
TOWARD THE FORMALISATION OF USE CASE MAPS

by

CYRILLE DONGMO

submitted in accordance with the requirements

for the degree of

MASTER OF SCIENCE

in the subject

COMPUTER SCIENCE

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: PROF J.A VAN DER POLL

November 2011

ii

Abstract

Formal specification of software systems has been very promising. Critics against the end

results of formal methods, that is, producing quality software products, is certainly rare. In-

stead, reasons have been formulated to justify why the adoption of the technique in industry

remains limited. Some of the reasons are:

• Steap learning curve; formal techniques are said to be hard to use.

• Lack of a step-by-step construction mechanism and poor guidance.

• Difficulty to integrate the technique into the existing software processes.

Z is, arguably, one of the successful formal specification techniques that was extended to

Object-Z to accommodate object-orientation. The Z notation is based on first-order logic

and a strongly typed fragment of Zermelo-Fraenkel set theory. Some attempts have been

made to couple Z with semi-formal notations such as UML. However, the case of coupling

Object-Z (and also Z) and the Use Case Maps (UCMs) notation is still to be explored.

A Use Case Map (UCM) is a scenario-based visual notation facilitating the requirements

definition of complex systems. A UCM may be generated either from a set of informal

requirements, or from use cases normally expressed in natural language. UCMs have the

potential to bring more clarity into the functional description of a system. It may furthermore

eliminate possible errors in the user requirements. But UCMs are not suitable to reason

formally about system behaviour.

In this dissertation, we aim to demonstrate that a UCM can be transformed into Z and

Object-Z, by providing a transformation framework. Through a case study, the impact of

using UCM as an intermediate step in the process of producing a Z and Object-Z specification

is explored. The aim is to improve on the constructivity of Z and Object-Z, provide more

guidance, and address the issue of integrating them into the existing Software Requirements

engineering process.

Keywords: Semi-formal specification techniques, UCMs, Formal methods, Z, Object-Z,

Software Process, Specification Validation, Comparing Specifications, Spiral Model.

iii

iv

Contents

1 Introduction 1

1.1 Context and motivation . 1

1.2 Problem statement . 4

1.2.1 Research objectives . 4

1.3 The research approach . 4

1.3.1 Weakness of the approach . 6

1.4 Significance of the research . 6

1.5 Dissertation layout . 6

2 Introduction to Use Case Maps, Z and Object-Z 9

2.1 Use Case Maps . 9

2.1.1 UCM abstract components . 10

2.1.2 Basic path notation . 11

2.1.3 Path connectors . 12

2.1.4 Stubbing techniques . 13

2.1.5 Timeout-recovery mechanism . 14

2.1.6 Extending the original UCM notation 15

2.1.7 UCM tool support . 16

2.2 Z specification . 17

2.2.1 Basic types and global sets . 17

2.2.2 Z schemas . 18

2.3 Object-Z specification . 22

2.3.1 Operation schema . 22

2.3.2 Inheritance . 23

2.3.3 Polymorphism . 24

2.3.4 Tool support for Z and Object-Z . 25

2.4 Chapter summary . 25

v

3 Case study 27

3.1 Case study description . 27

3.2 Specification approach . 28

3.3 Deriving a UCM for the case study . 30

3.3.1 Initial UCM . 30

3.3.2 An improved UCM . 31

3.3.3 A more detailed UCM . 33

3.3.4 Scenarios . 36

3.3.5 Some observations on UCMs . 39

3.4 Z specification . 40

3.4.1 Given sets and global variables . 41

3.4.2 Abstract state space . 42

3.4.3 Initialising the state space . 45

3.4.4 Partial operations . 46

3.4.5 Table of total operations . 59

3.5 Observations on Z . 60

3.6 Chapter summary . 60

4 Transforming the Z specification 63

4.1 Transformation process . 63

4.2 The Object-Z specification . 64

4.2.1 Basic types . 64

4.2.2 Class schemas . 65

4.3 Chapter summary . 74

5 A Framework for transforming a UCM into Z and Object-Z 75

5.1 Basic transformation strategy . 75

5.2 Relationship between UCM, Z and Object-Z 76

5.3 Conceptualisations in UCM, Z, Object-Z . 77

5.4 Transformation process . 88

5.5 Chapter summary . 90

6 Applying the UCM transformation framework 93

6.1 The input UCM map . 93

6.2 The stubbed UCMs . 95

6.3 The Z and Object-Z specifications . 97

6.3.1 Given sets and global variables . 98

6.3.2 Applying the framework to the plug-in to forward requests 101

vi

6.3.3 Applying the framework to the Plug-in to validate invoices 121

6.3.4 Applying the framework to the Plug-ins to validate customers 123

6.3.5 Applying the framework to the main UCM 125

6.4 Chapter summary . 141

7 A Framework for validating a software specification 143

7.1 Conceptual relationship in a Software specification 144

7.1.1 Stakeholder expectations . 145

7.1.2 The Application domain . 146

7.1.3 Languages and tool support . 146

7.1.4 The envisioned final product . 148

7.2 Characteristics of a quality software specification 149

7.3 Validating a specification document . 150

7.3.1 The scope of a specification . 151

7.3.2 The upward validation . 151

7.3.3 The leftward validation . 152

7.3.4 The rightward validation . 152

7.3.5 The downward validation . 153

7.4 Comparing specifications . 154

7.5 Chapter summary . 154

8 Applying the framework to the Case Study 157

8.1 Expectations and user requirements . 157

8.1.1 Expectations of stakeholders . 157

8.1.2 User requirements . 158

8.2 The scope of the validation . 159

8.2.1 Properties to be validated . 159

8.2.2 Validation criteria . 164

8.3 Validating the Z-OZ specification . 165

8.3.1 The Z-OZ specification . 166

8.3.2 The upward validation . 166

8.3.3 The leftward validation . 177

8.3.4 The rightward validation . 179

8.3.5 The downward validation . 183

8.4 Validating the UCM-OZ specification . 184

8.4.1 The UCM-OZ specification . 185

8.4.2 The upward validation . 186

8.4.3 The leftward validation . 193

vii

8.4.4 The rightward validation . 196

8.4.5 The downward validation . 198

8.5 Chapter summary . 199

9 Analysis 201

9.1 Analysis approach . 201

9.2 Comparing Z-OZ and UCM-OZ specifications 202

9.2.1 Table of comparison . 202

9.2.2 Satisfying goals and expectations . 205

9.3 Chapter summary . 206

10 Conclusion and Future work 207

10.1 Research questions and the main findings . 207

10.1.1 Advantages . 209

10.2 Future work . 210

Bibliography 213

Index 223

viii

List of Tables

3.1 Summary of total operations . 59

6.1 List of the Z abstract state schemas . 127

6.2 Partial operations for the main UCM . 130

6.3 List of OZ classes for the stubbed UCM . 131

8.1 Mapping properties to requirements . 162

8.2 Levels of inheritance and Polymorphism for Z-OZ 167

8.3 Table of codes . 171

8.4 Traceability matrix . 172

8.5 Requirements and sub-requirements . 174

8.6 List of selected UCM-OZ Classes . 185

8.7 Levels of inheritance and polymorphism in UCM-OZ 187

8.8 Traceability matrix relating UCM components to users requirements 189

8.9 Traceability matrix relating UCM-OZ to UCM components 191

9.1 Table of comparison . 203

ix

x

List of Figures

1.1 Illustration of vertical isolation . 2

1.2 Formal specification in Software Development Process 3

1.3 Research strategy . 5

2.1 Documenting a behavioural fabric . 10

2.2 An example of a UCM model . 10

2.3 Abstract components . 11

2.4 Basic UCM path notation . 11

2.5 Path connectors . 12

2.6 An example of a static and a dynamic stub 14

2.7 An application of the use of a UCM Failure-point and Waiting place 14

3.1 Example of agencies interconnections . 29

3.2 Subsystems layering . 29

3.3 Initial UCM . 30

3.4 Improved UCM . 32

3.5 Final UCM . 34

5.1 Basic transformation strategy . 76

5.2 OR-fork and OR-join connectors . 78

5.3 AND-fork and AND-join connectors . 80

5.4 Waiting place . 81

5.5 Timer . 82

5.6 Example of a static stub . 84

5.7 Example of a dynamic stub . 86

5.8 Example of implicit activities . 88

6.1 Initial UCM map . 94

6.2 Stubbed UCM map . 94

6.3 Expansion of the NetControl stub in Figure 6.2 95

6.4 Validate an invoice . 96

xi

6.5 Validate a customer . 96

6.6 Decomposing the input UCM . 97

6.7 The hierarchical structuring of components in the stubbed UCM 125

7.1 Conceptual relationship . 144

7.2 Basic validation strategy . 150

8.1 Z-OZ specification process . 166

8.2 UCM-OZ specification process . 185

9.1 Basic comparison strategy . 201

xii

List of publications

1. Use Case Maps as an Aid in the Construction of Formal Specification, MSVVEIS, In the

Proceeding of the 7th International Workshop on Modeling, Simulation, Verification

and Validation of Enterprise Information Systems (2009).

2. A Four-Way Framework for Validating a Specification, in the Proceedings of the SAIC-

SIT’10 conference, ACM (2010).

3. Evaluating Software Specifications by Comparison, in the Proceedings of the SAIC-

SIT’11 conference, ACM (2011).

Important Note: Please observe that due to the (automatic) carriage return by Latex,

the word SAICSIT, in the second and third publications above, is presented as SAIC -

SIT. A number of such cases are encountered in other parts of this dissertation, I couldn’t

find a way to fix it. I hereby apologise for any inconvenience on the presentation of this

work.

xiii

xiv

Acknowledgements

In the first place, I would like to express my sincere gratitude to my supervisor, Professor

John Andrew van der Poll, whose advice and guidance justify the achievements of this

dissertation. Without his help, it would have been hard to bring this work to its present

state.

I would like to convey my gratitude to Professor Amyot (from the School of Information

Technology and Engineering at the University of Ottawa, Canada) and his team for making

most of the publications on UCM available on their website and for providing the two UCM

tools: UCMNav and jUCMNav. Without these, it would have been very hard to draw all

the UCMs diagrams in this dissertation.

I also extend my thanks to the Research Directorate at Unisa (University of South Africa)

firstly, for organising training workshops through which I gained very helpful insights on how

to conduct a research and report the results. And secondly for the grant through the Masters

and Doctoral Support Programme (MDSP). In the same vein, I wish to send a huge thanks

to the College Research and Ethics Committee (CREC) for funding all my participation to

the national and international conferences where the main contributions of this work were

presented, as full research papers, and discussed with peers.

Finally, I would like to express my deepest recognition to the people closest to me. To my

dearest wife Solange, thank you for your love, support, and understanding. Thank you to

my 3 year old friend and son Lemek, my 1 year old daughter Loriane, and to all my brothers

and sisters.

C. Dongmo

November 2011

xv

xvi

Dedication

This dissertation is dedicated to the memory of my father, Albert Dongmo (1924-1998), to

the memory of my very dear friend and elder sister, Rachelle Dongmo (1967 - July 2011),

to my mother, to my wife Solange, to my son Lemek (aged 3 years) and to my daughter

Loriane (aged 1 year).

xvii

xviii

Chapter 1

Introduction

1.1 Context and motivation

Specifying a software system formally, implies in general, the use of a specification lan-

guage based on mathematics (e.g. set theory and predicate logic) to describe precisely the

properties of the system (Henderson [39], O’Regan [66]). Formal methods came into soft-

ware engineering with a great deal of promise. Arguably, it may be used in every phase

of software development life cycle (SDLC) to produce quality products, provides detailed

and correct requirement specifications, and detects ambiguous, incomplete and inconsistent

statements in system requirements at an early stage of the system development process. A

formal requirements specification also offers the advantage being potentially amenable to

automated reasoning and analysis (Nuseibeh and Easterbrook [65], van der Poll [90]).

However, after a long period of intensive research and development, the use of “formal

methods” in industry is still limited (see Abrial [2], Knight et al. [49]). A number of possible

reasons have been raised: amongst others, high initial cost (arguable, because the incurred

cost at the specification phase, is said to be compensated for at the later design and im-

plementation stages), and a steep learning curve, due to the limited mathematical skills of

software engineers and practitioners resulting in a limited number of Formal methods ex-

perts. Conversely as Bowen and Hinchey [14] suggest, “Thou shalt have a Formal method

guru on call”. However, van Lamsweerde [95] observes that formal specifications are hard

to develop and assess because of the diversity and subtlety of errors that can be made, and

the multiplicity of modelling choices that can be considered. Similarly, formal techniques

(together with their resulting products), are said to be isolated from other software products,

and processes both vertically and horizontally:

1. Vertical isolation describes a twofold gap; the first between the initial goals, require-

1

ments, domain constraints, etc. and the resulting formal specification. The second,

between the formal specification and the high level-design, leading to the final product.

Figure 1.1 illustrates these gaps, and raises two important questions to address the is-

sue about the integration of formal specifications into the entire software development

process. Firstly, the need to investigate, how initial goals are refined, user requirements

are captured, defined and analysed using formal methods. Secondly, the techniques,

processes or tools allowed, and how they are related to final specifications. The next

question involves the refinement of formal specifications, into final products.

Formal

specification

Goals, Requirements,

domain constrains, etc.

High level design

/ Final products ? ?

Figure 1.1: Illustration of vertical isolation

2. Horizontal isolation is specifically concerned with other software products formal

specifications should be linked to.

It is also suggested that formal specification techniques do not provide enough guidance for

a system specification (van Lamsweerde [95]). This implies the limited, or non-existence, of

a systematic constructive mechanism for building complex specifications in a step-by-step

approach. This raises the same problem mentioned above, about the vertical isolation

of formal specifications, that is, the need to investigate the process of constructing a formal

specification from scratch (requiring initial goals or requirements from users). To this end,

two alternative views are plausible: the first, is to consider a formal specification approach

as a complete process. The second, is to regard it as a step within the software specification

process, that needs to be linked to other existing methods.

The idea of considering a formal specification approach as a complete specification pro-

cess is largely rejected by the literature typified by this quote from Bowen and Hinchey [14]

“Thou shalt not abandon thy traditional development methods”. A possible reason, is that

the main characteristics of such approaches stem from the specification notation languages

used at a specific phase of the design process: Thou shalt choose an appropriate notation.

Examples of formal specification languages (methods) are: VDM, B, Z , Z++, Object-Z,

etc. It may be important to observe, that formal techniques also follow (like other specifica-

tion techniques and methods) the generic Requirements Engineering process, that broadly

includes two inter-related phases: a phase during which requirements are elicited and anal-

ysed, and the specification and validation phase. As illustrated in Figure 1.2, it is strongly

suggested, that formal techniques be introduced into the process, at the specification and

2

validation phases.

User
requirements

definition

System
Requirements
specification

System
modelling

Formal
specification

Architectural
Design

High-level
design

Figure 1.2: Formal specification in Software Development Process (Sommerville [82])

Thus, research has been directed at finding a way to couple existing semi-formal techniques,

(e.g. Use Cases, Unified Modelling Language (UML), Use Case Maps (UCM), etc.), that are

said to be more suitable at the initial phase, with formal specification methods. Amongst

others, the following cases from the literature are illustrative: Coupling UML and B as

suggested by Snook and Butler [81], that resulted in creating a new method, namely U2B,

UML and TROLL (UML-TROLL) by Gogolla and Richters [33], generating Object-Z spec-

ifications from Use Cases (advocated by Moreira and Araújo [63]), and translating UCM

diagrams to Communicating State Machine specifications(UCM-ROOM design method) put

forward by Bordeleau and Buhr [12]. Other similar cases are found in: Ledru [51], Matta

et al. [55], Wieringa et al. [97].

A Use Case Map is a scenario-based, semi-formal specification technique, that gained popu-

larity due to its applicability and adaptability for various purposes. A UCM model may be

generated from a set of informal requirements, or use cases, expressed in natural language.

It facilitates the understanding, by humans, of large and complex systems by combining, in

a single view, the behavioural and architectural structure of the system. The notation also

has the advantage of facilitating the capture and definition of requirements during the needs

analysis phase. As mentioned above, some attempts have been made to translate UCMs

into other languages, including a number of formal notations. However, little is known

about coupling UCM with Z and Object-Z. The absence of transformations from UCM to Z

and Object-Z (apart form this work) is confirmed in a systematic literature survey on URN

Amyot and Mussbacher [8].

3

1.2 Problem statement

As mentioned above, the constructivity problem: the lack of a step-by-step methodology and

poor guidance in the construction of formal specifications, are amongst the key limitations

of formal specification techniques. This dissertation intends to investigate the impact (on

the final Object-Z specification), of using the semi-formal method UCM in the process of

constructing a Z and an Object-Z specification. To this end, the research questions are:

RQ 1: Are UCM models transformable to Z and Object-Z specifications? In other words,

can UCM models of a system, be used as inputs for generating Z and Object-Z

specifications?

RQ 2: What would the impact of UCMs on be the quality of a Z and an Object-Z specifi-

cation obtained by transforming a UCM model?

RQ 3: What would the impact of UCMs be on the process of constructing Z and Object-Z

specifications, if the specification process starts with UCM?

The reasons for addressing these questions are presented next.

1.2.1 Research objectives

This work aims to achieve the following:

• Demonstrate that the use of a UCM method can complement Z and Object-Z, by

providing a mechanism to transform a UCM model of a system, into Z and Object-Z

specifications.

• Demonstrate the usefulness of UCM in the process of constructing Z and Object-Z

specifications, by evaluating the quality of an Object-Z specification obtained from a

UCMs model.

• Improve the constructivity of Z and Object-Z, by suggesting a step-by-step method-

ology, whereby a UCM is used as an intermediate step.

The use of the UCM modelling technique in the construction of Z and Object-Z specifications

can, it is argued, significantly improve the quality of specification and provide more guidance.

1.3 The research approach

To address the above problem, a threefold research approach is adopted, involving a case

study approach, content analysis and comparative approaches (Hofstee [40]). For the case

4

study, a requirements definition is given in a natural language (English). Two Object-Z

specifications are derived from it following two different construction paths, as illustrated in

Figure 1.3. Since the object-oriented extension of Z, Object-Z mostly affects the structuring

Case study
(English)

Standard Z

Object-Z
(Z-OZ)

UCMs

Standard Z

Object-Z
(UCM-OZ)

Elements describing
system architecture

Elements describing
system behaviour

Comparison

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8 Chapter 9

Chapter 10

Chapter 1

Chapter 3

Figure 1.3: Research strategy

of Z components, but makes very little changes to the Z description of the functionalities of

a system (content of Z components). Z is maintained as an intermediate step in each of the

two specification processes adopted in this dissertation.

Path1: (Informal requirements → Z → Object-Z). To validate the suggested process in

Figure 1.2, this path was deliberately chosen to observe the impact of moving directly

from an informal set of requirements, to a formal specification. Therefore, the initial

requirements are informally analysed so as to identify objects and operations that

are described in Z. Then, the Z specification is translated into Object-Z, i.e. the

Z-OZ specification.

Path2: (Informal requirements → UCMs → (Z specification → Object-Z)). The

initial requirements are first translated into UCMs models. Since UCMs allow a

5

single model to encapsulate both the architectural structuring of components, and

the description of the functionalities of the system, this approach proposes translat-

ing the structure of a system into meta-data of Object-Z, and then translating the

functionalities to Z then, to Object-Z, to complement the meta-data. This process

produces an Object-Z specification, says UCM-OZ .

Each of the resulting specifications is evaluated separately (content analysis approach) to

identify its quality. Based on the validation results, the two specifications are compared

(comparative analysis approach), to measure the impact of using UCMs in the process. The

transformability of UCMs to Z and Object-Z is investigated in Path2 when moving from a

UCM, to Z and Object-Z. The thick and bold arrows indicate the area from which the main

contributions were derived. Dashed arrows indicate the chapters of the dissertation, and the

links between them.

1.3.1 Weakness of the approach

A possible limitation of the approach is the risk of subjectivity. Since the same person designs

both specifications, it is plausible that insights gained from constructing one specification,

may influence the other. However, the effect would be limited, since a specification is not

done continuously from the beginning to the end. Intermediate actions, involving different

activities, are performed between the specification phases.

1.4 Significance of the research

This work is an intermediate phase towards exploiting the benefits of UCMs, to ameliorate

the complexities of formal specification techniques. The aim is to create an iterative and

interactive environment for generating Z and Object-Z specifications, where UCMs serve as

an interface. The work also aims to provide a mechanism to evaluate and compare software

specifications.

1.5 Dissertation layout

As mentioned above, chapters and the links between them are depicted in Figure 1.3. Chap-

ter 2 presents an overview of the literature on UCMs, Z and Object-Z. It starts with an

overview of UCMs, where the general concepts of the notation and elements of UCMs are

presented. This is followed by a summary of some extensions of the original notation, pro-

posed in the literature and the available tool support. Thereafter, an overview of Z and

6

Object-Z are presented. Important concepts are illustrated, with examples, as well as a list

of a number of Z and Object-Z tool supports.

Chapter 3 focuses on the case study. It defines user requirements and indicates the

approach to be followed. A UCM model, as well as a Z specification, are derived from the

case study. Some observations made during the UCM modelling and the Z specification are

noted.

Chapter 4 aims to transform the Z specification of the case study, into Object-Z. The

transformation process is first presented, followed by the Object-Z transformation of the

input Z document, where Object-Z class schemas are created to encapsulate Z elements.

Chapter 5 proposes a framework mechanism, to generate Z and Object-Z specifications

from a UCM. The basic transformation strategy is first presented, followed by an analy-

sis of the conceptual relationship between the three specifications UCM, Z and Object-Z.

Concepts in these three notations are analysed, and a set of guidelines is proposed for the

transformation process.

Chapter 6 applies the framework, proposed in Chapter 5, to the UCMs of the case study

to generate a Z and an Object-Z (UCM-OZ) specification. A UCM stubbing technique is first

applied to the input UCM, to split it into sub-maps, as recommended by the framework.

Then, each sub-map is transformed individually. Where necessary, formulas are included

in the class schemas to describe the relationships between resulting sub-systems such, as

inheritance, polymorphism, etc.

Chapter 7 proposes a generic framework to guide the validation of a software specification.

A conceptual relationship between a software specification and four aspects of a system is

analysed. These are stakeholder expectations; the application domain; notation language

and tool support; and finally, the envisioned software product. The characteristics of a

quality software specification are briefly explored, followed by the proposed specification

validation strategy, based on Boehm’s spiral model.

Chapter 8 applies the framework in Chapter 7, to Z-OZ and UCM-OZ. A common scope

for the validation is first defined. A sample list of properties expected from a satisfactory

specification is identified and related to stakeholder expectations, by means of mathematical

formulas. This is followed by a brief presentation of the validation criteria. The two speci-

fications, Z-OZ and UCM-OZ, are respectively validated relative to each property identified

earlier.

Chapter 9 presents an analysis of the results of the validation in Chapter 8, by compar-

ing Z-OZ and UCM-OZ. The aim is to evaluate the impact of using UCMs in the process

of generating Z and Object-Z documents. The analysis approach is first presented where

guidelines are defined. This is followed by a comparison of the two specifications relative to

the list of properties identified earlier in Chapter 8. The result of the comparison is shown

7

in a tabular form.

Chapter 10 concludes this dissertation. It summarises the main findings and relates them

to the research questions, as well as presenting the advantages of this work and highlights

further research which could be undertaken.

8

Chapter 2

Introduction to Use Case Maps, Z

and Object-Z

This chapter introduces the three modeling and specification languages used in this disser-

tation: the Use Case Maps (UCMs), the Z and Object-Z notations. Since each of these

notations covers a large spectrum of concepts, for space purpose, only those concepts that

are used in this dissertation are discussed, starting with UCMs, then followed by Z and

Object-Z.

2.1 Use Case Maps

The UCMs modelling technique was proposed by Buhr and Casselman [20] to document and

view a system (that Buhr called behavioural fabric) as mentally perceived by a designer in

the light of requirements. Such perception has not been documented in software develop-

ment process, the model thus, aims to bridge the gap between User requirements and design

models (see Buhr [17, 19]). Figure 2.1 illustrates a UCM model documenting high level de-

sign constructs to represent a designer’s perception of how the behaviour of a system forms

part of in the development process.

Use Case Maps accept as inputs user requirements, either expressed in natural language,

or transformed into Use Cases (as indicated by Amyot [4]). A Use Case may be described as

a set of scenarios, which are sequences of actions performed by the system to yield an observ-

able result to its environment (see Booch et al. [11]). A Use Case Map as a scenario-based

notation, describes in an abstract way, how the organisational structure and the emergent

behaviour of a system are intertwined (van der Poll et al. [94]). It gives a road-map-like view

of the cause-effect paths, traced through a system by scenarios, in a compact map. It enables

many scenario paths to be expressed in a single diagram in a way that reveals patterns and

9

Figure 2.1: Documenting a behavioural fabric

saves them for reuse (see Buhr [17]). Figure 2.2 shows a simple UCM model that illustrates

the graphical representation of some UCM elements. A Use Case Map basically comprises

Figure 2.2: An example of a UCM model

a set of abstract components, discussed below, to describe the organisational structure of a

system and a set of paths to describe Use Cases.

The UCM elements that appear on Figure 2.2 are explained in the next Sections.

2.1.1 UCM abstract components

An abstract component may be viewed as a self-contained operational unit with internal state

and links that enable the component to interact with others. Each component is responsible

for performing responsibility points located in it and chained with path segments. Different

types of components are provided by the UCM notation: Team, Process and Object (see

Figure 2.3).

10

Figure 2.3: Abstract components

Team

A Team component is a generic component allowed to contain any other component type

including other teams. It is represented graphically by a rectangle.

Process

A Process is an autonomous, active component, that may operate concurrently with other

processes. A process may contain passive components, those that do not have control over

the responsibilities that they perform, such as Objects. It is represented graphically by a

parallelogram.

Object

An Object is a passive component, that supports data or procedural abstraction through

an interface. Objects perform their own responsibilities but do not have ultimate control of

when they are activated.

2.1.2 Basic path notation

Figure 2.4 shows an example of basic path notation. It comprises: a Start Point, a Path

Segment, a Responsibility Point, and an End Point.

Figure 2.4: Basic UCM path notation

Start point

A Start Point is represented graphically by a filled circle. It is defined as a set of possible

triggering events and optionally a precondition. The execution of a path begins when some

triggering events occur with the precondition enabled.

11

Responsibility

A Responsibility Point is represented graphically by a cross. It illustrates a generic processing

that is to be performed, which can be for example, an operation, a task, an action, a function

and so forth.

End Point

An End Point is represented by a vertical bar and is defined by a set of resulting events and

an optional post-condition that terminates the execution of a path.

Path Segment

A UCM path segment is represented graphically by a continuous line with any possible and

unambiguous shape. It may sometimes be useful to indicate the direction of a path segment,

but in general it is not necessary. A path segment is used to express an ordered sequence of

UCM elements that require to be executed.

Use Case Maps provide the concept of path connectors to describe alternative use cases,

and parallel executions of scenarios.

2.1.3 Path connectors

A UCM path is the execution route of one or more scenarios, and may be composed of

a number of path segments, interconnected by means of path connectors to achieve path

coupling, and express interactions between scenarios. Amongst others, path connectors are:

OR-forks, OR-joins, AND-forks, and AND-join (see Figure 2.5).

OR-fork OR-join AND-fork AND-join

Figure 2.5: Path connectors

OR-forks

An OR-fork splits a path segment into two or more branches. Alternative path segments

may be guarded by conditions, depicted inside square brackets. For example, in Figure 2.2,

the condition [false] indicates that the customer wanting to make a payment does not have

a valid account in the system.

12

OR-join

An OR-join is a place on a UCM diagram where two or more path segments merge into

a single one. The merging of the path segments does not require any synchronisation or

interaction between the incoming paths.

AND-forks

An AND-fork is represented graphically by a vertical ticked bar that splits an incoming path

segment into two or more parallel paths. This connector helps to represent the concurrent

progression of scenarios along path segments.

AND-join

An AND-join connector collapses two or more parallel paths into a single one. It is repre-

sented graphically by a vertical bar.

The AND-fork/join elements provide a strong form of representing inter-scenario synchroni-

sation in which scenarios along different paths are mutually synchronised. The OR-fork/join

UCM concept allows for multiple scenarios to progress along a single path segment and be

separated independently only where necessary.

Two types of path elements called stubs are discussed next.

2.1.4 Stubbing techniques

A UCM provides for the concept of stubs to help sub-divide complex maps into two or more

sub-maps. A stub is a mechanism for (paths) abstraction that represents on a UCM diagram,

a place where a sub-map is needed, but for which details are referred to elsewhere. It saves

as maps connectors that help to link the execution of a scenario from a map containing

the stub (called root-map) to a sub-map called a “plug-in”. The two types of stubs are:

static-stubs, and dynamic-stubs (see Figure 2.6).

Static-stub

When only a single sub-map is needed, a static-stub is used. The binding of the plug-in

to the root-map is made as follows: the input path segment(s) entering the stub (generally

noted INX , where X stands for a referencing number) is (are) associated to the Start point(s)

of the plug-in, and the End point(s) of the plug-in is (are) associated to the output path

segment(s), leaving the stub (generally noted by OUTX as in Figure 2.6). This association

13

Plug-in1 Plug-in2 Plug-in3
S1 E1

Figure 2.6: An example of a static and a dynamic stub

is called a Binding Relationship. In the case of the static-stub in Figure 2.6, it is indicated

by:{⟨IN 1, S1⟩, ⟨OUT1,E1⟩} (Amyot [6]).

Dynamic-stub

A dynamic-stub is used where more than one alternative sub-diagram is needed, for which

the binding to a specific diagram is determined during the execution of the scenario being

modelled. A selection policy to determine the plug-in to execute is, therefore defined.

Other key notation elements are: Failure-point, Waiting-place and Timer. These are pre-

sented next, through the Timeout-recovery mechanism that is provided - by UCM - to model

the enhancing of network failures in a network communication.

2.1.5 Timeout-recovery mechanism

Figure 2.7 shows the graphical representation of the three UCM elements: Failure-point,

Waiting-place and Timer; it also includes a model for a Timeout-recovery mechanism. In

Timeout-recovery
mechanism

Failure point Triggering paths

Timeout path

Figure 2.7: An application of the use of a UCM Failure-point and Waiting place

each of the three components in the figure, the path from start-point S1 to the end-point

E1, is called the main path. It is the path on which a scenario progresses to reach the

waiting-place or timer. The triggering paths are also indicated. Those are paths along

14

which triggering events occur, to cause a waiting scenario to continue progressing along the

main path.

Failure-point

A failure-point indicates a place along a path where the progression of a scenario may stop

leaving the system in an incomplete state, possibly jeopardising other paths in execution.

For example, a network communication may fail, causing a sent message not to reach its

destination or an acknowledgement not to reach the sender.

Waiting-place

A waiting-place indicates a place where a scenario progressing along a main path, may need

to pause waiting for an event to occur along the triggering path, before it continues. The

triggering path may terminate at the waiting-place or touch it tangentially, and continues.

Identifying a path as a main path, or triggering path, is relative, since the same path may

play both roles depending on the scenario under consideration.

Timer

A Timer, also known as a timed waiting-place, is just a variation of a waiting-place that

uses a time clock to control the occurrence of the triggering event. The timeout path on the

diagram in Figure 2.7 is used to model the situation when the waiting time expires before

the occurrence of the triggering event.

With the Timeout-Recovery mechanism in Figure 2.7, a message is sent via the network

component and concurrently, the Timer is set up to wait for an acknowledgment that may

be sent back via the network. If the acknowledgment is not received before timeout, then net-

work communication failure is assumed, and the responsibility point labeled Handle failure

is performed. Otherwise, the execution continues to the end-point E1.

2.1.6 Extending the original UCM notation

As mentioned earlier, a UCM aims to bridge the gap between user requirements and detailed

design (Buhr [17, 18], Buhr and Casselman [20]). Its core notation does not completely cover

the notational needs in some specific application domains. Some extensions have been pro-

posed, either to the basic features of a UCM, or to its applicability. Some notational elements

and concepts were added to the basic UCM features to support the agent systems (Amyot

[4]). As reported by van der Poll et al. [94], UCM support for designing user interfaces is still

15

acknowledged to be insufficient. In this regard, an extension of the basic UCM, that rein-

forces the exchange of messages between users and the system aimed at allowing the notation

to adequately support the user interfaces and usability requirements analysis and modeling

was suggested. For a similar reason, a number of heuristics were proposed to facilitate the

validation of the three important properties: consistency, completeness and precision.

UCMs efficiently address functional requirements, but leave non-functional requirements

uncovered. The visual notation language, GRL (Goal-oriented Requirement Language[1]),

is used to describe business goals, non-functional requirements, alternatives, and rationales.

Aiming to capitalise on the advantages of each of the two notations, Amyot and Mussbacher

[7] proposed combining UCMs and GRL notations, into a single notation, namely, URN

(User Requirements Notation), which is now standardised as reported in Amyot [5].

2.1.7 UCM tool support

Two freely available editing tools now support UCMs: the oldest is UCM Navigator (UCM-

Nav) (Miga [59]) and more recently jUCMNav (Mussbacher and Amyot [64], Roy et al. [72]).

UCMNav is a graphical software system that helps to create UCMs diagrams. This tool

supports most of the features defined in the UCM reference manual (Buhr and Casselman

[20]). It maintains binding between plug-ins and stubs, responsibilities to components, sub-

components to components etc. It allows users to visit and edit the plug-ins related to stubs

at all levels. It loads, exports and imports UCM as XML files. It can also export a UCM di-

agram to formats such as Encapsulated Postscript (EPS), Maker Interchange Format (MIF),

and Computer Graphics Meta-file (CGM). As reported by Kealy [48], the main drawback of

this tool is that it is hard to install and maintain.

The jUCMNav tool is a user-friendly graphical editor under the Java-based open-source

Eclipse platform. As an improved version of UCMNav, it provides more functionality in-

cluding a support for Goal-oriented Requirements Language(GRL). Its export-import pos-

sibilities are various, and include the generation from an input UCM of different types of

files such as XML files, MSC (Message Sequence Charts) files, and the CSM (Core Scenario

Model) files.

The following section presents an overview of the Z specification language.

16

2.2 Z specification

Z (pronounced ’zed’) is a formal specification notation based on the first-order predicate

logic and a strongly-typed fragment of Zermelo-Fraenkel (ZF) set theory (see e.g. Lightfoot

[52], Mole [62], O’Regan [66], Spivey [83]). The notation was initiated by Jean-Raymond

Abrial in France, and developed at the Programming Research Group (PRG) of Oxford

University, in England, since the late 1970s. The main construct in Z is called schema,

which is built upon basic types and global variables.

2.2.1 Basic types and global sets

The concept of a basic type (also called a Given Type), is provided in Z, to specify the set

of elementary objects, for which details are left unspecified. The list of basic types, for a

specification, is enclosed inside square brackets and separated by commas. For example:

[Customer ,Book ,Account]

defines a list of basic types in Z, for which for example, Customer specifies the set of all

possible customers. Detail information about customers, books and accounts are deferred to

the design phase. A basic type may be used anywhere in the specification after its definition

(see Bowen [13]).

Similar to basic types, a global variable may be used anywhere in the specification after

its definition. The axiomatic definition of a global variable is presented as follows:

declaration part

predicate part

For example:

max : N

max ≤ 50

The concept of Free types is also used to list, for a type, the identifiers of its element. The

general form is:

freetype ::= element1 | element2 | ... | elementn

E.g. Response ::= yes | no
The central concept in Z is the Schema introduced next.

17

2.2.2 Z schemas

The general form of a schema is:

SchemaName
declarations

predicate

SchemaName represents the name of the schema. The declarations include a list of typed

variables, called components, which are constructed from a list of Basic types identified

during the construction of a Z specification. The predicate defines constraints or relationships

between the components in the declaration part. The abbreviated notation of the above

schema is:

SchemaName == [declaration part | predicate part]

Two types of schemas are encountered: “state schemas”, to describe the static behaviour

of a system, and “operation schemas” to describe the dynamic behaviour. For illustration

purpose, the Airport example below from Lightfoot [52] is considered:

The air-traffic control of an airport keeps a record of the planes waiting to land and the

assignment of planes to gates on the ground.

State schema

In Z, an abstract state, also called a state schema, specifies the static behaviour of a system.

For example, with the airport example above, assume the given types:

[Plane,Gate]

Where Plane denotes the set of all possible, uniquely identified planes, and Gate the set of

all gates at the airport. The state schema is:

Airport
waiting : PPlane
assignment : Gate 7� Plane

waiting ∩ (ran assignment) = ∅

The component waiting maintains a list of planes waiting to be assigned to a gate, and

assignment maps each gate to one, and only one, plane. The predicate part indicates that

only planes that have not yet been assigned a gate, are kept in the waiting list. An important

aspect of a system state is its inherent variability in time, e.g. when a new plane is assigned

18

a gate, the value of each of the two components waiting and assignment changes and hence,

the state of Airport . Z provides an operation called “schema decoration” to describe the

change of system states.

Schema decoration

A schema S is decorated by adding a prime to its name (S ′). The effect of decorating S ,

is that all the variables in the declaration and predicate part of S , are also decorated (see

Potter et al. [70]). Since an operation performed on a state schema may change the state of

the system, an important aspect of schema decoration is to facilitate the specification state

change within the operation schema. The state before and after the operation, are both

included in the declaration of an operation schema, and related in the predicate part, to

show, for example, how state variables are changed by the operation.

Schema as a type

To define composite (complex) structures, Z allows a schema to be used as a type (Jacky

[42], van der Poll [90]). Such a type is similar to a record type in conventional programming

languages such as Pascal. An instance of a schema type is called a binding. Z provides the

unary operator θ to reference each binding. E.g. an instance of the schema Airport is:

⟨waiting ⇒ ∅, assignment ⇒ ∅⟩

For each abstract state space, a realisable initial state is required.

Initialising the state space

It may be assumed that initially, the list of planes in the waiting list is empty and the list

of gates assigned to planes is also empty. Therefore the state of the Airport is initially

represented as:

InitAirport
Airport ′

waiting ′ = ∅ ∧ assignment ′ = ∅

Although it is relatively easy to observe that this state is realisable, in general, it is recom-

mended to establish that the initial state is realisable. To this end, the initialisation theorem

is used:

⊢ Airport ′ • InitAirport

This implies the need to demonstrate that there exists a state Airport ′ of the state space

Airport , for which the components waiting = ∅ and assignment = ∅.

19

Partial operation

To illustrate the concept of an operation in Z, consider the following schema that assigns a

gate to a plane.

assignGate
∆Airport
plane? : Plane
gate? : Gate

plane? ∈ waiting
assignment ′ = assignment ∪ {gate? 7→ plane?)}
waiting ′ = waiting \ {plane?}

The delta (∆) symbol is used to indicate the state schema that the operation changes. The

question mark (?) that follows the two variables plane? and gate? indicates that those are

input variables. An exclamation mark (!) is used to denote an output.

The logical expression plane? ∈ waiting in the predicate part, constraints the input plane

to be taken only from the waiting list. This defines the condition under which the opera-

tion becomes applicable, i.e the precondition. The precondition of each operation may be

calculated (Woodcock [100]) to determine the circumstances under which an operation is

applicable. For example, if the input plane is not in the waiting list, an error is generated

and further operations are needed to handle the error. Hence, assignGate is said to be a

partial operation, since further operations may be needed to specify error conditions.

Error condition

As mentioned in the previous section, if a plane used as input in the operation assignGate is

not in the waiting list, an error occurs and the following operation is specified for the error

case.

unknownPlane
ΞAirport
plane? : Plane
resp! : Response

plane? ̸∈ waiting
resp! = PLANE UNKNOWN

The symbol Ξ is used to indicate that the operation operates on Airport but, does not change

its state.

20

Total operation

In Z, a complete version of the operation that maps each plane to a specific gate may be

formed by combining the operation under normal circumstances, and those to handle errors.

totalAssignment =̂ assignGate ∨ unknownPlane

The definition of the operation totalAssignment is a predicate schema expression that uses

the Z disjunction operator ∨, to combine two operations. The semantics of this operation is

the following: The declaration part of the composed operation, is obtained by merging the

declarations of each of the individual operations. The predicates of the individual schemas

are disjoined. More schema operators are available to facilitate the construction of predicate

schema expressions.

Schema calculus

Amongst others, the following operators are provided in Z: schema inclusion, schema con-

junction (∧), schema negation (¬) and sequential composition (o9), (see e.g. Potter et al.

[70]).

(a) Schema inclusion: This operator allows the name of a schema S1, describing an

abstract state space to be included in the declaration part of another state space schema

S2. The declarations of S1 are included in those of S2, and the predicate of S1 is

appended (ored) to that of S2.

(b) Schema negation (¬): The negation of a schema S , is a schema denoted by ¬ S . It

has the same declarations as S , and its predicate, is the negation of the predicate of S .

(c) Schema conjunction (∧): Let R and S be two schemas, and P = R ∧ S . P is a

schema obtained as follows: the declarations of R and S are merged to form that of P

and their predicates are conjoined (anded) to form that of P .

(d) Schema composition (o9): Consider an operation C , defined as: C = A o
9 B where A

and B are two operation schemas. The semantics of C is the following: if the operation

A can change the state of the system from S to S1, and B from S1 to S2, then C is

an operation that changes the state of the system from S to S2.

Some limitations of Z due to schema calculus and the use of schemas as types were

analysed by van der Poll [90]. However, the major disadvantage of using Z for large systems

is its inherent lack of object-oriented structures, making it hard to group and manage a

rapidly increasing number of schema structures. To this end, the notation was extended

to Object-Z to accommode object-orientation (Carrington and Smith [22], Smith [78]). An

overview of Object-Z is presented next.

21

2.3 Object-Z specification

As mentioned by Taylor et al. [86], Object-Z (see Duke and Rose [26], Duke et al. [27], Smith

[77]) is one of the most developed of several Z-like Object-Oriented specification languages.

It employs the concept of a class schema to encapsulate Z schemas. A class schema is, in

general, structured as follows (Smith [77]):

ClassName [generic parameters]
[visibility]
[Inherited classes]
[local definitions]
[state schema]
[initial state schema]
[operations]

The generic parameters list is optional as is each component of the class. The visibility list

denoted by �, restricts access to some components and operations of the class. Similarly,

the list of inherited classes is optional. Z-like type and constant definitions may be specified.

Unlike in Z, operations and the state schemas are described within the class. The order

in which those components appear is prescriptive. A class schema may include only one

state schema, which is very similar to Z state schemas, and does not carry a name. The

components in the state schema may be initialised to some realisable values. The only

initial state is named INIT . It includes only instances of the components declared in the

state schema. Operations are described in the same vein as in Z, with some differences as

indicated next.

2.3.1 Operation schema

The concept of an operation in Object-Z is similar to that of Z. The only difference is that

an operation in Object-Z operates on a single state schema. The Delta (∆) operator lists

specific components changed by the operation, whereas the Xi (Ξ) operator is simply dis-

carded in Object-Z. The concepts of partial, total operations and error handling, are not

provided since an operation in Object-Z becomes applicable only when the precondition of

the operation is satisfied. Most of the Z schema calculus operators (e.g. ∨, ∧, o
9, etc.),

are also used in Object-Z. However, the semantics of some of them may vary slightly in the

context of a class schema. Additional schema operators are also provided. Two examples

are: the nondeterministic choice ([]) and scope enrichment operators (•) (see Duke and

Rose [26], Smith [77]).

An example of a class schema to specify the airport example from Section 2.2 is given

22

next. The two components (waiting and assignment) and the operation totalAssignment are

made accessible from the system environment.

ClsAirport

�(waiting , assignment , totalAssignment)

[Plane,Gate,Response]

waiting : PPlane
assignment : Gate 7� Plane

waiting ∩ (ran assignment) = ∅

INIT
waiting = ∅ ∧ assignment = ∅

assignGate
∆(waiting , assignment)

only the parameters of the Delta operator has changed

unknownPlane

only the Xi operator is removed

totalAssignment =̂
[plane? : Plane, gate? : Gate] •

assignGate
[]
unknownPlane

The choice operator ([]) is used in the definition of the operation totalAssignemt , allowing

the system to choose one of the two alternative operations assignGate and unknownPlane

without user intervention. The variables in square brackets are those for which input values

are expected from the system environment. The operator • is used to promote1, when

necessary, operations through the selected objects (in square brackets). This operator has

the advantage of providing a way to inherit operations from objects of other classes. The

concept of inheritance, discussed below, may be introduced in the definition of a class in

different ways.

2.3.2 Inheritance

The concept of inheritance allows for the reuse of features of an inherited class (the su-

perclass) when creating a new class schema (the subclass). As mentioned earlier, Object-Z

1promotion allows for the reuse of an operation to specify another one

23

provides different specification constructs to define the inheritance mechanism, e.g. through

class inclusion, by using a class as a type or promoting an operation.

(a) Class inclusion

The name of the inherited class is listed in the declaration of the inheriting class. In

that case, the type and constants of both classes are merged as well as their schemas.

But, state schemas as well as those that share the same name are joined. The visibility

list is not inherited.

(b) Class schema as a type

Consider the following declaration allowed in Object-Z where ClsAirport is the class

defined earlier:

orTambo : ClsAirport

This definition specifies the variable orTambo as an identifier of an object of the class

ClsAirport . Object identity is modelled in Object-Z by associating with each class name

a countable infinite set of values (Smith [77]). Through the variable orTambo and the

dot (.) notation, the features of the class ClsAirport become accessible to the class in

which it is declared. E.g. an operation may change the state of the referenced object

as follows: orTambo.waiting ′ = orTambo.waiting ∪ {plane1}, where plane1 is of type

Plane.

