the skewness and the kutorsis respectively.

Some properties of moment generating function of random variables, which can be found

in [118], are given below.

1.1.5 Lemma. Let a and c be constants, and let MY (s) be the moment generating

function of a random variable Y . Then the moment generating function of the

random variable V = a+ cY is the following:

MV (s) = E[esV ] = E[es(a+cY )] = easMY (cs).

1. Let V and Y be independent random variables having the respective moment gen-

erating functions MV (s) and MY (s). The moment generating function of the sum

U = V + Y random variable is

MU(s) = E[esU ] = E[es(V +Y )] = E[esV esY ] = E[esV ].[esY ] = MV (s).MY (s).

2. By differentiating MY (s) r times, we obtain

M
(r)
Y (s) =

dr

dsr
esY = E[

dr

dsr
esY ] = E[Y resY ].

3. When s = 0, M
(r)
Y (s) generates the rth moment of Y . As a matter of fact

M
(r)
Y (0) = E[Y r]; r = 1, 2, . . . .

13



Figure 1.1: Normal Probability Density Function

In the following subsections, we look into more detail at the distributions we shall consider

in this study.

1.1.9 Some usual distributions

1. The normal distribution

A normal or Gaussian random variable is a continuous random variable with a sym-

metric, bell-shaped Probability Density Function. The Probability Density Function

of a normal random variable Y with mean µ and standard deviation σ is given by:

f(y) =
1

σ
√

2π
e−

(y−µ)2

2σ2 ; y ∈ R, µ ∈ R, σ > 0.

This distribution is commonly denoted by N(µ, σ2).

Its Cumulative Density Function is given by

F (y) =

∫ y

−∞
f(y)dt; y ∈ R.

The normal random variable with mean µ = 0 and standard deviation σ = 1 is called

the standard normal random variable, and its Cumulative Distribution Function is

denoted by Φ(z).

If Y is a normal random variable with mean µ and standard deviation σ, and Z is

the standard normal random variable, then

P(Y ≤ y) = P
(
Z ≤ y − µ

σ

)
=

∫ (y−µ)/σ

−∞
e(−t2/2)dt

= Φ

(
y − µ

σ

)
. (1.3)

The mean µ is the location parameter and the standard deviation σ is the scale pa-

rameter. A normal distribution is often a rough substitute for any distribution. The

normal distribution governs many aspects of human performance [85]. For example

a diversified portfolio will typically have returns that fall in a normal distribution

[20].

2. The chi-squared distribution

Let Y1, . . . , Yn be independent standard normal random variables. The distribution
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Figure 1.2: Chi-squared Probability Density Function

of

Y =
n∑

j=1

Y 2
j

is called the chi-squared distribution with degree of freedom (df) n, and is denoted

by χ2
n. Its Probability Density Function is given by

f(n) =
e−y/2y(n/2)−1

2n/2Γ(n/2)
; y ≥ 0, n > 0

where Γ stands for the gamma function. The Cumulative Distribution Function of

the chi-squared distribution is given by Krishnamoorthy [85] and Sleeper [126] as

follows:

F (n) =
1

Γ(n/2)

∞∑
j=0

(−1)j(y/2)n/2+j

j!Γ(n/2 + j)
=

1

2n/2Γ(n/2)

∫ y

0

e−t/2t(n/2)−1dt.

The Inverse Cumulative Distribution Function of χ2
n has no easy formula, and must

be calculated iteratively [126]. One way of doing that is by using the Wilson-Hilferty

transformation [140].

Let Y1, . . . , Yn be independent standard normal variables and Y =
∑n

j=1 Y
2
j be

the chi-squared distribution with n degree of freedom, then the Wilson-Hilferty

transformation of Y into an appropriate normal distribution is given below:√
9n

2

{(
Y 2)

σ2n

) 1
3

− 1 +
2

9n

}
∼ N(0, 1).

The inverse of this formula can be used to approximate quantiles of the χ2
n distrib-

ution from Φ−1(p), the standard normal Inverse Cumulative Distribution Function

F−1(p) = σ

√√√√n

(√
9n

2
Φ−1(p) + 1− 2

9n

)3

. (1.4)

If Y1, . . . , Yn are independent chi-squared random variables with degrees of freedom

n1, . . . , nk respectively, then

k∑
j=1

Yj ∼ χ2
m with m =

k∑
j=1

nj

which implies that
∑k

j=1 Yj is also a chi-squared random variable with degree of
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Figure 1.3: Exponential Probability Density Function

freedom
∑k

j=1 nj. The mean and variance of χ2
n are n and 2n respectively. Its

characteristic function is given by [126]

φ(y) =
1

(1− i2σ2y)
1
2

e
itµ2

(1−i2σ2y)

where i = ±
√
−1, µ and σ2 are mean and variance of independent normal distrib-

ution.

The chi-squared is useful in many testing procedures related to the variation of

normally distributed data [85].

3. The exponential distribution

The Probability Density Function of a random variable following an exponential

distribution of rate parameter λ is given by

fExp(λ)(y) = λe−yλ; y > 0, λ > 0 y ≥ 0.

This Probability Density Function may be defined in terms of mean parameter µ as

follows:

fExp(µ)(y) =
1

µ
e−y/µ; y ≥ 0, µ > 0.

The corresponding Cumulative Distribution Functions are respectively:

FExp(λ)(y)) = 1− e−yλ; y ≥ 0, λ > 0

and

FExp(µ)(y)) = 1− e−y/µ; y ≥ 0, µ > 0.

Exponential distribution has the following properties [126]:

(a) The mean of exponential distribution in term of rate and mean parameters are

respectively E[Exp(λ)] = 1
λ

and E[Exp(µ)] = µ.

(b) The variance of exponential distribution in term of rate and mean parameters

are respectively V ar[Exp(λ)] = 1
λ2 and V ar[Exp(µ)] = µ2.

(c) A standard exponential random variable has λ = µ = 1, if Y = Exp(1), then

µY ∼ Exp(µ) and Y
λ
∼ Exp(λ).

(d) The minimum of a set of independent observations of an exponential random

variable is also an exponential random variable.

The following result, ith proof found in [27] is given below:
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1.1.6 Lemma. Assume that ρ1, . . . , ρn are independent random variables, exponen-

tially distributed with respective parameters µ1, . . . , µn. Then for any real numbers

x1, . . . , xn the random variable Y = x1ρ1 + . . . + xnρn has the following density

distribution:

f(y) =
∏n

j=1 µj

(∑n
q=1

xn−2
q e

−
µqy
xqQn

{l=1,l6=q}(xqµl−xlµq)

)
if y ≥ 0

with mean and variance E(Y ) =
∑n

j=1
xj

µj
and V ar(Y ) =

∑n
j=1

x2
j

µ2
j

respectively.

Exponential distribution has tremendous applications in modeling life time [122]. In

queuing theory, the exponential distribution is commonly used to model the prob-

ability distribution of a random variable that represents service time. In reliability

applications, the exponential distribution is commonly used to model the life time

of components which are subject to wear out [119].

4. The gamma distribution

The gamma distribution can be viewed as a generalization of the exponential dis-

tribution with mean parameter µ = 1/λ, λ > 0.

Let X1, . . . , Xn be independent exponential random variables with mean 1/λ,

Y =
α∑

i=1

Xi

is a gamma random variable.

The chi-squared family of distributions is a subset of gamma family of distributions.

Specifically a χ2
n is also a gamma random variable with shape parameter α = n/2

and scale parameter β = 2.

Because of this relationship, tools intended for gamma distributions work well for

both chi-squared distributions and exponential distributions, and vice versa [122].

A random variable Y is a gamma random variable with shape parameter α and scale

parameter β, if its Probability Density Function is a

fγ(α,β)(y) =
yα−1e−yβ

βαΓ(α)
; y ≥ 0

where Γ stands for the gamma function. In this case we note Y ∼ γ(α, β).

The corresponding Cumulative Distribution Function is

Fγ(α,β)(y) =
1

βαΓ(α)

∫ y

0

uα−1e−u/βdu; y ≥ 0.
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Figure 1.4: Gamma Probability Density Function

When the shape parameter α is an integer, gamma random variables are called

Erlang random variables, with Probability Density Function and Cumulative Dis-

tribution Function are respectively given as follows:

fγ(α,β)(y) =
yα−1e−yβ

βα(α− 1)!
; y ≥ 0

and

Fγ(α,β)(y) = 1− ey/β

α−1∑
i=0

y/β

i!
; y ≥ 0.

The weighted sum of independent gamma random variable is a gamma random

variable [138].

Some notable properties of gamma random variable are highlighted below [126]:

(a) The mean and variance of gamma distribution are E[γ(α, β)] = αβ and V ar[γ(α, β)] =

αβ2.

(b) The sum of n mutually independent gamma random variables with different

shape parameters αj and the same scale parameter β is a gamma random

variable with shape parameter equal to the sum of the component shape

parameters. If Yj ∼ γ(αj, β) and the Yj are mutually independent, then∑n
j=1 Yj(ω) ∼ γ(

∑n
j=1 αj, β).

(c) The Cumulative Distribution function of gamma random variables have a va-

riety of shapes.

(d) Yj ∼ γ(βj, tj) ⇔ cjYj ∼ γ
(

βj

cj ,tj

)
.

(e) As the shape parameter α increases, gamma random variables become very

similar in shape to normal random variables.

The following lemma due to Vellaisamy & Upadhye [138] is useful in Chapter 3

Subsection (3.6).

1.1.7 Lemma. Let Y1, . . . , Yn be independent random variables, where γ(βj, αj),

the gamma distribution with scale parameter β−1
j and shape parameter αj > 0.

For cj > 0 and i ∈ Z+\{0}, let Tn =
∑n

j=1 cjYj, β = max1≤j≤n
βj

(cj+βj)
, dn =∏n

j=1((1 − β)βj)/(cjβ))α
j and ai = (1/i)

∑n
j=1 αj(1 − (1 − β)βj/cjβ))i. Then Tn ∼

γ( β
1−β

), Ln +α), where Ln is a random variable with P(Ln = k) = dnbk, k ∈ R, and

α =
∑n

j=1 αj. Here, b0 = 1 and bk = ( 1
k

∑k
i=1 iaibk−i) for k ∈ Z+\{0}.

5. Relationships between the normal, chi-squared, exponential and gamma

distributions

In what follows we mention some relationships between normal distribution and the
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other distributions, used in this thesis.

(a) The normal random variable is the limiting distribution for the standardized

form
Y − E(Y )√

Y

of many other random variables including chi-squared, exponential and gamma

distributions [85].

This idea is clearly reflected in the central limit Theorem.

1.1.8 Theorem. If Y1, . . . , Yn are mutually independent, identically distrib-

uted random variables with finite mean µ and standard deviation σ, then the

distribution of the standardized sum{(∑n
j=n Yj

)
− nµ

}
σ
√
n

tends to a standard normal distribution as n goes to infinity.

(b) Any continuous random variable Y with Cumulative Distribution Function

FY (y) can be transformed into a standard exponential random variable by the

function -ln(1− FY (y)) ∼ Exp(1) [126].

19



1.2 Mathematical Programming

1.2.1 Problem formulation

Mathematical Programming is a branch of optimization theory in which a single-valued

objective function f of n real variables x1, . . . , xn is minimized (or maximized), subject

to a finite number of constraints, which are written as inequalities or equations. A math-

ematical program is therefore a problem of the form

(P2)



min f(x)

gi(x) ≤ 0; i = 1, . . . ,m

hj(x) = 0; j = 1, . . . , p

x ≥ 0

where x ∈ Rn and f, gi; (i = 1, . . . ,m) and hj (j = 1, . . . , p) are real valued functions of

Rn.

If one or more of the functions appearing in (P2) are nonlinear in x, we call it a nonlinear

program, in contrast to a linear program, where all these functions must be linear.

Mathematical Programming problems arise in such various disciplines as engineering,

economics, business administration, physical sciences, and mathematics, or in any other

area where decisions (in a broad sense) must be taken in some complex (or conflicting)

situations that can be represented by a mathematical model [63], [92], [115]. In order to

illustrate some types of mathematical programs, an example is presented below.

1.2.1 Example. Suppose that in some scientific research, say in biology or physics, a

certain phenomenon f is measured in the laboratory as a function of time. Also suppose

that we are given a mathematical model of the phenomenon, and from the model we know

that the value of f is assumed to vary with time t as

f(t) = x1 + x2e
−x3t. (1.5)

The purpose of the laboratory experiments is to find the unknown parameters x1, x2 and

x3 by measuring values of f at times t1, . . . , tm. The decision-making process involves

assigning values to the parameters, and it is reasonable to ask those values of x1, x2 and

x3 that are optimal in some sense. For instance, we can seek optimal values of the para-

meters in the least-squares sense, that is, those values for which the sum of squares of the

experimental deviations from the theoretical curve is minimized.

Formally, we have the following optimization problem:

(P2)′ min

{
m∑

i=1

[f(ti)− x1 − x2e
−x3ti ]2

}
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Note that this is an unconstrained program that, if solved, may yield unacceptable values

of the parameters. To avoid such a situation, we can impose restrictions in the form

of constraints. For example, the parameters x3 can be restricted to have a nonnegative

value-that is,

x3 ≥ 0. (1.6)

Also suppose that, for the particular phenomenon under consideration, the mathematical

model proposed can be acceptable only if the parameters are so chosen that at t = 0 we

have f(0) = 1. Hence we must add a constraint

x1 + x2 = 1. (1.7)

Solving (P2)′, subject to (1.6) and (1.7), is then a constrained Mathematical Programming

problem having a nonlinear objective function with constraints.

1.2.2 Equality Constrained extremum and the method of La-

grange

In this subsection we consider the problem :

(P2)′′

{
min f(x)

gi(x) = 0; i = 1, . . . ,m
(1.8)

where gi; i = 1, . . . ,m and f are real-valued function defined on D ⊂ Rn. The assumption

that m < n will simplify subsequent discussions. The problem is, therefore, to find an

extremum of f in the region determined by the equations in (1.8). The first and most

intuitive method of solution of such problem involves the elimination of m variables from

the problem by using equations in (1.8). The conditions for such an elimination will

be stated later in the Implicit Function Theorem, and the proof can be found in most

advanced calculus textbooks (see, e.g., [17], [102]). This theorem assumes the differentia-

bility of the functions gi and the fact that the n×m Jacobian matrix [∂gi/∂xj] has rank

m. The actual solution of equations (1.8) for m variables in terms of the remaining n−m
can often prove difficult, if not impossible task. For this reason, we do not pursue this

method further.

Another method, also based on the idea of transforming a constrained problem into un-

constrained one, was proposed by Lagrange [92]. Many results in mathematical program-

ming are actually a direct extension and generalization of Lagrange’s method, mainly to

problems with inequality constraints.

Before presenting a result that will provide a direction in which we must proceed in order
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to transform an equality constrained problem into an equivalent unconstrained problem,

we state the well-known Implicit Function Theorem.

1.2.1 Theorem. (Implicit Function Theorem [15])

Suppose that φi are real-valued functions defined on D and continuously differentiable on

an open set D1 ⊂ D ⊂ Rm+p, where p > 0 and φi(x
0, y0) = 0 for i = 1 . . . ,m and

(x0, y0) ∈ D1. Assume that the Jacobian matrix [∂φi(x
0, y0)/∂xj] has the rank m. Then

there exists a neighborhood Nδ(x
0, y0) ⊂ D1, an open set D2 ⊂ Rp containing y0 and

real-valued functions ψk; k = 1, . . . ,m, continuously differentiable on D2, such that the

following conditions are satisfied:

x0
k = ψk(y

0); k = 1, . . . ,m

for every y ∈ D2, we have

φi(ψ(y), y) = 0; i = 1, . . . ,m

where ψ(y) = (ψ1(y), . . . , ψm(y)) and for all (x, y) ∈ Nδ(x
0, y0) the Jacobian matrix

[∂φi(x, y)/∂xj] has rank m. Furthermore, for y ∈ D2, the partial derivatives of ψk(y)

are the solutions of the set of linear equations

m∑
k=1

∂φi(ψ(y), y)

∂xk

∂ψk(y)

∂yj

= −∂φi(ψ(y), y)

∂yj

, i = 1, . . . ,m. (1.9)

Before introducing the method of Lagrange, we discuss the following result due to Beltrami

[19].

1.2.2 Theorem. Let f and gi; i = 1, . . . ,m be real-valued functions on D ⊂ Rn and

continuously differentiable on a neighborhood Nε(x
∗) ⊂ D. Suppose that x∗ is a local

minimum of f for all points x in Nε(x
∗) that also satisfy

gi(x) = 0; i = 1, . . . ,m. (1.10)

Also assume that the Jacobian matrix of gi(x
∗) has rank m. Under these hypotheses the

gradient of f at x∗ is a linear combination of the gradients of gi at x∗; that is, there exist

real numbers λ∗i such that:

∇f(x∗) =
m∑

i=1

λ∗i∇gi(x
∗).

Proof. By suitable re-arrangement and relabeling of rows, we can always assume that

the m × m matrix, formed by taking the first m rows of the Jacobian [∂gi(x
∗)/∂xj], is

nonsingular. The set of linear equations

m∑
i=1

∂gi(x
∗)

∂xj

λi =
∂f(x∗)

∂xj

; j = 1, . . . ,m (1.11)
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has a unique solution for the λi denoted by λ∗i .

Let x̂ = (xm+1, . . . , xn). Then by applying Theorem 1.2.1 to (1.10) at x∗, there exist real

functions hj(x̂) and an open set D̂ ⊂ Rn−m containing x∗, such that

x∗j = hj(x̂
∗); j = 1, . . . ,m

and

f(x∗) = f(h1(x̂
∗), . . . , hm(x̂∗), x∗m+1, . . . , x

∗
n).

As a result of the last relation, it follows that the first partial derivatives of f with respect

to xm+1, . . . , xn must vanish at x∗ [15]. Thus

∂f(x∗)

∂xj

=
m∑

k=1

∂f(x∗)

∂xk

∂hk(x̂
∗)

∂xj

+
∂f(x∗)

∂xj

= 0; j = m+ 1, . . . , n. (1.12)

From (1.9) we have for every j = m+ 1, . . . , n

m∑
k=1

∂gi(x
∗)

∂xk

∂hk(x̂
∗)

∂xj

= −∂gi(x
∗)

∂xj

; i = 1, . . . ,m. (1.13)

Multiplying each of the equations in (1.13) by λ∗i and adding up, we get

m∑
i=1

m∑
k=1

λ∗i
∂gi(x

∗)

∂xk

∂hk(x̂
∗)

∂xj

+ λ∗i
∂gi(x

∗)

∂xj

= 0; j = 1, . . . , n. (1.14)

Subtracting (1.14) from (1.12) and rearranging yield

m∑
k=1

[
∂f(x∗)

∂xk

−
m∑

i=1

λ∗i
∂gi(x

∗)

∂xk

]
∂hk(x̂

∗)

∂xj

+
∂f(x∗)

∂xj

−
m∑

i=1

λ∗i
∂gi(x

∗)

∂xj

= 0; (1.15)

j = m+ 1, . . . , n.

But the expression in brackets is zero by (1.11), and so

∂f(x∗)

∂xj

−
m∑

i=1

λ∗i
∂gi(x

∗)

∂xj

= 0, j = m+ 1, . . . , n.

The last expression, together with (1.11), yields the desired result.

The relation between the gradient of the function to be minimized and the gradients of

the constraint functions at a local extremum, as expressed in the last theorem, leads to
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the formulation of the Lagrangian, L(x, λ) of (P2)′′ as follows:

L(x, λ) = f(x)−
m∑

i=1

λigi(x) (1.16)

where the λi; i = 1, . . . ,m are called Lagrange Multipliers.

Lagrange’s method consists of transforming an equality constrained extremum problem

into a problem of finding a stationary point of the Lagrangian. This can be seen by the

following result [102].

1.2.3 Theorem. Suppose that f, gi; i = 1, . . . ,m, satisfy the hypotheses of Theorem

(1.2.2). Then there exists a vector of multipliers λ∗ = (λ∗1, . . . , λ
∗
m)T such that

∇L(x∗, λ∗) = 0.

Proof. Follows directly from Theorem (1.2.2) and the definition of L as given by (1.16).

Several different proofs of the last two theorems exist in the literature. See, for example

[19], [102]. We have chosen the one based on the Implicit Function Theorem, since it re-

quires no additional background material. Theorem (1.2.3) provides necessary conditions

for an extremum of f with equality constraints.

In the next subsection we turn to a discussion of sufficient conditions for such an ex-

tremum, see for example [15] [19] for details.

1.2.4 Theorem. Let f, g1, . . . , gm be twice continuously differentiable real-valued func-

tions of Rn. If there exist vectors x∗ ∈ Rn, λ∗ ∈ Rm such that

∇L(x∗, λ∗) = 0 (1.17)

and for every nonzero vector z ∈ Rn satisfying

zT∇gi(x
∗) = 0; i = 1, . . . ,m (1.18)

it follows that

zT∇2
xL(x∗, λ∗)z > 0 (1.19)

and hence f has a strict local minimum at x∗, subject to gi(x) = 0; i = 1, . . . ,m. If the

sense of the inequality in (1.19) is reversed, then f has a strict local minimum at x∗.

Proof. Assume that x∗ is not a strict local minimum. Then there exists a neighborhood

Nδ(x
∗) and a sequence {zk}, zk ∈ Nδ(x

∗), zk 6= x∗, converging to x∗ such that for every
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zk ∈ {zk}

gi(z
k) = 0; i = 1, . . . ,m (1.20)

and

f(x∗) ≥ f(zk). (1.21)

Let zk = x∗+ θkyk, where θk > 0 and ||yk|| = 1. The sequence {θk, yk} has a subsequence

that converges to (0, ŷ), where ||ŷ|| = 1. By the Mean Value Theorem [17], we get for

each k in this subsequence

gi(z
k)− gi(x

∗) = θk(yk)T∇gi(x
∗ + ηk

i θ
kyk) = 0; i = 1, . . . ,m (1.22)

where ηk
i is a number between 0 and 1 and

f(zk)− f(x∗) = θk(yk)T∇f(x∗ + ξkθkyk) ≤ 0 (1.23)

where ξk is, again, a number between 0 and 1.

Dividing (1.22) and (1.23) by θk and taking limits as k −→∞, we get

(ŷ)T∇gi(x
∗) = 0; i = 1, . . . ,m

and

(ŷ)T∇f(x∗) ≤ 0.

From Taylor’s theorem we have

L(xk, λ∗) = L(x∗, λ∗) + θk(yk)T∇xL(x∗, λ∗) +
1

2
(θk)2(yk)T∇2

xL(x∗ + ηkθkyk, λ∗)yk

where 1 > ηk > 0.

By (1.16), (1.17), (1.20), and (1.21), and dividing (1.24) by 1
2
(θk)2 we obtain

(yk)T∇2
xL(x∗ + ηkθkyk, λ∗)yk ≤ 0.

Letting k −→∞, we obtain from the last expression

(ŷ)T∇2
xL(x∗, λ∗)ŷ ≤ 0.

This completes the proof, since ŷ 6= 0, and it satisfies (1.18).

The sufficient conditions stated in the last theorem involve determining the sign of a

quadratic form, subject to linear constraints. This task can be accomplished by a result,
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due to Mann [99].

Let A = [αij] be an n × n symmetric real matrix and B = [βij] an n ×m real matrix.

Denote by Mpq the matrix obtained from a matrix M by keeping only the elements in the

first p rows and q columns.

Consider the next result whose proof can be found in [47] or [99]:

1.2.5 Theorem. Suppose that det [Bmm] 6= 0. Then the quadratic form

n∑
i=1

n∑
j=1

αijξiξj (1.24)

is positive for all nonzero ξi; i = (ξ1, . . . , ξn) satisfying

n∑
i=1

βijξi = 0 (1.25)

if and only if

(−1)m det

[
App Bpm

BT
pm 0

]
> 0

for p = m+ 1, . . . , n.

Similarly, (1.24) is negative for all nonzero vector ξ satisfying (1.25) if and only if

(−1)p det

[
App Bpm

BT
pm 0

]
> 0

for p = m+ 1, . . . , n.

Suppose now that the n ×m Jacobian matrix [∂gi(x
∗)

∂xj
] has rank m and the variables are

indexed in such a way that

det

[
∂g1(x∗)

∂x1
, . . . , ∂gm(x∗)

∂x1

∂g1(x∗)
∂xm

, . . . , ∂gm(x∗)
∂xm

]
6= 0.

Then we have the following result due to Avriel [15].

Let f, g1, . . . , gm be twice continuously differentiable real-valued functions. If there exist

vector x∗ ∈ Rn, λ∗ ∈ Rm, such that

∇L(x∗, λ∗) = 0
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and if

(−1)m det



∂2L(x∗,λ∗)
∂x1∂x1

, ... , ∂2L(x∗,λ∗)
∂x1∂xp

∂g1(x∗)
∂x1

, ... , ∂gm(x∗)
∂x1

. , ... , . . , ... , .

. , ... , . . , ... , .

. , ... , . . , ... , .

∂2L(x∗,λ∗)
∂xp∂x1

, ..., ∂2L(x∗,λ∗)
∂xp∂xp

∂g1(x∗)
∂xp

, ..., ∂gm(x∗)
∂xp

∂g1(x∗)
∂x1

, ..., ∂g1(x∗)
∂xp

0, ... , 0

. , ... , . . , ... , .

