A Multi-level Marketing Case Study: Specifying Forests and Trees in Z

John A. van der Poll® Paula Kotzé®

School of Computing, University of South Africa

vdpolja@unisa.ac.za® kotzep@unisa.ac.zab

Abstract

A formal specification of a multi-level marketing (MLM) business is presented. Specifying a MLM business boils
down to specifying properties of and operations on mathematical forests and trees. The usefulness of the model-
based specification language, Z, is investigated as a vehicle for a formal specification of these recursive structures.
The specification is presented following a prescribed format, namely the Established Strategy for constructing a Z
specification. The Established Strategy is augmented with the notion of proof aimed at corroborating the correctness
of critical parts of a specification. We show how attempts at discharging two different proof obligations using the
resolution-based, first-order theorem prover OTTER calls for the use of two automated reasoning strategies,
namely avoiding equality and using resonance.

Keywords: automated reasoning, Fstablished Strategy, formal specification, multi-level marketing, OTTER,

precondition calculation, resolution, schema, 7

Computing Review Categories: D.2.4, F.83.1, F./.1, 1.2.3

1 Introduction

A case study of a multi-level marketing (MLM) busi-
ness is conducted using Z [13]. A MLM business may
be modelled by a mathematical forest made up of var-
ious trees. The study of forests and trees [2] is well
established in Computer Science and these structures
have been used to describe various entities, for exam-
ple, the specification of a text editor [12] in ordinary
Zermelo-Fraenkel set theory [6]. However, as far as
we are aware, such structures have never been used
to specify a MLM business (modelled by forests and
trees) and its various intrinsic operations in Z. Ow-
ing to their recursive nature, forests and trees possess
rather unique properties and present a challenging op-
portunity for specifying these in Z.

The case study is cast in the format of the Es-
tablished Strategy [3], distilled from work by John
Wordsworth [20, 21] as well as Jim Woodcock and Jim
Davies [19]. The format of this strategy is presented
below.

A lucrative feature of a formal specification is that
the specifier can reason about the properties of the
specification. One can show that the specification has
certain desirable features, or that certain undesirable
consequences are absent from the specification. Apart
from stating a proof obligation that an initial state
exists, the standard Established Strategy for present-
ing a Z specification makes no mention of the idea of
discharging proof obligations that may arise from ad-
ditional system operations defined on the state. Hence
we augment the strategy in a small way by insist-
ing that critical proof obligations that arise from the
specification, be discharged. Various reasoning mech-

anisms are available to a specifier and in Section 7 we
state two proof obligations that arise from the defini-
tions of two different operations and show how these
proof obligations can be discharged using the OTTER
theorem prover [8].

Our MLM specification presented in this paper
gives rise to a rather large state space which in turn
poses demanding challenges to a resolution-based au-
tomated reasoning assistant when reasoning about
the properties of state components. We show that
proof attempts of two rather simple properties call for
the application of two important reasoning strategies,
namely avoiding equality and using resonance. These
strategies are only two of many. Other strategies for
aiding the operation of a resolution-based reasoning
assistant have been developed and presented in [17].

The layout of the paper is as follows: In Section
2 we present the generic format for a Z specification
as proposed by the Established Strategy, followed by
a background discussion of a typical MLM business
based on forests and trees in Section 3. A natural
language requirements definition of the specification,
followed by the basic types and abstract state space of
the system appear in Section 4. Partial definitions of
four system operations are presented in Section 5 and
the specification is strengthened in Section 6 according
to the proposed strategy. In Section 7 two correctness
proofs, one arising from a precondition calculation and
the other related to the recursive nature of the spec-
ification, are discharged. Enhancements to the spec-
ification are presented in Section 9 while pointers for
future work are established in Section 10.

2 The Established Strategy

The Established Strategy for presenting a specification
document in Z is presented in [3] and stems from work
done by Wordsworth [20, 21] as well as Woodcock et al.
[19]. It proposes that a Z specification be presented
as follows:

e Define all global constants and basic types, and
give a natural language description of these.

e Present the abstract state space, using the con-
stants and basic types above.

e Give an initial state of the system and prove that
such a state exists.

e Introduce partial definitions of each of the system
operations, together with a short informal descrip-
tion of each.

e (Calculate the preconditions of the abstract oper-
ations on the state. Check the description of each
abstract operation to ensure that its precondition
is explicit in the operation’s predicate; if not the
operation is modified accordingly. For the sake of
continuity of the specification in this paper we de-
termine the precondition of each operation at the
same point at which such operation is first defined.

e Draw up a table showing all the partial operations
together with their inputs, outputs and precondi-
tions for correct operation.

e Define all schemas that present error conditions.

e Use the Z schema calculus to make all the partial
operations total.

e Provide any additional information to assist the
reader of the specification, e.g. give a summary of
all the robust operations at the end.

3 Background to MLM systems

Traditional multi-level marketing (MLM) businesses
GNLD [7] have been around for a number of years
and many conventional businesses are now starting to
add some form of MLM to their existing operation. A
multi-level marketing business normally markets con-
sumable products! and operates as follows:

A new distributor (also called a member) pays a reg-
istration fee and joins the business either as a direct
associate of the company, or under an existing dis-
tributor called a sponsor. The sponsor does not spon-
sor the new distributor with money, but rather with
knowledge and advice about the business. Both the

One of the most common consumable products in such a
business is soap, since it normally has a high turnover. Alter-
natively, one can trade with luxury items like motor cars or
houses, resulting in lower turnover and often lower profits.

sponsor and the new distributor then go on to each
sponsor more new distributors, and so on. In this way
a network of distributors of the products of the com-
pany is built. Hence, the ‘work’ in a MLM business
involves the following:

e Step 1: Become a distributor of the consumable
products available from the company.

e Step 2: Sponsor others to become product dis-
tributors as well.

