
An Aspect-Oriented Model to Monitor Misuse  
 

K. Padayachee 
School of Computing, University of South Africa 

Pretoria, 0003 South Africa 

J.H.P. Eloff  
Department of Computer Science, University of Pretoria 

Pretoria, 0002 South Africa 
 

Abstract- The efficacy of the aspect-oriented paradigm has 
been well established within several areas of software security 
as aspect-orientation facilitates the abstraction of these 
security-related tasks to reduce code complexity. The aim of 
this paper is to demonstrate that aspect-orientation may be 
used to monitor the information flows between objects in a 
system for the purposes of misuse detection. Misuse detection 
involves identifying behavior that is close to some previously 
defined pattern signature of a known intrusion.   

I. INTRODUCTION 
The efficacy of the aspect-oriented paradigm has been 

well established within several areas of security, such as 
authentication, access control, encryption and software 
tampering.  Typically security concerns tend to crosscut 
objects, resulting in code tangling.  However the aspect-
oriented paradigm facilitates the abstraction of these 
security-related tasks to reduce code complexity. 
Crosscutting concerns are related issues that are scattered 
throughout the functionality of an application [1]. The aim of 
this paper is to demonstrate that aspect-orientation may be 
used to monitor the information flows between objects in a 
system for the purposes of misuse detection. Misuse-
detection involves identifying behavior that is comparable to 
some previously defined pattern signature of a known 
intrusion.  

Application-level bugs are often exploited to compromise 
the security of a system and it is vital to correct these 
vulnerabilities instantaneously. For instance, 'design-level 
problems accounted for about 50% of the security flaws 
uncovered during Microsoft's "security push" in 2002. 
Sufficient protection of software applications from attacks, 
however, is beyond the capabilities of network and operating 
system-level security approaches (e.g. cryptography, firewall 
and intrusion detection) because they lack knowledge of 
application semantics’ [2]. 

Detecting programming attacks should ideally follow an 
approach similar to the course of action advocated by 
Newsome and Song [3]: A detection mechanism should 
detect unknown attacks early, before the system is 
compromised. Secondly, once a new exploit attack is 
detected, attack signatures must be developed that can be 
used to filter out those attacks efficiently until the 
vulnerability can be patched. This paper focuses on the latter 
event, when an attack is known and where an interim 
measure must be instituted until the problem is resolved. 

 The use of aspect-orientation in information security 
has been validated by several studies ([4-6]). Aspect-
orientation promotes reusability since a security aspect may 

be reused for other applications [1]. For example, access 
control has similar requirements for most applications. 
Vanhaute and De Win [7] have derived reusable generic 
aspects from typical security concerns. As aspectual 
components do not need to have hard-wired names of 
objects, an aspect may be easily reused [8]. Furthermore, the 
aspect-oriented paradigm is highly extensible as it is flexible 
enough to accommodate the implementation of additional 
security features after the functional system has been 
developed, as crosscutting concerns may be added or 
removed without making invasive modifications to original 
programs  [9]. 

This paper examines the strategy of using the aspect-
oriented paradigm to reveal patterns of information flow to 
detect programming attacks. The first two sections explore 
the concepts of misuse detection systems and information 
flow control respectively, while the discourse of the 
subsequent two sections focuses on aspect-oriented 
programming and its influence on software security.  Section 
6 demonstrates how an aspect-oriented methodology may be 
used to detect information flow patterns that signify 
programming attacks. Sections 7 and 8 conclude with 
directions for future work and insights gathered from the 
experiment conducted.  

II. MISUSE DETECTION SYSTEMS 
Anomaly detection relies on identifying all behavior that 

is abnormal for an entity. While misuse detection involves 
flagging behavior that is close to some previously defined 
pattern signature of a known intrusion. The disadvantage of 
the first approach is that it does not necessarily detect 
undesirable behavior, and that the false alarm rates can be 
high. The problem with tracking all information flows would 
be the difficulty in identifying an anomaly as these logs will 
probably be large. The problem with misuse-based detection 
is that the anomaly must be known in advance. 