. , ... , . . , ... , .

. , ... , . . , ... , .

∂gm(x∗)
∂x1

, ..., ∂gm(x∗)
∂xp

0, ... , 0



> 0

for p = m+ 1, . . . , n, then f has a strict local minimum at x*, such that

gi(x
∗) = 0, i = 1, . . . ,m.

Proof. Follows directly from Theorems (1.2.4) and (1.2.5).

The similar result for strict maxima is obtained by changing (−1)m to (−1)p in the matrix

above.

1.2.3 First-order necessary conditions for Inequality Constrained

Extremum

We begin deriving first-order necessary conditions for inequality and equality constrained

extremum problems involving only first derivatives by considering the most general math-

ematical program (P2) defined earlier. Here the functions f, g1, . . . , gm, h1, . . . , hp are

assumed to be defined and differentiable on some open set D ⊂ Rn.

Let X ⊂ D denote the feasible set for problem (P2).

1.2.1 Definition. A point x∗ ∈ X is said to be a local solution of problem (P2), if there

exists a positive number δ > 0 such that:

f(x) ≥ f(x∗) (1.26)

for all x ∈ X ∩Nδ(x
∗).

If (1.26) holds for all x ∈ X, then x∗ is said to be a global minimum (global solution) of

problem (P2).
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Every point x in a neighborhood of x∗ can be written as x∗ + z, where z is a nonzero

vector if and only if x 6= x∗.

1.2.2 Definition. A vector z 6= 0 is called a feasible direction vector from x∗ if there

exists a number δ1 > 0 such that (x∗ + θz) ∈ X ∩Nδ1(x
∗) for all 0 ≤ θ ≤ δ1/||z||.

Feasible direction vectors are important in many numerical optimization algorithms. Mo-

mentarily, we are interested in them for the simple reason that if x∗ is a local solution of

problem (P2) and z is a feasible direction vector, then we must have f(x∗ + θz) ≥ f(x∗)

for sufficiently small positive θ.

Let us characterize the feasible direction vectors in terms of the constraints gi; i = 1, . . . ,m

and equations hj; j = 1, . . . , p.

Define

I(x∗) = {i : gi(x
∗) = 0}

and suppose that zT∇gk(x
∗) < 0 for some k ∈ I(x∗) z being a feasible direction vector

from x∗. By the differentiability assumption, we can write:

gk(x
∗ + θz) = gk(x

∗) + θzT∇gk(x
∗) + θεk(θ)

where εk(θ) tends to zero as θ → 0 . If θ is small enough, then zT∇gk(x
∗)+ εk(θ) < 0; and

since gk(x
∗) = 0, we obtain gk(x

∗ + θz) < 0 for all sufficiently small θ > 0, contradicting

the fact that z is a feasible direction vector from x∗. Hence we must have zT∇gk(x
∗) ≥ 0

for all i ∈ I(x∗).
Similar reasoning can be applied to show that, for a feasible direction vector z, we must

also have zT∇hj(x
∗) = 0 for j = 1, . . . , p.

Define

Z1(x∗) = {z | zT∇gk(x
∗) ≥ 0, i ∈ I(x∗), zT∇hj(x

∗) = 0; j = 1, . . . , p}.

From the foregoing discussion it follows that if z is a feasible direction vector from x∗,

then z ∈ Z1(x∗).

1.2.3 Definition. A set K ⊂ Rn is called a cone if x ∈ K implies αx ∈ K for every

nonnegative number α.

The set Z1(x∗) is clearly a cone. It is also called a linearizing cone of X at x∗ [64], since

it is generated by linearizing the constraint functions at x∗.

Let us define Z2(x∗), another ”‘linearizing”’ set that will be needed later:

Z2(x∗) = {z : zT∇f(x∗) < 0}.

If z ∈ Z2(x∗), it can be shown that there exists a point x = x∗ + θz, sufficiently close to

x∗, such that f(x∗) > f(x).
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Figure 1.5: Interpretation of the Farkas lemma for a 3× 2 matrix

The following lemma, due to Minkowski and Farkas [56] is needed in the sequel.

1.2.6 Lemma. Let A be a given m×n real matrix and b a given n vector. The inequality

bTy ≥ 0 holds for all the vectors y satisfying Ay ≥ 0 if and only if there exists an m vector

ρ ≥ 0 such that ATρ = b.

An illustration of the Farkas Lemma is given in Figure 1.5 for a 3 × 2 matrix A. The

vectors A1, A2, A3 are the row vectors of the matrix A. Consider the set Y consisting

of all vectors y that make an acute angle with every row vector of A. The Farkas lemma

then states that b makes an acute angle with every y ∈ Y if and only if b can be expressed

as a nonnegative linear combination of the row vectors of A. In Figure 1.5, b1 is a vector

that satisfies these conditions, whereas b2 is a vector that does not.

The Lagrangian associated with problem (P2) is defined as follows:

L(x, λ, µ) = f(x)−
m∑

i=1

λigi(x)−
p∑

j=1

µjhj(x)

and give the next three results with proofs can be found in [15].

1.2.7 Theorem. Suppose that x0 ∈ X. Then Z1(x0) ∩ Z2(x0) = ∅ if and only if there

exist vectors λ0, µ0 such that

∇xL(x0, λ0, µ0) = ∇f(x0)−
m∑

i=1

λ0
i∇gi(x

0)−
p∑

j=1

µ0
j∇hj(x

0) (1.27)

λ0
i gi(x

0) = 0; i = 1, . . . ,m (1.28)

λ0 ≥ 0. (1.29)

Proof. The set Z1(x0) is never empty, since the origin always belongs to it; and Z1(x0)∩
Z2(x0) is empty if and only if for every z satisfying

zT∇gi(x
0) ≥ 0; i ∈ I(x0) (1.30)

zT∇hj(x
0) = 0; j = 1, . . . , p (1.31)

we have

zT∇f(x0) ≥ 0. (1.32)
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We can write (1.31) as two inequalities

zT∇hj(x
0) ≥ 0; j = 1, . . . , p (1.33)

zT [−∇hj(x
0)] ≥ 0; j = 1, . . . , p (1.34)

It follows that (1.32) holds for all vectors z satisfying (1.30),(1.33), and (1.34) if and only

if there exist vectors λ0 ≥ 0, µ1 ≥ 0, µ2 ≥ 0 such that

∇f(x0) =
m∑

i∈I(x0)

λ0
i∇gi(x

0)−
p∑

j=1

(µ1
j − µ2

j)∇hj(x
0).

Letting λ0
i = 0 for i /∈ I(x0), µ0 = µ1 − µ2, we conclude that Z1(x0) ∩ Z2(x0) is empty if

and only if (1.27) to (1.29) hold.

1.2.8 Theorem. Suppose that f, g1, . . . , gm, . . . , hp are continuously differentiable on

an open set containing X. If x∗ is a solution of problem (P2), then there exist vectors

λ∗ = (λ∗0, . . . , λ
∗
m)T and µ∗ = (µ∗1, . . . , µ

∗
p)

T such that

∇xL̄(x∗, λ∗, µ∗) = λ∗0∇f(x∗)−
m∑

i=1

λ∗i∇gi(x
∗)−

p∑
j=1

µ∗j∇hj(x
∗) = 0 (1.35)

λ∗i gi(x
∗) = 0; i = 1, . . . ,m (1.36)

(λ∗, µ∗) 6= 0, λ∗ ≥ 0. (1.37)

Proof. We shall consider necessary conditions for the solution x∗ of the problem{
min f(x)

gi(x) ≥ 0; i = 1, . . . ,m

The conditions are the existence of a vector λ∗ such that

λ∗0∇f(x∗)−
m∑

i=1

λ∗i∇gi(x
∗) (1.38)

λ∗i gi(x
∗) = 0; i = 1, . . . ,m (1.39)

λ∗ 6= 0, λ∗ ≥ 0. (1.40)
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If gi(x
∗) > 0, ∀ i, then I(x∗) = 0. Choose λ∗0 = 1, λ∗1 = λ∗2 =, . . . , λ∗m = 0, and (1.38) to

(1.40) hold with ∇f(x∗) = 0.

Suppose now that I(x∗) 6= ∅. Then for every z satisfying

zT∇gi(x
∗) > 0; i ∈ I(x∗) (1.41)

we cannot have

zT∇f(x∗) < 0. (1.42)

This result follows from the previously seen fact that if there exist a z satisfying (1.41),

then we can find a sufficiently small δ such that the point x = x∗ + θz satisfies

gi(x) > 0; i = 1, . . . ,m

for all 0 < θ < δ; that is, x is feasible.

If (1.42) also holds, then

f(x) < f(x∗),

contradicting the fact that x∗ is a minimum. Thus the system of inequalities (1.41) and

(1.42) has no solution. By Theorem (1.2.7), there exists a nonzero vector λ∗ ≥ 0 such

that

λ∗0∇f(x∗) +
m∑

i∈I(x∗)

λ∗i [−∇gi(x
∗)] = 0 (1.43)

Letting λ∗i = 0 for i ∈ I(x∗), we get from (1.43), after rearrangement,

λ∗0∇f(x∗)−
m∑

i=1

λ∗i∇gi(x
∗) = 0 (1.44)

and clearly

(λ∗i , gi(x
∗)) = 0; i = 1, . . . ,m. (1.45)

Conditions (1.35) to (1.37) of Theorem (1.2.8) become conditions (1.27) to (1.29) of

Theorem (1.2.7), if λ∗0 is positive. Conversely, the conditions of Theorem (1.2.7) trivially

imply those of Theorem (1.2.8) with λ∗0 = 1. The lemma below with proof found in [15]

characterizes S(A, x).

1.2.9 Lemma. A vector z is contained in S(A, x) if and only if there exists a sequence

of vectors {xk} ⊂ A converging to x and a sequence of nonnegative numbers {αk} such

that the sequence {αk(xk − x)} converges to z.
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1.2.10 Lemma. Suppose that x0 ∈ X. The set Z1(x0) ∩ Z2(x0) is empty if and only if

∇f(x0) ∈ (Z1(x0))T .

Proof. The set Z1(x0) ∩ Z2(x0) is empty if and only if for every z ∈ Z1(x0) we have

zT∇f(x0) ≥ 0. It follows, then that ∇f(x0) is contained in the positively normal cone of

Z1(x0).

1.2.11 Lemma. Suppose that x0 is a solution of problem (P2). Then

∇f(x0) ∈ (S(X, x0))T .

Proof. We must show that zT∇f(x0) ≥ 0 for every z ∈ S(X, x0). Suppose that z ∈
S(X, x0). Then, by Lemma 1.2.9, there exist a sequence {xk} ∈ X, converging to x0 and

a sequence of nonnegative numbers {α} such that {αk(xk − x0)} converges to z. If f is

differentiable at x0, we can write

f(xk) = f(x0) + (xk − x0)T∇f(x0) + ε||xk − x0||,

where ε is a function that tends to zero as k →∞. Hence

αk[f(xk)− f(x0)] = (αk(xk − x0))T∇f(x0) + ε||xk − x0||.

Since xk ∈ X and x0 is a local minimum, it follows that by letting k → ∞ the term

ε||xk − x0|| → 0, and the expression αk[f(xk) − f(x0)] converges to a nonnegative limit.

Thus

lim
k→∞

(αk(xk − x0))T∇f(x0) = zT∇f(x0) ≥ 0

where ∇f(x0) ∈ (S(X, x0))′.

Now we can state and prove the main result of this subsection, a set of necessary con-

ditions, stronger than those presented in Theorem (1.2.4). The conditions stated below

can be viewed as a direct extension of the Kuhn-Tucker necessary conditions [86] for

optimality.

1.2.12 Theorem. (Generalized Kuhn-Tucker Necessary Conditions)

Let x∗ be a solution of problem (P2) and suppose that

(Z1(x∗))′ = (S(X, x∗))′.

Then there exist vectors λ∗ = (λ∗1, . . . , λ
∗
m)T , λ∗ ≥ 0 and µ∗ = (µ∗1, . . . , µ

∗
p)

T such that

∇f(x∗)−
m∑

i=1

λ∗i∇gi(x
∗)−

p∑
j=1

µ∗j∇hj(x
∗) = 0 (1.46)
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λ∗i gi(x
∗) = 0; i = 1, . . . ,m. (1.47)

Proof. Suppose that x∗ is a solution of (P2). By Lemma (1.2.11), ∇f(x∗) ∈ (S(X, x∗))′.

If Z1(x∗) = (S(X, x∗))′, then

∇f(x∗) ∈ (Z1(x∗))′.

By Lemma (1.2.10), the set Z1(x∗)∩Z2(x∗) is empty; and by Theorem (1.2.7), conditions

(1.46) and (1.47) hold.

1.2.4 Second-order optimality conditions

In this subsection optimality conditions for problem (P2) that involve second derivatives

are discussed.

In the following discussion we assume that the functions f, g1, . . . , gm, h1 . . . , hp appearing

in problem (P2) are twice continuously differentiable. A second-order constraint qualifi-

cation will be stated first. Let x ∈ X and define

Ẑ1(x) = {z : zT∇gi(x) = 0; i ∈ I(x), zT∇hj(x) = 0; j = 1, . . . , p}.

1.2.4 Definition. The second-order constraint qualification is said to hold at x0 ∈ X if

every nonzero z ∈ Ẑ1(x0) is tangent to a twice differentiable arc contained in the boundary

of X; that is, for each z ∈ Ẑ1(x0) there exist a twice differentiable function α defined on

[0, ε] with range in Rn such that α(0) = x0,

gi(α(θ)) = 0; i ∈ I(x0), hj(α(θ)) = 0; j = 1, . . . , p (1.48)

for 0 ≤ θ ≤ ε and
dα(0)

dθ
= λz

for some positive number λ.

We have then the second-order conditions [15].

1.2.13 Theorem. Let x∗ be a solution of problem (P2) and suppose that there exist

vectors λ∗ = (λ∗1, . . . , λ
∗
m), λ∗ ≥ 0, µ∗ = (µ∗1, . . . , µ

∗
m) satisfying (1.46) and (1.47). Further

suppose that the second-order constraint qualification holds at x∗. Then for z 6= 0 such

that z ∈ Ẑ1(x∗), we have

zT [∇2f(x∗)−
m∑

i=1

λ∗i∇2gi(x
∗)−

p∑
j=1

µ∗j∇2hj(x
∗)]z ≥ 0. (1.49)

Proof. Let z 6= 0, and z ∈ Ẑ1(x∗), and let α(θ) be the vector-valued function assumed in

the second-order constraint qualification; that is, α(0) = x∗, dα(0)/dθ = z (since Ẑ1(x∗)

is a cone, we assumed, without loss of generality, that λ = 1). Let d2α(0)/dθ2 = w. From
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(1.48) and the chain rule it follows that

d2gi(α(0))

dθ2
= zT∇2gi(x

∗)z + wT∇gi(x
∗) = 0; i ∈ I(x∗) (1.50)

d2hj(α(0))

dθ2
= zT∇2hj(x

∗)z + wT∇hj(x
∗) = 0; j = 1, . . . , p. (1.51)

From (1.46), (1.47) and the definition of Ẑ1(x∗), we have

df(α(0))

dθ
= zT∇f(x∗) = zT [

m∑
i=1

λ∗i∇gi(x
∗) +

p∑
j=1

µ∗j∇hj(x
∗)] = 0. (1.52)

Since x∗ is a local minimum and
df(α(0))

dθ
= 0

it follows that
d2hj(α(0))

dθ2
≥ 0

that is,

d2f(α(0))

dθ2
= zT∇2f(x∗)z + wT∇f(x∗) ≥ 0; i ∈ I(x∗). (1.53)

Multiplying (1.50) and (1.51) by the corresponding multipliers, subtracting from (1.53)

and by (1.46) and (1.47), we obtain

zT [∇2f(x∗)−
m∑

i=1

λ∗i∇2gi(x
∗)−

p∑
j=1

µ∗j∇2hj(x
∗)]z ≥ 0. (1.54)

1.2.5 Finding optimal solutions of Mathematical Programming

problems

Mathematical Programming problems can be solved by using a variety of methods such as

penalty- and barrier- function methods, gradient projection methods and Sequel Quadratic

Programming (SQP) algorithms [11].

Among these methods, SQP algorithms have proved highly effective for solving general

constrained problems with smooth objective and constraint functions [58]. A more recent

development in constrained optimization is the extension of the modern interior-point

approaches to the general class of Mathematical Programs.

In this thesis we discuss the algorithm of SQP method for a Mathematical Program with
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equality constraints, adapted from [11].

Consider the optimization problem

(P2)′′′

{
min f(x)

x ∈ D

where

D = {x ∈ Rn | hj(x) = 0; j = 1, . . . , p; x ≥ 0}

and f(x), hj(x); j = 1, . . . , p are continuous functions which have continuous second

partial derivatives. We assume that the feasible region D is non empty and p ≤ n.

From Subsection (1.2.2), we know that the first-order necessary conditions for x∗ to be a

local minimizer of the problem (P2)′′′ is that there exists a λ∗ ∈ Rp, λ∗ ≥ 0 such that:

∇L(P2)′′′(x
∗, λ∗) = 0

where L(P2)′′′(x, λ) is the Lagrangian of (P2)′′′ defined by

L(P2)′′′(x, λ) = f(x)−
p∑

j=1

λjhj(x).

If {xk, λk} is the kth iterate, which is assumed to be {x∗, λ∗} i.e., xk ' x∗ and λk ' λ∗,

we need to find an increment {δx, δλ} such that the next iterate

{xk+1, λk+1} = {xk + δx, λk + δλ}

is closer to {x∗, λ∗}.

If we approximate ∇L(P2)′′′(xk+1, λk+1) by using the first two terms of the Taylor series

of ∇L(P2)′′′ for {xk, λk}, i.e.,

∇L(P2)′′′lem:(xk+1, λk+1) ' ∇L(P2)′′′(xk, λk) +∇2L(P2)′′′(xk, λk) (δx, δλ)
T

then {xk+1, λk+1} is an approximation of {x∗, λ∗} if the increment {δx, δλ} satisfies the

equality

∇2L(P2)′′′(xk, λk) (δkδλ)
T = −∇L(P2)′′(xk, λk). (1.55)

More specifically we can write (1.55) as follows [11]:(
Wk − AT

k

−Ak 0

)(
δx

δλ

)
=

(
AT

k λk − gk

ak

)
(SQ1)
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where

Wk = ∇2
xf(xk)−

p∑
j=1

(λk)j∇2
xaj(xk)

Ak =


∇T

xa1(xk)

...

∇T
xap(xk)


gk(x) = ∇xf(xk)(

ak = )a1, . . . , ap(xk))
T .

If Wk is positive definite and Ak has a full rank, then the matrix at the left-hand side of

relation SQ1 is nonsingular and symmetric and the system of relation SQ1 can be solved

efficiently for {δx, δλ}.

Relation in (SQ1) can also be written as

Wkδx + gk = AT
k λk+1Akδx = −ak

and these relations may be interpreted as the first-order necessary conditions for δx to be

a local minimizer of the QP problem

(P2)iv

{
min

(
1
2
δTWkδ + δTgk

)
Akδ = −ak

If Wk is positive definite and Ak has full rank, the minimizer of the problem (P2)iv can

be found. Once the minimizer, δx, is found, the next iterate is set to xk+1 = xk + δx and

the Lagrangian multiplier vector λk+1 is determined as

λk+1 = (AkA
T
k )−1Ak(Wkδx + gk) (1.56)

by using (P2)iv.

With xk+1 and λk+1 known, Wk+1, gk+1, Ak+1 and ak+1 can be evaluated. The iterations

should continue until ||δx|| is sufficiently small to terminate the algorithm.

We can see that the entire solution procedure consists of solving a series of QP sub-

problems in a sequential manner, and as a consequence, the method is referred to as the

Sequencial Quadratic Programming (SQP ) method

A stepwise description of the method is as follows:

1.2.1 Algorithm.

Step 1. Set {x, λ} = {x0, λ0}, k = 0 and initialize the tolerance ε.
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Step 2. Evaluate Wk, Ak, gk and ak.

Step 3. Solve the QP problem (P2)iv for δx and compute the Lagrangian multiplier λk+1

using relation (1.56).

Step 4. Set xk+1 = xk + δx.

If ||δx|| ≤ ε, print x∗ = xk+1 and stop;

otherwise, set k = k + 1 and repeat from step 2.

The following results by [58] show that the SQP algorithms have good local properties.

1.2.14 Lemma. For {x0, λ0} the QP problem has a unique solution δx, and Algorithm

(1.2.1) converges quadratically.

The main disadvantage of Algorithm (1.2.1)yusinglevel is that they may fail to converge

when the initial point is not sufficiently close to x∗ [11].
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1.3 Multiobjective Programming

1.3.1 Problem formulation

A Multiobjective Program is a problem of the form:

(P3) min
x∈D

(
f 1(x), . . . , fK(x)

)
where

D = {x ∈ Rn | gi(x) ≤ 0; i = 1, . . . ,m}

is the feasible set, K ≥ 2, fk(x); k = 1, . . . , K and gi(x); i = 1, . . . ,m are real-valued

functions of Rn.

The feasible criterion space Z is defined as

Z = {f(x) : x ∈ D}.

The image of D under

f = (f 1 . . . , fK)

is denoted by

ZD = f(D) = {z ∈ RK : z = f(x) for some x ∈ D}

is referred to as the feasible set in criterion space.

A Multiobjective Programming (MOP) problem may be considered as the selection of a

best compromise criterion vector z from ZD, which may then be stated as:

(P3)′ min
z∈ZD

z =
(
z1(x), . . . zK(x)

)
where

ZD = f(D) = {z ∈ RK : z = f(x) for some x ∈ D}

and zj; k = 1, . . . , K are components of criterion vector z.

For illustration purposes, let us have a look at the following example from [50].

1.3.1 Example. Consider the mathematical program

min
x≥0

(f 1(x), f2(x)),

where f 1(x) =
√
x+ 1 and f 2(x) = x2 − 4x+ 5.

The feasible set is

D = {x ∈ R : x ≥ 0}
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and the objective functions are

f 1(x) =
√
x+ 1 and f 2(x) = x2 − 4x+ 5.

The decision space is R because D ⊂ R. The criterion space is R2, to obtain the image

of the feasible set in criterion space we substitute z1 for f 1(x) and z2 for f 2(x) to get

x = (z1)
2−1 (solving

√
1 + x for x). Therefore, we obtain z2 = ((z1)

2−1)2+4−4(z1)
2+5 =

(z1)
4 − 6(z1)

2 + 10. Note that x ≥ 0 translate to z1 ≥ 1 so that ZD = f(D).

1.3.2 Efficient solution and nondominated point

1.3.1 Definition. Consider (P3), a point x1 ∈ D is dominated by another point x2 ∈ D
if and only if

fk(x2) ≥ fk(x1); k = 1, . . . , K

and f l(x) > f ∗l(x) for at least one l.

We are now in a position to introduce the notion of efficiency for a Multiobjective Pro-

gramming problem.

1.3.2 Definition. Consider (P3)′, a criterion vector z∗ ∈ Z is nondominated for (P3)′,

if the decision vector corresponding to it is efficient for (P3).

In other words, a nondominated criterion vector z∗ ∈ ZD is such that any other points in

ZD, which increase the value of one criterion also decrease the value of at least one other

criterion.

Intuitively, when we have a set of solutions such that we cannot improve any objective

further without at the same time worsening another then we have the Pareto-optimal set

or Pareto front (of objective vectors). In such a case all the other lesser solutions are

said to be dominated by these better ones and we can discard them for decision making

purposes.

1.3.3 Definition. The set of all efficient solutions x∗ ∈ D is denoted by DE. The set of

all nondominated points z∗ = f(x∗) ∈ ZD, where x∗ ∈ DE is denoted by ZN .

In the following definitions, we present variants of the notion of efficiency.

1.3.4 Definition. Consider (P3), x∗ ∈ D is a local efficient solution for (P3), if there

exists δ > 0 such that x∗ is efficient for (P3) in D ∩B(x∗, δ).

1.3.5 Definition. Consider (P3)′, a criterion vector z∗ ∈ Z is locally nondominated for

(P3)′, if the decision vector corresponding to it is locally efficient for (P3).

Often, multiobjective programming algorithms provide solutions that may not be efficient

but may satisfy other criteria that make them significant for practical applications. As

an example, we present the notion of weak efficiency.

1.3.6 Definition. A solution x∗ ∈ D is called weakly efficient solution for (P3), if there
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is no x ∈ D such that fk(x) < fk(x∗) for all k = 1, . . . , K.

The point z∗ = f(x∗) is then called weakly non-dominated for (P3)′.

1.3.7 Definition. A solution x∗ ∈ D is called strictly efficient for (P3) if there is no

x ∈ D, x 6= x∗ such that fk(x) ≤ fk(x∗) for all k = 1, . . . , K.

The point z∗ = f(x∗) is then called strictly non-dominated for (P3)′.

The weakly(strictly) efficient and nondominated sets are denoted by DWE(DSE) and ZWE

respectively. Efficient solutions are weakly efficient, but weakly efficient solutions are not

necessarily efficient [137].

For characterization, we introduce level sets and level curves of functions.

1.3.8 Definition. Let D ⊂ Rn; f : D → R, and x∗ ∈ D

L≤(f(x∗)) = {x ∈ D : f(x) ≤ f(x∗)} (1.57)

is called the level set of f at x∗.

