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Chapter 0

Introduction

0.1 Overview of Ergodic Type Theorems and po-

sitioning of the work

Ergodic type theorems is a branch of Ergodic Theory. In a narrow sense ergodic

theorems usually mean limit properties of certain averages of the iterates of some

operators.

Traditionally, Ergodic Type Theorems include the following topics:

a) Mean Ergodic Theorems and weak convergence

b) Positive Contractions in L1

c) Pointwise Ergodic Theorems for general groups

d) Local Ergodic Theorems and differentiation

e) Convergence of subsequences and generalized means

For more detailed information I refer the reader to the monograph of prof. U.

Krengel [44].
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This work contributes to the following three topics of the Ergodic Type theorems

in the context of von Neumann algebras:

Criteria relating weak convergence of iterates to norm convergence of the regular

averages, are established

Pointwise ergodic theorems for the action of a free group of a finite number of

generators is provided.

Lastly, Convergence averages over Besicovitch subsequences of iterates is consid-

ered.

0.2 Historical remarks and detailed results of the

work

The first Ergodic Theorems for actions of the general semigroups are probably due

to Alaoglu and Birkhoff [4], who replaced the iterates Ti by a semigroup G of linear

transformations and showed that the convergence of certain general means of trans-

forms of an element x of E is equivalent to the existence (and uniqueness) of a fixed

point y in the closed convex hull of the orbit of x under G.

There are a number of monographs devoted (in part) to the topic of Ergodic

Theorems in Operator Algebras. Book [44] by Krengel contains chapter 9 devoted to

an exposition of the subject of Ergodic Theorems in Operator Algebras as it was on

1984. Monograph [36] by R. Jajte is devoted to an exposition of the (quasi)-Super-

additive Ergodic Theorem for von Neumann Algebras.

One of the most citable mathematical books [12] by Alain Connes contains a

section V.6 devoted to Noncommutative Ergodic Theory. The main subject of the
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section is a classification of the automorphisms of von Neumann algebras up to inter-

nal or external conjugacy that is later applied to the classification of von Neumann

algebras.

Importance of Ergodic Type Theorems from a mathematical physics point of view

is in the existence and uniqueness of the vacuum state of a quantum system, see for

example books by Bratteli and Robinson [9], Benatti [7], or the paper by Narnhofer,

Thirring, Wiclicki [45].

The first results in the field of non-commutative ergodic theory were obtained

independently by Sinai and Anshelevich [63] and Lance [48]. Developments of the

subject are reflected in the monographs of Jajte [36] and Krengel [44] (see also [20],

[21], [30], [55]).

Chapter 1 of this work is devoted to a presentation of some results concerning

ergodic type properties of weak convergence of iterates of operators acting in L1 space

for general von Neumann algebras and JBW -algebras, as well as Segal - Dixmier Lp-

spaces (1 ≤ p <∞) of operators affiliated with semifinite von Neumann algebras and

semifinite JBW -algebras. The results of the section 2, chapter 1 complete arguments

of [40].

Ergodic Theorems for actions of arbitrary countable groups were obtained by

Oseledets [53], who followed an idea of Kakutani [39]. For actions of free groups

Guivarc’h [33] considered uniform averages over spheres of increasing radii in a group

and proved a related mean ergodic theorem; Grigorchuk [31] announced a Pointwise

Ergodic Theorem for Česaro averages of the spherical averages. Nevo [51], and Nevo

and Stein [52] published a proof of the Pointwise Ergodic Theorem. In [32] Grigorchuk

announced an Ergodic Theorem for Actions of Free Semigroups. In [11] Bufetov
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generalized classical and recent Ergodic Theorems of Kakutani, Oseledets, Guivarc’h,

Grigorchuk, Nevo, Nevo and Stein for measure-preserving actions of free semigroups

and groups.

In chapter 2, Bufetov’s results from [11] are generalized to the non-commutative

case to obtain non-commutative Ergodic Theorems for the actions of finitely generated

semigroups on von Neumann algebras with faithful normal finite tracial state.

The chapter 2 proceeds as follows. Operator ergodic type theorems for finite

von Neumann algebras are formulated in Section 1 of the chapter. Section 2 of the

chapter is devoted to the proof of convergence for the theorems of section 1. Section

3 is devoted to the application of Guivarch’s approach to establishing the invariancy

of the limit. Section 4 contains extensions of Kakutani’s results to the setting of finite

von Neumann algebras. Section 5 contains an example of application of the results

of the chapter.

In chapter 3 the Stochastic Banach Principle is established . The Banach Principle

is one of the most useful tools in “classical” point-wise ergodic theory. The Banach

principle was used to give an alternative proof of the Birkgoff- Khinchin individual

ergodic theorem. Typical applications of the Banach Principle are Sato’s theorem

for uniform subsequences [62] and the individual ergodic theorem for the Besicovitch

Bounded sequences [59] .

Non-commutative analogs for (bilateral) almost everywhere convergence may be

found in papers [23], [13]. In chapter 3 a Banach Principle for convergence in measure

(Stochastic Banach Principle) is established. Based on this principle a simplified proof

of Stochastic Ergodic Theorem (compare with [30]) is offered. Stochastic convergence

for Sato’s uniform subsequences (Theorem 3.3.6) and a Stochastic Ergodic Theorem
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for the Besicovitch Bounded sequences (Theorem 3.3.5) are established.

Note that the Stochastic Banach Principle results are new even in the commutative

case. Indeed, it is well known (see for example [44]) that there are Cesaro averages

constructed for automorphisms that converge in measure and do not converge almost

everywhere. This implies that although the condition of Stochastic Ergodic Theorem

is satisfied in this case, the pointwise Banach Principle condition is not.

The results of the chapter 1 were published in [28] and the results of the chapter

2 were published in [25]. Results of the chapter 3 were accepted for publication in

Studia Mathematica [24].

Text of the papers is based on the text of the thesis, chapters 1, 2 and 3 accordingly.

Results of the work were presented in referred conferences [26] and [29].

0.3 Preliminary

This section contains notions and notations that are used further in the thesis.

We will use facts and terminology from the general theory of von Neumann al-

gebras ([9], [15], [54], [60], [65]), and the theory of non-commutative integration

([61],[70]).

Let M be a von Neumann algebra, acting on a separable Hilbert space H, M∗ is

a pre-dual space of M , which always exists according to the Sakai theorem [60]. It

is well known that M∗ can be identified with L1-space for M.

Spaces L1 and L2 of the operators affiliated with the semifinite von Neumann

algebra M with semifinite faithful trace τ were introduced by Segal (see [61]). This

result was extended to Lp spaces of operators affiliated with von Neumann algebra

M, τ by Dixmier (see [14]). For an alternative exposition of building Lp based on
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Grothendieck’s idea of using rearrangements of functions see also [70]. The theory

of Lp spaces was extended further to von Neumann algebras with faithful normal

semifinite weight ρ. However, these spaces lack some of the properties inherent in the

commutative case, for example, in general, these spaces have a trivial intersection.

Recall some standard terminology ([20], [21], [30], [44]).

Definition 0.3.1. A linear mapping T from M∗ into itself is called a contraction
if its norm is not greater than one.

Definition 0.3.2. A contraction T is said to be positive if

TM∗+ ⊂M∗+. (0.3.1)

Let the pair (M, τ) be a non-commutative probability space, where M is a

von Neumann algebra with a faithful, normal tracial state τ .

Let

α1, α2, ..., αm : M 7−→M

be positive kernels or linear maps satisfying following conditions:

(αi(M+) ⊂M+; αi1 ≤ 1; τ◦αi ≤ τ). (0.3.2)

All the {αi}’s could be extended to operators

L1(M, τ) 7−→ L1(M, τ),

which we will also call {αi}. The meaning of {αi} will be clear from the context.

Denote by α = (α1, α2, ..., αm).

Definition 0.3.3. A densely defined closed operator x affiliated with von Neumann
algebra M is called (τ) measurable if for every ε > 0 there exists projection e ∈
P (M) with τ(I− e) < ε such that e(H) ⊂ D(x), where D(x) is a domain of x.

Recall the following definitions (combined from the papers by Segal [61], Nelson
[50], Yeadon [70], Fack and Kosaki [18] ):
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Definition 0.3.4. A sequence {xn} ⊂ L1(M, τ) is said to converge to x0 ∈ L1(M, τ)
bilateral almost everywhere if for every ε ≥ 0 and δ ≥ 0 there exists N ∈ N and
projection e ∈M such that τ(I− e) < δ and e(xn − x0)e ∈M and for n ≥ N

‖e(xn − x0)e‖∞ ≤ ε (0.3.3)

Remark 0.3.1. We mention that another name for bilateral almost everywhere con-
vergence is double side almost everywhere convergence.

Space of all (τ) measurable operators affiliated with M is denoted by S(M).

For convenience for a self-adjoint x ∈ S(M) we denote by {x > t} the spectral
projection of x corresponding to the interval (t,∞].

Definition 0.3.5. Sequence {xn}∞n=1 converges to 0 in measure (stochastically)
if for every ε > 0 and δ > 0 there exists an integer N0 and a set of projections
{en}n≥N0 ⊂ P (M) such that ‖xn en‖∞ < ε and τ(I− en) < δ for n ≥ N0.

Remark 0.3.2. We will use terms converges in measure and converges stochas-
tically interchangeably.



Chapter 1

Weak Convergence of Iterates of
Operators Acting in Preduals of
von Neumann Algebras

1.1 Preliminaries

We will consider the two topologies on the space M∗: the weak topology , or the

σ(M∗,M) topology, and the pointwise norm topology of the M∗-space norm conver-

gence .

Definition 1.1.1. A matrix (an,i) , i, n = 1, 2, ... of real numbers is called uniformly

regular , if:

sup
n

∞∑
i=1

|an,i| ≤ C <∞; (1.1.1)

lim
n→∞

sup
i
|an,i| = 0; (1.1.2)

lim
n→∞

∑
i

an,i = 1. (1.1.3)

8
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1.2 The case of non-commutative L1-spaces

The following theorem is valid:

Theorem 1.2.1. The following conditions for a positive contraction T in the pre-dual

space M∗ of a complex von Neumann algebra M are equivalent:

i). The sequence {T ix}i=1,2,... converges weakly, for every x ∈M∗

ii). For each strictly increasing sequence of natural numbers {ki}i=1,2,...,

n−1
∑
i≤n

T ki , (1.2.1)

converges pointwise in norm topology,

iii). For any uniformly regular matrix (an,i), the sequence {An(T )}n=1,2,...,

An(T ) =
∑

i

an,iT
i, (1.2.2)

converges pointwise in norm topology.

We first prove the following Lemma:

Lemma 1.2.2. Let there exist a uniformly regular matrix (an,i) such that for each

strictly increasing sequence {ki}i=1,2,... of natural numbers,

Bn =
∑

i

an,iT
ki , (1.2.3)

converges pointwise in norm topology. Then the sequence {T ix}i=1,2,... converges

weakly for every x ∈M∗.
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Proof. Let (an,i) be a matrix with the aforementioned properties. Then the limit Bn

is not dependent upon the choice of the sequence {ki}i=1,2,.... In fact, let {ki}i=1,2,...

and {li}i=1,2,... be increasing sequences for which limits Bn are different. This means

that for some x ∈M∗, ∑
i

an,iT
kix→ x1, (1.2.4)

and ∑
i

an,iT
lix→ x2, (1.2.5)

for n → ∞, where x1 6= x2 . For the matrix (an,i) let us build increasing sequences

{ij}j=1,2,... and {nj}j=1,2,..., such that

lim
j→∞

(
∑

i<ij−1

∣∣anj ,i

∣∣ +
∑
i>ij

∣∣anj ,i

∣∣) = 0. (1.2.6)

Let

mi = ki for i ∈ [r4p, r4p+1) and mi = li for i ∈ [r4p+2, r4p+3), j = 1, 2, .... (1.2.7)

Here the sequence {r4p+q, q = 0, 3, p = 1, 2, ...} is an increasing subsequence of the

sequence {ij}j=1,2,....

Intervals (r4p+q, r4p+q+1), q = 0, 3 are chosen to ensure that the sequence {mi}i=1,2,...

is increasing.

This condition may be proved as shown by the following construction. Choose

r4 = i4 and r5 = i5 (and for p = 1, q = 0, 1). For i ∈ [r4, r5) we set mi = ki. Skipping

if necessary a few indexes ij we can ensure that li > kr5 for i ≥ ij′ and j′ ≥ 6. Set

r4p+2 = ij′ , r4p+3 = ij′+1 for p = 1.

Suppose that sequence {r4p+q, q = 0, 3} is built for p = 1, s− 1. In order to

build r4p and r4p+1 for p = s, we skip if necessary a few indexes of ij to ensure that
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ki > lr4p−1 for i ≥ ij′ and ij′ > r4p−1 (this is possible since sequence {ki} is increasing

to infinity). Set r4p = ij′ and r4p+1 = ij′+1. Repeating previous arguments, in order

to build r4p+2 and r4p+3 for p = s, we skip if necessary a few indexes of ij to ensure

that li > kr4p+1 for i ≥ ij′ and ij′ > r4p+1 (this is possible since sequence {li} is

increasing to infinity). Set r4p+2 = ij′ and r4p+3 = ij′+1. Hence the required sequence

mi is built.