While misuse-based detection cannot detect new 
intrusions, in actual systems, anomaly detection systems 
have the advantage of detecting previously unknown 
intrusions[10]. Anomaly detection methods involve various 
machine learning and statistical techniques [11]. This paper 
will not examine the issues surrounding pattern recognition. 

Recently there has been a trend towards using hybrid 
frameworks combining both misuse detection and anomaly 
detection components which, in effect, reduces the 
inefficiencies and maximizes the strengths of both 
techniques (see [12]). The other significant trend is the 
movement towards the inclusion of intrusion detection 
systems on the application-level. Most intrusion detection 



systems are essentially based at the network-level or 
operating system level. It has been noted recently that there 
is a need to consider the application-level, in terms of 
monitoring the interaction between the user and the 
application [13]. 'Application-level bugs are more frequent 
than kernel-level bugs and, therefore, applications are often 
the means to compromise the security of a system. Detecting 
these attacks can be difficult, especially in the case of attacks 
that exploit application-logic errors' [14]. However 'to detect 
attacks exploiting application-logic errors, it is desirable to 
be able to perform selective, application specific auditing in 
certain points of the application’s control flow. The problem 
is that few applications provide hooks for instrumenting [sic] 
their control flows, and, even if these hooks are available, 
they may not be in the right places. In addition, the 
instrumentation technique would be application-specific and 
not easily portable to different applications' [14]. It is evident 
that aspect-orientation may be ideal for providing these 
'hooks' through the use of pointcut designators [15]. 

Another newly identified trend is the use of information 
flow control to support misuse detection. In this research 
attempts are made to find a solution within the aspect-
oriented paradigm while incorporating some of these trends. 
The model presented here, is based on misuse detection 
within the application-level using information flow control 
analysis.  

III. BACKGROUND ON INFORMATION FLOW CONTROL 
Information is exchanged among variables in procedural 

programs and by messages in object-oriented systems. An 
illegal flow arises when information is transmitted from one 
object to another object in violation of the information flow 
security policy [16]. A transfer of information does not 
necessarily occur every time a message is passed. An object 
acquires information by changing its internal state, as a 
result of changing the values of some of its attributes. Thus, 
if no such changes occur as a result of a message invocation 
in response to a message, then no information has been 
transferred [17]. There have been two basic types of 
information flow controls available within the object-
oriented perspective, namely language-based information 
flow controls [18] and information flow controls based on 
message filtering [16, 19].   

Language-based information flow controls are enforced 
through the use of security-typed languages where program 
variables and expressions are augmented with annotations 
that specify policies on the use of the typed data. Language-
based information-flow techniques necessitates that the 
programmer must not only understand the algorithm to be 
implemented but must also understand what the desired 
security policy is and how to formalize it using annotations 
[20]. Further security policies may not be available during 
functional design, thereby resulting in inconsistencies. The 
aspect-oriented paradigm enables security policies to be 
separated from the code and accordingly security policies 
may be coded independently of other requirements [21]. In 
general, information models are difficult to implement. 
Hence the message filtering model developed by Jajodia and 

Kogan [19] considers only primitive operations such as read 
and write methods. As the aspect-oriented paradigm 
facilitates genericity through the use of wildcards, it may 
extend the message filter model beyond considering only 
primitive operations [22]. 

The methodologies presented above, are solely based on 
preventing illegal information flow. However, Masri and 
Podgurski [23] presented a novel approach to detect attacks 
against application software using dynamic information flow 
analysis. Where certain patterns of information flow may be 
used to detect vulnerabilities and possible attacks. This paper 
shares this notion but surveys an aspect-orientation 
implementation of information flow, as an alternative 
technology. Due to the genericity offered by aspect-
orientation, the model presented here may be used within 
other contexts during security risk analysis, where the 
illumination of specific information flows to detect 
vulnerabilities is required. 

