Heuristics for Resolution-Based Set-Theoretic Proofs

J A van der Poll and W A Labuschagne *
*Department of Computer Science and Information Systems, University of South Africa, P.O. Boz 392
Pretoria, 0003 email: {vdpolja,labuswa} @Qalpha.unisa.ac.za

Abstract

A formal specification language like Z permits the specifier to construct proofs which corroborate the aptness of the specifica-

tion. This process may be facilitated by establishing a partnership between the specifier and a suitable automated reasoner.

However, Z specifications are essentially set-theoretic and set-theoretic proofs pose demanding challenges to automated

reasoners. Taking the OTTER theorem-prover to be representative of resolution-based automated reasoners, we propose a

number of heuristics intended to cut down the search space for proofs involving typical set-theoretic structures.
Keywords: heuristics, problem frames, resolution, set theory, theorem-proving, Z, ZF

Computing Review Categories: D.2./, F.8.1, F.}.1, 1.2.3

1 Introduction

The use of formal methods in software construction
ought no longer to be controversial. Among the ben-
efits to be gained by using a formal specification lan-
guage like Z (see e.g. [9], [16], and [20]) is that the
specifier can prove things about the specification. The
process of constructing proofs can aid in the under-
standing of the system and may reveal hidden assump-
tions, as pointed out in [22] by Woodcock and Davies:

A specification without proofs is untested: it may be
inconsistent; it may describe properties that were not
intended, or omit those that were; it may make inap-
propriate assumptions. The practice of proof makes
for better specifications.

As is well known, the huge cost and inconvenience
of detecting and correcting errors only after the sys-
tem has been released [7], suggests that it is worth
the effort to identify and correct errors at an early
stage (e.g. the specification phase). However, the
readiness with which the information technology in-
dustry would accept such a methodology is likely to
depend on the availability of environments that ease
the burden on the specifier. The more sophisticated
the environment (and thus the greater its contribution
to the partnership), the more natural becomes the in-
clusion of an automated reasoning algorithm as one
component. The tasks to be performed by such an
algorithm are non-trivial, as may be seen by consider-
ing the proof obligations that arise from an illustrative
application of a typical formalism such as Z.

Basically, Z specifications are set-theoretic spec-
ifications. The Z specification languages are based
on strongly typed fragments of ZF set theory [6] ex-
pressed in suitable first-order languages augmented by
schema notation. The schema notation arose, accord-
ing to Hoare [11], in order to separate visually the
formal parts of a specification from the informal docu-

mentation around them. A schema is divided into two
parts: a declaration part in which the variables to be
used in the schema are declared, and a predicate part
which constrains the values of the variables. Schemas
may be combined, if desired, using the schema calcu-
lus (e.g. [20]).

As an example of a small system to be specified
in Z, consider the following [16]:

A government proposes to introduce a national iden-
tity scheme for football fans. Each fan will be allocated
a single, unique identity code. The system must keep
track of who has been allocated which identity code. It
must also keep a list of the identity codes of trouble-
makers who have been banned from attending matches.

The specification involves two basic types: PERSON,
which is some suitable set-theoretic representation of
the collection of relevant people, and ID, which is a
set of identity codes devised in a manner ensuring ad-
equacy of quantity without gross superfluity.

An abstract state of the system is given by the
schema Fid below:

_ Fid
members : ID - PERSON
banned : P(ID)

banned C dom(members)

The schema above conveys the following information:
e the variable members is a partial injective function
from ID to PERSON.
e banned is a set of ID numbers.
e the set banned is further constrained to be a subset

of the registered members.

Next we can define an operation to add a new member:

— AddMember
members, members' : ID - PERSON
banned, banned' : P(ID)
applicant? : PERSON
id! : ID

applicant? ¢ ran(members)

id! ¢ dom(members)

members’ = members U { (id!, applicant?) }
banned' = banned

The schema AddMember above conveys the following
information:

e The input is the applicant? applying for member-
ship.

e The system must generate the identity code (i.e.
id!).

e The applicant? must not already be a member.

e The identity code must not be in use already.

e The function members is updated with the new
information.

e The set banned is not changed.

A number of proof obligations arise from the definition
of AddMember above and we list some of them below:

e We need to show that the state invariant is pre-
served, i.e. banned’ C dom(members') (trivial in
this case).

e We need to prove that members’ is indeed a partial
injective function.

e We need to show that a banned member cannot
apply and be enrolled with another identity code.
Therefore, we need to prove that:

(Vy)(V2)((y, z) € members' Ay € banned
— z # applicant?)

e Normally one also needs to show that an opera-
tion is functional (i.e. given the same input, it
produces the same consistent output every time).
In the case of AddMember however, we have to
qualify this claim if we think about it in more
procedural terms. The reason is that the id! is
generated (presumably in a random fashion) by
the system, and any execution of AddMember on
the input applicant?, followed by a deletion of the
same member, followed again by an execution of
AddMember on the same input, applicant? could
very well result in the system assigning different
identity numbers during the first and second exe-
cution of AddMempber.

If we insist like in the formula below

(((m,), applicant?, id!), (m',b")) € AddMember A

(((m, b), applicant?, id!), (m",b")) € AddMember
(' = m") A = B7)

that the two identity codes must be the same, then
of course the claim holds.

From the Football example above it is evident that
quite a number of set-theoretic constructs and opera-
tions are involved in the specification. This is gener-
ally true for Z specifications (see e.g. [9]).

Set-theoretic proofs pose demanding challenges to
automated reasoning programs (see e.g. [2], [17], and
[23]), since unlike number theory or group theory or
applications to real systems such as power stations,
the denotations of terms in the context of set theory
are strongly hierarchical: one object (perhaps at a
very fine level of granularity) is a member of another
(coarser) object, which in turn may be a member of
a higher-level (even coarser) object, and so on. The
possibility of moving between levels is a provocation to
literally endless irrelevant activity; intelligence would
be realised by principles that limit the movement up
or down to productive changes of granularity.

For example, in proving that
ACB - P(4)CP(B) 1)

the movement from the level of elements of A up to
the level of elements of P(A) should not be iterated to
the level of elements of P(P(A)). Humans understand
this intuitively and semantically - the challenge is to
enunciate syntactic constraining principles.

Therefore, the resolution process can generate a
large number of clauses, many of which are irrelevant
to the actual proof. As such, we need a set of heu-
ristics to counteract this combinatorial explosion (see
e.g. the discussion on page 107 of [8]).

In this paper we describe a preliminary set of heu-
ristics for finding short proofs of properties that in-
volve typical set-theoretic constructs (e.g. (1) above).

Our heuristics are intended to facilitate the use of
automated reasoning algorithms based on resolution.
The relevant resolution principles are described be-
low. The form in which results are presented derives
from Jackson’s work on problem frames in [12]. These
frames are linked to the syntactic structure of the
set-theoretic definitions appearing in the proof obli-
gations.