On replacing sequence ij with subsequence rp, 1.2.6 and 1.2.7 then imply

lim
p

∥∥∥∥∥∑
r

an4p,rT
mrx− x1

∥∥∥∥∥ = 0, (1.2.8)

lim
p

∥∥∥∥∥∑
r

an4p+2,rT
mrx− x2

∥∥∥∥∥ = 0, (1.2.9)

which contradicts (1.2.3), and therefore x1 = x2.

Suppose now that ∑
i

an,iT
kix→ x1, (1.2.10)

to the same x1 for every sequence {ki}, however that the sequence T nx does not

converge weakly to x1, or, in other words, there exists y ∈M such that (T nx− x1, y)

has an accumulation point γ other than 0. We choose a subsequence {ki} such that

(T kix− x1, y) → γ 6= 0, (1.2.11)

where γ is a complex number. Then, from the uniform regularity of the matrix (an,i)

it follows that

lim
n

(
∑

i

an,iT
kix− x1, y) = γ, (1.2.12)

which contradicts the choice of the matrix (an,i) and (1.2.10).
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Proof of the Theorem 1. The implication iii) =⇒ ii) is trivial, because the matrix

(an,i), an,i = 1
n

∑
j≤n

δj,ki
is uniformly regular. Applying the above Lemma 1.2.2 to the

matrix an,i = 1
n
, i ≤ n and an,i = 0 for i > n, we get the implication ii) =⇒ i).

To prove the implication i) =⇒ iii), we need the following Lemma:

Lemma 1.2.3. Let Q be a contraction in the Hilbert space H. Then the weak con-

vergence of Qnx in H,where x ∈ H, implies the norm convergence of

∑
i

an,iQ
ix (1.2.13)

for any uniformly regular matrix (an,i).

Proof. If the weak limit Qnx exists and is equal to x1, then

Qx1 = Q( lim
n→∞

Qnx) = x1, (1.2.14)

where the limit is considered in the weak topology, i.e. x1 is Q- invariant. Replacing

x by x − x1 (if nesessary), we may suppose that Qnx converges weakly to 0, and

hence (Qnx, x) → 0. We are going to show that
∑
n

ai,nQ
nx

‖.‖−→ 0, where (ai,n) is a

uniformly regular matrix. One can see that∥∥∥∥∥∑
i

an,iQ
ix

∥∥∥∥∥
2

≤
∑

i

∑
j

an,ian,j(Q
ix,Qjx) ≤

∑
i

∑
j

∣∣an,ian,j(Q
ix,Qjx)

∣∣ . (1.2.15)

Let us fix 1 > ε > 0. Because Q is a contraction, the limit limn→∞ ‖Qnx‖ does exist.

Now, we can find K > 0, such that for k > K and j ≥ 0,

∥∥Qkx
∥∥2 −

∥∥Qk+jx
∥∥2 ≤ ε2 (1.2.16)
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and ∣∣(Qkx, x)
∣∣ ≤ ε. (1.2.17)

Then, ∣∣(Qkx, x)− (Qk+jx,Qjx)
∣∣ =

∣∣(Qkx, x)− (Q∗jQk+jx, x)
∣∣ ≤

≤
∥∥Qkx−Q∗jQk+jx

∥∥ · ‖x‖ = (
∥∥Qkx−Q∗jQk+jx

∥∥2
)

1
2 · ‖x‖ =

= (
∥∥Qkx

∥∥2 − 2
∥∥Qk+jx

∥∥2
+

∥∥Q∗jQk+jx
∥∥2

)
1
2 · ‖x‖ ≤

≤ (
∥∥Qkx

∥∥2 −
∥∥Qk+jx

∥∥2
)1/2 · ‖x‖ ≤ ε · ‖x‖ , (1.2.18)

and therefore ∣∣(Qk+jx,Qjx)
∣∣ ≤ ε · (1 + ‖x‖) (1.2.19)

for all k > K and j ≥ 0, ie. for |i− j| ≥ k the inequality

∣∣(Qix,Qjx)
∣∣ ≤ ε · (1 + ‖x‖) (1.2.20)

is valid. We will fix η > 0, and let N be such a natural number that

sup
i
|an,i| < η, (1.2.21)

for n ≥ N . Then the expression 1.2.15 for n ≥ N could be estimated the following

way: ∑
i

∑
j

∣∣an,ian,j(Q
ix,Qjx)

∣∣ =

=
∑

|i−j|≤k

∣∣an,ian,j(Q
ix,Qjx)

∣∣ +
∑

|i−j|>k

∣∣an,ian,j(Q
ix,Qjx)

∣∣ ≤
≤

∑
i

|an,i| · η · ‖x‖2 · (2k + 1) +
∑

i

∑
j

|an,ian,j| · ε · (1 + ‖x‖) ≤
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≤ C · η · ‖x‖2 · (2k + 1) + C2 · ε · (1 + ‖x‖). (1.2.22)

From the arbitrariness of the values of ε and η it follows that strong convergence is

present and the Lemma is proven.

Proof of the Theorem 1 (cont.) Let us prove the implication i) =⇒ iii). Let x ∈M∗+

and the sequence {T ix}i=1,2,... converges weakly. Without the loss of generality we

can consider ‖x‖ ≤ 1, and let

x = lim
n→∞

T nx, (1.2.23)

where the limit is understood in the weak sense.

By s(z) we denote the support of the positive normal functional z.

For y ∈M∗+ the set

Ly = {w ∈M∗+, w ≤ λy, for some λ > 0}, (1.2.24)

is dense in the set

Sy = {w ∈M∗+, s(w) ≤ s(y)}, (1.2.25)

in the norm of the space M∗ (see for example [60], Theorem 1.24.3, proof).

An alternative proof of the density statement could be obtained by applying the-

orem 1.6 of [22] to s(y)Ms(y), equipped with the weight obtained by restricting the

action of y to s(y)Ms(y).

Let us introduce the following notion: For µ ∈M∗, we will denote by µ.E, where

E is a projection from the algebra M , the functional

(µ.E)(A) = µ(EAE), (1.2.26)
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where A ∈M .

Let us fix 1 > ε > 0. Since (T nx)(1−s(x)) → 0, we can find a number N , such

that

(T nx)(1−s(x)) < ε2 (1.2.27)

for n > N .

Then ∥∥TNx.s(x)− TNx
∥∥ =

sup
A∈M

‖A‖∞≤1

∣∣(TNx)((1−s(x))A(1−s(x)))+

+(TNx)((s(x))A(1−s(x))) + (TNx)((1−s(x))A(s(x)))
∣∣ ≤

≤ ε · (ε+ 2 ‖x‖
1
2 ), (1.2.28)

because

|µ(A∗B)|2 ≤ µ(A∗A) · µ(B∗B), (1.2.29)

where µ ∈M∗+ and A,B ∈M .

Let us now approximate TNx.s(x). Note, that TNxs(x) ∈ Sx. Let w ∈ Lx be

such that

w ≤ λx (1.2.30)

for some λ > 0 and ∥∥TNx.s(x)− w
∥∥ ≤ ε′ < ε (1.2.31)

for some 0 < ε′ < ε.

Then, for n > N , the following is valid:
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∥∥T nx− T n−Nw
∥∥ ≤ ∥∥T n−N(TNx− TNx.s(x))

∥∥ +

+
∥∥T n−N(TNx.s(x)− w)

∥∥ ≤ 3 · ε+ ε′ < 4 · ε. (1.2.32)

By taking the weak limit in the inequality (1.2.40), and because the unital sphere

of M∗ is closed weakly, we will get

‖x− w‖ < 4 · ε, (1.2.33)

where

w = lim
n→∞

T nw. (1.2.34)

Let us now consider the algebra Ms(x). The functional x is faithful on the algebra

Ms(x). We will consider the representation πx of the algebra Ms(x) constructed using

the functional x [15]. Because the functional x is faithful, we can conclude that the

representation πx is faithful on the algebra Ms(x), and therefore πx is an isomorphism

of the algebra Ms(x) and some algebra A. The algebra A is a von Neumann algebra,

and its pre-conjugate space A∗ is isomorphic to the space M∗.s(x) ([60] , the proof of

Theorem 1.24.3). Let us note now that

TM∗.s(x) ⊂M∗.s(x). (1.2.35)

In fact, since an inequality w ≤ λx implies Tw ≤ λx, we get

TLx ⊂ Lx. (1.2.36)

Therefore, by taking the norm closure, we get

TSx ⊂ Sx; (1.2.37)
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and by taking the linear span, we get based on 1.2.25 and the fact that every y ∈M∗

maybe decomposed as a linear combination of four yi ∈M∗+, i = 1, 2, 3, 4

TM∗.s(x) ⊂M∗.s(x). (1.2.38)

Let us denote by T the isomorphic image of the operator T , acting on the space A∗.

Let

u ∈ A∗+ and u ≤ λπx(x) (1.2.39)

for some λ > 0. Then there exists an operator B ∈ A′
+ with ||B||∞ < λ, where A′ is

a commutant of A, such that

(ABΩ,Ω) = u(A) (1.2.40)

for all A ∈ A [60] (here Ω is such that (AΩ,Ω) = x(A)), Theorem 1.24.3, proof (we

refer to the statement about the existence of the derivative from commutant for the

normal bounded state ).

For bounded positive contraction T defined on A∗ let

(Tu)(A) = u((T )∗A) = (((T )∗A)BΩ,Ω) = (A((T
∗
)′B)Ω,Ω), (1.2.41)

The operator (T
∗
)′ defined by equality (1.2.41) was introduced for the first time in

[20]. It is established in [20] that (T
∗
)′ is a positive contraction in A′.

Also, from

TA∗+ ⊂ A∗+,
∥∥Tu∥∥ ≤ ‖u‖ and Tx = x (1.2.42)

it follows that

(T )∗A+ ⊂ A+; (T
∗
)1 ≤ 1 and

∥∥(T )∗A
∥∥
∞ ≤ ‖A‖∞ (1.2.43)
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for all A ∈ A. Based on the Lemma 1.3 of [20] stating that operator T
∗′

satisfies

1.2.43 for A′ under condition that operator T
∗

satisfies 1.2.43 for A, we now conclude

that ∥∥∥(T
∗′
B)

∥∥∥
∞
≤ ‖B‖∞ ;T

∗′
A′

+ ⊂ A′
+;T

∗′
1 ≤ 1 (1.2.44)

for all B ∈ A′.

The space A′
sa is a pre-Hilbert space of the self adjoint operators from A′ with the

scalar product

(B,C)x = (CBΩ,Ω), (1.2.45)

and, using the Kadison inequality [9], Proposition 3.2.4 we have

((T
∗′
B)(T

∗′
B)Ω,Ω) ≤ (T

∗′
(B2)Ω,Ω) ≤ (BΩ, BΩ), (1.2.46)

i.e. the operator T
∗′

is a contraction in the pre-Hilbert space (A′
sa, (., .)x). Denote

closure of the (A′
sa, (., .)x) by B. Since operator T

∗′
is a contraction on the dense

subset, it may be extended by continuity to the contraction on whole B. We use the

same notation for the extension as for the operator T
∗′
.

We will identify M∗.s(x) and A∗. Because w ∈ Lx, i.e.

w ≤ λx (1.2.47)

for some λ > 0, then since x is T invariant and T is a contraction

w ≤ λx (1.2.48)

as well. Let

w(A) = (BAΩ,Ω) and w(A) = (BAΩ,Ω) (1.2.49)
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for all A ∈ A, where B, B ∈ A′.

Let us show that weak convergence T nw → w and the fact that T (and hence

from the previous note T
∗′

) is a contraction implies that T
∗′n
B converges weakly for

B ∈ B.

Indeed, let η ∈ B. It is enough to show that (η, T
∗′n
η) is Cauchy sequence.

Since

|(η, T ∗′n
η)− (η, T

∗′m
η)| ≤ (1.2.50)

|(η, T ∗′n
η)− (AkΩ, T

∗′n
η)|+ |(AkΩ, T

∗′n
η)− (AkΩ, T

∗′n
BlΩ)|+

|(AkΩ, T
∗′n
BlΩ)− (AkΩ, T

∗′m
BlΩ)|+ |(AkΩ, T

∗′m
BlΩ)− (AkΩ, T

∗′m
η)|+

|(AkΩ, T
∗′m
η)− (η, T

∗′m
η)| ≤ 2 ‖η − AkΩ‖ sup

n
‖T ∗′n‖ ‖η‖+

2 ‖AkΩ‖ sup
n
‖T ∗′n‖ ‖η −BlΩ‖+ |(AkΩ, T

∗′n
BlΩ)− (AkΩ, T

∗′m
BlΩ)| ≤ ε

for Ak ∈ A, Bl ∈ A′ chosen in such a manner that ‖η‖ < 1, ‖AkΩ‖ < 1, ‖AkΩ− η‖ ≤

ε/5 and ‖BlΩ−η‖ ≤ ε/5, and N ∈ N chosen in such a manner that |(AkΩ, T
∗′n
BlΩ)−

(AkΩ, T
∗′m
BlΩ)| ≤ ε/5 for m,n ≥ N . Possibility of latter choice follows from the

fact that sequence (T
∗m
AkΩ, BlΩ) converges. Hence, (η, T

∗′n
η) is Cauchy sequence.