IV. BACKGROUND ON ASPECT-ORIENTED PROGRAMMING 
In every object-oriented software design there are core 

concerns. In a robotic system, for instance, these concerns 
involve motion management and path computation. The 
concerns are located in a particular scope and are not 
required in any other scope. Other concerns are common to 
many of a system’s modules like logging, authorization and 
persistence. These system-wide concerns are called 
'crosscutting concerns' and the re-implementation of one 
issue in different modules is called 'code scattering' [24]. 
Aspect-oriented programming addresses the problem of code 
scattering by localizing these crosscutting concerns into a 
modular unit called an aspect. 

 An aspect is a modular unit of a crosscutting 
implementation that is provided in terms of pointcuts and 
advices, specifying what (advice) and when (pointcut) its 
code is going to be executed [25]. In terms of codification, 
aspects are similar to objects. However, aspects observe 
objects and react to their behavior [26]. An aspect is a piece 
of code that describes a recurring property of a program and 
can span multiple classes, interfaces or aspects [8]. Unlike a 
class though, aspects are injected into other types. Aspects 
improve the separation of concerns by making it possible to 
cleanly localize crosscutting design concerns. They also 
allow programmers to write, view and edit a crosscutting 
concern as a separate entity. 

During program execution, there will be certain well-
defined points where calls to aspect code would be inserted 
[25]. These are known as join points. Aspects introduce their 
supplemental functionality at these join points [26]. A 
pointcut is a set of join points described by a pointcut 
expression.  An advice declaration is used to specify code 
that should run when the join points specified by the pointcut 
expression are reached [27]. The advice code will be 
executed when a join point is reached, either before or after 
the execution proceeds. For example, AspectJ supports 
before, after and around advices, depending on the time the 
code is executed [28]. A before (after) advice on a method 
execution defines code to be run before (after) the particular 



method is actually executed. An around advice defines code 
which is executed when the join point is reached and has 
control over whether the computation at the join point (i.e. 
an application method) is allowed to be executed or not [29] 
.Combining the application functional code and its specific 
aspects generates the final application. These two entities 
will be combined at compile time by invoking a special tool 
called a 'weaver' [8]. 

V. RELATED WORK ON APPLYING THE CONCEPT OF ASPECT-
ORIENTED SECURITY IN CREATING SECURE SOFTWARE 
Security is often extracted as a separable concern, due to 

its orthogonal nature in respect of the functional 
requirements of a system, hence the separation-of-concerns 
principle of the aspect-oriented paradigm is suited to 
addressing security concerns [30].  Aspect-oriented software 
development is relevant for all major pillars of security: 
authentication, access control, integrity, non-repudiation, as 
well as for the supporting administration and monitoring 
disciplines required for effective security [31]. Even 
security-related bugs such as buffer overflows or race 
conditions can be considered a security-related concern [6]. 
Security aspects can be used to modularize access control 
and authentication (see [6], [32] and [33]).  

In a study related to information flow control, Masuhara 
and Kawauchi [34] found there was no possible way to 
define a pointcut that would be able to detect whether a 
string was from an unauthorized source or not or contained 
unwanted information. Hence they proposed a new pointcut 
called dflow that addresses the dataflow between join points 
as an extension to the AspectJ Language. Although this 
study is related to information flow, the authors do not 
address security classifications and their dataflow definition 
‘only deals with direct information flow’. Further, they do 
not comment on the propagation of information among 
objects in a system. To address these shortcomings, we have 
conducted case-studies to demonstrate that the aspect-
oriented methodology might be useful for detecting illegal 
flows between objects [22]. 