2 Resolution inferences and strategies

The resolution principle was developed by John Alan
Robinson in the early 1960’s (see e.g. [18] and [19])
and is closely related to the proof technique of reductio
ad absurdum (i.e. proof by contradiction).
Resolution works at the level of clauses and the
essential idea is to determine whether a given set of
clauses (say S) contains the empty clause (which we
represent by O below). If S contains O then S is un-
satisfiable. If S does not contain OJ, then the resolu-
tion mechanism attempts to derive (I using the clauses
of §. The resolution principle is sound and refutation

complete in the sense that it can always generate the
empty clause from an unsatisfiable set of clauses (see
e.g. [3]).

In practice, if a formula G is believed to be prov-
able from a set of formulae, say F', then the procedure
is to add the negation of the potential theorem (i.e.
—G@G) to F and attempt to derive O (i.e. the empty
clause). We present an example of this process below:

2.1 Binary resolution
Consider the example database of facts and deductive
axioms in Figure I from [5].

Parent(Adam, Cain)
Parent(Cain, Enoch)
(Vz)(Yy)(Parent(x,y) — Ancestor(z,y))
(Vz)(Vy)(V2)
((Parent(z,y) N Ancestor(y, z))
— Ancestor(z, z)) (5)

~ ~
= W N
~—

Figure 1. Initial database of rules

Suppose we want to prove that Adam is an ancestor
of Enoch, i.e.

Ancestor(Adam, Enoch) (6)

The first step is to rewrite all formulae in Figure 1
in clausal form. This step produces the clause set in
Figure 2.

Parent(Adam, Cain) (7)
Parent(Cain, Enoch) (8)
—Parent(z,y) V Ancestor(z,y) (9)

—Parent(z,y) V —Ancestor(y, z)
V Ancestor(z, z) (10)

Figure 2. Clausal form of Figure 1

The next step is to negate (6) (i.e. the theorem we
wish to prove), add such negated form to the clause
set (7) to (10) above, and attempt to derive the empty
clause. The negated form of (6) is simply:

— Ancestor(Adam, Enoch) (11)

The final step is to search for a refutation and this is
done by resolving complementary literals in the given
clauses. In general, we need to unify the variables
and constants appearing as arguments of terms. For
example: in generating clause [B1] in Figure 3, we

resolve clause (11) with clause (10). In the process we
replace z with Adam and z with Enoch respectively in
(10). The variable y in (10) is then renamed to z and
this gives us clause [B1] as the answer. The reader is
referred to some good texts, for example [3] or [24]
for a thorough treatment of unification.

An example of a proof of the claim in (6), using
binary resolution, is presented in Figure 3.

[B1] — Parent(Adam,z) V —Ancestor(z, Enoch)

[Resolvent of (11) and (10)]
[B2] — Ancestor(Cain, Enoch)

[Resolvent of [B1] and (7)]
[B3] — Parent(Cain, Enoch)

[Resolvent of [B2] and (9)]
[B4] O

[Resolvent of [B3] and (8)]

Figure 3. A binary resolution proof

The heuristics to be described relate to a subset
of the resolution inference rules and strategies treated
in [24], whose notation we adopt. Note however that
the binary resolution rule which we used in Figure
3, and with which students of logic programming are
familiar tends toward inefficiency, and so the emphasis
in automated theorem-proving is on rules that permit
several clauses to participate simultaneously (e.g. unit
resulting resolution and hyperresolution). In the light
of this we present below further rules of inference with
an indication of the resolution process involved for the
sample clause set in Figure 2.

2.2 Further inference rules
2.2.1 UR-resolution
Unit Resulting (UR) resolution is the process whereby
nunit clauses are simultaneously resolved with a clause
consisting of (n + 1) literals, called the nucleus. The
resolvent is a unit clause, i.e. a clause consisting of one
literal only. The definition of UR-resolution allows for
the resolvent to be either positive or negative.

A UR-resolution proof of (6) using the clause set
in Figure 2 is given in Figure 4.

In the next two sections we discuss hyperresolu-
tion, a generalization of UR-resolution.

2.2.2 Positive hyperresolution

The object of an application of a positive hyperreso-

lution step is to produce a positive clause from a set

of clauses, one of which contains at least one negative

literal, while the remaining are positive clauses.
Formally, positive hyperresolution is that infer-

ence rule that applies to a set of clauses, one of which

[UR1] — Ancestor(Cain, Enoch)
[Resolvent of (7), (10) and (11)]
[UR2] — Parent(Cain, Enoch)
[Resolvent of [UR1] and (9)]
[UR3] O
[Resolvent of [UR2] and (8)]

Figure 4. A UR-resolution proof

must be negative or mixed (called the nucleus), the
remaining (called satellites) must be positive clauses
and their number must be equal to the number of
negative literals in the nucleus. Every negative literal
in the nucleus is resolved with exactly one satellite.
These restrictions ensure that any such resolvent will
be a purely positive clause.

Positive hyperresolution is furthermore refutation
complete for arbitrary unsatisfiable clause sets.

A positive hyperresolution proof of (6) using the
clause set in Figure 2 is given in Figure 5.

[PH1] Ancestor(Cain, Enoch)
[Resolvent of (8) and (9)]
[PH2] Ancestor(Adam, Enoch)
[Resolvent of [PH1], (7) and (10)]
[PH3] O
[Resolvent of [PH2] and (11)]

Figure 5. A positive hyperresolution proof

2.2.3 Negative hyperresolution
Negative hyperresolution is like its positive counter-
part, but the signs of the nucleus and satellites are
reversed, ensuring that all resolvents are purely nega-
tive clauses. Negative hyperresolution is also refuta-
tion complete for any given unsatisfiable set of clauses.
A negative hyperresolution proof of (6) using the
clause set in Figure 2 produces the same refutation as
for binary resolution in Figure 3.

2.2.4 Binary Paramodulation

Paramodulation is an extension of unification that al-
lows one to make equality substitutions directly at the
level of terms in a clause.

2.2.5 Factoring
Factoring is the process of reducing repetition in a
clause by unifying two or more literals in the same

clause.
Example

P(a) is a factor (i.e. a simplification) of the needlessly
repetitive clause P(z) V P(a).

2.3 Strategies
2.3.1 Weighting

By assigning different weights to different symbols, the
theorem-proving algorithm may be guided towards re-
solving lighter clauses before heavier, in an attempt to
generate lighter resolvents that are closer to the empty
clause. The default weight of a clause is the sum of
the number of individual constants, variables, func-
tion symbols, and predicate symbols. Connectives like
| (i.e. or) and — (i.e. not) are not counted.

2.3.2 Set-of-support (sos)

The set-of-support idea basically involves the follow-
ing: The set S of clauses is partitioned by taking a
subset T comprising one or more clauses to be the
sos, and the sos guides the evolution of the reasoning
process by requiring one of the parent clauses of a re-
solvent to come from the sos (i.e. T) and the other
parent from S — T. Resolvents are placed back into
the sos.