Let now (an,i) be a uniformly regular matrix. Since T iw(A) = (T ∗′i(B)AΩ,Ω),

then using Lemma 1.2.3 we can find K ∈ N so that

∥∥∥∥∥∑
i

a′k,iT
iw − w

∥∥∥∥∥ = sup
A∈A

‖A‖∞=1

∣∣∣∣∣(
∞∑
i=1

a′k,i((T
∗′
)i(B −B)AΩ,Ω)

∣∣∣∣∣ ≤
≤ (

∞∑
i=1

a′k,i(T
∗′
)i(B −B)Ω,

∞∑
i=1

a′k,i(T
∗′
)i(B −B)Ω)

1
2 · sup

A∈A
‖A‖∞≤1

(AΩ, AΩ)
1
2 ≤

≤ (x(1))
1
2 ·

∥∥∥∥∥
∞∑
i=1

a′k,i(T
∗′
)i(B −B)

∥∥∥∥∥
(.,.)x

< ε (1.2.51)
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for k > K, where by (a′n,i) we will denote a matrix with the elements

a′n,j = (
∑
i>N

an,i)
−1an,j+N . (1.2.52)

Choose N in such a manner that (1.2.40) takes place.

Given 0 < ε0, ε1 < ε/2 if we choose K big enough so that |ak,i| < ε0/N and

|
∑
ak,i − 1| < ε1 for all k ≥ K, we will have |

∑
i>N ak,i − 1| < ε1 + ε0. If also

ε1 + ε0 < 1, then
∑

i>N ak,i > 0. It is easy to see that the matrix (a′n,i) will be

uniformly regular as well.

Then, for a big enough k > K we will have

∥∥∥∥∥∑
i

ak,iT
ix− x

∥∥∥∥∥ ≤ ∑
i≤N

|ak,i|
∥∥T ix− x

∥∥
︸ ︷︷ ︸

1

+
∑
i>N

|ak,i|
∥∥T ix− T i−Nw

∥∥
︸ ︷︷ ︸

2

+

+

∣∣∣∣∣1− (
∑
i>N

ak,i)
−1

∣∣∣∣∣ ∑
i>N

|ak,i| sup
i>N

∥∥T i−Nw
∥∥

︸ ︷︷ ︸
3

+

∥∥∥∥∥
∞∑

j=1

ak,j+N · (
∑
i>N

ak,i)
−1T jw − w

∥∥∥∥∥︸ ︷︷ ︸
4

+

+

∥∥∥∥∥(
∑
i≤N

ak,i) · w

∥∥∥∥∥︸ ︷︷ ︸
5

+

∣∣∣∣∣∑
i>N

ak,i

∣∣∣∣∣ ‖w − x‖︸ ︷︷ ︸
6

+ (1−
∑

i

ak,i)‖w‖︸ ︷︷ ︸
7

+ (1−
∑

i

ak,i)‖x‖︸ ︷︷ ︸
8

≤

≤
∑
i≤N

2 · ε
N

+
∑
i>N

|ak,i| ·4ε+
∑
i>N

|ak,i|max{(1− (1+ε)−1), ((1−ε)−1−1)} · (1+4ε)+ε

+
∑
i≤N

(1 + 4ε) · ε
N

+ (1 + ε) · 4ε+ ε(1 + 4ε) + ε (1.2.53)
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≤ 2ε+C ·(1+ε)·4ε+C ·2ε ·2+ε+2ε+(1+ε)·4ε+ε(2+4ε) ≤ (20+12·C)ε, (1.2.54)

for 1/4 > ε > 0. Here inequalities for terms 1 and 5 follows from the choice of

K and uniform regularity of matrix (ak,i) and, hence, for fixed N and sufficiently

large K for k > K, i ≤ N holds |ak,i| < ε/N ; inequality for term 2 follows from

(1.2.40) (the constant C was defined in the definition of the uniformly regular matrix

(1.1.1)); inequality for term 3 follows from regularity of matrix (an,i), hence, for fixed

N and sufficiently large K and k > K holds
∑

i>N ak,i > 0 and |1 −
∑

i>N ak,i| < ε;

inequality for term 4 follows from (1.2.59); inequality for term 6 follows from (1.2.41);

and inequalities for terms 7 and 8 follow from regularity of the matrix (an,i).

The arbitrariness of ε proves the needed statement. This completes the proof of

the theorem.

1.3 The case of L1-spaces for JBW -algebras

The L1-spaces for semifinite JBW -algebras were considered in [8] (see also [1], [37]),

where it has been proven that they do coincide with predual spaces. In the case of a

semifinite JBW -algebra, algebra A does not have a direct summand of type I2, hence

A is represented as

A = Asp u Aex, (1.3.1)

where Asp is isometrically isomorphic to an operator JW -algebra , that is, a self-

adjoint part of a Real von Neumann algebra R(Asp), whose complexification

R(Asp) u iR(Asp) = M, (1.3.2)

where M is the enveloping von Neumann algebra of Asp, and Aex is isometrically

isomorphic to the space C(X,M8
3 ) of all continuous mappings from a Hyperstonean
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compact topological space X onto the exceptional Jordan algebra M8
3 . The predual

space of A, is the space

A∗ = (Asp)∗ u (Aex)∗, (1.3.3)

where (Asp)∗ is the predual space of Asp, and (Aex)∗ is the predual space of Aex (see,

for example [34] and [5]). The main result for the summand Aex follows immediately

from the result for C(X), and the fact that the algebra M8
3 is finite-dimensional. So,

without the loss of generality we may pass to the operator case only. But in the

operator case, the space (Asp)∗ is a self-adjoint part of R∗ = (R(Asp))∗, and

M∗ = R∗ u iR∗, (1.3.4)

(see [5] and [49] for details). But the main result for R∗ thus follows from the complex

case by restriction.

1.4 The case of non-commutative Lp-spaces, (1 <

p <∞)

In this section M denotes a semifinite JBW algebra with faithful normal trace τ .

By Lp we denote the space of the operators affiliated with the JBW algebra M and

integrated with p-th power (p > 1, see for example [14], [61], [2]). Space Lq (here

q = p
p−1

) is dual to Lp as a Banach space (see for example [61], [1]). The following

theorem takes place:

Theorem 1.4.1. The following conditions for a positive contraction T in Lp are

equivalent:

i) The sequence {T ix}i=1,2,... converges in σ(Lp, Lq) topology, for every x ∈ Lp



23

ii) For each strictly increasing sequence of natural numbers {ki}i=1,2,...,

n−1
∑
i<n

T ki , (1.4.1)

converges in pointwise norm topology with respect to norm of Lp,

iii) For any uniformly regular matrix (an,i), the sequence {An(T )}n=1,2,...,

An(T ) =
∑

i

an,iT
i, (1.4.2)

converges in pointwise norm topology with respect to norm of Lp.

For the sake of completeness we give the following definitions (see [71]), and

a sketch of the proof. Let φ be a gauge function (φ : R+ 7→ R+, with φ(0) =

0 and limt7→∞φ(t) = ∞). The Hahn-Banach theorem implies for strictly convex Ba-

nach spaces E with conjugate E ′ that there exists a duality map Φ : E 7→ E ′ associ-

ated with φ such that < x,Φ(x) >= ‖x‖‖Φ(x)‖, and ‖Φ(x)‖ = φ(x) . Map Φ is said

to satisfy property (S) uniformly if for every ε > 0 there exists δ(ε) > 0 such that for

any x, y ∈ E

|〈x,Φ(y)〉| < δ(ε) implies |〈y,Φ(x)〉| < ε (1.4.3)

Proof. From [37] section 4, it follows that duality map defined as Φ(a) = s|a|p−1 for

a = s|a| ∈M, (here a = s|a| is a polar decomposition of element a) satisfies property

(S) uniformly, hence the statement of the theorem follows from [71] Theorem 3.1.



Chapter 2

Ergodic Type Theorems for
Finitely Generated Groups Acting
in von Neumann Algebras

2.1 Non-commutative Operator Ergodic Theorems

Let

Ωm = {ω = ω1ω2...ωn... : ωi = 1, ...,m} (2.1.1)

be the space of all one-sided infinite sequences of m symbols 1, ...,m. We denote by

σm the shift on Ωm, defined by the formula

(σmω)i = ωi+1. (2.1.2)

Consider the set

Wm = {w = w1w2...wn : wi = 1, ...,m;n = 1, ...} (2.1.3)

of all finite words of m symbols 1, ...,m.

Denote by |w| the length of the word w. For each

w ∈ Wm,

24



25

let

C(w) ⊂ Ωm

be the set of all sequences starting with the word w. For an arbitrary Borel measure

µ on Ωm, set

µ(w) = µ(C(w)). (2.1.4)

Measure µ on Ωm invariant with respect to shift σm we call σm-invariant.

For each

w ∈ Wm,

introduce the operator

αw = αwnαwn−1 ...αw1 . (2.1.5)

Let µ be a Borel σm-invariant probability measure on Ωm. Consider the words w

with

|w| = l (2.1.6)

and the sum of the corresponding operators αw with the weights µ(w),

sµ
l (α) =

∑
|w|=l

µ(w)αw. (2.1.7)

Here α is just a notational device to remind the reader that this operator is built from

the αws. For the sake of convenience, we set αw with |w| = 0 equal to the identity

operator on M .

Average sµ
l (α) over l = 0, ..., n− 1 ,

cµn(α) =
1

n

n−1∑
l=0

sµ
l (α). (2.1.8)
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Suppose µ is a σm-invariant Markov measure on Ωm. We will show that the

averages cµn(α)ϕ converge both bilateral almost everywhere and in L1(M, τ) for any

operator

ϕ ∈ L1(A, τ).

Definition 2.1.1. A matrix Q with non-negative entries is said to be irreducible if,

for some n > 0, all entries of the matrix

Q+Q2 + ...+Qn (2.1.9)

are positive (if Q is stochastic, then this is equivalent to saying that in the corre-

sponding Markov chain any state is attainable from any other state).

Definition 2.1.2. A matrix P with non-negative entries is said to be strictly irre-

ducible if P and PP T are irreducible (here P T stands for the transpose of the matrix

P ).

Definition 2.1.3. A Markov chain is said to be strictly irreducible if the correspond-

ing transition matrix is strictly irreducible.

Theorem 2.1.1. Let (M, τ) be a non-commutative probability space,

α1, ..., αm : M 7−→M

positive kernels, and

α1, ..., αm : L1(M, τ) 7−→ L1(M, τ)

their corresponding extensions. Let µ be a σm-invariant Markov measure on Ωm.

Then, for any element

ϕ ∈ L1(M, τ),
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there exists an element

ϕ ∈ L1(M, τ),

such that

cµn(α)ϕ→ ϕ (2.1.10)

both bilateral almost everywhere and in L1(M, τ) norm as n→∞.

The following equality holds whenever α1, ..., αm preserve the state τ :

τ(ϕ) = τ(ϕ). (2.1.11)

If the measure µ is strictly irreducible, then

αjϕ = ϕ

for j = 1, ...,m.

If

ϕ ∈ Lp(M, τ),

p > 1, then ϕ ∈ Lp(M, τ) and

cµn(α)ϕ→ ϕ (2.1.12)

both in Lp(M, τ) norm and bilateral almost everywhere as well.

Theorem 2.1.1 generalizes the Ergodic Theorems of Grigorchuk [32], Nevo [51],

Nevo and Stein [52], and Bufetov [11] to the non-commutative case.

The following is a generalized version of the Mean Ergodic Theorem for operators

on Hilbert spaces.

Theorem 2.1.2. Let µ be a σm-invariant Markov measure on Ωm, let

H = L2(M, τ)
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be the Hilbert space constructed using non-commutative probability space (M, τ), and

let the linear operators

α1, ..., αm : L2(M, τ) 7−→ L2(M, τ)

be contractions. Then, for each operator

h ∈ L2(M, τ)

there exists an operator

h ∈ L2(M, τ)

such that

cµn(α)h→ h (2.1.13)

in L2(M, τ) as n→∞.

If the measure µ is strictly irreducible, then

αih = h (2.1.14)

for all i = 1, ...,m.

The following is a non-commutative version of the Ergodic Theorem for operators

on Lp(M, τ).

Theorem 2.1.3. Let µ be a σm-invariant Markov measure on Ωm. Let (M, τ) be a

non-commutative probability space and let p > 1. Suppose that all operators

α1, ..., αm : Lp(M, τ) 7−→ Lp(M, τ)

are positive contractions. Then for each

ϕ ∈ Lp(M, τ)
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there exists

ϕ ∈ Lp(M, τ)

such that

cµn(α)ϕ→ ϕ (2.1.15)

as n→∞ in Lp(A, τ).