These experiments showed that aspects could be utilized 
to identify flows between objects.  For instance, this aspect’s 
advice could decide, upon examining the given message and 
classification of the sender and receiver, whether to permit 
the information flow or not. In an unpublished work by 
Padayachee, Eloff and Bishop [35], this model was further 
generalized, so that it may be used in other contexts as well. 
The Flow aspect considered those actions that resulted in an 
attribute being assigned (set) or returned from an object. 
This notion actually addresses all interactions between 
objects, including when objects are being instantiated. When 
an attribute is returned from a message, the reference of this 
attribute is stored in an appropriate container. When an 
attribute in an object is being assigned to a particular value, 
this container is inspected to check if the value was obtained 
from another object. If this value was obtained from another 
object then an appropriate action may be taken if the 
information flowing should not be permitted according to the 
information flow policy (see Fig. 1 below). 

 
public aspect Flow { 
pointcut getMethods():  get(* *.*); 
before( )returning(Object x): getMethods() &&  
(within (A || B || C //...and other objects being tracked )){  
 //Information flowing out of this object 
 //Store information about this joinpoint – Such as the reference of  
 //this object. 
} 
pointcut setMethods(Object x):  ((set (* *.*) || call (* *(..))) && args(x)  
&& within( A || B || C //...and other objects being tracked )); 
before(Object x): setMethods(x) { 
 //if there is an illegal flow between the sender and receiver object 
 // Respond appropriately 
 //else   
 // Allow Process to proceed as normal 
 } 
} 

Fig. 1. Aspect to determine the flow of information between objects. 
 

 
Fig. 2. Aspect Flow intercepts information flow between interacting objects. 
 

For instance, this aspect’s advice could decide, upon 
examining the given message and classification of the sender 
and receiver, whether to permit the information flow or not. 
Figure 2 illustrates - when sender object (A) sends 
information to receiver object (B), this flow is intercepted 
and tested if it violates the specified information flow policy. 
If the flow does not disobey the specified information flow 
policy then the aspect allows the flow to proceed to receiver 
object (B), otherwise the aspect does not allow the flow to 
occur or performs a specific action. The model however, has 
limitations as it only identifies explicit flows [35].  We have 
also demonstrated via a case study that using aspect-oriented 
flow model may useful in identifying programming attacks 
[22]. In this paper we reprised this model in a more 
generalized context such that it may be useful be in 
identifying programming attacks. 

VI. CASE STUDY TO DEMONSTRATE THE PRACTICALITY OF 
THE MODEL 

With respect to the aspect-oriented flow model described 
above, a small system was built based on the example 

object
A

object 
B 

object 
C 

<<POINTCUT>> 
Intercept: Mutator Methods 
Advice: Ensure information flowing into an 
object is legal before allowing the flow to 
proceed otherwise respond appropriately 

<<POINTCUT>> 
Intercept: Accessor Methods 
Advice: Keep track of information 
flowing out of objects 

crosscut

crosscut 

crosscut

crosscut

Aspect Flow 



provided by Masri and Podgurski [23] to test the possibility 
that such system can be fully implemented. The system was 
built using Aspect J (ajdt_1.2_for_eclipse_3.0) as an 
extension to Java (J2SDK1.4.2_05), and the Eclipse 3.0 IDE. 
We wanted to show that aspects could be used to detect 
vulnerabilities.  To this end, we considered a server 
application comprising of three classes Server, Session 
and Account (depicted in Fig. 3), where there was 
vulnerability in that the server allows a malicious client to 
avoid getting charged for his/her connection time: 

1) Attacker opens a first session (session1) and uses it for 
  a long time. 

2) Attacker opens a second session (session2) 
3) Attacker closes session1 (immediately after step 2) 
4) Attacker closes session 2 (immediately after step 3) 
This attack basically induces the following information 

flows: 
 clientAccount => Session1 
 ClientAccount => Session2 
 Session1 => ClientAccount 
 Session2 => ClientAccount 
 
This experiment sought to replicate this vulnerability by 

using the aspect-oriented information flow model to identify 
patterns of flow that indicate misuse. 
 