The sponsor is also called the upline of the new dis-
tributor, while the new distributor is generally known
as the downline of the sponsor. All distributors have
to renew their registration annually to remain in the
business. An example of a MLM network is shown in
Figure 1. The distributors A1, A2, and A3 in Figure
1 associated with the company directly are called the
roots of the forest (or network in MLM terms).

Each product has a point value (pv for short) as
well as a business value? (bv) associated with it. Both
the points and the business values are accumulated
per distributor throughout a calendar month. At the
end of the month the total business value (called a
turnover in MLM terms) in the network for each dis-
tributor is calculated, and the distributor is paid (in
the appropriate currency) a certain percentage of the
total business value for his or her group. This is called
a bonus.

The point value determines, on a sliding scale, the
percentage to be used in the calculation of a bonus —a
lower percentage for a lower turnover and a higher per-
centage for a higher turnover. Bonuses are the main
source of income for distributors in such a network.?
A distributor qualifies for a bonus at the end of a
month only after having accumulated a certain num-
ber of points through personal product consumption
and a (possibly different) number of points generated
by downline distributors.

Distributors may also buy products from the com-
pany and sell these to customers at a profit. A cus-
tomer is somebody who uses the products, but did
not join the MLM business to become a distributor.
A distributor may furthermore sell her or his business
(or part of it) to an existing distributor, or somebody
outside the MLM business who then automatically
becomes a distributor. Multi-level marketing compa-
nies normally have fixed guidelines regarding such a

2The business value is an amount which is some indication
of the price of the product.

3These multi-level marketing businesses are sometimes called
pyramids. In a typical pyramid, the sponsor always earns more
than any of his or her downline. While this might be true for
some MLM businesses, it is not the case in general. Often the
amount allocated to a downline is subtracted from the gross
income of the sponsor (i.e. the upline). In this way it is quite
possible for a downline to earn more per month than the upline.
The use of a sliding scale furthermore ensures that the amount
subtracted from the gross bonus of an upline is not more than
the gross bonus itself.

Figure 1: An example network

transaction. (See e.g. the section The marketing plan,
pages 20 — 23 in [7].)

We are now ready to start the specification of a typical
MLM business.

4 Basic definitions and state

space

Following the first step of the Established Strategy we
define all global constants and basic types, and explain
these. A useful starting point is to draw up a natural
language requirements definition of the system:

Specify a system where new distributors may
join a MLM business and become consumers
of products available from the company. A
distributor is allocated a unique identity code
upon enrollment. Other information to be
maintained for a distributor include the name,
address, personal pv, and personal bv. Every
product carries a point value as well as a busi-
ness value. The system must allow for opera-
tions like enrolling a new distributor, ordering
of products, calculation of bonuses at the end
of a month and removing a distributor from
the network of distributors.

From the requirements definition we identify the fol-
lowing basic types:

[ID, Name, Address, PV, BV, Bonus, Message)]

ID represents the set of all possible identity codes,
Name and Address the sets of all possible distributor
names and addresses respectively, PV and BV the
sets of point values and business values respectively,
Bonus all bonuses to be paid out to distributors and
Message the set of all possible messages generated by
the system to provide feedback to users.

Message :=
New_distributor_added | Order_captured
| Bonus_calculated | Distributor_deleted
| No_more_identity_codes | Unknown_distributor

The specification below is developed from the view-
point of the company which creates the environment
within which distributors can build their businesses.
One possibility is that the company views the busi-
nesses as a group of top-level upline distributors, each
with their own network of downline distributors. This
viewpoint corresponds to the idea of a forest, where
the roots of the trees in the forest represent the top-
level upline distributors, and the network of downline
distributors for each top-level upline is represented by

a corresponding tree. This view fits the generic model
for forests and trees put forward by Scheurer [12].

The next step is to define the abstract state:

__ MLM
known : P ID
NRoots : P ID
NUplines : ID <> ID
NDist : ID +
Name x Address x PV x BV x Bonus

known = dom NDist
dom NUplines U ran NUplines C known
NRoots = known \ ran NUplines
Inj(NUplines)
(¥ Netw)

(Netw C known A NRoots C Netw A

ClosedBy(Netw, NUplines)
— Netw = known)

Schema MLM introduces four components and two
auxiliary predicates:

e The set known contains the identity codes of all
distributors known to the system.

e NRoots represents the distributors who do not
have an upline in the business but joined the com-
pany directly.

e The network of distributors is represented by the
relation NUplines.

e The function NDist represents a mapping from a
unique identity code to the particulars for that
distributor. Note that NDist is partial, since for a
given value of NDist it need not be the case that
dom NDist = ID; neither is it injective since two
(or more) distributors may have the same partic-
ulars (i.e. name, address, etc.).

e Relation NUplines is injective since every dis-
tributor in the business has at most one up-
line. This property is captured by the predicate
Inj(NUplines). Inj is defined by:

(V R)(Inj(R) «
V) (VH)(VE)(((6, k) € RA (G, k) € R)
— (i =17))) (1)

Note that the first coordinate of a pair in NUplines
represents the upline of a downline which is the
second coordinate of the pair.

e The purpose of the last predicate in MLM is to
ensure that known, which represents the set of all
known identity codes, is the smallest inductive set
of identity codes generated by relation NUplines,

starting from the root nodes, NRoots. Predicate
ClosedBy is given by:

(V Netw)(V R)
(ClosedBy(Netw, R) <
(Vi)(V4)(i € Netw A (i,5) € R
—> j € Netw)) (2)

5 System operations

The following step is to specify the system operations
and the first operation is to define an initial state.
Initialisation is not available to an ordinary user of
the system, nevertheless it is viewed as an operation
in Z since it delivers an after state, MLM'.