L=(f(x∗)) = {x ∈ D : f(x) = f(x∗)} (1.58)

is called the level curve of f at x∗.

L<(f(x∗)) = L≤(f(x∗))\L=(f(x∗)) (1.59)

= {x ∈ D : f(x) < f(x∗)}

is called the strict level set of f at x∗.

Obviously L=(f(x∗)) ⊂ L≤(f(x∗)). We can now formulate the characterization of (strict,

weak) efficiency using level sets, due to Ehrgott [50].

1.3.1 Theorem. Let x∗ ∈ D be a feasible solution and define z∗k = fk(x∗); k = 1, . . . , K,

then

1. x∗ is strictly efficient if and only if

K⋂
k=1

L≤(z∗) = {x∗}.

2. x∗ is efficient if and only if

K⋂
k=1

L≤(z∗) =
K⋂

k=1

L=(z∗).
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3. x∗ is weakly efficient if and only if

K⋂
k=1

L<(z∗) = ∅.

Proof. 1. x∗ is strictly efficient

⇔ there is no x ∈ D, x 6= x∗ such that f(x) ≤ f(x∗)

⇔ there is no x ∈ D, x 6= x∗ such that fk(x) ≤ fk(x∗) for all k = 1, . . . , K

⇔ there is no x ∈ D, x 6= x∗ such that x ∈ ∩K
k=1L≤(z∗k)

⇔ ∩K
k=1L≤(z∗k) = {x∗}.

2. x∗ is efficient

⇔ there is no x ∈ D, such that both fk(x) ≤ fkx∗) for all k = 1, . . . , K and

f l(x) ≤ f l(x∗) for some l

⇔ there is no x ∈ D, such that both x ∈ ∩K
k=1L≤(z∗k) and x ∈ L<(z∗l ) for some l

⇔ ∩K
k=1L≤(z∗k) = ∩K

k=1L=(z∗k).

3. x∗ is weakly efficient

⇔ there is no x ∈ D, such that fk(x) < fk(x∗) for all k = 1, . . . , K

⇔ there is no x ∈ D, such that x ∈ ∩K
k=1L<(z∗k)

⇔ ∩K
k=1L≤(z∗k) = ∅.

In order to eliminate undesirable nondominated solutions with unbounded trade-offs be-

tween the various objectives, the concept of proper efficiency and proper nondominance

have been introduced by Geoffrion [61] below.

1.3.3 Proper efficiency and proper nondominance

1.3.9 Definition. z∗ ∈ ZD is properly non-dominated if and only if it is non dominated

and there exist a scalar M > 0 such that for each k = {1, . . . , K} and each z ∈ ZD with

zk > z∗k, there exists at least one j ∈ {1, . . . , K} with z∗j > zj and
(

zk−z∗k

z∗j−zj

)
≤M .

If this ratio is not bounded from above, an extremely large improvement in the numerator

would result from an extremely small decrement in the denominator. Thus, one would

always choose a solution which is properly efficient.

Geoffrion [61] suggested that the analyst unsure about the proper efficiency of a solution

should test numerous values of the ratio about the selected point.

To characterize proper efficiency in Geoffrion’s sense consider the following weighted sum

optimization problem and the subsequent propositions and theorem which can be found

in [50].

1.3.10 Definition. Let {λk}; 1 ≤ k ≤ K be such that λk ≥ 0;∀ k and
∑K

k=1 λk = 1. We
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call the single objective optimization problem

(P3)′′ min
x∈D

K∑
k=1

λkf
k(x)

a weighted sum optimization problem of the MOP (P3).

1.3.2 Proposition. Suppose that x∗ is an optimal solution of the weighted sum optimiza-

tion problem (P3)′′, then the following statement holds:

1. x∗ ∈ DWE

2. x∗ ∈ DE

3. if x∗ is a unique optimal solution of (P3)′′ then x∗ ∈ DSE.

1.3.3 Proposition. Let D be a convex set, and let fk; k = 1, . . . , K be convex functions.

If x∗ ∈ DWE, then x∗ is an optimal solution of (P3)′′.

1.3.4 Theorem. Let D ⊂ Rn be convex and assume fk : D → R are convex for

k = 1, . . . , K. Then x ∈ D is properly efficient if and only if x∗ is an optimal solution of

(P3)′′, with strict positive weights λk; k = 1, . . . , K.

Let the properly efficient set be denoted by DpE.

Other definitions of proper efficiency have been proposed by Borwen [28], Benson [22] and

Kuhn-Tucker [86].

We give Kuhn-Tucker definition of proper efficiency in the sequel.

1.3.11 Definition. (Kuhn-Tucker (KT) proper efficiency [86])

A solution x∗ ∈ D is called properly efficient (in Kuhn-Tucker’s sense) if it is efficient and

if there is no d ∈ Rn satisfying

∇fk(x∗)Td ≤ 0 for all k = 1, . . . , K,

∇f j(x∗)Td < 0 for some j ∈ {1, . . . , K},

∇gi(x
∗)Td ≤ 0; ∀i ∈ I(x∗) = {i = 1, . . . ,m, gi(x

∗) = 0}.

The set I(x∗) is called the set of active indices.

1.3.12 Definition. (Kuhn-Tucker (KT) constraint qualification [86])

A differentiable MOP (P3) satisfies the KT constraint qualification at x∗ ∈ D if for

any d ∈ Rn with ∇fk(x∗)Td ≤ 0,∀ j ∈ I(x∗), there is a real number t > 0, a function

θ : [0, t] → Rn, and α > 0 such that θ(0) = x∗, g(θ(t̄)) ≤ 0 for all t̄ ∈ [0, t] and θ′(0) = αd.

This constraint qualification means that, the feasible set D has a local description as a

differentiable curve (at x∗): Every feasible direction d can be written as the gradient of a

feasible curve starting at x∗.

1.3.5 Theorem. (Geoffrion [61])

If a differentiable MOP (P3) satisfies the KT constraint qualification at x∗ and x∗ is
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properly efficient in Geoffrion sense, then it is properly efficient in Kuhn-Tucker sense.

Proof. Suppose x∗ is efficient, but not properly efficient according to Definition (1.3.11).

Then there is some d ∈ Rn such that

∇f 1(x∗)Td < 0

∇fk(x∗)Td ≤ 0 for all k = 2, . . . , K,

∇gi(x
∗)Td ≤ 0, ∀i ∈ I(x∗)}.

Using the function θ from the constraint qualification, we take a sequence t̄k → 0, and if

necessary a subsequence such that

Q = {l : f l(θ(t̄k)) > f l(x∗)}

is the same for all k. Since for l ∈ Q by Taylor expansion of f l at θ(tk)

f l(θ(tk))− f l(x∗) = tk
〈
∇f l(x∗), αd

〉
+ 0(tk) > 0

and
〈
∇f l(x∗), d

〉
≤ 0 it must be that

〈
∇f l(x∗), αd

〉
= 0 ∀ l ∈ Q.

But since 〈∇f 1(x∗), d〉 < 0 the latter implies

⇒ f 1(x∗)− f 1(θ(tk))

f j(θ(tk))− f j(x∗)
=
−〈∇f 1(x∗), αd〉+ 0(tk)

tk

〈∇(x∗), αd〉+ 0(tk)
tk

→∞

whenever i ∈ Q. Hence x∗ is not properly efficient according to Geoffrion’s definition.

The converse of Theorem (1.3.5) holds without the constraint qualification [50].

1.3.4 Ideal point and compromise function

One way of obtaining initial information about a multiobjective decision problem is by

finding the ideal point [145] also called utopia point” [143].

1.3.13 Definition. A point z∗ = (z∗1, . . . , z∗K) where

z∗k = min
x∈D

fk(x) = min
z∈ZD

zk

is called the ideal point of the multiobjective problem (P3).

One of the most frequently used measures of distance in decision making is the family of
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Lp metrics, which can be described by the following relation:

Lp =
{ K∑

k=1

(
fk(x)− z∗k

)p }1/p

(1.60)

where p ∈ [1,∞]. The ideal point and the concept of compromise function are the basic

idea of compromise programming [50], [117].

1.3.5 Efficiency conditions for Multiobjective Programming prob-

lems

In this section we prove necessary and sufficient conditions for weak and proper efficiency

of the solution of MOP problem (P3). The results follow along the lines of Karush-Kuhn-

Tucker optimality conditions, known from single objective Mathematical Programming

discussed in subsection (1.2.3).

We state the following theorem of the alternatives that can be found in [98].

1.3.6 Theorem. (Motzkin’s theorem of the alternative [98])

Let B,C,D be k × n, l × n and o× n matrices, respectively. Then either

Bx < 0, Cx ≤ 0, Dx = 0

has a solution x ∈ Rn or

BTy1 + CTy2 +DTy3 = 0, y1 ≥ 0, y2 ≥ 0

has a solution y1 ∈ Rk, y2 ∈ Rl, y3 ∈ Ro, but never both.

We start with conditions for weak efficiency of Multiobjective Program (P3).

1.3.7 Theorem. (Ehrgott [50])

The Lagrangian of (P3) is defined as follows:

LB1(x, λ, µ) =
K∑

k=1

λk∇fk(x) +
m∑

i=1

µi∇gi(x)

where (x, λ, µ) ∈ Rn × RK × Rm and (λ, µ) 6= (0, 0). Suppose that the Kuhn-Tucker

constraint qualification given in Definition (1.3.11) is satisfied at x∗ ∈ D.

If x∗ is a weakly efficient solution of (P3) there exist (x∗, λ∗, µ∗) that satisfy the Fritz
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John system

∇xLB1(x, λ, µ) = 0

∇µLB1(x, λ, µ) ≤ 0

µ∇µLB1(x, λ, µ) = 0

λ ≥ 0.


KT1

Proof. Let x∗ ∈ DWE. We first show that there can be no d ∈ Rn such that

∇fk(x∗)Td < 0, ∀ k (1.61)

∇gi(x
∗)Td < 0, ∀ i ∈ I(x∗) = {i : gi(x

∗) = 0}. (1.62)

We then apply Motzkin’s Theorem of the alternative (1.3.6) to obtain the multipliers

λ∗k; k = 1, . . . , K and µ∗i ; i = 1, . . . ,m.

Suppose that such a d ∈ Rn exists. From the KT constraint qualification there is a

continuously differentiable function θ : [0, t̄] → Rn such that θ(0) = x∗, g(θ(t)) ≤ 0 for

all t ∈ [0, t̄] and θ′(0) = αd with α > 0. Thus

fk(θ(t)) = fk(x∗) + t
〈
∇fk(x∗), αd

〉
+ 0(t) (1.63)

and using 〈
∇fk(x∗), d

〉
< 0

it follows that fk(θ(t)) < fk(x∗), k = 1, . . . , K for t sufficiently small, which contradicts

x∗ ∈ DWE.

It remains to show that (1.62) and (1.63) imply conditions of (KT1). This is achieved by

using matrices

B = (∇fk(x∗))k=1,...,K , C = (∇gi(x
∗))i∈I(x∗), D = 0 with l = |I(x∗)|

in Theorem (1.3.6). Then since (1.61) and (1.62) have no solution d ∈ Rn, according to

Theorem (1.3.6) there must be y1 = λ∗, y2 = µ∗ and y3 such that

BTy1 + CTy2 = 0, with y1 ≥ 0 and y2 ≥ 0

.i.e.
K∑

k=1

λ∗k∇fk(x∗) +
m∑

i∈I(x∗)

µ∗i∇gi(x
∗) = 0.

We complete the proof by setting µ∗i = 0 for i ∈ {1, . . . ,m}\I(x∗).
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If involved objective functions are convex and the feasible set is convex, then the Karush-

Kuhn-Tucker conditions for Multiobjective Programming problems are also sufficient.

1.3.8 Theorem. ( Miettinen [103])

Assume x ∈ Rn, λ ∈ RK, µ ∈ Rm are nonnegative. Let x∗ ∈ Rn and suppose f 1(x), . . . , fK(x),

g1(x), . . . , gm(x) are continuously differentiable at x∗ and convex. If (x∗, λ∗, µ∗) satisfies

system KT1 then x∗ is weakly efficient for (P3).

It is well known in Mathematical Programming that global optimality implies local op-

timality. So it is in Multiobjective Programming: global efficiency solution implies local

efficiency. The converse is valid only for convex Multiobjective Programming problems,

see e.g. [40].

It is also well known that if all the objective functions are quasi-convex on a convex

feasible region with at least one being strictly quasi-convex, then every locally efficient

solution for (P3) is also globally efficient. Interested readers may consult [103] for more

details.

Next we prove similar conditions for properly efficient solution of (P3) in Kuhn-Tucker’s

sense and in Geoffrion’s sense. We consider the following Tucker’s theorem of the alter-

native, which we use in the sequel.

1.3.9 Theorem. (Tucker’s theorem of the alternative)

Let B,C, and D be k × n, l × n and o× n matrices. Then either

Bx ≤ 0, Cx ≤ 0, Dx = 0

has a solution x ∈ Rn or

BTy1 + CTy2 +DTy3 = 0, y1 > 0, y2 ≥ 0

has a solution y1 ∈ Rk, y2 ∈ Rl, y3 ∈ Ro, but never both.

A proof of (1.3.9) can be found in [98].

Kuhn-Tucker definition of proper efficiency (Definition (1.3.11)) is based on the system

of inequalities

∇fk(x∗)Td ≤ 0 for all k = 1, . . . , K, (1.64)

∇f j(x∗)Td < 0 for some j ∈ {1, . . . , K}, (1.65)

∇gi(x
∗)Td ≤ 0, ∀i ∈ I(x∗) = {i = 1, . . . ,m : gi(x

∗) = 0} (1.66)

having no solution. We apply Tucker’s theorem of the alternative, to show that a dual
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system of inequalities has a solution. This system yields a necessary condition for proper

efficiency in Kuhn-Tucker’s sense.

1.3.10 Theorem. If x∗ is properly efficient for (P3) in Kuhn-Tucker’s sense, there exist

λ∗ ∈ Rn, µ∗ ∈ Rm such that

∇xLB1(x
∗, λ∗, µ∗) = 0

∇µLB1(x
∗, λ∗, µ∗) ≤ 0

µ∇µLB1(x
∗, λ∗, µ∗) = 0

λ > 0, µ ≥ 0.


(KT2)

Proof. Because x∗ is properly efficient in Kuhn-Tucker’s sense, there are no d ∈ Rn

satisfying conditions (KT2). We apply Theorem (1.3.9) to matrices

B = (∇fk(x∗))k=1,...,K

C = (∇gi(x
∗))i∈I(x∗)

D = 0

with l ∈ |I(x∗)|. Since (1.64) to (1.66) do not have a solution d ∈ Rn, we obtain

y1 = λ∗, y2 = µ∗ and y3 with λ∗k > 0 for k = 1, . . . , K; µ∗i ≥ 0 for i ∈ I(x∗) satisfying

K∑
k=1

λ∗k∇fk(x∗) +
m∑

i∈I(x∗)

µ∗i∇gi(x
∗) = 0.

Letting µ∗i = 0 for all i ∈ {1, . . . ,m}\I(x∗), the proof is complete.

With Theorem (1.3.10) providing necessary conditions for Kuhn-Tucker proper efficiency

and Theorem (1.3.5), which shows that Geoffrion’s proper efficiency implies Kuhn-Tucker’s

under the constraint qualification we obtain the following corollary as an immediate conse-

quence. If x∗ is properly efficient in Geoffrion’s sense and the KT constraint qualification

is satisfied at x∗, then there are λ∗ ∈ Rn, µ∗ ∈ Rm such that (KT2) holds.

For the missing link in the relationships of proper efficiency definitions, we use the single

objective Karush-Kuhn-Tucker sufficient conditions of Theorem (1.2.12) and apply them

to the weighted sum problem (P3)′′. We obtain the following result.

1.3.11 Theorem. Assume that fk, gi : Rn → R are convex, continuously differentiable

functions for all k and i. Suppose that there are x∗ ∈ D, λ∗ ∈ RK and µ∗ ∈ Rm satisfying

system (KT2). Then x∗ is properly efficient in the sense of Geoffrion.

Proof. Let

f(x) =
K∑

k=1

λ∗k∇fk(x),

be a convex function. By adding convexity assumption to Theorem (1.2.12), we have that
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x∗ is an optimal solution of (P3)′′. Since λ∗k > 0 for k = 1, . . . , K, Theorem 1.3.4 yields

that x∗ is properly efficient in the sense of Geoffrion.

We can derive two corollaries, the first one shows that for convex problems proper effi-

ciency in Kuhn-Tucker’s sense implies efficiency in Geoffrion’s sense. Let fk, gi : Rn → R
be convex, continuously differentiable functions for all k, for all i, and suppose x∗ is prop-

erly efficient in the Kuhn-Tucker sense. Then x∗ is properly efficient in Geoffrion’s sense.

Proof. The result follows from Theorems (1.3.10) and (1.3.11)

The second corollary provides sufficient conditions for proper efficiency in Kuhn-Tucker’s

sense. It follows immediately from Theorems (1.3.11) and (1.3.5). If in addition to the

assumptions of Theorem (1.3.11) the KT constraint qualification is satisfied at x∗, the

system (KT2) are sufficient for x∗ to be properly efficient solution for (P3) in Kuhn-

Tucker’s sense.

1.3.6 Solving Multiobjective Programming problems

In what follows we briefly discuss a few approaches for solving nonlinear Multiobjective

programming problems.

The main approaches are highlighted as follows:

1. a prior−articulation of DM preference methods A priori knowledge requires

a correct articulation of the target concept [39]. Therefore, these methods allow DM

to specify preferences for, or relative importance of, objective functions. Examples of

these methods include Weighted Sum, Weighted global criterion, Goal programming

Method [51].

2. posteriori articulation of DM preference methods These methods generate

representative Pareto optimal set and then the DM selects from these solutions

based on his preference.

Examples of these methods include Normal boundary intersection, Normal con-

straint, Min-max and the Benson method to mention a few [50].

3. No preference articulation methods No preference articulation methods are

methods that do not require any input from the DM. As an example of no preference

articulation method, we may mention multiobjective simplex method.

4. Progressive articulation of DM preference methods If any of the methods

in the above named categories are programmed to interact with the DM, we obtain

a Progressive articulation method. Only part of the efficient solutions has to be

generated and evaluated, and the DM can specify and correct his references and

selections as the solution process continues Examples of these methods may be
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found in [103]. They include interactive weighted Tchebycheff, interactive surrogate

worth trade-off, Geoffrion-Dyer-Feinberg, sequencial proxy optimization and STEP

methods.

We consider in more details the methods used explicitly in this thesis.

1.3.7 Weighted sum approach

The weighted sum approach consists of aggregating the different objectives into one and

then solving the resulting single objective optimization problem. For instance, consider

the case where the aggregation function is given by

V (x) =
K∑

k=1

λkf
k(x) (1.67)

where λk ≥ 0,
∑K

k=1 λk = 1. The resulting single objective is in this case is

(P3)′′ min
x∈D

K∑
k=1

λkf
k(x)

We have seen that the method enables computation of the properly efficient and weakly

efficient solutions for convex problems by varying λk; k = 1, . . . , K. The following results

are important in this regard.

1.3.12 Theorem.

Let x∗ ∈ D be an optimal solution of (P3)′′. The following statements hold

1. • if λ > 0, then x∗ ∈ DpE

• if λ ≥ 0, then x∗ ∈ DWE

• if λ ≥ 0 and x∗ is a unique optimal solution of (P3)′′ then x∗ ∈ DsE .

2. Let D be convex set and fk, k = 1, . . . , K be convex functions. Then the following

statements hold

• If x∗ ∈ DpE, then there are λk > 0 for all k such that x∗ is an optimal solution

of (P3)′′,

• If x∗ ∈ DWE, then there are λk ≥ 0 for all k such that x∗ is an optimal solution

of (P3)′′,

that if λk > 0, ∀k in (P3)′′ then the solution obtained is a proper efficient solution for

(P3).
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1.3.8 Compromise programming

The basic idea of the method of compromise programming is to minimize the distance

between a feasible point in the objective space and the ideal point [117].

This may be done using Lp metrics. The resulting single objective program is, in this

case,

(P3)′′′ min
x∈D

{
K∑

k=1

λk

(
fk(x)− z∗k

)p} 1
p

for p <∞, and

(P3)iv min
x∈D

max
k=1,...,K

λk

(
fk(x)− z∗k

)
for p = ∞, where z∗k is the kth component of the ideal vector z∗k.

It is of interest to note that for p = 1, program (P3)′′′ can be written as

min
x∈D

K∑
k=1

(λkf
k(x)− z∗k) = min

x∈D

{
K∑

k=1

(
λkf

k(x)
)
−

K∑
k=1

(λkz∗k)

}

Hence weighted sum scalarization can be seen as a special case of weighted compromise

programming.

The emphasis on the distinction between 1 < p < ∞ and p = ∞ is justified by two

reasons: The former is the most interesting case [50] and the most widely used, and the

results are often different from those for p = ∞.

1.3.14 Definition. Given a weight vector λ, x∗ is a compromise solution if and only if

it minimizes Lp.

One may wonder whether a solution of (P3)′′′ is efficient for (P3). This is the subject

matter of the next theorem.

1.3.13 Theorem. [50]

An optimal solution x∗ of (P3)′′′ with p <∞ is efficient if one of the following conditions

holds:

1. x∗ is a unique optimal solution of (P3)′′′.

2. λk > 0 for all k = 1, . . . , K.

Goal programming

The Goal programming approach consists of minimizing deviations to some fixed targets

by the DM.

There are different types of Goal programming approaches [72]. The most used ones are
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weighted goal programming (WGP) and the lexicographic goal programming (LGP). The

WGP variant, considers all goals simultaneously within a composite objective function

comprising the sum of all the respective deviations of the goals from their aspiration

levels. The deviations are weighted according to the relative importance of each goal. So

the WGP approaches for solving (P3) consists of tackling the following single objective

program.

For illustration, consider the following program:

(P3)v



min
{∑K

k=1 λk(δ
+
k + δ−k )

}
subject to

f 1(x)− δ+
1 + δ−1 = s1

...

fK(x)− δ+
K + δ−K = sK

x ∈ D, x ≥ 0, δ+
k ≥ 0, δ−k ≥ 0

where sk, k = 1, . . . , K are the aspiration levels for objective functions fk k = 1, . . . , K,

δ+
k k = 1, . . . , K and δ−k k = 1, . . . , K are positive and negative deviations from sk k =

1, . . . , K respectively while λk k = 1, . . . , K are weights for rating the importance of

objective functions.

The following result, the proof of which may be found in [50], tells us something about

the efficiency of the solution obtained by the Goal programming approach.

1.3.14 Theorem. The solution of a WGP problem (P3)v is efficient if either the aspira-

tion levels form an efficient reference point or all the deviational variables δ+
k for functions

to be minimized and δ−k for functions to be maximized have positive values at the optimum.

LGP on the other hand, accomplishes the minimization process by attaching pre-emptive

or absolute weights to the sets of goals situated in different priorities, that is, the fulfillment

of a set of goals situated in a certain priority is immeasurably preferable to the achievement

of any other set placed in a lower priority [52]. Hence in LGP the higher priority goals

are satisfied first, and it is only then that the lower priorities are considered.

In short, in WGP the relative importance of the goals is dealt with using their relative

weights, while in LGP the absolute goals are handled by their rankings.

We write the lexicographic optimization problem with lex min operator as follows:

(P3)vi lex min
x∈D

(f 1(x), . . . , fK(x))

In the sequel we define the order relation <lex as follows:

z1 <lex z
2 if z1

q < z2
q where q = min {k : z1

k 6= z2
k}.

The above defined order is total.
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1.3.15 Definition. A feasible solution x∗ ∈ D is lexicographically optimal if there is no

x ∈ D such that f(x) <lex f(x∗).

We can then state that x∗ ∈ D is lexicographically optimal, if

f(x∗) ≤lex f(x) for all x ∈ D.

The following lemma establishes the relationship between lexocographically optimal so-

lutions and efficient solutions.

1.3.15 Lemma. Let x∗ ∈ D be such that f(x∗) ≤lex f(x) for all x ∈ D. Then x∗ ∈ DE.

Proof. Suppose that x∗ is not efficient. Then there is an x ∈ D such that f(x) ≤ f(x∗).

So for some k ∈ {1, . . . , K} we have fk(x) ≤ fk(x∗). Defining q = min{k : fk(x) <

fk(x∗)} we get that fk(x) = fk(x∗) for k = 1, . . . , q − 1 and f q(x) < f q(x∗). Therefore,

f(x) ≤lex f(x∗) contradicting lexicographic optimality of x∗.

Apart from the above mentioned approaches, there are other emerging techniques that are

used for solving MOP problems. Here are some of them metaheuristics [48], evolutionary

computing [53] and particle swarm optimization [141].
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Chapter 2

Multiobjective Stochastic Linear

Programming: An overview

2.1 Preamble

In this chapter we discuss key ideas developed in the field of Multiobjective Stochastic

Linear Programming (MSLP) [7]. This will help us to motivate our own contribution in

this field.

To avoid complications unrelated to our subject, we assume that involved random vari-

ables have known distributions with finite means and variances.

Consider the problem (P1) described in the Introduction and let us attempt to provide

some meaning to problem (P1).