If the measure µ is strictly irreducible, then

αiϕ = ϕ (2.1.16)

for all i = 1, ...,m.

2.2 Convergence of Multiparametric Česaro Aver-

ages

In this section we discuss the convergence of time averages in Theorems 2.1.1 and

2.1.3. The main idea here is to use the operator αµ introduced later in this section.

Let L be a Real or Complex linear space, let

α1, ..., αm : L 7−→ L

be linear operators, and let µ be a σm-invariant Markov measure on Ωm with initial

distribution (p1, ..., pm) and transition probability matrix

P = (pij).

We always assume in what follows that pi > 0 for any i = 1, ...,m.
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Consider the weighted sum of operators αw over all words of length l with given

last symbol i,

sµ,i
l (α) =

∑
{w:|w|=l,wl=i}

µ(w)αw. (2.2.1)

For the sake of convenience, we set αw with |w| = 0 equal to the identity operator on

L.

Now we average sµ,i
l (α) over l = 0, ..., n− 1,

cµ,i
n (α) =

1

n

n−1∑
l=0

sµ,i
l (α). (2.2.2)

The following lemma describes the relation between sµ,i
l (α) and sµ,j

l+1(α).

Lemma 2.2.1. For any positive integer l and any j ∈ {1, ...,m}, we have

sµ,j
l+1(α) =

m∑
l=1

pijαjs
µ,i
l (α). (2.2.3)

Proof. The proof of the lemma follows directly from Definition (2.2.1) of sµ,i
l (α) and

αw.

We can formulate the expression from the above lemma as follows:

sµ,j
l+1(α)

pj

=
m∑

i=1

pipij

pj

αj(
sµ,i

l (α)

pi

). (2.2.4)

Now we consider the space Lm, i.e., the m-th Cartesian power of L . We introduce

operators

αµ : Lm 7−→ Lm

defined by the formula

αµ(v1, ..., vm) = (ṽ1, ..., ṽm), (2.2.5)
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where

ṽj =
m∑

i=1

pipij

pj

αjvi. (2.2.6)

Lemma 2.2.2. For any v ∈ L and n ∈ N (or n ≥ 1), we have

αn
µ(v, ..., v) = (

sµ,1
n (α)v

p1

, ...,
sµ,m

n (α)v

pm

). (2.2.7)

Proof. Follows by induction from the formulae above.

Corollary 2.2.3. For any v ∈ L and n ∈ N,

1

n

n−1∑
l=0

αl
µ(v, ..., v) = (

cµ,1
n (α)v

p1

, ...,
cµ,m
n (α)v

pm

). (2.2.8)

Proof. Follows from the previous lemma.

Applying the classical non-commutative Individual Ergodic Theorem of Goldstein

[20], Theorem 1.1 to the operator αµ and using Corollary 2.2.3, we obtain statements

on the convergence of the averages cmn (α).

Lemma 2.2.4. Let µ be a σm-invariant Markov measure on Ωm, let

H = L2(M, τ)

be the Hilbert space constructed using non-commutative probability space (M, τ), and

let the linear operators

α1, ..., αm : L2(M, τ) 7−→ L2(M, τ)

be contractions. Then, for any operator

h ∈ L2(M, τ)
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and i ∈ {1, ...,m}, the sequence

(
1

pi

)cµ,i
n (α)h→ hi (2.2.9)

in H as n→∞, where

hi ∈ L2(M, τ),

and

αµ(h1, ..., hm) = (h1, ..., hm). (2.2.10)

Proof. If α1, ..., αm are contractions on L2(M, τ), then αµ is a contraction on

(L2(A, τ))
m.

Corollary 2.2.3 and the Mean Ergodic Theorem for αµ complete the proof.

The relation

cµn(α) = cµ,1
n (α) + ...+ cµ,m

n (α) (2.2.11)

yields the following assertion.

Corollary 2.2.5. Under the assumptions of previous lemma, for any h ∈ L2(M, τ),

the sequence cµn(α)h converges in L2(M, τ) norm as n→∞.

Corollary 2.2.5 proves the convergence of time averages in Theorem 2.1.2.

Similarly, the following results are valid:

Theorem 2.2.6. Let µ be a σm-invariant Markov measure on Ωm. Let (M, τ) be a

non-commutative probability space and let p > 1. Suppose that all operators

α1, ..., αm : Lp(M, τ) 7−→ Lp(M, τ)
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are contractions. Then, for any

v ∈ Lp(M, τ)

and i ∈ {1, ...,m}, the sequence

(
1

pi

)cµ,i
n (α)v → vi (2.2.12)

in Lp(M, τ) as n→∞, where the operator

vi ∈ Lp(M, τ),

and

αµ(v1, ..., vm) = (v1, ..., vm). (2.2.13)

Proof. If α1, ..., αm are contractions on Lp(M, τ), then αµ is a contraction on

(Lp(M, τ))m.

The result follows from Corollary 2.2.3 and Lorch’s Ergodic Theorem applied to the

contraction αµ (see [11] or [44], Theorem 1.2 on p. 73).

Corollary 2.2.7. Under assumptions of the previous Theorem, for any

v ∈ Lp(M, τ),

the sequence cµn(α)v converges in Lp(M, τ) as n→∞.

Now let (M, τ) be a non-commutative probability space as above, and

α1, ..., αm : L1(M, τ) 7−→ L1(M, τ)

be linear operators.
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Now we specialize the construction of αµ from 2.2.5 to the case of L1(M, τ)

Let µ be a σm-invariant Markov measure on Ωm with initial distribution

p = (p1, ..., pm)

and transition probability matrix

P = (pij),

and let

αµ : (L1(M, τ))m 7−→ (L1(M, τ))m

be the operator defined as before.

The space

(L1(M, τ))m

can be identified with the space

L1(M × {1, ...,m}, τ × p),

where τ × p is the product of the state τ on the algebra A and the probability

distribution

p = (p1, ..., pm)

on {1, ...,m}. Now the operator αµ becomes an operator on the space

L1(M × {1, ...,m}, τ × p).

It is clear that, if α1, ..., αm are positive, then so is αµ; if α1, ..., αm are L1(A, τ)-

contractions, then so is αµ; if α1, ..., αm are L∞(M, τ)-contractions then so is αµ; if

α1, ..., αm preserve the state τ , then αµ preserves the measure τ × p.
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Lemma 2.2.8. Let (M, τ) be a non-commutative probability space and let α1, ..., αm

be positive kernels. Then, for any operator

ϕ ∈ L1(M, τ)

and i = 1, ...,m, sequence cµ,i
n (α)ϕ converges as n → ∞ both bilateral almost every-

where and in L1(M, τ). If

ϕi = lim
n→∞

(
1

pi

)cµ,i
n (α)ϕ, (2.2.14)

then

αµ(ϕ1, ..., ϕm) = (ϕ1, ..., ϕm). (2.2.15)

To prove the lemma, we use the following known fact [20]:

Theorem 2.2.9. If α is a positive kernel on the non-commutative probability space

(M, τ), then, for any

ϕ ∈ L1(M, τ),

there exists an operator

ϕ ∈ L1(M, τ)

such that

1

n
(ϕ+ αϕ+ ...+ αn−1ϕ) → ϕ (2.2.16)

as n→∞ both bilateral almost everywhere and in L1(M, τ). The operator ϕ satisfies

the relation

αϕ = ϕ. (2.2.17)

Proof. (of Lemma 2.2.8) Applying Theorem 2.2.9 to the operator αµ, and using Corol-

lary 2.2.3, we obtain statement of the lemma.
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The bilateral almost everywhere convergence in the Theorem above also holds for

spaces of infinite measure; therefore, we have the following lemma.

Lemma 2.2.10. Let (M, τ) be a von Neumann algebra with faithful normal semifinite

trace τ and let α1, ..., αm be positive kernels. Then for any operator

ϕ ∈ L1(M, τ)

and i = 1, ...,m, the sequence cµ,i
n (α)ϕ converges bilateral almost everywhere as n →

∞.

Now consider contractions on Lp(M, τ), for p > 1.

Lemma 2.2.11. Let (M, τ) be a non-commutative probability space, let p > 1, and

let α1, ..., αm be positive Lp(M, τ)-contractions. For any operator

ϕ ∈ Lp(M, τ)

and i = 1, ...,m, the sequence

(
1

pi

)cµ,i
n (α)ϕ (2.2.18)

converges as n→∞ in Lp(M, τ) to an operator

ϕi ∈ Lp(M, τ).

We have

αµ(ϕ1, ..., ϕm) = (ϕ1, ..., ϕm). (2.2.19)

Proof. If α1, ..., αm are contractions, then so is αµ. Applying Theorem 2 from [74]

(see also [11] or [44], p.73) to the operator αµ and using Corollary 2.2.3, we obtain

the result.
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Corollary 2.2.12. Under the assumptions of the previous Lemma, for any operator

ϕ ∈ Lp(M, τ),

the sequence cµn(α)ϕ converges in Lp(M, τ) norm.

Corollary 2.2.12 completes the proof of the convergence of time averages in The-

orem 2.1.3.

2.3 Invariance of the Limit

In this section we establish the invariance of the limit in Theorems 2.1.1-2.1.3 and

complete the proof of these theorems.

The following theorem allows us to conclude invariance of the limit in Theorem

2.1.2 from the Lemma 2.2.8 and as a consequence invariance of the limit in Theorem

2.1.1.

Theorem 2.3.1. Let (M, τ) be a non-commutative probability space and let α1, ..., αm

be positive kernels on L1(M, τ). Let µ be a strictly σm-invariant Markov measure on

Ωm. Suppose that the operators

ϕ1, ..., ϕm ∈ L1(M, τ) (2.3.1)

satisfy the condition

αµ(ϕ1, ..., ϕm) = (ϕ1, ..., ϕm). (2.3.2)

Then

ϕ1 = ... = ϕm = ϕ, (2.3.3)
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and

αiϕ = ϕ (2.3.4)

for all i = 1, ...,m.

In order to prove Theorem 2.3.1 we first establish a similar result for contractions

on the Hilbert space

H = L2(M, τ).

Theorem 2.3.2. Let (M, τ) be a non-commutative probability space, and let the linear

operators

α1, ..., αm : L2(M, τ) 7−→ L2(M, τ)

be contractions. Let µ be a σm-invariant Markov measure on Ωm, and let

h1, ..., hm ∈ L2(M, τ)

be such that

αµ(h1, ..., hm) = (h1, ..., hm). (2.3.5)

If measure µ is strictly irreducible, then

h1 = ... = hm = h, (2.3.6)

and

αih = h (2.3.7)

for each i = 1, ...,m.

The main idea of the proof is just this: if v1, v2, and v3 are operators from L2(M, τ)

such that

‖v1‖ = ‖v2‖ = ‖v3‖ (2.3.8)
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and

v1 =
(v2 + v3)

2
, (2.3.9)

then

v1 = v2 = v3. (2.3.10)

Y. Guivarc’h used this observation in [33] to prove the invariance of the limit function

in his Ergodic Theorem.

Proof. Let (p1, ..., pm) be initial distribution of the measure µ, and let P = (pij) be

the transition probability matrix of µ. For any i, j ∈ {1, ...,m} and n ∈ N, denote by

p
(n)
ij the n-step transition probability from i to j (in other words, p

(n)
ij = (P n)ij).

We partition proof of Theorem 2.3.2 into series of steps.

Proposition 2.3.3. Let (M, τ) be a non-commutative probability space, and let linear

operators

α1, ..., αm : L2(M, τ) 7−→ L2(M, τ)

be contractions. Let µ be a σm-invariant Markov measure on Ωm, such that the

corresponding Markov chain is irreducible. Suppose that operators

h1, ..., hm ∈ L2(M, τ)

satisfy the relation

αµ(h1, ..., hm) = (h1, ..., hm). (2.3.11)

Then there is an r ∈ R, such that

‖h1‖ = ... = ‖hm‖ = r (2.3.12)

and, if

pij > 0, (2.3.13)
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then

‖αjhi‖ = r. (2.3.14)

Proof. Assume that

‖h1‖ ≥ ‖hi‖

for any i = 1, ...,m. Since equality 2.3.11 implies

h1 =
m∑

i=1

(
pipi1

p1

)α1hi (2.3.15)

and invariancy of initial vector (p1, ..., pm) with respect to transition matrix P T implies

1 =
m∑

i=1

pipi1

p1

. (2.3.16)

It follows from the triangle inequality that

‖h1‖ = ‖α1hi‖ = ‖hi‖ (2.3.17)

if

pi1 > 0. (2.3.18)

Similarly,

‖h1‖ = ‖hi‖ (2.3.19)

for any i such that

p
(2)
i1 > 0, (2.3.20)

and so on. The Markov chain corresponding to the measure µ is irreducible; hence,

‖h1‖ = ... = ‖hm‖, (2.3.21)

and

‖hj‖ = ‖αjhi‖ (2.3.22)
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if

pij > 0.