— InitMLM
MLM'

known' = @ A NRoots' = @ N\
NUplines' = @ A NDist' = &

A proof obligation is to show that MLM' above can be
realised, i.e. the invariant is preserved with all state
components equated to the empty set. This is called
the Initialisation Theorem [9] and it takes the form:

- 3AMLM' o InitMLM (3)

Theorem (3) indeed holds, since each of the five parts
of the invariant in MLM above is true, given the initial
values of the state components in InitMLM .

Our first user operation defined on the state is
to register a new distributor. A new distributor (say
p) may register either directly with the company (i.e.
becomes a root node) or under an existing distributor
(say ¢) in the network as follows:

— Register _with_upline
AMLM

pl,q? : ID

name? : Name; addr? : Address
mes! : Message

p! & known A q? € known
known' = known U {p!}
NUplines' = NUplines U {q? — p!}
NDist' = NDistU

{p! = (name?, addr?,0,0.0,0.0)}
mes! = New_distributor_added

As is customary in Z, a new identity code p! is gener-
ated by the system and the new distributor is linked
to an existing one, ¢?. The network, NUplines, is
updated accordingly. Initial product information per-
taining to the new distributor is reflected in specifying
the personal point value to be 0 and both the business
value and potential bonus equal to the real value 0.0.

The precondition of Register_with_Upline is given
by p! ¢ known A q7 € known and we have to check
whether this precondition is sufficient for the correct
operation of Register_with_Upline. Calculation of the
precondition reveals that the part p! ¢ known is not
sufficient since the system generates p! from the set
ID and it’s possible that there are no unused iden-
tity codes left, i.e. a new p! cannot be generated. It
turns out that we need to change the precondition to
known # ID A q7 € known. The complete calculation
is presented in Appendix A.

Note that the relationship between the before and
after state values of the state component NRoots is un-
specified. The reason is that NRoots is unaffected by
the above operation and the calculation in Appendix
A identifies this as a critical proof obligation. In Sec-
tion 7 we discharge this proof obligation.

A new distributor may also join the company di-
rectly in which case the distributor becomes a root
element and a dummy, unknown identity code is sup-
plied for the upline:*

__ Register_no_upline
AMLM
pl,q? : ID
name? : Name; addr? : Address
mes! : Message

p! ¢ known A q7 ¢ known
known' = known U {p!}
NRoots' = NRoots U {p!}
NUplines' = NUplines
NDist' = NDist U

{p! = (name?, addr?,0,0.0,0.0)}
mes! = New_distributor_added

Calculation of the precondition reveals similarly
the precondition for the correct operation of
Register_no_upline to be known # ID A q? ¢ known.

The next operation captures an order.

— Order
AMLM

id? : ID; pv? : PV; bv?: BV
mes! : message

id? € known
(3pv:PV; bv:BV e
pv = third(NDist(id?)) + pv? A
bv = fourth(NDist(id?)) + bv? A
NDist' = NDist @ {id? —
(first(NDist(id?)), second(NDist(id?)),
po, bu, fifth(NDist(id?))))
mes! = Order_captured

4The use of a dummy identity code is simply to make the
structure of the input syntactically similar to that of operation
Register_with_upline, a decision that facilitates the process of
combining of the 2 operations into a single operation, Register
below, using schema disjunction.

Schema Order introduces some functions:

e The functions first, second, and so forth project
out, an element at the appropriate position in the
tuple.

e The symbol & is the relational overriding opera-
tor and its effect is to replace a tuple in a rela-
tion. Therefore, NDist' is obtained from NDist
by replacing the tuple with first coordinate id? as
specified above.

Calculation of the precondition reveals no additional
information. The condition id? € known is sufficient
for the correct operation of Order.

An important operation is to calculate the nett
bonus for a distributor.® The first step is to specify
an operation to calculate the gross bonus to be paid to
a distributor. For any distributor, say id?, the gross
bonus is kept as the fifth coordinate of NDist(id?).

_ Gross_bonus
AMLM
id? : ID

id? € known A
(3 distpv, totpv : PV; distbv, totbv : BV e
distpv = third(NDist(id?)) A
distbv = fourth(NDist(id?)) A
totpv = 3 e Npeses(iar) third(NDist(i)) A
totbv = 3 Npescs(iazy Jourth(NDist(i)) A
fifth(NDist' (id?)) =
if distpv > 100 then
if (totpv < 500) then 0.0
else if (500 < totpv < 1000) then
0.05 * totbv
else if (1000 < totpv < 2000) then
0.1 * totbv
else if (2000 < totpv < 3000) then
0.15 * totbv
else if (3000 < totpv < 4000) then
0.2 * totbv
else 0.25 x totbv
else 0.0)

The function NDescs recursively calculates all descen-
dents of a distributor (say p), including p:

NDescs(p) =
{p} U{J{NDescs(j) U {j} | (p,j) € NUplines}

for NUplines a component of the MLM state space.