2.2 Transformation of the feasible set of (P1)

One generally transform D(ω) to a deterministic set, say D, according to the rules used

in Stochastic Programming (see e.g. [26], [78], [112]).

Some commonly used deterministic counterparts of D(ω) are listed below.

1. D′ = {x∈Rn : E (A(ω))x≤ E (b(ω)) , x≥0}

where E stands for the expected value.

2. D′′(α) = {x∈Rn : P (A(ω)x≤b(ω))≥ α, x≥0}

where α is a probability level pre-defined by the Decision maker.

3. D′′′ (α1, . . . ,αm) =
⋂m

i=1Di (αi)
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where for i = {1, . . . ,m} ,

Di(αi) = {x∈Rn : P (Ai(ω)x≤bi(ω))≥ αi, x≥0}

here αi; i = 1, . . . ,m are probability levels a priori fixed by the Decision maker and

4. Div = {x∈Rn : Q(x, ω) < +∞, with probability 1}

where

Q(x, ω) =


inf q(ω)y; y ∈ Υ if Υ 6= ∅

+∞ if Υ=∅

where q(ω) is a penalty cost, W (ω) is a recourse matrix and

Υ = {y ∈ Rm : W (ω)y = b(ω)− A(ω)x, y ≥ 0} .

In the next subsection, we discuss some existing solution concepts for MSLP problems.

2.3 Solution concepts

2.3.1 Expected value and variance optimalities

Consider now the following deterministic mathematical programs:

(P4) min
x∈D

E (c(ω))x

(P4)′ min
x∈D

V (c(ω))x

(P4)
′′

min
x∈D

{E(c(ω))x+ σ(c(ω))x}

with V and σ denoting the variance and the standard deviation respectively and c(ω)

stands for an aggregation of c1(ω), . . . , cK(ω) based on techniques of multiattribute utility

theory [139].

2.3.1 Definition. If x∗ is an optimal solution for Program (P4), (P4)′ or (P4)′′, then

x∗ is called an expected value, a variance or an expected value/standard deviation op-

timal solution for problem (P1) when D is a transformation of D(ω) obtained through

techniques of Stochastic Optimization.

Henceforth ψE, ψV stand respectively for the set of expected value and variance optimal

solutions for problem (P1).

A shortcoming of the above defined solution concepts is that, the expected value and the

variance do not exhaust the information contained in the distributions of involved random
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variables. To overcome this drawback, other solution concepts have been proposed. We

discuss some of them in the next three subsections.

2.3.2 Tammer and minimum risk optimalities and optimality in

probability

2.3.2 Definition. x∗ is a Tammer α-optimal solution for Problem (P1), if there is no

x ∈ D such that

P (ω : c(ω)x ≤ c(ω)x∗) ≥ 1− α and P (ω : c(ω)x < c(ω)x∗) > 0

when D is a transformation of D(ω) obtained through techniques of Stochastic Optimiza-

tion and α is a probability level pre-defined by the Decision maker.

For details on this solution concept, we invite the reader to consult [130].

2.3.3 Definition. x∗ is an α-minimum risk solution for Problem (P1) if x∗ is an optimal

solution for the following program:

max
x∈D

P (c(ω)x ≤ α)

when D is a transformation of D(ω) obtained through techniques of Stochastic Optimiza-

tion. Where α is an aspiration level a priori fixed by the Decision maker.

An interested reader is referred to [23] for key facts about the minimum risk solution

concept.

2.3.4 Definition. x∗ is a ρ-optimal solution in probability for Problem (P1) if there is

β∗ ∈ R such that (x∗, β∗) is optimal for the program

min
(x,β)∈D×R

β

subject to

P (c
(
ω
)
x ≤ β) = ρ

where D is a transformation of D(ω) obtained through techniques of Stochastic Opti-

mization and ρ is a probability level pre-defined by the Decision maker.

A reader interested to know more about this solution concept is referred to [80].

2.3.3 Expected value and variance efficiencies

Consider the following deterministic multiobjective programs:

(P4)′′′ min
x∈D

{
E(c1(ω))x, . . . , E(cK(ω))x

}
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(P4)iv min
x∈D

{
V (c1(ω))x, . . . , V (cK(ω))x

}
(P4)v min

x∈D

{
E(c1(ω))x, . . . , E(cK(ω))x, σ(c1(ω))x, . . . , σ(cK(ω))x

}
where σ stands for the standard deviation.

2.3.5 Definition. x∗ is called an expected value, a variance or an expected value/standard

deviation efficient solution for problem (P1) if it is efficient for Programs (P4)′′′, (P4)iv

or (P4)v respectively, when D is a transformation of D(ω) obtained through techniques

of Stochastic Optimization.

The sets of expected value, variance and expected value/standard deviation efficient so-

lutions for Program (P1) are denoted by φE, φV and φE/σ respectively.

The concept of expected value weak efficiency, variance weak efficiency and expected

value/standard deviation weak efficiency and those of expected value proper efficiency,

variance proper efficiency and expected value/standard deviation proper efficiency are

obtained by replacing “efficiency” by “weak efficiency” and by “proper efficiency” respec-

tively.

In the sequel φw
E (φp

E), φw
V (φp

V ) and φw
E/σ (φp

E/σ) denote the sets of expected value weakly

(properly) efficient solutions, variance weakly (properly) efficient solutions and expected

value/standard deviation weakly (properly) efficient solutions for program (P1) respec-

tively.

2.3.4 Minimum risk efficiency and efficiency with given proba-

bilities

2.3.6 Definition. x∗ is an (α1, . . . , αK)-minimum risk efficient solution for MOP problem

(P1) if it is efficient for the multiobjective program

max
x∈D

{
P
(
c1(ω)x ≤ α1

)
, . . . , P

(
cK(ω)x ≤ αK

)}
when D is a transformation of D(ω) obtained through techniques of Stochastic Optimiza-

tion. Here α1, . . . , αK are aspiration levels a priori fixed by the Decision maker.

Characterizations of minimum risk efficiency with aspiration levels, may be found else-

where [128].

As in the case of expected value efficiency, the concepts of (α1, . . . , αK)-minimum risk

weak efficiency and (α1, . . . , αK)-minimum risk proper efficiency may be obtained by re-

spectively replacing “efficiency” by “weak efficiency” or “proper efficiency” in the above

definition.

In what follows ψMR(α1, . . . , αK), ψw
MR(α1, . . . , αK) and ψp

MR(α1, . . . , αK) denote the sets

of (α1, . . . , αK)-minimum risk efficient solutions, (α1, . . . , αK)-minimum risk weakly ef-
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ficient solutions and (α1, . . . , αK)-minimum risk properly efficient solutions for Program

(P1) respectively.

2.3.7 Definition. x∗ is a (ρ1, . . . , ρK)-efficient solution for MOP Problem (P1) if there

is β∗ = (β∗1 , . . . , β
∗
K) such that (x∗, β∗) is efficient for the mathematical program:

min
(x,β)∈D×RK

(
β1, . . . , βK

)
subject to

P (ck
(
ω
)
x ≤ βk) ≥ ρk; k = 1, . . . , K

when D is a transformation of D(ω) obtained through techniques of Stochastic Optimiza-

tion. Where ρ1, . . . , ρK are probability levels a priori fixed by the Decision maker.

An interested reader may consult [127] for a thorough discussion on this efficiency concept.

Concepts of (ρ1, . . . , ρK)-weak efficiency and (ρ1, . . . , ρK)-proper efficiency may also be

obtained in a way similar to the one in which minimum risk weak and proper efficiencies

were obtained.

From now on ψKT (ρ1, . . . , ρK), ψw
KT (ρ1, . . . , ρK) and ψP

KT (ρ1, . . . , ρK) denote the sets

of (ρ1, . . . , ρK)-efficient solutions, (ρ1, . . . , ρK)-weak efficient solutions and (ρ1, . . . , ρK)-

proper efficient solutions for Program (P1) respectively.

In the next subsection we present some theoretical results related to problem (P1).

2.4 Related mathematical results

Most stochastic constraint transformations yield nonconvexity on resulting deterministic

feasible sets. This precludes the application of existing powerful convex optimization

algorithms (see e.g [18], [24]). It is therefore, relevant to know when a deterministic

counterpart of D(ω) is convex. The following four propositions; the proofs of which may

be found in [77], provide some insights to this issue.

2.4.1 Proposition. D′′(0), D′′(1), Di(0); i = 1, . . . ,m, Di(1); i = 1, . . . ,m and Div are

convex sets.

2.4.2 Proposition. Consider Problem (P1) and suppose that A(ω) is a fixed matrix with

maximal rank. Then

Di(αi) = {x ∈ Rn : Fi(Aix)≥αi; i = 1, . . . ,m}

are convex for every probability distribution Fi of bi(ω).

2.4.3 Proposition. Assume that the probability space under consideration is discrete,
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that is, Ω = {ω1, . . . , ωL} and P (ωl) = pl > 0; l = 1, . . . , L. Let

α∗l = max (1− pl : 1 ≤ l ≤ L)

then the set Dl(αl) is convex for any αl > α∗l and D′′(α) is convex for any α > α∗ where

α∗ and α∗l are real numbers.

2.4.4 Proposition. Suppose that the probability space under consideration is Ω =

{ω1, . . . , ωL} and suppose that pl = P (ωl) > 0 if and only if l ∈ N = {1, . . . , r}. As-

sume also that only one element lo ∈ N exists such that

plo = min
l∈N

pl,

then the sets D′′(α) and D′′
l (α) are convex for every α > 1− pl1 , where

pl1 = min
l∈(N\{lo})

pl.

The next two results established in [32], [33], bridge the gap between solution concepts

based on the first two moments (Proposition (2.4.5)) and establish a connection between a

minimum risk efficient solution with aspiration levels and an efficient solution with given

probabilities (Proposition (2.4.6)).

2.4.5 Proposition. We have the following:

1.φE ∩ φV ⊂ φE/σ,

2.φE ∪ φV ⊂ φw
E/σ,

3.φw
E ∪ φw

V ⊂ φw
E/σ,

where φE, φV , φE/σ, φ
w
E (φp

E), φw
V (φp

V ) and φw
E/σ (φp

E/σ) are the sets of expected value,

variance, expected value/standard deviation, expected value weakly (properly) efficient so-

lutions, variance weakly (properly) efficient solutions and expected value/standard devia-

tion weakly (properly) efficient solutions for program (P1) respectively.

2.4.6 Proposition. Assume that the probability distributions of the random vectors

c1(ω), . . . , cK(ω) are continuous and strictly increasing. Then for any (α1, . . . , αK) ∈ RK ,

x∗ ∈ ψMR(α1, . . . , αK) if and only if x∗ ∈ ψKT (ρ1, . . . , ρK), where

ρk = P
(
ck(ω)x ≤ αk

)
; k ∈ {1, . . . , K}.

Moreover, we have the following proposition:

2.4.7 Proposition.⋃
(α1,...,αK)∈RK

ψMR(α1, . . . , αK) =
⋃

(ρ1,...,ρK)∈B

ψKT (ρ1, . . . , ρK)
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where

B = {(ρ1, . . . , ρK) : ρk ∈ (0, 1]; k = 1, . . . , K} .

Well-known characterizations of proper efficiency (see Theorem (1.3.4)), have been ex-

plored to relate optimality of (P1) in the sense of Definition (2.3.1) and the efficiency of

the same program in the sense of Definition (2.3.5). This is the subject matter of the next

two propositions.

2.4.8 Proposition. If x∗ is an expected value optimal solution for problem (P14), then

x∗ is an expected value properly efficient solution for program (P4)′′. That is,

ψE ⊆ φP
E.

2.4.9 Proposition. If D is a convex set and E
(
ck(ω)

)
x, k = 1, . . . , K are convex

functions, then x∗ is an expected value proper efficient solution for the multiobjective

program (P4)′′, if and only if, x∗ is an expected value optimal solution for the problem

(P4). That is,

φP
E = ψE.

Details on this matter are contained in subsection (1.3.3).

2.5 Methodological approaches for solving Multiob-

jective Stochastic Linear Programs

Methods for singling out satisficing solutions in MSLP problems have been developed in

the literature, leading to three main trends, namely: the hard, the soft and the meta-

heuristic. The hard trend consists of methodologies with proven anayltical justifications.

Examples of approaches within this trend may be found in [6], [84], [96].

The soft and metaheuristic trends based on soft Operation Research methodology, are

structured and rigorous but non-mathematical. Prime examples of these methods ranging

from over these trends may be found in [2], [90], [113] and on [4],[59] and [71] respectively.

Within each group, the original problem may be either reduced to a single objective

stochastic program and then solved with a technique used in Stochastic Programming

(stochastic approach) or converted to a deterministic multiobjective program before solv-

ing with a well known method of Multiobjective Programming (multiobjective approach).

A third alternative is to combine in an appropriate manner a technique of single objec-

tive Stochastic Programming with a technique of Multiobjective Programming (hybrid

approach).

The ideas discussed in the previous subsections have served as guidelines in implementing

efficient techniques for solving Multiobjective Stochastic Linear Programming problems.
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In what follows we outline a method within each of the three existing approaches namely,

the stochastic approach, the multiobjective approach and the hybrid one.

2.5.1 Stochastic approach

In this subsection we present a method described in [70] for solving problem (P1), using

the stochastic approach. For this method the following assumptions should be met: Ai(ω);

i = 1, . . . ,m; b(ω) and ck(ω), k = 1, . . . , K are normally distributed random vectors. λk;

k = 1, . . . , K are strictly positive real numbers in the interval (0, 1] such that
∑K

k=1 λk = 1.

Moreover, the following notations are used:

1. hi(ω, x) = Ai(ω)x− bi(ω); i = 1, . . . ,m.

2. The weights associated with the expected value and the standard deviation of c(ω),

are given and denoted respectively by q1 and q2.

3. Probability levels prescribed by the Decision maker for constraints satisfaction are

denoted by α = (α1, . . . , αm).

2.5.1 Algorithm. A stepwise description of the method is given below.

Step 1. Read λk; k = 1, . . . , K, ck(ω); k = 1, . . . , K, hi(ω, x); i = 1, . . . ,m, αi; i =

1, . . . ,m.

Step 2. Find

c(ω) =
K∑

k=1

λkc
k(ω).

Step 3. Replace D(ω) by

Dv =
{
x ∈ Rn : E (hi(ω, x)) + Φ−1(αi)σ (hi(ω, x)) ≤ 0; i = 1, . . . ,m x ≥ 0

}
.

Step 4. Solve the mathematical program

min
x∈Dv

(q1E (c(ω)x) + q2σ (c(ω)x)) . (2.1)

Let x∗ be a solution of (2.1).

Step 5. Print “x∗ is a satisficing solution of (P1)”.

Step 6. Stop.

As can be seen, this algorithm transforms the original problem into a single objective

problem, with the following deterministic objective function

q1E (c(ω)x) + q2σ (c(ω)x) .
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The solution x∗ obtained is an expected value/standard deviation optimal solution in the

sense of Definition (2.3.1) for problem (P1) as defined in subsection (2.3.1).

Other techniques closely related to the stochastic approach for solving problem (P1)

include, decomposition method [35], [46], [69], chance-constrained method [42], [43], sim-

ulation based techniques [88], [110], [111], two stage method [147] and multistage method

[38].

2.5.2 Multiobjective approach

Here we outline a method within the multiobjective approach. For this method, we need

λk; k = 1, . . . , K; such that λk > 0,
∑K

k=1 λk = 1 as in subsection (2.5.1).

2.5.2 Algorithm. The steps of the method are as follow:

Step 1. Read λk; k = 1, . . . , K, ck(ω); k = 1, . . . , K, Ai(ω); i = 1, . . . ,m, bi(ω); i =

1, . . . ,m.

Step 2. Replace D(ω) by

D′ = {x ∈ Rn : E (A(ω))x− E (b(ω)) ≤ 0; x ≥ 0} . (2.2)

Step 3. Find

E
(
c1(ω)

)
, . . . , E

(
cK(ω)

)
.

Step 4. Solve the mathematical program

min
x∈D′

(
K∑

k=1

λkE
(
ck(ω)

)
x

)
(2.3)

Let x∗ be a solution of (2.3).

Step 5. Print “x∗ a satisficing solution of (P1)”.

Step 6. Stop.

In this method, Steps 2 and 3 tackle randomness, while Step 4 deals with multiplicity of

objective functions. The solution x∗ obtained is an expected value efficient solution for

MSLP problem (P1) as defined in Subsection (??.

For a more thorough discussion of other methods for solving (P1) based on the multiob-

jective approach, the reader is referred to [13], [16], [49], [106] and [124]
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2.5.3 Hybrid approach

In this section, we describe a hybrid method due to Mortazavi [105], for solving MSLP

problem (P1). This method is based on the assumptions given in subsection (2.5.1). The

following notations are used in the sequel.

1. δ+
s ; s = 1, . . . , S, δ−t ; t = 1, . . . , T , δ+

u , δ−u , u = 1, . . . , U denote positive, negative and

two sided deviations from targets gs; s = 1, . . . , S, gt; t = 1, . . . , T , gu; u = 1, . . . , U

respectively. S, T and U are respectively the total number of positive, negative and

two-sided deviations from targets gs, gt and gu.

2. αs; s = 1, . . . , S, αt; t = 1, . . . , T , αu; u = 1, . . . , U are probability levels a priori

fixed by the Decision maker.

2.5.3 Algorithm. A stepwise description of the method is as follows:

Step 1. Read S, T, U , gs,αs; s = 1, . . . , S, gt, αt; t = 1, . . . , T , gu, αu,

u = 1, . . . , U, ck(ω); k = 1, . . . K, hi(ω, x); i = 1, . . . ,m.

Step 2. Put D(ω) in the following form :

Dvi =
{
x ∈ Rn : E (cs(ω))x+ Φ−1(αs)σ (cs(ω))x− gs − δ+

s ≤ 0;

s = 1, . . . , S, E
(
ct(ω)

)
x+ Φ−1 (1− αt)σ

(
ct(ω)

)
x− gt + δ+

t ≤ 0;

t = 1, . . . , T, E (cu(ω))x+ Φ−1

(
1− αu

2

)
σ
(
ck(ω)

)
x− gu ≤ 0;

u = 1, . . . , U, E (hi(ω, x)) + Φ−1(αi)σ (hi(ω, x)) ≤ 0;

i = 1, . . . ,m, δ+
s ≥ 0, δ+

t ≥ 0, x ≥ 0
}
.

Step 3. Solve the mathematical program

min
x∈Dvi

(
U∑

u=1

(δ+
u + δ−u ) +

S∑
s=1

δ+
s +

T∑
t=1

δ−t

)
(2.4)

Let x∗ be a solution of (2.4).

Step 4. Print “x∗ is a satisficing solution of (P1)”.

Step 5. Stop.

It is clear that this method combines the goal programming technique for solving a multi-

objective program with the chance-constrained method for solving a stochastic optimiza-

tion problem.
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Other methods pertaining to the hybrid approach may be found in [12], [54] and [84].

2.5.4 Comparison of different approaches

The main lessons that can be drawn while comparing the above described approaches are

as follow:

1. The stochastic approach takes into account dependencies between objective func-

tions, whereas the multiobjective approach does not (see for example [31]). This

makes the stochastic approach closer to reality. Therefore, the stochastic approach

is more effective for finding solutions to a MSLP problem than the multiobjective

approach.

2. The multiobjective approach is more efficient than the stochastic approach, in the

sense that it requires fewer computations. These computations are easier to handle

than those required by the stochastic approach. (see e.g., [101], [132], [134]).

3. The hybrid approach combines the strengths of the stochastic and the multiobjective

approaches. Consequently, the hybrid approach could perform better than either of

the other two approaches for a given problem. Interested readers may consult [20]

for a substantiation of this claim.

4. Methods pertaining to the hybrid approach create more flexibility in allowing the

Decision maker to specify his preferences (see e.g., [12]).

Nevertheless, it is the nature and the structure of the problem that determines which

approach to use. In what follows, we briefly discuss some applications of Multiobjective

Stochastic Linear Programming to concrete real-life problems.

2.6 Applications

2.6.1 Applications of the stochastic approach

Production planning problems, lend themselves better to the use of the stochastic ap-

proach. As a matter of fact, the structure of these problems dictates that one starts

dealing with the multiplicity of objective functions and later tackles the randomness in

data [55].

Some other applications of the stochastic approach to MSLP problems include power

system security problem [8], power plant preventive maintenance scheduling [35], capacity

planning [60], hydro-thermal electricity generation [107], deployment of roadway incident

response vehicles [109] and multi-product batch plant design [147].
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2.6.2 Applications along the multiobjective approach

Water resource planning and management problems [104], are most appropriately dealt

with using the multiobjective approach. Random parameters are first transformed into

appropriate fixed data, before the conflicting goals are sorted out. The literature is rich

in models using the multiobjective approach. We list a few of them.

Water use planning [29], workforce scheduling model [37], transportation network design

problem [44] and nuclear generation of electricity problem [87], [131].

2.6.3 Applications within the hybrid approach

To significantly bridge the dangerous gap between the problems of designing reliable port-

folio assets and the mathematical programming models used to solve them, the Decision

maker should be able to consider different objective functions and incorporate imprecision

into the model. Owing to the complexity of such problems, it is best to couple different

techniques in an appropriate way to solve them.

There are several good papers using this approach, to which the reader may refer. The

papers, Ben Abdelaziz [20], [25], [41], [75], [82], [83] and [129] are some of them.

64



Chapter 3

Satisficing Solutions for

Multiobjective Stochastic Linear

Programming Problems

3.1 Preamble

In this chapter, we introduce new solution concepts for MSLP problems. The solution

concepts are based on the chance constrained approach for tackling randomness (see e.g.,

Kall [77], Liu [89]).

We also briefly discuss their advantages over other optimality/efficiency notions discussed

in Chapter 3.

These solution concepts are then characterized under the assumptions that involved ran-

dom variables have normal, chi-squared, exponential and gamma distributions.

Recall that the optimization problem at hand is of the forM

(P1)

{
min

x∈D(ω)

(
c1x, . . . , cKx

)
where c1, . . . , cK are random vectors defined on a Probability space (Ω,F ,P). That is for

all k ∈ {k = 1, . . . , K}

ck : Ω 7→ Rn

ω 7→ ck(ω)

is a measurable function and

D(ω) = {x ∈ Rn | A(ω)x− b(ω) ≤ 0; i = 1, . . . ,m; x ≥ 0}
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where A(ω), b(ω) are respectively m× n and m× 1 random matrices.

3.2 Satisficing solutions for (P1)

3.2.1 Definitions of satisficing solutions for (P1)

3.2.1 Definition. ((α, β)− satisficing solution of type 1)

We say that x∗ ∈ Rn is an (α, β)−satisficing solution of type 1 for (P1) if (x∗, s∗) is

optimal for the following optimization problem:

(P5)



min s

subject to

P (cx ≤ s) ≥ β

P
(∑n

j=1 aijxj − bi ≤ 0
)
≥ αi; i = 1, . . . ,m

x ≥ 0, s, u.r.s.

Where cx is an aggregation of c1x, . . . , c
Kx, α = (α1, . . . , αm) with αi ∈ (0, 1]; i = 1, . . . ,m

and β ∈ (0, 1]. αi(i = 1, . . . ,m) and β are probability levels a priori fixed by the decision

maker.

3.2.2 Definition. ((α, β)−satisficing solution of type 2)

We say that x∗ ∈ Rn is an (α, β)−satisficing solution of type 2 for (P1) if (x∗, s∗), where

s∗ ∈ RK , is efficient for the following multiobjective optimization problem:

(P5)′



min (s1, . . . , sK)

subject to

P (c1(ω)x ≤ s1) ≥ β1

...

P
(
cKx ≤ sK

)
≥ βK

{P
(∑n

j=1 aijxj − bi ≤ 0
)
≥ αi; i = 1, . . . ,m

x ≥ 0, sk, u.r.s; k = 1, . . . , K

Here αi ∈ (0, 1]; i = 1, . . . ,m and βk ∈ (0, 1]; k = 1, . . . , K are thresholds fixed by the

decision maker.

3.2.3 Definition. ((α, β)−satisficing solution of type 3)

We say that x∗ ∈ Rn is an (α, β)−satisficing solution of type 3 for (P1) if (x∗, δ∗), where
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δ∗ ∈ RK , is optimal for the following mathematical program:

(P5)′′



min
(∑K

k=1 νkδk

)
subject to

P (c1x− δ1 ≤ t1) ≥ β1

...

P
(
cKx− δK ≤ tK

)
≥ βK

P
(∑n

j=1 aijxj − bi ≤ 0
)
≥ αi; i = 1, . . . ,m

x ≥ 0, δk ≥ 0; k = 1, . . . , K

Here δk, νk and tk are respectively the upper deviation of the kth goal from the kth target,

the weight of the kth goal and the target associated with the kth objective function.

We note that αi ∈ (0, 1]; i = 1, . . . ,m and βk ∈ (0, 1]; k = 1, . . . , K are as in Definition

(3.2.2).

3.2.2 Interpretation of satisficing solutions for (P1)

Solution concepts discussed here are based on the individual chance-constrained approach

[4]. One may equally well, consider the joint chance-constrained approach [112].

The Chance constrained approach allows partial violation of the constraints, and it may

be viewed as a technique for providing an appropriate safety margin [122].

The Chance constrained technique in general has been applied to various industrial and

economic problems [135].

Intuitive ways of thinking about the above solution concepts are given below.