Why does this work? If S is an unsatisfiable set
of clauses, and if T is a subset of S such that S — T
is satisfiable, then taking T as the sos preserves the
property of refutation completeness for the resolution
mechanism (but see also below). (Typically, as in logic
programming, T is taken to be the negation of the
desired conclusion.)

So in practice, we normally place the negation of
the theorem to be proven in the section called the sos
and all the other formulae, which we believe will be
needed to find a proof, in the section called the usable
list. The idea is that the proof attempt should start
off by using the negation of the theorem for which
a proof is sought. In the case of OTTER, the main
loop for inferring and processing clauses in search of a
refutation is presented in Section 3 below.

The resolution mechanism, using the sos idea, is
refutation complete using the two inference rules bi-
nary resolution and factoring, but is not refutation
complete using the sos idea in conjunction with hy-
perresolution. We can see this in Figure 3 and Figure
5 respectively.

For example, in Figure 3 it was possible to de-
rive O starting with the negation of the theorem (i.e.
clause (11)), but in Figure 5 we had to start with two
other clauses. Nevertheless, the use of a sos very of-
ten leads to a quick proof, as opposed to no real time
proof at all.

3 The OTTER theorem-prover

In our work we used the OTTER (Organized Tech-
niques for Theorem-proving and Effective Research)
theorem-prover described in [14], [24], and [25]. OT-
TER is a resolution-based theorem-proving program
for first-order logic with equality and includes the in-
ference rules binary resolution, hyperresolution (both
positive and negative versions), UR-resolution, and bi-
nary paramodulation.

OTTER can convert first-order formulae into sets
of clauses, which constitute the input to the resolu-
tion algorithm. Of course, OTTER cannot accept for-
mulae in the highly evolved notation of set theory,
which is the result of introducing dozens of symbols
by meta-level definitions, so the user has to rewrite
set-theoretic formulae in terms of a weaker first-order
language having the relevant relations and functions as
predicate symbols and function symbols in its alpha-
bet. Some other capabilities of OTTER are: forward
and backward subsumption, factoring, and weighting.
OTTER was written and is distributed by William
McCune at the Argonne National Laboratory. OT-
TER is coded in C, is free software, and is portable
to many different kinds of platforms. The version of
OTTER which we used in our work is version 3.0.5,
which was released in February 1998. !

An OTTER program is divided into several sec-
tions, each such section made up of first-order formu-
lae or clauses (an exception is the section containing
the optional demodulators which must be in clausal
form already). The most important sections are the
usable list and the set-of-support (sos) list.

OTTER’s main loop for inferring and processing
clauses in search of a refutation, as presented in [14],
is shown below:

While (sos is not empty and no refutation
has been found)

1. Let given_clause be the ‘lightest clause’

in sos;

2. Move given_clause from sos to the usable

list;

3. Infer and process new clauses using the
inference rules in effect; each new
clause has the given_clause as one of
its parents and members of usable as
its other parents; new clauses that
pass the retention tests are appended
to sos;

End of While loop.

The process above is repeated until a refutation
is found, or the sos becomes empty or the user in-
terrupts the proof attempt. (Note: The reason why
the sos might become empty can be seen by studying

1The latest version of OTTER is available at the world-wide
web address: http://www.mcs.anl.gov/AR/otter/#doc.

the above algorithm. Sometimes none of the clauses
in the sos can resolve with any of those in the usable
list. Subsequently in step 2, each such clause is then
systematically removed from the sos and appended to
the usable list. If this situation prevails with every
execution of the above while loop, then the sos will
eventually become empty.)

In the proofs reported on below, we placed the
hypothesis into the usable list and the negation of the
conclusion into the sos. There is one exception, and
this is the situation described in the sos enlargement
frame (see Section 5.10 below).

In the next section we digress briefly in order to discuss
problem frames.

4 Problem frames

Jackson mentions in [12] the approach taken by the
ancient Greek mathematicians who separated the study
of problems from the related study of solutions and so-
lution methods.

A problem has an architecture given by its prin-
cipal parts and solution task. Polya [15] and Jackson
[12] both discuss the differences between, for instance,
problems to find or construct, such as

given lengths a, b and ¢, construct a triangle
whose sides are of those lengths.

and problems to prove, such as

prove for any sets A and B that, if A C B,

then P(A4) C P(B).
in terms of such an architecture. A ‘problem to prove’
typically involves a sentence of the form if p then g,
having as principal parts the hypothesis (i.e. p) and
the conclusion (i.e. ¢). The solution task is to show
that the conclusion follows from the hypothesis. (All
the problems that we will consider are of the ‘problem
to prove’ type.)

The essence of the problem frame approach is to
concentrate on the architecture of the problem instead
of immediately concentrating on the solution. Having
established the architecture of a problem by deter-
mining the principal parts and solution task, one fits
a problem frame, or template, for which there is use-
ful information, or even a known method of solution,
onto the current problem. The useful information as-
sociated with such a problem frame typically consists
of an appropriate set of heuristics which have been
found generally to facilitate the solution task. (For
example, the heuristics might suggest conditions un-
der which contraposition is a good way to prove if p
then q).

We shall introduce variations on the problem to prove
frame by presenting a number of specialisations in the
context of set-theoretic proofs from [6]. All such spe-
cialisations are partial problem frames, since any num-

ber of such different frames may fit different parts of a
particular OTTER program and any particular frame
might fit only part of such a program. Our problem
frames have the following structure:

e Problem frame name: This is the name or descrip-
tion of the specialisation.

e Principal parts: These are the various logical or
set-theoretic structures which constitute the ar-
chitecture of the problem.

e Example: The set-theoretic example which led to
the definition of this particular frame.

e Heuristic: A list of the heuristic rules that have
been found helpful in problems that fit this par-
ticular frame.

The alert reader will notice that we omitted the solu-
tion task from our structure, but this is merely because
the solution task is always the same: prove that the
negation of the formula in the sos follows from the
formulae in the usable list.

The default inference rules which we use in the proofs
described below are:

set(hyper_res).
set(ur_res).
set(factor).

positive hyperresolution
unit resulting resolution
factoring

two forms of binary
paramodulation

set(para_into).
set(para_from).

There is one exception to these defaults and that is
the occasional use of negative hyperresolution (i.e. us-
ing set(neg_hyper_res) instead of set(hyper_res)), or
the use of binary resolution as described in the infer-
ence rule selection frame below. All other proofs were
found using the default inferences above.

The specialised problem frames are presented next.

5 Specialised problem frames

In analyzing the efficiency of an algorithm one can fol-
low a theoretical approach which involves calculating
space and time complexities [1], or one can follow an
empirical approach. The theoretical approach is per-
fectly suited to algorithms in which, say, it is possible
to predict roughly how often an assignment statement
inside a loop will be executed. However, in the case
of automated reasoning algorithms, inefficiency is pri-
marily caused by thrashing, in other words by the ex-
ploration of the irrelevant consequences of irrelevant
information. The extent of thrashing is difficult to
predict theoretically.