Schema Gross_bonus specifies a gross bonus for a dis-
tributor id? along the following lines: If the personal

5The values of the bonus structures are just for illustrative
purposes and would vary according to the MLM company. Nor-
mally, there would be different bonus structures for point values
‘much larger’ than the 4000 mark, but consideration of these is
beyond the scope of this introductory specification.

pv of id? is less than 100 or id?’s group pv is less
than 500 then the bonus is 0.0. If the personal pv is
greater than 99 and the group pv is 500 or more then
the group pv determines the percentage to be used in
the calculation of the gross bonus for id?.

Next we specify a nett bonus calculation:

__ Nett_bonus
EMLM
id? : ID
bonus! : Bonus
mes! : Message

id? € known
bonus! =
fifth(NDist(id?))—
Z(id?,i)ENUplines -ﬁﬁh(NDzSt(l))
mes! = Bonus_calculated

A nett bonus for distributor id? is specified as the
difference between the gross bonus for id? and the sum
of the gross bonuses of all the immediate downlines
of id?. Precondition calculation reveals the condition
id? € known to be sufficient for both Gross_bonus and
Nett_bonus.

Our last user operation deals with the scenario
where a distributor decides to quit the business. Sup-
pose a root distributor, say A1 in Figure 1, decides to
drop out of the network. This has the following effect:

(1) Remove Al as a root element, i.e.

NRoots' = NRoots \ {Al} (4)

(2) Remove the pairs A1 — B1 and Al — B2 from
the network, i.e.

NUplines' = { A1} < NUplines (5)

The symbol <« is known as the domain anti-
restriction operator. Its effect is to remove all tu-
ples with the first coordinate being an element of
the set on the left of the operator from a relation.

(3) Make B1 and B2 root elements, i.e.
NRoots" = NRoots' U {B1, B2} (6)

As a schema operation we have:

—_DelRoot
AMLM
id? : ID
mes! : Message

id? € NRoots A

known' = known \ {id?} A

NDist' = {id?} € NDist A

NUplines' = {id?} € NUplines A

(3 FRoots : PID e
FRoots = {r | (id?,r) € NUplines} A
NRoots' = (NRoots \ {id?}) U FRoots) A

mes! = Distributor_deleted

Note that appropriate after state values are also spec-
ified for known and NDist.

Alternatively, if a non-root distributor, say B2, de-
cides to quit the business then the following actions
are applicable:

(1) Node B2 is deleted from the forest. Deleting B2
from the forest amounts to removing the pairs
B2 — C1, B2 — (2 and B2 — (3 from the
network, i.e.

NUplines' = NUplines &> {C1,C2,C3} (7)

as well as removing the pair A1 — B2 from the
network, i.e.

NUplines'" = NUplines' & { B2} (8)

The symbol B is known as the range anti-
restriction operator. Its effect is to remove all tu-
ples with the second coordinate being an element
of the set on the right of the operator from a re-
lation. Note that equation (7) can also be written
as {B2} 9 NUplines. The reason for using the for-
mat in (7) is to simplify the definition of the after
state value of NUplines in schema Del_Not_Root
below.

(2) Nodes C1, C2 and C3 become immediate down-
lines of A1:

NUplines"' =
NUplines" U{Al1 — C1,A1— C2, A1~ C3}

As a schema we have (™ denotes an inverse):

__Del_Not_Root
AMLM
id? : ID
mes! : Message

id? € ran NUplines N\
known' = known \ {id?} A
NDist' = {id?} € NDist A
(3¢ : ID; FRoots : PID e
q = NUplines™ (id?) A
FRoots = {r | (id?,r) € NUplines} A
NUplines' =
(NUplines & (FRoots U {id?})) U
{(g,r) | r € FRoots}) A
mes! = Distributor_deleted

The precondition for a correct execution of DelRoot
is id? € NRoots, while the correct precondition for
Del_Not_Root is given by id? € ran NUplines.

The next step prescribed by the Established Strat-
egy is to summarise the partial operations with their
respective inputs, outputs and preconditions. This
summary appears in Table 1.

| Operation | Inputs/Outputs | Precondition

InitMLM —

Register_with_upline | q7 : ID; name? : Name;
p!: ID; mes!: Message

addr? : Address | known # ID A q? € known

Register_no_upline q? : ID; mame? : Name;
pl: ID; mes!: Message

addr? : Address | known # ID A q7 ¢ known

mes! : Message

Order id? . ID; pv?: PV; bv?:BV id? € known

Gross_bonus 1d? . ID

id? € known

Nett_bonus id? : ID

bonus! : Bonus; mes!: Message

id? € known

mes! : Message

DelRoot id? : ID id? € NRoots
mes! : Message
Del_Not_Root id? : ID id? € ran NUplines

Table 1: Summary of partial operations

6 Strengthening the specifica-
tion

Following the Established Strategy we now provide ro-
bust operations for our four system operations above.
A correct implementation of our specification will
faithfully perform the operations defined above, so
long as there are no mistakes in the input. To cater for
exceptions we define a number of error schemas and
then combine these with the partial operations above
to produce robust operations.

An error condition is specified by No_more_codes
if there are no free identity codes when attempting
to add a new distributor either as a root element or
below an existing distributor.