1. An (α, β)−satisficing solution of type 1 for (P1) is an alternative that keeps the

probability of the aggregate cx of the objective functions c1x, . . . , cKx of this prob-

lem, lower than a variable s to a desired extent β, while minimizing this variable.

Moreover the chance of meeting the ith constraint of the problem is requested to be

higher than a fixed thresholds αi. It is clear that for αi and β close to 1, such an

alternative is a an interesting one.

As a matter of fact, it maintains the probability of keeping the aggregation of ob-

jective functions low, while keeping the probabilities of realization of constraints to

desired extents.

2. An (α, β)−satisficing solution of type 2 for (P1) is an action that keeps the proba-

bility of the kth objective ckx, for all k less than some variable sk to a level βk while

the vector (s1, . . . , sK) is minimized in the Pareto sense.

In the meantime, the chance of having the ith constraint, for all i, be satisfied is

greater than αi.
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Again for βk; k = 1, . . . , K and αi; i = 1, . . . ,m close to one, such a solution is

interesting from the standpoints of feasibility and efficiency.

3. Finally, an (α, β)−satisficing solution of type 3 minimize the weighted sum of devi-

ations from given targets while maintaining the probability of each objective to be

close to the corresponding target to some desired levels. It also meets the require-

ment of being feasible with high probability levels.

In what follows, we consider the case when the involved random variables of (P1) are

normally distributed.

3.3 Characterization of satisficing solutions for the

Normal case

We recall that a random vector

Y : Ω → Rn;

ω 7→ Y (ω)

is said to have the multivariate normal distribution if any linear combination of its com-

ponents is normally distributed. The following lemma due to Kataoka [80] will be needed

in the sequel.

3.3.1 Lemma.

(i) Assume that Y1, . . . , Yn are independent and normally distributed random variables

with means E(Y1), . . . , E(Yn) respectively. Then for any real numbers λ1, . . . , λn,

the aggregation Y = λ1Y1 + . . . + λnYn is normally distributed with mean E(Y ) =

λ1E(Y1) + . . .+ λnE(Yn) and variance V ar(Y ) =
∑n

j=1 V ar(Yj)λ
2
j .

(ii) Suppose Y = (Y1, . . . , Yn) has a multivariate normal distribution with mean E(Y ) =

(E(Y1), . . . , E(Yn)) and let covariance matrix V = (vij)i,j where vij = cov(Yi, Yj)

be the covariance of Yi and Yj. Then for any x ∈ Rn, the inner product Y x =

Y1x1+. . .+Ynxn is normally distributed with mean E(Y )x = E(Y1)x1+. . .+E(Yn)xn

and variance x′V ar(Y )x =
∑n

i,j=1 xicov(Yi, Yj)xj.

We are now in a position to characterize an (α, β)−satisficing solution of type 1.
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3.3.1 Satisficing solution of type 1

3.3.2 Proposition. Assume that objective functions of (P1) are aggregated as follows:

cx = λ1c
1x+ · · ·+ λKc

Kx

where λ1, . . . , λK ≥ 0,
∑K

k=1 λk = 1. Suppose that the random variables

ckj , k = 1, . . . , K; j = 1, . . . , n

are independent and normally distributed. Suppose also that for any i = 1, . . . ,m, the

random variables aij; j = 1, . . . , n and bi are normally distributed and independent.

Then x∗ is an (α, β)-satisficing solution of type 1 for (P1) if and only if x∗ is optimal for

the following optimization problem:

(P6)



min
(
E(c)x+ φ−1(β)

√
x′V ar(c)x

)
subject to

E(Ai)x− E(bi) + φ−1(αi)
√
V ar(bi) + x′V ar(Ai)x ≤ 0; i = 1, . . . ,m

x ≥ 0

where αi, i = 1, . . . ,m and β are as defined in Definition (3.2.1), and

φ(x) =
1√
2π
e−

y2

2 .

Proof. Assume that x∗ is a satisficing solution of type 1 for (P1), then (x∗, s∗) is a solution

of the program:

(P5)



min s

subject to

P (cx ≤ s) ≥ β

P
(∑n

j=1 aijxj − bi ≤ 0
)
≥ αi; i = 1, . . . ,m

x ≥ 0; s, u.s.r.

Let’s show that the first constraint of (P5) is equivalent to

E(c)x+ φ−1(β)
√
x′V ar(c)x ≤ s. (3.1)

Indeed we have by Lemma (3.3.1) that cx is normally distributed with mean E(c)x and

variance x′V ar(c)x. Then
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P(cx ≤ s) = P

(
cx− E(c)x√
x′V ar(c)x

≤ s− E(c)x√
x′V ar(c)x

)

= φ

(
s− E(c)x√
x′V ar(c)x

)

because
cx− E(c)x√
x′V ar(c)x

is normally distributed with mean 0 and variance 1. Therefore the first constraint of (P5)

becomes

φ

(
s− E(c)x√
x′V ar(c)x

)
≥ β

that is
s− E(c)x√
x′V ar(c)x

≥ φ−1(β)

which is equivalent to

E(c)x+ φ−1(β)
√
x′V ar(c)x ≤ s,

and we have established that the first constraint of (P5) is equivalent to relation (3.1).

Define now the random variable

li =
n∑

j=1

aijxj − bi; i = 1, . . . ,m

li; i = 1, . . . ,m are independent and normally distributed ([70]).

The expected values of li; i = 1, . . . ,m are

E(li) =
n∑

j=1

E(aij)xj − E(bi); i = 1, . . . ,m (3.2)

and their variances are

V ar(li) = V ar(bi) + x′V ar(Ai)x; i = 1, . . . ,m. (3.3)

The chance constraints

P

(
n∑

j=1

aijxj − bi ≤ 0

)
≥ αi; i = 1, . . . ,m (3.4)
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can therefore, be written as

P(li ≤ 0) ≥ αi; i = 1, . . . ,m.

We can also write

P(li ≤ 0) = P

(
li − E(li)√
V ar(li)

≤ −E(li)√
V ar(li)

)
; i = 1, . . . ,m

or

P(li ≤ 0) = φ

(
−E(li)√
V ar(li)

)
; i = 1, . . . ,m

where

φ(x) =
1√
2π
e−

y2

2 .

Thus the chance constraints (3.4) can be merely written as follows:

φ

(
−E(li)√
V ar(li)

)
≥ αi; i = 1, . . . ,m

that is

−E(li)√
V ar(li)

≥ φ−1(αi); i = 1, . . . ,m

which leads to

E(li) + φ−1(αi)
√
V ar(li) ≤ 0; i = 1, . . . ,m. (3.5)

Replacing E(li) and
√
V ar(li) by their values given by (3.2) and (3.3) respectively in

(3.5), we obtain

E(Ai)x− E(bi)

+φ−1(αi)
√
V ar(bi) + x′V ar(Ai)x ≤ 0; i = 1, . . . ,m. (3.6)

Combining relations (3.1) and (3.6) we obtain that (x∗, s∗) is optimal to the following
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program:

(P6)′



min s

subject to

E(c)x+ φ−1(β)
√
x′V ar(c)x ≤ s

E(Ai)x− E(bi) + φ−1(αi)
√
V ar(bi) + x′V ar(Ai)x ≤ 0; i = 1, . . . ,m

x ≥ 0; s, u.s.r.

This problem is equivalent to (P6) as desired.

3.3.1 Example. Consider the following Multiobjective Stochastic Linear Program:

(P6)′′



min f1(x) = (c11x1 + c12x2)

max f2(x) = (c2
1x1 + c2

2x2)

subject to

a11x1 + a12x2 ≤ b1

a21x1 + a22x2 ≤ b2

a31x1 + a32x2 ≤ b3

x ≥ 0

where

ckj ; j = 1, 2; j = k; aij; i = 1, 2, 3, j = 1, 2

are independent normally distributed random variables, with the following parameters:

c11 ∼ N(20, 5), c12 ∼ N(40, 10)

c21 ∼ N(50, 20), c22 ∼ N(100, 50)

a11 ∼ N(10, 6), a12 ∼ N(5, 4)

a21 ∼ N(4, 4), a22 ∼ N(10, 7)

a31 ∼ N(1, 2), a32 ∼ N(1.5, 3)

b1 ∼ N(2500, 500), b2 ∼ N(2000, 400), b3 ∼ N(450, 50).

If the Decision maker is interested in a satisficing solution of type 1, he should use the

weighted sum method described in Subsection (1.3.7). For the following weights: λ1 =

0.4 and λ2 = 0.6 and for αi = 0.99 for all i, and βk = 0.99; k = 1, 2.

We have by virtue of Proposition (3.3.2) to solve the following problem, in a way to obtain
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an (α, β)−satisficing solution of type 1; with α = β = (0.99, 0.99).

(P6)′′′



min
{(

20x1 + 40x2 + 2.33
√

25x2
1 + 100x2

2

)
0.4

−
(
50x1 + 100x2 + 2.33

√
400x2

1 + 2500x2
2

)
0.6
}

subject to

10x1 + 5x2 + 2.33
√

36x2
1 + 16x2

2 + 250000− 2500 ≤ 0

4x1 + 10x2 + 2.33
√

16x2
1 + 49x2

2 + 160000− 2000 ≤ 0

x1 + 1.5x2 + 2.33
√

4x2
1 + 9x2

2 + 2500− 450 ≤ 0

x ≥ 0

We use LINGO 13.1 to solve this optimization problem. Local optimal solution was

found at iteration: 38, and the optimal solution: z∗ = −5383.792 at the points x∗1 =

14.96307, x∗2 = 48.13617.

As far as (α, β)−satisficing solution of type 2 is concerned we have the following result.

3.3.2 Satisficing solution of type 2

3.3.3 Proposition. Consider (P1) and assume that the random variables

ckj ; k = 1, . . . , K, j = 1, . . . , n,

are independent and normally distributed. Assume further that for any i = 1, . . . ,m, the

random variables aij; j = 1, . . . , n, and bi are also independent and normally distributed.

Then x∗ is an (α, β)-satisficing solution of type 2 for (P1) if and only if x∗ is efficient for

the following mathematical program:

(P6)iv



min
{
E(c1)x+ φ−1(β1)

√
x′V ar(c1)x

}
...

min
{
E(cK)x+ φ−1(βK)

√
x′V ar(cK)x

}
subject to

E(Ai)x− E(bi) + φ−1(αi)
√
V ar(bi) + x′V ar(Ai)x ≤ 0; i = 1, . . . ,m

x ≥ 0

where α1, . . . , αm, β1, . . . , βK ∈ (0, 1] are as in Definition (3.2.2), φ(x) is as in Proposition

(3.3.2).
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Proof. As shown in the proof of Proposition (3.3.2), the chance constraints

P(ckx ≤ sk) ≥ βk; k = 1, . . . , K,

in (P5)′ are equivalent to

E(ck)x+ φ−1(βk)
√
x′V ar(ck)x ≤ sk; k = 1, . . . , K.

The chance constraints:

P

(
n∑

j=1

aijxj − bi ≤ 0

)
≥ αi; i = 1, . . . ,m

are equivalent to

E(Ai)x− E(bi) + φ−1(αi)
√
V ar(bi) + x′V ar(Ai)x ≤ 0; i = 1, . . . ,m.

Then (P6)iv is equivalent to the following program:



min (s1, . . . , sK)

subject to

E(ck)x+ φ−1(βk)
√
x′V ar(ck)x ≤ sk; k = 1 . . . K

E(Ai)x− E(bi) + φ−1(αi)
√
V ar(bi) + x′V ar(Ai)x ≤ 0; i = 1, . . . ,m

x ≥ 0; sk, u.s.r. k = 1, . . . , K

And clearly, this problem is equivalent to (P5)iv in the sense that they have the same

efficient frontier.

3.3.2 Example. Consider Example (3.3.1) and assume now, that, a satisficing solution

of type 2 is sought with αi = 0.99 ∀ i, and βk = 0.99 ∀ k.
Then by Proposition (3.3.3), one has to solve the following problem:

(P6)v



min f1 =
{

20x1 + 40x2 + 2.33
√

25x2
1 + 100x2

2

}
min f2 =

{
−
(
50x1 + 100x2 + 2.33

√
400x2

1 + 2600x2
2

)}
subject to

10x1 + 5x2 + 2.33
√

36x2
1 + 16x2

2 + 250000− 2500 ≤ 0

4x1 + 10x2 + 2.33
√

16x2
1 + 49x2

2 + 160000− 2000 ≤ 0

x1 + 1.5x2 + 2.33
√

4x2
1 + 9x2

2 + 2500− 450 ≤ 0

x ≥ 0

Using compromise programming discussed in Subsection (1.3.8), we shall solve the follow-
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f ∗1 =0 f ∗2 = -11220.36 z∗=-9538.066
x∗1 0 18.25769 12.57766
x∗2 0 47.30804 48.67925

Table 3.1: Compromise solution for Program (P6)v

ing subproblems:

min f1 =
{

20x1 + 40x2 + 2.33
√

25x2
1 + 100x2

2

}
subject to

10x1 + 5x2 + 2.33
√

36x2
1 + 16x2

2 + 250000− 2500 ≤ 0

4x1 + 10x2 + 2.33
√

16x2
1 + 49x2

2 + 160000− 2000 ≤ 0

x1 + 1.5x2 + 2.33
√

4x2
1 + 9x2

2 + 2500− 450 ≤ 0

x ≥ 0



min f2 = −
(
50x1 + 100x2 + 2.33

√
400x2

1 + 2600x2
2

)
subject to

10x1 + 5x2 + 2.33
√

36x2
1 + 16x2

2 + 250000− 2500 ≤ 0

4x1 + 10x2 + 2.33
√

16x2
1 + 49x2

2 + 160000− 2000 ≤ 0

x1 + 1.5x2 + 2.33
√

4x2
1 + 9x2

2 + 2500− 450 ≤ 0

x ≥ 0

and 

min z =
{

20x1 + 40x2 + 2.33
√

25x2
1 + 100x2

2

}
− f∗1

−
(
50x1 + 100x2 + 2.33

√
400x2

1 + 2600x2
2

)
− f∗2

subject to

10x1 + 5x2 + 2.33
√

36x2
1 + 16x2

2 + 250000− 2500 ≤ 0

4x1 + 10x2 + 2.33
√

16x2
1 + 49x2

2 + 160000− 2000 ≤ 0

x1 + 1.5x2 + 2.33
√

4x2
1 + 9x2

2 + 2500− 450 ≤ 0

x ≥ 0

Using LINGO 13.0 software we obtain the solutions in the table above.

3.3.3 Satisficing solution of type 3

3.3.4 Proposition. Consider (P1) and assume that the random variables

ckj ; k = 1, . . . , K; j = 1, . . . , n
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are independent and normally distributed. Suppose also that for any i = 1, . . . ,m, the

random variables aij; j = 1, . . . , n and bi are normally distributed and independent.

Then x∗ is an (α, β)-satisficing solution of type 3 for problem (P1) if and only if x∗ is

optimal for the following mathematical program:

(P6)vi



min
(∑K

k=1 νkδk

)
subject to

E(c1)x+ φ−1(β1)
√
x′V ar(c1)x ≤ t1 + δ1

...

E(cK)x+ φ−1(βK)
√
x′V ar(cK)x ≤ tK + δK

E(Ai)x− E(bi) + φ−1(αi)
√
V ar(bi) + x′V ar(Ai)x ≤ 0; i = 1, . . . ,m

x ≥ 0; δk ≥ 0; k = 1 . . . , K

where δk; (k = 1, . . . , K), νk; (k = 1, . . . , K) and tk; (k = 1, . . . , K) are as in Definition

(3.2.3); φ(x); αi ∈ (0, 1]; (i = 1, . . . ,m); βk ∈ (0, 1]; (k = 1, . . . , K) are as defined in

Proposition (3.3.3).

Proof. Consider the mathematical program

(P5)′′



min
(∑K

k=1 νkδk

)
subject to

P (c1(ω)x− δ1 ≤ t1) ≥ β1

...

P
(
cK(ω)x− δK ≤ tK

)
≥ βK

P
(∑n

j=1 aij(ω)xj − bi(ω) ≤ 0
)
≥ αi; i = 1, . . . ,m

x ≥ 0; δk ≥ 0; k = 1, . . . , K

As discussed in the proof of Proposition (3.3.3), the chance constraints

P
(
ckx ≤ tk + δk) ≥ βk; k = 1, . . . , K,

are equivalent to

E(ck)x+ φ−1(βk)
√
x′V ar(ck)x ≤ tk + δk; k = 1, . . . , K.

As shown in the proof of Proposition (3.3.2), we have that

P

(
n∑

j=1

aijxj − bi ≤ 0

)
≥ αi; i = 1, . . . ,m
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can be written as

E(Ai)x− E(bi) + φ−1(αi)
√
V ar(bi) + x′V ar(Ai)x ≤ 0, i = 1, . . . ,m.

Therefore, program (P5)′′ reads the following:

min
(∑K

k=1 νkδk

)
subject to

E(c1)x+ φ−1(β1)
√
x′V ar(c1)x ≤ t1 + δ1

...

E(cK)x+ φ−1(βK)
√
x′V ar(cK)x ≤ tK + δK

E(Ai)x− E(bi) + φ−1(αi)
√
V ar(bi) + x′V ar(Ai)x ≤ 0; i = 1, . . . ,m

x ≥ 0; δk ≥ 0; k = 1, . . . , K

which is exactly (P6)vi.

3.3.3 Example. Consider Example (3.3.1) and suppose that, a satisficing solution of type

3 is desirable for αi = 0.99 ∀ i, and βk = 0.99 ∀ k.
Suppose further that the decision maker goals are 2,000 and 15,000 for objectives 1 and

2 respectively. Using equal weights (i.e ν1 = ν2 = 0.5) for the two objectives, we have to

solve the following problem:

(P6)vii



min (0.5δ1 + 0.5δ2)

subject to

20x1 + 40x2 + 2.33
√

25x2
1 + 100x2

2 ≤ 2000 + δ1

50x1 + 100x2 + 2.33
√

400x2
1 + 2600x2

2 ≥ 15000− δ2

10x1 + 5x2 + 2.33
√

36x2
1 + 16x2

2 + 250000− 2500 ≤ 0

4x1 + 10x2 + 2.33
√

16x2
1 + 49x2

2 + 160000− 2000 ≤ 0

x1 + 1.5x2 + 2.33
√

4x2
1 + 9x2

2 + 2500− 450 ≤ 0

x ≥ 0

Using LINGO 13.0 software to solve this problem, we obtain the following solution:

δ∗1 = 1342.376, δ∗2 = 3801.852, x∗1 = 12.57766, x∗2 = 48.67925 with optimal value z∗ =

2572.114.

The assumption of normality may be unrealistic for a wide class of problem, for example,

resource allocation and investment for capacity expansion where the cost, input coefficient,

demand or resources has to be non-negative [122]. This calls for distributions with non-

negative range such as the chi-squared, exponential or gamma distribution. The basic
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motivation is the fact that these distributions may retain the convexity of the set of

feasible solution [122], which is of great advantage in applying any algorithm of nonlinear

programming.

In what follows, we characterize solution concepts introduced, in the case involved random

variables follow the chi-squared, the exponential and the gamma distributions.

3.4 Characterization of satisficing solutions for the

Chi-squared case

The major motivating factors for choosing chi-squared distribution to estimate imprecision

in Multiobjective Stochastic Programming include the following [122].

1. The reproductive property by which the sum of N variates, each having a fixed

chi-squared distribution, reproduces the same distribution in the same form of chi-

squared distribution.

2. The reproductive property of a chi-squared distribution relates very closely to a

normal distribution.

3. A chi-squared distribution is related very closely to a normal distribution

4. Any chi-squared distribution with a degree of freedom larger than 30 can be ap-

proximated by a normal distribution.

5. The error involved in approximating a central or noncentral chi-squared distribution

by a normal distribution can in principle be evaluated in terms of the optimal

solution of a chance constrained programming model.

The following lemma will be needed in the sequel.

3.4.1 Lemma. Let

r2 =
n∑

j=1

r2
j where

n∑
j=1

r2
j =

n∑
j=1

(ηjυj)
2; ηj ∼ N(0, σ2); j = 1, . . . , n

and υj =
√
xj; j = 1, . . . , n be some scalar quantity.

Then r2 has a chi-squared distribution with degree of freedom n (df = n) . The expected

value and variance of r2 are respectively given by

E(r2) =
n∑

j=1

V ar(rj) + V ar(rj)κ
2
rj

(3.7)

V ar(r2) = 2
n∑

j=1

V ar(rj)
2 + 2V ar(rj)

2κ2
rj

(3.8)
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where

κr =
E(η)x

1
2

V ar(r)
1
2

(3.9)

and

V ar(r) = xE(η − E(η))2. (3.10)

Proof. Suppose r2 =
∑n

j=1 r
2
j where

∑n
j=1 r

2
j =

∑n
j=1(ηjυj)

2; ηj ∼ N(0, σ2) and υj =
√
xj be some scalar quantity.

Since

r =
n∑

j=1

ηj
√
xj

given that ηj ∼ N(0, σ2), then rj; j = 1, . . . , n are independent standard normal random

variables with finite expectations and variances.

mr =
n∑

j=1

E(rj)

and

V ar(r) =
n∑

j=1

E(rj −mrj
)2

respectively.

The distribution function of r2 is obtained as follows:

Fr2(y) = P (r2 ≤ y)

= P (|r| ≤ √
y)

= Fr(
√
y)− Fr(−

√
y).

Taking the derivative we obtain the density function

d

dy
Fr2(y) =

d

dy
(Fr(

√
y)− Fr(−

√
y)

=
1

2
√
y
Pr(

√
y) +

1

2
√
y
Pr(−

√
y).

As the density function of r is even, we have

Pr(
√
y)

√
y

=
1

σ
√

2πy
e

y

2σ2 , with y ≥ 0.
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r2 can be expressed (see e.g. [122]) as follows:

r2 =
n∑

j=1

V ar(rj)(qrj
+ m̂rj

)2

where

m̂r =
n∑

j=1

mrj√
V ar(rj)

and

qr =
n∑

j=1

(r −mrj
)√

V ar(rj)

is normally distributed with mean 0 and variance 1. We find the characteristic function

of r2 through the moment generating function

Mr2(it) = E[eitr2

]

=
1

σ
√

2πy

∫ ∞

0

1
√
y
e

y

2σ2 eitr2

dy.

That is, the characteristic function of r2 [126] is

φ(t) =
n∏

j=1

[
(2π)−

1
2

∫ ∞

−∞
e
{itV ar(rj)(qrj +m̂rj )2− 1

2
q2
rj
}
dqrj

]
(3.11)

where i = +(−1)
1
2 and j = 1, . . . , n.

Since the integral in (3.11), see for example [122], is equal to

2π

(1− 2itV ar(rj))
e

 
itV ar(rj)m̂2

rj
1−2itV ar(rj)

!

the characteristic function φ(t) can be merely written as

φ(t) =
n∏

j=1

(1− 2itV ar(rj))
− 1

2 e

 Pn
j=1(itV ar(rj)m̂2

rj
)

1−2itV ar(rj)

!
. (3.12)

We can obtain the first two moments from (3.12) as follows:

E(r2) =
n∑

j=1

V ar(rj) + V ar(rj)κrj

V ar(r2) = 2
n∑

j=1

V ar(rj)
2 + 2V ar(rj)

2κ2
rj

where κr and V ar(r) are given in relations (3.9) and (3.10) respectively.
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In the sequel, we characterize satisficing solution concepts introduced earlier in this chap-

ter.

3.4.1 Satisficing solution of type 1

3.4.2 Proposition. Consider (P1), suppose

cx = λ1c
1x+ · · ·+ λKc

Kx,

and assume that

c2 =
n∑

j=1

c̄2j where
n∑

j=1

c̄2j =
n∑

j=1

(cjυj)
2 and υj =

√
xj; j = 1, . . . , n.

Suppose also that

h2
i =

n∑
i=1

h2
ij; i = 1, . . . ,m where

n∑
i=1

h2
ij =

n∑
j=1

{
(aijυj)

2 − (biw̄ij)
2
}

; i = 1, . . . ,m

where c2 and h2
i are mutually independent following a chi-squared distribution.

Then a point x∗ ∈ Rn is an (α, β)-satisficing solution of type 1 for (P1) if and only if x∗

is optimal for the following optimization problem:

(P7)



min
{∑n

j=1 V ar(cj) + V ar(cj)κ
2
cj

+F−1
χ2

n
(β)
√

2
∑n

j=1 V ar(cj)
2 + 2V ar(cj)2κ2

cj

}
subject to∑n

j=1 V ar(hij) + V ar(hij)κ
2
hij

+F−1
χ2

n
(αi)

√
2
∑n

j=1 V ar(hij)2 + 2V ar(hij)2κ2
hij
≤ 0; i = 1, . . . ,m

xj ≥ 0; j = 1, . . . , n

where∑n
j=1 λj = 1; κc and V ar(c) are as defined in relations (3.9) and (3.10) respectively,

αi ∈ (0, 1]; (i = 1, . . . ,m); β ∈ (0, 1] as in Definition (3.2.1),

w̄ij =
√
wij; j = 1, . . . , n, i = 1, . . . ,m where w̄ij ≥ 0; j = 1, . . . , n, i = 1, . . . ,m

and
∑n

j=1 w̄ij = 1; i = 1, . . . ,m are weights,

κhi
=

E(hi)
1
2

V ar(hi)
1
2

; i = 1, . . . ,m; V ar(hi) = 2
n∑

j=1

V ar(hij)
2 + 2V ar(hij)

2κ2
rj; i = 1, . . . ,m
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Fχ2
n

=
1

2n/2Γ(n/2)

∫ y

0

ey/2t(n/2)−1dt (3.13)

ckj ; k = 1, . . . , K, j = 1, . . . , n; aij; j = 1, . . . , n, i = 1, . . . ,m; and bi; i = 1, . . . ,m are

independent standard normal variates.