Proposition 2.3.4. Suppose that

h1, ..., hn, h ∈ L2(M, τ)

satisfy the condition

‖h1‖ = ‖h2‖ = ... = ‖hn‖ = ‖h‖. (2.3.23)

Let

h = c1h1 + ...+ cnhn (2.3.24)

for some

c1 > 0, ..., cn > 0

such that

c1 + ...+ cn = 1. (2.3.25)

Then

h1 = h2 = ... = hn = h. (2.3.26)

Proof. This immediately follows from equality condition for the Cauchy-Bunyakowsky-

Schwartz inequality in the Hilbert space.

Proposition 2.3.5. Let (M, τ) be a non-commutative probability space,

α : L2(M, τ) 7−→ L2(M, τ)

be a contraction, and let operators

h1, h2 ∈ L2(M, τ)
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satisfy the relations

‖h1‖ = ‖h2‖ = ‖αh1‖ = ‖αh2‖. (2.3.27)

Then

αh1 = αh2 (2.3.28)

implies

h1 = h2. (2.3.29)

Proof. Indeed, if

h1 6= h2,

then

‖(h1 + h2)

2
‖ < ‖h1‖ (2.3.30)

by Proposition 2.3.4. Since

‖α(
(h1 + h2)

2
)‖ = ‖h1‖ (2.3.31)

and α is a contraction, we arrive at a contradiction.

In what follows,

(PP T )ij

stands for the (i, j)-entry of the matrix PP T .

Proposition 2.3.6. Let (M, τ) be a non-commutative probability space, and let linear

operators

α1, ..., αm : L2(M, τ) 7−→ L2(M, τ)

be contractions. Let µ be a σm-invariant Markov measure on Ωm, and let

h1, ..., hm ∈ L2(M, τ)
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be such that

αµ(h1, ..., hm) = (h1, ..., hm). (2.3.32)

Let transition matrix P of µ be irreducible. Then

(PP T )ij > 0

implies

hi = hj. (2.3.33)

Proof. By Proposition 2.3.3, if P is irreducible, then

‖h1‖ = ... = ‖hm‖. (2.3.34)

Note that

(PP T )ij > 0

if and only if there is a k for which

pik > 0

and

pjk > 0.

Since

hk =
m∑

l=1

(
plplk

pk

)αkhl, (2.3.35)

it follows from Proposition 2.3.4 and 2.4.16 that

hk = αkhi = αkhj, (2.3.36)

and

‖hk‖ = ‖hi‖ = ‖hj‖ (2.3.37)
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by Proposition 2.3.3. By Proposition 2.3.5 this yields

hi = hj, (2.3.38)

which completes the proof.

Combination of statements of the Propositions 2.3.3-2.3.6 finishes the proof of

Theorem 2.3.2.

Let us return to the proof of Theorem 2.3.1.

Suppose that there exist ϕi and ϕj ∈ L1(M, τ) with i, j ∈ {1, ...,m} and ‖ϕi −

ϕj‖L1 ≥ ε > 0 and satisfying equality 2.3.2. Since L2(M, τ) is dense in the L1(M, τ)

in L1(M, τ) norm, we can find hj ∈ L2(M, τ) satisfying ‖hj − ϕj‖L1 < ε/3 for each

j ∈ {1, ...,m}. Let

(h1, ..., hm) = lim
N→∞

1

N

N−1∑
n=0

αn
µ(h1, ..., hm). (2.3.39)

The limit in equation 2.3.39 exists in L1 and L2 norm. Hence, hl ∈ L2(M, τ). Since

αµ is contraction in L1(M, τ), then ‖hl − ϕl‖L1 ≤ ε/3. In addition, the following

equality holds

αµ(h1, ..., hm) = (h1, ..., hm).

Hence, from Theorem 2.3.2 the following equality holds:

h1 = h2 = ... = hm.

The latter equality implies that

ε ≤ ‖ϕi − ϕj‖L1 ≤ ‖ϕi − hi‖L1 + ‖hj − ϕj‖L1 ≤ 2ε/3.

We came to contradiction with the suggestion that ε ≤ ‖ϕi − ϕj‖L1 . Theorem 2.3.1

is established.
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Theorem 2.3.7. Let (M, τ) be a non-commutative probability space, let p > 1 and

let

α1, ..., αm : Lp(M, τ) 7−→ Lp(M, τ)

be contractions. Let µ be a σm-invariant Markov measure on Ωm, and let operators

ϕ1, ..., ϕm ∈ Lp(M, τ)

be such that

αµ(ϕ1, ..., ϕm) = (ϕ1, ..., ϕm). (2.3.40)

If the measure µ is strictly irreducible, then

ϕ1 = ... = ϕm = ϕ (2.3.41)

and

αiϕ = ϕ (2.3.42)

for any i = 1, ...,m.

Proof. The proof of the latter Theorem reproduces that of Theorem 2.3.2 above. The

key observation is that Proposition 2.3.4 holds for the space Lp(M, τ) since Lp(M, τ)

is a strictly convex space (see for example [56]).

Theorems 2.3.7 and 2.3.1 imply Theorem 2.1.3.

2.4 Ergodic Type Theorem and Skew Product Trans-

formations

In this section we prove Skew Ergodic Theorem (originated by S.Kakutani). Next,

we apply Theorem 2.1.1 to the proof of the Ergodic Theorem for a finitely generated
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locally free semigroup acting as a contraction T on a tracial von Neumann algebra

M . These semigroups were introduced by Vershik in [67].

Let α1, ..., αm be positive kernels.

For each ω ∈ Wm denote by Tω the operator defined as

Tω : M 7−→M,Tω = αω1 ◦ ... ◦ αωn (2.4.1)

For the sake of convenience, we set Tω with |ω| = 0 equal to the identity operator on

M .

Note that the order of actions of the operators is reversed compared to the defi-

nition in equation (2.1.5). To stress this we use notation Tω instead of αω.

For any operator ϕ in L1(M, τ) we denote

Sµ
j (T )(ϕ) =

∑
|ω|=j

µ(ω)Tω(ϕ). (2.4.2)

Here T is just a notational device to remind the reader that this operator is built

from the Tωs. We denote by

Cµ
n(T )(ϕ) =

1

n

n−1∑
j=0

Sµ
j (T )(ϕ) (2.4.3)

Česaro average of the Sµ
j (T )(ϕ) over j.

Theorem 2.4.1. Let ϕ be an operator affiliated to a tracial von Neumann algebra

M with separable predual ϕ ∈ L1(M, τ). Then there exists an operator ϕ ∈ L1(M, τ)

such that

Cµ
n(T )(ϕ) 7−→ ϕ in L1(M, τ) norm, (2.4.4)

and if α1, ..., αm preserve the trace τ

τ(ϕ) = τ(ϕ). (2.4.5)
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If, in addition, ϕ ∈ L1+ε(M, τ), then

Cµ
n(T )(ϕ) 7−→ ϕ bilateral almost everywhere . (2.4.6)

The rest of the section is devoted to the proof of Theorem 2.4.1.

For any ω ∈ Wm, ω = ω1...ωn denote the expression ωn...ω1 by ω∗. If µ is σm

-invariant Borel probability measure on Ωm, then formula µ∗(ω) = µ(ω∗) defines a σm

-invariant Borel probability measure with the property µ∗∗ = µ. The latter implies

that

Cµ
n(T ) = cµ

∗

n (T ), (2.4.7)

here cµ
∗

n (T ) is defined in equality (2.2.9).

Let Ψ = L∞(Ωm, µ)⊗M be a tensor product of von Neumann algebras L∞(Ωm, µ)

and M . Algebra Ψ may be considered as a von Neumann algebra L∞(Ωm, µ,M) of

essentially bounded ultra-weakly measurable functions ψ : Ωm 7→M , with the norm

||ψ|| = ess sup
ω∈Ωm

||ψ(ω)||∞. A trace for the algebra Ψ is given by the formula

ν(ψ) =

∫
Ωm

τ(ψ(ω))dµ(ω), for ψ ∈ Ψ (2.4.8)

Consider an operator Φ defined by

Φ(ψ)(ω) = αω1(ψ(σ(ω))) for ψ ∈ Ψ (2.4.9)

It is easy to see that Φ : Ψ 7→ Ψ, and Φ is a positive kernel on Ψ.

Extension of the operator Φ to L1(Ωm, µ,M∗), pre-conjugate of the algebra L∞(Ωm, µ,M) =

(L1(Ωm, µ,M∗))
∗ with norm ||.||1 we denote also by Φ.

For every x ∈M denote by xe embedding of x into Ψ as an function having value x

for each ω ∈ Ωm or xe = I⊗x . This embedding extends by norm ||.||1 into embedding
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of L1(M, τ) into L1(Ωm, µ,M∗). We denote the images under the embedding by M e

and L1(M
e).

Lemma 2.4.2. For the ω ∈ Wm with |ω| = n and ϕ ∈ L1(M, τ), the n-th iteration

of Φ satisfies

Φ(n)(ψ)(ω) = αω1 · · ·αωn(ψ(σ(n)
m ω)) for ψ ∈ Ψ (2.4.10)

and the following equality holds for Φ

Φ(n)(ϕe) = Tω(ϕ) for ϕ ∈ L1(M, τ) (2.4.11)

Proof. The statement of the lemma follows directly from the definition of the action

Φ and imbedding M e.

Lemma 2.4.3. For ϕ ∈ L1(M, τ) the following equality holds:∫
Ωm

Φj(ϕe)dµ(ω) =
∑
|ω|=j

µ(ω)Tω(ϕ) (2.4.12)

Denote by

ϕe
n =

1

n

n−1∑
j=0

Φj(ϕe) (2.4.13)

the n-th Česaro average of ϕe.

Lemma 2.4.4. For ϕ ∈ L1(M, τ) the following equality holds:∫
Ωm

ϕe
ndµ(ω) =

1

n

n−1∑
j=0

∑
|ω|=j

µ(ω)Tω(ϕ) (2.4.14)

and

Cµ
n(T )(ϕ) =

∫
Ωm

ϕe
ndµ(ω) (2.4.15)
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Denote by Proj(M) the set of all orthogonal projection operators in M . Let Ee

be a conditional expectation of the Ψ onto subalgebra M e defined as

Ee(ψ(ω)) =

∫
Ωm

ψ(ω)dµ(ω) (2.4.16)

Lemma 2.4.5. Sequence ϕe
n converges in norm of ||.||1.

Proof. Follows from the Mean Ergodic Theorem, see for example [44], or for the

version of the Mean Ergodic Theorem for symmetric spaces see [73]. For convenience

of the reader we give the precise formulation of Theorem 1.5, Chapter 9 from the

book [44] following the book’s notation.

Theorem 2.4.6 (Theorem 1.5, Chapter 9, [44]). Let Φ be a faithful family of normal

states of a von Neumann algebra A and let S = {Tu : u ∈ V} be a d- parametric

semigroup of w∗ - continous positive contractions in A with Tu∗φ ≤ φ for all u ∈ V

and φ ∈ Φ. Then

i) (An)∗ψ converges for n → ∞ in norm to P∗ψ for all ψ ∈ A∗, where P∗ is a

positive contraction in A∗;

ii) σ − limn→∞Anx = Px for all x ∈ A, where P is the adjoint of P∗;

iii) any x ∈ A is a s∗ - limit of a norm - bounded net (xγ) such that each xγ − Px

is a finite convex combination of elements of the form (I − Tu)x.

Precise definition of the d-dimensional Cesaro average (An) may be found in sec-

tion 6.1 of the book [44], p. 195, which explains what it means when the multi-index

tends to infinity. We use this theorem in the case when there is only one faithful

normal state and dimension d = 1. In this case An coincides with the regular Cesaro

average.
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Statement of the lemma follows from the 2.4.6 applied to the operator Φ acting

in the space L1(Ωm, µ,M∗)

Lemma 2.4.7. Suppose that ϕ ∈ L1+ε(M, τ). Then there exists a sequence of positive

operators Bn from L1(Ωm, µ,M) decreasing to 0 such that for positive ϕ

−Bn ≤ ϕe
n − ϕ ≤ Bn, for all n (2.4.17)

Proof. Follows from the theorem about majorant convergence , see [21].

Since a conditional expectation is a contraction in the norm ||.||1, the latest lemma

and (2.3.13)-(2.3.16) imply ||.||1 convergence in Theorem 2.4.1.

Lemma 2.4.8. Let E be a conditional expectation of von Neumann algebra M onto a

subalgebra B ⊂ M. If a sequence {Xn}∞n=1 of self-adjoint operators from the algebra

M is such that its majorant converges to 0, then {E(Xn)}∞n=1 majorant converges to

0.

Proof. Follows from application of expectation E to the majorant convergence in-

equality (see [21], Theorem 3.1).

The proof of Theorem 2.4.1 follows from the lemmas above and the fact that ma-

jorant convergence implies bilateral almost everywhere convergence (see for example

[21], Section 3).