The study of constraint satisfaction problems has
addressed the issue of modifying standard backtrack-
ing algorithms so as to eliminate or at least reduce
thrashing (see [13] and [21]). However, a typical au-
tomated reasoning algorithm offers limited options for

the modification of backtracking by incorporating for-
ward-checking or lookahead procedures, so that the
art of using an automated theorem-proving assistant
is largely a matter of giving it enough information
for its task but not too much (rather like a physician
administering an addictive drug to a patient). This
principle of parsimony is the major intuition under-
lying the heuristics presented below. From the per-
spective of efficiency studies, an empirical approach
based on considering the practical execution times on
a real machine emerges as the most feasible tactic,
satisfactory in particular because the aim is to effect
comparisons between OTTER programs rather than
to assign absolute measures of complexity.

All the proofs reported on below were done on a
Pentium IT with 32MB RAM, running at a clock speed
of 233MHz. The operating system was Linux 2.1.57.

5.1 Exemplification frame

e Principal parts: Formulae which define the con-
tents of sets in set-theoretic list notation.

e FEzample: An example involving contents of sets
for which OTTER fails to find a quick proof in
the absence of the appropriate heuristic is:

P{{1}} = {0, {{1}}}-

We rewrite the above identity in the form if p
then ¢ using a simpler language and making the
relevant constructions explicit:
A={1} AB={{1}} A
C =P(B) A D ={0,{{1}}}
— C=D

Further decomposition is necessary, in order to de-
fine the powerset B. Finally, the formulae con-
stituting the hypothesis are placed in the usable
list and the negation of the desired conclusion is
placed in the sos.

OTTER fails to find a proof within 12 minutes
despite 127000 clauses generated in the process.
However, when we employ the weighting strategy
in order to cut down on the amount of paramod-
ulation among the variables in the proof (which
happens because of the equality literals), then we
find a proof within 0.04 seconds and 119 clauses
generated. This leads to the following heuristic
for this problem frame:

e Heuristic #1: Use the strategy weight(x,n) when-
ever there is equality involved due to the use of
set-theoretic list notation. In the examples we en-
countered we empirically found that a value of n,
where 3 < n < 5 generally suffices. (Note: The
meaning of weight(x,n) is to assign all variables
in the proof a weight of n. This is done to avoid
too many irrelevant paramodulants being gener-
ated.)

5.2 Nested functor frame

It is often natural to use function symbols (i.e. func-
tors) to encode information in terms, for example when
describing an integer as a successor or as a sum. How-
ever, terms built up with the aid of functors are more
complex, potentially leading to difficulties with unifi-
cation.

e Principal parts: Formulae which contain nested
functors, i.e. a function symbol inside the scope
of another function symbol.

e FEzample: Suppose we need to prove that set-theo-
retic symmetric difference is associative:

(A+B)+C=A+(B+0C)?*
We can attempt this proof in either of two ways:
Nested functor approach:

In the OTTER usable list we give the following
general definition of + (predictably called PLUS
below):
(VA)VB)(Vz)(xz € PLUS(A, B) <

(e ANz ¢ B)V(ze BAx ¢ A))
In the set-of-support we place the negation of:
(Vz)(z € PLUS(PLUS(A,B),C) +

z € PLUS(A,PLUS(B, C)))

With this approach it takes OTTER 7 mins 53
secs to find a proof.

Skolem constant approach:
Let us unfold the nested functors:

D=A+BANE=D+CAF=B+CA
G=A+F —> (Vz)(z € E &z € Q)

Now it takes OTTER only 0.17 secs to find a
proof. This leads us to the next heuristic:

e Heuristic #2: Avoid the use of nested functor def-
initions.

5.3 Equality frame

e Principal parts: An equality formula in the set-of-
support.

e Example: An example of an equality which is hard
for OTTER to prove is:

P{0,1} = {0,{0},{1},{0,1}}.

As before, we use a simpler language and make
the relevant constructions explicit:
A={0}AB={1} AC={0,1} A
D =P(C) A E={0,{0},{1},{0,1}}

— D=F
OTTER finds no proof within 30 minutes, even
with the weighting heuristic above included.

2The use of a ‘4’ to denote symmetric difference is standard
set-theoretic notation - see e.g. [6], page 32.

If we however eliminate one level of the indirec-
tion caused by chunking (i.e. caused by moving
from the various elements to a symbol represent-
ing the collection of those elements), and specify
the principal parts of this problem by

A={0} AB={1} AC ={0,1} AD =P(C)
— D= {0) {0}7 {1}) {07 1}}

and the formula D = {0, {0}, {1}, {0,1}} is writ-
ten as
(V)

(ze€D+wz=0Vr=AVz=BVz=2C)
then OTTER finds a proof in 18 mins 3 secs.
This result suggests the following heuristic:

Heuristic #3: Avoid unnecessary levels of element-
hood in the formulae (e.g. by using the elements
of E directly, as above).

The time of 18 mins 3 secs is still far too long. If
we however perform two different proofs, one for
each half of the definition of D above, and in the
two proofs specify the sos as the negation of:

case 1:
(V)
(zeD—z=0Vz=AVz=BVz=2C)

case 2:
(V)
(z=0Vz=AVz=BVz=C—>z€D)

respectively, then in case 1 above OTTER finds
a proof in 1 min 8 secs and in case 2 above
OTTER finds a proof in 2.54 secs. These results
suggest the following heuristic:

Heuristic #4: Perform two separate proofs when-
ever the formula in the sos requires OTTER to
prove the equality of two sets.

5.4 Multivariate functor frame

e Principal parts: Formulae involving or giving rise

to functors that take more than one variable as
argument.

(Remark: Terms involving functors may contain
both constants and variables as arguments. The
more variables occur, the greater the likelihood of
thrashing caused by unification of these variables
with other terms. The fewer the variables and the
more the constants occurring as arguments, the
more limited are the possibilities of unification,
since constants may not be replaced by any other
values. A subtle way in which functors having
multiple variables as arguments may be produced
is Skolemisation. Recall that OTTER transforms
the formulae of our program into clauses, and that
a key step in this transformation involves the elim-
ination of existential quantifiers. If the existential
quantifiers are within the scope of universal quan-

tifiers, the existential variable is replaced not by
a new Skolem constant but by a term constructed
from the universally quantified variables by a new
Skolem functor.)
Ezample: There are two main kinds of example:
examples of functors having arity greater than one
being produced by Skolemisation, and examples
of the programmer using functors that take more
than one variable as arguments, typically because
of indirect definitions.