Proof. We know that x∗ ∈ Rn is an (α, β)-satisficing solution of type 1 for (P1), if there

exists s∗ ∈ Rn, such that (x∗, s∗) is optimal for the following problem:

(P5)



min s

subject to

P (cx ≤ s) ≥ β

P
(∑n

j=1 aijxj − bi ≤ 0
)
≥ αi, i = 1; . . . ,m

x ≥ 0; s, u.s.r.

We need to put the following relation in a simpler form

P (cx ≤ s) ≥ β. (3.14)

As

c2 =
n∑

j=1

c̄2j where
n∑

j=1

c̄2j =
n∑

j=1

(cjυj)
2 and υj =

√
xj; j = 1, . . . , n

we have that

c2 ∼ χ2
n.

By Lemma (3.4.1), the expected value and variance of c2 are

E(c2) =
n∑

j=1

V ar(cj) + V ar(cj)κ
2
cj

(3.15)

and

V ar(c2) = 2
n∑

j=1

V ar(cj)
2 + 2V ar(cj)

2κ2
cj

(3.16)

respectively, where cj; j = 1, . . . , n are independent standard normal random variables.

Then (3.14) can be written as

P

(
c2 − E(c2)√
V ar(c2)

≤ s− E(c2)√
V ar(c2)

)
≥ β. (3.17)
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But we know that

P(c2 ≤ s) = Fχ2
n

(
s− E(c2)√
V ar(c2)

)
where Fχ2

n
is as defined by relation (3.13).

Hence (3.17) becomes

Fχ2
n

(
s− E(c2)√
V ar(c2)

)
≥ β

that is
s− E(c2)√
V ar(c2)

≥ F−1
χ2

n
(β).

Therefore, we have that

E(c2) + F−1
χ2

n
(β)
√
V ar(c2) ≤ s. (3.18)

Substituting relations (3.15) and (3.16) in (3.18) we obtain

n∑
j=1

V ar(cj) + V ar(cj)κcj

+F−1
χ2

n
(βj)

√√√√2
n∑

j=1

V ar(cj)2 + 2V ar(cj)2κ2
cj
≤

n∑
j=1

sj. (3.19)

Now define

h2
i =

n∑
j=1

h2
ij; i = 1, . . . ,m where

n∑
i=1

h2
ij =

n∑
j=1

{
(aijυj)

2 − (biw̄ij)
2
}

; i = 1, . . . ,m

and h2
i is chi-squared distributed,

w̄ij =
√
wij; j = 1, . . . , n, i = 1, . . . ,m where w̄ij ≥ 0; j = 1, . . . , n, i = 1, . . . ,m

and
∑n

j=1 w̄ij = 1; i = 1, . . . ,m.

For all i

aij; j = 1, . . . , n, i = 1, . . . ,m and bi; i = 1, . . . ,m

are independent and normally distributed.

Clearly hi; i = 1, . . . ,m are independent normal variates with the following respective

finite expected values and variances

mhi
=

n∑
j=1

E(hij); i = 1, . . . ,m
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V ar(hi) =
n∑

j=1

E(hij −mhij
)2; i = 1, . . . ,m.

By following the procedure used in the Lemma (3.4.1), the characteristic function φ(t) of

h2
i ; i = 1, . . . ,m can be written as

φ(t) =
n∏

j=1

{1− 2itV ar(hij)}−
1
2 e

"Pn
j=1(itV ar(hij)m̂2

hij
)

1−2itV arhij

#
; i = 1, . . . ,m (3.20)

where

m̂hi
=

n∑
j=1

Mhij√
V arhij

; i = 1, . . . ,m.

We can obtain the first two moments of h2
i from (3.20) as follows

E(h2
i ) =

n∑
j=1

V ar(hij) + V ar(hi)κ
2
hij

; i = 1, . . . ,m (3.21)

V ar(h2
i ) = 2

n∑
j=1

V ar(hij)
2 + 2V ar(hij)

2κ2
hij

; i = 1, . . . ,m. (3.22)

Now

P

(
n∑

j=1

aijxj − bi ≤ 0

)
≥ αi; i = 1, . . . ,m

can be written as

P(h2
i ≤ 0) ≥ αi; i = 1, . . . ,m

which can be expressed as

P

(
h2

i − E(h2
i )√

V ar(h2
i )
≤ −E(h2

i )√
V ar(h2

i )

)
≥ αi; i = 1, . . . ,m.

Then

P(h2
i ≤ 0) = Fχ2

n

(
−E(h2

i )√
V ar(h2

i )

)
; i = 1, . . . ,m

where Fχ2
n

is defined as in (3.13).

We therefore have

Fχ2
n

(
−E(h2

i )√
V ar(h2

i )

)
≥ αi; i = 1, . . . ,m

that is
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−E(h2
i )√

V ar(h2
i )
≥ F−1

χ2
n
(αi); i = 1, . . . ,m

which leads to

E(h2
i ) + F−1

χ2
n
(αi)

√
V ar(h2

i ) ≤ 0; i = 1, . . . ,m. (3.23)

Substitute relations (3.21) and (3.22) in (3.23) to get

n∑
j=1

V ar(hij) + V ar(hij)κ
2
hij

+F−1
χ2

n
(α)

√√√√2
n∑

j=1

V ar(hij)2 + 2V ar(hij)2κ2
hij
≤ 0. (3.24)

Combine (3.19) and (3.24) in (P6) to obtain

min
∑n

j=1 sj

subject to∑n
j=1 V ar(cj) + V ar(cj)κ

2
cj

+F−1
χ2

n
(β)
√

2
∑n

j=1 V ar(cj)
2 + 2V ar(cj)2κ2

cj
≤
∑n

j=1 sj

.
∑n

j=1 V ar(hij) + V ar(hij)κ
2
hij

+F−1
χ2

n
(αi)

√
2
∑n

j=1 V ar(hij)2 + 2V ar(hij)2κ2
hij
≤ 0; i = 1, . . . ,m

xj ≥ 0; j = 1, . . . , n

which is equivalent to (P7).

We know that

V ar(c) =
n∑

j=1

xjE(cj − E(cj))
2,

let σ2
c =

n∑
j=1

E(cj − E(cj))
2

then V ar(c) =
n∑

j=1

xjσ
2
cj
.

Let

κc =
n∑

j=1

E(cj)x
1
2
j

V ar(cj)
1
2

then κ2
c =

n∑
j=1

E(cj)
2xj

xjσ2
cj

.
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The objective function of (P7) can be expanded to give

n∑
j=1

xjσ
2
cj

+ xjσ
2
cj

E(cj)
2xj

xjσ2
cj

+F−1
χ2

n
(β)

√√√√2
n∑

j=1

x2
j(σ

2
cj

)2 + 2x2
j(σ

2
cj

)2
E(cj)2xj

xj(σ2
cj

)

=
n∑

j=1

xjσ
2
cj

{
1 +

E(cj)
2

σ2
cj

}

+F−1
χ2

n
(β)

√√√√2
n∑

j=1

x2
j(σ

2
cj

)2

{
1 +

E(cj)2

σ2
cj

}
. (3.25)

Recall

hi =
n∑

j=1

{aijxj − w̄ijbi}; i = 1, . . . ,m

where
n∑

j=1

{aijxj − w̄ijbi} =
n∑

j=1

aijxj −
n∑

j=1

w̄ijbi; i = 1, . . . ,m

then

V ar(hi) =
n∑

j=1

V ar(aijxj)−
n∑

j=1

V ar(w̄ijbi)}

or

V ar(hi) =
n∑

j=1

xj{aij − E(aij}2 − w̄ij{bi − E(bi)}2

=
n∑

j=1

xjσ
2
aij
−

n∑
j=1

w̄ijσ
2
bi
. (3.26)

Substitute (3.26) in the constraints of (P6)

n∑
j=1

{xjσ
2
aij
− w̄ijσ

2
bi
}

{
1 +

E(aij)
2xj

{xjσ2
aij
− w̄ijσ2

bi
}

}

+F−1
χ2

n
(αi)

√√√√2
n∑

j=1

{xjσ2
aij
− w̄ijσ2

bi
}2

{
1 + 2

E(aij)2xj

{xjσ2
aij
− w̄ijσ2

bi
}

}
≤ 0.
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Combine (3.25) and (3.27) in (P5) to obtain

(P7)′



min

(∑n
j=1 xjσ

2
cj

{
1 +

E(cj)
2

σ2
cj

}
+ F−1

χ2
n
(β)

√
2
∑n

j=1 x
2
j(σ

2
cj

)2

{
1 +

E(cj)2

σ2
cj

})
subject to∑n

j=1{xjσ
2
aij
− w̄ijσ

2
bi
}
{

1 +
E(aij)

2xj

{xjσ2
aij
−w̄ijσ2

bi
}

}
+F−1

χ2
n
(αi)

√
2
∑n

j=1{xjσ2
aij
− w̄ijσ2

bi
}2

{
1 + 2

E(aij)
2xj

{xjσ2
aij
−w̄ijσ2

bi
}

}
≤ 0; i = 1, . . . ,m

xj ≥ 0; j = 1, . . . , n

3.4.1 Example. Consider the following Multiobjective Stochastic Linear Program:

(P7)′′



min {(c̄1)2}

min {(c̄2)2}

subject to∑n
j=1 h

2
1j ≤ 0∑n

j=1 h
2
2j ≤ 0∑n

j=1 h
2
3j ≤ 0

x ≥ 0

where

(c̄k)2 =
2∑

j=1

(ckjυj)
2; k = 1, 2;

2∑
i=1

h2
ij =

2∑
j=1

{
(aijυj)

2 − (biw̄ij)
2
}

; i = 1, . . . , 3

xj =
√
υj; j = 1, 2; w̄ij ≥ 0; j = 1, 2, i = 1, . . . , 3 and

n∑
j=1

w̄ij = 1; i = 1, . . . ,m

ckj ; j = 1, 2; j = k; aij; i = 1, 2, 3; j = 1, 2, bi; i = 1, 2, 3

are independent normally distributed random variables, with the following parameters:

c11 ∼ N(20, 5), c12 ∼ N(40, 10)

c21 ∼ N(50, 20), c22 ∼ N(100, 50)

a11 ∼ N(10, 6), a12 ∼ N(5, 4)

a21 ∼ N(4, 4), a22 ∼ N(10, 7)

a31 ∼ N(1, 2), a32 ∼ N(1.5, 3)

b1 ∼ N(2500, 500), b2 ∼ N(2000, 400), b3 ∼ N(450, 50).
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With these data, (P7)′′ reads

(P7)′′′



min f1 =
(
25x1

{
1 + 400

25

}
+ 9.2103

√
1250x2

1

{
1 + 400

25

}
+100x2

{
1 + 1600

100

}
+ 9.2103

√
20000x2

2

{
1 + 1600

100

})
min f2 =

(
400x1

{
1 + 2500

400

}
+ 9.2103

√
320000x2

1

{
1 + 2500

400

}
+2500x2

{
1 + 10000

2500

}
+ 9.2103

√
12500000x2

2

{
1 + 10000

2500

})
subject to

16x1 − 0.5(25000) + 100x1{16x1 − 0.5(25000)}

+9.2103
√

2{16x1 − 0.5(25000)}2 + 216x1{16x1 − 0.5(25000)}

+36x2 − 0.5(25000) + 25x2{36x2 − 0.5(25000)}

+9.2103
√

2{36x2 − 0.5(25000)}2 + 50x2{36x2 − 0.5(25000)} ≤ 0

16x1 − 0.5(160000) + 16x1{16x1 − 0.5(160000)}

+9.2103
√

2{16x1 − 0.5(160000)}2 + 32x1{16x1 − 0.5(160000)}

+49x2 − 0.5(160000) + 100x2{49x2 − 0.5(160000)}

+9.2103
√

2{49x2 − 0.5(160000)}2 + 200x2{49x2 − .5(160000)} ≤ 0

4x1 − 0.5(2500) + x1{4x1 − 0.5(2500)}

+9.2103
√

2{4x1 − 0.5(2500)}2 + 2x1{4x1 − 0.5(2500)}

+9x2 − 0.5(2500) + 2.25x2{9x2 − 0.5(2500)}

+9.2103
√

2{9x2 − 0.5(2500)}2 + 4.5x2{9x2 − 0.5(2500)} ≤ 0

x1, x2 ≥ 0

If the Decision maker is interested in a satisficing solution of type 1, and if the objective

functions are aggregated with weights λ1 = 0.4 and λ2 = 0.6 for instance, then by virtue

of Proposition (3.3.2) the counterpart of (P7)′′′ is given below
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(P7)iv



min z = 0.4
(
25x1

{
1 + 400

25

}
+ 9.2103

√
1250x2

1

{
1 + 400

25

}
+100x2

{
1 + 1600

100

}
+ 9.2103

√
20000x2

2

{
1 + 1600

100

})
+0.6

(
400x1

{
1 + 2500

400

}
+ 9.2103

√
320000x2

1

{
1 + 2500

400

}
+2500x2

{
1 + 10000

2500

}
+ 9.2103

√
12500000x2

2

{
1 + 10000

2500

})
subject to

16x1 − 0.5(25000) + 100x1{16x1 − 0.5(25000)}

+9.2103
√

2{16x1 − 0.5(25000)}2 + 216x1{16x1 − 0.5(25000)}

+36x2 − 0.5(25000) + 25x2{36x2 − 0.5(25000)}

+9.2103
√

2{36x2 − 0.5(25000)}2 + 50x2{36x2 − 0.5(25000)} ≤ 0

16x1 − 0.5(160000) + 16x1{16x1 − 0.5(160000)}

+9.2103
√

2{16x1 − 0.5(160000)}2 + 32x1{16x1 − 0.5(160000)}

+49x2 − 0.5(160000) + 100x2{49x2 − 0.5(160000)}

+9.2103
√

2{49x2 − 0.5(160000)}2 + 200x2{49x2 − .5(160000)} ≤ 0

4x1 − 0.5(2500) + x1{4x1 − 0.5(2500)}

+9.2103
√

2{4x1 − 0.5(2500)}2 + 2x1{4x1 − 0.5(2500)}

+9x2 − 0.5(2500) + 2.25x2{9x2 − 0.5(2500)}

+9.2103
√

2{9x2 − 0.5(2500)}2 + 4.5x2{9x2 − 0.5(2500)} ≤ 0

x1, x2 ≥ 0

Solving this optimization problem using LINGO 13.0 software we obtain optimal solution

z∗ = 599033.3 at x∗1 = 0, x∗2 = 11.08983 after 324 iterations.

3.4.2 Satisficing solution of type 2

3.4.3 Proposition. Consider (P1), suppose that

ck (k = 1, . . . , K)

are such that

(ck)2 =
n∑

j=1

(c̄j
k)2; where

n∑
j=1

(c̄j
k)2 =

n∑
j=1

{
(cjυj)

k
}2

υj =
√
xj; j = 1, . . . , n.

Suppose also that

h2
i =

n∑
j=1

h2
ij; i = 1, . . . ,m where

n∑
j=1

h2
ij =

n∑
j=1

{
(aijυj)

2 − (biw̄ij)
2
}

; i = 1, . . . ,m
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where (ck)2; k = 1, . . . , K and h2
i ; i = 1, . . . ,m are mutually independent following a

chi-squared distribution.

Then a point x∗ ∈ Rn is an (α, β)-satisficing solution of type 2 for (P1) if and only if x∗

is efficient for the following optimization problem:

(P7)v



min
(∑n

j=1 V ar(c
1
j) + V ar(c1j)κ

2
c1j

+F−1
χ2

n
(β1)

√
2
∑n

j=1 V ar(c
1
j)

2 + 2V ar(c1j)
2κ2

c1j

)
...

min
(∑n

j=1 V ar(c
K
j ) + V ar(cKj )κ2

cK
j

+F−1
χ2

n
(βK)

√
2
∑n

j=1 V ar(c
K
j )2 + 2V ar(cKj )2κ2

cK
j

)
subject to∑n

j=1 V ar(hij) + V ar(hij)κ
2
hij

+F−1
χ2

n
(αi)

√
2
∑n

j=1 V ar(hij)2 + 2V ar(hij)2κ2
hij
≤ 0; i = 1, . . . ,m

xj ≥ 0; j = 1, . . . , n

where

κck ; k = 1, . . . , K; and V ar(ck); k = 1, . . . , K are as defined in relations (3.9) and

(3.10) respectively, αi ∈ (0, 1]; (i = 1, . . . ,m); βk ∈ (0, 1]; (k = 1, . . . , K) are as in

Definition (3.2.2), w̄i; i = 1, . . . ,m; κhi
; i = 1, . . . ,m; V ar(hi); i = 1, . . . ,m; Fχ2

n

ckj ; k = 1, . . . , K, j = 1, . . . , n; aij; j = 1, . . . , n, i = 1, . . . ,m; and bi; i = 1, . . . ,m are

as given in Proposition (3.4.2).

Proof. As shown in the proof of Proposition (3.4.2), the chance constraints

P (c1x ≤ s1) ≥ β1, . . . , P (cKx ≤ sK) ≥ βK (3.27)

in (P5)′ are equivalent to

∑n
j=1 V ar(c

1
j) + V ar(c1j)κ

2
c1j

+F−1
χ2

n
(β1)

√
2
∑n

j=1 V ar(c
1
j)

2 + 2V ar(c1j)
2κ2

c1j
≤ s1

...∑n
j=1 V ar(c

K
j ) + V ar(cKj )κ2

cK
j

+F−1
χ2

n
(βK)

√
2
∑n

j=1 V ar(c
K
j )2 + 2V ar(cKj )2κ2

cK
j
≤ sK

(3.28)

From the proof of Proposition (3.4.2)

h2
i =

n∑
j=1

{
(aijυj)

2 − (biw̄ij)
2
}
, i = 1, . . . ,m
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is equivalent to

n∑
j=1

V ar(hij) + V ar(hij)κ
2
hij

+ F−1
χ2

n
(αi)

√√√√2
n∑

j=1

(V ar(hij)2 + 2V ar(hij)2κ2
hij
≤ 0.

Therefore, (P5)′ can be written as

min (s1, . . . , sK)

subject to∑n
j=1 V ar(c

1
j) + V ar(c1j)κ

2
c1j

+F−1
χ2

n
(β1)

√
2
∑n

j=1 V ar(c
1
j)

2 + 2V ar(c1j)
2κ2

c1j
≤ s1

...∑n
j=1 V ar(c

K
j ) + V ar(cKj )κ2

cK
j

+F−1
χ2

n
(βK)

√
2
∑n

j=1 V ar(c
K
j )2 + 2V ar(cKj )2κ2

cK
j
≤ sK∑n

j=1 V ar(hij) + V ar(hij)κ
2
hij

+F−1
χ2

n
(αi)

√
2
∑n

j=1 V ar(hij)2 + 2V ar(hij)2κ2
hij
≤ 0

xj ≥ 0; j = 1, . . . , n; sk, u.s.r; k = 1, . . . , K

which is equivalent to (P7)v.

To solve (P7)v we have to put it in a more tractable form

(P7)vi



min

∑n
j=1 xjσ

2
c1j

{
1 +

E(c1j )2

σ2
c1
j

}
+ F−1

χ2
n
(β1)

√√√√2
∑n

j=1 x
2
j(σ

2
c1j

)2

{
1 +

E(c1j )2

σ2
c1
j

}
...

min

∑n
j=1 xjσ

2
cK
j

{
1 +

E(cK
j )2

σ2

cK
j

}
+ F−1

χ2
n
(βK)

√√√√2
∑n

j=1 x
2
j(σ

2
cK
j
)2

{
1 +

E(cK
j )2

σ2

cK
j

}
subject to∑n

j=1{xjσ
2
aij
− w̄ijσ

2
bi
}
{

1 +
E(aij)

2xj

{xjσ2
aij
−w̄ijσ2

bi
}

}
+F−1

χ2
n
(αi)

√
2
∑n

j=1{xjσ2
aij
− w̄ijσ2

bi
}2

{
1 + 2

E(aij)2xj

{xjσ2
aij
−w̄ijσ2

bi
}

}
≤ 0, i = 1, . . . ,m,

xj ≥ 0, j = 1, . . . , n

3.4.2 Example. Assume now that a satisficing solution of type 2 is sought. Then by

Proposition (3.3.3), one has to solve problem (P7)′′′ of Example (3.4.1). Using the com-

promise programming approach (see Subsection (1.3.8)), we have to solve the following

subproblems:
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

min f1 =
(
25x1

{
1 + 400

25

}
+ 9.2103

√
1250x2

1

{
1 + 400

25

}
+100x2

{
1 + 1600

100

}
+ 9.2103

√
20000x2

2

{
1 + 1600

100

})
subject to

16x1 − 0.5(25000) + 100x1{16x1 − 0.5(25000)}

+9.2103
√

2{16x1 − 0.5(25000)}2 + 216x1{16x1 − 0.5(25000)}

+36x2 − 0.5(25000) + 25x2{36x2 − 0.5(25000)}

+9.2103
√

2{36x2 − 0.5(25000)}2 + 50x2{36x2 − 0.5(25000)} ≤ 0

16x1 − 0.5(160000) + 16x1{16x1 − 0.5(160000)}

+9.2103
√

2{16x1 − 0.5(160000)}2 + 32x1{16x1 − 0.5(160000)}

+49x2 − 0.5(160000) + 100x2{49x2 − 0.5(160000)}

+9.2103
√

2{49x2 − 0.5(160000)}2 + 200x2{49x2 − .5(160000)} ≤ 0

4x1 − 0.5(2500) + x1{4x1 − 0.5(2500)}

+9.2103
√

2{4x1 − 0.5(2500)}2 + 2x1{4x1 − 0.5(2500)}

+9x2 − 0.5(2500) + 2.25x2{9x2 − 0.5(2500)}

+9.2103
√

2{9x2 − 0.5(2500)}2 + 4.5x2{9x2 − 0.5(2500)} ≤ 0

x1, x2 ≥ 0



min f2 =
(
400x1

{
1 + 2500

400

}
+ 9.2103

√
320000x2

1

{
1 + 2500

400

}
+2500x2

{
1 + 10000

2500

}
+ 9.2103

√
12500000x2

2

{
1 + 10000

2500

})
subject to

16x1 − 0.5(25000) + 100x1{16x1 − 0.5(25000)}

+9.2103
√

2{16x1 − 0.5(25000)}2 + 216x1{16x1 − 0.5(25000)}

+36x2 − 0.5(25000) + 25x2{36x2 − 0.5(25000)}

+9.2103
√

2{36x2 − 0.5(25000)}2 + 50x2{36x2 − 0.5(25000)} ≤ 0

16x1 − 0.5(160000) + 16x1{16x1 − 0.5(160000)}

+9.2103
√

2{16x1 − 0.5(160000)}2 + 32x1{16x1 − 0.5(160000)}

+49x2 − 0.5(160000) + 100x2{49x2 − 0.5(160000)}

+9.2103
√

2{49x2 − 0.5(160000)}2 + 200x2{49x2 − .5(160000)} ≤ 0

4x1 − 0.5(2500) + x1{4x1 − 0.5(2500)}

+9.2103
√

2{4x1 − 0.5(2500)}2 + 2x1{4x1 − 0.5(2500)}

+9x2 − 0.5(2500) + 2.25x2{9x2 − 0.5(2500)}

+9.2103
√

2{9x2 − 0.5(2500)}2 + 4.5x2{9x2 − 0.5(2500)} ≤ 0

x1, x2 ≥ 0
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f ∗1 = 78410.41 f ∗2 = 946115.3 z∗=
-0.6822355E-02

x∗1 0 0 0
x∗2 11.08983 11.08983 11.08983

Table 3.2: Compromise solution for Program (P7)′′′

(P7)vii



min z = 0.5
(
25x1

{
1 + 400

25

}
+ 9.2103

√
1250x2

1

{
1 + 400

25

}
+100x2

{
1 + 1600

100

}
+ 9.2103

√
20000x2

2

{
1 + 1600

100

}
− f ∗1

)
+0.5

(
400x1

{
1 + 2500

400

}
+ 9.2103

√
320000x2

1

{
1 + 2500

400

}
+2500x2

{
1 + 10000

2500

}
+ 9.2103

√
12500000x2

2

{
1 + 10000

2500

}
− f ∗2

)
subject to

16x1 − 0.5(25000) + 100x1{16x1 − 0.5(25000)}

+9.2103
√

2{16x1 − 0.5(25000)}2 + 216x1{16x1 − 0.5(25000)}

+36x2 − 0.5(25000) + 25x2{36x2 − 0.5(25000)}

+9.2103
√

2{36x2 − 0.5(25000)}2 + 50x2{36x2 − 0.5(25000)} ≤ 0

16x1 − 0.5(160000) + 16x1{16x1 − 0.5(160000)}

+9.2103
√

2{16x1 − 0.5(160000)}2 + 32x1{16x1 − 0.5(160000)}

+49x2 − 0.5(160000) + 100x2{49x2 − 0.5(160000)}

+9.2103
√

2{49x2 − 0.5(160000)}2 + 200x2{49x2 − .5(160000)} ≤ 0

4x1 − 0.5(2500) + x1{4x1 − 0.5(2500)}

+9.2103
√

2{4x1 − 0.5(2500)}2 + 2x1{4x1 − 0.5(2500)}

+9x2 − 0.5(2500) + 2.25x2{9x2 − 0.5(2500)}

+9.2103
√

2{9x2 − 0.5(2500)}2 + 4.5x2{9x2 − 0.5(2500)} ≤ 0

x1, x2 ≥ 0

using LINGO 13.0 software to solve the the above problems, we obtain the solutions in the

table above.