//_____________________________________________________________ 
public class Account { 
 public Account (String user){ 
  name = user;  
 } 
 public Double getCredit() { 
  return credit;  
} 
 public void setCredit(Double credit){ 
  this.credit = credit;  

} 
 public String name;  
 private Double credit  = new Double (3600000);//1 hour  
}  
public class Session { 
 Session(Double startCredit){    
  this.startCredit = startCredit; 
  startTime =  new Double (System.currentTimeMillis()); } 
 public Double computeCredit(){    
return new Double (startCredit.doubleValue() - 
(System.currentTimeMillis() -   
 (startTime).doubleValue()));   
} 
 private Double startCredit ; 
 private Double startTime; 
} 
public class Server { 
 Session openSession(String user){  
  theAccount = new Account(user); 
  Account account = theAccount; 
  return new Session(account.getCredit()); 
} 
 void closeSession(Session session){ 
  Account account = theAccount; 
  account.setCredit( (session.computeCredit())); 
} 
 Account theAccount; 
} 
public class SimpleAttack { 
 public void accessServices(Server s, Session session, Double 

Duration){ 
  // Do necessary action 
 } 
 public static void main(String[] args) { 
  SimpleAttack s = new SimpleAttack(); 
  Double shortDuration = new Double (10); 
  Double longDuration = new Double (1000); 
  Server server = new Server(); 
  //OPEN SESSION 1 
  Session session1 = server.openSession("User01"); 
  s.accessServices(server, session1,longDuration); 
  //OPEN SESSION 2 
  Session session2 = server.openSession("User01"); 
  //CLOSE SESSION 1 
  server.closeSession(session1); 
  //USE SESSION2 FOR A SHORT PERIOD. 
  s.accessServices(server,session2,shortDuration); 
  //CLOSE SESSION 2 
  server.closeSession(session2); 
 } 
} 
//_____________________________________________________________ 

 
Fig. 3.Defective server implementation and simple attack. 

Note  only code relevant to the vulnerability/attack is shown. 
(adapted from Masri and and Podgurski  [23]). 

 
After the classes were developed and tested, the 

generalized aspect Flow (Fig.4.) was contextualized to 
identify this type of programming attack. The specific flows 
between the Account class and the Session class which 
were woven into the rest of the system were identified.  The 
specifications involved adjusting the getMethods() 
pointcut to include the ComputeCredit() method calls. 
The Flow aspect only identifies flows when an object's data 
members flow out of an object. As the 
ComputeCredit() method did not involve a data 
member being returned, it had to be specifically named.  The 
next issue involved identifying the objects involved. As the 
Account class had a name data member, this class did not 
pose a problem. However, as the Session class did not 
contain a data member that could be used to identify the 
object, an aspect AddToSession, was created specifically 
for that purpose. 
//_____________________________________________________________ 
public aspect Flow { 
private static Vector References = new Vector(); 
private static Vector JoinPoint_String =  new Vector(); 
private static int Count = 0; 
pointcut getMethods(): get (* *.*) || execution(Double 
Session.computeCredit(..) );  
before () returning (Object x):getMethods() && (within (Session 
|| Account)) 
{ //Store info about this Join Point 
 JoinPoint_String.add(Count, thisJoinPoint.getThis()); 
 References.add(Count,x); 
 Count++;   
} 
pointcut setMethods(Object x): (set (* *.*) ) && args(x) && 
within (Session||Account); 
before (Object x): setMethods(x) 
{ String Signature = thisJoinPoint.toString(); 
 for (int i = 0; i < Count; i++){ 
 if (References.get(i) == x){ 
System.out.print("Information Flowing From "); 
 String PrevSignature = JoinPoint_String.get(i).toString(); 
 if (PrevSignature.indexOf("Session") > 0 ){  
 System.out.print("SESSION: " + ((Session)  



 JoinPoint_String.get(i)).myname); 
 } 
 else if (PrevSignature.indexOf("Account") > 0){ 
 System.out.print("ACCOUNT: " + ((Account)  
 JoinPoint_String.get(i)).name); 
 } 
 if (Signature.indexOf("Session") > 0 ){  
 System.out.println(" to SESSION: "   
 +((Session)thisJoinPoint.getThis()).myname); 
 } 
 else if (Signature.indexOf("Account") > 0){   
 System.out.println(" to ACCOUNT: "+    
 ((Account)thisJoinPoint.getThis()).name); 
 } 
} }}  
}  
public aspect AddToSession { 
 private static int Session.Count = 0; 
 public int Session.myname = Count; 
 pointcut SessionConstructor(): execution(Session.new(..)); 
 before(): SessionConstructor() { 
 Session.Count++; ((Session) thisJoinPoint.getThis()).myname = 
 Session.Count;} 

} //______________________________________ 
 

Fig. 4. Aspect-oriented implementation to identify patterns of misuse. 
 