(c) Operation promotion

The scope enrichment operator (•), the dot and the possibility to use a class as a type

in Object-Z provide meaningful ways to specify the reuse of operations. Consider for

example the following operation:

newAssign =̂ [orT? : ClsAirport | orT?.waiting ̸= ∅] • orT?.totalAssignment

The operation newAssign in a class, is defined by promoting the operation totalAssignment

of an object of the class ClsAirport referenced by orT .

The concept of polymorphism is briefly discussed in the following section.

2.3.3 Polymorphism

In Object-orientation, the concept of polymorphism defines a mechanism which allows a

variable to be declared, whose value can be an object from any of a given collection of

24

classes. In Object-Z, polymorphism is introduced with the unary class operator denoted by

th symbol ↓, e.g. the declaration

orTambo : ↓ClsAirport

specifies an object of the class ClsAirport or any other class derived from it by inheritance.

2.3.4 Tool support for Z and Object-Z

An important advantage of using Z, is the availability of tool supports, allowing for the

possibility to reason about the properties of the specification (van der Poll [90]). Z tools

include amongst others the following: CadiZ (Toyn and Mcdermid [87]) for formal reasoning,

and Fuzz Mike Spivey’s type checker for Z. The Community Z Tools (CZT)(Malik and Utting

[54]) are used for type-checking and animating Z. Unlike Z, the tools associated to Object-Z

are still limited and many of them operate specifically under Linux. Examples are: the latex

macro OZ.sty (Allen [3]) for editing Z and Object-Z specifications. The Wizard (Johnston

[43]) and the Object-Z version of the Community Z Tools (CZT) (Malik and Utting [54]) for

type checking. It has been proposed to encode Object-Z into existing theorem provers (e.g.

Smith et al. [80]). A methodology to animate Object-Z specifications using a Z animator

(McComb and Smith [56]) and for model-checking Object-Z using Abstract State Machine

(ASM) (Winter and Duke [98]) have also been suggested.

2.4 Chapter summary

This chapter presented an overview of the three specification notations used in this disserta-

tion. The semi-formal notation UCMs (Use Case Maps) was initiated by Buhr to facilitate

the capturing and analysis of requirements from users, to model an early perception of the

static and dynamic behaviours of a system and its architectural structuring of components

in map-like diagrams. Z and Object-Z are state-based formal specification languages based

on set theory and first order predicate logic. The central concept in Z is the schema, to

describe the possible states and operations of a system. In Object-Z the central concept is

the class schema to encapsulate Z types and schemas and to introduce object-orientation to

standard Z.

The next chapter presents the case study used in this dissertation.

25

26

Chapter 3

Case study

This chapter describes a case study that will be used to explore the topic of this research.

It also describes the two approaches adopted to develop the case study. A UCM model for

the case study is developed and some observations are made regarding the use of UCMs. A

Z specification of the same case study is presented including, calculating preconditions for

operations and the construction of total operations that are summarised in a table, leading

to a conclusion.

3.1 Case study description

Imagine a group of rival companies geographically dispersed world-wide who wish to co-

operate. Each of them provides amongst others, sales services and allows for credit, return

and replacement of goods purchased (e.g. those under guarantee or warranty). Each com-

pany has both local and international customers, and uses its own sales systems. Assume

that after some market studies and analysis, the representatives of those companies come to a

common conclusion that a very high percentage of their revenue is due to their international

customers whose transactions are, nevertheless, very limited because of the difficulty to re-

turn or replace items. Additionally, they also realise that those customers incur enormous

charges when paying with credit cards or bank transfers, compared to a zero charge of a

direct payment at a cashier in a local outlet. In this regards, they decide to help each other,

to encourage their international customers and hence, increase their benefits. They came up

with an innovative idea of having each company acting at the customers’ level, as an agency

of any other one, relative to the above-mentioned operations (return items, replace items,

and pay credit), provided that the independence and privacy of each individual company

should not be violated. That is,

• No individual strategic plan and mission statement should be affected;

27

• None of the standards and policies adopted by each individual company should be

influenced;

• A company should not be forced to operate with a language or currency that it is not

used to;

• The organisational structure of a company should not be affected.

Let’s further assume that the representatives of those companies believe that such innovation

should be software-based and therefore, in order to take further decisions, they need a good

system specification that would facilitate their understanding, and stimulate a thorough

discussion about the feasibility of the idea, and therefore, help them to discover a possible way

to render such an idea operational. Finally, assume that the number of member companies

is not limited, and it is agreed to produce an Object-Z specification to serve the purpose.

3.2 Specification approach

To design the specification for this case study, a number of approaches are plausible. For

example, a Use Case approach where Use Cases are identified and transformed into an

Object-Z specification (Moreira and Araújo [63]). But as one of the main objectives of this

dissertation is to explore the impact of using the UCM notation in the construction of Object-

Z (including Z), two different specification processes are adopted (see fig. 1.3, Chapter 1)

to produce two Object-Z specifications. One approach uses UCMs, and the other not. The

two resulting Object-Z specifications are then compared.

• With the first approach, a UCM model for the case study is constructed then, trans-

formed into Z and Object-Z.

• With the second approach, a Z specification of the case study is constructed and

transformed into Object-Z.

For both approaches, the informal requirements described above are used as input, first

to derive a UCM in Section 3.3, and a Z specification in Section 3.4. The transformation

of those intermediary specifications is done in upcoming chapters. The main operations

retained in each case consist of returning items, replacing items, and credit payment by

customers. When any of those operations is initiated at an agency A, to assist a customer

of another agency B, A is named Helper, and B, the Beneficiary.

It is also assumed that an Interface subsystem is available at each company to facilitate

the communication between the system under specification, and a local sale system. Figure

3.1 depicts an example of interconnection between agencies in an operational view. Each

28

A

B

E

C

D

Figure 3.1: Example of agencies interconnections

rectangle represents a company, and the dotted ellipse those companies that are in the

same area, e.g. the same country. A solid line joining two agencies indicates a network

connection between the two companies. Figure 3.2 gives an overview of the system layering.

�

�

�

�

����������	

�	������
����������

�����
�����
������

Figure 3.2: Subsystems layering

The Interface and the Local Sales sub-systems are shaded because there are not explicitly

part of the system under discussion. A top-down approach is considered as we start with the

three given higher-level functionalities, and then refine them continuously, while constructing

the specification, until a reasonable level of detail is reached. The refinement process is

done according to the ability of the specification technique, to allow such decomposition by

providing mechanisms to represent sub-operations in a traceable way. It is assumed that a

reasonable level of detail is reached when the execution steps of each scenario are clearly

defined, and the overall size of the system is still manageable in the context of this work

(with its time and space limitations).

29

3.3 Deriving a UCM for the case study

This section proposes a Use Case Maps Model for the case study. The construction process is

based on guidelines from the literature. Two types of documents are used: a quick tutorial

on UCM by Amyot [4], and the UCM book authored by Buhr and Casselman [20], the

initiators of UCMs. The scenarios are initially considered at a high-level of abstraction, and

progressively refined to include detail activities. Functionalities are first represented then,

the architectural components are added to the map.

3.3.1 Initial UCM

Figure 3.3 represents the initial UCM map for the case study. Each high-level functionality

is considered a complete scenario. The initial UCM diagram is progressively refined until a

“reasonable” level of detail is reached, that is, a map including all the user operations required

by the system. The path from the start point S1 to E1 models the scenario of returning a

Figure 3.3: Initial UCM

purchased good. This path includes only one responsibility point RetItem, which stands for

return. Similarly, the path from S2 to E2 models the scenario to replace a purchased item,

and the path from S3 to E3 models the scenario to pay a credit.

Triggering events

Although it is not explicitly stated in the description of requirements, the execution of each of

the above scenarios may begin when a customer contacts an agency wanting to pay a credit,

or return or replace a purchased good. For the return and replacement of a purchased item,

the customer may be required to present an invoice together with the item. A customer’s

identity document (or any other acceptable personal information document) may also be

required for any of the three scenarios.

30

Path preconditions

At this point, it seems reasonable to suggest that for an item to be replaced or returned, the

invoice provided by the customer should be valid. Additionally, the customer must have a

valid account in the provider’s local sales system.

Resulting events and post conditions

The execution of the scenario to return an item begins when the start point S1 is triggered

and terminates at the end point E1. At this point, the returned item has been collected by

the provider, and all the accounts that may be affected by the operation are updated. The

scenario to replace a purchased item terminates at the end point E2, when the execution is

successful. At this time, the returned item has been sent to the provider (where traditional

routine procedures may be followed to finalise the operation). Finally, when the payment of

a credit is successfully performed, the effect at the end point E3, is that the Helper agency

has received some amount of money from a customer, and all the accounts affected by the

operation have been updated.

The simplicity of the map in Figure 3.3 shows that the modelling of the system at this

point remains very abstract and hence, keeps some aspects of the system (for example, the

sequence of activities for each scenario) hidden. For such reason, a more explicit UCM map,

which stands to be an improved version of the previous one, is proposed next.

3.3.2 An improved UCM

Based on the UCM in figure 3.3 and the analysis of the case study description, a more

detailed UCM is proposed in Figure 3.4. Large scale responsibilities are refined to allow

detail functionalities to be modeled. Consider for instance, a precondition that requires an

invoice to be valid to allow the return or replacement of a purchased item. This precondition

to be reinforced requires the provider of the item, to first validate the invoice presented to the

Helper by the customer. The validation of an invoice is therefore considered an important

functionality of the system. Figure 3.4 includes such new functionalities, which improve the

diagram in Figure 3.3. The diagram in Figure 3.4 shows both the behaviour (the execution

of the sequence of activities) of the system, and the interaction between scenarios. The next

two sub-sections provide more detailed explanations on those two aspects, with the purpose

of improving the understanding of the UCM in Figure 3.4.

31

Figure 3.4: Improved UCM

The system behaviour

In general, the execution of a scenario begins when some events occur at some start points

and the preconditions at those points are satisfied. As mentioned previously, a customer

arriving at an agency with an invoice, a purchased item and a personal identity, may be al-

lowed to return or replace the item. A customer’s identifier is a prerequisite for the payment

of a credit. At the Helper agency, only a visual inspection of the invoice, item and customer

ID may constitute a valid precondition to trigger the start points S1 and S2. Following the

payment of a credit, only the customer ID document may be required at the start point S3.

The next paragraph considers the scenario to return an item, aiming to clarify the activities

of the system along paths. This case covers much of the responsibility points and other path

elements encountered on the UCM in Figure 3.4.

When returning an item, after S1 is successfully triggered, the invoice and the customer’s

identity are checked to permit further actions. The responsibility points ChkInv to validate

an invoice, and ChkCust to validate a customer’s identity, are performed. With the responsi-

bility point AcceptOp, the beneficiary agency may allow the operation to continue or not. If

the invoice is found to be invalid, the execution reaches the end point E12a, and terminates.

Similarly, if the validation of the customer fails, the end point E123a is reached, causing the

scenario to be terminated. When the validation of the invoice and customer succeed, and

the operation is not denied by the provider, the item brought by the customer is temporally

kept in a store (storeItem) at the Helper agency waiting to be shipped back shipItem. At

the provider’s agency, the returned item is collected and evaluated EvlItem to determine its

present value. At this point, the beneficiary agency follows their traditional procedures to

32

update the customer’s account (UAcc), and, for example, refund the customer (RfdCust).

The execution of the scenario is terminated at the end point E1.

The progression of the other two scenarios may be interpreted in the same vein. The only

two operations not encountered, are DlvItem that may be performed when replacing an item

to provide a substitute item to a customer; and PayCredit to allow a customer to pay some

amount of money at the Helper agency which is then transferred to the benefiary agency.

The sub-section below illustrates some interactions between scenarios as depicted in the

UCM model of Figure 3.4.

Scenario interactions

Interactions between the three scenarios are observable from the UCM in Figure 3.4. For

example, the fact that the scenarios to return a purchased item, and the one to replace an

item, both share most of their path segments and responsibility points, shows that these

two scenarios are closely related. This observation indicates that the procedure to perform

each of the scenarios may be very similar. The analysis of scenario interactions presents the

advantage to facilitate the understanding of the system, and guides further design decisions.

For example, the above observation readily suggests a strong use of polymorphism.

Contrary to the above observation, the procedure to perform the scenario to pay a credit is

clearly very different from the others. The three scenarios share in common only one respon-

sibility point (“ChkCust”), on a single path segment. More interactions may be analysed

by considering other path elements, e.g. path connectors: OR-join, OR-fork, AND-fork and

AND-join. This analysis, at an early stage of the requirement specification, also presents

the advantage to facilitate the detection of conflict points in the system. For example, since

the responsibility point “ChkCust” is shared by all the scenarios, more attention may be

required at the design of this operation.

The following section presents a more detailed version of the UCM that includes abstract

components.

3.3.3 A more detailed UCM

Although the UCM map in Figure 3.4 adds more detail into the previous diagram, it still

does not reveal important information that needs to be addressed explicitly. For instance,

the validation of an invoice or a customer, also involves sending a request, over a commu-

nication network (see fig.3.1), to the benefiary agency and waiting for a response. The role

33

of the three parties: Helper agency, Beneficiary agency, and the Network are not distinctly

illustrated in such operations. To address this issue, in Figure 3.5, architectural elements are

introduced into the map and some responsibility points are sub-divided into separate sub-

activities. In this last version of the map, the team components named respectively “Helper”

Network

Agency:Helper

CrtNetworkCom

Agncy:Beneficiary

InitChecking

Cashier Store

Validation
S1

S2

E1

S3

E2

ChkCust

E12a

E12b

E3

EvlItem
UCustAcc

DlvItem

RfdCust
UMyAcc

AllocTrans

InitChkInv

InitCustAcc

ChkInv

T1 AcceptOp

E123a

PayCredit StoreItem

ShipItem

E123b

NetFail

RcvItem

Figure 3.5: Final UCM

and “Beneficiary” logically sub-divide the system into two sub-systems. The first includes

the activities performed in an agency when acting as a Helper, and the second, groups those

activities that are executed in an agency, when playing the role of a Beneficiary agency. Any

agency may play both roles; it acts as a helper when helping a customer, and as a beneficiary

when its customer is being helped by another agency. As more than one agency is involved,

many identical copies of the components can be superimposed to indicate the multiplicity of

the sub-systems.The component named Network, in between the two sub-systems, handles

any electronic communication between the two sub-systems.

The next two sub-sections explain each of the sub-systems.

Helping sub-system

This sub-system includes all the activities that are performed in an agency when acting as a

helper. Those activities are structurally grouped into two abstract components (processes):

“InitChecking” and “CrtNetworkCom”, and two team components (see Figure 3.5).

34

The process named InitChecking has the responsibility to handle the triggering of scenarios

at the start points, and prepare requests to be forwarded over the network to demand, for

example, the validation of an invoice, or a customer, by the Beneficiary sub-system. It there-

fore performs “InitChkInv” to initialise the validation of an invoice and “InitCustAcc” to

initialise the validation of a customer. It also controls scenario interactions, that are modeled

with path elements placed within it; those are the OR-join path connector that introduces

path sharing, and the AND-join connector, which enables the concurrent execution of the

two operations placed before it.

The process CrtNetworkCom has the responsibility to control the incoming and outgoing

network communications. It transmits the requests prepared by InitChecking over the net-

work and waits for responses using the UCM component timer (T1 on Figure 3.5). With

the timer, it implements a timeout-recovery mechanism (see Buhr and Casselman [20]) to

resolve network failures. Any incoming request is forwarded to the network component and

the timer is set-up with an appropriate value, which represents the maximum waiting time

for a response to arrive. If the time elapses before any response is received, failure is as-

sumed, and the responsibility point “NetFail” is performed, and the execution of the scenario

is terminated at the end point E123b.

Similarly to InitChecking , the process is responsible for controlling interactions between

UCM path segments that are bound to it. For example, path sharing is introduced by

the OR-join connector, and parallel execution of responsibility points introduced by the

AND-fork connector. The execution of a scenario to return or to replace an item, may con-

tinue after the AND-fork bar, only when the invoice, together with the customer, have been

successfully validated. Beyond this component, an appropriate path segment is followed

depending on the scenario being executed.

After a customer has paid an amount of money at a cashier in a Helper agency (Pay-

Credit), the system updates the account of the beneficiary agency (UMyAcc) and sends a

request to demand the beneficiary agency to update the customer’s account (AllocTrans).

An object component is used to model a cashier and a store. These objects are each placed

in a component that controls their activities.

Beneficiary sub-system

This sub-system aims to assist Helper agencies in validating invoices (ChkInv) and customers

(ChkCust), and to authorise (AcceptOp) a return or a replacement of a purchased item. Cus-

35

tomers’ accounts and profiles are locally managed by a local sales system (see Figure 3.2)

to which external agencies do not have direct access. It also assumes the responsibility to

finalise any operation initiated at a helper sub-system. With a credit payment, it updates

the customer’s account on request, and ends the scenario at the end point E3. In the case

of the other two scenarios, it collects the item (RecvItem) shipped from another agency,

evaluates the item (EvlItem) and Updates the customer’s account (UCustAcc) accordingly.

Then, it performs some local routines to either refund the customer (RfdCust), or to deliver

another item to the customer (DlvItem). Some of those local routines may not be integrated

or known by this system, because its purpose is to facilitate the liaison between customers

and their providers (agencies).

This sub-system is structurally composed of one UCM team component, that includes two

other team components. One process that ensures the validation tasks, authorises remote

operations, and controls premature terminations of scenarios such as terminating a scenario

when the validation fails. Another process evaluates returned items and updates customers’

accounts.

The next section presents in a textual form, scenarios as described in the UCM Model

of Figure 3.5.

3.3.4 Scenarios

A number of UCM traversal techniques that can help to extract scenarios from a UCM

diagram have been proposed (e.g. Amyot et al. [9], Kealey and Amyot [47]). This section

presents a textual description of scenarios as described on the map in Figure 3.5 to explain

the clarification brought so far, by UCM, to facilitate the comprehension and the description

of the case study. Naturally such textual description may not reveal all the important aspects

of the map. It does not, for instance, address interactions between scenarios, path sharing,

parallel progression of scenarios along paths, and is largely silent about the architectural

structure of a system.

(a) Return item

Description: this scenario describes the sequence of steps that are followed, in an

agency, e.g, Helper, to help a customer to return an item purchased from another

agency, e.g., Beneficiary.

S1: A customer comes to the agency wanting to return an item. The customer holds

an invoice, the item to return, and a personal identifier document.

36

1. InitChkInv . Helper initialises the invoice checking and sends a request, via the net-

work, to the Beneficiary to validate the invoice.

2. InitCustAcc. Helper initialises the authentication of the customer, and sends a request

to the Beneficiary to check if the customer holds a valid account.

3. T1. The Helper sets up a timer, forwards the request through a network, and waits

for a response from the Beneficiary.

4. ChckInv . The Beneficiary validates the invoice.

5. ChckCust . The Beneficiary validates the customer’s account.

6. AcceptOp. The Beneficiary allows or denies the operation and sends a result back to

the helper via the network.

7. StoreItem. The Helper receives the item from the customer and keeps it temporarily

waiting to be forwarded.

8. ShipItem. The Helper ships the item to the Beneficiary.

9. EvlItem. The Beneficiary evaluates the present value of the item.

10. UcustAcc. The Beneficiary updates the customer’s account.

11. RfdCust . The Beneficiary, locally, uses its own routine procedure to satisfy the cus-

tomer outside the system.

Alternatives:

1. NetFail . Timeout event occurs before any response from the Beneficiary, the Helper

performs NetFail to manage the failure.

2. E12b. The Beneficiary denies the operation; the path segment to E12b is followed to

terminate the scenario.

3. E12a. The invoice is not valid; the path to E12a is followed to terminate the scenario.

4. E123a. The customer does not have any account with the beneficiary; the path

segment to E123a is followed to terminate the scenario.

(b) Replace item

Description: this scenario describes the sequence of steps that are followed, in an

agency e.g. Helper, to help a customer to replace an item purchased from another

agency e.g. Beneficiary.

S2: A customer comes to the agency wanting to replace a purchased item. The customer

holds an invoice, the item to be replaced and a personal identifier document.

37

According to the model, the sequence of steps for this is similar to those of the previous

one. Only the routine tasks, performed locally to satisfy the customer that is outside

the scope of the system, are different. Alternative scenarios are also identical. We then,

refer the reader to the above-description.

(c) Pay credit

Description: this scenario describes the sequence of steps followed, to help a customer

to pay for a credit at a company e.g. Helper, to the benefit of another company

e.g. Beneficiary.

S3: A customer comes to the Helper wanting to pay for a credit. The customer holds a

personal identifier document (or a reference number of the account at the Benefi-

ciary company).

Sequence of steps:

1. InitCustAcc. Helper initialises the invoice checking and sends a request, via the net-

work, to the Beneficiary to validate the invoice.

2. T1 The Helper sets up a timer, forwards the request through a network, and waits

for a response from the Beneficiary.

3. ChckCust . The Beneficiary validates the customer’s account.

4. PayCredit . The Helper receives cash from the customer at the cashier.

5. UmyAcc. Helper Updates the common account associated to the cashier.

6. AllocTrans . Helper allocates the transaction into the Beneficiary account kept locally

in the system, and sends a summary of the transaction to the beneficiary through a

network connection.

7. UcustAcc. The Beneficiary updates the customer’s account.

Alternatives:

1. NetFail . A timeout event occurs before any response from the Beneficiary is received;

the Helper performs NetFail to manage the failure.

2. E123a. The customer is not recognised (an invalid customer) the path segment to

E123a is followed to terminate the scenario.

Referring to the literature and the previous UCM specification experience, the following

section addresses some important issues on UCMs. They are presented as observations.

38

3.3.5 Some observations on UCMs

Arguably, UCMs do not, sufficiently, formally define certain aspects of a specification, for

example, UCMs do not provide for a means to calculate preconditions for paths, path seg-

ments or responsibility points. However, the notation presents a number of advantages. The

core of these advantages stems from the fact that it conveys different type of information,

on complex systems, in a map-like diagram, using simple graphical elements; and is mainly

human oriented. The following are some useful observations that may be inferred from the

experience of the above case study guided by insights from the literature.

1- A UCM facilitates the capturing and description of scenarios (Amyot [4]). It is flexible

in terms of allowing the modification of the existing model to include changes in require-

ments. This may be observed in the incremental construction process that is used in

the specification of the case study; moving from the initial UCM of Figure 3.3 to that

of Figure 3.5. The method allows users to change, delete path elements, change their

position in the map, as well as to add new elements. Similarly, abstract components that

are also graphical elements can be manipulated.

2- The UCM techniques may offer the possibility, as illustrated in the previous observa-

tion, to explore different ways of grouping the functionalities of a system with abstract

components to yield an appropriate architectural structuring of the system and hence,

the final UCM may constitute an important input for the design and analysis of system

components .

3- The technique provides a “global view” of a system, in a map like-diagram, including

scenarios, scenario interactions, and structural organisation (see Figure 3.5). Such a view

may facilitate the analysis of the system as a whole, as well as the analysis of individual

scenarios at an earlier stage, as it aims to represent the intended picture of an overall

system (e.g. Buhr and Casselman [20], chap.2). It may also make it easier to simulate

the execution of a system at an early stage, resulting for instance, in speeding-up the

process of building prototypes, specification animation, and consequently the detection

of some potential problems in requirements such as inconsistencies, missing requirements,

undesirable effects of scenario interactions, bottlenecks in scenario coupling, etc.

For example, referring to the diagram in Figure 3.5, knowing that the operation UCustAcc

is solicited by all scenarios, and that, at some stage, multiple instances of such scenarios

operate concurrently during the operational phase, could positively influence some design

decisions.

4- The construction and manipulation of a UCM model does not require extra effort from

39

a specifier who has a basic understanding of the concepts used in requirements engi-

neering (e.g. Requirements, Use Cases, Scenarios, etc.). The two main construction

tools: UCMNav and JUCMNav are also downloadable from the Internet free of charge

(URL:http://www.UseCaseMaps.org/). To explore their potential, both of them

were used in this dissertation. JUCMNav is more recent and includes more functionali-

ties than UCMNav.

5- Although the notation does not have a formal semantic definition, its formal syntax,

and the fact that the basic notation is based on simple graphical elements, make it

transformable into other models. A number of transformations have been proposed (e.g.

Bordeleau and Buhr [12], Miga et al. [60], Zeng [102]). This transformability quality,

coupled with the above observation on its ease of use may contribute to provide the

model with the ability to be used as a “bridging tool” in software specification and design

(Dongmo and van der Poll [23]). The notation was initially intended to bridge the gap

between user requirements and design (Buhr [17], Buhr and Casselman [20]).

6- The model may also be a potential candidate for feasibility studies and estimations in

software project management. Not only can it be flexibly constructed from a “fuzzy”

set of requirements, but it also clarifies the understanding of scenarios (as illustrated in

Section 3.3.4) in large and complex systems (Buhr [18], Buhr et al. [21]).

The next section constructs a Z specification for the case study.

3.4 Z specification

In practical projects, multiple source of information may be available. Those include, for

instance, users, clients, domain experts, etc. The present specification relies on our under-

standing of the case study description and is guided by the established strategy for con-

structing a Z document as given in a number of texts on Z (e.g. Lightfoot [52], Potter et al.

[70]). When necessary, use will also be made of some principles suggested by van der Poll

and Kotzé [93] to reinforce the original Z strategy. In line with principle no# 4, [93], which

recommends extending each set to include undefined outputs, an assumption is made that

types in this specification readily include the undefined value that is denoted by the symbol

⊥. Promoting operations 1 is avoided, wherever possible, at this stage of the specification,

since this will be included in the Object-Z specification version (Z-OZ) through inheritance.

More detail on operation promotion, and framing in Z are found in: Woodcock and Davis

[101, Chapter 13] and Stepney et al. [84].

1That is to extend an operation defined on a smaller state schema to be used in larger one

40

Next a Z specification of the case study is provided. It starts with the basic types.

3.4.1 Given sets and global variables

By convention, each element of the list is in singular, with the first letter capitalised. The

list of basic types is:

[Item,Customer ,AgencyId , Invoice,Currency ,Transaction,
Accountno,Money ,Language,Report ,Address ,Date]

The list was progressively constructed during the specification process, by adding new types

when needed. The following is a brief description of the listed types:

Item is the set of all possible items that exist.

Customer is the set of all possible customers.

AgencyId is the set of all possible identifiers of agencies.

Invoice is the set of all invoices.

Currency is the set of all possible currencies.

Transaction is the set of all possible transactions.

Accountno is the set of all possible account numbers.

Money is the set of all possible amounts of money.

Language is the set of all possible human languages.

Report is the set of all possible messages that may be exchanged with the system.

Address is the set of all possible addresses.

Date represents all possible dates.

As different currencies may be used in the system, the function exchange is defined to

exchange money from one currency to another.

exchange : Money × Currency × Currency 7→ Money

Similarly, the system may need to translate a message from one language to another; the

function translate is defined to serve this purpose.

41

translate : Message × Language × Language 7→ Message

A transaction is defined as an object from which the value can be extracted using the function

amount.

amount : Transaction 7→ Money

To optimise the communication with users (van der Poll and Kotzé [93, principle no.2]), a

number of possible Report Messages are defined. Each message reports on the success or

failure of an operation.

Success ,
ItemAlreadyReturned ,
UnknownIdentifier
AgencyNotFound ,
InvalidInvoice,
ItemAlreadySent ,
ItemNotReceived ,
IncorrectAddress ,
TransactionNotFound ,
UnknownCustomer ,
AgencyAccountNotFound ,
PaymentNotFound ,
TransactionNotAllocated

⟨Success , ItemAlreadyReturned ,UnknownIdentifier ,AgencyNotFound ,
InvalidInvoice, ItemAlreadySent , ItemNotReceived , IncorrectAddress ,
TransactionNotFound ,UnknownCustomer ,AgencyAccountNotFound ,
PaymentNotFound ,TransactionNotAllocated⟩ ∈ iseqReport

The next section presents the abstract state schemas of the system.

3.4.2 Abstract state space

Due to the fact that some operations in the case study involve cash payments, an abstract

state is defined to describe the object accounts , to facilitate such operations.

Account
accountno : Accountno
balance : Money

account ̸=⊥

An object of type Account is uniquely referenced with an accountno. It contains a variable

balance to specify the balance of the account, which value is meaningless when the accountno

is undefined.

42

The following abstract state specifies the state of the communication interface between the

system under-consideration and the Local Sales System in an agency (see Figure 3.2).

ISales
custaccounts : Account 7� Customer
statements : Account × Transaction 7→ Date
invoices : P Invoice

dom(dom statements) ⊆ dom custaccounts

The variable custaccounts represents the list of all customer accounts in the local system,

that are made accessible to other agencies. The variable keeps the set of all the transactions

made on a customer’s account. The set of all the invoices are maintained in the variable,

invoices . Only information made accessible from outside the local sales system is contained

in the state space, ISales . As indicated in the predicate, transactions are recorded only for

those customers who have an account in the local system. The state schema that follows de-

scribes a database containing essential components that may reveal the status of the system,

relative to the three major services - return, replace items, and pay credits - of the system

(see Section 3.1 and Figure 3.1).

The schema Database is relevant at the level of an agency. It includes a list of references

(agencies) to those agencies that are part of the system. A unique account is also created

for each individual agency to record the balance of all its transaction (agencyaccounts). The

component itemsin, records all the items received from customers, and itemsout maintains

a set of items received from customers and sent out to the beneficiary agency. A cashin

specifies a cashier where all payments are made at an agency. For each payment opera-

tion, a transaction is created and mapped to the corresponding account (statements). The

component collected captures all the returned items forwarded by other agencies (Helpers).

43

Database
agencies : PAgencyid
agencyaccounts : Account 7� Agencyid
itemsin : Invoice × Item × Date 7→ Agencyid
itemsout : Item × Date 7→ Address
collected : Item × Agencyid 7→ Date
cashin : Customer ×Money × Date 7→ Agencyid
statements : Account × Transaction 7→ Date

ran(agncyaccounts) ⊆ agencies ∧ ran(itemsin) ⊆ agencies
dom(dom itemsout) ⊆ ran(dom(dom itemsin))
ran cashin ⊆ ran agencyaccounts
dom(dom statements) ⊆ dom(agencyaccounts)
ran(dom collected) ⊆ agencies
(∀Account | θAccount ∈ dom(statements)) •

(∃ id : Agencyid • id ∈ ran(cashin) ∧ θAccount 7→ id ∈ agencyaccounts)

As indicated in the predicate, a service is rendered for a Beneficiary agency only when an

account and a valid identifier are created for the agency. The system requires that any item

shipped to a provider must have been received from a customer. The last predicate indicates

that transactions recorded in statements , capture exclusively payments made at a cashier

for Beneficiary agencies.

The next schema describes the state of an agency, which includes the above schema.

Agency
Database
identifier : Agencyid
dcurrency : Currency
address : Address
language : Language
ssales : ISales

identifier ̸∈ agencies
dom(ssales .custaccounts) ∩ dom(agencyaccounts) = ∅

Additionally to the data provided by the schema Database, some information is added to

personalise each agency. The variable dcurrency contains the currency that can be used

from outside the agency. Similarly, address and language represent respectively the address

and language that can be used to communicate with the agency. The unique reference of the

agency is recorded in identifier . Each agency provides to others a unique interface ssales to

communicate with its local sales system. The sharing of accounts is not allowed.

The system itself is modeled in the next schema as a set of agencies (see Figure 3.1).

44

System
known : PAgency

The next section proposes realisable initial states for the above state schemas.

3.4.3 Initialising the state space

This section presents for each abstract state schema previously defined, an initial state that is

assumed. Although a formal proof needs to be provided according to the established strategy

for deriving Z documents, such proofs are omitted. However, the following initialisation

theorem may be followed, when necessary, to establish that each assumed initial state is

realisable.

⊢ State ′ • InitState.

Initially the balance of an account is assumed to be zero, and the database is empty.

InitAccount
Account ′

balance ′ = 0 ∧ accountno ′ ̸=⊥

InitDatabase
Database ′

Agencies ′ = ∅ ∧ agencyaccounts ′ = ∅ ∧ itemsin ′ = ∅
itemsout ′ = ∅ ∧ cashin ′ = ∅ ∧ statements ′ = ∅ ∧ collected ′ = ∅

Initially, the database in an agency is at its initial state, and the interface of communication

is assumed empty.

InitAgency
Agency ′

Init Database

ssales ′.custaccounts = ∅ ∧ ssales ′.statements = ∅ ∧ ssales ′.invoices ′ = ∅

InitSystem
System ′

known ′ = ∅

Next, are presented the partial operations of the system.

45

3.4.4 Partial operations

This section describes the partial operations of the system. Those are the operations that

model the activities of the system under normal circumstances without considering errors

that may occur. The focus at this stage is to identify and describe the essential operations

of the system. The Z established strategy for deriving Z documents, clearly indicates the

structure of a Z specification (Potter et al. [70]) and how schemas can be constructed (van der

Poll and Kotzé [93]). The difficult part is therefore more on how to identify operations and

objects of a system to be specified, than to worry about how to build their schemas. In

general, some case studies on Z (Bowen [13]), introduce the operation, explain what it does,

define the schema and complete the description with a prose text. In this work, the operations

that follow are based on a dissection of the case study description in Section 3.1 and our

understanding of the major services to be rendered by the system.

Receiving an item from a customer

A customer returns an item to an agency, whereupon the item is temporarily kept in a store

waiting to be forwarded to the original provider of the returned item.

receiveItemOk
∆Agency
item? : Item; inv? : Invoice; id? : Agencyid ; date? : Date
addr ! : Address ; lang ! : Language; resp! : Report

item? ̸∈ ran(dom(dom itemsin)) ∧ id? ∈ agencies
(∃Agency •

θAgency .identifier = id? ∧ inv? ∈ θAgency .ssales .invoices ∧
addr ! = θAgency .address ∧ lang ! = θAgency .language)

itemsin ′ = itemsin ∪ (inv?, item?, date?) 7→ id? ∧ resp! = Success

For this operation to be performed, values must be provided for the input variables dec-

orated with “?”. That is, for example, information about the returned item (item?), the

identifier of the company that provided the item (id?), etc. The system uses the input id?

to determine the beneficiary, to validate the invoice (inv?) and obtain the necessary infor-

mation to facilitate the communication: agency’s address (addr !) and local language (lang !).

This information is specified for the user, and the item is temporarily kept at the “Helper”

agency. The operation is allowed only when the customer’s provider is part of the system

(id? ∈ agencies).

Items temporarily kept in stores are to be forwarded to their final destination. The fol-

lowing operation serves this purpose.

46

Sending an item back to the provider

The operation is executed to forward an item previously received to its “beneficiary”.

sendItemOk
∆System
item? : Item; dateout?, datecollected? : Date
addr? : Address ; id? : Agencyid ; resp! : Report

item? ∈ ran(dom(dom itemsin))
(∃ inv : Invoice; datein : Date) • (inv , item?, datein) 7→ id? ∈ itemsin
itemsout ′ = itemsout ∪ (item?, dateout?) 7→ addr?
∃Agency ∈ known • θAgency .identifier = id? ∧ θAgency .addr = addr?
θAgency .collected ′ = θAgency .collected ∪ (item?, id?) 7→ datecollected?
resp! = Success

As indicated in the previous operation, input variables are decorated with a question mark

symbol (?) and output variables are decorated with the exclamation mark symbol (!). Only

items previously received from customers can be sent. A record is kept for items that are

shipped to their provider with the date of the operation (dateout?). The operation succeeds

when the item is collected and acknowledged by the beneficiary agency.

After collecting the item, the agency may then use its own local routine procedure to com-

plete the transaction. However, our opinion is that the system under consideration may need

to update the customer’s account with an amount of money equivalent to the value of the

returned item, as described next.

Refunding a customer

This operation updates a customer’s account with an amount of money equivalent to the

present value of a good returned by the customer. Due to the fact that different companies

may have different management policies, the idea of updating a customer’s account does not

necessarily mean the customer will be refunded in cash. It may serve as guideline for further

decisions. For example, it may help to choose a replacement item.

This operation relies on the communication interface to be visible to other agencies,

and through them to the customer, which makes it possible for the customer to access the

information from any agency.

47

refundCustOk
∆ISales
amount? : Money ; cust? : Customer ; date? : Date
resp! : Report

∃ trans : Transaction •
trans ̸∈ ran(dom statements) ∧ amount(trans) = amount?
∃Account •

θAccount 7→ cust? ∈ custaccounts
statements ′ = statements ∪ (θAccount , trans) 7→ date?

resp! = Success

The value of the input amount? is assumed to be the present value of a returned item if the

operation is performed when a customer is returning or replacing a purchased item. The

system creates a new transaction of the value of amount? and applies it to the customer’s

account. The system communicates with the Local Sales System of the beneficiary agency

to identify the customer’s account affected by the transaction.

Receiving cash from a customer

This operation registers a credit paid by a customer to a cashier in a “Helper” agency.

receivCashOk
∆Agency
cust? : Customer ; amount? : Money ; id? : Agencyid ; date? : Date
resp! : Report

∃Agency | θAgency .identifier = id? •
∃Account • θAccount 7→ cust? ∈ θAgency .ssales .accounts

cashin ′ = cashin ∪ {(cust?, amount?, date?) 7→ id?}
resp! = Success

The input variable cust? captures information about the customer, amount? the amount

of money paid by the customer, id? the identifier of the beneficiary agency, and date? the

date of the operation. The system reports the success of the operation with the output vari-

able resp!. The system uses the communication interface with the Local Sales System (see

Figure 3.2) to ensure that the customer has a valid account with the provider company be-

fore proceeding with the payment at the cashier where details of the transaction ar recorded.

After a successful payment, it is suggested the transaction be transferred into the account

of the target agency. The operation allocateTransOk is defined to serve this purpose.

48

Allocating a payment to an agency’s account

The input date? represents the date of this operation and not the date of the earlier trans-

action made by the customer at the cashier.

allocateTransOk
∆Agency
cust? : Customer ; id? : Agencyid ; date? : Date
resp! : Response

(∃Account ; trans : Transaction; date : Date) •
(cust?, amount(trans), date) 7→ id? ∈ cashin ∧
θAccount 7→ id? ∈ agencyaccounts

statements ′ = statements ∪ (θAccount , trans) 7→ date?
resp! = Success

The system uses the inputs containing information about the customer cust? and the ben-

eficiary agency identifier id? to determine the payment made by the customer at a cashier.

A transaction is then created to permanently record the payment in the provider’s account

at the Helper agency. When this operation is successfully performed, a notification is sent

to the Beneficiary company. In this regard, the following operation (notifyCustTransOK) is

defined:

Notification of payment

The system uses this operation to update, via the communication interface, a customer’s

account at the “beneficiary” agency after the customer has made a payment.

notifyCustTransOk
∆System
cust? : Customer ; trans? : Transaction; datenotice? : Date; id? : Agencyid
resp! : Report

(∃Agency | θAgency ∈ known; ∃ acc, custacc : Account ; date1, date2 : Date) •
(cust?, amount(trans?), date1) 7→ id ∈ cashin ∧
(acc, trans?) 7→ date2 ∈ statements
θAgency .identifier = id? ∧ acc 7→ id? ∈ agencyaccounts
custacc 7→ cust? ∈ θAgency .ssales .custaccounts
θAgency .ssales .statements ′ =
(θAgency .ssales .statements ∪ (custacc, trans?) 7→ datenotice)

resp! = Success

The input variable trans? captures the transaction allocated to the beneficiary agency’s

account at the “Helper” side, and datenotice? models the notification date. The system

49

determines all the information recorded on the transaction and uses the communication in-

terface with the Local Sales System at the Beneficiary agency to determine the customer’s

account and submits the notification. A notification includes information about the cus-

tomer’s account, all the information on the transaction, and the date of the notification

(datenotice).

Note, that at this stage, the nature of some operations are kept rather abstract. For exam-

ple, allocating a transaction to an account does not specify explicitly whether the account

is debited or credited.

As prescribed by the Z established strategy, preconditions need to be calculated for im-

portant operations of the system. This may help to determine circumstances under which

an operation is likely to be problematic. Calculating preconditions for the above partial

operations is therefore the object of the following section.

Preconditions and total operations

A precondition is an operation, denoted by pre, that applies to operation schemas. As

advocated by Woodcock [100], a “specifier” has a vital responsibility to ensure the correct

precondition for each robust operation that changes the state of a system. Calculating a

precondition of an operation helps to describe precisely the conditions under which the op-

eration is applicable, and therefore helps to avoid applying operations outside their domain.

Such calculation involves, in general, two major steps (see Potter et al. [70], Woodcock

[100], Woodcock and Davis [101]):

• First, to define the precondition schema of the operation by removing the after-state

variables and outputs from the declaration part of the operation schema and existen-

tially quantifying them in the predicate.

• Secondly to simplify the schema by applying predefined inference rules and techniques,

such as the one-point-rule, which is defined later in this section.

To be realistic, the simplification process may be further deconstructed in multiple steps

depending on the complexity of the particular case under consideration; van der Poll and

Kotzé [92] illustrate this with an example.

Next, the calculation of the precondition for the partial operation receivItem, is considered

in detail.

Operation receivItem:

Define Pre receivItem =̂ preReceivItem represented with the schema below:

50

preReceivItem
Agency
item? : Item; inv? : Invoice; id? : Agencyid ; date? : Date

(∃Agency ′; ag : Agency ; addr ! : Address ; lang ! : Language; resp! : Report) •
item? ̸∈ ran(dom(dom itemsin)) ∧ id? ∈ agencies ∧ ag .identifier = id?
inv? ∈ ag .ssales .invoices ∧ addr ! = ag .addr ∧ lang ! = ag .lang
itemsin ′ = itemsin ∪ (inv?, item?, date?) 7→ id?resp! = Success

The schema preReceivItem would be extremely hard to use if not simplified. Before at-

tempting to simply this precondition schema, observe that the state invariant still holds for

both the before state Agency , and the after state Agency ′. It may also be observed that the

quantified variables in the after state that are not changed by the operation, may be omit-

ted in the precondition schema. A formal justification of the last observation is presented

shortly, but first, the statement of the one-point-rule used in the proof (e.g. Potter et al. [70]):

If we have an existentially quantified statement, part of which gives us an exact value for

the quantified variable then the quantification can be removed, replacing the variable by its

known value wherever it appears.

This rule can be translated as follows:

If x is not free in t , then (∃ x : S • P(x) ∧ x = t) = P(t)).

Now the proof:

If a predicate p(x) is a tautology, S a state schema, and S ′ the after state of S returned by

an operation, then,

1. ∃ x ′ : T ∈ S ′ • x ′ = x [Hypothesis]

2. ∃ x ′ : T ∈ S ′ • p(x ′) ∧ x ′ = x [p(x ′) is true]

3. x : T ∧ p(x) [One Point Rule]

4. p(x) [fact as x ∈ S]

Expanding the reference to Agency’ and considering only those variables that are changed

by the operation in the predicate part, leads us to:

(∃ itemsin ′ : Invoice × Item × Date 7→ Agencyid ; ag : Agency ; addr ! : Address ; lang ! :

Language; resp! : Report) •
(

51

1. item? ̸∈ ran(dom(dom itemsin)) ∧
2. id? ∈ agencies ∧
3. ag .identifier = id? ∧
4. inv? ∈ ag .ssales .invoices ∧
5. addr ! = ag .addr ∧
6. lang ! = ag .lang ∧
7. itemsin ′ = itemsin ∪ (inv?, item?, date?) 7→ id? ∧
8. resp! = Success

).

The quantified variable itemsin ′, and the output variable resp!, are given exact values and

hence, applying the one-point-rule yields:

(∃ ag : Agency ; addr ! : Address ; lang ! : Language) •
(

1. item? ̸∈ ran(dom(dom itemsin)) ∧
2. id? ∈ agencies ∧
3. ag .identifier = id? ∧
4. inv? ∈ ag .ssales .invoices ∧
5. addr ! = ag .addr ∧
6. lang ! = ag .lang ∧
7. itemsin ∪ (inv?, item?, date?) 7→ id? ∈ Invoice × Item × Date 7→ Agencyid

).

Each agency is uniquely referenced with an identifier, hence an agency is completely de-

fined when its identifier is known, and therefore, the existence of any other component of a

defined agency is implied.

(∃ ag : Agency | (id? ∈ agencies) ∧ (ag .identifier = id)) •
(∃ addr ! : Address ; lang ! : Language | addr ! = ag .addr ∧ lang ! = ag .lang).

The conditions numbers 5 and 6 above, may now be removed, and the output variables

may also be removed from the quantification, as their exact values are given, rendering the

One-Point-Rule applicable.

1. item? ̸∈ ran(dom(dom itemsin)) ∧
2. id? ∈ agencies ∧
7. itemsin ∪ (inv?, item?, date?) 7→ id? ∈ Invoice × Item × Date 7→ Agencyid ∧

52

∃ ag : Agency •
(

3. ag .identifier = id? ∧
4. inv? ∈ ag .ssales .invoices

).

For clarity, unbound conditions have been placed outside the quantified expression. Next,

we prove condition number 7

1. item? ̸∈ ran(dom(dom itemsin)) [assumption]

2. ∀ i : Item; d : Date; id : Agencyid • (i , item?, d) 7→ id ̸∈ itemsin [deduction from 1]

3. (inv?, item?, date?) 7→ id? ̸∈ itemsin [deduction from 2]

4. itemsin ∈ Invoice × Item × Date 7→ Agencyid [by definition]

5. (inv?, item?, date?) 7→ id? ∈ Invoice × Item × Date 7→ Agencyid [from 4]

⇒ (condition7.)