For an example of the functor problem produced
by Skolemisation, we return to a subset half of a
proof of a previous equality

P{0,1} € {0, {0}, {1},{0,1}}
and consider possible ways in which one can define
D =P(C).
A possible (indirect) definition of D is
Vz)(z € D+ 2 C C)

where the preliminary concept C is first defined
by:

(VA)(V B)
(ACB<« (Vy)(ye A= yeB)) (12)

It takes OTTER 19 mins 42 secs to find a proof
for case 1 above, using this indirect definition of
D.

Suppose we try to reduce the effect of Skolemi-
sation by eliminating one of the universally quan-
tified variables in (12) above, and use the following
definition of C (C is now a constant):

VAMACCe(Vylyed—-ye () (13)

Now it takes OTTER 3 mins 40 secs to find a
proof for case 1 above, using the definition of C
in (13) above.

An examination of the clausal form of (12) above
reveals that as a result of Skolemisation the vari-
able y becomes $f1(z1,22) (i.e. a functor of two
variables), while in (13) y becomes $f1(z1) (i.e.
a functor of only one variable). The use of (13)
instead of (12) therefore limits the number of vari-
able arguments introduced by Skolemisation and
so the possibilities of irrelevant unifications.

Recall however that OTTER previously found a
proof for this same problem in 1 min 8 secs. This

was achieved with the following direct definition of
D:

(Vz)(zeD <+ Vy)lyez—>yeC)) (14)

The variable y in (14) above clausifies into $f1(z1)
(i.e. again a functor of one variable).

Why is there a significant difference in the times
for the two definitions which both Skolemise y as

a function of one variable? One might be tempted
to claim that it is the indirect nature of (13) which
makes it slower than (14). However, if we use the
following half of the definition of C (The search-
guiding frame below explains how to determine
which half of a formula to use.)

VAMACC—-(Vylyed—=ye) (15

then OTTER finds a proof in just 6.44 secs.

In the same way using half of the direct defini-
tion of D in the following way

Vz)(zeD— Vy)lyexz—ye C)) (16)

results in a proof taking 6.45 secs which is basi-
cally the same as for the indirect definition.

Therefore, we notice that it is not the indi-
rection which causes the problems, but the pres-
ence of redundant clauses (which, as a result of
Skolemisation, contain functors). By using (15)
and (16) instead of (13) and (14) respectively, we
eliminate the redundant parts of the formulae (i.e.
the parts giving rise to the functor in each case).
This elimination of functors may be viewed as a
special case of minimising the number of variable
arguments taken by a functor, leading to the fol-
lowing heuristic.

e Heuristic #5: Always attempt to give definitions
of sets in which terms are as simple as possible —
either not involving functors at all, or else involv-
ing functors that take at most one variable as ar-
gument. Not only does this apply to the functors
explicitly appearing in the unclausified formulae,
but also to the functors arising from Skolemisa-
tion. (Note: This heuristic is closely related to
a heuristic concerning the half-definition of a for-
mula, which will be discussed in the search-guiding
frame below.)

5.5 Intermediate structure frame

This frame may be regarded as supplementary to the
previous frame; it focuses on a type of situation in
which multivariate functors tend to be associated with
direct rather than indirect definitions.

e Principal parts: Formulae involving or giving rise
to intermediate structures, the direct definition of
which produces complex functor expressions.

e Ezample : Suppose we need to prove the following
subset relationship:

AxUB)CU{Ax X | X € B}
A possible attempt at unfolding the sophisticated
set-theoretic notation is:
C=UB)AD=AxCA
E={AxX|Xe€B}ANF=(E)
- DCF

This is not yet sufficient; the intermediate struc-
ture E remains to be defined in more useful detail.

If we attempt the following direct definition of £

(Vz)(z € E &
X)X eBA
Vy)V2)(y,z) Ex > y€e ANz €E X)) (17)

then OTTER fails to find a proof. An investiga-
tion of the clausal form of definition (17) above re-
veals that the ordered pair (y, z) (we use the name
ORD for an ordered pair below) clausifies into the
form ORD($f4(z, 22),$f3(z, x2)), which shows us
that each of the simple variables in ORD(y, z)
is transformed into a complex term not only in-
volving a functor of two variables but leading to
functor nesting. This complicates the resolution
process as pointed out in the multivariate functor

frame, in the nested functor frame, and also in
[17].

If, however, we define the set F above as

Vz)(z € E+ 3X)(X €BA

(Vy)(v2)
((y,2) € z & (y,2) € PROD(4, X)))) (18)

where PROD(A, X)) is defined by

(VX)(Vy) (¥ 2)
((y,2) € PROD(A,X) <>y € ANz € X) (19)

then OTTER finds a proof in just 0.06 secs.

The clausal form of the ordered pair (y, z) in
(19) above simply remains ORD(y, z). This facil-
itates the unification process and allows the theo-
rem prover rapidly to find a proof.

There is a possible further simplification to (18)
above:

If we use equality to define the set Ax X and define
E as

Vz)(z € E &
(3X)(X € BAz=PROD(A,X)))

together with the existing definition of PROD,
then OTTER finds a short proof for the subset
relationship D C F' above in just 0.02 secs. This
short proof is the result of the power of paramod-
ulation applied to a single occurrence of an equal-
ity literal in the proof. In fact, the automated
reasoner’s bible [24] claims on page 619 that:

Paramodulation can focus directly on the appro-
priate term, even when that term is found deep
within a literal.

Note however that with this approach we in-
troduce equality into the proof mechanism. The

equality relation needs the axiom of reflexivity
as well as paramodulation in order to make the
search complete (see e.g. [17]). Paramodulation
in turn often generates many redundant clauses,
and it would therefore be a good idea to use a
weight strategy as described in Heuristic #1 above.

These results lead us to the following heuristic:

e Heuristic #6: Use an indirect definition for an
intermediate structure whenever this appears less
likely to produce complex functor expressions than
the direct definition, and particularly when such
indirect definition involves a single equality literal.

5.6 Element structure frame

Like the intermediate structure frame, this problem
frame is supplementary to the multivariate functor
frame and focuses on another type of situation which
tends to generate complex functor expressions.

e Principal parts: Formulae containing a description
of the structure and properties of elements of re-
lations and functions.

e FEzample: Suppose we need to show that:

F={00),{0},0)} = F7' ={(a,0),(,{0})}

We can define F and F~! in at least two possible
ways:
First format

Suppose we define F' in the usable list as follows
(ORD(z,y) represents the ordered pair (z,y))

(V)

(zx € F < z=0RD(D,a) Vz=ORD({0},b))
together with the following two facts about F' and
F~L

(Vy)(V2)
(ORD(y,z) € F +» ORD(z,y) € F 1) (20)

(Va)(z € F = (Jy)(32)(z = ORD(y,2))) (21)

We also need (for without it OTTER finds no
proof) the following theorem from [6]:

(Vu) (Vo) (Vw)(Vz)
((u,v) =(w,z) < (u=wAv=uzx)) (22)

In the sos we put the negation of:

Vz)(z e F~t —
(z = ORD(a,0)) V (x = ORD(b,{0})))

With these definitions OTTER finds a proof after
2 mins 7 secs.