__No_more_codes
=MLM
mes! : Message

known = ID
mes! = No_more_identity_codes

Hence, a robust operation to register a distributor is
given by:

Register =
Register_with_upline V Register _no_upline V
No_more_codes

Supplying an unknown identity code results in:

__ Unknown_distributor
EMLM

id? : ID

mes! : Message

id? ¢ known
mes! = Unknown_distributor

A robust operation for placing an order is:
Order_product = Order V Unknown_distributor

A robust bonus calculation is specified as either a gross
bonus calculation followed by the calculation of a nett
bonus, or an appropriate error condition:

Bonus = (Gross—_Bonus 3 Nett_Bonus) V
Unknown_distributor

Finally, a robust operation for deleting a distributor
is given by:

DelDist =
Del_Root V Del_Not_Root V Unknown_distributor

7 Reasoning about the specifi-
cation

In line with our proposal that critical proof obligations
arising from a specification be stated and discharged,
we now prove two properties of our specification. Nor-
mally a specifier has a wide choice in which reasoning
mechanism to use for proving properties of a specifi-
cation. Well-known systems are the interactive, term-
rewriting theorem provers like CaDiZ [15] and Z-Eves
[11]. Alternatively, one can use a fully automatic rea-
soner like OTTER [8] or Gandalf [14]. In this paper
we use OTTER as our reasoning assistant.

OTTER is a first-order, resolution-based theorem
prover developed by William C. McCune at the Ar-
gonne National Laboratory in Illinois, USA. Two im-
portant sections often present in the input to OTTER
are the usable list and the set-of-support (sos) list.
One way in which to use OTTER is to place the rel-
evant facts known to be true in the proof attempt in
the usable list and the negation of what we want to
prove in the sos.

The precondition calculation in Appendix A for
operation Register_with_upline reveals a critical proof
obligation:

NRoots' = known' \ ran NUplines' (9)

Note that the above predicate is part of the invariant
defined on the MLM state and in Z system operations
are implicitly assumed to preserve the state invariant
[5], hence proving that the state invariant is preserved
by an operation is not considered a necessary proof
obligation in Z. Nevertheless, it is a good idea to check
that an operation does not incur unpredictable results
as far as the invariant is concerned. In fact, in systems
like the B method [1, 18] ensuring that an operation
preserves the invariant is considered a critical proof
obligation.

Suppose a new distributor p is registered below
an existing distributor, ¢. Consider two restrictions
specified in Register_with_upline:

known' = known U {p} (10)
NUplines' = NUplines U {q + p} (11)

Suppose we define:
NewRoots = known' \ ran NUplines' (12)

and pose the negation of the following equality in the
OTTER set-of-support list

(NRoots = NewRoots) (13)

then the theorem prover fails to find any proof for
(13) in 20 minutes. It is well known that equality
reasoning poses demanding challenges to automated
reasoning assistants [4, 10]. Therefore, if we apply the
first axiom of Zermelo-Fraenkel set theory [6], namely
Extensionality, and simply replace (13) with (14) be-
low

(Vz)(z € NRoots +» © € NewRoots) (14)

then OTTER finds a short proof in 0.49 seconds.®
Note that this result also implies that the set of
root nodes (i.e. NRoots) is not affected by operation
Register_with_upline.

Another example of a proof is to show that the cardi-
nality of a state component is preserved, e.g.
#NDist' = # NDist (15)

after operation Order_product. Suppose the precondi-
tion id? € known is satisfied and the after state value
of NDist is as reflected in operation Order:
NDist' =
NDist ®
{id? —
(first(NDist(id?)),
second (NDist(id?)), pv, bv, bonus)} (16)

6Proof performed on Linux Red Hat 6.2 on a Pentium III
running at 600 MHz.

Proof obligation (15) has a recursive nature as is evi-
dent from the following definitions of cardinality [16]:

(VA#A =0 A=0) (17)
VANV n)(#A=n+1e
(Fz)(z € AN#(A\ {z}) =n)) (18)

In a more procedural fashion relational overriding, &,
for any two relations R and S is defined as:

Re&S=(domS<49R)US (19)

Hence, definition (16) is unfolded into the two formu-
lae (20) and (21):
(Vu)(Vo)(Vw)(Vz)(Yy)(V 2)
(6TUP(u,v,w,z,y,2) € NDist" <
6 TUP(u,v,w,z,y,2) € NDist A u # id?) (20)
The set NDist" represents the entity (dom S < R) in
definition (19) above.
Vu)(Vo)(Vw)(Ya)(Yy)(V 2)
(6 TUP(u,v,w,,y,2) € NDist' +
(6 TUP(u,v,w,z,y,2) € NDist" v
6 TUP(u,v,w,z,y,2) =
6 TUP(id?, name, addr, pv, bu, bonus))) (21)
where name, addr, pv, bv and bonus represent the last
5 coordinates of a tuple from NDist.

Proof obligation (15) above boils down to showing
that if we start by claiming that #NDist = k + 1
(say), then #NDist' = k+1. OTTER fails to find any
proof of this property using the standard definitions
(17) and (18). Onme of the reasons for failure is that
these definitions are not suitable for a proof of (15),
especially not when we are dealing with sets of tuples
instead of simple sets.

We start our attack on the problem by employing
areasoning strategy called resonance described in [22].
The aim of the resonance strategy is to give preference
(for directing a program’s reasoning) to formulae that
have the same syntactic shape (ignoring variables) as
one or more of the patterns supplied by the specifier.
Such formulae are called resonators.

We, therefore, rewrite the cardinality definitions
in terms of a tuple being removed from or added to a
set.