6. (inv?, item?, date?, id?) ∈ Invoice × Item × Date × Agencyid [inputs declaration]

7. (id? ∈ agencies ∧
∃ ag : Agency • ag .identifier = id? ∧ inv? ∈ ag .ssales .invoices)

⇒ (inv?, item?, date?) 7→ id? ∈ Invoice × Item × Date 7→ Agencyid [from 6]

Since the function that maps the triple elements (inv?, item?, date?) to id? is not total,

having an instance for the triple elements does not necessary imply that there will always

be an identifier id? associated to that instance. The mapping holds under the assumption

that the target agency is part of the system and the input invoice is valid.

The simplified version of preReceivItem is:

preReceivItem
Agency
item? : Item; inv? : Invoice; id? : Agencyid ; date? : Date

item? ̸∈ ran(dom(dom itemsin)) ∧ id? ∈ agencies
∃ ag : Agency • ag .identifier = id? ∧ inv? ∈ ag .ssales .invoices

Negating this precondition, leads to the error conditions listed next:

Err1: item? ∈ ran(dom(dom itemsin)):

A user trying to register an input item that was already received.

53

ItemAlreadyReturned
ΞAgency
item? : Item; resp! : Report

item? ∈ ran(dom(dom itemsin)) ∧ resp! = ItemAlreadyReturned

Err2: id? ̸∈ agencies :

The identifier of the input agency is not recognised by the system.

UnknownIdentifier
ΞAgency
id? : Agencyid ; addr ! : Address

id? ̸∈ agencies ∧ resp! = UnknownIdentifier

Err3: ∀ ag : Agency • ag .identifier ̸= id?:

The system cannot determine the agency with the input identifier. That is, the

system cannot get connected to the agency with the input identifier.

AgencyNotFound
ΞAgency
id? : Agencyid ; resp! : Report

id? ∈ agencies ∧ ∀ ag : Agency • ag .identifier ̸= id?
resp! = AgencyNotFound

Err4: inv? ̸∈ ag .ssales .invoices :

The invoice presented by the customer is not recognised by the provider company.

InvalidInvoice
ΞAgency
inv? : Invoice; id? : Agencyid
resp! : Report

id? ∈ agencies ∧
∃ ag : Agency • ag .identifier = id? ∧ inv? ̸∈ ag .ssales .invoices
resp! = InvalidInvoice

The Next Z schemas calculus expression defines the total operation for receivItemOk .

ReceivItem =̂ receivItemOk ∨ ItemAlreadyReturn ∨ UnknownIdentifier ∨
AgencyNotFound ∨ InvalidInvoice

Following the same process, the preconditions for other operations may be calculated.

For those operations, only the simplified versions of their preconditions with error conditions,

54

are here presented.

Operation: Forwarding an item from one agency, to another agency.

Define pre sendItem = preSendItem.

The schema of the simplified version of this precondition is shown below.

preSendItem
Agency
item? : Item; dateout?, datecollected? : Date; addr? : Address ; id? : Agencyid

item? ̸∈ dom(dom itemsout)
item? ∈ ran(dom(dom itemsin)) ∧ id? ∈ ran itemsin
id? ∈ agencies ∧ ∃ ag : Agency • ag .identifier = id? ∧ ag .addr = addr?

Negating the schema preSendItem, yields the following error conditions:

The first error occurs when a user attempts to send the same item more than once.

ItemAlreadySent
ΞAgency
item? : Item; resp! : Report

item? ∈ ran(dom(dom itemsin)) ∧ item? ∈ dom(dom itemsout)
resp! = ItemAlreadySent

The condition for the error is item? ∈ dom(dom itemsout). Another error condition occurs

when item? ̸∈ ran(dom(dom itemsin)): the item was never received.

ItemNotReceiv
ΞAgency
item? : Item; resp! : Report

item? ̸∈ ran(dom(dom itemsin)) ∧ resp! = ItemNotReceived

The error case where the agency cannot be determined was described previously with the

schema AgencyNotFound (Err2). The next operation schema handles the case of an incorrect

address that occurs when the address provided by the user, does not match the real address

of the target agency.

IncorrectAddress
ΞAgency
addr? : Address ; id? : Agencyid
resp! : Report

id? ∈ agencies
∃Agency • θAgency .identifier = id? ∧ θAgency .addr ̸= addr?
resp! = IncorrectAddress

55

The schema calculus expression that specifies the total operation for forwarding items is:

SendItem =̂ sendItemOk ∨ ItemAlreadySent ∨ ItemNotReceiv ∨
AgencyNotFound ∨ IncorrectAddress

Operation: refunding a customer

Define pre refund cust = preRefundCust . The simplified schema is:

preRefundCust
ISales
amount? : Money ; cust? : Customer ; date? : Date

cust? ∈ ran custaccounts

Only one error may occur, that is, when the customer does not have an account with the

company.

UnknownCust
ΞISales
cust? : Customer ; resp! : Report

cust? ̸∈ ran custaccounts ∧ resp! = UnknownCustomer

The total operation for this operation is therefore:

RefundCust =̂ refundCustOk ∨ UnknownCust

Operation: Cash deposit

Define preReceivCash = preReceivCash. The simplified schema of this operation is:

preReceivCash
Agency
cust? : Customer ; amount? : Money ; id? : Agencyid
date? : Date

id? ∈ agencies
∃ ag : Agency • ag .identifier = id? ∧ cust? ∈ ran ag .ssales .accounts

When this precondition schema is negated, a list of error conditions (for which operations

were described in the previous cases) are obtained. The schema calculus expression of the

56

total operation is therefore:

ReceivCash =̂ receivCashOk ∨ UnknownIdentifier ∨ AgencyNotFound ∨ UnknownCust

Operation: Allocating a transaction to an agency’s account

The schema of the precondition for this operation is:

preAllocateTrans
Agency
cust? : Customer ; id? : Agencyid ; datetrans? : Date

cust? ∈ dom(dom(dom(cashin ◃ id?)))
id? ∈ ran(agencyaccounts)

As with the previous cases, the schema of the precondition is negated to yield error con-

ditions. Having cust? ̸∈ dom(dom(dom(cashin ◃ id?))) implies that the customer has not

issued any payment, and the operation to allocate the customer’s transaction to the agency’s

account fails. The system then, continues with TransNotFound to handle the error.

TransNotFound
ΞAgency
cust? : Customer ; resp! : Response

cust? ̸∈ dom(dom(dom(cashin ◃ id?)))
resp! = TransactionNotFound

Another error occurs when no account was created for the target agency.

AgencyAccountNotFound
ΞAgency
cust? : Customer ; id? : Agencyid
resp! : Report

id? ̸∈ ran(agencyaccounts) ∧ resp! = AgencyAccountNotFound

The total operation is summarised as:

AllocateTrans =̂ allocateTransOk ∨ TransNotFound ∨
AgencyAccountNotFound

Operation: Notification of the other agency about a cash deposit

The schema for the precondition of this operation is shown below:

57

preNotifyCustTrans
Agency ; System
cust? : Customer ; trans? : Transaction
datenotice? : Date; id? : Agencyid

id? ∈ ran(agencyaccounts)
cust? ∈ dom(dom(dom(cashin ◃ id?))) ∧
trans? ∈ ran(dom(dom(statements)))
∃ ag : Agency • ag .identifier = id? ∧ cust? ∈ ran(ag .ssales .custaccounts)

The precondition preNotifyCustTrans is negated to yield error conditions. So, the first error

to consider is when the system cannot determine a transaction made by a customer. That

is, when cust? ∈ dom(dom(dom(cashin ◃ id?))). This error was previously defined, and the

operation TransNotFound was described to handle the error.

The next error occurs when a payment made at a cashier is not yet allocated to any agency’s

account.

TransNotAllocated
ΞAgency
cust? : Customer ; trans? : Transaction; resp! : Report

cust? ∈ dom(dom(dom(cashin ◃ id?)))
trans? ̸∈ ran(dom(dom(statements)))
resp! = TransactionNotAllocated

At this point, all possible error conditions have been specified and will simply be re-used in

further total operations when needed. Observe, that some of the operations so far described

may need to be promoted to accommodate their application environment. As mentioned

before, we are not considering such structuring activities here for the reasons stated in

Section 3.4, P. 40.

UnknownCustRemote
ΞAgency ; ΞSystem
cust? : Customer ; id? : Agencyid ; resp! : Report

id? ∈ ran(agencyaccounts)
∃ ag : Agency ∈ known • ag .identifier = id? ∧ cust? ̸∈ ran(ag .ssales .custaccounts)
resp! = UnknownCustomer

The total operation is:

notifyCustTrans =̂ NotifyCustTransOk ∨ TransNotFound ∨ AgencyNotFound
∨ AgencyAccountNotFound ∨ UnknowCustRemote

The table presented next, gives a summary of the total operations.

58

3.4.5 Table of total operations

Operation Inputs and Outputs Preconditions

ReceivItem item? : Item item? ̸∈ ran(dom(dom itemsin))

inv? : Invoice id? ∈ agencies

id? : Agencyid ∃ ag : Agency • ag .identifier = id? ∧
date? : Date inv? ∈ ag .ssales .invoices

resp! : Report

SendItem item? : Item item? ̸∈ dom(dom itemsout)

id? : Agencyid item? ∈ ran(dom(dom itemsin))

dateout? : Date id? ∈ ran itemsin

addr? : Address id? ∈ agencies

resp! : Report ∃ ag : Agency • ag .identifier = id? ∧
dateallocated? : Date ag .addr = addr?

RefundCust amount? : Money

cust? : Customer pers? ∈ custaccounts

date? : Date

resp! : Report

ReceivCash cust? : Customer id? ∈ agencies

id? : Agencyid ∃Agency • θAgency .identifier = id? ∧
amount? : Money cust? ∈ ran(θAgency .ssales .accounts)

date? : Date

resp! : Report

AllocateTrans cust? : Customer cust? ∈ dom(dom(dom(cashin ◃ id?)))

id? : Agencyid id? ∈ ran(agencyaccounts)

datetrans? : Date

resp! : Report

NotifyCustTrans cust? : Customer id? ∈ ran(agencyaccounts)

id? : Agencyid cust? ∈ dom(dom(dom(cashin ◃ id?)))

trans? : Transaction trans? ∈ ran(dom(dom statements))

datenotice? : Date ∃Agency • θAgency .identifier = id? ∧
resp! : Report cust? ∈ ran(θAgency .ssales .custaccounts)

Table 3.1: Summary of total operations

Each of the three high-level services of the system are defined.

DefineReturnitem =̂ ReceivItem o
9 SendItem o

9 RefundCust

59

DefineReplaceItem =̂ ReceivItem o
9 SendItem

DefinePaycredit =̂ ReceivCash o
9 AllocateTrans o

9 NotifyCustTrans

3.5 Observations on Z

The following may be observed from the above Z specification:

1. The elegance of using Z to specify a system is highlighted. Each abstract state of the

system is described in detail. For each operation, the precondition is calculated and

the error conditions are clearly determined.

2. Abstract state spaces and operations are specified at the same level of abstraction as

in the informal requirements definition.

3. Apart from using schema calculus operators to combine different schemas to form a

new one, components from one schema, may be included or used in formulas within

another schema.

Although these observations bring to light the precision that Z adds into the description of

the functionalities of a system, they also demonstrate some limitations of the notation. E.g.

they suggest the difficulties to modify, for example, an operation after the specification is

built, since different components may be affected. They also support the idea of using a

formal specification technique after some anlaysis and refinement of the initial requirements

have been performed, as users generally do not initially know what they want until some pre-

analysis of their needs is performed. Another important point, from the above observations,

is that using Z at this stage, may result in specifying only the user-view of the system,

instead of the system functionalities that may be obtained by refining the initial goals or

user requirements.

3.6 Chapter summary

This chapter presented a natural language (English) description of the case study used in

this work. A UCM model and a Z specification for the case study were suggested. Some of

the advantages of using the UCM technique to capture and model user requirements were

presented. Also a number of observations on the use of Z were put forward.

60

In the following chapter, based on the knowledge gained from the literature relating con-

cepts in Z and Object-Z, and some guidelines proposed to help transform a Z document into

Object-Z, the Z specification developed in this chapter, is transformed into Object-Z.

61

62

Chapter 4

Transforming the Z specification

Chapter 3 described the case study used in this work and proposed a UCM model and a Z

specification for the case study. This chapter aims to transform the Z specification (see Chap.

3, Sec. 3.4) into Object-Z (see Figure 1.3). The following section presents the transformation

process.

4.1 Transformation process

The feasibility of transforming a Z document into Object-Z, is supported by the fact that

Object-Z is itself an extension of Z to accommodate Object-orientation (Carrington and

Smith [22]). The general idea is, therefore, to group Z schemas to form Object-Z class

schemas. To achieve this structuring work, some changes need to be made to those schemas,

as well as the initial Z types and axiomatic definitions, to make them amenable to their new

object-oriented environment. For example, a basic type which denotes some set of objects

in Z, needs to be transformed into a class in Object-Z, to allow for the use of the same

set of objects in Object-Z. Details regarding the rules of transformation applicable to each

particular type of element(s) in Z, are not explicitly presented here however, Periyasamy

and Mathew [68] provide important guidelines in this regard. During the transformation

process, a summary of the mechanism used is given for each case. When necessary, detailed

explanations are also provided whenever the idea may be unclear or not explicitly addressed

in the referenced guide document.

The next section describes on the step-by-step transformation.

63

4.2 The Object-Z specification

Two basic steps are followed to create the Object-Z version of the input specification. Firstly,

all the Z basic types are transformed. And secondly, class schemas are created, based on the

transformation of the initial Z axiomatic definitions, state schemas and operation schemas.

Descriptive text attached to those elements are, when necessary, modified to accommodate

the changes.

4.2.1 Basic types

Since a given type in Z represents a set of undefined objects, the Object-Z transformation

of such a type may yield a class containing no state and no operation, namely, an empty

class. For that reason, each given type of the input specification is therefore transformed

into an empty class. The name of the class will be kept identical to that of the Z-type for

re-usability purposes. For brevity, only one such class will be represented graphically to

illustrate the idea, and the rest will be assumed. Below is the graphical representation of

the class Customer ; the Object-Z transformation of the given type Customer .

Customer

As stated above, an instance of this class is a customer object. At this stage nothing is said

about the properties and behaviour of a customer. Nevertheless, the class can be used in

any other class, for example, by instantiation (the new class refers to it, as an attribute of

its variable), or by inheritance. The list of empty classes resulting from the transformation

are:

Item the class of items

Customer the class of all possible customers

Agencyid the class of class identifiers

Invoice the class of all invoices

Currency the class of all possible currencies

Transaction the class of transactions

AccountNo the class of account numbers

Money the class all possible amounts of money

Language the class of all human languages

Report the class of all possible messages that may be exchanged with the system

Address the class of all possible addresses

Date the class of dates.

64

Note that Z basic types are part of Object-Z and may be incorporated directly into Object-Z

classes. The difficulty would be to partition the initial list of types, in a way to place only

those that are required into a class.

The Object-Z class schemas for the input Z specification are presented next.

4.2.2 Class schemas

The Object-Z classes resulting from the transformation of the input Z specification are gen-

erated from the following premises:

• For each abstract state space, a class schema is created. The name of the class is that of

the state schema with “Cls” added to it as prefix. The unnamed version of the abstract

state is added to the class as its only state.

• A realisable initial state of the state space from which a class is formed, is also added to

the class.

• Any operation that applies to a state, from which a class is generated, is added to the

class. The delta operator (∆) in the definition of an operation within a class indicates

the components that are changed by the operation. The Z operator Xi (Ξ) is simply

eliminated from the operation.

• Any variable used in an operation is defined in the class containing the operation. Because

global variables may be used in different operations and classes, and hence, be defined

multiple times, this may cause confusion. For that reason, it is suggested a single class

that encapsulates all the global variables be created, this allows each class to inherit

variables from such a single class.

The next paragraph describes the class of global variables.

The class of global variables

This class encapsulates the global variables defined in the input Z specification. The meaning

of each variable within the class remains unchanged from that of Chapter 3 (Section 3.4.1,

p.41). The purpose in creating this class is to make those variables accessible to any other

class, for example by inheritance.

65

ClsGlobalVariables
�(exchange, translate, amount ,Report)

exchange : Money × Currency × Currency 7→ Money

translate : Message × Language × Language 7→ Message

amount : Transaction 7→ Money

Success ,
ItemAlreadyReturned ,
UnknownIdentifier
AgencyNotFound ,
InvalidInvoice,
ItemAlreadySent ,
ItemNotReceived ,
IncorrectAddress ,
TransactionNotFound ,
UnknownCustomer ,
AgencyAccountNotFound ,
PaymentNotFound ,
TransactionNotAllocated

⟨Success , ItemAlreadyReturned ,UnknownIdentifier ,AgencyNotFound ,
InvalidInvoice, ItemAlreadySent , ItemNotReceived , IncorrectAddress ,
TransactionNotFound ,UnknownCustomer ,AgencyAccountNotFound ,
PaymentNotFound ,TransactionNotAllocated⟩ ∈ iseqReport

The class of “Accounts”

The class ClsAccount results from the transformation of the Z abstract state Account that

describes the properties of an account object. The class includes only the operation of

initialisation as a method, because in the input Z specification, there is no other operation

that applies exclusively to the state Account . The components of the class are accessible

and can be initialised from the environment of the system. Each object of the class includes

a unique number and a balance which is initially equal to zero.

ClsAccount
�(accountno, balance, INIT)
accountno : AccountNo
balance : Money

account ̸=⊥

INIT
balance ′ = 0 ∧ accountno ′ ̸=⊥

66

Next is the class of objects known as communication interfaces between this system and a

local sales system in an agency.

The class of “Communication interfaces”

The class ClsISales results from the transformation of the Z abstract state ISales . It includes

components that are provided by a local sales system, in an agency, to facilitate the com-

munication with this system, as indicated in Figure 3.2, Chapter 3. The description of these

components as given in Chapter 3, Section 3.4.2, on page 42 remains unchanged. It inherits

the variables Report , and the function amount from the class of global variables. The vari-

ableMessage is defined to promote the list of reports into the class, and getAmount is defined

to render the function amount , from the class ClsGlobalVariables , usable in ClsISales .

ClsISales
�(custaccounts , statements , invoices , INIT ,RefundCust)

var : ClsGlobalVariables
custaccounts : ClsAccount 7� Customer
statements : ClsAccount × Transaction 7→ Date
invoices : P Invoice

dom(dom statements) ⊆ dom custaccounts

INIT
custaccounts = ∅ ∧ statements = ∅ ∧ invoices = ∅

Message =̂ var .Report ∧ getAmount =̂ var .amount

refundCustOk
∆(statements)
amount? : Money ; cust? : Customer ; date? : Date
resp! : Message

∃ trans : Transaction •
trans ̸∈ ran(dom statements) ∧ getAmount(trans) = amount?
∃Account •

θAccount 7→ cust? ∈ custaccounts
statements ′ = statements ∪ (θAccount , trans) 7→ date?

resp! = Success

UnknownCust
cust? : Customer ; resp! : Report

cust? ̸∈ ran custaccounts ∧ resp! = UnknownCustomer

RefundCust =̂ RefundCustOk [] UnknownCust

67

The class defines the total operation RefundCust (as described in the previous chapter) and

makes it visible to other classes. Components of the class are made accessible to other

classes, except for the variable var .

The following class describes database components required in each agency.

The class of “Databases”

The class ClsDatabase is the Object-Z transformation of the Z abstract state space Database.

Similar to the class ClsAccounts , the only method of the class is the operation of initialisation.

It includes the Z state schema, namely, database and its initial state, as defined in Chapter

3. All the components in the state are made accessible to other classes and can be initialised

from the environment.

ClsDatabase

�(agencies , agencyaccounts , itemsin, itemsout , collected , cashin, statements , INIT)

agencies : PAgencyid
agencyaccounts : ClsAccount 7� Agencyid
itemsin : Invoice × Item × Date 7→ Agencyid
itemsout : Item × Date 7→ Address
collected : Item × Agencyid 7→ Date
cashin : Customer ×Money × Date 7→ Agencyid
statements : ClsAccount × Transaction 7→ Date

ran(agncyAccounts) ⊆ agencies ∧ ran(itemsin) ⊆ agencies
dom(dom itemsout) ⊆ ran(dom(dom itemsin))
ran cashin ⊆ ran agencyaccounts
dom(dom statements) ⊆ dom(agencyaccounts)
ran(dom collected) ⊆ agencies
(∀Account | θAccount ∈ dom(statements)) •

(∃ id : Agencyid • id ∈ ran(cashin) ∧ θAccount 7→ id ∈ agencyaccounts)

InitDatabase
Agencies ′ = ∅ ∧ agencyaccounts ′ = ∅ ∧ itemsin ′ = ∅
itemsout ′ = ∅ ∧ cashin ′ = ∅ ∧ statements ′ = ∅ ∧ collected ′ = ∅

This class is meant to be used by other classes; notably by the class of agencies presented

next.

The class of “Agencies”

The class ClsAgency , is the Object-Z transformation of the Z state schema Agency from

the input Z specification. An object of this class inherits properties from the two classes

68

ClsDatabase and ClsISales as a result of having the two abstract states spaces, Databases and

ISales included in the state space Agency , from the input Z specification. The component db

defines the identity of an object of the class of databases; this object encapsulates the data

used locally in an agency. The component ssales defines the identity of an object of the class

ClsISales to handle communications between an object of this class, representing an agency,

with other agencies. Global variables are inherited from the class ClsGlobalVariables .

ClsAgency

�(db, ssales , identifier , dcurrency , address , language,ReceivItem,ReceivCash,
AllocateTrans)

ClsGlobalVariables

db : ClsDatabase
ssales : ClsISales
identifier : Agencyid
dcurrency : Currency
address : Address
language : Language

identifier ̸∈ agencies
dom(ssales .custaccounts) ∩ dom(agencyaccounts) = ∅

INIT
db.INIT ∧ ssales ′.custaccounts = ∅
ssales ′.statements = ∅ ∧ ssales ′.invoices ′ = ∅

receiveItemOk
∆(db.itemsin)
item? : Item; inv? : Invoice; id? : Agencyid ; date? : Date
addr ! : Address; lang ! : Language; resp! : Report

item? ̸∈ ran(dom(dom itemsin)) ∧ id? ∈ agencies
(∃Agency •

θAgency .identifier = id? ∧ inv? ∈ θAgency .ssales .invoices ∧
addr ! = θAgency .address ∧ lang ! = θAgency .language)

db.itemsin ′ = db.itemsin ∪ (inv?, item?, date?) 7→ id? ∧ resp! = Success

ItemAlreadyReturned
item? : Item; resp! : Report

item? ∈ ran(dom(dom db.itemsin)) ∧ resp! = ItemAlreadyReturned

UnknownIdentifier
id? : Agencyid ; addr ! : Address

id? ̸∈ db.agencies ∧ resp! = UnknownIdentifier

69

AgencyNotFound
id? : Agencyid ; resp! : Report

id? ∈ db.agencies ∧ ∀ ag : Agency • ag .identifier ̸= id?
resp! = AgencyNotFound

InvalidInvoice
inv? : Invoice; id? : Agencyid
resp! : Report

id? ∈ agencies ∧
∃ ag : Agency • ag .identifier = id? ∧ inv? ̸∈ ag .ssales .invoices
resp! = InvalidInvoice

ReceivItem =̂ ReceivItemOk [] ItemAlreadyReturn [] UnknownIdentifier []
AgencyNotFound [] InvalidInvoice

receivCashOk
∆(db.cashin)
cust? : Customer ; amount? : Money ; id? : Agencyid ; date? : Date
resp! : Report

∃ agency : ClsAgency | agency .identifier = id? •
∃ account : ClsAccount • accoung 7→ cust? ∈ agency .ssales .accounts

db.cashin ′ = db.cashin ∪ {(cust?, amount?, date?) 7→ id?}
resp! = Success

ReceivCash =̂ ReceivCashOk [] UnknownIdentifier [] AgencyNotFound []
UnknownCust

allocateTransOk
∆(db.statements)
cust? : Customer ; id? : Agencyid ; date? : Date
resp! : Response

(∃ account : ClsAccount ; trans : Transaction; date : Date) •
(cust?, amount(trans), date) 7→ id? ∈ cashin ∧
account 7→ id? ∈ agencyaccounts

db.statements ′ = db.statements ∪ (account , trans) 7→ date?
resp! = Success

TransNotFound
cust? : Customer ; resp! : Response

cust? ̸∈ dom(dom(dom(db.cashin ◃ id?)))
resp! = TransactionNotFound

70

AgencyAccountNotFound
cust? : Customer ; id? : Agencyid
resp! : Report

id? ̸∈ ran db.agencyaccounts ∧ resp! = AgencyAccountNotFound

AllocateTrans =̂ AllocateTransOk [] TransNotFound []
AgencyAccountNotFound

The operations of the class are: the initialisation operation and three other operations.

1. ReceivItem: An object of the class representing an agency uses this operation to handle

the receipt of an item returned by a customer that is to be forwarded to another agency.

2. ReceivCash: This operation is used within an agency to receive cash deposited by a

customer for a credit payment, to the benefit of another company.

3. AllocateTrans : Transfer of cash deposited by a customer into the appropriate account.

Each of these operations is composed of an operation that describes the behaviour of the

system under normal circumstances, and a set of other operations defining error conditions

as required by standard Z. Note that in Object-Z, the idea of calculating precondition is not

applicable, since each operation is independently defined without being subjected to be ei-

ther total, partial or meant to complement another operation by specifically handling errors.

In this regard, using Z as an intermediary step in an Object-Z specification, is advantageous

in benefiting from the precondition calculation, which helps to evaluate different conditions

that may in turn influence the execution of an operation. Each of the composed operations

becomes applicable when the precondition of one of the composing operations is satisfied.

In that case, the operation, for which the precondition is satisfied, is internally selected by

the system.

All the components of an object of the class are accessible to its environment from which the

components may be initialised. The three main operations of the class are made available

from outside the class.

Next the class schema that describes the entire system is presented .

The class System

The class ClsSystem of objects, representing a copy of the system as perceived from an

agency, is derived from the state schema System of the input Z specification. The component

71

this is added to reference the agency in which the system is operating and distinguishes it

from the others. Operations locally performed in an agency, are thus accessible through this .

ClsSystem
�(INIT , SendItem,NotifyCustTrans)

this : ClsAgency ; known : PClsAgency

this ̸∈ known

INIT
this .INIT ∧ known = ∅

sendItemOk
∆(this , known)
item? : Item; dateout?, datecollected? : Date
addr? : Address ; id? : Agencyid ; resp! : Report

item? ∈ ran(dom(dom this .db.itemsin))
(∃ inv : Invoice; datein : Date) •

(inv , item?, datein) 7→ id? ∈ this .db.itemsin
this .db.itemsout ′ = this .db.itemsout ∪ (item?, dateout?) 7→ addr?

(∃ agency : ClsAgency | agency ∈ known) •
agency .identifier = id? ∧ agency .addr = addr?
agency .db.collected ′ = agency .db.collected∪

(item?, id?) 7→ datecollected?
resp! = Success

ItemAlreadySent
item? : Item; resp! : Report

item? ∈ ran(dom(dom this .db.itemsin)) ∧ item? ∈ dom(dom this .db.itemsout)
resp! = ItemAlreadySent

ItemNotReceiv
item? : Item; resp! : Report

item? ̸∈ ran(dom(dom itemsin)) ∧ resp! = ItemNotReceived

IncorrectAddress
addr? : Address ; id? : Agencyid
resp! : Report

id? ∈ agencies
∃ agency : ClsAgency • agency .identifier = id? ∧ agency .addr ̸= addr?
resp! = IncorrectAddress

SendItem =̂ SendItemOk [] ItemAlreadySent [] ItemNotReceiv []
AgencyNotFound [] IncorrectAddress

72

notifyCustTransOk
∆(known)
cust? : Customer ; trans? : Transaction; datenotice? : Date; id? : Agencyid
resp! : Report

(∃ agency : ClsAgency | agency ∈ known ∧
∃ account , custaccount : ClsAccount ; date1, date2 : Date) •

(cust?, amount(trans?), date1) 7→ id ∈ this .db.cashin ∧
(account , trans?) 7→ date2 ∈ this .db.statements
agency .identifier = id? ∧ account 7→ id? ∈ this .db.agencyaccounts
custaccount 7→ cust? ∈ agency .ssales .custaccounts
agency .ssales .statements ′ =
(agency .ssales .statements ∪ (custaccount , trans?) 7→ datenotice)

resp! = Success

TransNotAllocated
cust? : Customer ; trans? : Transaction; resp! : Report

cust? ∈ dom(dom(dom(this .db.cashin ◃ id?)))
trans? ̸∈ ran(dom(dom(this .db.statements)))
resp! = TransactionNotAllocated

UnknownCustRemote
cust? : Customer ; id? : Agencyid ; resp! : Report

id? ∈ ran(this .db.agencyaccounts)
∃ ag : Agency ∈ known • ag .identifier = id? ∧ cust? ̸∈ ran(ag .ssales .custaccounts)
resp! = UnknowCustomer

NotifyCustTrans =̂ NotifyCustTransOk [] TransNotAllocated [] this .AgencyNotFound
[] this .AgencyAccountNotFound [] UnknowCustRemote

An object of this class defines two composed operations that involve at least two agencies.

Those are:

1. SendItem, to forward an item returned by a customer to the appropriate agency where

the item was purchased.

2. NotifyCustTrans , to update the account of a customer in the agency, in which the cus-

tomer has deposited some amount of money.

These operations are accessible from the environment of the system. The user can also ini-

tialise the components of the system.

A brief summary of the chapter follows.

73

4.3 Chapter summary

This chapter concentrated on transforming the Z specification of the case study, (presented

in Chapter 3) into Object-Z. The transformation process was guided by knowledge from the

literature, and supported with concepts from ordinary Z, Object-Z and Object-orientation.

As observed earlier, a remarkable advantage of this transformation is to exploit the Z

precondition calculation to determine error conditions for the operations before integrating

them into Object-Z classes.

The next chapter presents a framework for transforming a Use Case Map (UCM) model

of a system into Object-Z.

74

Chapter 5

A Framework for transforming a

UCM into Z and Object-Z

In Chapter 3 the description of the case study was presented, and a UCM map was con-

structed from it. The purpose of this chapter is to demonstrate the transformability of a

UCM to a Z and an Object-Z specification, by proposing a framework to translate generic

elements of UCMs to Z and Object-Z elements. Examples are given to illustrate concepts

that may not be easily understandable. The basic transformation strategy, supported by

a small diagram, is first presented in Section 5.1. This is followed in Section 5.2 with the

analysis of the threefold relationship between UCMs, Z and Object-Z, as well as the anal-

ysis, in Section 5.3, of concepts used in UCMs, Z and Object-Z. Thereafter, the proposed

transformation process is presented in Section 5.4, prior to a conclusion in Section 5.5.

The main concept in this chapter constitutes one of the important contributions of this

dissertation. The summary was presented, as a research paper, at the 7th International

Workshop on Modelling Simulation Verification and Validation of Enterprise Information

Systems (MSVVEIS 2009) in Milan Italy (Dongmo and van der Poll [23]).

5.1 Basic transformation strategy

Although UCM, as a semi-formal notation, may share with natural languages some limi-

tations, such as allowing ambiguous requirements, non-detection of errors, etc., it has the

advantage of encapsulating different types of information in a single view. Thus, a drawback

of a transformation process, would be the loss of information (e.g. when a UCM is trans-

formed into a Message Sequence Chart, some information on the scenario interactions is lost

(Miga et al. [60])). The architecture of the proposed mechanism is presented in Figure 5.1. Z

is used as an intermediate transformation step. This way, the rigour of Z may be exploited to

75

UCM

Z schemas

Meta-
classes

Class
schemas

Step 1
Intermediate

models Step 2

Figure 5.1: Basic transformation strategy

allow for clear and precise definitions of static and dynamic behaviours of systems, extracted

from an input UCM. At the same time, meta-classes are used to extract necessary architec-

tural information. Thereafter Z schemas are combined with the meta-classes, to form the

Object-Z class schemas. A two-step transformation mechanism is presented in more detail

in Section 5.4.

In the diagram above, the double-headed arrow between the input UCM, and the Z schemas,

indicates possible iteration at the level of unit component. That is, after a conceptual unit

element of UCM is transformed, the precision brought into the corresponding Z schema(s)

may help, reverse-wise to improve the initial UCM element. For example, the precondition of

a critical operation may be formally calculated in Z, and the result reported back to improve

its description in UCM.

At the level of the system, the double-headed arrow indicates the fact that the corresponding

Z description may be simply used to improve the input UCM and hence, serve as a through

away specification, to suit the need of a designer who prefers, for example, to work with

graphical models, since these may be easier to manipulate, and enhance communication

between stakeholders.

5.2 Relationship between UCM, Z and Object-Z

To evaluate the feasibility of the above mechanism, it is necessary to analyse the relationships

between the UCM, Z and Object-Z notations:

• Both notations are specification techniques that focus on system functionalities at the

requirement level; both can also be used during later stages of the software development

process.

76

• Their documentations includes, for clarification purposes, natural language descrip-

tions aimed at explaining the possible intricacies of UCMs and schemas.

• UCMs target the static, dynamic and architectural aspects of a system, while Z focuses

on the static and dynamic aspects only. However, the architectural component of

UCMs can be compensated with the class structures of Object-Z (see Figure 5.1).

• Users and industries may more easily adopt the usage of UCMs. This might be because

the UCM notation is graphic in nature, and therefore more appealing to humans than

the terse mathematical notation of Z. Formal methods tend to be perceived by industry

as being unsuitable for serious system design. It is believed that this situation stems

from the fact that the Established Strategy for constructing Z documents (van der

Poll and Kotzé [93], van der Poll et al. [94]), is largely silent about the architecture

of a system. Schemas are defined, and it is left to the user to perceive how these

fit together in the final system. Some suggestions, notably principles to guide the

construction process have been made (van der Poll and Kotzé [93], van der Poll et al.

[94]); the difficulties seem to persist among practitioners since the said heuristics are

still surrounded by technical terms. This is a further justification for using UCMs as

an initial step in the use of a formal method.

• UCMs use scenario-based reasoning to target the general aspects of system function-

ality and structure, and are not concerned with detailed descriptions. Z, on the other

hand, fills this gap as far as system functionality is concerned, but also fails to provide

any construction process for the schemas. Sommerville (Sommerville [82]) suggests

that formal methods in general, should be used at the system-requirements level, after

the user requirements specification, but before any detailed design. This suggests that

a one-to-one relationship between the elements of a UCM model and Z schemas may

not be feasible in general, but the UCM elements may constitute important starting

points in the construction of schemas.

Next, this analysis continues by investigating how concepts in UCM may be linked to those

in Z and Object-Z.

5.3 Conceptualisations in UCM, Z, Object-Z

Since in a UCM, the two important concepts are paths (including path elements to describe

scenarios) and components (to describe the architecture of the system), it is necessary to

analyse the 3-tiered relationship between the above concepts in UCMs, schemas and types

in Z and class schemas in Object-Z.

77

UCM path

A UCM path consists of one or more path segments. Each path segment includes, amongst

others, path elements and a sequence of responsibilities, each representing an abstraction

of service provided by the system. A path segment may be bound to a component that

handles the execution of the responsibilities on such path. These UCM constructs may be

modelled in Z, by a set of operation schemas to describe the bound responsibilities, a set

of state schemas used to describe the portion of the system state that is controlled by the

component and is likely to be consulted or changed by the bound responsibilities, and a list

of basic types necessary to define the two sets of schemas mentioned above.

Responsibility points

A sequence of responsibility points in a path segment can, therefore, be modeled in Z,

by schema composition. Alternatively, a Z sequence structure with schema operations as

elements could be considered. A sequence structure may assist a specifier with traceability

aspects of the transformed model.

Scenario interactions

Scenario interactions are represented in a UCM with path connectors, i.e. AND-fork, AND-

join, OR-fork and OR-join. Such connectors may be described in Z using appropriate schema

operators. Although the splitting and joining of path segments with those connectors may

sometimes be associated together, in many real situations this might not be the case. That

is, for instance, a UCM may include one or more OR-forks without any associated OR-join,

and vice versa. For this reason, they are considered separately.

(a) OR-fork

Consider an OR-fork connector with one entry path segment and two outgoing alterna-

tives (see Figure 5.2). Let Op1 be the composed schema that models the sequence of

responsibilities of the entry path segment, and Op11 and Op12 schemas that specify the

two alternative exit segments.

Figure 5.2: OR-fork and OR-join connectors

78

The resulting operation along such a path can therefore be described by the following Z

schema calculus expression:

op1 o
9 (Op11∨Op12) (5.1)

A text description may be added to indicate the selection policy at the OR-fork connec-

tion point, represented in the formula by the schema disjunction operator (∨).

(b) OR-join

With this connector, the responsibilities along one incoming path segment are performed.

This is followed sequentially by the responsibilities along the outgoing path segment.

Hence, as in the case of the OR-fork, the activities around such a connector are described

with the following expression:

(Op11∨Op12) o
9 Op2 (5.2)

From both expressions, it may be inferred that the combination of OR-fork and OR-join

connectors, could be described in Z, by the schema expression 5.3 below:

Op1 o
9 (Op11∨Op12) o

9 Op2 (5.3)

Op1 represents a schema operation, or a schema expression, for the operations performed

on the incoming path segment. Op11 is a schema expression for the operations on one

of the two alternative path segments, Op12, the schema expression that describes the

operations on the other alternative path segment, and Op2 the schema expression that

describes the operations on the joined path segment.

When more than two alternative path segments are to be considered, more schema

disjunction operators may be used to include, in the middle part of expression (5.3),

operations performed on the additional path segments.

(c) AND-fork

Both the AND-fork and AND-join, are illustrated in Figure 5.3. Op1 represents the com-

posed schema that models the sequence of responsibilities of the incoming path segment.

And Op11 and Op12, respectively, represent the composed sequence of responsibilities

on each of the synchronised path segments. The resulting operation along such a path

in Z, is described with the following Z schema calculus expression:

Op1 o
9 (Op11 ∧ Op12) (5.4)

Where Op1, Op11 or Op12 are, respectively, the schema expressions that describe Op1,

Op11, and Op12. Text may be added to the schema expression in Formula 5.4 to provide

more clarification on the synchronization policy.

79

Figure 5.3: AND-fork and AND-join connectors

(d) And-join

With this connector, all the responsibilities along both incoming path segments are

performed before any other responsibility along the outgoing path segment. Hence, if,

as mentioned above, Op11, Op12, Op2 , describe operation along path segments (as

in Figure 5.3), then the following schema calculus expression may describe the set of

activities around the connector:

(op11 ∧ op12) o
9 op2 (5.5)

In a situation where the AND-join is associated to an AND-Fork, the Z schema expression

in Formula 5.6 may be appropriate to model the situation. And when multiple branches

are synchronized, we may simply use more schema conjunction operators in the sub-

expressions in the middle of Formula 5.6, to add the description of the operations on the

additional branches.

Op1 o
9 (op11 ∧ op12) o

9 op2 (5.6)

Waiting place

A waiting place is a notational element that implicitly blocks the execution of a scenario,

progressing along a path (main path), waiting for some action along the clearing path to

occur. In Z, such element may be described by defining a state schema to handle the

state of the waiting place, some operation schemas to describe the above mentioned control

activities, and a schema expression to combine them. For example, consider in Figure 5.4

the responsibility point “Rin” executed before entering the waiting place, “Rout” the one

executed just after the main path is released, and “Cin”, executed on the clearing path to

unblock the main path. In Z, we may define an abstract state space, and two operation

schemas, namely “block” and “release” to describe the situation.

80

Figure 5.4: Waiting place

We define

[Identifier]

Identifier defines the set of all possible identification numbers that can be used to synchronise

a blocking and release of a sequence of activities.

waitingPlace
opened : Boolean
waitingId : Identifier

opened = true ⇒ waitingid = ⊥

When the system is not waiting for any clearing activity along the clearing path, the progres-

sion of any scenario may freely pass across the waiting place and the value of the variable

waitingId is meaningless. This is to accommodate the fact that any path traversing the

waiting place, may serve either as a main path or a clearing path.

block
∆WaitingPlace
id ! : Identifier

opened = true
∃ id : Identifier • waitingid = id ∧ id ! = id
opened = false

This operation is executed immediately after the blocking responsibility “Rin” is performed.

It generates an identifier that is passed to the clearing operation “Cin” to release the main

path.

release
∆WaitingPlace
id? : Identifier

waitingId = id? ⇒ opened = true ∧ waitingId = ⊥

This operation is triggered immediately after “Cin” is performed to unblock the execution

of the scenario on the main path. The identifier passed to it by the clearing operation must

81

be identical to the one kept in the state variable waitingId . To model the complete sequence

of activities along a waiting place, it is assumed schemaRin, schemaRout , and schemaCin

are respectively the Z schemas, associated with the responsibilities “Rin”, Rout, and “Cin”,

and then propose the Z schema calculus expression below:

(schemaRin ∧ block) o
9 (schemaCin ∧ release) o

9 schemaRout (5.7)

The above model, presents a case where each time a waiting place is waiting to be released,

all other instances of the blocking activities are also blocked. For example, consider Rin

is an operation that sends information to remotely update a database, via a network, and

waits for a response. The above model allows the next request to update the database to be

forwarded only after the previous request has been responded to.

Timer

A Timer is a special case of a waiting place where the waiting time is limited. When a

timeout occurs, an appropriate action (indicated by “Tout” in Figure 5.5) may be taken on

the timeout path. To model a timer in Z, it is suggested to add one more variable to the

above state space of a normal waiting place, and two more schema operations to handle the

setting-up of the timer, and to take proper corrective action when a timeout occurs.

Figure 5.5: Timer

Timer
opened : Boolean
waitingId : Identifier ; maxtime : N

opened = true ⇒ waitingId = ⊥ ∧ maxtime = 0

The variable maxtime holds the maximum time allowed for a clearing action to occur. Oth-

erwise, a timeout responsibility may be performed when such time expires.

82

setup
∆Timer
time? : N

time? > 0 ∧ maxtime = time?

In this model, it is assumed that the operation that blocks the timer may decide on how long

it will wait for a response from a clearing path, before taking any corrective action. Hence,

the operation “BlockTimer” would be described as:

BlockTimer = block ∧ setup (5.8)

where the operation block is defined as in the case of a waiting place, but operates on the

state of Timer . The schema calculus expression to define the behaviour of the timer would

be as in Formula 5.9 below.

(schemaRin ∧ blockTimer) o
9 ((schemaCin ∨ schemaTout) ∧ release) o

9 schemaRout (5.9)

with the operation release modelled as follows:

release
∆Timer
id? : Identifier

waitingId = id? ⇒
opened = true ∧ waitingId = ⊥ ∧ maxtime = 0

Stubs

A stubbing technique is a mechanism used in Use Case Maps to defer some details of a map

to sub-maps called plug-ins. There are two types of stubs: static and dynamic stubs. These

will be considered separately.

(a) Static stub

with a static stub, the start points and end points of the bound plug-in are statically

associated to the incoming and outgoing path segments of the stub. That is, whenever

the execution gets into the stub through an incoming path, the same plug-in is reached,

and as soon as the plug-in is executed, the progression continues through the outgoing

path segments of the stub. As the sub-map is itself a complete map, it may therefore,

be transformed separately. The challenge is to model in Z/Object-Z the integration of

the plug-in into the main map. In this regard, the following is suggested:

83

Plug-in

Figure 5.6: Example of a static stub

Define a list of basic types:

[Input ,Output , Start ,End]

where Input is the list of all possible path segments that enter into a stub. Output is

the set of all path segments that goes out from a stub. Similarly, Start and End are the

list of all possible start and end points of plug-ins.

Define a function that associates each input-path segment to a start-point.

Call : Input 7→ Start

Define a function that associates each end-point of the plug-in with an output of the

stub that is, the list of static returning points after the plug-in has been executed.

Return : End 7→ Output

Based on the above, the state of a static stub can be defined as:

staticStub
callpoints : Input 7→ Start
returnpoints : End 7→ Output

predicate

It is assumed that each input from a stub is associated to only one start-point on the

plug-in, and that such associations are not infinite. The component callpoints is hence,

of a limited size and represents different possible ways the main maps may be linked to

84

the plug-in depending on the inputs. In the Object-Oriented concept, this would suggest

polymorphism, where the behaviour of the plug-in depends on callpoints that link inputs

to the appropriate arguments. Similarly, it is assumed that each end-point is mapped to

one output, and the list of such mapping is of a limited size. The variable returnpoints

represents such a list.

In the predicate part, depending on each particular case under consideration, appro-

priate formulas may be added to express possible constraints on inputs and outputs to

indicate, for example, which outputs can be reached from given inputs. Descriptive text

may also be included for more clarity.

At this point, two descriptive operations, call and return, may be defined respectively at

runtime, to direct the execution of a scenario to the plug-in, and to return the execution

back to the main map.

call
ΞstaticStub
in? : Input ; s ! : Start

in? 7→ s ! ∈ callpoints

In this model, to facilitate the understanding of our idea, a simple case, is considered

when the execution reaches the stub from only one incoming path segment. But, in

practice, multiple inputs may be involved concurrently; in this case, the list of those

path segments, may be considered as the input to the function. Hence, the task of the

function would be to find those start points, from where the execution will continue.

Next, the operation return is presented.

return
ΞstaticStub
end? : End ; out ! : Output

end? 7→ out ! ∈ returnpoints

(b) Dynamic stub

As pointed out by Amyot [6], dynamic stubbing is an interesting construct for scenario

integration, as it may include multiple plug-ins, with only one of them being dynamically

selected at runtime according to a selection policy. The transformation challenge for

such constructs is, therefore, to describe in Z, the dynamic mapping of plug-ins. An

example of a dynamic stub is presented in Figure 5.7. For the transformation purpose,

85

Plug-in1 Plug-in2

Figure 5.7: Example of a dynamic stub

we reconsider the basic types defined above for static stubbing, and propose the state

schema dynamicStub described next.

dynamicStub
listInputs : F Input
listStartPoints : F Start
listEndPoints : FEnd
listOutputs : FOutput

predicate

The variable listInputs , is the set of incoming path segments, to which Start-points from

the set listStartPoints of plug-ins, may be connected. Similarly, listEndPoints is the set

of outgoing path segments (on the stub), to which End-points from the set listEndPoints

of plug-ins, may be connected.