Finally, a characterization of an (α, β)−satisficing solution of type 3 is given below.

3.4.3 Satisficing solution of type 3

3.4.4 Proposition. Consider (P1), suppose that for k = 1, . . . , K, ck is such that

(ck)2 =
n∑

j=1

(c̄j
k)2 where

n∑
j=1

(c̄j
k)2 =

n∑
j=1

{
(cjυj)

k
}2
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υj =
√
xj; j = 1, . . . , n

Suppose also that for i = 1, . . . ,m

h2
i =

n∑
j=1

h2
ij where

n∑
j=1

h2
ij =

n∑
j=1

{
(aijυj)

2 − (biw̄ij)
2
}

suppose further that (ck)2; k = 1, . . . , K and h2
i ; i = 1, . . . ,m are mutually independent

and follow chi-squared distributions.

Then a point x∗ ∈ Rn is an (α, β)-satisficing solution of type 3 for (P1) if and only if there

exists δ∗ ∈ RK such that (x∗, δ∗) is optimal for the following mathematical programming

problem

(P7)viii



min
(∑K

k=1 νkδk

)
subject to∑n

j=1 V ar(c
1
j) + V ar(c1j)κ

2
c1j

+ F−1
χ2

n
(β1)

√
2
∑n

j=1 V ar(c
1
j)

2

+2V ar(c1j)
2κ2

c1j
≤ t1 + δ1,

...∑n
j=1 V ar(c

K
j ) + V ar(cKj )κ2

cK
j

+ F−1
χ2

n
(βK)

√
2
∑n

j=1 V ar(c
K
j )2

+2V ar(cKj )2κ2
cK
j
≤ tK + δK∑n

j=1 V ar(hij) + V ar(hij)κ
2
hij

+F−1
χ2

n
(αi)

√
2
∑n

j=1 V ar(hij)2 + 2V ar(hij)2κ2
hij
≤ 0

xj ≥ 0; j = 1, . . . , n; δk ≥ 0; k = 1, . . . , K

where δk; (k = 1, . . . , K), νk; (k = 1, . . . , K), tk; (k = 1, . . . , K);

κck ; k = 1, . . . , K, and V ar(ck); k = 1, . . . , K are as defined in relations (3.9) and (3.10)

of Lemma (3.4.1) respectively, αi ∈ (0, 1]; (i = 1, . . . ,m), βk ∈ (0, 1]; (k = 1, . . . , K) are

as in Definition (3.2.2), w̄i; i = 1, . . . ,m, κhi
; i = 1, . . . ,m, V ar(hi); i = 1, . . . ,m, Fχ2

n

ckj ; k = 1, . . . , K, j = 1, . . . , n, aij; j = 1, . . . , n, i = 1, . . . ,m and bi; i = 1, . . . ,m are as

defined in Proposition (3.4.3).

Proof. Consider

(P5)′′



min
(∑K

k=1 νkδk

)
subject to

P
(
ckx ≤ tk + δk

)
≥ βk; k = 1, . . . , K

P
(∑n

j=1 aijxj − bi ≤ 0
)
≥ αi; i = 1, . . . ,m

x ≥ 0, δk ≥ 0; k = 1, . . . , K
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As discussed in the proof of Proposition (3.4.3), the chance constraints

P
(
ckx ≤ tk + δk) ≥ βk; k = 1, . . . , K (3.29)

are equivalent to

n∑
j=1

V ar(ckj ) + V ar(ckj )κ
2
ck
j
+ (3.30)

F−1
χ2

n
(βk)

√√√√2
n∑

j=1

V ar(ckj )
2 + 2V ar(ckj )

2κ2
ck
j
≤ tk + δk; k = 1, . . . , K.

From the proof of Proposition (3.4.2), we know that

h2
i =

n∑
j=1

{
(aijυj)

2 − (biw̄ij)
2
}
, i = 1, . . . ,m

can be transformed as

n∑
j=1

V ar(hij) + V ar(hij)κ
2
hij

+F−1
χ2

n
(αi)

√√√√2
n∑

j=1

V arhij
2 + 2V arhij

2κ2
hij
≤ 0; i = 1, . . . ,m (3.31)

Substitute (3.30) and (3.31) in (P5)′′ we obtain (P7)viii.

To enable us solve (P7)viii we need to put it in a more tractable form

(P7)ix



min
(∑K

1=k νkδk

)
subject to

∑n
j=1 xjσ

2
c1j

{
1 +

E(c1j )2

σ2
c1
j

}
+ F−1

χ2
n
(β1)

√√√√2
∑n

j=1 x
2
j(σ

2
c1j

)2

{
1 +

E(c1j )2

σ2
c1
j

}
≤ t1 + δ1

...

∑n
j=1 xjσ

2
cK
j

{
1 +

E(cK
j )2

σ2

cK
j

}
+ F−1

χ2
n
(βK)

√√√√2
∑n

j=1 x
2
j(σ

2
cK
j
)2

{
1 +

E(cK
j )2

σ2

cK
j

}
≤ tK + δK

∑n
j=1{xjσ

2
aij
− w̄ijσ

2
bi
}
{

1 +
E(aij)

2xj

{xjσ2
aij
−w̄ijσ2

bi
}

}
+F−1

χ2
n
(αi)

√
2
∑n

j=1{xjσ2
aij
− w̄ijσ2

bi
}2

{
1 + 2

E(aij)2xj

{xjσ2
aij
−w̄ijσ2

bi
}

}
≤ 0, i = 1, . . . ,m,

xj ≥ 0, j = 1, . . . , n, δk ≥ 0; k = 1, . . . , K
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˙

3.4.3 Example. Suppose that a satisficing solution of type 3 of Program (P7)′′′ is desir-

able by the DM whose goals are 2,000 and 15,000 for objectives 1 and 2 respectively. Using

equal weights (i.e ν1 = ν2 = 0.5) for the two objectives, we have to solve the following

problem:

(P7)x



min (0.5δ1 + 0.5δ2)

subject to

25x1

{
1 + 400

25

}
+ 9.2103

√
1250x2

1

{
1 + 400

25

}
+100x2

{
1 + 1600

100

}
+ 9.2103

√
20000x2

2

{
1 + 1600

100

}
≤ 2000 + δ1

400x1

{
1 + 2500

400

}
+ 9.2103

√
320000x2

1

{
1 + 2500

400

}
+2500x2

{
1 + 10000

2500

}
+ 9.2103

√
12500000x2

2

{
1 + 10000

2500

}
≥ 15000− δ2

16x1 − 0.5(25000) + 100x1{16x1 − 0.5(25000)}

+9.2103
√

2{16x1 − 0.5(25000)}2 + 216x1{16x1 − 0.5(25000)} ≤ 0

+36x2 − 0.5(25000) + 25x2{36x2 − 0.5(25000)}

+9.2103
√

2{36x2 − 0.5(25000)}2 + 50x2{36x2 − 0.5(25000)} ≤ 0

{16x1 − 0.5(160000) + 16x1{16x1 − 0.5(160000)}

+9.2103
√

2{16x1 − 0.5(160000)}2 + 32x1{16x1 − 0.5(160000)}

+ {49x2 − 0.5(160000) + 100x2{49x2 − 0.5(160000)}

+9.2103
√

2{49x2 − 0.5(160000)}2 + 200x2{49x2 − .5(160000)} ≤ 0

4x1 − 0.5(2500) + x1{4x1 − 0.5(2500)}

+9.2103
√

2{4x1 − 0.5(2500)}2 + 2x1{4x1 − 0.5(2500)}

+9x2 − 0.5(2500) + 2.25x2{9x2 − 0.5(2500)}

+9.2103
√

2{9x2 − 0.5(2500)}2 + 4.5x2{9x2 − 0.5(2500)} ≤ 0

x1, x2 ≥ 0, δ1, δ2 ≥ 0

Using LINGO 13.0 software to solve (P7)x, we obtain the following solution after 355 iter-

ations: optimal solution z∗ = 38205.20 at x1 = 0.000, x2 = 11.08983, δ1 = 76410.41, δ2 =

0.
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3.5 Characterization of satisficing solutions for the

Exponential case

The exponential distribution provides another suitable continuous distribution defined in

a nonnegative domain, which could be used for a wide class of economic models involving

nonnegative prices, input coefficients and resource vectors.

Major advantages of exponential distribution are listed below.

1. It is relatively easy to analyze because it does not deteriorate with time and is often

a good approximation to the actual distribution.

2. It is a memoryless distribution and the unique distribution that possess this inter-

esting property.

3. The convolution of exponential random variables produce an exponential variate.

4. With exponential distribution it is possible to determine the probability that one

exponential variable is smaller than another.

3.5.1 Lemma. Assume Y is an exponential random variable, b is a constant and α ∈ (0, 1]

then

P {Y ≤ b} ≥ α

is equivalent to

∏n
j=1 µj

(∑n
q=1

xn−1
q e

−
µqb
xq

µj
Qn

{l=1,l6=q}(xqµl−xlµq)

)
≤ 1− α if b ≥ 0.

This result was proved for 2 variables by Goicoechea et al [62] and Biswal et al [27]

generalized it.

3.5.1 Satisficing solution of type 1

3.5.2 Proposition. Suppose that

ckj ; k = 1, . . . , K; j = 1, . . . , n

are independent exponentially distributed random variables with parameters µk
j . Assume

that the objective functions of (P1) can be aggregated as the following weighted sum:

cx = λ1c
1x+ · · ·+ λKc

Kx
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where λ1, . . . , λK ≥ 0,
∑K

k=1 λk = 1. Suppose also that for any i = 1, . . . ,m; aij; j =

1, . . . , n are independent exponentially distributed with known parameters µij and assume

that bi; i = 1, . . . ,m are positive constants. Then a point x∗ ∈ Rn is an (α, β)-satisficing

solution of type 1 for (P1) if and only if x∗ is optimal for the following optimization

problem:

(P8)



min s

subject to

∑K
k=1

∏n
j=1 µck

j

∑n
p=1

λkxn−1
p e

−
µ

ck
p

sk

λkxp

µ
ck
j

Qn
{l=1,l6=p}(λkxpµ

ck
l
−λkxlµck

p
)

 ≤ 1− β

∏n
j=1 µa1j

(∑n
p=1

xn−1
p e

−
µa1p b1

xp

µa1j

Qn
{l=1,l6=p}(xpµa1l

−xlµa1p )

)
≤ 1− α1

...∏n
j=1 µamj

(∑n
p=1

xn−1
p e

−
µamp bm

xp

µamj

Qn
{l=1,l6=p}(xpµaml

−xlµamp )

)
≤ 1− αm

x ≥ 0, s; u.s.r

where α1, . . . , αm ∈ (0, 1], β ∈ (0, 1].

Proof. Recall that if (x∗, s∗) is optimal for the following optimization problem:

(P5)



min s

subject to

P (cx ≤ s) ≥ β

P
(∑n

j=1 aijxj − bi ≤ 0
)
≥ αi; i = 1, . . . ,m

x ≥ 0; s, u.r.s

then x∗ is the type 1 solution for (P1).

As

cx = λ1c
1x+ . . .+ λKc

Kx

we have by Lemma (3.5.1)

P(cx ≤ s) ≥ β

is equivalent to

K∑
k=1


n∏

j=1

µck
j

 n∑
p=1

λkx
n−1
p e

−
µ

ck
p

sk

λkxp

µck
j

∏n
{l=1,l 6=p}(λkxpµck

l
− λkxlµck

p
)


 ≤ 1− β. (3.32)
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We have also that

P

(
n∑

j=1

aijxj ≤ bi

)
≥ αi; i = 1, . . . ,m

are equivalent to

n∏
j=1

µa1j

 n∑
p=1

xn−1
p e

−
µa1p b1

xp

µa1j

∏n
{l=1,l 6=p}(xpµa1l

− xlµa1p)

 ≤ 1− α1

to

(3.34)
...

n∏
j=1

µamj

 n∑
p=1

xn−1
p e

−
µamp bm

xp

µamj

∏n
{l=1,l 6=p}(xpµaml

− xlµamp)

 ≤ 1− αm (3.35)

Substitute (3.32) and (3.33) in (P5) gives (P8).

3.5.1 Example. Consider the following optimization problem, for illustration purposes:

(P8)′′



min (c11x1 + c12x2 + c13x3)

min (c21x1 + c22x2 + c23x3)

subject to

a11x1 + a12x2 + a13x3 ≤ b1

a21x1 + a22x2 + a23x3 ≤ b2

x1, x2, x3 ≥ 0.

where

cki , i = 1, 2; i = k; aij, i = 1, 2; j = 1, 2, 3

are independent exponentially distributed random variables, with the following means:

E(c11(ω)) = 5, E(c12(ω)) = 6, E(c13(ω)) = 3

E(c21(ω)) = 10, E(c22(ω)) = 4, E(c23(ω)) = 7

E(a11(ω)) = 5, E(a12(ω)) = 4, E(a12(ω)) = 8

E(a21(ω)) = 10 E(a22(ω)) = 2, E(a23(ω)) = 20

b1 = 10, b2 = 20.

If the Decision maker is interested in a satisficing solution of type 1 with

α1 = 95
100
, α2 = 90

100
, and β = 90

100
, λ1 = 4

10
and λ2 = 6

10
.
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Then the following program should be solved:

min s

subject to(
1
5

1
6

1
3

{
0.4x2

1e
−5 s

0.4x1

(0.4x1
1
6
−0.4x2

1
5
)(0.4x1

1
3
−0.4x3

1
5
)
+

0.4x2
2e

−6 s
0.4x2

1
6
(0.4x2

1
5
−0.4x1

1
6
)(0.4x2

1
3
−0.4x3

1
6
)

+
0.4x2

3e
−3 s

0.4x3

1
3
(0.4x3

1
5
−0.4x1

1
3
)(0.4x3

1
6
−0.4x2

1
3
)

}
+

1
10

1
4

1
2

{
0.6x2

1e
−10 s

0.6x1

1
10

(0.6x1
1
4
−0.6x2

1
10

)(0.6x1
1
2
−0.6x3

1
10

)
+

0.6x2
2e

−4 s
0.6x2

1
4
(0.6x2

1
10
−0.6x1

1
4
)(0.6x2

1
2
−0.6x3

1
4
)

+
0.6x2

3e
−2 s

0.6x3

1
2
(0.6x3

1
10
−0.6x1

1
2
)(0.6x3

1
4
−0.6x2

1
2
)

})
≤ 10

100

1
5

1
4

1
8

{
x2
1e−

10
5 x1

1
5
(x1

1
4
−x2

1
5
)(x1

1
8
−x3

1
5
)
+

x2
2e−

10
4 x2

1
4
(x2

1
5
−x1

1
4
)(x2

1
8
−x3

1
4
)
+

x2
3e−

10
8 x3

1
8
(x3

1
5
−x1

1
8
)(x3

1
4
−x2

1
8
)

}
≤ 5

100

1
10

1
2

1
20

{
x2
1e−

20
10 x1

1
10

(x1
1
2
−x2

1
10

)(x1
1
20
−x3

1
10

)
+

x2
2e−

20
2 x2

1
2
(x2

1
10
−x1

1
2
)(x2

1
20
−x3

1
2
)
+

x2
3e−

20
20 x3

1
20

(x3
1
10
−x1

1
20

)(x3
1
2
−x2

1
20

)

}
≤ 10

100

x ≥ 0, s, u.s.r.

This program can be written as

(P8)′′′



min s

subject to(
1
90

{
5(0.4)x2

1e
− 5s

(0.4)x1

(
(0.4)x1

6
− (0.4)x2

5
)(

(0.4)x1
3

− (0.4)x3
5

)
+

6(0.4)x2
2e

− 6s
(0.4)x2

(
(0.4)x2

5
− (0.4)x1

6
)(

(0.4)x2
3

− (0.4)x3
6

)

+
3(0.4)x2

3e
− 3s

(0.4)x3

(
(0.4)x3

5
− (0.4)x1

3
)(

(0.4)x3
6

− (0.4)x2
3

)

}
+

1
80

{
10(0.6)x2

1e
− 10s

(0.6)x1

(
(0.6)x1

4
− (0.6)x2

10
)(

(0.6)x1
7

− (0.6)x3
10

)
+

4(0.6)x2
2e

− 4s
(0.6)x2

(
(0.6)x2

10
− (0.6)x1

4
)(

(0.6)x2
7

− (0.6)x3
4

)
+

+
7(0.6)x2

3e
− 7s

(0.6)x3

(
(0.6)x3

10
− (0.6)x1

7
)(

(0.6)x3
4

− (0.6)x2
7

)

})
≤ 10

100

1
160

{
5x2

1e
−2
x1

(
x1
4
−x2

5
)(

x1
8
−x3

5
)
+

4x2
2e

− 5
2x2

(
x2
5
−x1

4
)(

x2
8
−x3

4
)
+

8x2
3e

− 5
4x3

(
x3
5
−x1

8
)(

x3
4
−x2

8
)

}
≤ 5

100

1
140

{
10x2

1e
− 2

x1

(
x1
2
−x2

10
)(

x1
20
−x3

10
)
+

2x2
2e

− 10
x2

(
x2
10
−x1

2
)(

x2
20
−x3

2
)
+

20x2
3e

− 1
x3

(
x3
10
−x1

20
)(

x3
2
−x2

20
)

}
≤ 10

100

x ≥ 0, s, u.s.r.

Solving this optimization problem using LINGO 13.0 software, at the 61th iteration, we

obtain the following solution s∗ = 0, x∗1 = 0.2185930, x∗2 = 0.2085628, x∗3 = 0.2486902.

3.5.2 Satisficing solution of type 2

3.5.3 Proposition. Consider (P1), suppose that

ckj ; k = 1, . . . , K, j = 1, . . . , n
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are independent exponentially distributed with parameters µk
j . Suppose also that for any

i = 1, . . . ,m; aij, j = 1, . . . , n are independent exponentially distributed random variables

with known parameters µij and assume that bi; i = 1, . . . ,m are positive constants.

Then a point x∗ ∈ Rn is an (α, β)-satisficing solution of type 2 for (P1) if and only if x∗

is efficient for the following optimization problem:

(P8)iv



min (s1, . . . , sK)

subject to

∏n
j=1 µc1j

∑n
p=1

xn−1
p e

−
µ

c1p
s1

xp

µ
c1
j

Qn
{l=1,l6=p}(xpµ

c1
l
−xlµc1p

)

 ≤ 1− β1

...

∏n
j=1 µcK

j

∑n
p=1

xn−1
p e

−
µ

cK
p

sk

xp

µ
cK
j

Qn
{l=1,l6=p}(xpµ

ck
l
−xlµcK

p
)

 ≤ 1− βK

∏n
j=1 µa1j

(∑n
p=1

xn−1
p e

−
µa1p b1

xp

µa1j

Qn
{l=1,l6=p}(xpµa1l

−xlµa1p )

)
≤ 1− α1

...∏n
j=1 µamj

(∑n
p=1

xn−1
p e

−
µamp bm

xp

µamj

Qn
{l=1,l6=p}(xpµaml

−xlµamp )

)
≤ 1− αm

x ≥ 0, sk, u.s.r.; k = 1, . . . , K

where α1, . . . , αm ∈ (0, 1], β1, . . . , βK ∈ (0, 1].

Proof. We know that if (x∗, s∗), is efficient for the following multiobjective optimization

problem:

(P5)′



min (s1, . . . , sK)

subject to

P (c1(ω)x ≤ s1) ≥ β1

...

P
(
cKx ≤ sK

)
≥ βK

P
(∑n

j=1 aijxj − bi ≤ 0
)
≥ αi; i = 1, . . . ,m

x ≥ 0; sk, u.r.s.; k = 1, . . . , K

then x∗ ∈ Rn is an (α, β)−satisficing solution of type 2 for (P1).

By Lemma (3.5.1) the following constraints:

P
(
c1(ω)x ≤ s1

)
≥ β1

...

P
(
cKx ≤ sK

)
≥ βK
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are equivalent to

n∏
j=1

µc1j

 n∑
p=1

xn−1
p e

−
µ

c1p
s1

xp

µc1j

∏n
{l=1,l 6=p}(xpµc1l

− xlµc1p
)

 ≤ 1− β1

... (3.36)

n∏
j=1

µcK
j

 n∑
p=1

xn−1
p e

−
µ

cK
p

sk

xp

µcK
j

∏n
{l=1,l 6=p}(xpµck

l
− xlµcK

p
)

 ≤ 1− βK

For constraints

P

(
n∑

j=1

aijxj − bi ≤ 0

)
≥ αi; i = 1, . . . ,m

is equivalent to the last technological constraints of (P8)iv and we are done.

We finally consider the type 3 satisficing solution.

3.5.3 Satisficing solution of type 3

3.5.4 Proposition. Consider (P1), suppose that the random variables

ckj ; k = 1, . . . , K; j = 1, . . . , n

are independent exponentially distributed with parameters µk
j . Suppose also that for any

i = 1, . . . ,m; aij, j = 1, . . . , n are independent exponentially distributed random variables

with known parameters µij and bi is a positive constant. Then a point x∗ ∈ Rn is an
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(α, β)-satisficing solution of type 3 for (P1) if and only if x∗ is optimal for the problem

(P8)v



min
(∑K

k=1 νkδk

)
subject to

∏n
j=1 µc1j

∑n
p=1

xn−1
p e

−
µ

c1p
t1+δ1

xp

µ
c1
j

Qn
{l=1,l6=p}(xpµ

c1
l
−xlµc1p

)

 ≤ 1− β1

...

∏n
j=1 µcK

j

∑n
p=1

xn−1
p e

−
µ

cK
p

tK+δK

xp

µ
cK
j

Qn
{l=1,l6=p}(xpµ

cK
l
−xlµcK

p
)

 ≤ 1− βK .

∏n
j=1 µa1j

(∑n
p=1

xn−1
p e

−
µa1p b1

xp

µa1j

Qn
{l=1,l6=p}(xpµa1l

−xlµa1p )

)
≤ 1− α1

...∏n
j=1 µamj

(∑n
p=1

xn−1
p e

−
µamp bm

xp

µamj

Qn
{l=1,l6=p}(xpµaml

−xlµamp )

)
≤ 1− αm

x ≥ 0, δk ≥ 0; k = 1, . . . , K

where δk; (k = 1, . . . , K), νk; (k = 1, . . . , K), tk; (k = 1, . . . , K), αi ∈ (0, 1]; i =

1, . . . ,m; βi ∈ (0, 1]; k = 1, . . . , K are as in Definition (3.2.3)

The proof is similar to that of Proposition (3.5.4).

3.6 Characterization of satisficing solutions for the

Gamma case

It is well know that a quantile function of a probability distribution is the inverse of its

Cumulative Distribution Function.

3.6.1 Definition. Let Fv be the Cumulative Distribution Function of V . Then the

quantile function of

Fv(β) = P (V ≤ v) ≥ β for β ∈ (0, 1]

is defined as the inverse function

Qβ = F−1
v (β).

Consequently, we state the following lemma which proof can be found in [68].
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3.6.1 Lemma. The chance constraints

P (gi(x) ≤ ω) ≥ αi, i = 1, . . . ,m

can be written as

g(xi) ≥ Qαi
, i = 1, . . . ,m

where Qαi
= F−1

ω (αi), i = 1, . . . ,m.

In what follows we state a result for the case of random coefficients [127].

3.6.2 Lemma. Suppose that

gi(x, ω) = bi(x)− 〈A(ωi), gi(x)〉 , i = 1, . . . ,m (3.37)

where A(ωi); i = 1, . . . ,m are random coefficients of gi(x), then the deterministic equiv-

alent of

P
(
bi(x) ≤ 〈A(ωi), gi(x)〉

)
≥ αi; i = 1, . . . ,m (3.38)

is the following:

bi(x) ≥
m∑

i=1

Ai0gi(x) (3.39)

here

Ai0 = F−1
i (αi), i = 1, 2, . . . ,m.

In other words individual chance constraints with random right hand side inherit their

structure from the underlying stochastic constraints [68].

In the sequel we use the concept of quantile function and Lemma (1.1.7) given in Subsec-

tion (1.1.9).

3.6.1 Satisficing solution of type 1

3.6.3 Proposition. Consider (P1), assume that objective functions of (P1) are aggre-

gated as follows:

X =
K∑

k=1

n∑
j=1

λkc
k
jxj

where λ1, . . . , λK ≥ 0,
∑K

k=1 λk = 1. Suppose that the random variables

ckj ; k = 1, . . . , K, j = 1, . . . , n
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are independent Gamma distributed with ηjk as the inverse scale parameter and θjk as the

shape parameter. For any λkxj > 0, ∀ j, k, the variable X ∼ γ( η
1−η

, L+ θ) where

η = max
i≤j≤n

ηj

xj + ηj

, θ =
n∑

j=1

θj.