2.5 Ergodic Type Theorem for the Action of Finitely

Generated Locally Free Semigroups

Definition 2.5.1. A locally free semigroup (see [68] and references there) LFSm+1

with m generators is defined as a semigroup determined by generators satisfying the
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following relations:

LFSm+1 = {g1, ..., gm | gigj = gjgi; i, j ∈ {1, ...,m}, |i− j| > 1} (2.5.1)

Semigroup LFSm+1 is associated with a topological Markov chain with states

{1, ...,m} and transition matrix

m = (mi,j), mi,j =

{
1, if |i− j| ≤ 1 or i ≤ j;

0, otherwise.
(2.5.2)

The set of admissible words in the chain corresponds to the Wm; the set of admissible

one-sided sequences corresponds to Ωm, and left shift σm corresponds to shift on Ωm.

Each word ω1...ωn corresponds to gω = gω1 ...gωn .

The correspondence ω 7→ gω defines a bijection between Wm and LFSm+1, and

from (4.2) it follows that system (Ωm, σm) mixes topologically, hence ergodic measure

has a positive measure on cylinders corresponding to the words Wm.

Now we assume that semigroup LFSm+1 acts as a semigroup with generators gi

mapped to the kernels αi acting on a tracial von Neumann Algebra (M, τ). Applying

Theorem 2.1.1, we obtain an Ergodic Theorem for the action of LFSm+1.



Chapter 3

Stochastic Banach Principle and
Some Applications for Semi-finite
von Neumann Algebras

3.1 Preliminaries

Definition 3.1.1. Let x be a measurable operator from S(M) and t > 0. The t-th

singular number of x is defined as

µt(x) = inf{||xe|| where e is a projection in P (M) with τ(I− e) < t}. (3.1.1)

Remark 3.1.1. Note that measure topology is defined in Fack and Kosaki’s [18]

as linear topology with fundamental system of neighborhoods around 0 given by

V (ε, δ) = {x ∈ S(M) such that there exists a projection e(x, ε, δ) with ‖xe‖ < ε and

τ(I− e) < δ}.

Definition 3.1.2. Denote by λt(x) the distribution function of x defined as

λt(x) = τ(E(t,∞)(|x|)), t ≥ 0, (3.1.2)

here E(t,∞)(|x|)) is a spectral projection of x corresponding to interval (t,∞).

52
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Remark 3.1.2. For the measurable operator x, we have λt(x) < ∞ for large enough

t and limt→∞ λt(x) = 0. Moreover, the map R 3 t → λt(x), is non-increasing and

continuous from the right (because τ is normal and {|x| > tn} ↑ {|x| > t} (and hence

in strong operator topology) as tn ↓ t). The distribution λt(x) is a non-commutative

analogue of the distribution function in classical analysis, (see. [18] p. 272 or [64]).

We would need the following statement about properties of the µt(x) (see for

example proposition 2.4 [70], or lemma 2.5 [18]):

Lemma 3.1.1. Let x, y ∈ S(M) be measurable operators.

i) Map R 3 t→ µt(x) is non-decreasing and continuous from the right.

Moreover limt↓0µt(x) = ‖x‖∞ ∈ [0,∞],

ii) µt(x) = µt(|x|) = µt(x
∗) and µt(αx) = |α|µt(x) for α ∈ C, t > 0,

iii) µt(x) ≤ µt(y) for 0 ≤ x ≤ y, t > 0,

iv) µt+s(x+ y) ≤ µt(x) + µs(y) for t, s > 0,

v) µt(yxz) ≤ ‖y‖∞‖z‖∞ µt(x), for y, z ∈M, t > 0,

vi) µt+s(yx) ≤ µt(x)µs(y) for t, s > 0.

3.2 Stochastic Banach Principle

We start the section with the description of some conditions equivalent to stochastic

convergence (cmp. with lemma 3.1 [18]).

Lemma 3.2.1. Let M, τ be as before. Consider following conditions:
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i) Sequence {xn}∞n=1 converges to 0 in measure,

ii) For every ε > 0, δ > 0 there exist a positive real 0 < δ′ < δ and an integer N0

such that for n ≥ N0

µδ′(xn) < ε,

iii) For every ε > 0, δ > 0, p ∈ P (M) with τ(p) < ∞ there exists an integer N0

and a sequence of projections {e′n}n≥N0 ⊂ P (M), e′n ≤ p such that

‖xn e
′
n‖∞ < ε and τ(p− e′n) < δ for n ≥ N0.

The following relations take place: i) ⇔ ii) ⇒ iii). If τ is finite then iii) ⇒ i).

Proof. Implication ii) ⇒ i) follows from the fact that condition µδ′(xn) < ε implies

that for some sequence of projections {en}∞n=1, holds ‖xn en‖ ≤ 2ε and τ(I− en) ≤ δ′.

Implication i) ⇒ ii) follows from the definition of measure convergence 0.3.5.

Implication i), ii) ⇒ iii) follows from the inequality

τ(p − p ∧ q) = τ(p ∨ q − q) ≤ τ(I− q), hence sequence {e′n = en ∧ p}∞n=1 satisfies

iii) (here projections en are defined in the Proof ii) ⇒ i)).

The case when τ is finite follows immediately since τ(I) <∞.

We need the following technical statement which is interesting by itself:

Lemma 3.2.2. Let x, y be self-adjoint measurable operators from S(M), t, s be posi-

tive real. Then

λt+s(x+ y) ≤ λt(x) + λs(y) (3.2.1)
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Proof. Indeed,

‖|(x+ y) |(I− {|x| > t}) ∧ (I− {|y| > s})‖ =

‖(x+ y) (I− {|x| > t}) ∧ (I− {|y| > s})‖ ≤

≤ ‖x (I− {|x| > t}) ∧ (I− {|y| > s})‖+ ‖y (I− {|x| > t}) ∧ (I− {|y| > s})‖ =

= ‖|x| (I− {|x| > t}) ∧ (I− {|y| > s})‖+ ‖|y| (I− {|x| > t}) ∧ (I− {|y| > s})‖ ≤

≤ ‖|x| (I− {|x| > t})‖+ ‖|y| (I− {|y| > s})‖ ≤

t+ s.

(3.2.2)

Here the first and the second equality follows from the equality ‖|z|u∗zuz |z|‖ =

‖|z|2‖ = ‖z∗ z‖, where z ∈ Mh, uz is a partial isometry from M such that z = uz |z|,

and

u∗zuz = l(z), uzu
∗
z = r(z), (3.2.3)

where l(z)(r(z)) is a left (right) support of z. Inequality 3.2.2 means that

µλt(x)+λs(y)(x+ y) ≤ t+ s. (3.2.4)

Let ξ be a vector from Hilbert space H and suppose that

ξ ∈ {|x+ y| > s+ t}H ∩ (I− {|x| > t}) ∧ (I− {|y| > s})H. (3.2.5)

Then

((t+ s)‖ξ‖)2 < (|x+ y|ξ, |x+ y|ξ) = ((x+ y)ξ, (x+ y)ξ) ≤ ((t+ s)‖ξ‖)2, (3.2.6)

here the first inequality follows from inclusion ξ ∈ {|x + y| > s + t}H, the equality

follows from the spectral decomposition 3.2.3, the second inequality follows from

inclusion ξ ∈ (I− {|x| > t}) ∧ (I− {|y| > s})H.
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Inequality 3.2.6 implies that ‖ξ‖ = 0 or, in other words,

{|x+ y| > s+ t} ∧ ((I− {|x| > t}) ∧ (I− {|y| > s})) = 0.

Hence,

{|x+ y| > t+ s} = {|x+ y| > t+ s}−

{|x+ y| > t+ s} ∧ ((I− {|x| > t}) ∧ (I− {|y| > s})) ∼

∼ {|x+ y| > t+ s} ∨ ((I− {|x| > t}) ∧ (I− {|y| > s}))−

((I− {|x| > t}) ∧ (I− {|y| > s})) ≤

≤ I− ((I− {|x| > t}) ∧ (I− {|y| > s})) = {|x| > t} ∨ {|y| > s}.

(3.2.7)

Here ∼ means projection equivalence. Since trace τ is invariant on equivalent projec-

tions,

τ({|x+ y| > t+ s}) ≤ τ({|x| > t} ∨ {|y| > s}) ≤ τ({|x| > t}) + τ({|y| > s}) (3.2.8)

and, hence, the inequality (3.2.1) takes place.

Theorem 3.2.3. Let (B, ‖.‖) be a Banach space. Let Σ = {An, n ∈ N} be a set of

linear operators An : B → S(M).

i) Suppose that there exists a function C(λ) : R+ → R+ with limλ→∞C(λ) = 0,

and such that

sup
n∈N

τ({|An(b)| > λ ‖b‖}) ≤ C(λ) (3.2.9)

holds for every b ∈ B, λ ∈ R+.

Then the subset B̃ of B where An(b) converges in measure (stochastically) is

closed in B.
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ii) Conversely, if An is a set of continuous in measure maps from B into S(M)

and for each b ∈ B, λ ∈ R+

lim
λ→∞

sup
n∈N

τ({|An(b)| > λ}) = 0, (3.2.10)

then there exists a function C(λ) : R+ → R+ with limλ→∞C(λ) = 0, and

sup
n∈N

τ({|An(b)| > λ ‖b‖}) ≤ C(λ) (3.2.11)

Part i) of the theorem 3.2.3 means that under the condition of the linear uniform

boundedness (3.2.9), the set of the stochastical convergence is closed.

Part ii) of the theorem 3.2.3 means that if the set of uniform boundedness is closed,

then linear uniform boundedness takes place.

Note that even though the condition in the part ii) looks more restrictive, it is

similar in nature to the condition of part i), since we can restrict everything to the

closed linear subspace B1 of Banach space B (B1 is also Banach space).

Proof. Part i) We first show that condition 3.2.9 implies continuity of the set Σ of

operators . Let B ⊃ {bk}∞k=1 be a sequence in B−{b} converging to b ∈ B. Then for

λ, ε ∈ R+ with 2λ supk≥n ‖b− bk‖ < ε

τ({|An(bk)− An(b)| > ε}) ≤ τ({|An(bk − b)| > λ ‖bk − b‖}) ≤

C(λ ‖bk − b‖−1)
bk→b−→ 0,

(3.2.12)

for k ≥ n, and, hence An continuous. Note that the inequality follows from the fact

that right part of 3.2.9 does not depend on the norm of b.

Suppose now that the sequence An(bk) converges when n → ∞ and, in addition,

sequence bk → b for k →∞. There exists a subsequence bkj
of bk such that sequence
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xj = limn→∞An(bkj
) converges stochastically. To show this we choose a sequence of

{k′i}∞i=1 base on the inequality 3.2.9 in such a manner that

τ({|An(bk′j − bk′j+l
)| > 2−j}) ≤ 2−j for all n (3.2.13)

and

τ({|An(bk′j − b)| > 2−j}) ≤ 2−j for all n (3.2.14)

This may be done since bn
n→∞−→ b, and C(λ)

λ→∞−→ 0. It is sufficient to choose a

sequence {λj}∞j=1 in such a way that C(λj) < 2−j and ‖bkj
− b‖ < λ−1

j 2−2j.

Choose nj in such a manner that for N > nj holds

τ({|AN(bkj
)− xj| > 2−j}) < 2−j. (3.2.15)

This is possible since An(bkj
) converges stochastically to xj.

Then for j, i ∈ N and n > ni+j

τ({|xj − xj+i| > 3 · 2−j}) =τ({|(xj − An(bkj
))+

(An(bkj
)− An(bkj+i

))+(An(bkj+i
)− xj+i)| > 3 · 2−j}) ≤

τ({|An(bkj
)− xj| > 2−j})+τ({|An(bkj

)− An(bkj+i
)| > 2−j})+

τ({|An(bkj+i
)− xj+i| >2−(j+i)}) ≤ 3 · 2−j.

(3.2.16)

Here the first inequality follows from 3.2.1.

Denote the stochastic limit of {xj}∞j=1 by x0. If necessary by taking a subsequence

of {xj} and reindexing, we suppose that

τ({|xj − x0| > 2−j}) ≤ 2−j. (3.2.17)

Sequence {An(b)}∞n=1 converges to x0 stochastically. Indeed, for n > nj the following
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inequality holds

τ({|An(b)− x0| > 3 · 2−j}) =τ({|(An(b)− An(bkj
))+

(An(bkj
)− xj) + (xj − x0)| > 3 · 2−j}) ≤τ({|An(b)− An(bkj

)| > 2−j})+

τ({|An(bkj
)− xj| > 2−j})+τ({|xj − x0| > 2−j}) ≤ 3 · 2−j.

(3.2.18)

Here the first inequality follows from 3.2.1, and the second inequality follows by noting

that the first part follows from 3.2.14, the second part follows from 3.2.15 and choice

of n, and the third part follows from 3.2.17.

Part i) is established.