As stated in the case of the static stub, depending on the particular dynamic stub under

consideration, constraints on the state variables may be included in the predicate part.

Descriptive prose text may also be added to facilitate the understanding of the model.

The implicit control operation of a dynamic stud is described next:

call
ΞdynamicStub
in? : Input ; s ! : Start

∃ start : Start • in? 7→ start ∈ Input 7→ Start
s ! = start

During runtime, when the execution of a scenario enters the stub through an input seg-

ment (e.g. IN 1 in Figure 5.6), the system determines, according to a predefined selection

86

policy, the start point(s) of the plug-in that is to be executed. After the execution of

the selected plug-in, the control (of the system) is returned, by linking the end point(s)

of the plug-in to the appropriate output(s) of the stubs.

A Z model for the descriptive function return in the case of a dynamic stub is pre-

sented.

return
ΞstaticStub
end? : End ; out ! : Output

∃ out : Output • end? 7→ out ∈ End 7→ Output
out ! = out

The execution of the selected plug-in terminates at the end-point end?, where the system

determines the appropriate output segment from which the execution will continue. This

segment is returned as output. The selection of such an output may be described by means of

predicates, or conditional statements, as they are mapped to end-points, only during runtime.

As the reader may notice, this chapter only considers those UCM path elements that were

involved in the specification presented in Chapter 3. Modelling other UCM path elements is

beyond the scope of this dissertation.

Active components

Active components, e.g. “Teams” and “Processes”, have the responsibility to control the

execution of responsibilities points bound to them (see Figure 5.8). Therefore, it is suggested

that for each active component, an implicit generic operation (shared by all paths bound to

the component), to control the execution of responsibilities, be considered, to this end, an

additional schema operation should be created in Z to describe the generic control operation

for each active component. Such “control” operations are traditionally not part of a Z

specification. To illustrate the idea of a control operation that may be performed by active

components, consider the example of UCM in Figure 5.8. The motivation in using this

example is firstly, to make it clear that having a process in a map without any responsibility

point bound to it is legal in UCM, and secondly, to show that in the absence of responsibility

points bound to an active component, the component still have a purpose. For example,

the component may be placed on the map to co-ordinate interaction between the scenario

or their synchronization through path segments connectors bound to it.

87

Figure 5.8: Example of implicit activities

UCM components

Components in a UCM describe the structure of a system. The class schema of Object-Z is

a clear candidate to fulfill this role. It is, therefore, suggested to create a meta-class for any

component that is not a team, as well as a hierarchy of meta-classes for each team component

with one super-class, as well as and sub-classes.

Start point

A start point in a UCM is a place where triggering events occur to enable the execution

of a scenario. Such events may possibly provide the system with some information that

might need to be kept for further processing. In this regard, it is suggested adding, to the

Z description of the UCM, an operation (e.g. start(?)), to consider the effect of such events

on the system state.

End point

An end point in a UCM is a place where the execution of a scenario ends, enabling the

resulting events to occur, and where post-conditions are gathered. They may therefore

constitute, for example, in an operational system appropriate points to perform tasks such

as: free temporary files, update log files, perform garbage collection and undo unachieved

transactions. These constitute for plug-ins, the points from where the execution is returned

to the main map.

5.4 Transformation process

This process assumes the use of one of the existing UCM traversal techniques, (Kealey and

Amyot [47]), to scan an input UCM to identify individual map elements. This work considers

only UCM elements discussed previously in Section 5.3 i.e. elements used in the case study;

other UCM elements are beyond the scope of this dissertation. The core of the process

88

follows a bottom-up strategy that starts with the Z description of scenario paths, from their

path segments, and the transformation of team components from their sub-components. If a

map has no component, one implicit component for the system is assumed. In case the input

map is complex or difficult to understand, before applying this process, it is recommended to

use stubbing mechanisms to sub-divide the map into smaller and more manageable sub-maps.

The proposed transformation steps are:

Step 1- Construct Basic types, Abstract states, Operation schemas and Meta-classes: Ini-

tialise a list of basic types that will be populated progressively during the transfor-

mation of the input UCM.

1-1 For each UCM component that is not a team, specify a state schema to describe

the part of the system state, controlled or represented by the component. When

defining the invariant, consider relevant information such as the component’s

type, inter-component interactions, bounded scenarios, etc.

1-2 For each team component, recursively specify state schemas as follows: Cre-

ate schemas for the contained components, and one schema for the container

component. Combine these schemas using Z’s schema calculus (e.g. schema

inclusion or schema typing). Combining schemas aims to capture inheritance in

a UCM. Where appropriate, use natural language prose to aid the specification.

1-3 For each stub, specify a state schema to describe the stub. Include in the

predicate part as much information as possible that may help to relate the

stub’s incoming path segments, and the start and end points of plug-in(s). Add

descriptive text wherever necessary for clarity.

1-4 For any other path element for which variables are required to keep information

needed to describe their static or dynamic behaviour, create an appropriate Z

state schema to model the state of such elements. For example, with a Timer,

such a Z state schema may include a variable for the waiting time limit.

1-5 Complete the system state schema(s) and define realisable initial state(s) for

the system.

1-6 For each path segment, create operation schemas to specify responsibilities (and

other active path elements). In general, schemas for bound responsibilities, will

apply to the local state of the binding component, but in some cases, they may

apply to a larger, or even the whole system state.

1-7 For each start point, when necessary, create an operation schema, to consider

the effect of the triggering events on the system state space.

89

1-8 For each end-point, when necessary, create operations to take into considera-

tion resulting events and post-conditions, for the terminated scenario, in order

to bring the system to a reusable state. With plug-ins, such operations should,

for instance, return the execution to the main map. The list of those operations,

for a given plug-in, would therefore constitute the component returnPoints (dis-

cussed earlier).

1-9 Create schemas for control operations, (see Section 5.3 above on stubbing tech-

niques and active components), associated to each active component.

1-10 Use schema composition to construct a sequence of schemas, that will describe

scenarios over a full path, (a sequence of path elements). Also consider path

elements and path connectors.

1-11 When necessary, create, a meta-class for each component (an Object-Z class

for which properties and methods are not yet defined), that will in later stages

encapsulate both the state and operations performed by the component.

Step 2- Complete the Z schemas, and generate Object-Z class schemas (Periyasamy and

Mathew [68] provide more details on mechanisms to transform Z schemas into

Object-Z).

2-1 Calculate preconditions for important operations to generate partial operations

for error conditions. At this point, the calculated preconditions may help to im-

prove the input UCM. One also may employ guiding principles for constructing

Z schemas (van der Poll et al. [94]), where appropriate.

2-2 Define total operations (covering error conditions) corresponding to each partial

operation, defined in Step 21 above.

2-3 Complete each meta-class with appropriately selected schemas. In general, those

schemas must have been generated from elements of path segments, that are

bound to the component.

5.5 Chapter summary

This chapter has demonstrated the transformability of UCMs, by proposing a generic frame-

work to translate a UCM, into a Z, and an Object-Z, specification. The suggestion consisted

to initially transform the functional or behavioural aspects of the input map, into Z schemas,

and its architectural components into meta-classes of Object-Z. Afterwards, combine the Z

schemas and meta-classes to obtain Object-Z classes. The fundamental Object-Oriented con-

cepts of inheritance and encapsulation are used to capture information on the structuring of

90

UCM components. Concepts in UCM, Z and Object-Z (and possible relationships between

them), were analysed leading to a conclusion that a one-to-one transformation may be hard

to achieve, since the notations involved, operate at different levels of detail. Nevertheless,

the proposed description of UCM concepts in Z, and Object-Z, may constitute a reason-

able move in Requirements Engineering, as this may provide designers with key important

benefits through the use of formal methods in systems engineering. In fact, the main ideas

proposed here, were summarised in a full research paper, presented at the 7th International

Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information

System in 2009 (MSVVEIS 2009). Full details may be reached in (Dongmo and van der Poll

[23], P. 3-13).

The next chapter, demonstrates the applicability of this framework, by applying it to the

UCMs of the Case Study developed in Chapter 3, and aims to produce the UCM-OZ version,

of the Object-Z specification, of the case study.

91

92

Chapter 6

Applying the UCM transformation

framework

This chapter applies the UCM transformation framework proposed in Chapter 5, to the UCM

model of the case study developed in Chapter 3, to generate an Object-Z specification. The

input map is presented in Section 6.1, and the stubbed version of the same map is developed

in Section 6.2. In Section 6.3, the stubbed Map is transformed to Z and Object-Z. The

chapter concludes with a brief summary in Section 6.4.

NB: Due to the automatic generation of references by Latex, references to guidelines

from Chapter 5 are presented as follows: e.g. the original Guideline#1 − xy becomes

Guideline#1xy without the (−) separator.

6.1 The input UCM map

This section presents the input map from Chapter 3 that will be transformed, in this chapter,

to an Object-Z specification using the guidelines proposed in Chapter 5. The descriptive text

used to explain some aspects of the map, is not reproduced, as it is accessible from Chapter 3.

To facilitate the comprehension and the transformation process of the input UCM, presented

in Figure 6.1, a stubbing mechanism is used to sub-divide it into sub-maps (as recommended

in the framework presented in Chapter 5, Section 5.4). Four different maps, therefore, result

from sub-dividing the input UCM: the main map presented in Figure 6.2, including a static

stub, namely, NetControl , and a dynamic stub, namely, Validate. The other three maps

are: the plug-in in Figure 6.3 associated to the static stub, and two alternative plug-ins (see

respectively, figures 6.4 and 6.5 associated to the dynamic stub). The following names are

proposed for the abstract components that were unnamed in the original map: Pay point ,

Transit point , Check point , and Update point (Figure 6.2). Those names are for referencing

purposes.

93

Figure 6.1: Initial UCM map

Figure 6.2: Stubbed UCM map

94

6.2 The stubbed UCMs

In the main map presented in Figure 6.2, the static stub named NetControl represents

a place where the sub-map (called a plug-in) shown in Figure 6.3, fits during runtime, to

perform the task of forwarding incoming requests to a beneficiary agency through the network

component. It includes four input segments, namely IN 1, IN 2, IN 3 and IN 4 through which

stimuli flow from the main map to the plug-in, and three output segments named OUT1,

OUT2, and OUT3, through which the plug-in forwards the result of its execution to the

main map.

Figure 6.3: Expansion of the NetControl stub in Figure 6.2

Similar to the stub, the plug-in (see Figure 6.3), associated with the static stub, has four

start points connected to the four input segments of the stub. It also has three end-points

which are connected to the output segments of the stub. The end-point labelled E123b

(Figure 6.3) may be reached during runtime to terminate a scenario, after the responsibility

point labelled “NetFail”, which is performed responding to a timeout event. A timeout event

occurs when the maximum waiting time elapses, before any response for a remote request

arrives. Within the main map, the binding relationship that statically links the input path

segments to start-points of the plug-ins, and the end-points of the plug-in to the output path

segments of the stub, are denoted in UCM as follows:

- ⟨IN 1, S1⟩, ⟨IN 2, S2⟩, ⟨IN 3, S3⟩, ⟨IN 4, S4⟩. Each such binding, for example between E1

and S1, indicates that the start point S1, is triggered by a stimulus from the input segment

E1.

- ⟨E1,OUT1⟩, ⟨E2,OUT3⟩, ⟨E3,OUT2⟩. The binding relationship between E1 and OUT1,

for example, indicates that a resulting event at the end-point E1 flows to the main map,

via the output segment OUT1.

95

The plug-in in Figure 6.3 implements a timeout recovery mechanism to control the trans-

mission of requests over a network. Any request that arrives at the plug-in by triggering

one of the start points S1, S2, or S3, is re-transmitted to an appropriate agency via the

binding channel ⟨E1,OUT1⟩, after the timer is setup with an appropriate time limit. If a

response for a particular request is not received, through ⟨IN 4, S4⟩, before timeout occurs,

the process within the plug-in performs the responsibility named “NetFail”, and terminates

the scenario. Otherwise, the sub-map transmits the resulting event at E2 or E3, depending

on the request, to the main map, via the links ⟨E2,OUT3⟩ or ⟨E3,OUT2⟩. The sub-map

was indeed extracted from the initial input UCM (see Figure 6.1), and the semantics of the

path elements remain unchanged (as described in Chapter 3, Section 3.3.3).

Figure 6.4: Validate an invoice

Figure 6.5: Validate a customer

The dynamic stub in the main map (Figure 6.2), may select either the plug-in (in Figure

6.4) to check an invoice, or that of Figure 6.5, to validate a customer. The stub includes two

input and five output segments. The selection of a plug-in during runtime depends on the

input segment from which a stimulus reaches the stub. The dynamic binding relationship

that links the input segments of the main map to start points on the sub-maps and those

that link the end points of the sub-maps (figures 6.4 and 6.5), to output segments of the

main map (Figure 6.2), are presented in UCM as follows:

- ⟨IN 1, S1⟩, ⟨E11,OUT1⟩, ⟨E12,OUT2⟩. The sub-map in Figure 6.4 is selected when a

stimulus comes from IN 1.

- ⟨IN 2, S2⟩, ⟨E21,OUT5⟩, ⟨E22,OUT3⟩, ⟨E23,OUT4⟩. The plug-in in Figure 6.5, is se-

lected when a stimuli comes from the path segment, labelled IN 2.

96

The sub-maps (plug-ins)(figures 6.3, 6.4 and 6.5) and the main map (Figure 6.2) are

extracted from the initial UCM map (Figure 6.1). Therefore, the prose text descriptions

given in Chapter 3, Section 3.3.3, to explain UCM elements, remain valid for each element

of the main map and plug-ins.

The binding relationship between the stub, in the main map, and the two alternative plug-

ins, indicates that: a request to check an invoice reaches the stub via IN 1, and is performed

by the plug-in of Figure 6.4. A request to validate a customer, or to update a customer’s

account, arrives to the stub, via IN 2, and is performed by the plug-in in Figure 6.5. When

the validation of an invoice fails, the system follows to E11; otherwise, it continues to E12

(Figure 6.4).

The plug-in forwards all requests to update a customer’s account to the end point E23,

and when a request is received to validate a customer, the plug-in performs the responsi-

bility point labelled ChkCust(see Figure 6.5), to validate a customer. If such a validation

fails, the system continues to the end point E21, otherwise, it follows the path segment to

the end point E22.

In the next section, guidelines proposed in the framework of Chapter 5 are followed to

transform the stubbed UCM, so far described, into Z and Object-Z (see Figure 1.3).

6.3 The Z and Object-Z specifications

As indicated in Figure 6.6, the original UCM has been decomposed into four sub-maps in-

cluding one main map, namely, the Stubbed UCM, that represents the UCM in Figure 6.2,

and three plug-ins.

The input UCM

Stubbed
 UCM

Forward
requests

Validate
Invoices

Validate
Customers

Main Map

Plug-ins

Figure 6.6: Decomposing the input UCM

97

There is also a plug-in to forward requests over the network (shown in Figure 6.3), namely,

NetControl, and two alternative plug-ins for the dynamic stub: one to Validate Invoices

(shown in Figure 6.4) and the other to Validate Customers (shown in Figure 6.5). The ar-

rows from plug-ins to the main map indicate the binding relationship between each plug-in

and the stubbed map. To accommodate the “bottom-up” strategy adopted in the transfor-

mation framework (see Chapter 5), the sub-maps, which are included in the main map, are

first transformed, followed by the main map.

Despite the fact that sub-maps may be treated separately, as suggested in Chapter 5, Section

5.4 on page 89, they remain part of the main map; the principal reason for the stubbing

mechanism is to bring clarity into large or complex maps. For this reason, for the Z transfor-

mation, only one list of basic types, and one of the global variables for the system, (including

the main map and sub maps), are presented in Section 6.3.1. Each of the lists is obtained

by applying the instruction # 11 of the framework (see Section 5.4, Chapter 5), to each of

the UCM maps. In Section 6.3.1, those variables are encapsulated into a single class schema

named ClsGlobalVariables , making it possible for other classes to inherit it, when needed.

An overview of the transformation process is presented below:

• Section 6.3.1: Generate basic types, and global variables;

• Section 6.3.2: Apply the transformation framework to the plug-in, to forward requests;

• Section 6.3.3: Apply the transformation framework to the plug-in, to validate invoices;

• Section 6.3.4: Apply the transformation framework to the plug-in, to validate cus-

tomers;

• Section 6.3.5: Apply the transformation framework to the stubbed map taking into

consideration the binding relationships with the plug-ins.

Next, the given sets and variables for the entire system are presented.

6.3.1 Given sets and global variables

A set of given types for the whole system (including the main map and the three plug-ins)

is given below:

[Request , Identifier ,Customer ,Account , Invoice,Address , Item,Agency ,
Money ,Date,Message,Time]

Request represents the set of all possible requests. Identifier is the set of all possible iden-

tifiers. The types Customer , Account , and Invoice represent, respectively, the set of all

98

possible customers, accounts, and invoices. Similarly, Address , Item, Agency , and Money

are respectively, the sets of all possible addresses, items, agencies that may be involved,

and all possible amounts of money, with associated currencies. The set Date is used for all

possible dates; Message is the set of all possible messages that may be exchanged between

the system and the environment, and Time is the type of possible times.

Next the definition of the datatypes is presented.

Response ::= Ok | Failed | Accepted | Denied | Unknown

The balance of an account is defined as a partial function, that associates the account to an

amount of money.

balance : Account 7→ Money

The function debit is needed, for example, to issue a payment into an account.

debit : Account ×Money 7→ Account

∀ acc, acc ′ : Account ; amnt ,m : Money •
((acc, amnt) 7→ acc ′ ∈ debit) ⇔
((acc,m) ∈ balance ⇒ (acc ′,m + amnt) ∈ balance)

The partial function addressOf , maps each agency to its address.

addressOf : Agency 7→ Address

It is assumed each item has a value at a particular given time. The function itemsValue

maps each item to its present value.

itemsValue : Item 7→ Money

The partial function reqOption uniquely maps to each request, which involves a purchased

item, the invoice that includes the item.

reqOption : Request 7� Invoice

There are three types of scenarios as defined below:

Scenario == {sceneReturnItem, sceneReplaceItem, scenePayCredit}

Since a request is issued only when a particular scenario is in progress, the same request

may not be shared by more than one scenario. So, the identifier associated with a request

may be used to identify the scenario. In this regard, the function idScenario is defined.

idScenario : Identifier 7→ Scenario

The class schemas representing the Object-Z transformation of the basic types and variables

thus far defined, are presented next.

99

Class schemas for basic types and variables

The Object-Z transformation of a basic type, yields a class with no state and no operation

(see Dongmo and van der Poll [23], Periyasamy and Mathew [68]). The reason is that a

given type, describes objects of which properties and methods are undefined. So, each of the

types defined above, is transformed in Object-Z, into such class schema. Next, an example

is shown of a graphical representation of the class corresponding to the transformation of

the set Request into Object-Z. Other such classes may be similarly represented.

Request

For these classes, we prefer to keep the same name in Z and Object-Z. The purpose is to

maintain the coherence between the Z and the Object-Z versions.

The class schema, represented below, is created to encapsulate the global variables described

above, to make them accessible to other classes, for example, by aggregation or inheritance

(see Duke and Rose [26]).

ClsGlobalVariables

�(addressOf , itemsValue, balance, debit ,Response, Scenario,
invoiceInReq , customerInReq)

addressOf : Agency 7→ Address

itemsValue : Item 7→ Money

invoiceInReq : Request 7→ Invoice
customerInReq : Request 7→ Customer

dom invoiceInRequest ∩ dom customerInReq = ∅

idScenario : Identifier 7→ Scenario

balance : Account 7→ Money

Response == Ok ,Failed ,Accepted ,Denied ,Unknown

debit : Account ×Money 7→ Account

∀ acc : Account , acc ′ : Account ; amnt ,m : Money •
((acc, amnt) 7→ acc′ ∈ debit) ⇔
((acc,m) ∈ balance ⇒ (acc′,m + amnt) ∈ balance)

Scenario == {sceneReturnItem, sceneReplaceItem, scenePayCredit}

Next, a transformation into Z and then, Object-Z of the sub-map is proposed (see Figure

100

6.3), which is associated with the static stub, on the main map in Figure 6.2.

6.3.2 Applying the framework to the plug-in to forward requests

This plug-in is activated when one of the start points S1, S2, or S3 is triggered. An in-

coming segment is triggered when the progression of a scenario along a path reaches the

sub-map. In the plug-in under consideration, the purpose of such a triggering event may

be to request the validation of an invoice, the validation of a customer, or to request the

update of a customer’s account. Due to the fact that the given sets and global variables

for the whole system are readily available (see Section 6.3.1), and may be used wherever

necessary in the system, they do not need to be redefined. The next step, is to describe

the possible Z states that may result from transforming the plug-in, to a Z specification. In

this regard, the UCM elements included in the sub-map are considered in the next paragraph.

The UCM elements encountered when traversing the map from start to end points are

respectively:

• Four start points: S1, S2, S3 and S4,

• A process (representing a UCM abstract component),

• An OR-join (joining together the path segments from S1, S2 and S3),

• An AND-fork (that synchronises the progression of a scenario along the path segment

to E1 and the timing operations),

• A Timer T1,

• An OR-fork (it splits the path segment from S4 into two: one through which is for-

warded a response for a request to validate an invoice, and another path through which

a request to validate a customer is forwarded),

• An AND-join (to ensure that for some scenario, both the invoice and customer are

successfully validated before progressing towards the end point E3), and

• Three end points: E1, E2 and E3.

In the light of the analysis, relative to the above listed UCM elements, performed in Chapter

5, Section 5.3 and the transformation guidelines # 11 to 15 which depict the Z states of a

UCM, the abstract state spaces resulting from this sub-map are suggested.

101

Abstract state definition

The state schema netComTemp is created for the UCM abstract component Process , to

temporarily keep information on pending requests until they are processed. For that reason,

it will be referred to as a “temp” file. The schema derives from Guideline # 11 (Chapter 5,

Section 5.4), that suggests creating a state space for each abstract component other than a

team component.

netComTemp
reqInvoices : Identifier 7� Invoice × Address
reqCustomers : Identifier 7� Customer × Address
reqTransactions : Identifier 7� Customer ×Money × Address
reqRespones : Identifier 7→ Message

dom reqInvoices ∩ dom reqCustomers = ∅
dom reqInvoices ∩ dom reqTransactions = ∅
dom reqCustomers ∩ dom reqTransactions = ∅
dom reqResponses ⊆ dom reqInvoices ∪ dom reqCustomers ∪ dom reqTransactions

The variable reqInvoices keeps a list of mappings in which, for each record, an identifier is

uniquely mapped to a product of an Invoice, with an Address . The invoice requires to be

validated, and the address is that of the agency from which the invoice was issued. The

variable reqCustomers records a list of mappings between identifiers and products of a cus-

tomer and an address. The customer, who holds the invoice, also needs to be validated and

the address is that of the agency where the customer’s account is. The information main-

tained in those two variables is used to support the activities of the system when returning

or replacing items. The variable reqTransactions is helpful to the system when a customer

is paying a credit. Each record in it contains an identifier that is used during the entire

process to uniquely identify the product of the three objects needed: the customer who is

paying (Customer), the amount of money involved (Money), and the address of the target

agency that holds the customer’s account that needs to be updated. The partial function

reqResponses associates each response, to an identifier that may be used to trace a record in

one of the above mentioned components. The predicate part indicates that an identifier is

not allowed to reference more than one request, and a response may be provided only for a

pending request.

The next state schema Timer , is created to describe the state of the timer (Guideline # 14).

Timer
opened : Boolean
waitingId : Identifier ; maxtime : Time

opened = true ⇒ waitingid = ⊥ ∧ maxtime = 0

102

The variable opened indicates the status of the Timer . For example, when the timer is not

activated, the value of opened is true, or conversely false otherwise. When the timer is not

activated, the variable waitingId that contains a request identifier, is undefined. This schema

results from the analysis performed in Section 5.3 of Chapter 5.

In the next section, the effect of the AND-fork connector on the system, is presented as

a general theory (Potter et al. [70]).

Some general theory: AND-fork

An AND-fork path element in a map synchronises the timing activities and the execution

of the path segment, between the element and the end-point E1 (Figure 6.3). Although no

responsibility point is placed on this path segment, an implicit activity is to be considered,

for the reason that, at E1, a request must have been sent over the network. In this regard,

three operations are created in Section 6.3.2, to handle respectively, the sending of requests

over the network to:

a) check an invoice (reqCheckInvoice),

b) validate a customer (reqCheckCustomer), and

c) update a customer’s account (reqUpdateAccount).

Since the plug-in (Figure 6.3) sends all the requests via the network component (Figure

6.2), a state schema is required to specify the communication interface between the plug-in,

and the network. The interface illustrates the coupling between the plug-in (and also the

static stub in Figure 6.2), and the network component. This coupling is revealed by the

path segment, (incoming path segment IN 4) that joins the static stub (Figure 6.2) with the

network component. The state schema presented next, is created in line with the Guideline

11.

interface
reqToForward : Identifier 7� Request
reqToReceive : Identifier 7� Request

The state space interface, groups the two main components of the network made available to

the environment and netInterface; the schema presented next, is more generic, as it includes

constraints on components, hence, linking interfaces to each other.

netInterface
interface

(∀ id 7→ req ∈ reqToReceive)(∃1 Interface | id ∈ dom θInterface.reqToFoward)

103

The variable reqToFoward contains the list of requests sent via the network, and reqToReceive,

the set of requests waiting to be retrieved at a network terminal. The predicate indicates

that a request received at a network was previously sent through another network interface.

At this stage, the state of the system as a whole includes the three state schemas defined

above.

requests
netComTemp
timer
netInterface

waitingId ∈ dom reqInvoices ∪ dom reqCustomers ∪ dom reqTransactions

As recommended by the enhanced strategy for documenting a Z specification (Lightfoot

[52], Potter et al. [70]), the next section presents some initial states for the above defined,

abstract states.

Initialisation

It is assumed that the system starts with both netComTemp and netInterface empty, and

the timer open.

InitNetComTemp
netComTemp ′

reqInvoices ′ = ∅ ∧ reqCustomers ′ = ∅ ∧ reqTransactions ′ = ∅

The condition reqResponses ′ = ∅ may be deduced from the values of the three components

included in the initial state. For brevity (Gravell [34]), it is therefore taken out of the schema.

InitTimer
timer ′

opened ′ = true ∧ waitingid ′ = ⊥ ∧ maxtime ′ = 0

Note, that having a component equal to an undefined values (e.g. waitingid ′ = ⊥), simply

means that the value of the component is not yet defined, or is unknown. Although the

notation may be misleading if minterpreted, it may equally bring more clarity (Gravell [34])

into a specification, and help to avoid some common mistakes that occur in error conditions

(van der Poll and Kotzé [93]).

InitNetInterface
netInterface ′

reqToFoward ′ = ∅ ∧ reqToReceive ′ = ∅

104

Next the partial operations for the part of the system modelled by the UCM in Figure 6.3

are discussed.

Partial operations

This section starts with the description of operations associated with the start points (see

Guideline # 17, Chapter 5). By convention, the name of each of those operations is the

same as that of the start point (but in lower case, as the names of start points are in upper

case).

The start points S1, S2 and S3, are respectively triggered to request the validation of

an invoice, a customer account, or the updating of a customer’s account. The associated

operations s1, s2 and s3 capture the input information from the environment and keep

them temporarily during the scenario execution. They also ensure that a unique identifier

is attached to each pending request.

s1
∆netComTemp
id? : Identifier ; inv? : Invoice; ad? : Address

id? ̸∈ dom reqInvoices ∪ dom reqCustomers ∪ dom reqTransactions
reqInvoices ′ = reqInvoices ∪ {id? 7→ (inv?, ad?)}

s2
∆netComTemp
id? : Identifier ; customer? : Customer ; ad? : Address

id? ̸∈ dom reqInvoices ∪ dom reqCustomers ∪ dom reqTransactions
reqCustomers ′ = reqCustomers ∪ {id? 7→ (customer?, ad?)}

s3
∆netComTemp
id? : Identifier ; customer? : Customer ; amnt? : Money
ad? : Address

id? ̸∈ dom reqInvoices ∪ dom reqCustomers ∪ dom reqTransactions
reqTransactions ′ = reqTransactions ∪ {id? 7→ (customer?, amnt?, ad?)}

The condition given by the expression

id? ̸∈ dom reqInvoices ∪ dom reqCustomers ∪ dom reqTransactions

in the predicate part of each of the three operations defined so far, ensures that the input

identifier id? is not currently associated with any pending request. Due to the fact that the

105

expression is repeated in each operation, it is arguable that, for brevity, it may be given a

name and be referenced in the operation, by that name. Nevertheless, it is preferred to re-

peat the expression, so as to make its meaning clear (Gravell [34, Section 2.1]) while reading

the specification.

The start point S4, is triggered when a message from the network, referenced by a re-

quest identifier, reaches the plug-in. The operation s4 is activated to commit the message

into the temp file. The operation is described as:

s4
∆netComTemp
id? : Identifier ; resp? : Message

id? ∈ dom reqInvoices ∪ dom reqCustomers ∪ dom reqTransactions
reqResponses ′ = reqResponses ∪ {id? 7→ resp?}

The input variable id? contains the identifier of the request for which the incoming response

in resp? is passed as input to the operation. The system uses the two inputs to update the

list reqResponses .

Next, the schema of an operation send provided by the network interface, to send requests

over the network, is considered.

send
∆netInterface
id? : Identifier ; req? : Request

reqToFoward ′ = reqToFoward ∪ {id? 7→ req?}

This operation is provided by the network interface to facilitate the sending of messages

through a network. Although the operation is not explicitly represented as a responsibility

point on the initial UCM, it results from the natural activities of the component Network

(Figure 6.2), which is to serve as an active support for a bi-directional communication be-

tween agencies (see Figure 3.1). The operation is therefore created in line with Guideline #16

in the transformation framework (Chapter 5, Section 5.4) to update the list reqToFoward of

requests. The list contains those requests that are being transmitted by the network, from

one agency to another.

The three operations of the plug-in that use the interface operation send to forward the

three types of requests over the network, are defined next. Each generates a request for

which an identifier is provided as an input. The identifier and the request are passed to the

106

interface via the operation send , that handles the responsibility to transmit the request to

its destination via the network.

As mentioned above, the operation reqCheckInvoice presented next, submits a request to

check an invoice.

reqCheckInvoice
ΞnetComTemp
∆netInterface
id? : Identifier

id? ∈ dom reqInvoices
∃ req : Request • Send(id?, req)

This operation is applicable when the input id? is a valid identifier associated to an invoice

in reqInvoices. The system generates a request, and sends it to the appropriate agency by

the means of the interface operation Send . Note, that the use of the operation Send in

the expression of the predicate, may be suspected because an operation does not explicitly

represent a logic expression. Such constructions are, however, allowed, since similar cases

are found in the literature, notably in Bowen [13] (when defining a schema operation for se-

quential composition of two operations) and Potter et al. [70] (when describing the Schema

hiding operators, e.g. EnterNewCopy =̂ ∃ c? : Copy | c? ̸∈ dom stock • ToStock where

ToStock is an operation).

Similar to reqCheckInvoice, the operations reqCheckCustomer and reqUpdateAccount , re-

spectively, generate requests to check a customer, and update customer accounts, and send

them through the network interface using the operation send .

reqCheckCustomer
ΞnetComTemp
∆netInterface
id? : Identifier

id? ∈ dom reqCustomers
∃ req : Request • send(id?, req)

reqUpdateAccount
ΞnetComTemp
∆netInterface
id? : Identifier

id? ∈ dom reqTransactions
∃ req : Request • send(id?, req)

107

At this stage, when necessary, one may consider to improve the original UCM by adding

to it, the three operations described previously (as the double-headed arrows in Figure 5.1,

Chapter 5 suggests). For example, they may be added as responsibility points before or after

calculating their preconditions.

The general form of the schema calculus expression that defines the operations related to a

timer, was given (in Chapter 5, on page 82). The formula is:

(schemaRin ∧ blockTimer) o
9 ((schemaCin ∨ schemaTout) ∧ release) o

9 schemaRout

The schema schemaRin describes operations performed by the system, immediately before

sending a request and activating the timer. In the case of the present UCM, this operation

may be omitted because no such operation is performed by the plug-in.

blockTimer was given as: blockTimer = block ∧ setup with block and setup defined as:

block
∆Timer
id? : Identifier

opened = true ∧ waitingId ′ = id? ∧ opened ′ = false

This operation is allowed when the timer is opened. The identifier associated to the request

is passed to the variable waitingid , and the timer is blocked (opened ′ = false).

setup
∆Timer
time? : N

time? > 0 ∧ maxtime ′ = time?

This schema specifies an operation to attribute a value to the maximum waiting time vari-

able, maxtime.

The schema calculus expression schemaCin, is constructed from the operations that de-

scribe the reaction of the system when an event occurs on the clearing path (see Chapter 5).

Such an event reaches the plug-in, via the binding relationship ⟨In4, S4⟩ (see Section 6.2,

Page 95). In this particular case, the operation s4, associated with the start point, is per-

formed to temporarily maintain the input data provided by the environment. The operation

respond described below, is performed to allow the timer to be unblocked.

108

respond
Ξtimer
id? : Identifier ; resp?, resp! : Message

id? = waitingId ∧ resp! = resp?

When the value of id? is the same as the one held in waitingId , the incoming message from

the network is made available to the user, and the timer is unblocked. Otherwise, the system

keeps on waiting.

The schema schemaTout (see equation 6.3.2) is intended to describe the reaction of the

system when a timeout event occurs. In the case of this system, the operation netFail is

performed to recover from the failure network. In practice this operation may become very

complex depending, for example, on the criticality of the problem under consideration. For

instance, a late response in a medical application system would not have the same impact

as in an ordinary emailing system. In this work, the netFail specifies a warning message for

the user.

netFail
ΞTimer
Resp! : Message

maxtime ≤ 0 ∧ resp! = Timeout

The operation release, unblocks the timer and makes it available. It follows a successful

execution of respond or netfail .

release
∆Timer
opened ′ = true ∧ waitingId ′ =⊥ ∧ maxtime ′ = 0

The schema schemaRout , from Equation 6.3.2, is meant to describe any operation performed

immediately after the timer is released. It may be omitted because, in the UCM in Figure

6.3, no explicit activity takes place on the main path, between the timer and the next path

element.

The schema expression for the timing operations becomes:

opTimer = blockTimer o
9 (((s4

o
9 respond)∨ netFail) ∧ release) (6.1)

The sending of requests may also be summarised as:

sendRequest = reqCheckInvoice ∨ reqCheckCustomer ∨ reqUpdateAccount (6.2)

109

where the schemas of the operations reqCheckInvoice, reqCheckCustomer and

reqUpdateAccount were defined above. The next three sections illustrate, respectively, the

influence of the path connectors: AND-fork, OR-join and AND-join in the Z description of

the operations of the system as modelled with the input UCM, in Figure 6.3.

The AND-fork

Because of the AND-fork connector (placed before the timer), a scenario is allowed to con-

tinue only after the sending of a request, as well as the timing operations, have both been

completed. That is, when the operation defined by the schema expression 6.3, is successfully

performed.

sendRequest ∧ opTimer (6.3)

The OR-join

This path connector allows scenarios to share the path segment placed after it. A generic

operation schema, that includes the effect of an OR-join path element, in combination with

the operations along the incoming and outgoing path segments, was given in Chapter 5 by

the schema expression:

(Op11∨Op12) o
9 Op2 (6.4)

Where Op11, Op2 and Op2 respectively describe operations on the first and second incoming

path segments, and the operation on the outgoing path segment (see Figure 5.3). With the

input UCM (Figure 6.3), there are three incoming path segments, and the only operations

bound to them are those that were described to handle triggering events on start points

S1, S2 and S3. Hence, in line with Guideline # 110 of the framework in Chapter 5, in this

transformation process toward the construction of the sequence of activities performed along

paths, the expression 6.4 may therefore be instantiated to:

(s1∨ s2∨ s3) o
9 ((sendRequest ∧ opTimer) o

9 op) (6.5)

The Schema expression op, describes the operations performed when the Timer is released.

The composite activities SendRequest and opTimer were respectively defined with the for-

mulas 6.1 and 6.2. Although the schema calculus expression in 6.5 illustrates the influence of

the path connector on the system operations along paths, further consideration may be made

when defining an individual operation, on the outgoing path segment. When necessary, in

the predicate part of the control module, or in operation encountered on the outgoing path

segment, a disjunct clause, or an if/then/else statement, should be included to enable the

system to distinguish which scenario is in progress along a shared path.

110

The OR-fork

This path connector is placed immediately after the timer, and before the AND-fork (see

Figure 6.3. It allows the execution of a scenario to follow one of the two outgoing paths

depending on whether the current request is to validate an invoice, or a customer’s account.

As in the case of the OR-join above, the generic schema expression 6.6 below, and suggested

in Chapter 5, illustrates the influence of the path elements on the structuring of the sequence

of system operations along paths.

Op1 o
9 (Op11∨Op12) (6.6)

The schema Op1 specifies all the operations in the incoming path segment, and the schemas

Op11 and Op12 each specify the operations along an outgoing path segment. Referring to

the input UCM in Figure 6.3, in line with Guideline # 110 of the proposed framework in

Chapter 5, this would therefore extend the schema expression in 6.5, to includes Op11 and

Op12:

(s1∨ s2∨ s3) o
9 ((sendRequest ∧ opTimer) o

9 (Op11∨Op12)) (6.7)

The two operations Op11 and Op12 are described in subsequent sections.

The AND-join

This path connector is the last element, before the end-points E2 and E3 (see Figure 6.3). It

influences the system only when returning or replacing an item. It helps to ensure that both

the invoice, and customer, have been successfully validated before the system can continue

to the end point E3. When paying a credit, the scenario progresses directly to the end-point

E2. Because this connector impacts two instances of the same plug-in (one that checks the

invoice, and the other that checks the customer), its effect would be reflected in the predicate

part of the control operation, for example in the form of a conjunct clause.

In line with Guideline # 18 of the framework given in Chapter 5, and Section 5.4, schemas

for the operations associated with the end-points (see Figure 6.3) are defined next.

End-points

As in the case of start points, the name of an operation associated to an end-point remains

the same, but in lower case. In this work, the main purpose of those operations is to illustrate

their roles in a specification, as suggested in Chapter 5.

The operation associated with the end-point E1 is described as:

111

e1
ΞnetComTemp
id? : Identifier ; resp! : Message

id? ∈ dom reqInvoices ∧ resp! = RequestSentToValidateInvoice

∨
id? ∈ dom reqCustomers ∧ resp! = RequestSentToValidateCustomer

∨
id? ∈ dom reqTransactions ∧ resp! = RequestSentToUpdateAccount

∨
resp! = UnknownRequestId

Depending on the type of a request sent over the network, the operation issues an appropri-

ate message to the user. The variable id? contains the identifier of the request sent.

At the end-point E2 (see Figure 6.3), the system must successfully have validated an invoice

in order to pay a credit. The operation associated with this point removes from the abstract

state space netComTemp all the information related to the completed request, and specifies

a message that may be interpreted as a signal to allow the active scenario, to continue.

e2
∆netComTemp
id? : Identifier ; resp! : Message

reqCustomers ′ = id?−▹ reqCustomers ∧ reqResponses ′ = id?−▹ reqResponses
resp! = CustomerOk

The input variable id? contains the identifier of the request that was processed. The predi-

cate part indicates that any information related to id?, is removed from the system.

The end-point E3 may be reached when both the invoice and the customer involved have

been successfully validated, and the operation accepted (see the responsibility point named

AcceptOp in Figure 6.2) by the beneficiary agency.

e3
∆netComTemp
idi?, idc? : Identifier ; resp! : Message

reqInvoices ′ = idi?−▹ reqInvoices ∧ reqResponses ′ = idi?−▹ reqResponses
reqCustomers ′ = idc?−▹ reqCustomers ∧ reqResponses ′ = idc?−▹ reqResponses
resp! = OperationAccepted

The operation removes from the state space netComTemp, all information related to the

input identifiers (idi? and idc?), and specifies a message to report on its success.

112

In the light of Guideline # 19, in Chapter 5, the next section illustrates the implicit operation

of the UCM abstract component, Process (see Figure 6.3).

The UCM component: Process

The UCM active component “process” plays an important role in the overall functioning of

the system. It coordinates the execution of the operations in the system. To make such

an operation visible, a control module was suggested in Chapter 5, page 87 based on the

suggestion of van der Poll and Kotzé [91, 93]. To save space, the Z specification of this

operation is not presented; its Object-Z specification is presented in Section 6.3.2.

In line with Guideline # 111 of the framework in Chapter 5, that suggests creating a meta-

class for each UCM component, the following section defines such meta-classes.

Meta-classes

Due to the fact that the input UCM, contains only one abstract component (see Figure 6.3),

only one meta-class is generated with the name, ClsRequest ; a detailed description of this

class is not discussed at this stage.

A number of cases were presented in (Chapter 3, Section 3.4.4) to illustrate how precon-

ditions for partial operations may be calculated. To save space, preconditions will not be

calculated in this chapter. However, to accommodate Guideline # 21 of the framework sug-

gested in Chapter 5, one example of such a calculation is presented in the following section,

to illustrate the implementation of the framework.

Calculating preconditions

The precondition for the operation reqCheckInvoice is calculated, and the total operation

derived from it.

The precondition is defined as:

Define pre reqCheckInvoice =̂ preReqCheckInvoice and the schema is:

113

preReqCheckInvoice
netCompTemp; netInterface
id? : Identifier

∃ req : Request , reqToFoward ′ : Identifier 7� Request •
id? ∈ dom reqInvoices
reqToFoward ′ = reqToFoward ∪ {id? 7→ req}

The after state variable reqToFoward ′ is existentially quantified. To simplify this schema,

its predicate part is written in a textual form:

(∃ req : Request , reqToFoward ′ : Identifier 7� Request) •
1. id? ∈ dom reqInvoices

2. reqToFoward ′ = reqToFoward ∪ {id? 7→ req}

By applying the One-point Rule, the existentially quantified variable reqToFoward ′, is given

an exact value. It may thus, be removed, to remain only with the condition in line #1. The

predicate id? ∈ dom reqInvoices, is therefore the precondition of the operation.

Negating the precondition yields the predicate id? ̸∈ dom reqInvoices which is the precondi-

tion of the operation in case of an error, for which the schema is defined as followed:

reqCheckInvoiceFailed
ΞnetComTemp
id? : Identifier ; rep! : Message

id? ̸∈ dom reqInvoices ∧ resp! = Failed

In line with the Guideline # 22, Chapter 5, the total operation is:,

reqCheckInvoice =̂ reqCheckInvoiceOk ∨ reqCheckInvoiceFailed . (6.8)

To complete the transformation of the input UCM, Object-Z classes (including meta-classes)

are described next, in respect of Guideline # 23 of the UCM transformation framework (see

Chapter 5).

The Object-Z class schemas

In the previous sections, the Z specification of the plug-in (Figure 6.3) was presented. In this

section, class schemas corresponding to the Object-Z transformation of the Z schemas are

described. The transformation process requires each abstract state schema of Z, to become

a class schema (Periyasamy and Mathew [68]). Such a class encapsulates the Z operation

114

schemas that operate on the state space. Wherever a meta-class is likely to encapsulate a

state space, the class resulting from that same state space, is simply ignored. The two classes

will be redundant since they encapsulate the same state, and the same set of operations that

operate on it. As Z schemas were previously described, further explanations will be given

only, where changes have occurred due, for example, to the transformation. First the class

schema ClsTimer , generated from the abstract state schema Timer , is defined.

ClsTimer

�(block , setup, respond , release, netFail , INIT)
opened : Boolean
waitingId : Identifier
maxtime : N

opened = true ⇒ waitingid = ⊥ ∧ maxtime = 0

INIT
opened = true
waitingid = ⊥
maxtime = 0

block
∆(opened ,waitingId)
id? : Identifier

opened = true ∧ waitingid = id? ∧ opened ′ = false

release
∆(opened ,waitindId ,maxtime)

opened ′ = true ∧ waitingid = ⊥ ∧ maxtime ′ = 0

setup
∆(maxtime)
time? : N

time? 0 ∧ maxtime ′ = time?

respond
id? : Identifier ; resp?, resp! : Message

id? = waitingId ∧ resp! = resp?

netFail
resp! : Message

maxtime ≤ 0 ∧ resp! = Failed

115

All the operations of this class are made accessible from the environment, especially to allow

the UCM component, namely, process (see Figure 6.3) to control the activities of the Timer.

The description of specific components and operations within the class remain unchanged

compared to the Z version, except that in Object-Z, only one unnamed state schema is al-

lowed in a class. The ∆ operator, in an operation schema, applies to the list of variables that

are changed by the operation, and the Ξ operator is ignored (see Duke and Rose [26], Smith

[77]).

The next schema describes the class generated from the state schema netInterface. Be-

cause netInterface itself includes another state schema, the class for the internal schema,

namely ClsInterface, is first presented.

ClsInterface

reqToForward : Identifier 7� Request
reqToReceive : Identifier 7� Request

INIT
reqToForward ′ = ∅
reqToReceive ′ = ∅

The Class ClsInterface, does not make any of its components accessible from outside. Its

purpose is to facilitate the construction of the class ClsNetInterface, presented next.