First we give definition for removing a tuple from
a set:

(VA n)(Vu)(Vo)(Vw)(Vz)(Vy)(V2)(VB)
(Fun(A) N\ #A=n+1A
6 TUP(u,v,w,z,y,2) € AA
Vul)Vol)(Vwl)(Vzl)(Vyl)(V21)
(6TUP(ul,vl,wl,z1,yl,21) € B +
6 TUP(ul,vl,wl,zl,yl,21) € AN ul # u))
— #B =n) (22)

Definition (22) could be explained as follows. For any
given 6-tuple relations A and B, if A is a function
and #4 = n + 1 then #B = n, provided that B is
obtained from A by performing a domain subtraction
of a single tuple from A.

A resonance definition for adding a new tuple to a set
is:

(VA)(Yn)(Vz)(VB)
(#A=nAz¢domAA
((3 name)(3 addr)(3 pv)(3 bv)(3 bonus)
Vul)(Vol)(Vwl)(Vzl)(Vyl)(V21)
(6TUP(ul,vl,wl,zl,yl,21) € B +
6TUP(ul,vl,wl,zl,yl,21) € AV
6TUP(ul,vl,wl, zl,yl, 21) =
6 TUP (z, name, addr, pv, bv, bonus))))

— #B=n+1) (23)
Definition (23) states that for any sets A and B and
any ¢ where ¢ ¢ domA, if #4 = n and B is ob-

tained from A by adding a tuple with z as the first
coordinate, then #B = n + 1.

We also need a resonance definition of a domain:
(VR)(Y u)
(u € dom R >

(Fv)Fw)(Fz)(Iy)(32)
(6TUP(u,v,w,z,y,2) € R)) (24)

These changes allow OTTER to find a short proof for
(15) in just 1.78 seconds. The input to the theorem
prover appears in Appendix B.

8 Summary of operations

In line with the Established Strategy we summarise
all robust MLM operations.

Register =

Register_with_upline V Register_no_upline V
No_more_codes

Order_Product = Order V Unknown_distributor

Bonus = (Gross_Bonus § Nett_Bonus) V
Unknown_distributor

Del_Dist = Del_Root V Del_Not_Root V

Unknown_distributor

9 Enhancing the specification

Some enhancements can be made to our specification:

Distributors sometimes pose queries which need not go
through their uplines, but which may be addressed to
the company directly. The company appoints some
‘distributor relations coordinators’ for this purpose
and these coordinators are assigned to the top-level
uplines. If the group of distributors belonging to a top-
level upline is not too large (according to the judge-
ment of the company), then only one coordinator is
assigned to such a group of distributors, but larger
groups normally have more than one coordinator as-
signed to them.

One way of incorporating coordinators in our spec-
ification is to define a new function

NCoord : ID - P Coord

where Coord represents the set of coordinators em-
ployed by the company. For any distributor identity
code d, if d ¢ dom NCoord then d is not a top-level
upline and therefore d’s top-level upline has to be de-
termined first, whereafter the coordinator set for d is
obtained. The set could be a singleton for a small
network as mentioned above. Note that the variable
NCoord would become a fifth component of the state,
possibly further complicating proof attempts when
reasoning about properties of the state.

An enhancement can also be made to the bonus
calculation defined in schema Gross_bonus. In-
evitably in a MLM business there are additional, more
advanced bonus structures. For example, one such
structure involves the idea of a ‘4000 point unit’: A
distributor is paid a bonus of 5% of the business vol-
ume” of a 4000 point unit on his or her first level, 2%
on the business volume of such a unit on the second
level, and 1% on the business volume of a similar unit
on the third level. These percentages advance on a
sliding scale with the top values fixed at 7%, 5%, and
2% respectively. (See e.g. the section The Marketing
Plan, pages 5 — 6 in [7].)

As far as our proof structure is concerned, the fol-
lowing critical proof obligation arises from operation
Nett_bonus above:

The sum of the gross bonuses allocated to
first-level downline distributors is subtracted
from the gross bonus allocated to their parent
distributor in the network. Show, therefore,
that the sum of the gross bonuses allocated
to first-level downline distributors is less than
or equal to the gross bonus allocated to their
immediate upline.

Formally, consider a distributor, say ¢, with a number
of first-level downlines, represented by a set, say D,
such that

(Vd)(d € D + (q,d) € NUplines)

7In the MLM world a business value is often called a business
volume.

for NUplines a component of the MLM state space.
Suppose the gross bonus allocated to a distributor,
say i, is indicated by Bonus;. The proof obligation is
to show that:

Bonus; — Z Bonusg > 0 (25)

(g,d)ENUplines

OTTER fails to find any proof of the above property.
Hence more work is needed to develop a fresh set of
heuristics for reasoning about arithmetic expressions,
reminiscent of the heuristics developed in [17] for rea-
soning about expressions in set theory.

Of course a rather simple way to solve this prob-
lem in one fell swoop in Z is to include additional
conditions in the state invariant in schema MLM re-
quiring that the value of every distributor’s bonus be
non-negative and greater than or equal to the sum
of the bonuses of that distributor’s immediate down-
lines. Nevertheless, the sensible specifier will always
check (using some proof mechanism) that all relevant
operations respect this property.

10 Summary and future work

This paper presented for the first time a formal specifi-
cation of part of a realistic multi-level marketing busi-
ness in Z. The specification was constructed using the
Established Strategy for presenting a Z specification.
In essence, specifying such a business boils down to
specifying properties of trees and forests and opera-
tions on these. Z appears to be a suitable vehicle for
this task. We illustrated how some proof obligations
arising from the specification may be stated and dis-
charged using an appropriate reasoning assistant. In
the process we demonstrated the utility of two rea-
soning strategies, namely avoiding equality and using
resonance.