The following output (Fig.5.) was produced after the aspects (in 

Fig. 4.) were woven together with the classes given in Fig.3 using 
AspectJ. This output reflects the pattern of flow identified by Masri 
and Podgurski [23] which depicts a user exploiting a program 
vulnerability. 

 
Information Flowing From ACCOUNT: User01 to SESSION: 1 
Information Flowing From ACCOUNT: User01 to SESSION: 2 
Information Flowing From SESSION: 1 to ACCOUNT: User01 
Information Flowing From SESSION: 2 to ACCOUNT: User01 
Fig. 5. The output produced reflects patterns of misuse detection. 

 
There were a few limitations to this experiment. A few 

liberties were taken in adapting the aspect to identify the 
specified flows. It is not the most efficient solution but it 
rather reflects a 'hacking style' technique. The experiment 
sought to reveal how quickly the model given could be 
adapted to resolve the problem at hand. The model proposes 
that once vulnerability is discovered, an aspect can be used 
to monitor this vulnerability until a fix or patch is created. 
Thus this particular monitoring aspect is temporal and will 
be removed once the program is fixed. In this case, a single 
programmer was able to complete the task of adapting the 
aspect in an hour after the classes were built and tested.  
Several insights were gathered from this experiment. The 
limitations of AspectJ posed a problem in identifying the 
objects. It is easy to identify the classes used by referencing 
a special variable called thisJoinPoint, which contains 
reflective information about the current join point. However, 
it is difficult to determine the name of the object itself. It 
would be ideal if the thisJoinPoint variable could be 
expanded to resolve this issue.  

 A security risk analyst has to trace and track 
vulnerabilities in a system and this is difficult as he has to 
relate to the subtleties of the system that are understood by 
the designer and implementer [36]. Certainly using the 
model developed above can expose these subtleties without 

the security risk analyst understanding every program path in 
the program and constraints may be formed without relying 
on the programmers to abide by these constraints.  

VII. FUTURE WORK 
We presented an aspect-oriented flow model to identify 

patterns of information flow. We tested the model on a very 
small system. In the future a thorough case-study approach 
would be taken on a more scalable solution to access the 
flexibility and usability of the model. Although the model 
was able to produce the flow pattern, the semblance of the 
pattern reproduced here was discerned manually. A future 
undertaking may involve developing a tool to automate the 
process. 

VIII. CONCLUSION 
Despite its appeal, information flow mechanisms are 

difficult to manage in practice and require programmers to 
be security experts. The aspect-oriented paradigm can be 
used to add security to existing systems and due to the 
separation of roles between application developers and 
security, it can make the management of security polices 
easier.  In this paper, an information flow control model to 
detect misuse using aspect-orientation is posited. This model 
may be useful to security risk analysts for identifying 
security vulnerabilities. Aspects offer several benefits in 
terms of compact code and increased confidence, but there 
could be drawbacks as it is a new technology.  

REFERENCES 

[1] B. De Win, B. Vanhaute and B. Decker, 
"Security through Aspect-Oriented 
Programming," in  Advances in Network and 
Distributed Systems Security, IFIP TC11 
WG11.4 First Working  Conference on 
Network Security, pp. 125-138, November 
2001. 

[2] D. Xu and K. Nygard, "A Threat-Driven 
Approach to Modeling and Verifying Secure 
Software," in  Proceedings of the 20th 
IEEE/ACM international Conference on 
Automated software engineering, pp. 342-
346, November  2005. 