ClsNetInterface

�(INIT , send)
ClsInterface

(∀ id : Identifier ; req : Request • id 7→ req ∈ reqToReceive)

(∃1 net : ClsInterface | id ∈ dom net .reqToFoward)

send
∆(reqToForward)
id? : Identifier ; req? : Request

reqToFoward ′ = reqToFoward ∪ {id? 7→ req?}

netReceive
∆(reqReceive)
id? : Identifier ; req? : Request

let net : ClsNetInterface | id? ∈ dom net .reqToFoward •
reqToReceive ′ = reqToReceive ∪ {id? 7→ req?}

116

The operations send and netReceive are accessible externally. The class extends ClsInterface

to include a constraint on the set of requests received from other companies. The operation

netReceive updates the component reqToReceive with a new request that arrives from an-

other agency.

The class ClsNetComTemp is:

ClsNetComTemp

�(reqInvoices, reqCustomers , reqTransactions , reqResponses ,
reqCheckInvoices , reqCheckCustomer , reqUpdateAccount ,Response)

forward =̂ [network? : ClsNetInterface] • network .send

reqInvoices : Identifier 7� Invoice × Address
reqCustomers : Identifier 7� Customer × Address
reqTransactions : Identifier 7� Customer ×Money × Address
reqResponses : Identifier 7→ Message

dom reqInvoices ∩ dom reqCustomers = ∅
dom reqInvoices ∩ dom reqTransactions = ∅
dom reqCustomers ∩ dom reqTransactions = ∅
dom reqResponses ⊆ dom reqInvoices ∪ dom reqCustomers ∪

dom reqTransactions

INIT
reqInvoices = ∅ ∧ reqCustomers = ∅
reqTransactions = ∅ ∧ reqResponses = ∅

reqCheckInvoice
id? : Identifier

id? ∈ dom reqInvoices
∃ req : Request • forward(id?, req)

reqCheckCustomer
id? : Identifier

id? ∈ dom reqCustomers
∃ req : Request • foward(id?, req)

reqUpdateAccount
id? : Identifier

id? ∈ dom reqTransactions
∃Request • forward(id?, req)

117

This class derives from the Z state space netComTemp. It defines the operation forward in

terms of the send operation of ClsNetInterface, making it usable within the class ClsNetComTemp.

The definition of forward requires the environment to provide an object of ClsNetInterface,

from which the operation send is promoted (more insight on promoting Object-Z operations

may be found in the books by Duke and Rose [26] and Dunne [28]). Other operations of

the class use the promoted operation to send requests over the network. Those operations

do not include the ∆ operator, because the state of the network interface is not directly

accessible from outside, and is therefore updated through the promoted operation.

Next the meta-class, ClsRequest , previously introduced, is defined more comprehensively.

It inherits variables from the class of variables ClsGlobalVariables , and properties from two

other classes: ClsTimer and ClsNetComTemp. The two classes StartPoints and EndPoints

are also included even though they are not described in detail. The class StartPoints en-

capsulates all the Z schemas to the start-points, and the class EndPoints groups all the Z

schemas associated to all the end-points. The class ClsRequest defines by promotion, the

operations endCheckInvoice and endCheckCustomer as well as three blocks of composite

operations that are explained in subsequent paragraphs.

ClsRequest
�(s1, s2, s3, s4)
ClsGlobalVariables
ClsTimer
ClsNetComTemp
StartPoints
EndPoints

endCheckInvoice =̂ [∃ id ∈ (dom reqCheckCustomer) ∩ (dom reqResponses) |
idScenario(id) = idScenario(id1?)] • e3(id1?, id)

endCheckCustomer =̂
[idScenario(id2?) = scenePayCredit] • e2(id2?)

∨
[∃ id ∈ dom reqCheckInvoice ∩ dom reqResponses |
idScenario(id) = idScenario(id1?)] • e3(id , id2?)

Activity #1

[id1? : Identifier , inv? : Invoice, ad? : Address] • s1 o
9

reqCheckInvoice(id1?) o
9 e1(id1?) ∧ (block ∧ setup)

o
9

((s4 o
9 respond)∨ (netFail o

9 e123b)) ∧ release) o
9 endCheckInvoice

118

Activity #2

[id2? : Identifier , cust? : Customer , ad? : Address] • s2 o
9

{(reqCheckCustomer(id2?) o
9 e1(id2?)) ∧ (block ∧ setup)

o
9

((s4 o
9 respond)∨ (netFail o

9 e123b)) ∧ release} o
9 endCheckCustomer

Activity #3

[id3? : Identifier , cust? : Customer , amnt? : Money , ad? : Address] • s3o
9

reqUpdateAccount o
9 e1

The operation endCheckInvoice terminates the validation process of an invoice. It uses

the scope enrichment operator • (see Chapter 2) to promote the operation e3. When

the condition imposed by the AND-join element, described above, is reinforced, at this

stage, the customer was thusable to be successfully validated. The system determines the

identifier id , which is used by the operation e3, to terminate the appropriate scenario.

The other parameter id1?, is the identifier of the request that is used (in the compos-

ite operation labeled Activity #1) to validate the corresponding invoice. The condition

idScenario(id) = idScenario(id1?) ensures that the two requests referenced by id and id1?

are linked to the same scenario. This operation aims to shorten the expression of Activity

#1

Similarly to endCheckInvoice, the operation endCheckCustomer terminates the validation

process of a customer. It is a composite operation that acts according to the scenario in

execution. It either promotes the operation e2 when the customer is paying a credit, or

acts like the operation endCheckInvoice, when returning or replacing a purchased item. To

reinforce the effect of the AND-join connector, it ensures that both the customer and invoice

involved are successfully validated. The identifier id2? was provided by the environment

when triggering the start-point S2 (see block of Activity #2), and identifies the request

used to validate the customer. This operation aims to shorten the expression of Activity

#2.

The three main activities of this sub-system are the following:

1. Activity #1

This composite operation describes the reaction of the system, when the start-point S1

is triggered to initiate the validation of an invoice.

2. Activity #2

This operation describes the sequence of activities performed by the system when the

119

start-point S2 is triggered to initiate the validation of a customer.

3. Activity #3

This schema expression defines the sequence of activities that the system performs in

reaction to the triggering of the start-point S3, to update a customer’s account.

In the definition of the class ClsRequest , the labels listed above are merely text comments

used to reference the expression of the composite operations placed below them. The para-

graph that follows explainsActivity #1 so that the two others may be similarly understood.

Recall from the previous discussion on partial operations, that the reason to trigger the

start-point S1, is to initiate the validation of an invoice. For such a triggering event to

succeed, the environment provides appropriate information to render the operation s1 ap-

plicable. In the expression of the composite operation, the scope enrichment operator (•) is
introduced to make it possible to indicate that a request identifier id1?, the invoice to be

validated inv?, and the address ad? of the agency to which the request is to be forwarded,

are the information required from the environment, to enable start the validation process.

The activities of the system involve:

1. Handling the triggering event with the operation s1,

2. Requesting, with the identifier id1, the validation of the input invoice, block and set-up

the timer, with an appropriate maximum waiting time as indicated by the expression

below:

(reqCheckInvoice(id1?) o
9 e1(id1?)) ∧ (block ∧ setup)

At the level of this sub-system, the sending operation terminates at the end-point E1

(see the UCM in Figure 6.3), hence, the operation e1 associated with the end-point

immediately follows the operation send .

3. Waiting for the start-point S4 (Figure 6.3) to be triggered, indicating the availability of

a response, therefore the operation Respond is performed.

s4 o
9 respond

Or waiting for a timeout event to occur indicating a failure; when the process fails, the

system reacts by performing netFail and the progression of the scenario is terminated at

E123b with the operation e123b associated.

netFail o
9 e123b

At that point, either a response is received, or a timeout has occurred, the timer is released

and the whole validation process is terminated (see earlier discussion on the operation

enCheckInvoice).

120

As discussed earlier in this chapter (see Section 6.2), the plug-in for which the Object-Z

transformation has just been completed in this section, has the responsibility to forward

requests from one agency, to another, using the network support. The other two plug-ins in

figures 6.4 and 6.5, respectively, handle those requests from the network aiming to validate

invoices and customers. Thus, continuing with the Z and Object-Z specification of the input

UCM (Figure 6.1), the following two sections focus on the remaining two plug-ins. Due to

the reason that neither of the two sub-maps include new UCM elements that have not yet

been discussed previously, for brevity, some steps of the transformation process are omitted.

Only the resulting Object-Z classes are discussed here.

6.3.3 Applying the framework to the Plug-in to validate invoices

(Figure 6.4)

As mentioned previously, the Z transformation of the sub-map in Figure 6.4 is not presented.

This section describes two class schemas:ClsLocalSales and ClsCheckInvoices that repre-

sents the Object-Z specification resulting from the transformation of the diagram in Figure

6.4.

1- The class ClsLocalSales describes objects that interface with the local sales system (Figure

3.2 shows the sub-system layout). It makes accessible to the environment the functions

findInvoice and findAccount , and is not included in either of the two plug-ins. Instead,

it provides two functions to help them query a local sales system of an agency when

validating an invoice or a customer.

ClsLocalSales

�(findInvoice, findAccount)
invoices : Invoice 7→ Customer
customers : Customer 7→ Account

dom invoices ⊆ ran customers

INIT
invoices = ∅ ∧ customers = ∅

findInvoice
inv? : Invoice; resp! : B

inv? ∈ dom invoices ∧ resp! = true

∨
resp! = false

121

findAccount
cust? : Customer ; resp! : B

cust? ∈ dom customers ∧ resp! = true

∨
resp! = false

The operation findInvoice checks the availability of an input invoice in the local sales

system. A boolean value is used to specify a message returned to the user to indicate

whether the invoice is in the system, or not. The operation findCustomer acts in a similar

way as findInvoice relative to customers.

2- The class ClsCheckInvoice checks invoices responding to remote requests. Its state defines

a set of requests. The variable out12 indicates whether or not the validation has succeeded

and hence, guides further decisions to be taken. An object of the class may be initialised

from the system environment, with the operation INIT .

ClsCheckInvoice

�(INIT , s1, out12)

out12 : B
requests : Identifier 7� Invoice

INIT
requests = ∅ ∧ out12 =⊥

s1
∆(requests)
id? : Identifier ; inv? : Invoice

requests ′ = requests ∪ {id? 7→ inv?}

e11
∆(requests)
id? : Identifier ; resp! : Message

requests ′ = {id?} −▹ requests ∧ resp! = UnknownInvoice

e12
∆(requests)
id? : Identifier

requests ′ = {id?} −▹ requests

122

ChkInv =̂ [view? : ClsLocalSales] • view?.findInvoice(inv , out12)

[∃(id , inv) ∈ requests | requests ̸= ∅] • ChkInv o
9

[¬ out12] ∧ e11

∨
[out12] ∧ e12

The operation s1 is awaken to keep a new request in the system each time the start-point

S1, is triggered with an appropriate identifier associated to the request. The two opera-

tions e11 and e12, respectively associated with the end-points E11 and E12 of the plug-in

(Figure 6.4), are defined to terminate the validation process of an invoice. The class also

uses the scope enrichment operator to define the operation ChkInv . The environment

provides the object view? of the class ClsLocalSales , for which, the operation findInvoice

is put forward to be used locally as ChkInv , to validate invoices. The last expression

describes the reaction of the system against the set of incoming requests. One request is

selected from the list, and checked with the operation ChkInv . Depending on whether

the validation has failed [¬Out12] or not, the system continues to the end-point E11 or

E12.

Similarly, the next section presents the single class that results from the Object-Z transfor-

mation of the plug-in to validate, a customer.

6.3.4 Applying the framework to the Plug-ins to validate cus-

tomers (Figure 6.5)

The only Object-Z class schema resulting from the diagram in Figure 6.5 is the class

ClsCheckCustomer . The definition of the class ClsCheckCustomer is very similar to that

of ClsCheckInvoice, in the sense that both include in their state, a set of incoming requests

and inherit operations from the class ClsLocalSales to query the local sales system of an

agency. This classes validates customers and forwards the requests to update a customer’s

account to the end-point E23 (see Figure 6.5). The component out345 indicates the result

of actions taken within the class, and aims to guide further decisions. The possible values of

the component are:

1. out345 = 3: indicates that the validation of the current customer has failed, and the

end-point E21 is reached;

2. out345 = 4: indicates that the validation of the current customer has succeeded and

the end-point E22 is reached, or

123

3. out345 = 5: indicates that the current request is to update the customer’s account,

and the end-point E23 is reached.

The end-points E21, E22 and E23 are those on the UCM of Figure 6.5. The operation s2

adds a new request into the set of pending requests each time the start point S1 is triggered.

ClsCheckCustomer

�(INIT , s2, out345)

out345 : N
requests : Identifier 7� Customer

out345 ̸=⊥⇒ out345 ∈ {3, 4, 5}

INIT
requests = ∅ ∧ out345 = ⊥

s2
∆(requests)
id? : Identifier , cust? : Customer

requests ′ = requests ∪ {id? 7→ cust?}

e21
∆(requests)
id? : Identifier ; rep! : Message

requests ′ = {id?} −▹ requests ∧ rep! = UnknownCustomer ∧ out345 = 5

e22
∆(requests)
id? : Identifier

requests ′ = {id?} −▹ requests ∧ out345 = 3

e23
∆(requests)
id? : Identifier

requests ′ = {id?} −▹ requests ∧ out345 = 4

ChkCust =̂ [view? : ClsLocalSales ; resp! : B] • view?.FindAccount(cust , resp!)

[∃(id , cust) ∈ requests ; op? ∈ {check , update} | request ̸= ∅] •
if op? = check then ChkCust o

9 (([¬ resp!] ∧ e21)∨ ([resp!] ∧ e22))

∨
if op? = update then e23

124

The operations e21, e22 and e23 are, respectively, associated to the end-points E21, E22

and E23, and are activated each time the end-point is reached. The class also defines

ChkCust to promote the function findAccount of ClsLocaleSales . The last expression uses

the scope enrichment operator (•) to describe the sequence of actions taken by the

plug-in to react whenever there are pending requests. The first expression of the operator

[∃(id , cust) ∈ requests ; op? ∈ {check , update} | request ̸= ∅] indicates that the system

selects a pending request, and the environment provides a value to the input parameter op?,

to indicate the nature of the action needed. The expression at the right side of the operator,

indicates the sequence of actions taken by the system depending on whether the request is

to validate a customer (op? = check), or to update a customer’s account (op? = update).

At this point, the transformation of the three plug-ins resulting from the break-down of

the initial input UCM (see Figure 6.6) is completed. In the next section, the Object-Z

transformation of the stubbed map, namely, main map is presented .

6.3.5 Applying the framework to the main UCM

Traversing the main UCM in Figure 6.2 from left to right, reveals that the map includes

hierarchical structured abstract components and stubs. Those UCM elements taken together

with the sub-maps or plug-ins, (treated in the previous sections), model the envisioned sys-

tem. Figure 6.7 illustrates the hierarchical structuring of those components.

Network Beneficiary

Check_point Update_point

Helper

InitChecking Pay_point Transit_point

Cashier Store

Figure 6.7: The hierarchical structuring of components in the stubbed UCM

A component at a higher level of the hierarchy, serves as a container for those at the next

lower level attached to it by means of directional arrows. As suggested in the framework (Sec-

tion 5.4, Chapter 5), during the transformation process, a bottom-up strategy is adopted.

To accommodate the Guidelines # 11 and # 12 of the framework, components at the lowest

125

level are considered first, followed by those at the next higher level, until the ones at the

highest level are considered.

The structuring (in Figure 6.7) of the main UCM (in Figure 6.2), reveals the two major

roles played by the system in an agency:

(a) Helper role

The system plays a “helper” role whenever the agency, in which it is operating, assists a

customer of another agency, aiming to achieve one of the three user requirements listed

in the case study (see Chapter 3). In that case, the operations needed are provided by

the UCM components encompassed by the abstract component, namely, Helper (see

Figure 6.2), or connected to it, in Figure 6.7, (by means of the arrows).

(b) Beneficiary role

The system plays a “Benefiary” role whenever the agency, in which the system is op-

erating, collaborates remotely with the agency that is helping its customer. In that

case, the operations needed are provided by the UCM components encapsulated in the

component, namely, Beneficiary (see Figure 6.7), or connected to it, in Figure 6.7),

(by means of the arrows).

The communication between a Helper and a Beneficiary is conducted via the services of a

network component, which is assumed to be external to the system. However, the commu-

nication interfaces are part of the system, since they are necessary to enable the use of the

network. Each UCM component contained in one of the two abstract components at the

highest level of hierarchy in Figure 6.7, may request the services of the network. For exam-

ple, the component “Helper” uses the UCM stub element to control and monitor network

connections. The UCM paths joining the stub and other abstract components (see Figure

6.2) indicate a network communication involving those components.

As discussed in the previous sections, the stubs included in this main map (in Figure 6.2)

are:

• A static stub, to which is bound the Plug-in, to forward requests (Figure 6.3), and

• A dynamic stub, to which are associated the plug-in to validate invoices, (Figure 6.4)

and the plug-in to validate customers (Figure 6.5).

A stub in a UCM represents a place where the service of a sub-map (plug-in) is needed. In

Chapter 5, Guideline # 14 of the UCM transformation framework, as well as Section 5.3

(relating the static and dynamic stub concepts of UCM to Z schemas) were proposed to assist

126

the Z specification of a binding relationship, between a stub and its plug-in(s). For brevity,

the step-by-step Z transformation of the main map is not presented in detail. However, Table

6.1 is constructed to indicate the list of the Z abstract state schemas generated. For each

schema, the UCM element, from which the schema was derived, is also shown. Similarly,

Table 6.2 is constructed to show the list of the Z partial operations generated.

The step-by-step application of the transformation process was implemented in the previous

sections when generating the Z and Object-Z versions of the sub-maps in figures 6.3, 6.4 and

6.5. Therefore, repeating the same details for the main map or similar UCM elements will

certainly increase the size of this dissertation, but may not provide any new insight. Hence,

for the Z and Object-Z specification of the main UCM, only results are presented (details

pertaining to the transformation process are not shown).

The next section presents in a tabular form, the list of the abstract state schemas generated.

Summary of Z state schemas

As mentioned above, the list of state schemas resulting from the Z transformation of the

stubbed UCM is presented. Each schema is associated with the UCM elements from which

the Z schema was generated. The type of the UCM element is also presented, to show

that the Z elements were generated on the strength of the proposed guidelines (Section 5.4,

Chapter 5). An abstract state schema associated with a UCM element, encapsulates the

properties of the system that is under the control of the UCM element.

State schema UCM element Type of Element

stateInitChecking InitChecking process component

stateCashier Cashier object component

statePayPoint Pay point team component

stateInStore Store object component

stateTransitPoint Transit point team component

stateHelper Helper team component

stateCheckPoint Check point team component

stateUpdatePoint Update point team component

stateBeneficiary Beneficiary team component

Table 6.1: List of the Z abstract state schemas

In accordance with Guideline # 12 of the framework (in Section 5.4, Chapter 5), each state

127

schema derived from a UCM team component that contains other components, includes

the schemas generated from the integral components. For example, the schema named

statePayPoint , includes the state schema stateCashier , which is in turn encapsulated in the

stateHelper , that also includes stateInitChecking , and StateTransitPoint .

The list of meta-classes is presented next.

Meta-classes generated from Main UCM

The list of the meta-classes pertaining to the idea of creating a meta-class for each UCM

active component (see Guideline # 111, Chapter 5) are listed below:

• ClsInitChecking , derived from the component InitChecking

• ClsPayPoint , derived from the component Pay point

• ClsTransitPoint , derived from the component Transit point

• ClsCheckPoint , derived from the component Check point

• ClsUpdatePoint , derived from the component Update point

• ClsHelper , derived from the component Helper and

• ClsBeneficiary , derived from the component Beneficiary .

Meta-classes are not associated to Object components, as those componens do not have con-

trol over the tasks they perform. Detailed descriptions of meta-classes are presented later in

this chapter.

Next, the list of the Z partial operations generated from the stubbed UCM is shown in

a tabular form.

Summary of Z partial operations

Following the suggestion of Potter et al. [70] wherein the idea was put forward that:

“It is useful to give a summary of what is discovered in a table, showing for each opera-

tion its inputs, outputs and preconditions.”

A non-conventional way of presentation follows. Without intending to change the stan-

dard way of presenting Z partial operations, in Table 6.2, in place of preconditions, a prose

128

text description to indicate the purpose of the operation is shown. Formal definitions of

some of the operations are discussed in the forthcoming section, where Object-Z classes that

encapsulates them, are presented.

Operation Inputs and Outputs Purpose

item? : Item

s1 invoice? : Invoice Starts a scenario

customer? : Customer to return an item

agency? : Agency

item? : Item

s2 invoice? : Invoice Starts a scenario to

customer? : Customer replace an item

agency? : Agency

s3 customer? : Customer Starts a scenario to

agency? : Agency pay a credit

item? : Item

invoice? : Invoice Prepares a request to be sent

initCheckInvoice agency? : Agency over the network to check

resp! : Identifier × Invoice the validity of an invoice

×Address

cust? : Customer Prepares a request to be sent

initCheckCustomer agency? : Agency over the network to check

resp! : Identifier × Invoice the validity of a customer

×Address

cust? : Customer

payCredit amnt? : Money Handles a customer’s payment

agency? : Agency at a cashier

date? : Date

cust? : Customer

agency? : Agency Transfers a payment into

allocTransaction date? : Date a specific account

resp! : Identifier × Customer

×Money × Address

cust? : Customer

storeItem item? : Item Keeps a returned item

inv? : Invoice in a store before shipping

date? : Date

129

item? : Item Ships a returned item

shipItem date? : Date to the provider

inv? : Invoice Provider allows a return or replace

acceptOp resp! : B operation to continue or not

item? : Item

item? : Item

receivItem inv? : Invoice Provider receives a shipped item

from? : Agencyid

amount? : Money Provider updates a customer’s

updateCustAcc custAcc? : Account account to reflect a payment or

resp! : Message the value of a returned item

e12a inv? : Invoice Terminates a scenario when

resp! : Message the invoice is not valid

Terminates a scenario when

e12b inv? : Invoice provider of a returned item

resp! : Message does not allow the operation

Terminates a scenario when

e123a cust : Customer customer does not have valid

resp! : Message account with the provider

deliverItm item? : Item Deliver a new Item to Customer

customer? : Customer to replace the returned one

refundCustomer amount? : Money Refund a customer for

customer? : Customer a returned Item

inv? : Invoice Successfully terminates a scenario

e1 item? : Item after customer is refunded for

resp! : Message a returned item

inv? : Invoice Successfully terminates a scenario

e2 item? : Item after a returned item is replaced

resp! : Message by the provider

amount? : Money Successfully terminates a scenario

e3 cust? : Customer to pay credit

resp! : Message

Table 6.2: Partial operations for the main UCM in fig.6.2

As suggested by the UCM transformation framework (see Guideline # 23, Chapter 5), the

130

following Section aims to complete the specification of Object-Z class schemas, generated

earlier in this section.

The Object-Z Class schemas

By applying the UCM transformation framework, proposed in Chapter 5, to the stubbed

UCM (in Figure 6.2), Object-Z class schemas are generated. Some derive from meta-classes

directly associated to UCM abstract components that may have control over the tasks they

perform; others are derived from the transformation of the Z abstract state spaces obtained

from the input UCM (see Chapter 4). Such a transformation was illustrated in Section

6.3.2, during the transformation process of the Plug-in to forward requests. The list of the

generated classes is:

Class name Derived from

01 ClsInitChecking meta-class

02 ClsCashier stateCashier

03 ClsPayPoint meta-class

04 ClsInStore stateStore

05 ClsTransitPoint meta-class

06 ClsHelper meta-class

07 ClsCheckPoint meta-class

08 ClsUpdatePoint meta-class

09 ClsBeneficiary meta-class

10 ClsMainStartPoints stateHelper

11 ClsMainEndPoints stateHelper

Table 6.3: List of OZ classes for the stubbed UCM

The task of the two classes ClsHelper and ClsBeneficiary generated, respectively, from the

UCM abstract components Helper and Beneficiary (see figures 6.7 and 6.2), is to monitor

(through the mechanism of inheritance) the activities of the other classes generated from

the UCM components, or elements that they encapsulate. A complete description of those

two classes may be valuable to show how the UCM transformation framework, (which is

one of the main contributions of this dissertation), can be applied to connect static and

dynamic stubs to the corresponding sub-maps. Note that a complete development of the

other classes may not be so important, since similar classes have already been developed in

131

previous sections.

In Figure 6.2, by following a UCM path from the start-point S1 or S2 to the end-point

E1 or E2, it appears that a complete scenario, for returning or replacing a purchased

item, can be traced, by considering the classes ClsInitChecking , ClsTransitPoint , ClsHelper ,

ClsCheckPoint , ClsUpdatePoint , and ClsBeneficiary . For the reasons stated in the above

paragraph, only the classes ClsHelper and ClsBeneficiary are fully described. The other four

classes are partially described: the predicate part of some operations are not presented here.

The rest of the classes listed in Table 6.3 are not presented.

Next, the Class ClsInitChecking is defined.

The class ClsInitChecking

The purpose of this class is to prepare requests to be sent over the network to check an invoice

or a customer. The class ClsInitChecking is the comprehensive version of the meta-class, ob-

tained from the abstract component named InitChecking . It inherits variables from the class

ClsGlobalVariables (see Section 6.3.1) and properties from the class ClsMainStartPoints ,

(which is not defined here, as mentioned above).

This class encapsulates two operations, initCheckInvoice and initCheckCustomer , to ini-

tialise a request to check respectively, an invoice or a customer, and generate an identifier

for the request. Its schema is shown next followed, by further explanations.

ClsInitChecking

�(INIT , initCheckInvoice, initCheckCustomer)

ClsGlobalVariables

ClsMainStartPoints

initCheckInvoice
item? : Item; inv? : Invoice; agency? : Agency
resp! : Identifier × Invoice × Address

(item, inv?, cmpy?) ∈ dom items
(∃ id : Identifier) • resp! = (id , inv?, addressOf (agency?))

initCheckCustomer
cust? : Customer ; agency? : Agency
resp! : Identifier × Customer × Address

(cust?, agency?) ∈ dom customers
(∃ id : Identifier) • resp! = (id , cust?, addressOf (agency?))

This class keeps temporary information on a scenario, as long as the scenario is in progress.

132

The component that holds temporary information is inherited from the class ClsMainStartPoints

and comprises three records:

scenarios : F Scenario, which defines the finite set of active scenarios;

items : Item × Invoice × Company 7→ Scenario, which defines the set of items to be re-

turned or to be replaced, depending on the scenario under consideration.

Each element of the set is composed of: an item; an invoice (which is the proof of purchase

of the item); and the agency where the item was purchased;

customers : Customer × Agency 7→ Scenario defines the set of customers whose requests

are being processed.

A record is maintained in items or customers only as long as the scenario for which it

was created remains active. Initially, the component is assumed to be empty.

The precondition for the operation initCheckInvoice requires the triple elements formed

by the values of the input variables item?, inv? and agency? to be mapped, in the temp file,

to a scenario in progress. The operation generates an identifier (that is output) together

with inv?, and the address of the target agency. The function addressOf is inherited from

ClsGlobalVariables .

The class ClsTransitPoint

The class ClsTransitPoint provides a complete version of the meta-class generated from

the UCM team component Transit Point , (that includes the UCM object element Store).

It temporarily keeps (in Store) items received from customers, and ships them to their

providers. It inclusively inherits the list of stored items, from the class ClsInStore, and

additionally contains the variable shippedItems , to record the set of items taken from the

store and shipped to the appropriate agencies. It is assumed that the system starts operating

with an empty list of items.

133

ClsTransitPoint

�(shippdItems , INIT , shipItem)

ClsInStore

shippedItems : Item 7→ Date

dom shippedItems ⊆ dom(dom storedItem)

INIT
shippedItems = ∅

shipItem
∆(shippedItems)
item? : Item; date? : Date

item? ∈ dom(dom(dom storeItems))
shippedItems ′ = shippedItems ∪ {item? 7→ date?}

The class inherits the operation storeItem from the class ClsInStore, and defines the opera-

tion shipItem, to perform the activity of transferring an item, from the store to the provider

of the item.

Next is the class that defines the activities of the sub-system, namele, Helper.

The class Helper

The class ClsHelper , is an update of the meta-class derived from the UCM component named

Helper, which normally represents a sub-system. The class specifies the chain of activities

performed by the sub-system for scenarios that are in progress.

ClsHelper

�(INIT , startFromS1, startFromS2, startFromS3)

plugin : ClsRequest

INIT
plugin.INIT

IN 1 =̂ [id? : Identifier ; inv? : Invoice; addr? : Address] • plugin.s1
IN 2 =̂ [id? : Identifier ; cust? : Customer ; addr? : Address] • plugin.s2
IN 3 =̂ [id? : Identifier ; cust? : Customer ; cash? : Money ;

addr? : Address] • plugin.s3

134

startFromS1 =̂ [item? : Item; inv? : Invoice; cust? : Customer ;
agency? : Agency ; checker : ClsInitChecking] •

(checker .s1 o
9 ((checker .initCheckInvoice

o
9 IN 1) ∧

(checker .initCheckCustomer o
9 IN 2))

o
9

[store? : ClsTransitPoint] • (store?.storeItem o
9 store?.shipItem)

startFromS2 =̂ [item? : Item; inv? : Invoice; cust? : Customer ;
agency? : Agency ; checker : ClsInitChecking] •

(checker .s2 o
9 ((checker .initCheckInvoice

o
9 IN 1) ∧

(checker .initCheckCustomer o
9 IN 2))

o
9

[store? : ClsTransitPoint] • (store?.storeItem o
9 store?.shipItem)

startFromS3 =̂ [cust? : Customer ; agency? : Agency ;
checker : ClsInitChecking] •

(checker .s3 o
9 (checker .initCheckCustomer o

9 IN 2)o9
[payer? : ClsPayPoint] • (payer?.payCredit ∧

payer?.allocTransaction)o9
payer .initUpdateCustomerAcc o

9 IN 3)

An object of this class has the important role of coordinating the sequence of operations

that may be performed within an agency, when acting as a Helper. It uses the variable

plugin (an object of the class ClsRequest), to inherit properties and methods from the class

ClsRequest (see Section 6.3.2), generated from the UCM sub-map (in Figure 6.3), connected

to the static stub.

The operations IN 1, IN 2 and IN 3 are specified to define input points to plugin. For each

input variable in the square brackets, each of those points is activated whenever a value is

provided (e.g. from the system environment). When those values are provided, for example,

for the IN 1, the start-point S1 of the plugin is triggered (plugin.s1), and the sequence of

activities within the plugin (see Section 6.3.2) that follows, are performed.

Each of the three operations startFromS1, startFromS2, and startFromS3 specifies a se-

quence of activities performed whenever any of the start-points (S1, S2, or S3) (see Figure

6.2), is triggered. For example, a scenario to return a purchased item, may commence if

a value is provided for each of the input variables in the square brackets, and an object of

the class ClsInitChecking is created. In that case, the operation s1 (Checker .s1), handles

the triggering event, to temporarily conserve the values for the input variables, for further

use. A request to check the invoice is prepared (Checker .initCheckInvoice) and submit-

ted via the input point IN 1. Concurrently, a request to check the customer is prepared

135

(Checker .initCheckCustomer), and submitted via the input point IN 2. As shown in the

above paragraph, IN 1 or IN 2 connects to the plugin, that controls the communication,

through the network. An object of the class ClsTransitPoint is required from, (or created

by), the system environment to temporarily keep (store?.storeItem) the input item in a store,

before shipping it (store?.shipItem) to the provider.

The construction of this class requires the specification of the classes ClsRequest , (seen

in Section 6.3.2), ClsInitChecking , ClsTransitPoint , and ClsPayPoint , which were all gen-

erated from UCM elements, included in the team component Helper (as shown in figures

6.2 and 6.7). Such a construction illustrates the use of the bottom-up strategy adopted in

the transformation framework (see Chapter 5, Section 5.4). Similar reasoning is followed to

construct the class ClsBeneficiary , generated from the UCM team component Beneficiary

(see Figure 6.7).

The class ClsCheckPoint

The Class ClsCheckPoint specifies the activity to collect and process incoming requests from

the network.

ClsCheckPoint
�(INIT)
ClsGlobalVariables

collectedReq : Identifier 7� Request
plugin4Inv : ClsCheckInvoice
plugin4Cust : ClsCheckCustomer

let listReq == ran collectedReq •
⟨listReq ▹ invoiceInReq , listReq ▹ customerInReq⟩ partitions listReq

INIT
collectedReq = ∅
plugin4Inv .INIT
plugin4Cust .INIT

respond
[undefined]

136

collectReq
∆(collectedReq)
net? : clsNetInterface

net .reqToReceive ̸= ∅
(∀ id : identifier ; req : Request | id 7→ req ∈ net .reqToReceive) •

collectedReq ′ = collectedReq ⊕ {id 7→ req}
net .reqToReceive = reqToReceive \ {id 7→ req}

IN 1 =̂ [id? : Identifier ; inv? : Invoice] • plugin4Inv .s1
out1 =̂ plugin4Inv .out12 = false
out2 =̂ plugin4Inv .out12 = true
IN 2 =̂ [id? : Identifier ; cust? : Customer] • plugin4Cust .s2
out3 =̂ plugin4Cust .out345 = 3
out4 =̂ plugin4Cust .out345 = 4
out5 =̂ plugin4Cust .out345 = 5

The class inherits variables from the class ClsGlobalVariables . It defines the component

collectedReq to keep the set of incoming requests that are pending, for processing. The two

variables, plugin4Inv and plugin4Cust define respectively, a reference to an object of the

class ClsCheckInvoice to check invoices, and ClsCheckCustomer to check customers. The set

of pending requests is empty initially.

The operation collectReq , collects incoming requests from the network, and transfers them

into the set collectedReq . After checking an invoice or a customer, the function respond , for-

wards the result via the network. Similarly to the class ClsHelper , depending on the request

under consideration, IN 1 and IN 2 each specify a point of connection to activate the sequence

of operations, defined in an object of the class ClsCheckInvoice or ClsCheckCustomer when-

ever appropriate values are provided by the system environment to the input variables inside

the square brackets. The components out1, out2, out3, out4, and out5 contain the results

after a request is processed, and may guide further actions to be taken to effect a scenario.

Next the class ClsUpdatePoint is presented .

The class ClsUpdatePoint

This class specifies the functionalities to estimate (evalItem) the actual value of a re-

turned item, and to update (updateCustAccount) a customer’s account when, for example,

a customer has issued a payment at an agency. The state of the class includes the vari-

able returnedItem, to record the set of returned items. An object (interface) of the class

ClsLocalSales (see Section 6.3.3) is included to ensure, for example, that any returned item

137

was effectively provided by the agency to which it is returned.

ClsUpdatePoint

�(INIT , returnedItems , evalItem, updateCustAccount)

returnedItems : Item × Customer 7→ Date
interface : ClsLocalSales

∀ customer ∈ ran dom returnedItems •
interface.findCustomer(customer , resp!) ⇒ resp! = true

INIT
returnedItems = ∅
interface.INIT

evalItem
item? : Item; amnt ! : Money

[to be specified]

updateCustAccount
amnt? : Money ; account? : Account

[to be specified]

As mentioned earlier, it may not be necessary to present a complete specification of func-

tionalities, as these may not bring any useful information to evaluate the impact of a UCM

model in the construction of a Z and Object-Z specification (see research questions RQ 2

and 3 in Chapter 1).

Next the class ClsBeneficiary is presented

The class ClsBeneficiary

The class ClsBeneficiary derives from the UCM component Beneficiary whose role is to mon-

itor the activities modelled by the UCM sub-components Check Point and Update Point .

The Object-Z class schemas derived from those sub-components (ClsCheckPoint and ClsUpdatePoint)

were presented earlier.

138

ClsBeneficiary

�(INIT , receivItem, deliverItem, refundCustomer , e1, e2, e3)

ClsCheckPoint
ClsMainStartPoints

deliveredItems : Item × Item × Customer 7→ Date
update : ClsUpdatePoint

∀ item1, item2 : ITEM ; customer : CUSTOMER |
(item1, item2, customer) 7→ date ∈ deliveredItems •
(item2, customer) ∈ dom update.returnedItems

INIT
deliveredItems = ∅
update.INIT

receivItem
∆(update.returnedItems)
item? : Item; customer? : Customer ; date? : Date; resp! : Message

plugin4Invoice.findCustomer(customer?, sol !) ∧ sol ! = true
update.returnedItems ′ = update.returnedItems ∪ {(item?, customer?) 7→ date?}
resp! = ReturnedItemReceived

deliverItem
∆(deliveredItems)
item? : Item; customer? : Customer ; date? : Date

item? ∈ dom update.returnedItems
returnedItems ′ = returnedItems ∪ {(item?, customer?) 7→ date?}

refundCustomer
customer? : Customer ; amount? : Money

[specify operation to refund a customer]

e1
∆(Scenarios , items , customers)
id? : Identifier ; item? : Item; inv? : Invoice; cust? : Customer

scenarios ′ = scenarios r {id? 7→ sceneReturnItem}
items ′ = items r {(item?, inv?, ag?) 7→ sceneReturnItem}
customers ′ = customers r {(cust?, compagny?) 7→ sceneReturnItem}

e2

[specify operation similar to that in e1 for sceneReplaceItem]

139

e3

[specify operation similar to that in e1 for scenePayCredit]

let listReq == ran collectedReq

[∀ id : Identifier ; inv : Invoice | ∃ req : Request •
id 7→ req ∈ collectedReq ∧ req 7→ inv ∈ listReq ▹ invoiceInReq] •

IN 1 o
9 (out1 ∧ e12a) [] ([acceptOp : Boolean] •
(out2 ∧ acceptOp) o

9 respond
o
9 receivItem ∧ update.evalItem
o
9 (refundCustomer ∧ e1

[]
deliverItem ∧ e2)

[]
(out2 ∧ ¬ acceptOp? ∧ e12b)

[specify a similar sequence of operations for a scenario to pay credit]

This class inherits properties and operations from the class ClsCheckPoint , and components

from the class ClsMainStartPoints . The state schema of the class ClsBeneficiary , contains

an object of the class ClsUpdatePoint , to inherit its operations and to access (by inheri-

tance) the component returnedItems , which is updated by the operation receivItem. The

component deliveredItems is defined to specify the set of items sent to customers for the re-

placement of returned items. The predicate part of the state schema stops the agency from

delivering a replacement item to a customer only once the returned item has been collected.

Initially, the set of delivered items is empty.

The operation receivItem is specified to collect returned items, shipped from distant com-

panies. A new item is added to the list of returned items (returnedItem). The operation

deliverItem specifies the activity that consists of sending an item to a customer to replace the

one that the customer returned. It adds the item to the set of delivered items deliveredItems .

Similarly, the operation refundCustomer specifies the activity that refunds a customer for a

returned item. The operations e1, e2, and e3 each specify, the reaction of the system when

a scenario is terminated successfully. Such operations may be simple or complex, depend-

ing on the situation under consideration. For example, it may be the right time to think

about archiving all the documents that were involved, or removing or destroying all the

documents or information that were temporarily used to assist the operation, and/or any

other resource that is of no use after the scenario is terminated. For illustration purposes, e1

is specified in detail, whereas, e2 and e3 are left unspecified, as they can be similarly defined.

Similarly to the class ClsHelper , an expression is used to specify the sequence of operations

140

needed to perform a scenario to return, or to replace an item. A pair of square brackets,

enclosing input variables, specifies a place where some actions are needed from the environ-

ment, for example, to select some specific values from a given list, or to provide values for

the variables. For example, the expression:

[acceptOp : B]

specifies a place where the system requires an action from the environment, e.g., an operator

to indicate with a boolean value, whether the operation must continue or not.

6.4 Chapter summary

This chapter aimed to demonstrate the applicability of the framework proposed in the previ-

ous chapter, by applying it to the UCM model of the case study (see Figure 6.1), developed in

Chapter 3. The purpose was to generate the UCM-OZ version of the Object-Z specification

of the case study (see Chapter 1, Figure 1.3).

In line with the recommendations in the framework, the UCM model was sub-divided,

by means of stubbing techniques, into three sub-maps, depicted in figures 6.3, 6.4, 6.5 and

one principal map (see Figure 6.2). Figure 6.6 was also presented to reveal the connection

between the sub-maps and the principal map. During the transformation process, each

map was treated individually; starting with sub-maps, followed by the principal map. Since

the map in Figure 6.2 was more complex than others (contained more varieties of UCM

elements), Figure 6.7 was presented to reveal the hierarchical structuring of its components.

The transformation process led to an Object-Z specification, namely UCM-OZ.

The next chapter proposes a generic framework to guide the validation process of a

software specification.

141

142

Chapter 7

A Framework for validating a software

specification

In Chapter 4, an Object-Z transformation of the Z description of the case study was devel-

oped. Chapter 6, proposed another version of the Object-Z specification, obtained by trans-

forming the UCM model, of the same case study. This chapter presents a generic framework

to evaluate a software specification. This framework is used in subsequent chapters to eval-

uate the qualities of the Object-Z specifications of the case study, since this dissertation is

about evaluating two different paths (seen in Figure 1.3) to address the research questions

RQ2 and RQ3 (Chapter 1, Section 1.2).

The layout of the chapter is: a brief analysis of the conceptual relationship of a specifi-

tion is first presented with reference to stakeholders (Section 7.1.1), the application domain

(Section 7.1.2), language notation with tool support (Section 7.1.3) and the envisioned sys-

tem (Section 7.1.4). Section 7.2 briefly outlines the difficulty of evaluating a comprehensive

set of characteristics for a quality software specification. A “spiral strategy” is proposed in

Section 7.3 to guide the validation of a specification. As part of the strategy there follows a

brief analysis of the scope of the system. This is followed by an iterative process, consisting

of validating the input specification with respect to the expectations of the stakeholders,

(Upward validation) in Section 7.3.2, consideration of the application domain (Leftward val-

idation) in Section 7.3.3, the specification language and tool support (Rightward validation)

in Section 7.3.4, and the final product (Downward validation) in Section 7.3.5.

In Section 7.4 a two-step mechanism that exploits the result of the validation framework,

to compare two specifications of the same set of requirements is proposed. Finally, a brief

summary of the chapter is presented in Section 7.5.

143

The main ideas of this chapter constitute one of the important contributions of this dis-

sertation. The summary was compiled into a full research paper, which was presented at the

South African International Conference for Computer Scientists and Information Technolo-

gists (SAICSIT’10)(Dongmo and van der Poll [24]).

7.1 Conceptual relationship in a Software specification

Ever since, Brooks [15] published his classic text, in which he stated the importance of

conceptual concepts in software development, research in Requirements Engineering has be-

comes evermore important. As mentioned by Nuseibeh and Easterbrook [65], software ought

not to be isolated from the system in which it operates, that is, the application domain. It

is commonly accepted that the success of a software system is highly related to the extent to

which it meets stakeholders’ expectations. Thus, the importance of a proper consideration

of stakeholders’ needs during a software specification validation process is essential. The

emergence of software specification notation languages and associated tool supports, implies

the importance of those languages in software specifications. Therefore, to determine the

validity of a software specification, we consider analysing, at the requirements level, the con-

ceptual relationships between four aspects. These are stakeholders; the application domain;

the specification language and tool support; and the envisioned operational system. Figure

7.1 illustrates these relationships.

Stakeholders
Expectations

Specification Application
Domain

Language
& Tools

Operational
System

Refinement Process F
un

ct
io

na
lit

ie
s

Specification
Process

D
es

cr
ip

tio
n

ch
ec

ki
ng

Figure 7.1: Conceptual relationship

Rectangles in Figure 7.1 represent participants in the relationship. The ellipse represents

the specification, and arrows pointing to it identify those participants contributing to the

construction of the specification document. The arrow pointing to the Operational Sys-

tem indicates that the specification itself, participates in the construction of the envisioned

software system. The arrows with dashed lines indicate possible feedbacks from the speci-

144

fication, reporting on, for example, agreements or disagreements with the party which the

arrow is pointing at.

The contribution of each of the participants in the relationship is discussed next, starting

with the Stakeholders.

7.1.1 Stakeholder expectations

Stakeholders denote different people (customers, users, developers, etc.) fulfilling different

roles, and often having contradictory requirements which they expect a system to fulfill. For

instance, a customer paying for a system expects it to produce benefits within a given time.

A user expects the system to be user-friendly and include appropriate functionalities. It is

well known that these two categories of stakeholders, often do not know exactly what they

require, and fail to express their needs clearly and unambiguously. The development team

on the other hand, has the responsibility to produce, within a reasonable time and budget,

a system that unambiguously responds to such expectations (see Schach [74]).

During the early phases of a software development process, the specification document plays

a vital role among stakeholders. One difficult objective is to construct a specification that

satisfies all stakeholders (see Nuseibeh and Easterbrook [65]). Much work in this area has

been conducted (e.g. Jureta et al. [45]). Other software verification and validation (V & V)

techniques appear in (Dupuy-Chessa and Bousquet [29], McComb and Smith [56], Plagge and

Leuschel [69], Sargent [73], Schaefer and Poetzsch-Heffter [75]). Popular trends in require-

ments elicitation favour the active participation of all stakeholders in the process. Notable

examples are JAD1(see Wood and Silver [99]) and placing the developer in the working en-

vironment of a stakeholder, as discussed by Friedrich and van der Poll [31].

Since a specification may result from successive refinements of stakeholder expectations

(Van Lamsweerde [96]), it is argued that the adequacy of such a refinement process ought to

be subject to a validation. Hence, any attempt to validate a specification against initial goals

should consider both the specification, and the goal refinement processes. Such an approach

may facilitate the identification of, not only the expected characteristics of an appropriate

specification, but also those of a reliable goal refinement process.

1Join Application Development

145

7.1.2 The Application domain

An application domain is here considered as the operational software environment, and is,

therefore, the source of various types of information (processes, services, data, actors, etc.).