Second format

Suppose we use the following more direct defini-
tion for F

(Vy)(Vz)(ORD(y,z) € F <
(y=0Az=a)V(y={0}Az=10))

together with definition (20) above for F~1.
The formula in the sos becomes the negation of:

(Vy)(Vz)(ORD(y,z) € F~' —
(y=anz=0)V(y=0bAz={0}))

OTTER now finds a proof in just 0.02 secs which
is a remarkable improvement.

Analysis reveals that the first format above needs
formula (22). The clausified version of this for-
mula contains numerous occurrences of a func-
tor (in this case the ordered pair) with 2 vari-
ables (contradicting the heuristic of the multivari-
ate functor frame above).

The second format does not need formula (22)
above, since the proof attempt is specified at the
level of ordered pairs already.

These observations lead to the following heuris-
tic:
e Heuristic #£7: Define the elements of relations and
functions directly in terms of ordered pairs or or-
dered n-tuples.

5.7 Redundant information frame

This problem frame largely stresses the obvious, but
when the obvious is crucially important it may be no
bad thing to stress it. Moreover, this frame prepares
the way for the widely useful search-guiding frame.

e Principal parts: Formulae in the usable list which
are not obviously necessary for the proof.

e Ezample: Suppose we need to prove the following
(where Fun(f) indicates that f is a function):

[Fun(f) A Fun(g) A
(Vz)(z € dom(f) Ndom(g) — f(z) = g(z)]
— Fun(f U g)

The detailed first-order reformulation of the above
makes use of the ordered pair notation and as a
result of this one may reasonably be tempted again
to include the following fact about ordered pairs
in the usable list:

(Vu)(Vo)(Vw)(Vz)
((u,v) =(w,z) <> (u=wAv=ur))

However, the inclusion of this fact prevents OT-
TER from finding any proof within 30 mins. If
we now simply remove the offending formula, then
we quickly find a proof in just 0.53 secs.

As previously seen, the above characterisation
of ordered pairs produces functors of 2 variables
as an artifact of clausification, and the theorem-
prover spends most of its time unifying these func-
tor variables with other terms — a process which
does not further the construction of a proof, since

10

the proof has no need for this formula.
This result suggests the following (unsurprising)
heuristic.

e Heuristic #8: Avoid the inclusion of information
that is not obviously necessary in the input to the
theorem-prover.

5.8 Search-guiding frame

Heuristic #8 suggests that one should include in the
input only those formulae that actually contribute to
the construction of the desired proof. Any extra infor-
mation can potentially lead the theorem-prover astray.
However, it is in general difficult to decide whether a
formula may be needed or not.

In the light of this problem we propose in this sec-
tion a technique called resolution by inspection, which
can be used to determine which part of a formula
(called the ‘half-definition’ below) is unquestionably
relevant to the construction of the desired proof, and
which part is less clearly relevant and can therefore
provisionally be eliminated.

e Principal parts: A set-of-support comprising ei-
ther a simple conditional formula or a single lit-
eral, together with biconditional formulae in the
usable list.

o Example: Consider proving the following:

NAuB) <N NO\B)

A possible preliminary unfolding is:
C=AUBAD=(C)A
E=NAANF=NB)ANG=ENF

—+DCG@G

We shall trace a small, initial part of the proof
with the aid of the simplified first-order reformula-
tions of some of the definitions above, specifically
those of D and G.

The question we ask in the sos is whether D is
a subset of G, which in unabbreviated form is a
conditional formula:

(Vz)(x € D -z € G)

Negated, as all goals must be, this clausifies into
two clauses (where the Skolem constants arise be-
cause the negation and the universal quantifier in-
teract to produce an existential quantifier):

(23)

$¢c1 € D
$c1 ¢ G

An unabbreviated first-order definition of G is the
biconditional formulas:
Vz)(z€e EANz e F & z€G) (26)

Since OTTER needs to resolve (25) and (26), we
can see by inspection that the literal $¢c1 ¢ G in

(25) can resolve only with a literal of the form
z € G in (26).

Therefore, we need just one half of the definition
in (26) and the half which we need is the only-if
direction:

Vz)(z€e ENz e F -5z € @)

The same procedure can be followed for the literal
$cl1 € D in (24) above, because the unabbreviated
definition of D as the generalised intersection of C'
is a biconditional formula, and the half we need is:

(Vz)(zeD = (Vb)(b e C -z € b))

A proof for (23) which does not employ this tech-
nique of half-definitions takes 8.47 secs, while the
half-definition counterpart takes only 0.11 secs.
This is about 77 times faster.

We have found this technique of determining the
appropriate half-definitions of formulae via reso-
lution by inspection to be a useful tool in cutting
down on the search space. (Recall the result with
the half definition of C, in the multivariate functor
frame, where we cut down the execution time from
1 min 8 secs to 6.45 secs). In essence we guide the
search along the path of the half-definitions.

These results lead us to the following heuristic:

e Heuristic #9: Generate and use half-definitions,
via the technique of resolution by inspection, for
biconditional formulae in the usable list whenever
the sos consists of a conditional formula or a single
literal.

5.9 Inference rule selection frame

As noted earlier, the default OTTER settings used
were those for UR-resolution and positive hyperreso-
lution. There are, however, occasions when these set-
tings do not suffice, occasions that may be recognised
by the sos rapidly becoming empty. (The reason why
the sos might become empty during the search for a
proof is explained in Section 3 above.) Often in these
circumstances negative hyperresolution will succeed,
and if not the option of invoking binary resolution
may be exercised.

e Principal parts: A set-of-support consisting of a
formula which, when clausified, consists either of
a single negative literal or of two literals, one pos-
itive and one negative, together with a paucity of
positive clauses in the usable list. Typically the
sos will be observed, under the default settings,
rapidly to become empty.

e Fzample: Consider again a previous problem:

N(AUB) € N(4)NN(B)

As before a possible approach is to unfold the for-
mula thus:

11

C=AUBAD=N(C)NE=N(4) A
F=N(B)AG=ENF
—-DCG

Suppose we use the default inference rule posi-
tive hyperresolution and we furthermore employ
the technique of half-definitions discussed in the
search-guiding frame.

With this scenario OTTER simply makes the
sos empty and the proof fails. Analysis reveals
that positive hyperresolution is unable to produce
even a single hyperresolvent. Recall that positive
hyperresolution must identify a clause consisting
either solely of negative literals or of a mixture of
negative and positive literals as the nucleus, and
must then find one electron (positive clause) for
each negative literal in the nucleus. It is quite pos-
sible that the input clauses do not permit sufficient
electrons to be found. Unable to apply positive
hyperresolution, the theorem-prover then applies
UR-resolution, a rule generally useful because it
produces short clauses (single literals). OTTER
manages in the example to produce three new
unit clauses, using UR-resolution, before it fails
because the sos becomes empty (UR-resolution is
sound, but not refutation complete).