[3] J. Newsome and D. Song, "Dynamic Taint 
Analysis for Automatic Detection,Analysis, 
and Signature Generation of Exploits on 
Commodity Software," in  The 12th Annual 
Network and Distributed System Security 
Symposium, pp. 1-17, February 2005. 

[4] P. Falcarin, M. Baldi and D. Mazzochi, 
"Software Tampering Detection Using Aop 
and Mobile Code," in  International 
Conference on Aspect-Oriented Software 



Development (AOSD'04), pp. 1-6, March 
2004. 

[5] G. Boström, "A Case Study on Estimating 
the Software Engineering Properties of 
Implementing Database Encryption as an 
Aspect," in  Proceedings of the 3rd 
international conference on Aspect-oriented 
software development, pp. 1-6, March 2004. 

[6] B. De Win, W. Joosen and F. Piessens, 
"Aosd Security: A Practical Assessment," in  
Workshop on Software engineering 
Properties of Languages for Aspect 
Technologies (SPLAT03), pp. 1-9, March 
2003. 

[7] B. Vanhaute and B. De Win, "Aop, Security 
and Genericity," in  1st Belgian AOSD 
Workshop, pp. 1-2, November 2001. 

[8] J.P. Choi, "Aspect-Oriented Programming 
with Enterprise Javabeans," in  Fourth 
International Enterprise Distributed Object 
Computing Conference (EDOC'00), pp. 252-
261, September 2000. 

[9] N. Ubayashi, H. Masuhara and T. Tamai, 
"An Aop Implementation Framework for 
Extending Joint Point Models," in  
ECOOP'2004 Workshop on Reflection, AOP 
and Meta-Data for Software Evolution, 15th 
of June 2004. 

[10] R.A.V. Kemmerer, G., "Intrusion Detection: 
A Brief History and Overview," Computer, 
vol. 35,  pp. 27-30, April 2002. 

[11] G. Adam, "Anomaly Detection in Distributed 
Computer Communication Systems," 
Cybernetics and Systems, vol. 37,  pp. 635-
652, September 2006. 

[12] J. Zhang and M. Zulkernine, "Hybrid 
Network Intrusion Detection Technique 
Using Random Forests," in  The First 
International Conference on  Availability, 
Reliability and Security, 2006. ARES 2006., 
pp. 262-269, April 2006. 

[13] M. Suydam, "Application-Based Idss: 
Upping the Application Ante,"  
http://infosecuritymag.techtarget.com/articles
/1999/ids.shtml,1999. 

[14] J. Zhou and G. Vigna, "Detecting Attacks 
That Exploit Application-Logic Errors 
through Application-Level Auditing," in  

Proceedings of the 20th Annual Computer 
Security Applications Conference 
(ACSAC'04), pp. 168 - 178, December 2004. 

[15] E. Tombini, H. Debar, L. Me and M. Ducasse, "A 
Serial Combination of Anomaly and Misuse 
Idses Applied to Http Traffic," in  20th 
Annual Computer Security Applications 
Conference, 2004., pp. 428- 437, December 
2004. 

[16] P. Samarati, E. Bertino, A. Ciampichetti and 
S. Jajodia, "Information Flow Control in 
Object-Oriented Systems," IEEE 
Transactions on Knowledge and Data 
Engineering, vol. 9,  pp. 624-538, July-
August 1997. 

[17] S. Jajodia, B. Kogan and R. Sandhu, "A 
Multilevel-Secure Object-Oriented Data 
Model," Tech. Rep., pp.596-616, 1992. 

[18] A. Sabelfeld and A.C. Myers, " Language-
Based Information-Flow Security," IEEE 
Journal on Selected Areas in 
Communications, vol. 21,  pp. 5-19, January 
2003. 

[19] S. Jajodia and B. Kogan, "Integrating an 
Object-Oriented Data Model with Multilevel 
Security," in  1990 IEEE Symposium on 
Security and Privacy, pp. 76-85, May 1990. 