Naturally, these are needed to define the boundaries and functionalities of the specification.

Work in the areas of domain analysis and modelling (e.g. Evans [30], Miller [61], Valerio et al.

[88]), attempts to make such information readily available and reusable. Techniques such

as the Service Oriented Architecture (SOA by Brown [16]) attempt to modularise domain

information into services. Hence, given a set of objectives to be achieved by an envisioned

software product, an appropriate specification technique would consider all the appropriate

information in the domain, to construct the specification. It is argued that a good software

specification should therefore, be generated from domain-traceable information, and include

functionalities that may be integrated into well-defined operational services of the problem

domain (e.g. principles 3 & 4 in Balzer and Goldman [10]). For example, if a specification

includes an operation, such an operation should be clearly part of a complete scenario, or

use case, in the system domain.

On the strength of the above arguments it is proposed that the validation process of a

specification ought to:

• Ensure that each described operation is traceable from the application domain and

feeds into an operational service.

This may avoid inappropriate reuse of specification fragments. E.g., a careless reuse

of the specified operation “Buy parts” that satisfy the goal: The system shall benefit

the usage of spare parts in a car garage, may have adverse effects in a domain such as

medical equipment repairs, where safety-critical measures should be considered, despite

the fact that the same goal is to be achieved.

• Ensure that the context and the purpose of each operation is unambiguous.

This may facilitate the usability and appropriateness of each operation. Preconditions

have to be determined to reveal when and where (e.g. within what service, scenario, or

use case) the operation to be used is, and that it does not conflict with other, similar

operations.

7.1.3 Languages and tool support

Specification languages and their tool support are, important building components in the

ultimate system (Nuseibeh and Easterbrook [65]). Natural languages, being inherently am-

146

biguous (see e.g. Kamsties et al. [46]), can only play a supportive role in software specifi-

cation and modelling. Since specification languages are generally more cryptic than natural

languages, some of the key properties expected from a good specification (e.g. readability,

understandability, etc.) are highly related to the encoding capability of the language. For

example, as indicated in Chapter 2, the concept of class schema added to standard Z, yielded

Object-Z (Duke and Rose [26], Smith [77]), thereby adding object orientation to Z.

Specification languages generally differ from each other, according to their encoding ca-

pabilities, supportive techniques, methodology or associated tools and may, therefore, not

be equally applicable in all situations. For instance, as mentioned in Chapter 1, at a high

level of classification, mathematical-based languages may bring more details into specifi-

cations, and eliminate errors and ambiguities in requirements, but need more effort to be

comprehended and hence, are, arguably, more suitable for safety-critical problems. On the

other hand, semi-formal languages are more user-friendly, and relatively easier to manipulate

by humans, but do not have the ability to completely eliminate or detect defects and ambi-

guities in the statement of requirements. More importantly, some specification notations are

appropriate to describe functional properties of a software system, e.g. UCMs, Z, Object-Z,

etc., whereas others are good at describing non-functional properties (e.g. Goal-Oriented

Requirement Language (GRL[1])).

More than one language may, therefore, be needed for a comprehensive specification of

software systems (Amyot and Mussbacher [7]). Nowadays, much of the work on the valida-

tion of specifications constructs, focus, firstly, on the validation of functionalities against the

initial user-requirements and, secondly, the validation of language-related properties (e.g.

internal consistency: type-checking, semantics, etc.). Despite the fact that the scope of this

work does not deal with validating specific language-related problems, the second step of

validation depends on the available tool support for the language. It is plausible that the

use of such tools would contribute to the quality of the final specification. Considering the

above analysis, the following to support the validation process of a specification is suggested:

• Ensure that, at the requirements phase, the language and tool support are appropriate

and applicable to the problem domain.

The notation used, ought to include all the capabilities required to adequately de-

scribe information taken from the problem domain, in a way that satisfies stakeholder

expectations.

• Ensure the integrity of the whole set of components, including the language, tools, and

the associated methodology.

147

If the integrity of any part of the process is problematic, the quality of the final

specification document(s) may be affected. For example, consider a situation where a

set of initial requirements are first transformed into Use Case Map diagrams (UCMs),

then converted to UML (Booch et al. [11], Selic [76]) diagrams, and from UML to

standard Z. The transition between UCMs and UML diagrams may not be harmful,

because both notations support Object-Orientation. But, the transformation from

UML to standard Z may be problematic owing to the difficulties of matching UML

Object-Oriented concepts with standard Z, which does not explicitly support Object-

Orientation; this is unless an appropriate transformation framework from UML to Z is

provided, as the one presented in Chapter 5 for UCM, Z and Object-Z.

• Ensure that the tools used to support the specification (e.g. type-checkers, theorem

provers, semantic analysis, etc.) are suitable for the task. For example, a specification

language may be too “rich” to directly serve as input to a theorem prover, as indicated

by van der Poll [90].

7.1.4 The envisioned final product

If a software specification is considered as a set of defined properties, and a software product

as a set of implemented properties, an ideal for software verification would be to create a

bijection between the two sets. Since a verification exercise is concerned with demonstrating

that the implementation is correct with respect to requirements (Heimdahl [36]), this would

consist of partitioning the user requirements, to form a set, and partitioning the implemented

components to form another set in such a way that each element in one set, is bijectively

related to an element in the other set. This would indicate that no extra functionality has

been introduced into the implementation, and no requirement was omitted during the im-

plementation. Such a technique may be possible at the verification phase, since both the

requirements and the implementation thereof are readily available. In contrast, at the valida-

tion phase, which is the subject of this work, only the specification is available. This creates

a challenge, since one would be trying to demonstrate, at least, that there exists a surjection

from the set of implemented properties (not yet available) to the specified properties at hand.

Instead it is suggested to focus on the validation of a specification to establish the exis-

tence of appropriate refinement or design/implementation techniques, and the suitability of

the specification, to serve as inputs to such techniques. This may consist, for example, of

identifying, at least one applicable refinement technique, and proving that it couples well

with the technique(s) and method(s) on which the specification is based. For instance, de-

pending on the situation at hand, such a process may refer to a direct refinement technique

148

(automated or not), or to traditional design and implementation processes of the software de-

velopment life cycle. To illustrate the idea, consider coupling, in sequence, UML and Turbo

Pascal to implement a Z specification, where UML is used to design the system, and Pascal

is used for coding. It may be argued that the ability of a Z document, to map onto UML, is

suspect because Z is not inherently object oriented, unless an appropriate framework (e.g.

similar to the one proposed in Chapter 5), is provided to perform the transition from Z to

UML. For similar reasons, the process of implementing UML diagrams with Pascal may also

be problematic.

The question of identifying the characteristics of a good specification is addressed in the

next section.

7.2 Characteristics of a quality software specification

Since software systems generally have different goals and expected behaviours, it is a com-

plex task to compile a complete list of the properties of a good specification. Furthermore,

each specification targets a particular aspect of the problem being specified (e.g. domain

description, user view of the problem, problem solution, etc.) and has a precise purpose (e.g.

communication, documentation, etc.). Therefore, a specification is only as good as the de-

gree to which it achieves its intended goals and fulfills its purpose. However, some minimum

standard may be expected from any satisfactory specification, (e.g. completeness, consis-

tency and correctness exemplified by IEEE Std 830-1998 [41]). Since the specification itself

results from the needs analysis process, it may be argued that the quality of a specification

in turn depends on the quality of the elicitation process. In line with this reasoning, some

desirable characteristics were proposed for requirements elicitation procedures by van der

Merwe and Kotzé [89]. Although the focus of this work is not explicitly on requirements

elicitation techniques, it is suggested that in case of defects in the specification, the quality

of the specification process should be measured against similar characteristics.

It may be observed that the four aspects of a software system specification represented

in Figure 7.1, are inherently inter-dependent. For example, to achieve a stakeholder’s expec-

tation (goal), some services or operations from the application domain, together with the

constraints on their applicability (policies, standards, etc.), need to appropriately encoded

with a notation language. This implies that a validation process that may consider each of

the four aspects at a time is iterative, in nature since a change on one aspect of the specifi-

cation, may affect others. In this regard, an iterative validation process, based on Boehm’s

spiral model is proposed next.

149

7.3 Validating a specification document

Figure 7.2 summarises the proposed basic spiral validation mechanism. The spiral indicates

Leftward
validation

(Problem Domain:
services, processes,
functions, etc.)

Rightward
validation

(Languages &
tool supports)

(Stakeholders:
Initial Goals)

Upward
validation

Downward
validation

(Envisioned Final Product)

X X X X

X

X

X

X

Figure 7.2: Basic validation strategy

the iterative progression of activities along those axes. The first iteration of the spiral starts

from a point close to the stakeholders segment and the intersection point between the four

quadrants, but stops at the language axis, which is not explicitly part of the validation

process. It is included simply to indicate, for example, the fact that some work has been

carried out involving the four aspects to generate the specification. The validation process

is, therefore, seen as the continuation of such work.

Four types of validations are considered along four axis. A cross (X) indicates a valida-

tion point where one validation phase ends and the specification amended if necessary. The

arrow at the end of the spiral indicates a possible order in which activities are carried out.

The iteration is motivated by the fact that the results at one checkpoint, may change the

original inputs (specification, tools, methodologies, etc), and hence, induce the repetition of

other activities. The upward validation considers the properties of the specification relative

to stakeholders’ expectations. The leftward validation is concerned with the conformity of

the specification to the problem domain. The rightward validation concentrates on the lan-

guage and tool-related properties. The downward validation considers the appropriateness

of the specification in relation to its intended use.

Next the validation scheme is discussed in further detail.

150

7.3.1 The scope of a specification

Initially the scope of the validation aiming to clarify aspects of a specification to be evaluated,

is defined. For example, if the main purpose of a specification is to facilitate communica-

tion between stakeholders, the validation process may concentrate on those properties that

contribute to communication, hence the need to perform a preliminary check on the scope

and initial objectives. Any redundant functionalities in the specification identified during

the preliminary check, should be removed. The case of the specification not sufficiently

describing the initial requirements is addressed by The upward and leftward validations

phases as those two phases are concerned with evaluating the specification against stake-

holder expectations, and the application domain. To summarise this phase, the following is

suggested:

• Define the scope of the validation to be carried out.

• Eliminate, wherever possible, redundant functionalities in the specification.

Next the upward validation phase is described .

7.3.2 The upward validation

The objective of this validation phase, is to ensure that the specification includes all the

necessary information to satisfy stakeholders’ expectations. Depending on individual cases

and the main purpose of the specification, it is proposed to (clearly) list and describe all the

properties required from both the specification, and the specification processes used, before

continuing with their validation. For example, the following properties may be expected:

• For the specification: Completeness and Adequacy.

• From the specification process: Traceability and Reliability.

Referring to work of van Lamsweerde [95], a specification is complete with respect to the

initial goals, if the collection of properties in the specification is sufficient to establish such

goals. In turn, the adequacy of a specification indicates the extent to which the specification

clearly addresses the problem at hand.

Although much of the non-functional requirements stem, in general, from the application

domain (domain constraints) and the expected behaviour of the final product, this phase is

the appropriate juncture to get them validated. Issues concerning, for instance, the user-

interface, usability, or the performance of the system, can be investigated with the partic-

ipation of potential users and other stakehoders. At this stage, new notation language or

151

tools may be considered, to adequately describe such functionalities that were omitted in

the initial specification.

In some cases, the specification techniques are determined by available language notation.

Here, the validation of the properties (of the specification) related to the specification process

may, be deferred to the rightward validation phase. Such a validation may also involve more

than one technique or notation, since the initial requirements may need to be transformed

into system requirements, before being specified (see Figure 1.2 in Chapter 1). In the latter

case, the integrity of the techniques needs to be established.

7.3.3 The leftward validation

This phase demonstrates and measures the applicability of the specification. On the strength

of the analysis in Section 7.1.2, the following are suggested:

• Ensure the usability of each specified object (dynamic or static). For each object, or

set of collaborating objects, ensure that there is at least one service, process, activity,

use case, or scenario in the problem, domain that needs it.

• Ensure that high-level domain constraints, related to the use of each object specified,

are well described (e.g. adherence to standards and policies).

• Ensure that the context and purpose of each object specified is clear and unambiguous,

relative to its usage.

• Ensure that executable objects do not conflict each other during their execution.

Next the rightward validation phase is presented.

7.3.4 The rightward validation

This phase is generally the focus of most of the verification and validation techniques. The

emergence of different types of specification notations has led researchers to continuously

invest effort to improve the quality of specifications, and hence, the creation of valuable

analysis tools. The purpose is to ensure that a specification is both syntactically and seman-

tically correct, well structured, and has the ability to serve as input to the analysis tools.

The following is proposed:

• List all the system properties that are required from the specification, and clearly and

succinctly describe each of them to make their purpose unambiguous.

152

• For each property, identify an appropriate method or technique as well as supporting

tools.

• Proceed with the validation, aimed at establishing the extent to which each property

listed, is available in the specification.

As an example, consider the validation of a specification, whose primary role is to document

a user-view of a software system, and facilitate the discussion between stakeholders. We

may expect the specification to include the following properties: correctness, internal con-

sistency, readability, understandability, communicability and minimality (i.e. no redundant

constructs). These properties are considered briefly below:

Correctness: Check that the specification is syntactically and semantically correct. This

calls for the use of a syntax checker and analysis tools for the semantics.

Internal consistency: Identify and discharge necessary proof obligations.

Readability: Inspect the specification for issues of structure. Such an inspection might not

need tools.

Understandability: As for readability.

Communicability: Related to readability and understandability.

Minimal: Check whether the specification contains only essential objects.

The following section describes the downward validation phase.

7.3.5 The downward validation

This process considers to what extent the specification will satisfy the desired quality of

the final product. In the light of the analysis in Section 7.1.4, it is arguable that the

core of this work relies on 3 major components: the specification itself, the transformation

techniques/methods to shift from one stage to another (see, for example, the framework in

Chapter 5), and the final product. The following is suggested:

• List all the system properties that are required from the specification, and clearly and

succinctly describe each of them.

• Identify for each property, an appropriate method or technique with, when necessary,

tool support.

• Identify applicable transformation (or refinement) techniques and tool support.

N.B. in practice such techniques and tools might already have been determined during

an earlier phase, e.g. planning. Still then, the argument is that the specification

validation phase is the correct juncture to proceed with a systematic feasibility study.

153

• List key properties that are expected from those techniques and tools.

• Proceed with the validation process.

For example, if the purpose of a specification is to build a traditional software system, the

following may be relevant:

1. The specification is to be: executable, minimal, well formed, etc.

2. Validation techniques: Inspections, Round table discussions, Animation (see McComb

and Smith [56]), Prototyping, Automated proofs.

3. Validation tool: A suitable type-checker.

4. Some appropriate design / implementation, or refinement techniques available.

5. Tools to illustrate some HCI2 properties: e.g. usability.

Next is briefly presented how this framework may be exploited to compare specifications.

7.4 Comparing specifications

The above framework suggests the following steps are necessary to compare specifications:

• Apply the validation steps described in Section 7.3, to each specification, and document

the result of the validation.

• Proceed with the analysis of the validation results, and provide feedback based on the

analysis.

The following section concludes this chapter.

7.5 Chapter summary

This chapter presented a framework to develop and validate a software specification. Firstly,

the conceptual relationship of a specification with reference to stakeholders, the application

domain, language notation with tool support and the envisioned final product is described.

Then, a generic 4-way validation strategy that uses Bohem’s spiral model to develop and

measure a software specification against requirements from users (upward validation), the

2Human Computer Interaction

154

application domain (leftward validation), restrictions in language notation and tool support

(rightward validation) and finally the operational system (downward validation) is proposed.

The summary of the proposed framework was compiled into a full research paper, which

was published in the proceedings of the SAICSIT’10 Conference(Dongmo and van der Poll

[24]). This chapter therefore, constitutes one of the major contributions of this work.

The following chapter, applies the framework here developed to validate each of the two

Object-Z specifications of the case study (described in Chapter 3): Z-OZ and UCM-OZ de-

veloped, respectively, in Chapter 4, and Chapter 6, following two alternative specification

processes (see Figure 1.3 in Chapter 1).

155

156

Chapter 8

Applying the framework to the Case

Study

This chapter applies the framework proposed in the previous chapter, to validate the two

Object-Z specifications Z-OZ and UCM-OZ developed, respectively, in chapters 4 and 6.

The validation scheme developed in Section 7.3 is initially applied to the Z-OZ specification

and then, to the UCM-OZ specification. During the validation process, only one iteration is

performed in each case.

Section 8.1 reviews the stakeholder expectations and user requirements for the case study.

The scope of the validation is presented in Section 8.2, and a common list of properties

and criteria to judge the quality of each of the two specifications are defined, respectively,

in sections 8.2.1 and 8.2.2. Section 8.3 presents the validation of Z-OZ specification and

Section 8.4 the validation of UCM-OZ. Finally, Section 8.5 summarises the chapter.

8.1 Expectations and user requirements

This section reproduces the list of expectations from stakeholders and user requirements

described earlier, in Chapter 3, in natural language (English). It is important to explicitly

identify such lists, since the quality of each of the specifications under consideration depends

on them.

8.1.1 Expectations of stakeholders

According to the case study description (see Chapter 3), stakeholders expect the following

from a successful specification for the system:

157

1. A specification that facilitates their understanding of the system.

2. A specification that stimulates a thorough discussion among stakeholders about the fea-

sibility of their proposed idea to help each other to gain mutually.

3. A specification that exhibits a possible way to render the above idea of collaboration

operational.

The above expectations suggest some qualities that a specification ought to encompass to be

satisfactory. For example, a specification that includes properties pertaining to communi-

cation, such as Understandability, Readability and Clarity, may go some way to satisfy the

primary expectations of stakeholders i.e. facilitate their understanding of the system. Such

properties are identified and presented in subsequent sections.

The next section discusses the user requirements presented in the case study.

8.1.2 User requirements

This section presents the three main user requirements of the system, as discussed in the

case study in Chapter 3. Those requirements are the following:

(a) Return of an item:

To allow a customer to return a purchased item at any company. When the item is

received, some operations, involving the local company and the provider of the item,

must be performed internally to complete the returning of the item.

(b) Replacement of the item:

Similarly to returning items, this service allows a customer to replace a purchased item

at any agency in the customer’s local area. When the item is received, some operations

are performed internally involving the local agency, and the provider of the item aiming

to complete the replacement process.

(c) Pay credit:

To allow a customer to pay a credit at any agency in the local area. When such a

payment is made at an agency, some operations are carried out internally to complete

the credit payment.

Note that internal activities between agencies are not defined in the case study. Initially those

are not known by the stakeholders and one of the responsibilities of the system specifier is

to propose them. The ability of a specification technique or method to help define such

functionalities, or stimulate thinking about them is, therefore, an important aspect that

ought to be considered during the validation process.

158

8.2 The scope of the validation

As mentioned in the introduction to this chapter, this validation process uses the framework

proposed in Chapter 7, as a guide, to investigate the qualities of an input specification. The

focus is to measure the extent to which the specification satisfies stakeholders’ expectations

(see Section 8.1.1), and to evaluate the appropriateness of the specified operations with re-

gard to achieving the user requirements, listed in Section 8.1.2. To these aims, a sample

list of properties to be investigated is considered. These include: Readability, Understand-

ability, Clarity, Traceability, Completeness, Operational feasibility, Creativity, Networking,

Integrity, Correctness (with regard to the encoding of the specification), Internal Consis-

tency, Minimality, Maintainability, Technical feasibility, and Executability.

In the next section, those properties are grouped according to the validation phase (see

Chapter 7) in which they are discussed. Some clarifications are also presented about the

context of each of them, before the proper validation process is later described.

8.2.1 Properties to be validated

• The Properties related to Stakeholders’ expectations are: The readability, understand-

ability, clarity, traceability, completeness and the operational feasibility. These prop-

erties are considered during the upward validation phase (see Chapter 7, Figure 7.2

or Section 7.3.2).

The readability pertains to the ease with which the specification can be read, whereas

the understandability refers to the extent to which the specification can be under-

stood. The clarity refers to the expressiveness and structuring of the specification.

Together, these three properties help to evaluate the ability of the specification to be

communicated, and address the first two expectations (section 8.1.1). The traceabil-

ity is related to the specification process. It measures the ability of the process to

preserve information, aims to detect requirements omitted, or those that were changed

during the specification process. Completeness, refers to the need to ensure that

the specification is sufficient to establish the initial (user) requirements. The opera-

tional feasibility ensures the specification can be effected in practice, and facilitate

estimates and managerial tasks such as the planning of activities and work schedules.

When encompassed by a specification, the operational feasibility would contribute to

the achievement of the stakeholders’ expectation number 3, above (see Section 8.1.).

• The properties related to the application domain are: Creativity, networking and in-

159

tegrity. These properties are validated during the leftward validation phase of the

framework proposed in Chapter 7.

Creativity implies the idea of innovation, in the sense of identifying or proposing ap-

propriate functionalities to accomplish the user needs. This quality indicates whether

the specification at hand includes such activities needed to accomplish each of the user

level services listed in Section 8.1.2. This property contributes to measure the extent to

which the specification includes sufficient detail functionalities to describe the required

services. Additionally, it also helps to achieve the third expectation (Section 8.1.1), as

it requires the specification to suggest a way to build an operational system, from the

initial idea concepts. The networking property measures the ability of the proposed

specification to handle network issues related to distant communication between dis-

persed agencies. The idea of network communication is suggested by the structure of

the agencies, as presented in Figure 3.1(Chapter 3). The issue with the integrity, is

to investigate the applicability of the functionalities described in the specification. The

presence of these last two properties in a specification may also provide insight about

the extent to which user level services can be achieved, as they give an indication of the

network services handled, and the integrity of the dtail functionalities of the system.

• The Properties related to the notation language and tool supports are: correctness, in-

ternal consistency, minimality and maintainability. These properties are considered

during the rightward validation of the validation framework proposed in Chapter 7.

As mentioned in Section 7.3.4, (Chapter 7), the correctness property checks that

the specification is syntactically and semantically correct. The internal consistency

indicates that the specification has a meaningful semantic interpretation that makes

true all specified properties taken together, whereas the minimality verifies that a

specification does not include properties that are irrelevant to achieve stakeholders’

expectations, or do not contribute to define or describe any of the user requirements

listed in Section 8.1.2. Finally, for this phase, the maintainability refers to the ability

of a specification to accommodate later changes.

• The Properties related to the envisioned product are: technical feasibility and exe-

cutability. These two properties are discussed during the downward validation of

the proposed framework (see Section 7.3.5, Chapter 7).

The emphasis here is to demonstrate that the final product (i.e. the software sys-

tem) with the required qualities, can be generated from the specification at hand.

160

Since the properties identified in the earlier phases aim to establish that the specifica-

tion includes the required qualities, during this validation phase, the focus here may

be on the technical feasibility and the executability of the specification.

Naturally, the list of properties presented above is not exhaustive. However, we may need to

establish that such a list is sufficient to demonstrate the validity of a specification relative

to the given requirements and stakeholders’expectations. For illustration purposes, assume,

for example, that P is the set of properties that a successful specification has. Let G be

the set of goals or expectations, the task being to ensure that if a specification includes all

the properties in P, then it satisfies G. For example, in the case of the Z-OZ and UCM-OZ

specifications, the following may be considered:

• G would include both the list of stakeholders’expectations (see Section 8.1.1) and the

user requirements, listed in Section 8.1.2.

• P would include the properties listed above in this section.

To generate the list of properties in P that aim to characterise a specification that satisfies the

set of expectations in G , one may proceed with the analysis of the stakeholders’expectations

and uses’r requirements.

For example, it may be argued that a documented idea is communicable if the document

itself is readable, exhibits some clarity and is understandable; the three properties of Read-

ability, Clarity, and Understandability would be included in P , if a specification is expected

to be communicable.

The list of properties presented earlier in this section, and the list of stakeholders’ expecta-

tions (Section 8.1.1), and users’ requirements (8.1.2) are presented in Table 8.1. Codes p1,

p2, ...,p16 are associated with properties, whereas, codes g1, g2, ...,g6 are used for goals.

The first two columns of the Table 8.1 are used to list the properties, and the next two

for the system goals and users’ requirements. A group of properties that support the same

goals, are in the column on the left, and the supported goals are in the column on the right

side.

code P (Properties) code G(Goals and expectations)

p1 Readability g1 facilitates the understanding of the system

p2 Understandability g2 stimulates a thorough discussion between stakeholders

p3 Clarity about the feasibility of the idea.

p4 Operational feasibility g2 stimulates a thorough discussion between stakeholders

p5 Technical feasibility about the feasibility of the idea.

p6 Executability g3 exhibits a possible way to render their idea operational.

161

p7 Creativity g3 exhibits a possible way to render their idea operational.

p8 Traceability g4 Return item

p9 Completeness g5 Replace item

p10 Networking g6 Pay credit

p11 Integrity

p12 Correctness (target the system)

p13 Internal consistency (target the system)

p14 Minimality (target the system)

p15 Maintainability (target the system)

p16 Modifiable (target the system)

Table 8.1: Mapping properties to requirements

Table 8.1 shows a mapping between the properties in P , and the list of user require-

ments and system goals in G . Each mapping relating one or more properties to one or more

goals, illustrates that the properties when taken together, contribute to the achievement of

the related goal(s). For example, as mentioned above, if a specification is readable, under-

standable, and clear, then it will therefore require less efforts to be communicated amongst

stakeholders. Such a specification would therefore achieve the requirement g1 (see Table 8.1

and Section 8.1.1).

If, for example, we consider a property in P , to be either present or absent in a specifi-

cation, and a goal in G to be either satisfied or not, then the expression 8.1 further describes

the logic behind the mapping of properties p1, p2 and p3 to the goal g1. The semantics

of this formula, is that if the properties p1, p2 and p3 are all simultaneously present in a

specification, it is more likely that the goal g1 will be satisfied by the specification.

p1 + p2 + p3 g1 (8.1)

Note that the meaning of the symbol + in Formula (8.1), is not the same as in Formal Logic

or arithmetics. It simply indicates that the more properties a specification encompasses, the

more the goal(s) on the right side (of the symbol) is supported. Note also the use of in

this formula to denote support for the goal, rather than an absolute claim about the truth

of g1 using a strict implication or turnstile (→), the later two symbols traditionally indicate

a strong relationship.

As indicated in Table 8.1, the properties involved in Formula 8.1 also partly contribute

to the achievement of the goal g2, which may be sufficiently satisfied if the specification is

162

likely to facilitate both the operational and technical feasibility (p4 and p5) of the system

and is executable (p6). Thus, the following formula may be generated:

(p1 + p2 + p3) + (p4 + p5 + p6) g2 (8.2)

In the same vein, the properties p4, p5 and p6 in a specification partly demonstrate the

ability of the specification to render an operational software product. However, this ability

may be sufficiently inferred if a reasonable refinement of high-level goals and user require-

ments into system functionalities is proposed (p7: creativity). Those are the functionalities

that are well integrated (p11: integrity) into the application domain, to perform high level

services. Such operations or functionalities ought to address issues related to network com-

munication (p10), and be traceable (p8) and complete (p9) to integrate to accomplish each

of the three major services of the system. Thus, the following formula is used:

p7 + p8 + p9 + p10 + p11 g4 ∧ g5 ∧ g6 (8.3)

Formula 8.3 indicates that g4, g5 and g6 are more likely to be achieved by a specification

that encompass the characteristics p7, p8, p9, p10, and p11. The next formula shows those

properties that are required for goal g3 to be supported.

(p4 + p5 + p6) + (p7 + p8 + p9) g3 (8.4)

The last five properties in Table 8.1, p12, p13, p14, p15 and p16 apply to the system as a

whole. They imply some qualities that a specification ougt to encompass. The list of such

properties can be extended to include those pertaining to satisfy, for example, non-functional

requirements, such as reliability, performance, usability, security, etc. Since specific (or

measurable) goals are not defined for our case study, the following formula may be used.

p12 + p13 + p14 + p15 + p16 (8.5)

Now consider the following system formed by the formulae from 8.1 to 8.5:

{
p1 + p2 + p3 g1,
(p1 + p2 + p3) + (p4 + p5 + p6) g2,
p7 + p8 + p9 + p10 + p11 g4 ∧ g5 ∧ g6,
(p4 + p5 + p6) + (p7 + p8 + p9) g3,
p12 + p13 + p14 + p15 + p16

}

During the validation phase, the above system of formulae may help to relate specification

properties to goals, and therefore, provide guidance to observe the extent to which a specific

specification satisfies stakeholders expectations.

Some possible advantages of constructing such a set of formulae are the following:

163

• for the purposes of automation, it may be used as a guiding protocol to control and

monitor the validation process of a proposed specification. For example, after a valida-

tion phase, resulting values for the properties being checked, are input and a possible

list of non-achieved goals or requirements may therefore be generated.

• the status of the specification, and the state of the validation process may be deter-

mined by examining it.

• the set is flexible, and may hence be updated during the validation to accommodate

changes.

The following section presents some of the criteria that are used to guide the validation of

both the Z-OZ (see Chapter 4) and UCM-OZ (see Chapter 6) specifications of the case study,

(refer to Chapter 3 for the case study description).

8.2.2 Validation criteria

The criteria that are considered next were inspired from the idea relating the way humans

think, to concepts in Object-Orientation, as observed by Hatton [35].

Based on a mathematical model of human reasoning and some empirical work that aims to

compare defects in programs, resulting from procedural languages and the Object-Oriented

programming language C++, Hatton [35] concluds that some concepts in Object-Orientation,

do not conform to the way humans think.

The model shows how information flows between the short-term and the long-term memory.

Any incoming information is temporarily kept in the short-term memory. When successfully

encoded, the information is transferred to the long-term memory in which it is permanently

stored. So, because the size of the short-term memory is limited, Hatton points out that

“encapsulation” only partly matches human reasoning, and that neither inheritance nor

polymorphism does so. Although such a conclusion is debatable, it is worth observing that

multiple hierarchical levels of inheritance and polymorphism, as well as the (large) size of

objects (that may be due to encapsulation), in a software specification, may compromise the

quality of the specification, especially when it comes to the readability, the understandability

and the clarity. This is because multiple exchanges of information between the short-term

and long-term memory is required, for example to identify inherited classes, before the cor-

rect information (on the inherited class) becomes accessible to the reader.

In the case of encapsulation, for example, objects or components need to be of a reasonable

164

size to fit into the short-term memory. Thus, the following criteria are suggested to guide

the validation of some of the properties mentioned above:

• Depth or level of hierarchy for inheritance

• Depth or level of hierarchy for polymorphism

• Size of Objects or components

The property p4—the operational feasibility in Table 8.1, measures the ability of a specifica-

tion to estimate the efforts needed for the activities in further development phases. It may

be argued that, this property relies, amongst others, on two major aspects of a specification

which include the nature of objects within the specification, and the structuring of the spec-

ification itself. For example, if the components of a specification are made simple and well

structured to clearly reveal interaction amongst them, then the feasibility study of such a

specification may be facilitated. In line with this idea, van der Poll and Kotzé [93] proposed

in principle #5 to refine each operation in a Z specification into a sequence of “primitives” to

maintain high “cohesion” in which, a primitive manipulates at most, one state component.

Conversely, a low cohesion indicates the grouping of unrelated activities.

Inspired by the above observation relative to the nature of components in a specification

and their structuring, the following may further serve as guiding criteria when judging the

quality of a software specification:

• The complexity of each object specified

• The grouping or structuring of objects in the specification

Next is presented the validation of the Object-Z specification derived from the Z description

of the case study (see Chapter 4 for the Object-Z specification, Chapter 3 for the case study

description and its Z counterpart).

8.3 Validating the Z-OZ specification

In this section, the generic 4-way framework developed in Chapter 7, is used to guide the

validation of the Z-OZ specification. During the validation process, each of the four validation

phases is applied to the input specification, aiming to exhibit the presence or absence of

properties pertaining the measurements of the quality of the specification. As the framework

recommends considering both the specification and the underlying process, we begin by

briefly presenting them in the next section.

165

8.3.1 The Z-OZ specification

Figure 8.1 illustrates the two-step specification process of the Z-OZ, which is an Object-Z

specification of the case study, for which a detailed description was presented in Chapter 3.

Case study Z
specification

Z-OZ
specification

step 1 step 2

Figure 8.1: Z-OZ specification process

The case study description included the requirements of the software given at the user level,

in natural language (English). The first step of the specification, also part of Chapter 3,

consisted of translating the initial requirements into a Z specification. At this stage the

transformation process was based on the Z Enhanced Strategy (Lightfoot [52], Potter et al.

[70]) as well as guidelines provided in the literature to aid the construction of Z documents

(van der Poll and Kotzé [93]). The second phase of the specification process, was presented

in Chapter 4, and consisted of transforming the Z specification into Object-Z. This process

was based on the work of Carrington and Smith [22], Periyasamy and Mathew [68] and the

semantics of Object-Z constructs given by Duke and Rose [26] (See Section 4.1, Chapter 4).

The Z-OZ specification itself is fully presented in Chapter 4.

The validation of the Z-OZ specification, as well as that of the UCM-OZ document are

presented in the following sections. It considers only one iteration (spiral) of the proposed

validation model (see Chapter 7, Figure 7.2) aiming to measure their qualities, to enable the

comparison without amending the specifications.

8.3.2 The upward validation

This validation phase is concerned to measure the quality of the specification with respect to

the properties pertaining to the communicability and operational feasibility. The assump-

tion is that if one can successfully communicate the specification to stakeholders, then, such

a specification would, consequently facilitate their understanding of the system; and may

therefore be used as a tool to further discuss the system (see formulas 8.1 and 8.2). A fur-

ther assumption is that a successful specification for the proposed user requirements may

provide inputs for the feasibility studies of the envisioned system. In the light of the above

assumptions, the validation process, developed next for this phase, targets the following

properties: the readability (p1), the understandability (p2), the clarity (p3) the operational

feasibility (p4), the traceability (p8) and the completeness (p9) of the specification. The

166

validation of those properties, starting from the next paragraph, is conducted in the light of

the guiding criteria (Section 8.2.2).

To facilitate the analysis of the hierarchical structuring of the Z-OZ class schemas aiming to

achieve inheritance and polymorphism, Table 8.2 is used; the table is discussed below.

Inheritance Polymorphism
No. Class

1 2 3 4 1 2 3 4

0 Basic types 0 0 0 0 0 0 0 0

1 ClsGlobalVariables 1 0 0 0 0 0 0 0

2 ClsAccount 1 0 0 0 0 0 0 0

3 ClsIsales 1 2 0 0 0 0 0 0

4 ClsDatabase 1 1 0 0 0 0 0 0

5 ClsAgency 1 2 2 0 0 0 0 0

6 ClsSystem 0 0 0 1 0 0 0 0

Table 8.2: Levels of inheritance and Polymorphism for Z-OZ

The specification comprises a total of six classes as shown in Table 8.2. This excludes the

class of basic types. A class is at a level of hierarchy, say i, if it inherits properties or methods

from at least one class which is at level i-1. In the case of the Z-OZ specification, the highest

level for the inheritance is level four (see Table 8.2).

As stated above, Table 8.2 indicates the levels of hierarchy for the inheritance and poly-

morphism in the specification. Except for the class of basic types, each individual class in

the specification is represented. The class of basic types (see Chapter 4) does not inherit

from any other class. They are assigned the value zero at each level. Those classes may

impede the comprehension a specification, because the only information they convey is their

name.

Note that the zeros in the cells for the polymorphism indicate that the concept of polymor-

phism, is absent from the specification. This may be due to the fact that the specification

originated from Z, which does not encompass Object-Orientation in the first place. It may

equally be an indication of an insufficient analysis and inadequate description of the rela-

tionships between objects or components of the system.

The idea of using hierarchical levels for the inheritance and polymorphism is valuable when

167

we observe, for instance, that to master an inherited class, it is necessary to keep in mind

(short term and long term memories (Hatton [35])), a picture of both the inheriting and the

inherited classes. It may become very complex to comprehend a specification that comprises

classes with multiple levels of hierarchy in terms of inheritance and polymorphism. In this

regard, the class ClsSystem (see Table 8.2) appears to be the most difficult to master, as

it is at the highest level. To illustrate the complexity of this class due to its structure, its

composition is presented next.

The Class ClsSystem describes the system as a whole. It is defined as a set of agencies

and hence inherits properties and methods from the class ClsAgency which is at level 3, as

shown in Table 8.2. To read and comprehend the system, it is therefore required to know

the class of agencies.

The class ClsAgency in turn, inherits two classes at the second level (the class of databases,

ClsDatabase and the class of interfaces, ClsIsales), and two at the first level, (the class of

global variables ClsGlobalVaribles , and the class of accounts ClsAccount), (see Table 8.2 for

the hierarchical levels and Chapter 4 for the structuring of classes). To comprehend the class

of agencies, it is also necessary to understand the above-mentioned four classes that the class

ClsAgency inherits.

The class ClsIsales also inherits two classes: the class of accounts (ClsAccount) and the

class of global variables (ClsGlobalVariables). The class of databases on the other side, in-

herits only the class of global variables (ClsGlobalVariables) and hence, appears to be more

comprehensive. The class ClsGlobalVariables includes only basic types in its definition and

no other class is inherited.

In Table 8.2, a class schema that inherits only from basic types is assigned the value 1

at level 1 of the inheritance and polymorphism irrespective of the number of basic types it

uses. It is assumed that basic types do not bring difficulties in communicating a specification

as they do not carry any information other than their name. Hence, the average number of

classes that are not basic types at each level of inheritance is the following:

Level 1: 2 (two) classes (which represent 40% of classes) other than basic types.

Level 2: 2 (two) classes (representing 40% of classes) other than basic types.

Level 3: 1 (one) class (representing 20% of classes) other than basic types and.

Level 4: 1 (one) class (representing 20% of classes) other than basic types.

168

It appears that due to the inheritance, the analysis of the class ClsSystem requires the study

of all the other classes of the system (see Chapter 4). This may not pose a great deal of

difficulty when the number of classes involved is relatively small. However, the situation

remains challenging because the reader of the specification needs to keep a picture of those

classes in mind (according to conventional human thinking styles as discussed by Hatton

[35]).

Also observe that the inheritance in most of the classes resulted from the Object-Z trans-

formation of the Z schemas, used as types in abstract state schemas. For example, the state

schema Agency (see Chapter 3, Section 3.4.2) defines the following component:

ssales : ISales (8.6)

which is translated to

ssales : ClsISales (8.7)

in the class ClsAgency , inducing the class ClsAgency to inherit properties and methods from

the class ClsISales . It is important to consider this aspect, because the use of a schema in Z

as a type, is problematic (van der Poll [90]). Although the intent is not to carry this analysis

any further, one may however be concerned about the quality of an Object-Z class schema

derived from an abstract state schema that utilises other Z schemas as types.

In the light of the above analysis, and further reasoning wherever necessary, conclusions

on a number of properties of the specification are derived and presented in the upcoming

paragraphs; starting with the readability .

Readability (p1)

From the above analysis based on Table 8.2, it appears that the reading of some classes of

the Z-OZ specification is not straightforward. The reader is required to keep in mind the

picture of one or more other classes due to the multiple hierarchical levels of inheritance

involved in the structure of those classes.

It is also argued that the readability of a specification is further complicated by the way

it is presented. Although it is common practice in Object-Z to have the definition of classes

separated from their counterpart prose descriptions, as is the case with the Z-OZ specifica-

tion, it may be observed that such a presentation forces a reader to go through a component

of the class, without knowing what it is, and search for the relevant explanation in the prose

169

that may or may not follow the class. In this regard, the specification may need to be

amended to improve upon the presentation and restructured to include, for example, only

direct (one-level) inheritance in the specification. It is worth observing that this brings us to

the maintainability (p15) and the modifiability (p16) of the specification that are addressed

in the following paragraphs.

Next, the understandability of the Z-OZ Specification is investigated.

Understandability (p2)

In general, formal methods are said to have a steep learning curve, because of the use of

mathematics for which practitioners are often not (sufficiently) trained, (Heitmeyer [37]).

However, mathematical notations may not be the only source of difficulties. From the above

discussion about the structuring of class schemas in an Object-Z specification, it can be

observed that a multiple hierarchical level of inheritance and polymorphism may also con-

tribute to render a specification hard to comprehend.

As mentioned for the readability, the Z-OZ specification under consideration needs to be

amended in this regard, to render the whole system less complex and comprehensive.

Next, is discussed the Clarity property.

Clarity (p3)

As indicated by Duke et al. [27], the main reason for extending Z to Object-Z, was to improve

the clarity of a specification through enhanced structuring. Therefore, the Z-OZ specification

ought to be clearer than its Z counterpart from which it was generated. Each class schema

in Z-OZ encapsulates a state schema, with all the operation schemas that may affect the

state schema. However, as discussed for the readability, the presentation of the specification

may be improved upon and hence, the readability and the clarity.

It may also be argued that restructuring the specification, as recommended for the un-

derstandability, would further improve the clarity. However, due to the duality between the

clarity and brevity (as discussed by Gravell [34]), the clarity may be obtained at the cost of

the brevity of the specification and hence, increase its size.

The following paragraph discusses the Traceability property.

170

Traceability (p8)

The aim is to map the Z-OZ specification under consideration to the initial requirements

and stakeholders’ expectations. Relating these three components of the system may help to

detect, for instance, omitted requirements, or those that were changed during the specifica-

tion process. It may equally help to detect pitfalls in the specification process.

For the Z-OZ specification, the initial goals g1, g2, and g3 (see Table 8.1) are not related

to any specific components or objects in the specification, but instead to some qualities re-

quired from the specification as a whole. For example, as demonstrated earlier, g1 requires

the specification to be readable, understandable, and clear (see formula 8.1 and Table 8.1).

The lack of specific objects in the specification that describe those stakeholders’ expecta-

tions, may stem from the fact that Z and Object-Z, do not explicitly describe non-functional

requirements (see for example Dongmo and van der Poll [23], van der Poll and Kotzé [93]).

For this reason, only three user requirements g4, g5, and g6, are formally related to the

specification, in the form of a traceability matrix (Table 8.4). Such a relationship is also

suggested by Formula 8.3.

To facilitate the understanding of the traceability matrix (Table 8.4), some short codes

are proposed to reference users’ requirements and class schemas in the Z-OZ specification in

Table 8.3.

Requirements Z-OZ classes

g4 return item cls0 Basic Types

g5 replace item cls1 ClsGlobalVariable

g6 pay credit cls2 ClsAccount

cls3 ClsIsales

cls4 ClsDatabase

cls5 ClsAgency

cls6 ClsSystem

Table 8.3: Table of codes

In Table 8.3, the first two columns are used to code the requirements, and the last two

for the Z-OZ classes. Since basic types exist to be used by other classes, for brevity, we

do not list them individually. A unique class code (cls0) is used to denote each basic type.

Although the use of this code seems to be ambiguous, in the present situation, it may not

be harmful because there is no need to reference each of the classes individually.

171

The traceability matrix is presented in Table 8.4.

Z-OZ Classes
Requirements

cls0 cls1 cls2 cls3 cls4 cls5 cls6

g4 x x x x x x x

g5 x x x x x x x

g6 x x x x x x x

Table 8.4: Traceability matrix

A cross in a cell in Table 8.4 indicates that the Object-Z class in the column is related to

the requirement in the line. Such a relationship is accomplished when the definition of the

class includes, at least one component or an operation that aims to partially or fully achieve

the corresponding requirement. For each user requirement, at least one basic type (Cls0) is

used in the definition of one or more classes that achieve the requirement hence, relating the

class of basic types to each and every user requirement. E.g. when returning or replacing an

item, the class of interface of communication, denoted by cls3, is used to refund a customer

or to specify a warning message (UnknownCustomer), to alert a user that the customer does

not have a valid account with the local company. Those two operations are indicated by the

following expression:

RefundCust =̂ RefundCustOk [] UnknownCust (8.8)

Similarly, when making a payment, the operation UnknownCust of the class of interface of

communication, ClsIsales , denoted by cls3, is inherited in the class of agencies (denoted by

cls5), to model a warning message (UnknownCust), whenever a customer does not have an

account with the local company. This claim is justified by the following formula included in

the class of agencies (cls5):

ReceivCash =̂receivCashOk [] UnknownIdentifier [] AgencyNotFound

[] UnknownCust
(8.9)

The operation UnknownCust is automatically selected by the system to check if a customer

has a valid account. When the customer does not have a valid account, a warning message is

generated and the user is alerted. The operation is accessed through the component ssales ,

which is an inherited object of the class denoted by cls3. Formula 8.9 may become clearer

if the name of the operation, within the expression is changed to ssales .UnknownCust that

clearly indicates the object from which the operation originates.

An analysis of the relationship between users’ requirements and the Z-OZ class schemas

172

can also be undertaken, since Table 8.4 is amenable to a Parnas table (Parnas [67]). In

this regard, crosses in the cells may be replaced by the expressions (including variables and

predicates) in classes that relate those classes, to user requirements.

In the light of the traceability matrix in Table 8.4, the following observations may be made:

(1) Each user requirement is related to each and every class schema within the specification.

The above observation suggests that the accomplishment of each of the listed requirements

(in Table 8.4), necessitates the availability of the entire system at once. Consequently,

this may compromise the quality of the envisioned system because of the following rea-

sons:

Reliability : If a single component within the system is faulty, the entire system may

become unusable.

Maintainability : The system, therefore, becomes hard to maintain, as any faulty ob-

ject may bring the entire system down.

Security : All the system components must be equally secure.

Performance: Having all the components available at the same time may render the

system sluggish and reduce the performance.

Complexity : As in the case of the performance, the achievement of a single user need

may require lot of resources because of the large number of objects needed.