Part ii) Suppose that for every b ∈ B and λ ∈ R+ holds

sup
n
τ({|An(b)| > λ}) λ→∞−→ 0. (3.2.19)

For fixed ε > 0 and λ ∈ N define Bλ = {b ∈ B| supn τ({|An(b)| > λ}) ≤ ε}. Then

from 3.2.19 it follows that

B =
⋃
λ∈N

Bλ (3.2.20)

Let Bλ,k be a set defined as {b ∈ B| supn≥k τ({|An(b)| > λ}) ≤ ε}. Then

Bλ =
⋂
k∈N

Bλ,k (3.2.21)

Sets Bλ,k are closed. Indeed, let Bλ,k ⊃ {bj}∞j=1 converge to b ∈ B. Then

τ({|An(b)| > λ+ γ}) =τ({|An(bj)− (An(bj)− An(b))| > λ+ γ}) ≤

τ({|An(bj)| > λ})+τ({|(An(bj)− An(b))| > γ}) ≤ ε+ εj

(3.2.22)

Here the first inequality follows from 3.2.1, the first estimate follows from the defini-

tion of Bλ,k. From continuity of the An in measure and the convergence of bj to b, it

follows that εj can be chosen so that it decreases to 0 as j increases. Free choice of j

implies that τ({|An(b)| > λ+ γ}) ≤ ε.
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Since λt(x) is continuous from the right (3.1.2), then

τ({|An(b)| > λ}) = lim
m→∞

τ({|An(b)| > λ+ γm}) ≤ ε, (3.2.23)

where γm
m→∞−→ 0. Hence, b ∈ Bλ,k, or Bλ,k is closed. Set Bλ is closed as an intersection

of closed sets (3.2.21).

It follows from the Baire category principle that there exists λ such that set Bλ

has non empty interior. Let B(b0, r) = {b ∈ B|‖b− b0‖ ≤ r} be contained in the Bλ.

Then

τ({|An(b)| > λ}) ≤ ε for every b ∈ B(b0, r). (3.2.24)

Moreover, for b = b0 − r · c ∈ B(b0, r) with c ∈ B, ‖c‖ ≤ 1, holds

τ({|An(r · c)| > 2 · λ}) = τ({|An(r · c−b0) + An(b0)| > 2 · λ}) ≤

τ({|An(r · c− b0)| > λ})+τ({|An(b0)| > λ}) ≤ 2 · ε.
(3.2.25)

Let γ ≥ 2 · λ/r. From 3.2.25 it follows that τ({|An(c)| > γ}) ≤ 2 · ε, for every

c ∈ B, ‖c‖ ≤ 1.

Let C(γ) = supc∈B, ‖c‖≤1 τ({|An(c)| > γ}) ≤ 2 · ε. Free choice of ε implies that

lim
γ→∞

C(γ) = 0, (3.2.26)

hence 3.2.9 is valid.

For the application of theorem 3.2.3 it is convenient to combine both parts i) and

ii).

Theorem 3.2.4. Let (B, ‖.‖) be a Banach space. Let An be a set of continuous in

measure linear maps from B into S(M), let λ ∈ R+, and for each b ∈ B holds

lim
λ→∞

sup
n∈N

τ({|An(b)| > λ}) = 0. (3.2.27)

Then subset B̃ of B where An(b) converges in measure (stochastically) is closed in B.
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Proof. Follows immediately from applying consecutively Theorem 3.2.3 part ii) then

part i).

Let e be a projection in M , let Me be von Neumann algebra consisting of operators

of form exe, x ∈ M . If τ is a semifinite normal faithful trace on M then τe =

τ |Me is a semifinite (possibly finite) faithful normal trace on Me. Indeed, tracial

property, semifiniteness, normalness and faithfulness of τe follows directly from similar

properties of τ . Space S(Me, τe) is isomorphic to the S(M, τ)e since both these spaces

are closures of the (Mτ−finitesupport)e = (Me)τe−finitesupport.

Proposition 3.2.5. Let Bn be a sequence of continuous in measure operators on

S(M, τ). Let ei ∈ P (M), i = 1, 2, I = e1 + e2 be projections in M . Suppose that

relation ei(Bn(x)) = Bn(xei
) = (Bn(x))ei holds for every n ∈ N and x ∈ S(M, τ), or,

in other words, ei commutes with Bn. Suppose also following relations hold

lim
λ→∞

sup
n∈N

τ({|Bn(xei
)| > λ}) = 0, (3.2.28)

for i = 1, 2 and every x ∈ S(M, τ). Then the following equality is valid:

lim
λ→∞

sup
n∈N

τ({|Bn(x)| > λ}) = 0. (3.2.29)

Proof. The following relations are valid:

τ({|Bn(xei
)| > λ}) = τ(ei{|Bn(x)| > λ}). (3.2.30)

In order to show inequality 3.2.30, we establish equality {|Ye| > λ} e = {|Y | > λ} e

for Y ∈ S(M, τ) and projection e ∈ M satisfying equality Ye = eY e = Y e. Indeed,

Ye = eY e = Y e implies equality Y(I−e) = (I − e)Y (I − e) = Y (I − e). Let H =

H(M, τ(., .)) be a standard representation of algebra M based on fsn trace τ (see
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for example Takesaki, [65], chapter V, Theorem 2.22). Since Y is self-adjoint, then

operators (iI±Y ) are reversible, and (iI±Y )D(Y ) = H, (see for example Reed, Simon

[57], Theorem 8.3), here D(Y ) is a domain of Y . Since Ye = Y e and Y(I−e) = Y (I−e),

then (iI± Y )eD(Y ) = eH, or ((iI± Y )|eH)−1 = ((ie± Ye)|−1
eHe = (ie± Ye)

−1e.

For every polynomial P (q, s) holds following equality:

P ((iI + Y )−1, (iI− Y )−1)e = P ((ie+ Ye)
−1e, (ie− Ye)

−1e).

By Stone-Weierstrass theorem (see for example Reed, Simon [57], Theorem 8.20)

polynomials without constant part of (r± i)−1 are dense in the C∞(R) - algebra of all

continuous complex valued functions on R vanishing on infinity. Hence all polynomial

of (r± i)−1 are dense in the algebra of all continuous complex valued functions on R

having the same limit on ± infinity.

Hence for any continuous function f on R having the same limit on ± infinity the

following equality holds

f(Y )e = f(Ye)e.

For the case when f is a Borel function see for example Corollary 5.6.31 of Kadison

and Ringrose, Vol 1 [41]. We gave the proof of the above equality for the sake of

completeness.

Define for λ > 0 and n ≥ 2λ−1 a sequence of continuous functions {fn} as

fn(r) =


1, for |r| > λ;

0, for |r| < λ− 1/n;

linear, for λ− 1/n ≤ |r| ≤ λ.

Note that sequence {fn} converges pointwise to function χ|r|>λ, functions fn are

continuous, and they have the same limit on ± infinity and are uniformly bounded.
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By [57], Theorem 8.5 (d),

{|Ye| > λ} e = so− limfn(Ye)e = so− limfn(Y )e = {|Y | > λ} e,

here so− lim means limit in strong topology on M ⊂ B(H).

Condition λ > 0 implies that Ker(e) ⊂ Ker({|Ye| > λ}), hence {|Ye| > λ} =

{|Ye| > λ} e, here by Ker(Q) we denote null set (kernel) of linear operator Q ∈ B(H).

That means that equality {|Ye| > λ} = {|Y | > λ} e is established. Equality 3.2.30

follows from applying trace τ to both parts of the equality {|Ye| > λ} = {|Y | > λ} e

for Y = Bn(x)

Statement 3.2.29 follows now from the fact that (it follows from Bn commuting

with ei and 3.2.1)

τ({|Bn(x)| > λ1 + λ2}) =τ({|(e1 + e2)Bn(x)(e1 + e2)| > λ1 + λ2}) =

τ({|(e1Bn(x)e1 + e2Bn(x)e2| > λ1 + λ2}) ≤

τ({|(Bn(xe1)| > λ1}) + τ({|Bn(xe2)| > λ2}).

(3.2.31)

Remark 3.2.1. We are going to use 3.2.27 in the next section when dealing with

Stochastic Ergodic Theorem, since under the conditions of Stochastic Ergodic Theo-

rem estimate 3.2.27 takes place.

3.3 Stochastic ergodic theorems

In this section we establish stochastic convergence of the bounded Besicovitch se-

quences , and show stochastic ergodic theorems for uniform subsequences.
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In this section we use following assumptions: M is a von Neumann algebra with

faithful normal tracial state τ , and α is an ∗-automorphism of algebra M . Denote by

An(x) = 1
n

∑n−1
l=0 α

l(x), for x ∈ M . Define α′ as a linear map on L1(M, τ) satisfying

τ(x ·α(y)) = τ(α′(x)y) for x ∈ L1(M, τ), y ∈M , and A′
n(x) = 1

n

∑n−1
l=0 α

′l(x), for x ∈

L1(M, τ).

Let us recall some definitions from Grabarnik and Katz [30] and Chilin, Litvinov

and Skalski [13].

Definition 3.3.1. A positive operator h ∈M+ is called weakly wandering if

‖An(h)‖∞
n→∞−→ 0 (3.3.1)

The following definition is due to Ryll-Nardzewski [59].

Definition 3.3.2. Let C1 denote the unit circle in C. A trigonometric polynomial

is a map Pk(n) : N 7→ C, where Pk(n) =
∑k−1

j=0 bj · λn
j for {λj}k−1

j=0 ⊂ C1.

Bounded Besicovitch sequences are bounded sequences from the l1-average closure

of the trigonometric polynomials.

More precisely,

Definition 3.3.3. A sequence βn of complex numbers is called a Bounded Besi-

covitch sequence (BB-sequence) if

(i) |βn| ≤ C <∞ for every n ∈ N and

(ii) For every ε > 0, there exists a trigonometric polynomial Pk such that

lim sup
n

1

n

n−1∑
j=1

|βj − Pk(j)| < ε (3.3.2)
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Let µ be the normalized Lebesgue measure (Radon measure) on C1. Let M̃ be the

von Neumann algebra of all essentially bounded ultra-weakly measurable functions

f : (C1, µ) → M . Algebra M̃ is isomorphic to L∞(C1, µ)
⊗
M -which is a W ∗ tensor

product of L∞(C1, µ) and M , M̃ is a dual to the space L1(C1, µ)
⊗
M∗ ( the definition

of W ∗ tensor product and form of the predual space of the W ∗ tensor product could

be found for example in Takesaki, [65], Theorem IV.7.17). The space L1(C1, µ)
⊗
M∗

may be considered as a set of L1 functions on (C1, µ) with values in M∗. Algebra M̃

has a natural trace τ̃(f) =
∫

C1
τ(f(z))dµ(z), and M̃∗ is isomorphic to L1(M̃, τ̃).

Let σ be an automorphism of (C1, µ) as a Lebesgue space with measure. We define

automorphism α
⊗

σ of (M̃, τ̃) as a closure of the linear extension of automorphism

acting on (M̃, τ̃) 3 x(z) as α
⊗

σ(x(z)) = α(x(σ(z))).

Example 3.3.1. An example of such an automorphism is α̃λ(x(z)) = α(x(λ · z))), for

λ ∈ C1.

In this case

An(x) =
1

n

n−1∑
l=1

α̃λ
l(x) =

1

n

n−1∑
l=1

αl(x(λl · z)). (3.3.3)

In particularly, if x(z) ≡ z · x for x ∈M then

An(x · z) = z · 1

n

n−1∑
l=1

λl · αl(x). (3.3.4)

The following lemma connects stochastic convergence in L1(M̃, τ̃) with pointwise

convergence on C1 and stochastic convergence in M (cmp. with [13]).

Lemma 3.3.2. i) If L1(M̃, τ̃) 3 xn
n→∞−→ x0 ∈ L1(M̃, τ̃) b.a.u. , then xn(z)

n→∞−→

x0(z) stochastically for almost every z ∈ C1

ii) Suppose that h is a weakly wandering operator with support supp(h) = I for

sequence An. Then A′
n(x) converges to 0 stochastically for every x ∈ L1(M, τ).
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iii) Let algebra N = (M, τ)⊗L∞(X,µ), (here X is a separable Hausdorff compact

set, and µ is Lebesgue measure), α is an automorphism of M , and σ is an auto-

morphism of L∞(X,µ). Then α
⊗

σ is an automorphism of N . Suppose that h

is a weakly wandering operator with support supp(h) = I for sequence An corre-

sponding to automorphism α
⊗

σ. Then A′
n(x(z)) converges to 0 stochastically

for almost every z ∈ C1.

Proof. Part i) follows from [13], Lemma 4.1 which states that under the hypothe-

sis of part i) exists b.a.u. convergence of xn(z) to x0(z) for almost every z in C1,

(hence doubleside stochastic convergence), and the fact that double side stochastic

convergence is equivalent to (one sided) stochastic convergence (see [13], Theorem

2.2).

Part ii) We suppose that x ∈ L1(M, τ)+ and A′
n(x) is a sequence satisfying

τ(A′
n(x)h) → 0 for n→∞. (3.3.5)

The following inequality is valid:

ts · τ({A′
n(x) > t} ∧ {h > s}) ≤ τ(A′

n(x)h). (3.3.6)

Indeed, for projections e1, e2 ∈ P (M), we have e1e2e1 ≥ e1 ∧ e2. To see this, note

that since e1 ∧ e2 commutes with e1, e2, we have (I − e1 ∧ e2)e1e2e1(e1 ∧ e2) = 0,

and, hence e1e2e1 = (I − e1 ∧ e2)e1e2e1(I − e1 ∧ e2)+ (e1 ∧ e2)e1e2e1(e1 ∧ e2) =

(I− e1 ∧ e2)e1e2e1(I− e1 ∧ e2) + (e1 ∧ e2).