This problem is well-known: [24] mentions that
(positive) hyperresolution is sometimes not refuta-
tion complete when used in conjunction with the
set-of-support strategy of OTTER. (In fact, we
observed this very fact in the proof attempt in
Figure 5.)

To illustrate what goes wrong, let us examine
the first few resolution steps that take place in
the context of our example:

The complete clausal form of the sos (i.e. the
negation of D C G) is:

$¢1 € D (27)
$c1 ¢ G (28)

In view of the discussion of half-definitions above
we know that $c1 € D must resolve with the for-
mula:

(Va)(z €D — (Yb)(be C — x € b))

However, positive hyperresolution cannot produce
a resolvent, since such a resolvent would include
one negative literal and therefore cannot be a valid
positive hyperresolvent. There is furthermore no
clause in either the usable list or sos which can
help to remove the offending negative literal (i.e.
b ¢ C) during this step.

Turning now to $¢l ¢ G and the half-definition
Vz)(z€e ENz € F -5z € @)

we observe that in this case there are no electrons
(i.e. positive clauses) present, since both clauses

contain at least one negative literal and again this
blocks any possible attempt at generating a pos-
itive hyperresolvent. Switching to UR-resolution
now makes the sos empty and the proof fails.

fault positive hyperresolution setting (and even nega-
tive hyperresolution) may at times fail when the sos
is small. One always has the option of switching to
binary resolution in such a case. But this is not the
only option, for an alternative is to enlarge the sos
in a useful way. Experience suggests that when the
proof is sought in the context of a restriction stating
that some set is nonempty, then that restriction may
usefully be added to the sos.

However, it is possible to generate a negative hy-
perresolvent (i.e. a purely negative clause); chang-
ing to set(neg_hyper_res) allows OTTER to find
a quick proof for D C G in just 0.12 secs.

A special case of this problem arises when the

sos consists of a single negative literal only. Con- e Principal parts: A small sos and, in the usable list,

sider the following example:

If A is a set of functions such that for any f and
g in A it is the case that either f C g or ¢ C f,
then | J(A) is a function.

A first-order formulation of this statement is:

(VF)(f € A= Fun(f)) A
VANV(FEANge A= CgVgCf)A
B=U(4)

— Fun(B)

The theorem posed in the sos is simply: —Fun(B).

Under the default setting set(hyper_res), OT-
TER simply makes the sos empty and the proof at-
tempt fails. If the inference rule is changed to neg-
ative hyperresolution (i.e. set(neg_hyper_res)),
then OTTER finds a proof after only 0.07 secs.

There is good reason why a negative resolution
strategy is to be preferred when the sos contains
a single negative literal.

Negative hyperresolution can use the negative
literal as an electron and then needs another clause
with at least one positive literal in order to pro-
duce a negative resolvent (or the empty clause).
Such (mixed) clauses are normally readily avail-
able in the usable list, for instance because of the
clausification of conditional formulae.

Positive hyperresolution on the other hand has
to use the negative literal as a nucleus and it then
needs a purely positive clause to act as an electron
in order to generate a positive resolvent (or the
empty clause). This is much harder to achieve,
such positive clauses not being so readily available
in the usable list.

These results lead us to the following heuris-
tic, which, for simplicity, is stated in operational
terms, i.e. in terms of what may be observed when
using the default settings:

Heuristic # 10: Use set(neg_hyper_res) whenever
the combination of set(hyper_res) and set(ur_res)
rapidly make the sos empty. If no rapid proof
results, try binary resolution.

the restriction that a set is nonempty.

Example: Suppose we need to prove

M{C—-X|XeAYCC—-U(A),for A#£D

and we place the restriction that A is nonempty
(i.e. (3z)(z € A)) into the usable list only.

A possible unfolding is:
D=UA)ANE=C—-DA
F={C-X|XeA}NG=N(F)
-+ GCE

The formula we put into the sos is (when negated
as all goals must be):

—-(Vz)(z € G-z €E) (29)
OTTER fails to find a proof with either positive or
negative hyperresolution (we always switch on the
set(ur_res) rule). Let us next trace some initial
steps in the proof.

The sos in (29) clausifies into:

$c1 € G
$c1 ¢ E

Following the discussion on half-definitions above,
we notice that we need the following half-definitions
for G and F respectively:

Va)ze G = (VD)(beF saeh) (32)

Vz)(ze€e CANz ¢ D —z€E) (33)
However, (30) and (32) fail to produce either a
valid positive or negative hyperresolvent, since any
such possible resolvent would in both cases pro-
duce a mixed clause. The same problem occurs
between (31) and (33). There are also no further
clauses in the usable list which can resolve this
conflict.

If we now move the fact A # () from the usable
list to the sos, then positive hyperresolution is able
to start off and find a proof in just 0.02 secs. (The

5.10 Sos enlargement frame fact $¢c1 € A in the sos is able to produce a positive

hyperresolvent from the definition of C'— X in the
set F' above and thereby start the proof attempt

It is customary for the sos to consist of the negated
goal. As we saw with the previous frame, the de-

12

off.)

This leads us to the following heuristic, stated
in operational terms:
Heuristic #11: Place a constraint requiring that
a set be nonempty in the sos instead of the usable
list, whenever neither positive nor negative hyper-
resolution is capable of rapidly finding a proof.

For ease of reference we summarise all the heuristics
below:

(10)

7

Summary

Use the strategy weight(x,n), for n € {3,4,5},
whenever there is equality involved due to the use
of set-theoretic list notation.

Avoid, if possible, the use of nested functor sym-
bols in definitions.

Avoid unnecessary levels of elementhood in for-
mulae by using the elements of sets directly.

Perform two separate subset proofs whenever the
sos requires one to prove the equality of two sets.

Ensure that definitions involve either no functors
or functors taking at most one variable as argu-
ment.

Avoid complex functor expressions by using indi-
rect definitions of internal structures.

Define the elements of relations and functions di-
rectly in terms of ordered pairs or ordered n-tuples.

Avoid the inclusion of any information that is not
obviously necessary in the input to the theorem
prover.

Generate and use half-definitions, via the tech-
nique of resolution by inspection, for biconditional
formulae in the usable list whenever the sos con-
sists of a conditional formula or a single literal.

Use set(neg_hyper_res) whenever the combination
of set(hyper_res) and set(ur_res) rapidly makes
the sos empty. If no rapid proof results, try binary
resolution.

Place a constraint requiring that a set be nonempty
in the sos instead of the usable list, whenever nei-
ther positive nor negative hyperresolution is capa-
ble of rapidly finding a proof.

Future research

There are further set-theoretic operations and struc-
tures which sometimes appear in Z specifications. We
briefly discuss some of these below and mention pos-
sible problems with each of these.

e The concept of a mathematical bag is sometimes

used in Z specifications (see e.g. [9]). A bag is
often called a ‘multi-set’, since it is like a set, but

13

it may contain duplicate elements. It differs from
a traditional list in the sense that the elements are
unordered.