L is a discrete random variable such that P[L = r] = dhr, (r ∈ N) where

d =
n∏

j=1

((1− ηj)ηj

xjηj

)θj

ho = 1, hr =
1

r

r∑
l=1

lqlbr − l, r ≥ 1

ql =
1

l

n∑
j=1

θj

(1− (1− ηj)ηj

cjηj

)l

Assume further that for any i = 1, . . . ,m the random variables bi are independent Gamma

distributed with ζi as the inverse scale parameter and ξi as the shape parameter, while

aij; j = 1, . . . , n are deterministic. Then x∗ is a (α, β)−satisficing solution of type 1 for

(P1) if x∗ is optimal for

(P9)



min s

subject to∑∞
r=0 F (s, η

1−η
, r + θ)P [L = r] ≥ β∑n

j=1 aijxj ≥ Qb(1− αi), i = 1, . . . ,m;

xj ≥ 0; = 1, . . . , n s, u.s.r.

where α1, . . . , αm ∈ (0, 1], β ∈ (0, 1] are a priori fixed by the decision maker, Qαi
; i =

1, . . . ,m are the quantiles of the distribution function of Gamma random variable with

inverse scale η
1−η

and shape parameter L + θ, and F (.) is the distribution function of

random variable that is γ( η
1−η

, L+ θ).

Proof. We know that the density function of γ(τ, u) is given by

f(x, τ, u) =
τu

Γ(u)
xu−1e−τx, x > 0

where τ is the inverse scale parameter and u is the shape parameter. By Lemma (1.1.7)

we have

fc(x) =
∞∑

r=0

f(s,
η

1− η
, r + θ)P [L = r].
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Let us denote the distribution function of γ(τ, u) by

F (x, τ, u) =

∫ x

−∞
f(y, τ, u)dy.

The distribution function of c is a Gamma distribution with inverse scale parameter η
1−η

and shape parameter L+ θ). We have then

Fc(x) =

∫ x

−∞
fc(y)dy

=
∞∑

r=0

∫ x

−∞
f(y,

η

1− η
, r + θ)P [L = r]dy

=
∞∑

r=0

F (y,
η

1− η
, r + θ)P [L = r].

This means ∀s ∈ R,

P (cx ≤ s) =
∞∑

r=0

F (s,
η

1− η
, r + θ)P [L = r]

then the deterministic counterpart of

P (cx ≤ s) ≥ β (3.40)

is given by

∞∑
r=0

F (s,
η

1− η
, r + θ)P [L = r] ≥ β. (3.41)

Consider the chance constraint

P

(
n∑

j=1

aijxj ≤ bi

)
≥ αi, i = 1, . . . ,m (3.42)

where only bi, i = 1, . . . ,m are independent Gamma distributed with ζi as the inverse

scale parameters and ξi as the shape parameters, while aij, j = 1, . . . , n, i = 1, . . . ,m are

deterministic. For each confidence level αi ∈ [0, 1], (i = 1, . . . ,m),

n∑
j=1

aijxj ≥ Qbi(1− αi); i = 1, . . . ,m (3.43)

where Qbi(1− αi); i = 1, . . . ,m be the (1 − αi)−quantile functions of random variables

bi; i = 1, . . . ,m.

Q1−αi
= F−1

bi (1− αi); i = 1, . . . ,m
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where Fbi is Gamma cumulative distribution function. By replacing (3.40) with (3.41)

and (3.42) with (3.43) in (P5), we obtain the desired mathematical program (P9).

The following result is a generalization of Proposition (3.6.3).

3.6.2 Satisficing solution of type 2

3.6.4 Proposition. Suppose that the random variables

ckj ; k = 1, . . . , K, j = 1, . . . , n

are independent Gamma distributed with ηjk as the inverse scale parameter and θjk as the

shape parameter. For any xj > 0, ∀ j, the variables c1x, . . . , ckx, are γ( ηk

1−ηk
, Lk + θk)

where

ηk = max
i≤j≤n, 1≤k≤K

ηjk

xjk + ηjk

, θk =
n∑

j=1

θjk, k = 1, . . . , K.

Lk are discrete random variables such that P[Lk = r] = dkhrk, k = 1, . . . , K, (r ∈ N)

where

dk =
n∏

j=1

((1− ηjk)ηjk

xjηjk

)θjk

; k = 1, . . . , K

hok = 1, hrk =
1

r

r∑
l=1

lkqlkbrk−lk , r ≥ 1; k = 1, . . . , K

qlk =
1

lk

n∑
j=1

θjk

(1− (1− ηjk)ηjk

cjkηjk

)lk
; k = 1, . . . , K.

Assume further that for any i = 1, . . . ,m the random variables bi ∼ γ(ζi, ξi) while aij; j =

1, . . . , n are deterministic. Then x∗ is a (α, β)−satisficing solution of type 2 for (P1) if

x∗ is efficient for

(P9)′



min (s1, . . . , sK)

subject to∑∞
r=0 F (sk,

ηk

1−ηk
, r + θk)P [Lk = r] ≥ βk; k = 1, . . . , K,∑n

j=1 aijxj ≥ Qb(1− αi); i = 1, . . . ,m

x,≥ 0, sk, u.s.r.; k = 1, . . . , K

where α1, . . . , αm ∈ (0, 1], β1, . . . , βK ∈ (0, 1] are as in (P5)′, Qαi; i = 1, . . . ,m and F (.)

are as in Proposition (3.6.3).
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3.6.3 Satisficing solution of type 3

3.6.5 Proposition. Consider (P1) and suppose that the random variables

ckj ; k = 1, . . . , K, j = 1, . . . , n

are independent Gamma distributed with ηjk as the inverse scale parameter and θjk as the

shape parameter. Assume further that the random variables bi ∼ γ(ζi, ξi); i = 1, . . . ,m

while aij; j = 1, . . . , n, i = 1, . . . ,m are deterministic. Then x∗ is a (α, β)−satisficing

solution of type 3 for (P1) if x∗ is optimal for the following optimization problem:

(P9)′′



min
∑K

k=1 νkδk

subject to

c10x− s1 ≤ t1 + δ1
...

cK0x− sK ≤ tK + δK∑n
j=1 aijxj ≥ Qb(1− αi); i = 1, . . . ,m

x ≥ 0, δk ≥ 0; k = 1, . . . , K

where α1, . . . , αm ∈ (0, 1], β1, . . . , βK ∈ (0, 1] are as in (P5)′ , Qαi; i = 1, . . . ,m as in

Proposition (3.6.3) and ck0 = F−1
k (1− βk), k = 1, . . . , K are as in Lemma (3.6.2).

Proof. We know that x∗ ∈ Rn is an (α, β)−satisficing solution of type 3 for (P1) if (x∗, δ∗),

where δ∗ ∈ RK , is optimal for the following mathematical program:

(P5)′′



min
(∑K

k=1 νkδk

)
subject to

P (c1x− δ1 ≤ t1) ≥ β1

...

P
(
cKx− δK ≤ tK

)
≥ βK

P
(∑n

j=1 aijxj − bi ≤ 0
)
≥ αi; i = 1, . . . ,m

x ≥ 0, δk ≥ 0; k = 1, . . . , K

By lemma (3.6.2) the chance constraint

P
(
ckx ≤ sk

)
≥ βk; k = 1, . . . , K (3.44)

are equivalent to

ck0x ≤ sk + tk + δk; k = 1, . . . , K (3.45)
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where ck0 = F−1
k (1− βk), k = 1, . . . , K and the chance constraints

P

(
m∑

j=1

aijxj − bi

)
≥ αi; i = 1, . . . ,m (3.46)

are equivalent to

n∑
j=1

aijxj ≥ Qb(1− αi); i = 1, . . . ,m.

(3.47)

By replacing (3.44) with (3.45) and (3.46) with (3.47) in Program (P5)′′ we obtain math-

ematical program (P9)′′.
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Chapter 4

Extension

4.1 Multiobjective Programming problems with fuzzy

random coefficients

4.1.1 A connection between fuzzy random variables and random

closed sets

A) Auxiliary mappings

The maps π, fω, σω described below are needed to state the Embedding Theorem

for fuzzy random variables proved in [94].

1) π: =cc(R) → C̃[0, 1]× C̃[0, 1]

ã  (ãL(α), ãU(α))

where ãL(α) = ãL
α and ãU(α) = ãU

α , ãL
α and ãU

α standing for the lower and upper

endpoints of the α-level of ã.

Here =cc(R) denotes the space of fuzzy numbers with compact supports and

C̃[0, 1] is the set of real-valued bounded functions f on [0,1] such that

- f is left continuous for any t ∈ [0, 1) and right continuous at 0.

- f has a right limit for any t ∈ [0, 1).

2) fω : F (Ω) → =cc(R)

X  X(Ω) = Xω.

Here F (Ω) stands for the set of fuzzy random variables (FRV) in the sense of

Puri & Ralescu [113].

3) σω : F (Ω) → C̃[0, 1]× C̃[0, 1]

X  π(Xω).
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It is clear that the three maps make the following diagram commutative.

Figure 4.1: Commutative Diagram 1

As a matter of fact, we have for X ∈ F (Ω),

πfω(X) = π(Xω) = σω(X).

B) Main mapping

Let E = C̃[0, 1]× C̃[0, 1] and let =E be the family of closed subset of E. Consider

now the probability space (Ω,Σ, P ) where Σ is the σ-algebra of subsets of E.

The main mapping is defined as follows:

σ : F (Ω) → RACS(E)

X → σX

where RACS(E) stands for the set of random closed sets E and σX is defined

as follows:

σX : Ω → =E

ω  (XL
ω (α), XU

ω (α))

where α ∈ [0, 1],

XL
ω (α) = XL

ωα and XU
ω (α) = XU

ωα.

It is clear that the mapping σ thus defined makes the following diagram com-

mutative.

Figure 4.2: Commutative Diagram 2

As a matter of fact, for ω ∈ Ω we have σX(ω) = π(Xω) = (π ◦X)(ω) i.e

σX = π ◦X.
In the sequel we consider the distance and the partial order relation defined on the

set of random closed sets on E (RACS(E)) and on the set of fuzzy random variables

F (Ω) as follows:

1) For X1, X2 ∈ RACS(E),

dRACS(E)(X1, X2) = supω dH(X1(ω), X2(ω))

X1 ≤RACS(E) X2 if and only if supω(X1(ω) ≤ infω X2(ω)), ∀ω ∈ Ω.

2) For Y1, Y2 ∈ F (Ω)

dF (Ω)(Y1, Y2) = supω dFcc(R)(Y1(ω), Y2(ω))

Y1 ≤ Y2 if and only if Y1ω ≤Fcc(R) Y2ω; ∀ω ∈ Ω.

4.1.1 Theorem.
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(i) σ is injective

(ii) For λ, µ ∈ R, we have

σ[(1{
λ
} �X)� (1{

λ
} � Y )] = λσX + µσY

(iii) dRACS(E)(σX, σY ) = dF (Ω)(X, Y )

(iv) X ≤F (Ω) Y ⇐⇒ σX ≤RACS(E) σY

where �, � indicate that the operations are in space F(Ω) and ≤F (Ω) means the

inequality ≤ is between elements of F(Ω).

This Theorem tells us that the set of fuzzy random variables in the sense of Puri,

Ralescu can be embedded on the set of closed random set isomorphically and iso-

metrically. The proof of this theorem may be found elsewhere [94].

In the next subsection, we shall use this result in an essential manner in describing an ap-

proach for solving multiobjective programming problems with fuzzy random coefficients.

4.1.2 Solving a multiobjective programming problem with fuzzy

random objective functions

A) Case of deterministic feasible set

1) Problem formulation

Consider the mappings

f̃i : Rn → F (Ω); i = 1, . . . , p.

We are interested in solving the following optimization problem:

(P10) min
x∈X

(f̃1(x), . . . , f̃p(x))

where X = {x ∈ Rn/gj(x) ≤ 0; j = 1, . . . ,m} is a convex and bounded subset

of Rn.

2) Analysis

Consider now the following surrogate of (P10):

(P10)′ min
x∈X

(
σf̃1(x), . . . , σf̃p(x)

)
The following result relates (P10) and (P10)′ in an expected manner.

4.1.2 Proposition. x∗ is an efficient solution for (P10) if and only if x∗ is
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efficient for (P10)′.

Proof. Assume x∗ is efficient for (P10) and not efficient for (P10)′. As x∗ is

efficient for (P10), there is no x ∈ X such that

f̃i(x) ≤F (Ω) f̃i(x
∗), ∀i ∈ {1, . . . , p}

and (4.1)

f̃l(x) <F (Ω) f̃l(x
∗) for some l ∈ {1, . . . , p}.

As x∗ is not efficient for (P10)′, we may find x ∈ X such that

σf̃i(x) ≤ σf̃i(x
∗), ∀i ∈ {1, . . . , p}

and (4.2)

σf̃l(x) < σf̃l(x
∗) for some l ∈ {1, . . . , p}.

This means for ω ∈ Ω we have

(σf̃i(x))(ω) ≤ σ(f̃i(x
∗))(ω), ∀i ∈ {1, . . . , p}

and (4.3)

(σf̃l(x))(ω) < σ(f̃l(x
∗))(ω) for some l ∈ {1, . . . , p}.

That is

(f̃L
iω(x)(α), f̃U

iω(x))(α) ≤ (f̃L
iω(x∗)(α), f̃U

iω(x∗))(α), ∀α ∈ (0, 1]

and (4.4)

(f̃L
lω(x)(α), f̃U

lω(x))(α) < (f̃L
lω(x∗)(α), f̃U

lω(x∗))(α) for some α ∈ (0, 1].

(4.4) is equivalent to

f̃iω(x) ≤F (Ω) f̃iω(x∗), ∀i ∈ {1, . . . , p}

and (4.5)

f̃lω(x) ≤F (Ω) f̃lω(x∗), for some l ∈ {1, . . . , p}.

(4.5) is in contradiction with (4.1) and x∗ is efficient for (P10).

The other implication can be proved in a similar way.

Using the Expectation model approach to convert (P10)′ into deterministic
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terms yields the following program:

(P10)′′

{
min {(Ef̃L

ω (x)(α), Ef̃U
ω (x)(α)); α ∈ (0, 1]}

x ∈ X

Unfortunately (P10)′′ is a mathematical program with infinitely many objec-

tive functions about which, to the best of our knowledge, there is no available

solution technique.

Nevertheless, making use of nested property of α-level sets of fuzzy sets i.e, for

α ≥ β we have f̃α
ω (x) ⊂ f̃β

ω (x) for ω, it is clear that Ef̃L
ω (x)(α) and Ef̃U

ω (x)(α)

will be kept at minimal extent when Ef̃L
ω (x)(0) and Ef̃U

ω (x)(0) are minimal.

Apart from the above intuitive argument, another justification for restriction

on α = 0 while solving (P10)′′ can be formulated as follows:

4.1.3 Proposition. If x∗ ∈ X is weakly efficient for the following bi-objective

program:

(P10)′′′

{
min

{
Ef̃L

ω (x)(0), Ef̃U
ω (x)(0)

}
x ∈ X

then x∗ is weakly efficient for (P10)′′.

Proof. Proving this proposition amounts to prove its contrapositive. That is

to prove that if x∗ ∈ X is not weakly efficient for (P10)′′ then it is not weakly

efficient for (P10)′′′.

Assume that x∗ ∈ X is not weakly efficient for (P10)′′, Then we may find

x ∈ X such that

Ef̃L
ω (x)(α) < Ef̃L

ω (x∗)(α), ∀α ∈ (0, 1]

and

Ef̃U
ω (x)(α) < Ef̃U

ω (x∗)(α), ∀α ∈ (0, 1].

Taking the limit for α→ 0 we have that there is x ∈ X such that

lim
α→0

Ef̃L
ω (x)(0) < lim

α→0
Ef̃L

ω (x∗)(0)

and

lim
α→0

Ef̃U
ω (x)(0) < lim

α→0
Ef̃U

ω (x∗)(0).
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This means, there is x ∈ X such that

Ef̃L
ω (x)(0) < Ef̃L

ω (x∗)(0)

and

Ef̃U
ω (x)(0) < Ef̃U

ω (x∗)(0).

But this is tantamount to saying that x∗ is not weakly efficient for (P10)′′′.

The foregoing discussion inspires us the procedure described below for solving

(P10).

3) Algorithm for solving (P10)

4.1.1 Algorithm. ‘

Step 1: Read objectives and constraints of the problem.

Step 2: Construct the following multiobjective program:

(P10)iv

{
min

{
(f̃1ω(x))L(0), (f̃1ω(x))U(0), . . . , (f̃pω(x))L(0), (f̃pω(x))U(0)

}
x ∈ X

Step 3: Find a solution of (P10)iv using techniques of Multiobjecive Stochastic

Optimization [2].

Step 4: Print the obtained solution.

Step 5 Stop.

B) Case of fuzzy random feasible set

1) Problem formulation Consider the fuzzy random-valued mappings:

f̃i : Rn → F (Ω); i = 1, . . . , p

and

g̃j : Rn → F (Ω); j = 1, . . . ,m.

The optimization problem we ponder here is
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(P10)v

{
min

{
f̃1(x), . . . , f̃p(x)

}
X = {x ∈ Rn | g̃j(x) ≤ b̃j; j = 1, . . . ,m}

where b̃j(j = 1, . . . ,m) are fuzzy random variables on (Ω,Σ, P ).

2) Analysis

Consider the following optimization problem:

(P10)vi

{
min

{
σf̃1(x), . . . , σf̃p(x)

}
x ∈ Z = {x ∈ Rn|σg̃j(x) ≤F (Ω) b̃j; j = 1, . . . ,m

Before stating a result that bridges the gap between (P10)v and (P10)vi, let

us first introduce the following respective surrogates to these two programs.

(P10)vii

{
min

{
f̃1(x), . . . , f̃p(x)

}
x ∈ Y ′

and

(P10)viii

{
min

{
σf̃1(x), . . . , σf̃p(x)

}
x ∈ Z ′

where Y ′ and Z ′ are deterministic counterparts of Y and Z respectively. Then

the following results holds.

4.1.4 Proposition. x∗ is a Pareto optimal solution for (P10)vii if and only if

x∗ is Pareto optimal for (P10)viii.

Proof. By Theorem (4.1.1 (iv)), we have that Y ′ = Z ′. By Proposition (1),

(P10)vii and (P10)viii are equivalent in terms of Pareto optimality and we are

done.

This discussion suggests the following method for finding a solution of (P10)v.

3) Method for solving (P10)v

4.1.2 Algorithm.

Step 1 Read objective functions and constraints of (P10)v.

Step 2 Construct the mathematical program

(P10)viii

{
min

{
(f̃1ω(x))L(0), (f̃1ω(x))U(0), . . . , (f̃pω(x))L(0), (f̃pω(x))U(0)

}
x ∈ Y ′
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FRV Fuzzy values Probabilities
c̃11 c111 = 4(−1, 2, 2) p1

11 = 1/4
c112 = 4(0, 1, 1) p1

12 = 3/4
c̃12 c121 = 4(−2, 2, 1) p1

21 = 1/4
c122 = 4(1, 1, 1) p1

22 = 3/4
c̃21 c211 = 4(3, 1, 1) p2

11 = 1/4
c212 = 4(1, 1, 2) p2

12 = 3/4
c̃22 c221 = 4(2, 2, 1) p2

21 = 1/4
c222 = 4(−3, 1, 1) p2

22 = 3/4

Table 4.1: Details of FRV c̃ij

Step 3 Solve (P10)ix using techniques of Multiobjective Stochastic Optimization

[2].

Step 4 Print the obtained solution.

Step 5 Stop.

4.1.3 Numerical example

4.1.1 Example. Consider the multiobjective program

(P10)x



min (c̃11x1 � c̃12x2, c̃
2
1x1 � c̃22x2)

subject to

−2x1 + x2 ≤ 2

−x1 + x2 ≤ 3

x1 ≤ 3

x1 ≥ 0;x2 ≥ 0

where c̃ij; j = 1, 2; i = 1, 2 are fuzzy random variables defined on Ω = {ω1, ω2} with

probabilities pi
j1 = 1/4 and pi

j2 = 3/4; j = 1, 2; i = 1, 2.

Details of the 4 fuzzy random variables is given in Table (4.1.1).

Here 4(a, b, c) denotes a triangular fuzzy number, the membership of which is defined as

follows:

Figure 4.3: Triangular fuzzy number

According to Theorem (4.1.1) and Proposition (4.1.2), solving (P10)x is tantamount to
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solving

(P10)xi



min {(σc̃11)x1 + (σc̃12)x2, (σc̃
2
1)x1 + (σc̃22)x2}

subject to

−2x1 + x2 ≤ 2

−x1 + x2 ≤ 3

x1 ≤ 3

x1 ≥ 0;x2 ≥ 0.

As explained in Subsection (4.1.2), solving (P10)xi amounts to solving the following pro-

gram:

(P10)xii



min
{

(c1L
1ω(0), (c1L

2ω(0))(x1, x2)
T ,

(c1U
1ω (0), (c1U

2ω (0))(x1, x2)
T ,

(c2L
1ω(0), (c2L

2ω(0))(x1, x2)
T ,

(c2U
1ω (0), (c1U

2ω (0))(x1, x2)
T
}

subject to

−2x1 + x2 ≤ 2

−x1 + x2 ≤ 3

x1 ≤ 3

x1 ≥ 0, x2 ≥ 0

where ciLjω(0) and ciUjω(0) stand respectively for the left endpoint and right endpoint of the

support of σc̃ij. Using the expectation model approach to solve (P10)xii yields the following

deterministic multiobjective program:

min
{
− 6

4
x1 −

3

4
x2, x1 +

6

4
x2,−

1

4
x1 −

11

4
x2,

10

4
x1 −

2

4
x2

}
subject to

−2x1 + x2 ≤ 2

−x1 + x2 ≤ 3

x1 ≤ 3

x1 ≥ 0, x2 ≥ 0

A Pareto optimal solution for this program may be obtained by solving the following

weighted problem. For ω1 = 4, ω2 =8, ω3 =4, ω4 =12 we obtain the program
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

min (25x1 − 8x2)

subject to

−2x1 + x2 ≤ 2

−x1 + x2 ≤ 3

x1 ≤ 3

x1 ≥ 0;x2 ≥ 0

The solution of this program, obtained by using the software LINGO is (0,2). This is a

satisficing solution for (P10)v .
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Conclusion

This thesis is on Stochastic Multiobjective Programming problems. In such turbulent

environments involving both randomness and conflicting objective functions, neither the

notion of feasibility nor that of optimality is clearly defined. We then resorted to the

Simon’s bounded rationality principle [125] to seek for satisficing rather than optimal

solutions. Three satisficing solutions based on the chance constrained paradigm [77] were

introduced. Chance constrained applies for the purpose of limiting the probability that

constraints will be violated. In this form, it adds considerably to both the flexibility and

the reality of the stochastic model under consideration.

The solution of type 1 (see Definition 3.2.1) may be of great help when the Decision

Maker can aggregate his preferences through an appropriate utility function. When the

Decision Maker has some targets for his objectives, the solution of type 3 (see Definition

3.2.3) is the most suitable for his purpose. When neither utility functions nor targets for

objectives are available, the Decision Maker should resort to the solution of type 2 (see

Definition 3.2.3).

The above mentioned solution concepts for Stochastic Multiobjective Programming prob-

lems have a clear advantage over those based on the first two moments of involved random

variables [7], [127].

As a matter of fact, the expectation values and the variances of random variables at hand

often offer short-sighted views of uncertainty surrounding random data under considera-

tion.

Mathematical characterizations of these solution concepts have been obtained for the case

of normal, exponential, chi-squared and gamma distributions.

Extension to the case of fuzzy random variables has also been carried out. We find it

interesting to include numerical examples for the sake of illustration. It might be pointed

out that a general methodology for solving Fuzzy Stochastic Optimization problems has

been outlined in [93]. The quintessential of that methodology is to perform a couple of

transformations, either sequentially or in parallel in a way to put the original problem into

deterministic terms. In this thesis the transformation is done by the connections between

fuzzy random variables and random closed sets.

This approach contrasts markedly with those where approximation of fuzzy values by real

ones is followed by approximation of random variables by their moments [91]. It also

differs form approaches based on fuzzy-stochastic simulation [73]. Moreover, our approach

can handle both linear and non linear optimization problems. It is also less demanding

in terms of information that the decision maker should provide before having his problem

solved. This departs strongly with extant methods (see for example [66] and [67])

Lines for further developments in this field include the following:
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• Find ways based on multiparametric optimization for fixing threshold αi, βk opti-

mally instead of requesting the Decision Maker to provide them.

• In the approach for incorporating fuzzy random data in an optimization setting, con-

sider another interpretation for interval optimization rather than the one consisting

of sticking on mid-points.

• Characterize the introduced solution concepts in the case of other distributions that

are not considered here.

Some results from this thesis have been published [7], [95], [97]. Others have been sub-

mitted for publication or presented at conferences [2], [3], [4], [5], [6], [96].
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[32] R. Caballero, E. Cerdà, M.M. Muñoz, and L. Rey. Stochastic approach versus

multiobjective approach for obtaining efficient solutions in stochastic multiobjective

programming problems. European Journal of Operational Research, 158:633–648,

2004.
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