[20] S. Zdancewic, "Challenges in Information-
Flow Security," in  The First International 
Workshop on Programming Language 
Interference and Dependence (PLID), pp. 1-
5, August 2004. 

[21] J. Viega, J.T. Bloch and P. Chandra, 
"Applying Aspect-Oriented Programming to 
Security," Cutter IT Journal, vol. 14,  pp. 31-
39, February 2001. 

[22] K. Padayachee and J.H.P. Eloff, 
"Information Flow Control within Aop, 
Http://Www.Osprey.Unisa.Ac.Za/Technicalr
eports/Index.Html," vol.,  pp. 

[23] W. Masri and A. Podgurski, "Using Dynamic 
Information Flow Analysis to Detect Attacks 
against Applications," in  Proceedings of the 
2005 workshop on Software engineering for 
secure systems-building trustworthy 
applications, pp. 1 - 7, May 2005. 

[24] N. Kuntze, T. Rauch and A.U. Schmidt, 
"Security for Distributed Web Applications 



Via Aspect Oriented Security," in  
Conference Information Security South 
Africa, pp. 1-12, June-July 2005. 

[25] F. Ortin and J.M. Cueva, "Dynamic 
Adaptation of Application Aspects," Journal 
of Systems and Software, vol. 71,  pp. 229-
243, May 2004. 

[26] J. Viega and J. Voas, "Can Aspect-Oriented 
Programming Lead to More Reliable 
Software," IEEE Software, vol. 17,  pp. 19 -
21, November 2000. 

[27] D. Mahrenholz, O. Spinczyk and W. 
Schröder-Preikschat, "Program 
Instrumentation for Debugging and 
Monitoring with Aspectc++," in  
Proceedings of The 5th IEEE International 
Symposium on Object-oriented Real-time 
Distributed Computing, pp. 249-256, April - 
May 2002. 

[28] B. De Win, W. Joosen and F. Piessens. 
"Developing Secure Applications through 
Aspect-Oriented Programming." in  Aspect-
Oriented Software Development, Aksit, M., 
Clarke, S., Elrad, T. and Filman, R.E. Eds., 
Boston: Addison-Wesley, 2002, pp.633–650. 

[29] G. Kiczales, E. Hilsdale, J. Hugunin, M. 
Kersten and J. Palm, "Getting Started with 
Aspectj," Communications of the ACM, vol. 
44,  pp. 59-65, October 2001. 

[30] P. Robinson, M. Rits and R. Kilian-Kehr, 
"An Aspect of Application Security 
Management," in  AOSD'04 International 
Conference on Aspect-Oriented Software 
Development, pp. 1-7, March 2004. 

[31] R. Bodkin, "Enterprise Security Aspects," in  
AOSD'04 International Conference on 
Aspect-Oriented Software Development, pp. 
1-12, March 2004. 

[32] V. Shah and F. Hill, "An Aspect-Oriented 
Security Framework," in  DARPA 
Information Survivability Conference and 
Exposition, pp. 143, April 2003. 

[33] P. Slowikowski and K. Zielinski, 
"Comparison Study of Aspect-Oriented and 
Container Managed Security," in  AAOS 
2003:Analysis of Aspect-Oriented 
Software(Workshop held in conjunction with ECOOP 
2003), July 2003. 

[34] H. Masuhara and K. Kawauchi, "Dataflow 
Pointcut in Aspect-Oriented Programming," 
in  Proceedings of The First Asian 
Symposium on Programming Languages and 
Systems (APLAS'03), pp. 105-121, November 
2003. 

[35] K. Padayachee, J.H.P. Eloff and J. Bishop, 
"Aspect-Oriented Information Flow 
Control," unpublished. 

 
[36] H. Chivers and J. Jacob, "Specifying 

Information-Flow Controls," in  Proceedings 
of the 25th IEEE International Conference 
on Distributed Computing System Workshops 
(ICDCSW '05), pp. 114 - 120, June 2005. 

 
 