Below is an example of a bag (called bagA) in Z
notation:

In set-theoretic notation we represent bagA as:

bagA = { (av 2)) (b)]-)7 (Cv 3) }

Definition (35) tells us that element a occurs twice,
b occurs once, and ¢ occurs three times in bagA.
It might be necessary to develop additional heu-
ristics for bags, but since a bag is basically a func-
tion, the current set of heuristics could suffice.

(35)

Another structure which often appears in Z spec-
ifications is a sequence. In Z a sequence of ele-
ments of type X is defined in [20], page 115 as an
element of seq X where,

seq X ={f: N+ X |dom(f) =1..#f} (36)
In Z the symbol + is used to denote a finite par-
tial function. The definition above also contains
the cardinality operator (i.e. #) and this could
bring about some of the problems mentioned in
conjunction with cardinality below.

One often needs to prove aspects regarding cardi-
nality. For example, for a set A, if A is nonempty
and #(A) = n and we remove an element, say z
from A, then a proof obligation would be to show
that #(A —{z}) =n— 1.

A possible first-order definition of cardinality could
be:

(1) (VA)(#(4) =0 A=02)

(2) (VA)(Vn)
(#A)=n+1¢
(Jz)(z € AN#(A—{z}) =n))

Due to the recursive nature of definition (2) above,
one would expect resolution-based theorem provers
(with a breadth-first search strategy like OTTER)
to experience some problems. An alternative defi-
nition of cardinality augmented with a set of heu-
ristics could be called for.

From the examples given in this paper it is ev-
ident that a resolution-based theorem prover ex-
periences problems in calculating an answer in the
case of a concrete example. This problem is ag-
gravated when the underlying definition is highly
declarative and ‘non-deterministic’ (e.g. the defi-
nition of a powerset). An example of such a cal-
culation which OTTER has difficulty with is:

P({0,1,2}) =
{g, {0}7 {1}’ {2}7 {0’]‘}7 {07 2}7 {]‘7 2}7 {17 27 3}}

8

In all fairness we should note that the resolution
mechanism is probably not intended for a problem
with the complexity like the one above. OTTER
however has an equational programming mode, re-
sembling the style and algorithm used in logic pro-
gramming languages like Prolog (see e.g. [4]) or
Godel, described in [10]).

It is possible that the equational programming
mode of OTTER could provide a neat solution to
the ‘powerset-problem’ above.

OTTER also has difficulty in constructing a so-
called ‘existence proof’; i.e. to find and show that
a value satisfies some set-theoretic relationship.
An example of such a problem from [6] is:

Give an example of sets a and B such

that e € B, but P(a) ¢ P(B).
However, these sort of problems often require a
considerable amount of human ingenuity * and
furthermore falls in the class of problems to find
or construct as pointed out in the discussion of
Jackson’s problem frames in Section 4 above. The
technique of answer variables described in [14]
could however be useful in this regard.

Quaife [17, p. 82 - 83] gives an example of a
proof in which OTTER derived the formula for
calculating the next prime number after a given
one, but it is presumably still left to the user to
substitute actual values in the formula and per-
form the calculation.

Acknowledgement and final remark

The authors express their gratitude to the referees who
made valuable suggestions regarding this article. Fi-
nally, readers who would like to see some of the de-
tailed proofs mentioned in this paper are welcome to
contact the authors at the above addresses.

References

1.

S. Baase. Computer Algorithms: Introduction to
Design and Analysis. Addison-Wesley, 2nd edi-
tion, 1988.

R. Boyer et al. Set theory in first-order logic:
Clauses for Goédel’s axioms. Journal of Auto-
mated Reasoning, 2(3):287 — 327, 1986.

C.-L. Chang and R.C.-T. Lee. Symbolic Logic and
Mechanical Theorem Proving. Academic Press,
New York, 1973.

W.F. Clocksin and C.S. Mellish. Programming in
Prolog. Springer-Verlag, 4th edition, 1994.

C.J. Date. An Introduction to Database Sys-
tems. The System Programming Series. Addison-
Wesley, 6th edition, 1995.

3 An example of such sets could be a = {1} and B = {{1}, {2}}.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

H.B. Enderton. FElements of Set Theory. Aca-
demic Press, Inc., 1977.

M.E. Fagan. Design and code inspections to re-
duce errors in program development. IBM Sys-
tems Journal, 15(3):182 — 211, 1976.

M. Fitting. First-order Logic and Automated
Theorem Proving. Graduate Texts in Computer
Science. Springer, 2nd edition, 1996.
1. Hayes. Specification Case Studies.
Hall, 2nd edition, 1993.

P. Hill and J. Lloyd. The Gédel Programming
Language. MIT Press, 1994.

C.AR. Hoare. Preface. In D. Bjgrner, C.A.R.
Hoare, and H. Langmaack, editors, VDM’90:
VDM and Z - Formal Methods in Software De-
velopment, number 428 in LNCS, 1990.

M. Jackson. Problems, methods and specializa-
tion. Software Engineering Journal, 9(6):249 —
255, November 1994.

A K. Mackworth. Consistency in networks of
relations. Artificial Intelligence, 8(1):99 — 118,
1977.

W.W. McCune. OTTER 3.0 Reference Manual
and Guide. Argonne National Laboratory, Au-
gust 1995. ANL-94/6.

G. Polya. How To Solve It. Princeton University
Press, 2nd edition, 1973.

B. Potter, J. Sinclair, and D. Till. An Introduc-
tion to Formal Specification and Z. Prentice Hall,
2nd edition, 1996.

A. Quaife. Automated Development of Funda-
mental Mathematical Theories. Kluwer Academic
Publishers, 1992.

J.A. Robinson. A machine-oriented logic based
on the resolution principle. Journal of the Asso-
ciation for Computing Machinery, 12(1):23 — 41,
January 1965.

J.A. Robinson. Automatic deduction with hyper-
resolution. International Journal of Computer
Mathematics, 1:227 — 234, 1965.

J.M. Spivey. The Z Notation: A Reference Man-
ual. Prentice-Hall, 2nd edition, 1992.

P. van Hentenryck. Constraint Satisfaction in
Logic Programming. MIT Press, 1989.

J.C.P. Woodcock and J Davies. Using Z: Spec-
ification, Refinement, and Proof. Prentice Hall,
1996.

L. Wos. Research problem #8: An inference rule
for set theory. In Automated Reasoning: 33 Ba-
sic Research problems, pages 137 — 138. Prentice-
Hall, 1988.

L. Wos and R. Overbeek and E. Lusk and J.
Boyle. Automated Reasoning: Introduction and
Applications. McGraw-Hill, 2nd edition, 1992.
L. Wos. Programs that offer fast, flawless, log-
ical reasoning. Communications of the ACM,
41(6):87 — 95, 1998.

Prentice