This situation may also be an indication of redundancies in user requirements, which

may be attributed to the fact that the initial users’ requirements were not transformed

into system (or software) requirements (Sommerville [82]), before specification. To il-

lustrate the claim about refining initial requirements to generate system functionalities,

consider for example breaking-down the requirements g4 and g5 as followes:

Requirements sub-requirements

g41 receive an item from a customer

g4 return item g42 send item to agency

g43 refund a customer

g41 receive an item from a customer

173

g5 replace purchased item g42 send item to agency

g51 send a different item back to customer

Table 8.5: Requirements and sub-requirements

Table 8.5 clearly shows that some sub-activities needed to accomplish g4 and g5 are

duplicated. Further transformation of the sub-activities may be performed until appro-

priate system requirements are obtained. Such a transformation may help to discover

and eliminate possible inconsistencies in initial requirements.

The above illustration may be perceived as an indicator that a separate requirements

analysis phase (including at least sketching the architectural design of the system) must

precede the formal specification of the system, as suggested by Sommerville [82], in Fig-

ure 10.1. Such an analysis phase may aim not only to transform user requirements into

system requirements, but also to architecturally reveal a possible conceptual relationship

between them. In line with this idea, van Lamsweerde [95] states:

Formal specification is not a mere translation from informal to formal. The specification

of a large, complex system requires relevant objects and phenomena to be identified,

interrelated, and characterized through properties of interest.

(2) As shown in the traceability matrix (Table 8.4), having each component defined in the

specification contributing to the achievement of all the user requirements may be an

indicator of poor structuring of the specification.

The poor structuring of the specification was mentioned in the previous paragraphs when

analysing the nested inheritance. It has just been demonstrated that such a problem

could also be addressed by transforming the user requirements into system requirements

and sketching the architectural design, before proceeding to the formalisation of the

specification. This proposition may be valuable, considering that Z as a specification

technique, does not include any mechanism to address the architectural aspect of a sys-

tem in the first place (see e.g. Dongmo and van der Poll [23]). It also fails to explicitly

address the problem of providing mechanisms to capture user requirements and build

system specifications from them, for example, in an incremental way (see e.g. van der

Poll and Kotzé [93], van Lamsweerde [95]).

174

Completeness (p9)

It may be hard to objectively decide on the completeness of the specification since, for

example, as mentioned above, some qualities expected from the system are not traceable.

However, the traceability matrix indicates that all the user requirements are addressed by

the specification. Therefore, at this stage of validation, it is revealed that the specification

under consideration, embodies functionalities that fulfill the users’ requirements. However,

more analysis is needed to establish whether those functionalities adequately accomplish

such requirements.

Operational feasibility (p4)

Balzer and Goldman [10] discussed as early as 1981, in their principle 6, the importance

of having a specification operational. In the context of this dissertation, by dealing with

this property, the aim is not to conduct the operational study itself but, to evaluate how

well the specification under consideration may facilitate such a study at the current stage.

Although the intention is not to do a deeper analysis, it may be worth looking, for exam-

ple, at how easily complete scenarios, can be reconstructed from the specification, and the

degree of detail and simplicity in which the operations are described. Those two aspects

may help, for instance, to determine user satisfaction. The reason is that having complete

scenarios together with simple, detailed and understandable operations, may, for example,

facilitate the process of identifying the position and responsibilities of potential users in the

scenarios. Hence, one would therefore be prepared to analyse and discuss their satisfaction,

either empirically or theoretically.

To illustrate, consider the following scenario that describes the process of a cutomer re-

turning an item to the provider via a local agency.

1. A customer returns an item to a local agency say, AgencyA which is not the provider of

the item.

2. The item is received from the customer.

3. The item is temporarily kept in a store, pending a transfer to the provider.

4. The item is sent to the provider, say AgencyB.

5. AgencyB updates the customer account and notifies the customer about the transaction.

An attempt to reconstruct this scenario from the specification, results in the following Z

schema composition expression in which system is an instance of the class ClsSystem.

system.this .ReceivItem o
9 system.sendItem o

9 system.NotifyCustTrans (8.10)

175

Building formulae like (8.10) for large (and complex) systems can be hard if there is no initial

requirements capturing and analysis strategy. The standard Z specification technique does

not explicitly include the concept of scenarios. It focuses mainly on defining system states

and operations. To construct formula 8.10, classes were inspected aiming to identify any

operation that may be involved in the scenario. The formula itself represents a Z schema

composition expression. Although it clearly indicates the sequence of operations required for

the scenario, it may not succeed in facilitating the operational feasibility study. The reason

is that it does not explicitly describe the distant communication between the two agencies

involved in the process.

The three operations in formula 8.10 are very compressed and hence, hide complex ac-

tivities in the specification. To illustrate this, consider the operation receivItemOk , which is

internally applicable when the pre-condition of ReceivItem is satisfied. The predicate part

of the operation includes the following expression:

∃Agency •

(

θAgency .identifier = id? ∧ (8.11)

inv? ∈ θAgency .ssales .invoices ∧ (8.12)

addr ! = θAgency .address ∧ lang ! = θAgency .language (8.13)

)

The following activities are encoded by the above expression:

1. The identification of the company for which the identifier is known (id?) as input (8.11).

2. (Remotely) request the company to validate, via its communication interface, the invoice

that was provided by the customer (8.12).

3. (Remotely) request the address of the company and the language to use for communi-

cation (8.13).

It appears that each of the above enumerated tasks is highly dependent on a network com-

munication or broadly, a distant communication between the companies involved in the oper-

ation. However, the specification itself might not make this aspect of the system sufficiently

obvious to the reader. Consequently, if for example, at the design and implementation phases,

the designer does not apprehend the unforseen impact of such a communication, provision

may not be made, for example, for networking (installation, administration, communication

protocol, telephone system, etc.) in an economic efficient and operational basis. Having

176

many different activities compressed in a single formula may also introduce the problem of

cohesion (Zhao and Xu [103]) in the system.

Next is presented the leftward validation phase.

8.3.3 The leftward validation

Creativity (p7)

As described in Section 3.1, (Chapter 3), stakeholders initially intended to increase profit in

their business. Suppose the idea was not based on any existing business from which processes

and operations could be derived. However, the operational environment is already known (an

interconnection of different, well-known companies physically dispersed world-wide). This

renders the system highly reliant on the ability of the specifier to analyse the environment,

and propose appropriate operations to specify system functionalities. In this regard, the

property of creativity is used in this dissertation (as a means to observe the ability of the

specification technique or process to stimulate the specifier’s imagination about the required

functionalities of the system).

Although a problem like the one that has just been discussed in the previous section, about

the operational feasibility, may be attributed to the specifier’s lack of skill, one may equally

see it as a weakness of the specification process and the technique used. It may be observed

that when constructing the Z and Object-Z specification of the scenario, the aim was to

accurately describe operations that were identified by analysing the user requirements and

provide as much detail as to clearly determine the circumstances under which an operation

will succeed, or fail. For example, a verb or verb phrase in a sentence is likely to lead to an

operation (see van der Poll [90]). Preconditions were calculated for each operation in the Z

version of the specification. While the specification technique indeed provides very powerful

mathematical tools to adequately code identified operations, it remains largely silent about

helping the specifier to address, for example, the processes, scenarios, the degree of abstrac-

tion, and the cohesion of operations.

The main focus of the enhanced strategy for constructing Z documents is to concentrate

on identifying, from the statement of the user requirements, those objects that will serve

to best describe the abstract states and the operations of the system. Some heuristics were

suggested by van der Poll and Kotzé [93] to reinforce the strategy that recommends amongst

others to have operations decomposed into primitives, with the main purpose to facilitate

automated proof, but also to facilitate cohesion. However, the main problem of addressing

177

system processes and scenarios, and bringing operations to a reasonable level of abstraction

before a specification, still remains. Hence, there is a need for a complementary tool at the

level of user-requirements. In line with these observations, Sommerville [82] suggested the

use of formal specification techniques after user requirements have been captured, analysed

and transformed into system requirements.

Networking (p10)

Neither this property, nor the creativity discussed in the previous paragraphs, are stan-

dardised properties (see for example IEEE Std 830-1998 [41]) that are commonly used to

characterise or judge the quality of a specification. The networking property is related to

the nature of the application domain, which involves an intensive communication between

companies geographically dispersed world-wide (see Figure 3.1, Chapter 3). The aim is to

observe how well the specification technique or process may assist, for example, a require-

ments engineer to focus on such aspects of an innovative system, where detailed descriptions

of user requirements have to be deduced or discovered by observing, the application domain.

The above discussion on the operational feasibility and the creativity, clearly indicates

that network communication is not explicitly handled by the proposed Z-OZ specification.

One possible explanation is that operations in the specification are described at the same

abstraction level as user requirements, whereas some authors (e.g. Sommerville [82]), sug-

gest that formal methods be applied at a lower level of abstraction, to system requirements

rather than user requirements. Also, Z and Object-Z provide very powerful mathematical

tools to help a specifier explore the circumstances that may surround an operation but, do

not provide mechanism to reason about full processes or scenarios. These are the elements

from which the possible inter-dependencies between operations can be observed facilitating

the analysis of any interaction between system components and possibly discovering missing

operations.

Integrity (p11)

This property aims to analyse the integrity of the specified functionalities within the appli-

cation domain. Since standard Z, from which the Z-OZ specification was generated, does not

explicitly provide means to reason about scenarios, the point is to ensure that each operation

fits adequately into at least one complete process or scenario. One way to fulfill this aim,

would be to identify, from the operational environment, all the processes that interact or

operate in isolation, to build the entire system.

178

Table 8.4 shows that each class in the specification contributes to the achievement of at

least one of the known user-requirements. As operations are encapsulated into classes, it

appears that operations themselves contribute to achieving user requirements. If at this

level, it is assumed that each complete scenario may be generated from user requirements,

hence, it may be deduced that each functionality in the specification is, clearly, part of a

scenario. However, further investigation may be conducted to determine the adequacy or

appropriateness of such functionalities, e.g., by animating the specification (e.g. McComb

and Smith [56]).

The following paragraphs discuss the rightward validation phase of the Z-OZ specification.

8.3.4 The rightward validation

In practice, this phase of the validation process mainly involves the use of tool support to,

for example, to perform the syntax checking, and the semantic analysis of the specification.

The use of such tools may equally assist the specifier in discharging some proof obligations.

Correctness (p12)

With respect to the language notation, the concern is to ensure that the specification is

syntactically and semantically correct. The Z and Object specifications presented in this

document were generated using the OZ.Sty (Allen [3]) package of Latex macros for printing

Z and Object-Z specifications. The tool provides macros for Z and Object-Z fonts, includ-

ing symbols and boxes. The standard Latex syntax checking is performed when compiling

the document. However, the Z and Object-Z related syntax and semantic analysis are not

supported.

As observed above, to infer an accurate conclusion about the correctness of the specifi-

cation with respect to its encoding, tools for syntax checking, and semantic analysis, are

also required. As reported in Dongmo and van der Poll [24], a number of tools exist for Z

and Object-Z, and many of them run under the Linux system. For example, the Community

Z Tools CZT for editing, type-checking and animating Z and Object-Z specifications(see Ma-

lik and Utting [54]). The Wizard: a type-checker for Object-Z in Latex (see Johnston [43]),

Moby/OZ, a graphical editor to build Z and Object-Z specifications. To date, detail informa-

tion on tool support for Z and Object-Z, as well as, publications are accessible via a number of

formal methodsWiki web sites: (e.g. http://formalmethods.wikia.com/wiki/Z notation).

Some research has suggested the encoding of Object-Z, into existing automated theorem

provers (see for example Smith et al. [80]), and the re-use of a Z animator for Object-Z (e.g.

179

McComb and Smith [56]).

The purpose here is not to utilise those tools to analyse the Z-OZ specification at hand,

but rather bring attention to their existence. However, some considerations need to be men-

tioned regarding their applicability. Although most of the existing tools are Latex based, the

Object-Z specification at hand needs to be updated to render it applicable. For some (e.g.

the Wizard, Moby/OZ, etc.), only very slight modifications may be required. For example,

to type-check the Z-OZ specification with the Wizard type-checker, the following updates,

which are not exhaustive, are necessary within the Latex source document:

1. Include the package wizard.sty to the document.

2. Separate declarations, with a semicolon (;) or an eol.

3. Predicates need to be separated by an eol or a semicolon (;).

Next aspects related to the internal consistency are discussed.

Internal consistency (P13)

It is argued that having a consistent requirements specification is a critical quality on which

the correctness of an implemented system relies (IEEE Std 830-1998 [41], Liu [53]). However,

addressing the consistency of a specification can be a tedious task, since it involves demon-

strating that the specification is semantically sound (Sommerville [82]), that is, it does not

contain any contradictions. For large and complex systems, manual consistency checking

can be time-consuming and hence, very costly (Heitmeyer et al. [38]). To investigate the

internal consistency of the Z-OZ specification, a twofold manual approach is adopted in this

dissertation. Firstly, each class schema is analysed, individually aiming to reveal any contra-

dictions within the class. Secondly, the system is investigated as a whole, to identify possible

inconsistencies between classes due, for instance, to over-lapping or inter-related components

in the classes.

The result of the manual investigation is presented next.

1. No error was found for the class of basic types, nor the class of global variables (ClsGlobalVariable),

nor the class of accounts (ClsAccount).

2. Within the class of Interface Communication (ClsIsales), about five errors were found,

but three of which are syntax errors, that could be eliminated by applying an automated

tool support, (namely, a type-checker), as suggested in the previous paragraphs. The

180

other two are found in the following expression of the operation refundCustOk :

∃Account • (8.14)

(

θAccount 7→ cust? ∈ custaccounts (8.15)

statements ′ = statements ∪ (θAccount , trans) 7→ date? (8.16)

)

The term Account in Formula 8.14 refers to a component that does not exist in the

specification. This error induces the other two expressions 8.15 and 8.16 to produce

errors. Account is an abstract state in the Z specification, from which the Object-Z

specification under consideration was generated. So, the error may be due to a confusion

between concepts in Z, and its counterpart in Object-Z, or a careless application of

the transformation guidelines. For example, by copying parts of the Z specification

and pasting it into an Object-Z class without ensuring a proper transformation, or by

forgetting to do so afterwards.

3. Within the class of databases (ClsDatabase), three errors were found. One typing error,

and the use of the Z abstract state space Account (the same as discussed above) that

induces the other two errors as shown in formulas 8.17 and 8.18.

∀Account | θAccount ∈ dom(statements)) • (8.17)

(

∃ id : Agencyid • id ∈ ran(cashin) ∧

θAccount 7→ id ∈ agencyaccounts (8.18)

)

4. Within the class of agencies (ClsAgency), about seven errors were found. Three of these

are referencing errors, and the other four concern the use of Z abstract state schema as

objects in the Object-Z, without transformation. One example of the referencing error

is the use of the component agencies in the predicate part of the class.

identifier ̸∈ agencies (8.19)

The component agencies is inherited from the class of databases, for which an instance

is accessible in the class of agencies through db, that represents a pointer to a database

object. Therefore, a mere reference to agencies , in the class of agencies should in-

stead use the notation db.agencies . Similar observations are made for agencyaccounts

181

in the predicate part, and the component itemsin in the predicate part of the opera-

tion receivItemOk . Other types of errors, stem from the use of the Z schema Agency ,

as a type in the specification of the operations, receivItemOk , AgencyNotFound and

InvalidInvoice.

5. Consider the two components of the class ClsSystem, defined as follows:

this : ClsAgency (8.20)

known : PClsAgency (8.21)

A closer analysis of these two components reveals that the state schema of the class

system is redundant, as the same functionality is specified within the class of database.

In fact, the idea is of a decentralised system, where each agency keeps its own database.

The component known, represents all the agencies participating to the system, and this

is the pointer to an object of the class of agencies, that designates the agency in which

an instance of the system is operating. Consider also formulas 8.22 and 8.23 (see Section

4.2.2 in Chapter 4) defined, respectively, in the state schema of the class of agencies, and

that of databases.

identifier : Agencyid (8.22)

agencies : PAgencyid (8.23)

Identifier is the identifier of the agency in which the system is operating, and agencies ,

the list of agency identifiers. Formula 8.22 specifies the same idea as formula 8.20, with

the difference being that the component (this), references a larger object that eventually

contains the component identifier . Similarly, formulae 8.21 and 8.23 serve the same

purpose within the same system, with the difference being that an object in the list

known has more components, than that of the list agencies . The list agencies is inherited

in an object of the class system, through the promotional expression: this .db.agencies ,

meaning that the two lists are managed concurrently within the same instance of the

class system.

The errors identified so far are not exhaustive, since further analysis could be done to address

functions and processes, for example, the consistency between post-conditions and input

data availability, consistency between pre- and post-conditions and eventually, consistency

between processes (Liu [53]).

Minimality (P14)

It is suggested that a good software specification should be as minimal as possible (van

Lamsweerde [95]). To ensure this characteristic, a specification is required to include only

182

properties that are relevant to the problem or the problem solution. The traceability matrix

in Table 8.4, shows that each class schema in the specification is related to a user requirement.

Further analysis of individual classes does not reveal any components or operations that are

irrelevant to the system.

Maintainability (P15)

An acceptable software requirements specification should be modifiable to facilitate its main-

tenance (see Balzer and Goldman [10], IEEE Std 830-1998 [41]). The modification of a

software specification may become easier, if the structure and style of the specification is

made simple and easily understandable. It was discussed previously that the structure of the

Z-OZ specification under consideration, may be suspect because the standard Z specification

technique, from which the specification was derived, does not support system architectures

in the first place. Another reason discussed earlier, is the use of nested inheritance, that

may also render the structure of the specification complex, and hence, hard to understand.

Next, the downward validation phase is discussed.

8.3.5 The downward validation

Since the purpose of this validation phase is to demonstrate that the specification under

consideration is likely to lead to a software product with the required qualities, the technical

feasibility and the executability of the specification are now addressed.

Technical feasibility

As pointed out by McConnell [57], a requirements specification of a software system may

be a valuable tool to guide the technical feasibility of the system. Since with a specification

one aims amongst other objectives, to produce a quality software product, the transforma-

bility of the specification, becomes an interesting aspect to focus on. The issue may be, for

example, to check if there exist appropriate techniques or methods to transform the Z-OZ

specification, into operational software products. To this end, as reported in Dongmo and

van der Poll [24], a number of refinement methods have been suggested for Object-Z (e.g.

Duke and Rose [26], Qin and He [71], Smith and Derrick [79]). Johnston and Rose [44]

also suggest guidelines to implement an Object-Z specification with the C++ programming

language, (and some practical projects with Object-Z are reported on the Object-Z website:

http://www.itee.uq.edu.au/smith/publications.html#tools.)

Owing to the above observations about the transformation of an Object-Z specification, the

183

aim is no longer on investigating if the specification can be transformed or not, but rather

focuses on the ability of the specification to facilitate such a transformation. Amongst other

properties, the ability of a specification to be refined or transformed into a final product,

highlights the modularity / structuring, clarity, understandability and readability of spec-

ifications, discussed previously. Since it is believed that a specification that encompasses

those qualities may be easy to communicate to team developers, facilitating the application

of transformation techniques as developers clearly understand the system to be produced.

Another important aspect to focus on, is the executability of the specification, which is

discussed next.

Executability

As early as 1992, Fuchs [32] suggested a software specification should be executable, as it

would exhibit the behavioural aspect of the envisioned software, during the early conception

phase. Prototyping has been used as a means to demonstrate the feasibility of a proposed

system and demonstrate its behaviour. However, the technique requires the partial design

and implementation of a system. With formal techniques, automated proofs and animations

are meaningful ways to focus when demonstrating certain qualities of a specification, without

proceeding with further development phases. A number of animation strategies have been

proposed for Object-Z such as: animating Object-Z using Z animator (McComb and Smith

[56]), encoding Object-Z in Isabelle/HOL (Smith et al. [80]), and An XML/XSL Approach

to Visualize and Animate TCOZ1 (Sun et al. [85]).

8.4 Validating the UCM-OZ specification

This section applies the validation framework, developed in Chapter 7, to validate the UCM-

OZ specification of the case study presented in Chapter 6. As recommended by the frame-

work, the process that was followed to construct the specification, is briefly presented in

Section 8.4.1. Since the aim of the validation process in sections 8.3 and 8.4 is to enable

the comparison of the two specifications, Z-OZ and UCM-OZ, in the light of the discussion

from Section 8.3, this section does not insist on properties that the two specifications may

have in common. For example, the specifications specify the same set of user-requirements,

use concepts and terminologies of Z and Object-Z. Instead, the focus is on those aspects of

the UCM-OZ specification that may highlight the impact of the Use Case Map specification

techniques introduced into the process, to generate the final specification.

1TCOZ (Timed Communicating Object-Z) is an integrated formal notation that build on Object-Z’s

strengths in modeling complex data structures, and on Timed CSP’s strengths in modeling real-time inter-

actions

184

8.4.1 The UCM-OZ specification

As in the case of the Z-OZ, Figure 8.2 illustrates the three- step process followed to construct

the UCM-OZ specification.

Case study
UCM
Model

Z
specification

step 1 step 2
UCM-OZ

specification

step 3

Figure 8.2: UCM-OZ specification process

The case study was described in Chapter 3. The first step transforms the case study into

a UCM model (see Chapter 3). Then, during the second step, the framework developed in

Chapter 5, is used in Chapter 6, to guide the transformation of the UCM model, into a Z

specification, and to generate meta-classes for Object-Z, and then, in step 3, to Object-Z.

Step 3 in this process is identical to step 2 in the two-step process of the Z-OZ specification

discussed in Section 8.1. During this last step, the Z specification and meta-classes are com-

bined, to form Object-Z classes.

Before proceeding with the upward validation phase in the following paragraphs, the list

of those UCM-OZ class schemas on which the discussion is based, is presented first. The

classes were described in Chapter 6. Table 8.6 presents the list of classes in two columns.

UCM-OZ classes UCM-OZ classes

cls0 Basic Types cls11 ClsCashier

cls1 ClsGlobalVariables cls12 ClsPayPoint

cls2 ClsTimer cls13 ClsInStore

cls3 ClsInterface cls14 ClsTransitPoint

cls4 ClsNetInterface cls15 ClsHelper

cls5 ClsNetComTemp cls16 ClsCheckPoint

cls6 ClsRequest cls17 ClsUpdatePoint

cls7 ClsLocalSales cls18 ClsBeneficiary

cls8 ClsCheckInvoice cls19 ClsMainStartPoint

cls9 ClsCheckCustomer

cls10 ClsInitChecking

Table 8.6: List of selected UCM-OZ Classes

185

The following section discusses the upward validation phase where the focus is on the prop-

erties revealing the ability of the specification to satisfy stakeholder expectations.

8.4.2 The upward validation

For similar reasons presented in Section 8.3.2, the properties to check for the UCM-OZ speci-

fication are: the readability (p1), the understandability (p2), the clarity (p3), the operational

feasibility (p4), the traceability (p8) and the completeness (p9).

Table 8.7 aims to reveal the complexity of the UCM-OZ specification, relative to the struc-

turing, due to nested inheritance and polymorphism.

Inheritance Polymorphism
No. Class

1 2 3 4 5 1 2 3

00 Basic types 0 0 0 0 0 0 0 0

01 ClsGlobalVariables 1 0 0 0 0 0 0 0

02 ClsMainStartPoint 1 0 0 0 0 0 0 0

03 ClsTimer 1 0 0 0 0 0 0 0

04 ClsInterface 1 0 0 0 0 0 0 0

05 ClsNetInterface 1 1 0 0 0 0 0 0

06 ClsNetComTemp 1 0 1 0 0 0 0 0

07 ClsRequest 1 4 0 1 0 0 0 0

08 ClsLocalSales 1 0 0 0 0 0 0 0

09 ClsCheckInvoice 1 1 0 0 0 0 0 0

10 ClsCheckCustomer 1 1 0 0 0 0 0 0

11 ClsInitChecking 1 2 0 0 0 0 0 0

12 ClsCashier 1 0 0 0 0 0 0 0

13 ClsAgenciesAccounts 1 0 0 0 0 0 0 0

14 ClsPayPoint 1 3 0 0 0 0 0 0

15 ClsInStore 1 0 0 0 0 0 0 0

16 ClsTransitPoint 1 1 0 0 0 0 0 0

17 ClsHelper 1 0 3 0 1 0 0 0

18 ClsCheckPoint 1 1 3 0 0 0 0 0

19 ClsUpdatePoint 1 1 0 0 0 0 0 0

20 ClsBeneficiary 1 1 1 1 0 0 0 0

186

Table 8.7: Levels of inheritance and polymorphism in UCM-

OZ

The indicates that the UCM-OZ specification includes a total of twenty (20) class schemas.

Next the information on each level of inheritance, is revisited where the number of classes

and the average number inherited classes per lower level, is also provided.

Level 1: Eight(8) classes, representing 40% of the total number of classes. These classes use

in their definitions only basic types.

Level 2: 7 Seven (7) classes, representing 35% of all the classes. Excluding basic types, on

average, each of these classes inherits about 10/7 = 1.4 classes at level 1.

Level 3: Two (2) classes, representing 10% of all the classes. Excluding basic types, on

average, each of these two inherits about half (1/2) a class at level 1 and 2 classes

from level 2.

Level 4: Two (2) classes, representing 10% of all the classes. Each of these classes inherits

on average, 5/2=2.5 classes from level 1, half (1/2) a class from level 2, and one

(2/2) class from level 3.

Level 5: One (1) class, representing 5% of all the classes. The class inherits three classes at

level 2, and one at level 1.

The table also indicates that polymorphism is entirely absent from the specification. How-

ever, it is valuable to observe that Object-Z classes, resulting from the transformation of a

dynamic stub, (see e.g. Figure 6.2), may specify polymorphic objects. For example, by com-

bining the two class ClsCheckInvoice and ClsCheckCustomer , to form a class that inherits

both of them, and includes in its interface the visibility list of both classes. An object of

such a class, can either be used to check an invoice, or to check a customer.

The following paragraph considers the readability of the specification.

Readability (p1)

From the above observation on the number of classes in each hierarchical level of inheritance

based on Table 8.7, it appears that the reading of most (about 75%) of the UCM-OZ speci-

fication class schemas, may not be difficult to the average person who is reasonably familiar

187

with Object-Z terminologies and concepts. A small proportion (about 10%) of the specifica-

tion would require more effort from the reader to understand two or three classes. Hence, a

tiny part (15%) of the specification represents the hardest part to read and comprehend, as

it requires a reader to study from 1 to 4 other classes in sequence. It is, however, important

to notice, by looking for example, at the space that each class occupies on paper, that the

average size of each class is manageable. The size of those classes may have a positive impact

on the readability of the specification, since a reader would not need too much efforts to read

and comprehend one class. Nevertheless, including the short prose text inside each class,

for example, to explain a component within the class, may help render a specification more

readable.

Next the understandability of the UCM-OZ specification is discussed.

Understandability (p2)

As mentioned earlier when discussing the understandability of the Z-OZ specification, having

multiple levels of nested inheritances in a specification, renders the specification hard to com-

prehend. However, with the UCM-OZ specification, a valuable aspect is the support that the

UCM model provides to facilitate the understanding of the specification. As shown in Figure

8.2, each class or a sub-set of classes in the UCM-OZ is clearly a result of the transformation

of a UCM component, or a sub-map. The operations in a class are those previously defined

in a UCM. Unlike the Z-OZ specification, where most of the nested inheritances are induced

by the use of schemas as types, the structure of the UCM-OZ specification, is based on the

architecture of the components, within the UCM model. This observation implies that both

the comprehension of individual elements within the UCM-OZ class, and that of the entire

specification, may be readily available through the UCM elements from which it is generated.

The next section discusses the clarity of the specification.

Clarity (p3)

It is argued that a specification is clearer when it is well structured, with each element hav-

ing a reasonable size. For example, regarding the size, a class schema with a large number

of variables and operations, that occupies more than two pages of an A4 document, might

be confusing to the reader. Hence, since Object-Z specifications are inherently assumed to

be clear, because they tend to be modular (Smith [77]), the UCM-OZ specification may be

viewed as being clear, due to the concise size of its class schemas. It also owes its clarity to

its structure, that can be assessed in figures 6.6 and 6.7, and the architectural structuring

188

of the UCM model (see Figure 6.2) components, on which they are based.

The ability to trace user requirements through different stages of a software development

process, is one of the important qualities expected from a process. Next, the extent to which

elements in the UCM-OZ specification, can be traced back to the initial user requirements,

is discussed .

Traceability (p8)

Recalling the UCM model of the case study constitutes a step towards analysing the ini-

tial user requirements, in which each component assumes some specific responsibilities; two

stages are considered to analyse the traceability. The first relates initial user requirements

to UCM components (shown in figures 6.2, 6.3, 6.4 and 6.5), and the second relates UCM

components, to Object-Z Classes.

Table 8.8 represents the traceability matrix, relating the UCM components in the UCM

model of the case study, and the three initial user requirements, presented in Table 8.3.

User requirements

UCM Components g4 g5 g6

Initchecking x x x

NetControl plugin x x x

CheckInvoice plugin x x

CheckCustomer plugin x x x

Cashier x

Pay point x x

Store x x

Transit point x x

Helper x x x

Check point x x x

Update point x x x

Beneficiary x x x

Network x x x

Table 8.8: Traceability matrix relating UCM components to

users requirements

189

A relationship between a component and a requirement is identified by following, e.g., a path

traversing the map, from a start-point to the end on the stubbed map, in Figure 6.2. For

example, with a UCM, a scenario to return an item (g4) is modelled with a path, starting

form the start-point S1, traversing components, and ending at the end-point E1. A com-

ponent traversed by such a path is therefore related to the requirement g4. When a path

gets into a static stub, the plug-in connected to the stub, is also related to the requirement,

whereas, when it gets into a dynamic stub, at least one of the plug-ins associated to the stub

ought to be considered; the selection policy to select those plug-ins may be used as a guide.

The traceability matrix, relating each class schema to a UCM element, or sub-map is pre-

sented in Table 8.9. The main purpose of the two matrices in tables 8.8 and 8.9, is to provide

a means to trace back from the specification, to the user requirements, aiming to facilitate

the analysis of both the specification, and the specification process.

UCM Elements

Class code In
it
C
h
ec
k
in
g

N
et
C
on

tr
ol

C
h
ec
k
In
vo
ic
e

C
h
ec
k
C
u
st
om

er

C
as
h
ie
r

P
ay

P
oi
n
t

S
to
re

T
ra
n
si
t
P
oi
n
t

H
el
p
er

C
h
ec
k
P
oi
n
t

U
p
d
at
e
P
oi
n
t

B
en
efi
ci
ar
y

N
et
w
or
k

Basic types x x x x x x x x x x x x x

ClsGlobalVariables x x x x x x

ClsTimer x

ClsInterface x x

ClsNetInterface x x

ClsNetComTemp x

ClsRequest x x

ClsLocalSales x x x

ClsCheckInvoice x x

ClsCheckCustomer x x

ClsInitChecking x x

ClsCashier x x

ClsAgenciesAccounts x

ClsPayPoint x x

ClsInStore x x

ClsTransitPoint x x

ClsHelper x

190

ClsCheckPoint x x

ClsUpdatePoint x x

ClsBeneficiary x

Table 8.9: Traceability matrix relating UCM-OZ to UCM

components

To avoid having to list each class of basic types in Table 8.9, the expression Basic types is

used as a generic expression to designate each individual class of such types.

A class schema is related to a UCM element, if the class was generated directly from the ele-

ment (for example as a meta-class) during the transformation process (presented in Chapter

6), or if it is inherited from a class that was generated from the element. For example, at

least one basic type, is needed to specify each UCM element.

Along a row, the matrix conveys information about the list of UCM elements to which

a class is related. For example, the class ClsCashier contributes to the specification of the

UCM object named Cashier , and the UCM component Pay point , whereas along a column,

two types of information are provided: first, the list of all the classes that together con-

tribute to the specification of the UCM element in the column. For example, the plug-in

CheckInvoice (shown in Figure 6.4), in addition to basic types, is completely specified with

two Object-Z classes: ClsLocalSales , and ClsCheckInvoice. Secondly, it gives an idea of a

relationship between classes. For instance, in the previous examples, as the system that

UCM-OZ specifies, may not be allowed direct access to the local sales system of a company,

the class ClsCheckInvoices , which checks invoices that are managed by the local sales system,

needs to request an appropriate service, via the communication interface, specified by the

class ClsLocalSales .

From the two tables 8.8 and 8.9, it becomes easier to relate class schemas to the user

requirements, because the mapping between Object-Z classes, and the UCM elements on

one side, and those between the elements of UCMs and the user requirements, are readily

available. For example, to identify the list of classes that specifies the user requirement g6,

the process is the following: from Table 8.8, the list of all the UCM elements related to g6

is identified. Then in Table 8.9, the list of all the classes that specifies those elements is

selected. An important advantage of using the UCM technique in the process of construct-

ing the specification is that, with the support of the UCM model, reconstructing a scenario

191

from the selected list of classes is relatively easier, because the UCM technique is inherently

scenario-based. With a UCM model, a complete scenario is modelled with a (UCM) path,

that begins from a start-point, traverses UCM elements, and ends with an end-point. The

Class schema ClsHelper readily specifies the part of such paths that traverse the component

Helper , and the class schema ClsBeneficiary , specifies those elements of paths that traverse

the component, say Beneficiary (Figure 6.2).

Next the completeness of the UCM-OZ specification is discussed.

Completeness (p9)

By observing Table 8.8, it is clear that the UCM model provides a list of components to

address each of the three user requirements g4, g5 and g6. It is also evident from Table 8.9

that each of the elements is specified with an appropriate set of class schemas. Moreover,

the above discussion about the traceability of the UCM-OZ specification, indicates that a

scenario describing the steps towards achieving any of the users’ requirements, can be re-

constructed from the specification. Based on these observations, the completeness of the

specification relative to user requirements may be concluded. However, it is important to

notice that such a conclusion does not go beyond the three listed user requirements, as other

aspects of the system, such as non-functional requirements, are not considered.

The discussion of the property of operational feasibility follows.

Operational feasibility (p4)

As indicated in the discussion about the Operational feasibility of the Z-OZ specification on

page 175, the aim is not to conduct an operational feasibility study of the system, in this

dissertation, but to evaluate the contribution of the specification towards facilitating such a

study. In this regard, the specification is expected to provide a clearer understanding of a

scenario, and specify operations clearly. The above discussions on the traceability and the

completeness, show how the UCM-OZ readily integrates the description of scenarios in its

inheriting classes. Two examples are given to illustrate this.

Example 1: The class schema ClsRequest (Chapter 6, p.118) specifies the operations of the

UCM sub-map in Figure 6.3, in Chapter 6. The sub-map models all the activities

related to sending requests over the network. The class encompasses a set of

three activities each describing a complete scenario (as perceived within the

sub-map) to handle each type of request.

192

For example, Activity #1 specifies, with an Object-Z operation schema ex-

pression, the scenario to forward a request to check an invoice. It includes the

sequence of operations, together with some conditions, in square brackets, that

need to be fulfilled.

If the system was limited to this sub-map, then, the specification would readily

include a complete description of scenarios for the entire system.

Example 2: As mentioned above, in the discussion about the traceability of the UCM-OZ

specification, the class schema ClsHelper (see Chapter 6, p.134) also includes

three sets of operations, that, each specifies, a sequence of activities that may

be performed by the system when acting as Helper .

For example, the operation startFromS1 specifies the scenario to return an item

(g4), from the beginning, until the returned item is shipped to its provider.

It appears that the scenario specification seems to be naturally encompassed by the UCM-OZ

specification. It is important to notice that a scenario description is included in a UCM-OZ

class, whenever an attempt is made to specify a UCM component, which includes other

UCM elements.

Next the leftward validation phase is discussed.

8.4.3 The leftward validation

This validation phase aims to discuss the ability of the UCM-OZ specification, relative to

the following properties: creativity (p7), networking (p10) and Integrity (p11).

Creativity(p7)

As mentioned earlier (in Section 8.3.3, p.177), the reason for the creativity property, is to

evaluate the ability of the specification technique or process, to stimulate the specifier’s

imagination about the required functionalities of the system.

It is important to observe how the UCM-OZ specification is structured into groups of classes,

in which the following remarks are relevant:

• Each group aims to specify a specific aspect of the system. Below are two examples of

classes:

Example 1: The classes ClsMainStartPoints , ClsInitChecking (Section 6.3.5, p.132), and ClsHelper

(see Section 6.3.5, p.134) together, aim to specify the reaction of the system to an

193

external event, such as a customer wanting to return an item or to pay a credit ;

and also to prepare the requests that need to be sent to other agencies via the

network.

Example 2: In Section 6.3.2, the classes: ClsTimer (on page 115), ClsInterface (on page 116),

ClsNetInterface (on page 116), ClsNetComTemp (on page 117), and ClsRequest

(on page 118) when taken together, aim to specify the behaviour of the system

with regard to the submission of requests via the network, implementing a mech-

anism to control network failure and maintaining a list of unresolved requests,

until they are successfully transmitted over the network.

• Some classes in a group specify individual operations in detail, whereas one of them

specifies how those individual operations are (architecturally) structured within the

system, hence presenting an operational view of the system being specified.

In Example 1 above, the class ClsMainStartPoints , for example, specifies the oper-

ations s1, s2, and s3 to initialise, respectively, the scenario to return an item, to

replace an item, and to pay a credit. These operations are activated to respond to

an external event initiated by a customer. The origin of these operations is clearly

justified. They result from the Object-Z transformation of the three start-points S1,

S2, and S3 of the UCM model, in Figure 6.2. Many other specified operations have

a similar origin. For example, all the operations within the class ClsTimer , to control

the network failure and recovery, are due to the UCM concept of Timer and the asso-

ciated pre-defined mechanism to control network failure (see Buhr and Casselman [20]).

The class ClsRequest , in Example 2, includes, for example, the expression:

Activities #3

[id3? : Identifier , cust? : Customer , amnt? : Money , ad? : Address] • s3 o
9

reqUpdateAccount o
9 e1

This expression, labeled Activities #3 shows how the three operations s3,

reqUpdateAccount and e1 are composed in sequence, to get a request to update a

customer’s account updated, after a credit has been paid. It also indicates, in the

square bracket, the condition for the process to be started.

• Groups are inter-dependent. For example, after a request is prepared as specified by

the group in Example 1, it has to be transmitted via the network, hence involving

the classes in Example 2. This specific aspect of inter-dependence between classes in

Example 1, and those in Example 2, is specified by the class ClsHelper that inherits

the class ClsRequest .

194

The next section discusses the ability of the UCM-OZ to describe issues related to network

communication between agencies.

Networking (p10)

The context and purpose of the networking property was discussed in Section 8.3.3 (on page

178). Because of the inherent nature of this application, network communication is a pre-

requisite to enable transactions between agencies.

The above discussion on the creativity property, shows in Example 2, that a set of five

class schemas are necessary in the UCM-OZ specification, to specify operations to control

network communication, and describe a mechanism for network failure and recovery. It may

be argued that the question of including certain functionalities in a specification is subjec-

tive because, different ways of solving the same problem are possible and the choice is left

to the specifier. However, the process of transforming the UCM (Figure 6.2 in Chapter 6)

model of the case study, into Object-Z, clearly shows that the specified functionalities and

the structuring of the UCM-OZ specification, were primarily driven by UCM concepts, such

as the UCM Timer and Components.

The following section aims to analyse the integrity of the operations specified in the UCM-OZ

specification within the application domain.

Integrity (p11)

The discussion about the creativity property of the UCM-OZ specification revealed that

the specification can be structured with a set of inter-dependent groups of classes. Each

such group of classes, specifies a specific task expected from the system. More importantly,

within a group, at least one of the class schemas clearly describes how individually specified

operations are composed to perform the task. It is similarly argued that a specification

already encompasses the concept of scenario from the UCM technique which is inherently

scenario-based. Owing to its scenario-based nature, re-constructing complete scenarios from

a specification, derived from a UCM, is relatively easy, because some classes already include

composite operations to specify UCM scenarios.

Such a composition of operations, representing a (segment of a) scenario in progress, de-

picts the operational view of the system and hence, shows how each function within the

specification, is integrated into the system as a whole. It has also been shown that having

the ability of the specification to provide scenario specification, may facilitate the operational

195

feasibility study of the system.

Next the rightward validation phase, that addresses the qualities of the specification related

to the notation language and associated tool support, is presented.

8.4.4 The rightward validation

This phase is where various tools associated with the specification notation language, may

be applied to the specification under consideration. It is also the moment during which the

applicability of such tools may be addressed. In this dissertation, the aim is not to apply Z

and Object-Z tools to the UCM-OZ specification, but to study the ability of the specification

to facilitate their use.

Correctness (p12)

The discussion of the correctness of the UCM-OZ specification, in the context of this dis-

sertation, is limited to the syntax and semantic correctness. The intent is not to practically

apply Object-Z tool support (such as type checkers and semantic analysers), to the spec-

ification, but to analyse their applicability. Thus, reference is made to the discussion in

Section 8.3.4, where a similar analysis, about the correctness of the Z-OZ specification, was

performed. The reason why further discussion about the applicability of the Object-Z tool

support does not provide more insight, is that each of the two specifications (Z-OZ and

UCM-OZ), resulted from the application of the same framework to a Z document, and the

same Latex package (OZ.sty) for encoding the Z and Object-Z documents.

Next, the Internal consistency property is discussed.

Internal consistency (p13)

Similar to the discussion in Section 8.3.4 (on page 180), a twofold manual check is conducted

to investigate the internal consistency of the UCM-OZ specification. Firstly, contradictions

within each individual class schema are checked. Then, the analysis is extended to the class

level, where the consistency between inter-related classes, is investigated. The result of such

an investigation is the following:

1. The pre-condition (time?0) of the operation setup, within the class ClsTimer , is syntac-

tically incorrect. This can be easily corrected, however if not detected, its interpretation

can be misleading. The correct version is time? > 0. For example, time? 0 may be

interpreted as a function, to which the argument 0 is applied.

196

2. The class ClsLocalSales specifies an interface to query the status of a local sales system

of a company, without allowing direct access to its components. Hence, it may not be

necessary to include the INIT operation, as the system under consideration has no control

over any local sales system that normally exist prior to the system being specified.

3. Consider the following two operations from the class ClsCheckPoint :

IN 1 =̂ [id? : Identifier ; inv? : Invoice] • plugin4Inv .s1 (8.24)

IN 2 =̂ [id? : Identifier ; cust? : Customer] • plugin4Cust .s2 (8.25)

where plugin4Inv is a pointer to an object of the class ClsCheckInvoice, and plugin4Cust ,

a pointer to an object of the class CheckCustomer . The expression of the operation IN 1,

described with formula 8.24, specifies the fact that the system selects one of the incoming

requests, temporarily keeps it in the variable collectedReq , and submits it to the object

plugin4Inv for checking. The variables inside the square brackets are used to indicate

the values of the selected request. The problem here, is that the format of a selected ob-

ject (identifier, invoice), does not match that of an incoming request (identifier, request)

and the additional function is presented to show, for example, how the information on

the invoice is generated from a request. A similar observation can be made with the

operation IN 2, in the Formula 8.25.

The above problem may however, result from a simple omission or negligence because

the class ClsGlobalVariables , inherited by the class ClsCheckPoint , readily defines the

functions:

invoiceInReq : Request 7→ Invoice
customerInReq : Request 7→ Customer

with the function invoiceInReq mapping each request to the invoice, for which the request

was created, and the function customerInReq mapping each request to the customer, for

whom the request was created.

The next section aims to investigate the specification, in order to reveal properties that are

irrelevant to the problem in the case study and the problem solution.

Minimality (p14)

With large systems, it may be hard to decide on the minimality of a software specification

since one has to check the entire specification to identify redundant and irrelevant com-

ponents. To analyse the UCM-OZ specification, a twofold strategy is adopted: first, the

specification is investigated to identify irrelevant class schemas within the system. Secondly,

197

each class schema is investigated to identify irrelevant components within the class.

The traceability matrix in Figure 8.9, relating class schemas to the specified UCM elements,

reveals that each class is relevant, since every class contributes to specifying at least one

UCM element that helps model the system.

A detail analysis of classes does not reveal any unused component or variable. However,

it remains difficult to definitive on this issue because not all operations are completely spec-

ified in the specification. Examples are the operation respond in the class ClsCheckPoint ,

and the operations evalItem and updateCustAccount in the class ClsUpdatePoint .

Next the maintainability property is discussed.

Maintainability (p15)

It is argued in this dissertation that the ease of modifying a software specification depends

on its structure, style and the ease of reading and understanding the specification. The read-

ability and understandability of the UCM-OZ specification were discussed earlier in Section

8.4.2. The structuring of the specification was also discussed. For example, in Section 8.4.3,

(on page 193), it was demonstrated that the specification is structured in such a way that

it forms inter-dependent groups of classes, where each group performed a specific operation

in the system. It is important to notice how the structuring of the specification, is based

on the architectural structure of the UCM model from which the specification was derived.

With the support of the traceability matrices in figures 8.8 and 8.9, it becomes less difficult

to trace the part of the UCM model and hence, the class or group of classes that may be

affected when there is a change at the User requirement level.

The next section discusses the downward validation phase.

8.4.5 The downward validation

During the downward validation phase, the UCM-OZ specification is analysed to evaluate

its ability to facilitate the technical feasibility of the system and its ability to be executed.

Technical feasibility

The issues related to the ability of the Z-OZ specification to facilitate the technical feasibility

of the system under construction were addressed in Section 8.3.5 (on page 183). The dis-

cussion conducted in that section remains credible in the case of the UCM-OZ specification,

198

since the discussion is more about the refinement of Object-Z specifications. However, the

impact of the UCM in such a study should not be omitted.