However, the specification of operations on recur-
sive structures like forests and trees are non-trivial,
as is evident from the predicates in Gross_bonus and
Nett_bonus. We saw how this complexity is under-
lined by the difficulty encountered in finding a proof
of (25) and that more work is needed before we can at-
tempt a proof of an arithmetic expression with embed-
ded recursion such as (25), using a resolution-based
reasoner like OTTER. Alternatively, one can investi-
gate the feasibility of using a well-known interactive
term-rewriting reasoner, e.g. CaDiZ [15] or Z-Eves
[11].

Appendix A

The precondition of operation Register_with_upline
is denoted by pre Register_with_upline. Define
preRegister_with_upline = pre Register_with_upline.

Step 1: Calculate preRegister_with_upline by restat-
ing Register_with_upline, existentially quantifying all

10

output and after state variables:

__preRegister_with_upline
MLM
q? : ID; name? : Name; addr? : Address

AMLM'; p!: ID; mes!: Message o
p! ¢ known A q? € known A
known' = known U {p!} A
NUplines' = NUplines U {q? — p!} A
NDist' = NDist U
{p! = (name?, addr?,0,0.0,0.0)} A
mes! = New_distributor_added

Step 2: Expand the reference to MLM' above:

Fknown’, NRoots' : P ID; NUplines' : ID « ID;

NDist' : ID -+

Name x Address x PV x BV x Bonus;
pl: ID; mes!: Message o
known' = dom NDist' A
dom NUplines' Uran NUplines' C known' A
NRoots' = known' \ ran NUplines' A
Inj(NUplines') A
(V Netw)

(Netw C known' A NRoots' C Netw A

ClosedBy(Netw, NUplines')
— Netw = known') A

p! ¢ known A q7 € known A
known' = known U {p!} A
NUplines' = NUplines U {q? — p!} A
NDist' = NDist U

{p! = (name?, addr?,0,0.0,0.0)} A
mes! = New_distributor_added

Step 3: Eliminate constants and redundant invariant
parts, and instantiate dashed variables where possible:

I NRoots' : PID; p!: ID e
known U {p!} € PID A
NUplines U{q? — p!} € ID < ID A
NDist U {p! — (name?, addr?,0,0.0,0.0)} €
ID -+ Name x Address x PV x BV x Bonus A
known U {p!} = dom (NDist U
{p! = (name?, addr?,0,0.0,0.0)}) A
dom (NUplines U {q? — p!})U
ran (NUplines U {q? — p'}) C known U {p!} A
NRoots' =
(known U {p!}) \ ran(NUplines U {q? — p!}) A
p! & known A q? € known

Step 4: Verify the correctness of and thereafter remove
the first 3 type definitions above.

I NRoots' : PID; p!: ID e
known U {p!} = dom (NDist U
{p! = (name?, addr?,0,0.0,0.0)}) A
dom (NUplines U {q? — p!})U
ran (NUplines U {q? — p'}) C known U {p!} A
NRoots" =
(known U {p!}) \ ran(NUplines U {q? — p!}) A
p! ¢ known A q?7 € known

Step 5: Simplify using properties of dom and ran: hh

weight_list(pick_and_purge) .
I NRoots' : PID; p!: ID e

known U {p!} = dom NDist U {p!} A weight (x,5).
dom NUplines U {q?}U

ran NUplines U {p!} C known U {p!} A end_of_list.
NRoots' = %Y

(known U {p!}) \ ran(NUplines U {q? — p!}) A clear(print_given).
p! ¢ known A q?7 € known clear (print_kept) .

L o . clear (print_back_sub).
Step 6: Simplify using invariant on before state and

the restriction ¢? € known:

formula_list(usable).

I NRoots' : PID; p!: ID e
NRoots' =
(known U {p!}) \ ran(NUplines U {q? — p!}) A
p! ¢ known A q?7 € known

%% Reflexivity.
hly ———==—==———=
(all x (x = x)).

%% Resonance domain definition.
iy ===
(all R u
(E1(u,dom(R)) <->
(exists vw x y z
E1(6TUP(u,v,w,x,y,2),R)))).

Hence the precondition is p! ¢ known A ¢7 € known.
The 1st conjunct is true exactly when known is not
the whole of ID; then and only then will there exist a
suitable p! not in known. Therefore the precondition
changes to:

known # ID A q7 € known
Tolo BRI

Note that the after state condition NRoots' = %% Resonance cardinality follows.
(known U {p!}) \ ran(NUplines U {g? — p!}) becomes Wl HEEHEEHHEEREEEREERBEERR RS
a proof obligation.
%% Removing element - Domain subtraction:

. bl ————m e
Appendle (a2ll1AnuvwzxyzB
((Card(A,$SUM(n,1)) &

Below is the input to OTTER for a proof of: EL(6TUP (u,v,w,%,y,2) ,A) &

S . Fun(A) &
#NDist' = #NDist (all ul v1 wl x1 yl z1

o e e o o (EL(6TUP(ul,vi,wl,x1,yl,21),B) <->
%% Prove #NDist’ = #NDist after %% (EL(6TUP(ul,vl,wl,x1,y1,2z1),A) &
%% overriding an element. %h -(ut = w)))
e T e T e T e o o > Card(B,n) J).
%
set(neg_hyper_res). %% Adding a new element:
set (factor). %h ————mmmmmmmmmmmm
set(ur_res). (all Anx B
hh ((Card(A,n) &
%% Paramodulation. -E1(x,dom(A)) &
W —===—mmm - (exists name addr pv bv bonus