Then,

ts · τ({A′
n(x) > t} ∧ {h > s}) ≤tτ({A′

n(x) > t}s{h > s}{A′
n(x) > t}) ≤

tτ({A′
n(x) > t}h{A′

n(x) > t}) =tτ({A′
n(x) > t}h) ≤ τ(A′

n(x)h).

(3.3.7)
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Hence, 3.3.6 is valid.

Furthermore,

τ({A′
n(x) > t}) ≤ 1

ts
τ(A′

n(x)h) + τ(I− {h > s}). (3.3.8)

The latter inequality follows from 3.3.6, and the fact that τ(e1) ≤ τ(e1∧e2)+τ(I−e2).

Indeed,

τ(e1 − e1 ∧ e2) = τ((I− e1 ∧ e2)e1(I− e1 ∧ e2)) =τ(e1(I− e1 ∧ e2)e1) ≤

τ(e1(I− e2)e1) =τ(e1(I− e2)) ≤ τ(I− e2).

(3.3.9)

Hence 3.3.8 is valid.

Note that inequality 3.3.8 with the fact that τ(A′
n(x)h)

n→∞−→ 0 implies that

supn∈N τ({|An(b)| > λ ‖b‖}) ≤ C(λ). Indeed, sequence {τ(A′
n(x)h)}∞n=1 is bounded

by the constant C0 as a converging sequence. Choose a monotonically decreasing

sequence of {sj}∞j=1 ⊂ R+ such that τ(I− {h > sj}) < 2−j, and tj = 2js−1
j . Then

τ({A′
n(x) > tj}) ≤

1

tjsj

C0 + 2−j = (C0 + 1)2−j. (3.3.10)

Hence the condition of theorem 3.2.4 is satisfied. For the dense subset in L1(M, τ)+

of view x ∈ M+ ∩ L1(M, τ) we have (consider only x with ‖x‖∞ ≤ 1) τ(A′
n(x)h) ≤

τ(A′
n(I)h). Convergence τ(A′

n(I)h) → 0 implies that we can choose sequences {sj} →

0 and {tj} → 0 in 3.3.8 with τ({A′
n(x) > tj}) → 0. Hence, on a dense subset

of L1(M, τ) we have stochastic convergence. From theorem 3.2.4 follows stochastic

convergence of the A′
n(x).

Note that condition ii) does not imply convergence in L1(M, τ).

Part iii). The idea of the proof is similar to one of the proof for ii). We provide

only necessary modifications. Let E1 be a conditional expectation with respect to
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trace τ ⊗ µ of (M, τ)⊗L∞(X,µ) onto (M, τ)⊗Const(X,µ), and E2 be a conditional

expectation with respect to trace τ ⊗ µ of (M, τ)⊗L∞(X,µ) onto C · I⊗L∞(X,µ),

(the definition of conditional expectation with respect to trace τ ⊗µ and its existence

could be found in [65]). Due to the form of the α
⊗

σ, both Ej’s commute with An,

for j = 1, 2.

Since

‖An(h)‖∞ ≥ ‖E1An(h)‖∞ = ‖An(E1h)‖∞, (3.3.11)

and supp(h) ≤ supp(E1h) is valid, it follows that supp(E1h) = I. Indeed, x ≥ 0, x 6= 0

implies τ(E1x) = τ(x) > 0. Hence 0 < τ((E1a)h) = τ(a(E1h)) and supp(E1h) = I

for every a ∈M .

Hence E1(h) is a weakly wandering operator.

For positive x(z) ∈ L1(M, τ)⊗L1(X,µ) holds

‖x‖1 =

∫
X

‖x(z)‖1 · dµ(z), (3.3.12)

hence ‖x(z)‖1 is an L1(X,µ) function. Applying classical Hopf inequality (see for

example [44], Theorem 2.1, p. 8) we get

µ(sup
n
{‖A′

n(x)(z)‖1 > λ}) ≤ Const

λ

∫
X

‖x(z)‖1 · dµ(z), (3.3.13)

or, outside of a set X0 ⊂ X of arbitrary small measure the value of ‖A′
n(x)(z)‖1 is

uniformly bounded. Proceeding like in the part ii) applied for every z ∈ X0, we get

stochastic convergence for every z ∈ X0.

Theorem 3.3.3 (Neveu Decomposition for the special case of tensor product of

von Neumann algebras). Let algebra N = (M, τ)⊗L∞(X,µ), (here X is a Hausdorff

separable compact set, and µ is Lebesgue measure), α is an automorphism of M ,
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and σ is an automorphism of L∞(X,µ). Then α̃ = α⊗ σ is an automorphism of N .

Suppose that in addition automorphism σ is ergodic. Then there exists an α̃ invariant

projection in N of view e1 = e11 ⊗ I, e2 = I − e1 with e1(z) = eM for almost every

z ∈ X such that

i) There exists a normal state ρ on N with supp(ρ) = e1 and for almost each

z ∈ X, ρ(z) is invariant with respect to automorphism α′;

ii) There exists a weakly wandering operator h ∈ N with supp(h) = e2 and for

almost each z ∈ X, h(z) is a weakly wandering operator in M .

Proof. Corollary 1.1 of [30] implies existence of a projection ẽ1 in N such that i) there

exists α̃′ invariant normal state ρ with support supp(ρ) = ẽ1 and ii) there exists a

weakly wandering operator h ∈ N with support I − ẽ1. Our goal is to show that

similar statements are valid for almost every z ∈ X.

Since σ is ergodic, then for every x ∈ M ⊗ Const(X,µ) (constant function on X

with values in M) holds

ρ(z)(x(z)) = (α̃′ρ(z))(x(z)) = ρ(z)(α(x(σ(z)))) =

ρ(z)(α(x(z))) = (α′(ρ(z)))(x(z)), (3.3.14)

or ρ(z) is α′ invariant. Suppose that function z → ρ(z) is not constant or z → ρ(z) is

such that there exists real r0 ∈ R+ and x(z) ≡ x0 ∈M+ with µ({z ∈ X|ρ(z)(x(z)) ≤

r0}) > 0 and µ({z ∈ X|ρ(z)(x(z)) < r0}) > 0. Since σ is ergodic, there exists n ∈ N

such that

µ(σ−n({z ∈ X|ρ(z)(x(z)) ≤ r0}) ∩ {z ∈ X|ρ(z)(x(z)) < r0}) > 0. (3.3.15)
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Hence,

ρ(z)(x(z)) = (α̃
′nρ(z))(x(z)) = (α′)n(ρ(z))(x(σn(z))) =

ρ(z)(x(σn(z))) = ρ(σ−nz)(x((z))), (3.3.16)

or r0 ≥ ρ(z)(x0) = ρ(σ−nz)(x0) < r0. Contradiction shows that function z → ρ(z) is

constant.

This implies that supp(ρ) = supp(ρ(z)) = ẽ1(z) is constant.

Part ii) follows directly arguments of Proof 3.3.2 iii) (recall that existence of the

weakly wandering operator h follows from Corollary 1.1 of [30]).

Theorem 3.3.4. Let algebra N = (M, τ)⊗L∞(X,µ), (here X is a separable Hausdorf

compact set, and µ is normalized Lebesgue measure), α is an automorphism of M ,

and σ is an automorphism of L∞(X,µ). Then α̃ = α⊗ σ is an automorphism of N .

Suppose that in addition automorphism σ is ergodic. Then for almost every z ∈ X

the averages A′
n(x(z)) converge stochastically.

Proof. Proof of the theorem follows directly from 3.3.3 and 3.3.2 which applied to

the part of partition where there exists a weakly wandering operator, and from the

regular individual ergodic theorem [70] applied to the part where an invariant normal

state exists, and Proposition 3.2.5.

Now we are in a position to prove stochastic convergence of the bounded Besicov-

itch sequences.

Theorem 3.3.5 (Stochastic Ergodic Theorem for bounded Besicovitch sequences).

Let {βj}∞j=1 be a bounded Besicovitch sequence. Let M be a von Neumann algebra
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with finite faithful normal tracial state τ . Let α be an automorphism of M . Then the

sequence

Ãn(x) =
1

n

n−1∑
j=0

βjα
′j(x)

converges stochastically for x ∈ L1(M, τ).

Proof. The statement of the theorem is valid if bounded Besicovitch sequence {βj}∞j=1

is a trigonometric polynomial Pk(j).

Indeed, choosing α̃ as in example 3.3.1 we get from theorem 3.2.4 and the fact that

irrational rotation on the C1 is ergodic (Equidistribution Kronecker-Weyl Theorem,

see for example [38] p. 146) that

An(x · z) = z · 1

n

n−1∑
l=1

λ
′l · αl(x), (3.3.17)

hence

1

n

n−1∑
l=1

λl · α′l(x)

converges stochastically for irrational λ.

For the rational λ convergence follows from the fact that it is a finite combination

of averages of the α
′m, where m is denominator.

Taking linear combinations of terms as in 3.3.17 implies the statement for trigono-

metric polynomials.

Statement of the theorem is valid for the x ∈ M ∩ S(M). Indeed, using approx-

imation of the BB sequence by trigonometric polynomials as in 3.3.2 one gets for

An(k, x) = 1
n

∑n−1
l=1 Pk(l) · α′l(x)

‖Ãn(x)− An(k, x)‖∞ ≤ 1

n
(
n−1∑
l=0

|βl − Pk(l)|) · ‖x‖∞ (3.3.18)

and hence, stochastic convergence.
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Note also that for every x ∈ L1(M, τ)

‖Ãn(x)− An(k, x)‖1 ≤
1

n
(
n−1∑
l=0

|βl − Pk(l)|) · ‖x‖1. (3.3.19)

Hence by remark 3.2.1 averages Ãn(x) are uniformly bounded in the sense of 3.2.9.

Result of the theorem follows from the Stochastic Banach Principle, Theorem 3.2.4

and density of M ∩ S(M) in L1(M, τ).

The following theorem is implied by the Stochastic Ergodic Theorem for bounded

Besicovitch sequences. (cmp. [46])

For the following definitions see, for example, [44], p. 260.

Let σ be a homeomorphism of a compact metric space X with metric % such that

all powers of σl are equicontinous. Assume also that there exists z ∈ X with dense

orbit σl(z) in X. Then there exists a unique (hence ergodic) σ invariant measure ν

on the σ algebra of Borel sets B. Each non-empty open set has a positive ν measure.

A sequence uj is called uniform if there exists such a dynamical system (X,B, ν, σ)

and a set Y ∈ B with ν(∂Y ) = 0 and ν(Y ) > 0 and point y ∈ X with uj = jth entry

time of orbit of y into Y .

Theorem 3.3.6. Let M, τ, α be as in previous theorem, {uj}j≥0 be a uniform se-

quence. Then the averages

1

n

n−1∑
j=0

α
′ujx

converge stochastically for x ∈ L1(M, τ).

Proof. Follows from the previous theorem and the fact (see [59]) that any uniform

sequence is a bounded Besicovitch sequence.
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Acad. Sci. Paris Sér. A-B, 268 (1969), pp. A1020–A1023.

[34] Hanche-Olsen, H.; Størmer, E., Jordan operator algebras. (English), Mono-

graphs and Studies in Mathematics, 21. Boston - London - Melbourne: Pitman

Advanced Publishing Program. VIII, 1984, 183 pp.

[35] Hajian, A. and Kakutani, S., Weakly wandering sets and invariant measures,

Transactions of the American Mathematical Society, 110 (1964), pp. 131-151.

[36] Jajte, R., Strong limit theorem in non-commutative probability, Lecture Notes

in Mathematics, 1110, Spring-Verlag, Berlin, 1985, pp. 162.



77

[37] Iochum, B., Non-associative Lp-spaces. (English), Pac. J. Math., 122, 1986,

pp. 417-433.

[38] Katok, A.; Hasselblatt B. Introduction to the Modern Ergodic Theory of

Dynamical Systems Cambridge, 1995.

[39] Kakutani, S., Random ergodic theorems and Markoff processes with a sta-

ble distribution, Proceedings of the Second Berkeley Symposium on Mathemati-

cal Statistics and Probability, 1950, pp. 247–261. University of California Press,

Berkeley and Los Angeles, 1951.

[40] Katz, A.A., On the weak convergence of operator iterations in von Neumann

algebras, Vladikavkaz Math. J.5(3)(2003), pp. 39-45.

[41] Kadison, R V.; Ringrose, J. R. Fundamentals of the Theory of Operator

Algebras, volume I Elementary Theory of Pure and Applied Mathematics. Aca-

demic Press, New York, London, 1983.

[42] Kingman, J.F.C., Subadditive ergodic theory, Annals of Probability, 1 (1973),

pp. 883–909.
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