Originally, the UCM technique is intended to represent the static and dynamic behaviour

of a software system and facilitate the architectural projection of such a system at the re-

quirements level (Buhr [18], Buhr and Casselman [20], Buhr et al. [21]). Hence, having a

complete picture (including the static and dynamic behaviour, as well as the architecture)

of an envisioned software product may be valuable for a feasibility study of the system. One

of the advantages of the UCM-OZ specification is the fact that the specification inherited

some of those qualities of the UCM technique. For example, as discussed in Section 8.4.3,

the architectural structuring of the UCM model is reflected in the UCM-OZ specification.

UCM scenario models (represented with path elements) are also specified in certain classes

(e.g. ClsHelper), including the sequential composition of operations.

Executability

The discussion about the executability of the Z-OZ specification in Section 8.3.5 is re-

considered here since it is focused mainly on the Object-Z and associated tool support.

An important advantage of the UCM-OZ specification, is the support it may have from

the UCM model (on which it is based), in relation to representing and understanding the

behaviour of the envisioned system and its architecture.

8.5 Chapter summary

This Chapter presented the list of stakeholder expectations and user requirements described

in the case study, that was developed in Chapter 3; the quality of a specification for the

case study is judged relative to them. A sample list of properties that are expected from a

satisfactory specification, and a set of criteria to evaluate each of the two proposed specifi-

cations, were identified hence, defining the scope and limits for the validation process. The

framework proposed in Chapter 7 was applied to each of the specifications Z-OZ and UCM-

OZ specifications, respectively, in sections 8.3 and 8.4. Only one iteration was considered

because the aim was to capture the actual status of each of the specifications.

This chapter has therefore, provided a mechanism to evaluate the quality of a specification

relative to a given set of goals and user requirements and demonstrated the applicability of

the proposed specification validation framework.

199

The analysis of the validation results obtained in this chapter is the focus of the follow-

ing chapter.

200

Chapter 9

Analysis

A detailed discussion of some selected properties of the Z-OZ and UCM-OZ specifications

of the case study was presented in Chapter 8. This chapter analyses the results of those

findings, aiming to compare the two specifications. To this end, the approach used to guide

the comparison is first presented.

9.1 Analysis approach

The comparison strategy is depicted in Figure 9.1 which summarises all that was done in

the preceding chapters, and illustrates the comparison process. The two specifications Z-OZ

Requirements
(Goals)

Required
properties

Z-OZ UCM-OZ P1 P2

Generate
Relate

Compare

Validate Validate

 Figure 9.1: Basic comparison strategy

and UCM-OZ of the case study were constructed based on the initial goals. These were

validated in Chapter 8, where a sample set of properties were generated and related to the

goals. This chapter aims to compare the two specifications relative to the selected properties,

by determining amongst them those that are fulfilled by each of the specifications. To do so,

201

guidelines are needed that may set up the boundaries and context of the comparison giving

an idea on how to proceed. This section states such guidelines in the following paragraphs:

Guideline #1 : The analysis is based on the discussions about the qualities of the Z-OZ

and UCM-OZ specification presented, respectively, in sections 8.3 and 8.4.

The specification construction processes are illustrated in Figure 8.1 (for the

Z-OZ) and Figure 8.2 (for the UCM-OZ) are also considered.

Guideline #2 : For each property p, the analysis is to identify which of Z-OZ and UCM-

OZ specifications adhered most to the property. To this end, the previous

discussions (performed in Chapter 8) about each of the specifications are

studied, as well as their construction processes.

Guideline #3 : In the context of this analysis, to enable the comparison between the two

specifications, each property is evaluated to a boolean value 1 or 0 (true or

false). For example, when a property p is found to be more encompassed

by one of the two specifications, p is assigned the value 1 (or true) for the

specification in which it is more present and the value 0 (or false) for the

other specification.

Guideline #4 : For a property p, if there are not enough arguments to justify in which spec-

ification the property is more embraced, p is assumed to be present in both

specifications (since we are more interested in when there is a difference).

The following discussion uses the above guidelines to analyse and compare the two specifi-

cations, Z-OZ and UCM-OZ of the case study.

9.2 Comparing Z-OZ and UCM-OZ specifications

Table 9.1 summarises the analysis of the specifications aiming to compare the availability

of properties in those specifications. In line with Guideline #3, each property is assigned a

boolean value.

9.2.1 Table of comparison

In the light of the above guidelines (Guideline #1 to Guideline #4), Table 9.1 is generated.

The specifications are represented in columns, and properties in rows. Each cell contains a

boolean value (true or false), indicating whether the specification in the column encompasses

the property or not.

202

Properties Z-OZ UCM-OZ

readability p1 true true

understandability p2 false true

clarity p3 false true

operational feasibility p4 false true

technical feasibility p5 true true

executability p6 true true

creativity p7 false true

traceability p8 false true

completeness p9 true true

networking p10 false true

integrity p11 true true

correctness p12 false true

internal consistency p13 false true

minimality p14 true false

maintainability p15 false true

modifiable p16 false true

Table 9.1: Table of comparison

When considering the two discussions about the nested inheritance of the Z-OZ specification

(based on Table 8.2) and that of the UCM-OZ (based on Table 8.7) from Chapter 8, it

appears that UCM-OZ presents some remarkable advantages.

• Percentages wise, UCM-OZ has fewer classes from level 2 to level 4 than Z-OZ. At level

1, the representation is the same, at level 2, the percentage of the UCM-OZ is slightly

lower, but at levels 3 and 4, it decreases.

• Although a specification having classes at the higher levels (levels 4 and 5) is seen as

disadvantageous, in the case of the UCM-OZ, an analysis of the (internal) structure

and contents of those classes, reveals an advantage. As demonstrated in the previous

chapter, the classes: ClsRequest , ClsBeneficiary , and ClsHelper , do not primarily aim

to specify other functionalities of the system but, rather to reconstruct the sequence

of operations specified in other classes, to form a complete scenario, or part thereof.

• The above mentioned classes also have the advantage of revealing the inter-communication

between sub-systems, since they attempt to specify, through scenario reconstruction,

203

a UCM path segment within, a UCM team component in which the path traverses

multiple contained UCM elements, on which other classes are based.

For example, the expression startFromS2 in the class ClsHelper , specifies the path

segment included in the team component Helper , that begins at the UCM start-point

S2, passes across the team component InitChecking and the stub element NetControl ,

exits the component Helper , then re-enters and passes through the team component

Transit point , (within which the UCM object Store is traversed), before the path

segment finally leaves the component Helper .

The above advantages contributed to making some of the properties being evaluated to

“true”, for the UCM-OZ specification, and consequently to “false”, for the Z-OZ one. The

properties directly affected are: the understandability , clarity and traceability . Additionally,

no clear justification is found to show that either of the specifications is more readable than

the other. A potential advantage of UCM-OZ, may be that most of the classes in the spec-

ification, are of a reasonable size (do not exceed an A4 page). But, this argument is not

being sufficiently convincing because Z-OZ has a very small number of classes, but only one

of which (class (ClsSystem)) is enormous. Considering the average size, the real difference in

class sizes in both specifications is therefore not easy to observe. The discussion (in Chapter

8) about the readability property in both cases, mainly focuses on the notation of Object-Z.

Other properties for which neither of the two specifications ought to make a significant

difference are: technical feasibility , executability , and completenes .

(a) With regard to technical feasibility , the analysis in Chapter 8, focuses on demonstrating

that an Object-Z specification, in general, can be refined into a software product. Some

cases of such transformation techniques were briefly presented. It was also suggested

that the presence of certain properties in a specification along with a good structuring

of components therein, will facilitate a technical feasibility study. As no example was

presented to show, for example, the contribution of the suggested properties in refining

a specification with a specific method, it remains hard to decide which of the two

specifications, Z-OZ and UCM-OZ, best facilitate the technical feasibility of the system.

(b) Regarding the executability property, it is hard to objectively decide which of the two

specifications would be easier to be executed. Since the discussion from Chapter 8

focuses on the general case of animating Object-Z specifications and associated tools.

This case is similar to that of the technical feasibility and can, therefore, be analysed

in the same vein. Because they both concern the application of some techniques or

methods to the specifications: the refinement techniques for the technical feasibility

and animation techniques for the executability .

204

(c) With regard to the completess , the discussion in Chapter 8 does not go beyond the

three user-requirements, g4, g5, and g6. It attempts to demonstrate that each of the

two specifications fully addresses each of those requirements. Hence, it remains difficult

to say which one of the two specifications is more comprehensive.

The very small number of classes in the Z-OZ specification and its completeness make the

Z-OZ specification minimal than the UCM-OZ with more classes. But an important as-

pect to consider is that the Z-OZ specification specifies operations of the system at a high

level of abstraction close to the user requirements level. Owing to the use of the UCM

technique at the user requirements level, with UCM-OZ, operations are first refined into the

UCM responsibility points, and grouped within abstract components before being formalised.

Such an analysis phase provided the specification with the advantage of being more creative

(creativity property evaluated to “true”). The efforts to specify the UCM components (that

are well known entities in the UCM, e.g Network, Timer, etc.) provided the specification

not only with the creativity ability, but also enable the specification to explicitly describe

issues related to network communication (networking property).

Further advantages of using the UCM technique is that the grouping of operations within

UCM components, limits the application of the Z technique, to specific components of the

system, and introduces, at an early stage of the design, architectural structuring of system

components into the final specification. For example, most of the Object-Z classes, within

the UCM-OZ specification, are obtained and interrelated from UCMs components, and the

inter-Communication between them.

In the light of the above analysis, the next section uses the data in Table 9.1, to attempt to

determine how well each of the two specifications satisfies a stakeholder’s expectations.

9.2.2 Satisfying goals and expectations

The Z-OZ specification contains a very few classes. This may suggest that the specification

was constructed at a very high level of abstraction and hence, although it may be readable

and clear, it still remains difficult to grasp, as a significant level of detail is not demonstrated

as shown above with the technical feasibility.

To further show how the properties support the initial goals, and users requirements, two

instances of the set S of formulae (see Section 8.2.1) developed in Chapter 8 are presented.

The value assigned to each property is taken from Table 9.1.

Z-OZ

205

{
true+ false+ false g1,
(true+ false+ false) + (false+ true+ true) g2,
false+ false+ false+ false+ true g4 ∧ g5 ∧ g6,
(false+ true+ true) + (false+ false+ true) g3,
false+ false+ true+ false+ false

}

UCM-OZ

{
true+ true+ true g1,
(true+ true+ true) + (true+ true+ true) g2,
true+ true+ true+ true+ true g4 ∧ g5 ∧ g6,
(true+ true+ true) + (true+ true+ true) g3,
true+ true+ false+ true+ true

}

Further analysis of S is beyond the scope of this dissertation. However, it may be noticed

that the more the properties on the left side of a formula are evaluated to true, the more

the goals on the right side tend to be supported by the specification.

9.3 Chapter summary

This chapter exploited the discussion from Chapter 8, to highlight amongst the sample prop-

erties used for this study, those on which the use of UCMs may have brought improvements.

The approach for the comparison suggested some sample guidelines and a table partitioning

the properties, according to whether they are satisfied by a specification, or not. An impor-

tant advantage of this chapter is the attempt to use formulae to relate expected properties to

stakeholders’ expectations and users, requirements, hence enlightening a rich area for future

research, that may involve investigating the feasibility of using a reasoning mechanism to

discharge proof obligations surrounding supportness aspects. E.g., using the new Prover 9

reasoner McCune [58]to establish levels of support of the system goals defined as part of the

specification.

The final chapter concludes the dissertation, and presents directions for future work in this

area.

206

Chapter 10

Conclusion and Future work

This chapter concludes this dissertation. It first presents the main findings and relates them

to the research problem investigated in this work. In a short discussion, it enlightens the

extent to which the research questions, posed in Chapter 1, were addressed. Thereafter,

the advantages and possible limitations of the work are presented. The chapter ends by

considering future potential research areas to complement the findings.

10.1 Research questions and the main findings

This dissertation evaluated the impact of using UCM techniques at the requirements elici-

tation phase, during the construction of a Z and Object-Z specification. The aim being to

improve the construction process of Z and Object-Z, by providing a methodology whereby a

step-by-step mechanism along with construction guidelines, are provided. To this end, the

first research question posed was the following:

RQ1: Are UCM models transformable to Z and Object-Z specifications? In other words, can

UCM models of a system be used as inputs for Z and Object-Z specifications?

Chapter 5 proposed a generic framework whereby a UCM model of a system may be trans-

formed into Z and Object-Z specifications. The framework was used in Chapter 6 to trans-

late the UCM model of the case study, into Z and Object-Z specifications. The framework

was compiled and presented as a research paper at the 7th International Workshop on Mod-

elling, Simulation, Verification and Validation of Enterprise Information Systems (MSVVEIS

2009)[23].

Demonstrating the transformability of UCMs, ensures that the technique may be employed

at an early stage of Z and Object-Z specification construction. However, this does not guar-

antee any improvement in the quality of the final specification. Hence, the next research

207

question posed:

RQ2: What would be the impact of UCMs on the quality of a Z and Object-Z specification

obtained by transforming a UCM model?

In Chapter 8, each of the two Object-Z specifications Z-OZ, (constructed without using any

UCM), and UCM-OZ, (derived from the UCM model of the case study), was validated. A

sample set of properties expected from a suitable specification was considered and discussed

individually for each specification. The analysis of the two specifications relative to those

properties, conducted in Chapter 9 (see Table 9.1), shows that:

• Eleven (11) properties out of sixteen (16) (representing 69.75%) were actually improved

on in the UCM-OZ specification.

• One (1) property out of sixteen (representing 6.25%) was negatively affected. The Z-OZ

specification contains fewer of specification elements than its counterpart UCM-OZ.

• Four (4) property out of sixteen (representing 25%) do not reveal any change as a

result of using use of UCM.

The main ideas in chapters 7 and 8 that were used to support our specification validation

approach were developed as a research paper and presented at the SAICSIT 2010 Conference

[24]. Another research paper was synthesised from chapters 8 and 9[25]. The paper devel-

oped the basic strategy for comparing two software specifications based on the validation

approach in chapters 7 and 8.

The last concern in this dissertation investigated the influence that a UCM may have in

the process of constructing a Z, and an Object-Z, specification. Thus the last research

Question posed:

RQ3: What would be the impact of UCMs in the process of constructing Z and Object-Z

specifications? The point is for example, to ensure that the use of a UCM or any

other semi-formal technique facilitates the building of Z and Object-Z specifications.

In Chapter 3, an attempt to generate a Z specification directly from a set of user require-

ments, led to the following observations:

• The resulting Z and Object-Z specifications were at the same level of abstraction

as the user requirements, specifying the user-view of the system. This observation

suggests the necessity of deriving the system requirements, before formalising them, if

the specification of the system-view is required.

208

• The specification was progressively built-up in different phases, during which building

blocks were provided for each and subsequent phases, to construct other specification

components. E.g. Z basic types identified in the requirements, were used to build

state schemas, which are needed to specify operation schemas. Thus, modifying a

single element in a Z and an Object-Z specification, may affect many other elements at

different levels in the specification. This observation suggests that with large systems,

it may not be adequate to start formalising (user requirements) at the requirements

elicitation and analysis stage, since at that stage, requirements are, in general, subject

to many subsequent changes.

The above observations clearly suggest the need for a more flexible and user-friendly tech-

nique at the initial stages of requirements capturing and analysis, to complement Z and

Object-Z. As mentioned in Chapter 1, this suggestion is strongly supported in the literature

(see for example Abrial [2], Sommerville [82], van Lamsweerde [95]). Observations made,

during the construction of the UCM model of the case study, in Chapter 3 and listed in

Section 3.3.5, suggests UCM as a suitable candidate.

The framework for transforming UCMs to Z and Object-Z (in Chapter 5), and its appli-

cation to the case study (in Chapter 6) shows that, in the process of generating Z and

Object-Z specifications of a system, UCMs readily structure the system into a set of inter-

related components. Hence, allowing Z to be applied to individual components, alleviate the

difficulty of applying the formal technique to large projects, since each component is of a

reduced size and represents a manageable sub-system. In the same vein, UCM components

readily provide for Object-Z meta-classes, that may later be completed with Z schemas, ob-

tained by formalising the components from which meta-classes are generated. Some of the

important advantages of this work are summarised in the next section.

10.1.1 Advantages

This dissertation suggests a step-by-step construction process for Z and Object-Z specifi-

cations. It uses the Use Case Map notation technique as an intermediate step, to capture

and structure requirements from users, to prepare the system components to be formalised,

and to produce meta-classes for Object-Z. Hence, this resolves the problem of people being

reluctant to use formal techniques (as noted by Abrial [2, page 766] below):

People are quite reluctant to use such methods mostly because it necessitates to modify the

development process in a significant fashion. As it is well known, such development processes

are hard to develop and even harder to put in place so that the working engineers are using

209

them.

By putting in place a framework, this work has contributed to improve the constructivity

of Z and Object-Z specifications and provided additional guidance. It has equally helped to

render formal reasoning suitable for designing software on an incremental basis (Larman and

Basili [50]). Since UCM models a system as a whole, and structures it into inter-connected

sub-systems that may then, be developed separately, and later integrated progressively when

the required components are built.

The proposed specification process also suggests using the Z notation to interact with a

UCM, aiming to detect errors in the UCM documents during the requirements capturing

and modelling phase (see Fig. 5.1), for example, by calculating the pre-conditions for each

UCM responsibility point. This suggestion contributes to resolve the problem of applying

formal techniques to requirements documents, with potentially adverse errors, that may only

be discovered later in the process during global testing (Abrial [2]).

As mentioned before, the process may also contribute to improve the quality of the final

specification, by reinforcing about 70% of all the properties required for a suitable specifica-

tion (see Chapter 9).

The UCM transformation framework in Chapter 5, lays the foundation for further research

that may provide an interactive graphical user interface environment for building Z and

Object-Z specifications based on UCMs.

Chapter 7 established a framework which embodies a 4-way validation strategy to iteratively,

develop and measure a software specification against user-requirements, the application do-

main, the notation language, and finally the envisioned operational system, that may be

obtained through appropriate refinement.

Another important advantage of this work is that it provides guidelines to formalise the

method of applying existing techniques to help evaluate, and compare and hence, enable the

selection, of an appropriate specification, from a number of possible alternatives.

10.2 Future work

Some of the important future research for further investigation that emanates from this

dissertation includes:

• Automating the generation of Z and Object-Z specifications, by providing, for in-

210

stance, an interactive interactive graphical-user-interface environment for building Z

and Object-Z specifications based on UCMs.

• Some empirical work needs to be carried out in industry to help strengthen and refine

the specification validation framework, proposed in Chapter 7. Such work may aim

to evaluate the applicability of the framework to large projects, and other types of

specifications (e.g. UML, URN, Petri Nets, etc.).

• Further research is also needed to refine each of the four validation phases of the

framework in Chapter 7, and eventually to automate the validation process.

• The attempt, in chapters 8 and 9, to use mathematical expressions to relate speci-

fication properties, to system goals, and user requirements, opens up a rich area for

future research that may consist of investigating the feasibility of using a reasoning

mechanism, (for example the new Prover 9 Reasoner, McCune [58]), to help establish

levels of support for intended goals and system requirements.

• Each of the UCM, Z and Object-Z notations, investigated in this dissertation, only

describes functional requirements. Therefore, an interesting and challenging research

area would be to explore the likelihood of enhancing non-functional requirements in

the process of constructing Z and Object-Z from a Use Case Map.

211

212

Bibliography

[1] ITU-T, Recommendation Z.151 (11/08), User Requirements No-

tation (URN)-Language definition., November 2008. URL

http://www.itu.int/rec/T-REC-Z.151/en.

[2] Jean-Raymond Abrial. Formal methods in industry: achievements, prob-

lems, future. In Proceedings of the 28th international conference on Soft-

ware engineering, ICSE ’06, pages 761–768, New York, NY, USA, 2006. ACM.

ISBN 1-59593-375-1. doi: http://doi.acm.org/10.1145/1134285.1134406. URL

http://doi.acm.org/10.1145/1134285.1134406.

[3] Edward B. Allen. Typesetting Technical Reports that Include Z Specifications Using

LaTeX, 2006.

[4] Daniel Amyot. Use Case Maps: Quick Tutorial, September 1999.

[5] Daniel Amyot. Introduction to the user requirements notation: learning by example.

Computer Networks, 42(3):285–301, June 2003. ISSN 1389-1286. doi: 10.1016/S1389-

1286(03)00244-5. URL http://dx.doi.org/10.1016/S1389-1286(03)00244-5.

[6] Daniel Amyot. Use Case Maps as a Feature Description Notation. In FIREworks

Feature Constructs Workshop, pages 27–44. Springer-Verlag, May, 2000.

[7] Daniel Amyot and Gunter Mussbacher. URN: Toward a New Standard for the Visual

Description of Requirements. E.Sherratt (Ed.) SAM 2002, pages 21–37, 2002.

[8] Daniel Amyot and Gunter Mussbacher. User requirements notation: The first ten

years, the next ten years (invited paper). Journal of Software, 6(5), 2011. URL

http://ojs.academypublisher.com/index.php/jsw/article/view/0605747768.

[9] Daniel Amyot, Xiangyang He, Yong He, and Dae Yong Cho. Generating Scenarios

from Use Case Map Specifications. In QSIC ’03: Proceedings of the Third Interna-

tional Conference on Quality Software, page 108, Washington, DC, USA, 2003. IEEE

Computer Society. ISBN 0-7695-2015-4.

213

[10] Robert Balzer and Neil Goldman. Principles of good software specification and their

implications for specification languages. In AFIPS ’81: Proceedings of the May 4-7,

1981, national computer conference, pages 393–400, New York, NY, USA, 1981. ACM.

doi: http://doi.acm.org/10.1145/1500412.1500468.

[11] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language

User Guide. Addison-Weseley, 2nd edition, 2005. ISBN 0-321-26797-4.

[12] F. Bordeleau and R. J. A. Buhr. The UCM-ROOM Design Method: from Use

Case Maps to Communicating State Machines. In Conference on the Engineering

of Computer-Based System, Monterey, USA, 1997.

[13] Jonathan Bowen. Formal Specification and Documentation Using Z: A Case Study

Approach. International Thomson Computer Press, London / Boston, 1996. ISBN

1-85032-230-9.

[14] Jonathan P. Bowen and Michael G. Hinchey. Ten Commandments

of Formal Methods ...Ten Years Later. Computer, 39:40–48, Jan-

uary 2006. ISSN 0018-9162. doi: 10.1109/MC.2006.35. URL

http://portal.acm.org/citation.cfm?id=1110638.1110672.

[15] Frederick P. Brooks. No Silver Bullet: Essence and Accidents of Soft-

ware Engineering. Computer, 20(4):10–19, 1987. ISSN 0018-9162. doi:

http://dx.doi.org/10.1109/MC.1987.1663532.

[16] Paul C. Brown. Implementing SOA: Total Architecture in Practice. Addison-Wesley,

1st edition, 2008.

[17] R. J. A. Buhr. Use Case Maps: A New Model to Bridge the Gap Between Requirements

and Design. SCE 95- Conttribution to the OOPSLA 95 Use Case Map Workshop, pages

1–4, 1995.

[18] R. J. A. Buhr. Understanding Macroscopic Behavior Patterns with Use-Case Maps.

In Mohamed E. Fayad, Douglas C. Schmidt, and Ralph E. Johnson, editors, Building

Application Frameworks - Object-Oriented Foundations of Framework Design, pages

415–439. John Wiley & Sons, New York, 1999.

[19] R. J. A. Buhr. Making Behaviour a Concrete Architectural Concept. In HICSS’99,

32nd Annual Hawaii International Conference on System Sciences, Hawaii, USA, 1999.

[20] R. J. A. Buhr and R. S. Casselman. Use Case Maps for Object-Oriented Systems.

Printice Hall, USA, 1995.

214

[21] R. J. A. Buhr, D. Amyot, M. Elammari, D. Quesnel, T. Gray, and S. Mankovski.

Features-Interaction Visualiation and Resolution in an Agent Environment. In

K. Kimbbler and L. G. Bouma, editors, FIW’98, Fifth International Workshop on Fea-

ture Interaction in Telecommunications and Software Systems, Lund, Sweden, 1998.

IOS Press, 135-149.

[22] David Carrington and Graeme Smith. Extending Z for Object-Oriented Specifications.

5th Australian Software Engineering Conference, (Sydney), May, 1990.

[23] Cyrille Dongmo and John A. van der Poll. Use Case Maps as an Aid in the Construction

of a Formal Specification. In Daniel Moldt, Juan Carlos Augusto, and Ulrich Ultes-

Nitsche, editors, MSVVEIS, pages 3–13. INSTICC PRESS, 2009. ISBN 978-989-8111-

90-6.

[24] Cyrille Dongmo and John A. van der Poll. A Four-Way Framework for Validating a

Specification. In Paula Kotze, Aurona Gerber, Alta van der Merwe, and Nicola Bidwell,

editors, SAICSIT, pages 46–59. ACM PRESS, 2010. ISBN 978-1-60558-950-3.

[25] Cyrille Dongmo and John A. van der Poll. Evaluating software spec-

ifications by comparison. In Proceedings of the South African Institute

of Computer Scientists and Information Technologists Conference on Knowl-

edge, Innovation and Leadership in a Diverse, Multidisciplinary Environment,

SAICSIT ’11, pages 87–96, New York, NY, USA, 2011. ACM. ISBN

978-1-4503-0878-6. doi: http://doi.acm.org/10.1145/2072221.2072232. URL

http://doi.acm.org/10.1145/2072221.2072232.

[26] Roger Duke and Gordon Rose. Formal Object-Oriented Specification Using Object-Z.

Macmillan, Basingstoke, 2000. ISBN 0333801237.

[27] Roger Duke, Paul King, Gordon A. Rose, and Graeme Smith. The Object-Z Specifica-

tion Language. In Timothy D. Korson, Vijay Vashnavi, and Bertrand Meyer, editors,

TOOLS (5), pages 465–484. Prentice Hall, 1991. ISBN 0-13-923178-1.

[28] Steve Dunne. Understanding Object-Z Operations as Generalised Substitutions. In

Eerke A. Boiten, John Derrick, and Graeme Smith, editors, IFM, volume 2999 of

Lecture Notes in Computer Science, pages 328–342. Springer, 2004. ISBN 3-540-21377-

5.

[29] Sophie Dupuy-Chessa and Lydie du Bousquet. Validation of UML Models Thanks to

Z and Lustre. In FME ’01: Proceedings of the International Symposium of Formal

215

Methods Europe on Formal Methods for Increasing Software Productivity, pages 242–

258, London, UK, 2001. Springer-Verlag. ISBN 3-540-41791-5.

[30] Evans. Domain-Driven Design: Tacking Complexity In the Heart of Software. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003. ISBN 0321125215.

[31] Wernher R. Friedrich and John A. van der Poll. Towards a Methodology to Elicit Tacit

Domain Knowledge from Users. Interdisciplinary Journal of Information, Knowledge,

and Management, 2:119–193, 2007.

[32] Norbert E. Fuchs. Specifications are (preferably) Executable. Softw. Eng. J., 7:323–

334, September 1992. ISSN 0268-6961. doi: http://dx.doi.org/10.1049/sej.1992.0033.

URL http://dx.doi.org/10.1049/sej.1992.0033.

[33] Martin Gogolla and Mark Richters. On Combining Semi-Formal and Formal Object

Specification Techniques. In Recent trends in algebraic development techniques: 12th

international workshop, WADT97, pages 238–252. Springer, 1998.

[34] Andrew M. Gravell. What is a Good Formal Specification? In Proceedings of the

Fifth Annual Z User Meeting on Z User Workshop, pages 137–150, London, UK, 1991.

Springer-Verlag. ISBN 3-540-19672-2.

[35] Les Hatton. Does OO Sync with How We Think? IEEE Softw., 15(3):46–54, 1998.

ISSN 0740-7459. doi: http://dx.doi.org/10.1109/52.676735.

[36] Mats P. Heimdahl. Verified Software: Theories, Tools, Experiments. chapter A Case

for Specification Validation, pages 392–402. 2008. ISBN 978-3-540-69147-1.

[37] Constance Heitmeyer. On the Need for Practical Formal Methods. In Formal Tech-

niques in RealTime and Real-Time Fault-Tolerant Systems, Proc., 5th Intern. Sympo-

sium (FTRTFT'98), pages 18–26. Springer Verlag, 1998.

[38] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Automated Consis-

tency Checking of Requirements Specifications. ACM Trans. Softw. Eng. Methodol., 5:

231–261, July 1996. ISSN 1049-331X. doi: http://doi.acm.org/10.1145/234426.234431.

URL http://doi.acm.org/10.1145/234426.234431.

[39] Peter B. Henderson. Mathematical reasoning in software engineer-

ing education. Commun. ACM, 46:45–50, September 2003. ISSN

0001-0782. doi: http://doi.acm.org/10.1145/903893.903919. URL

http://doi.acm.org/10.1145/903893.903919.

216

[40] Erik Hofstee. Constructing a Good Dissertation: A Practical Guide to Finishing a

Master’s, MBA or PhD on Schedule. EPE, 2006. ISBN 0-9585007-1-1.

[41] IEEE Std 830-1998. IEEE Recommended Practice for Software Re-

quirements Specifications. Technical report, IEEE, 1998. URL

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=720574.

[42] Jonathan Jacky. The way of Z: practical programming with formal methods. Cambridge

University Press, New York, NY, USA, 1996. ISBN 0-521-55976-6.

[43] Wendy Johnston. A Type Checker for Object-Z. Technical report, Department of

Computer Science, The University of Queensland Australia, 1996.

[44] Wendy Johnston and Gordon Rose. Guidelines for the Manual Conversion of Object-

Z to C++. Technical report, Department of Computer Science, The University of

Queensland Australia, 1993.

[45] Ivan Jureta, Stéphane Faulkner, and Pierre-Yves Schobbens. Clear justification of

modeling decisions for goal-oriented requirements engineering. Requir. Eng., 13(2):

87–115, 2008.

[46] Erik Kamsties, Daniel M. Berry, and Barbara Paech. Detecting Ambiguities in Re-

quirements Documents Using Inspections. In Proceedings of the First Workshop on

Inspection in Software Engineering (WISE'01), pages 68–80, 2001.

[47] Jason Kealey and Daniel Amyot. Enhanced Use Case Map Traversal Semantics. In

SDL Forum, pages 133–149, 2007.

[48] Jason Kealy. Enhanced Use Case Map Analysis and Transformation Tooling. Master’s

thesis, 2007. Ottawa-Carleton Institute for Computer Science.

[49] John C. Knight, Colleen L. DeJong, Matthew S. Gibble, and Lus G. Nakano. Why Are

Formal Methods Not Used More Widely? In 4th NASA Formal Methods Workshop,

pages 1–12, 1997.

[50] Craig Larman and Victor R. Basili. Iterative and Incremen-

tal Development: A Brief History. Computer, 36:47–56, June

2003. ISSN 0018-9162. doi: 10.1109/MC.2003.1204375. URL

http://portal.acm.org/citation.cfm?id=972210.972226.

217

[51] Yves Ledru. Complementing semi-formal specifications with Z. In Proceedings

of The 11th Knowledge-Based Software Engineering Conference, pages 52–, Wash-

ington, DC, USA, 1996. IEEE Computer Society. ISBN 0-8186-7680-9. URL

http://portal.acm.org/citation.cfm?id=788008.788174.

[52] David Lightfoot. Formal Specification Using Z. Grassroots Series. Palgrave, 2nd edi-

tion, 2001.

[53] Shaoying Liu. Internal consistency of FRSM specifications. Journal of Systems and

Software, 29(2):167–175, 1995.

[54] Petra Malik and Mark Utting. CZT: A Framework for Z Tools. ZB2005: Formal

Specification and Development in Z and B, 4th International Conference of B and Z

Users, Guildford, UK, pages 65–84, 2005.

[55] Andrea Matta, Carlo A. Furia, and Matteo Rossi. Semi-formal and Formal Models

Applied to Flexible Manufacturing Systems. In Cevdet Aykanat, Tugrul Dayar, and

Ibrahim Korpeoglu, editors, ISCIS, volume 3280 of Lecture Notes in Computer Science,

pages 718–728. Springer, 2004. ISBN 3-540-23526-4.

[56] Tim McComb and Graeme Smith. Animation of Object-Z Specifications Using a Z

Animator. In SEFM, pages 191–, 2003.

[57] Steve McConnell. Feasibility Studies. IEEE Software, 15(3):119–120, 1998.

[58] W. McCune. Prover9 and Mace4. http://www.cs.unm.edu/~mccune/prover9/,

2005–2010.

[59] Andrew Miga. Application of Use Case Maps to System Design with tool Support.

Master’s thesis, Carleton University, 1998.

[60] Andrew Miga, Daniel Amyot, Francis Bordeleau, Donald Cameron, and Murray Wood-

side. Deriving Message Sequence Charts from Use Case Maps Scenario Specifications.

In Maps Scenario Specifications. 10th SDL Forum, pages 268–287. Springer, 2001.

[61] Anne Miller. A work domain analysis framework for modelling intensive care

unit patients. Cogn. Technol. Work, 6(4):207–222, 2004. ISSN 1435-5558. doi:

http://dx.doi.org/10.1007/s10111-004-0151-5.

[62] David Mole. Z - An Introduction to Formal Methods, by Antoni Diller, Wiley, 2nd

Edition, 1994 (Book Review). Softw. Test., Verif. Reliab., 4(3):191, 1994.

218

[63] Ana Moreira and João Araújo. Generating Object-Z Specifications from Use Cases,

pages 43–50. Kluwer Academic Publishers, Norwell, MA, USA, 2000. ISBN 0-7923-

6239-X. URL http://dl.acm.org/citation.cfm?id=343913.343932.

[64] Gunter Mussbacher and Daniel Amyot. Goal and Scenario Modeling, Analysis, and

Transformation with jUCMNav. In ICSE Companion, pages 431–432. IEEE, 2009.

ISBN 978-1-4244-3494-7.

[65] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: a roadmap. In

Proceedings of the Conference on The Future of Software Engineering, ICSE ’00, pages

35–46, New York, USA, 2000. ACM. ISBN 1-58113-253-0. doi: 10.1145/336512.336523.

URL http://dx.doi.org/10.1145/336512.336523.

[66] Gerard O’Regan. Mathematical Approaches to Software Quality. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 2006. ISBN 184628242X.

[67] David Lorge Parnas. Tabular Representation of Relations. Technical report, 1992.

[68] Kasilingam Periyasamy and C. Mathew. Mapping a Functional Specification

to an Object-Oriented Specification in Software Re-Engineering. In CSC ’96:

Proceedings of the 1996 ACM 24th annual conference on Computer science,

pages 24–33, New York, NY, USA, 1996. ACM. ISBN 0-89791-828-2. doi:

http://doi.acm.org/10.1145/228329.228331.

[69] Daniel Plagge and Michael Leuschel. Validating Z specifications using the PROB

animator and model checker. In IFM’07: Proceedings of the 6th international confer-

ence on Integrated formal methods, pages 480–500, Berlin, Heidelberg, 2007. Springer-

Verlag. ISBN 978-3-540-73209-9.

[70] Ben Potter, Jane Sinclair, and David Till. An Introduction to Formal Specification and

Z. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1991. ISBN 0-13-478702-1.

[71] Shengchao Qin and Guanhua He. Linking Object-Z with Spec#. In ICECCS ’07:

Proceedings of the 12th IEEE International Conference on Engineering Complex Com-

puter Systems, pages 185–196, Washington, DC, USA, 2007. IEEE Computer Society.

ISBN 0-7695-2895-3. doi: http://dx.doi.org/10.1109/ICECCS.2007.27.

[72] Jean-François Roy, Jason Kealey, and Daniel Amyot. Towards Integrated Tool Support

for the User Requirements Notation. In SAM, pages 198–215, 2006.

[73] Robert G. Sargent. Verification and validation of simulation models. In WSC ’07:

Proceedings of the 39th conference on Winter simulation, pages 124–137, Piscataway,

NJ, USA, 2007. IEEE Press. ISBN 1-4244-1306-0.

219

[74] Stephen R. Schach. Object-Oriented and Classical Software Engineering. McGraw-Hill,

Inc., New York, NY, USA, 2008. ISBN 0073191264, 9780073191263.

[75] Ina Schaefer and Arnd Poetzsch-Heffter. Compositional Reasoning in Model-Based

Verification of Adaptive Embedded Systems. In SEFM ’08: Proceedings of the 2008

Sixth IEEE International Conference on Software Engineering and Formal Methods,

pages 95–104, Washington, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-

7695-3437-4. doi: http://dx.doi.org/10.1109/SEFM.2008.16.

[76] Bran Selic. Using UML for Modeling Complex Real-Time Systems. In Proceedings

of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded

Systems, LCTES ’98, pages 250–260, London, UK, 1998. Springer-Verlag. ISBN 3-540-

65075-X. URL http://dl.acm.org/citation.cfm?id=646905.710490.

[77] Graeme Smith. The Object-Z specification language. Kluwer Academic, Boston, 2000.

ISBN 0792386841.

[78] Graeme Smith. State-Based Formal Methods for Distributed Processing: From Z to

Object-Z. Technical report, Software Verification Research Center, The University of

Queensland Australia, 2001.

[79] Graeme Smith and John Derrick. Specification, Refinement and Verification of Con-

current Systems—An Integration of Object-Z and CSP. Form. Methods Syst. Des., 18

(3):249–284, 2001. ISSN 0925-9856. doi: http://dx.doi.org/10.1023/A:1011269103179.

[80] Graeme Smith, Florian Kammller, and Thomas Santen. Encoding Object-Z in Is-

abelle/HOL. In International Conference of Z and B Users (ZB 2002), volume 2272

of LNCS, pages 82–99. Springer-Verlag, 2002.

[81] Colin Snook and Michael Butler. Using a graphical design tool for formal specification.

In Proceedings of the 13th Annual Workshop of the Psychology of Programming Interest

Group, pages 311–321, 2001.

[82] Ian Sommerville. Software Engineering. Addison-Wesley, 8th edition, 2007.

[83] Jim Mike Spivey. The Z notation: a reference manual. Prentice Hall International

(UK) Ltd., Hertfordshire, UK, 1992. ISBN 0-13-978529-9.

[84] Susan Stepney, Fiona Polack, and Ian Toyn. Patterns to Guide Practical Refactoring:

Examples Targetting Promotion in Z. In International Conference of Z and B Users

(ZB 2003), pages 20–39, 2003.

220

[85] Jing Sun, Jin Song Dong, Jing Liu, and Hai Wang. An XML/XSL Approach to Visu-

alize and Animate TCOZ. In Proceedings of the Eighth Asia-Pacific on Software Engi-

neering Conference, APSEC ’01, pages 453–, Washington, DC, USA, 2001. IEEE Com-

puter Society. URL http://portal.acm.org/citation.cfm?id=872020.872430.

[86] Chris Taylor, John Derrick, and Eerke Boiten. A Case Study in Partial Specification:

Consistency and Refinement for Object-Z. In Proc. of ICFEM 2000, pages 177–185.

IEEE, September 2000. URL http://www.cs.kent.ac.uk/pubs/2000/1064.

[87] Ian Toyn and John A. Mcdermid. CADiZ: An Architecture for Z Tools and its Imple-

mentation. Software - Practice and Experience, 25:305–330, 1995.

[88] Andrea Valerio, Giancarlo Succi, and Massimo Fenaroli. Domain analysis and

framework-based software development. SIGAPP Appl. Comput. Rev., 5(2):4–15, 1997.

ISSN 1559-6915. doi: http://doi.acm.org/10.1145/297075.297081.

[89] Alta van der Merwe and Paula Kotzé. Criteria used in selecting effective re-

quirements elicitation procedures. In SAICSIT ’07: Proceedings of the 2007

annual research conference of the South African Institute of Computer Scien-

tists and Information Technologists on IT research in developing countries, pages

162–171, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-775-9. doi:

http://doi.acm.org/10.1145/1292491.1292510.

[90] John Andrew van der Poll. Automated support for set-theoretic specifications. PhD the-

sis, School of Computing, University of South Africa (South Africa), 2000. Promoter-

Kotze, P. and Promoter-Labuschagne, W. A.

[91] John Andrew van der Poll and Paula Kotzé. What design heuristics may enhance the

utility of a formal specification? In SAICSIT ’02: Proceedings of the 2002 annual

research conference of the South African institute of computer scientists and infor-

mation technologists on Enablement through technology, pages 179–194, , Republic of

South Africa, 2002. South African Institute for Computer Scientists and Information

Technologists. ISBN 1-58113-596-3.

[92] John Andrew van der Poll and Paula Kotzé. A multi-level marketing case study :

specifying forests and trees in Z. South African Computer Journal, 30:17–28, 2003.

[93] John Andrew van der Poll and Paula Kotzé. Enhancing the Established Strategy for

Constructing a Z Specification. SACJ, (No. 35):118–131, 2005.

[94] John Andrew van der Poll, Kotzé Paula, Ahmed Seffah, Thiruvengadam Radhakrish-

nan, and Asmaa Alsumait. Combining UCMs and Formal Methods for Representing

221

and Checking the Validity of Scenarios as User Requirements. SAICSIT’03, pages

111–113, 2003.

[95] Axel van Lamsweerde. Formal specification: a roadmap. In Proceed-

ings of the Conference on The Future of Software Engineering, ICSE

’00, pages 147–159, New York, NY, USA, 2000. ACM. ISBN 1-

58113-253-0. doi: http://doi.acm.org/10.1145/336512.336546. URL

http://doi.acm.org/10.1145/336512.336546.

[96] Axel Van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour.

In RE ’01: Proceedings of the Fifth IEEE International Symposium on Requirements

Engineering, page 249, Washington, DC, USA, 2001. IEEE Computer Society.

[97] Roel Wieringa, Eric Dubois, and Sander Huyts. Integrating semi-formal and formal

requirements. In Proceedings of the 9th International Conference on Advanced Infor-

mation Systems Engineering, pages 19–32, London, UK, 1997. Springer-Verlag. ISBN

3-540-63107-0. URL http://dl.acm.org/citation.cfm?id=646085.679588.

[98] Kirsten Winter and Roger Duke. Model Checking Object-Z Using ASM. In Proceed-

ings of the Third International Conference on Integrated Formal Methods, IFM ’02,

pages 165–184, London, UK, UK, 2002. Springer-Verlag. ISBN 3-540-43703-7. URL

http://dl.acm.org/citation.cfm?id=647983.743685.

[99] Jane Wood and Denise Silver. Joint application development (2nd ed.). John Wiley &

Sons, Inc., New York, NY, USA, 1995. ISBN 0-471-04299-4.

[100] Jim Woodcock. Calculating Properties of Z specifications. SIG-

SOFT Softw. Eng. Notes, 14(5):43–54, 1989. ISSN 0163-5948. doi:

http://doi.acm.org/10.1145/71633.71634.

[101] JimWoodcock and Jim Davis. Using Z: Specification, Refinement, and Proof. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1996. ISBN 0-13-948472-8.

[102] Yong Xiang Zeng. Transforming Use Case Maps to the Core Scenario Model Repre-

sentation; http://lotos.site.uottawa.ca/ftp/pub/Lotos/Theses, Juin 2005.

[103] Jianjun Zhao and Baowen Xu. Measuring Aspect Cohesion. In Michel Wermelinger and

Tiziana Margaria, editors, FASE, volume 2984 of Lecture Notes in Computer Science,

pages 54–68. Springer, 2004. ISBN 3-540-21305-8.

222

Index

Case study, 27

Building a UCM

observations, 39

approach, 28

Building a UCM, 30

Beneficiary sub-system, 35

Helping sub-system, 34

path preconditions, 31

resulting events, 31

scenario inter-actions, 33

System behaviour, 32

triggering events, 30

constructing Z, 40

Basic types, 41

observations, 60

Z schemas, 42

description, 27

Comparing Z-OZ and UCM-OZ, 201

Guidelines, 202

Table of comparison, 202

Formal methods, 1

Future work, 210

Object-Z, 5, 22

generic class schema, 22

inheritance, 23

polymorphism, 24

shema operation, 22

tools, 25

UCM, 9

Abstract components, 113

abstract components, 10

Failure-point, 15

Path connector, 110, 111

path connectors, 12

path notation, 11

Path segment, 12

Stubbing techniques, 13, 95

timeout-recovery mechanism, 14

Tools, 16

Transforming to Z and Object-Z, 75

Waiting place, 15

UCM-OZ

Object-Z

Class ClsBeneficiary , 139

Class ClsCheckCustomer , 124

Class ClsCheckInvoices , 122

Class ClsCheckPoint , 136

Class ClsHelper , 134

Class ClsInitChecking , 132

Class ClsInterface, 116

Class ClsLocalSales , 121

Class ClsNetComTemp, 117

Class ClsNetInterface, 116

Class ClsRequest , 118

Class ClsTimer , 115

Class ClsTransitPoint , 134

Class ClsUpdatePoint , 138

Class of global variables, 100

Specification process, 6, 185

UCM model, 33

Check customer plug-in, 96

223

Check invoice plug-in, 96

NetControl plug-in, 95

stubbed UCM, 93

transformation, 97

Validation, 184

Downward phase, 198

Leftward phase, 193

Rightward phase, 196

Upward phase, 186

Z, 2, 3, 5, 17, 64

Basic types, 17

Schemas, 18

operation schema, 20

schema calculus, 21

state schema, 18

tools, 25

Transformation to Object-Z, 63

Z-OZ, 5

Object-Z model, 64

class of accounts, 66

class of agencies, 68

class of basic types, 64

class of databases, 68

Class of global variables, 65

class of interfaces, 67

class system, 71

Specification process, 166

Validation, 165

Downward phase, 183

Leftward phae, 177

Rightward phase, 179

Upward phse, 166

Z model

abstract states, 42

Calculating preconditions, 50

partial operations, 46

table of total operations, 59

transformation to Object-Z, 63

224