(all ul v1 wil x1 y1 =1

set (para_from).
(E1(6TUP(ul,vl,wl,x1,y1,z1),B) <->

set (para_into).

vy (E1(6TUP(ul,vi,wl,x1,y1,z1),A) |
set (order_eq) . (6TUP(ul,vl,wl,x1,yl,z1) =

vy 6TUP (x ,name,addr,pv,bv,bonus))))
%% Restriction strategies:))

R — -> Card(B,$SUM(n,1)))).

set (process_input) .

clear (para_from_right) . %% NDistl = DOMDIFF(NDist,{id}).
clear(para_into_right). Tt —=mmmmmTmmomomomooooooooooooo

set (dynamic_demod_all). (@lluvwxyz
set (back_demod) . (E1(6TUP(u,v,w,x,y,2),NDistl) <->

11

(E1(6TUP(u,v,w,x,y,z) ,NDist) &
-(u = 1id)))).

%% NDist2 =

ot
ot

NDistl u {(id,name,addr,pv,bv,bonus)}.

(Qlluvwzxyz
(E1(6TUP(u,v,w,x,y,2),NDist2) <->

(E1(6TUP(u,v,w,x,y,z) ,NDistl) |
(6TUP(u,v,w,x,y,z) =
6TUP (id ,name,addr,pv,bv,bonus))))).

%% NDist is functional.

hh

Fun(NDist).

%% E1(id,NDist)).

hh

E1(6TUP(id,name,addr,pv,bv,bonus) ,NDist).

%% #NDist =

ot

Card(NDist,$SUM(k,1)).

%% Fact about NDist1.

ot

-E1(id,dom(NDist1)).

end_of_list.

formula_list(sos).

%% #NDist2 = k + 1.

hh

-Card(NDist2,$SUM(k,1)).

end_of_list.

References

[1]

J.-R. Abrial. The B Book: Assigning Programs to
Meanings. Cambridge University Press, August 1996.
S. Baase and A. Van Gelder. Computer Algorithms:
Introduction to Design & Analysis. Addison-Wesley,
2000.

R. Barden, S. Stepney, and D. Cooper. Z in Practice.
Prentice-Hall, 1994.

R. Boyer, E. Lusk, W. McCune, R. Overbeek,
M. Stickel, and L. Wos. Set Theory in First-Order
Logic: Clauses for Godel’s Axioms. Journal of Auto-
mated Reasoning, 2(3):287 — 327, September 1986.
A. Diller and R. Docherty. Z and Abstract Ma-
chine Notation: A Comparison. In J. Bowen and
J. Hall, editors, Z User Workshop: Proceedings of
the Eighth Z User Meeting, Cambridge, U.K., 29 -
30 June 1994, Workshops in Computing, pages 250 —
263. Springer-Verlag, 1994.

H. Enderton. FElements of Set Theory. Academic
Press, Inc., 1977.

19

[7]
8]

[9]

[10]

[11]

[13]
[14]

[15]

[17]

[18]

[21]

[22]

Golden Neo-Life Diamite International. Distributor
Business Guide: The Business Plan, July 1997.

W. W. McCune. OTTER 3.0 Reference Manual and
Guide. Argonne National Laboratory, Argonne, Illi-
nois, August 1995. ANL-94/6.

B. Potter, J. Sinclair, and D. Till. An Introduction
to Formal Specification and Z. Prentice-Hall, 2nd
edition, 1996.

A. Quaife. Automated Development of Fundamental
Mathematical Theories. Automated Reasoning Series.
Kluwer Academic Publishers, 1992.

M. Saaltink. Z and Eves. In J. Nicholls, editor, Z
User Workshop: Proceedings of the Sizth Annual Z
User Meeting, York, U.K., 16 - 17 December 1991,
pages 223 — 242. British Computer Society, Springer-
Verlag, 1992.

T. Scheurer. Foundations of Computing : System De-
velopment with Set Theory and Logic. International
Computer Science Series. Addison-Wesley, 1994.

J. M. Spivey. The Z Notation: A Reference Manual.
Prentice-Hall, London, 2nd edition, 1992.

T. Tammet. Gandalf. Journal of Automated Reason-
ing, 18(2):199 — 204, 1997.

I. Toyn. CaDiZ Type Checker and Theorem
Prover Home Page. http://www.cs.york.ac.uk/~ian-
/cadiz/home.html.

J. van der Poll. Automated Support for Set-Theoretic
Specifications. PhD thesis, Department of Computer
Science & IS, University of South Africa, June 2000.
J. van der Poll and W. Labuschagne. Heuristics
for Resolution-Based Set-Theoretic Proofs. South
African Computer Journal, Issue 23:3 — 17, July 1999.
H. Waeselynck. Developing Safe Software: Software
development using the B-method. LAAS-CNRS,
France. Short course: University of the Witwater-
srand, February 1999.

J. Woodcock and J. Davies. Using Z: Specification,
Refinement, and Proof. Prentice-Hall, London, 1996.
J. Wordsworth. Practical experience of formal spec-
ification: a programming interface for communica-
tions. In J. McDermid and C. Ghezzi, editors, 2nd
European Software Engineering Conference (ESEC),
pages 140 — 158. University of Warwick, Coventry,
UK, Springer-Verlag, 1989.

J. Wordsworth. A Z Development Method. Draft ver-
sion 0.11. Technical report, IBM, UK, Hursley Park,
January 1989.

L. Wos. The Resonance Strategy. Computers
and Mathematics with Applications, 29(2):133 — 178,
February 1995. (Special issue on Automated Reason-

ing).

