Enhancing Optimistic Access Controls with Usage Control
Keshnee Padayachee1 and J.H.P Eloff2
1University of South Africa, School of Computing, PO Box 392, Pretoria 0002

{padayk@unisa.ac.za}
2Information & Computer Security Architectures Research Group, Department of Computer Science, University of Pretoria, Pretoria 0002

{eloff@cs.up.ac.za}
Abstract. With the advent of agile programming, lightweight software processes are being favoured over the highly formalized approaches of the past. Likewise access control may benefit from a less prescriptive approach with an increasing reliance on users to behave ethically. These ideals correlate with optimistic access controls. However ensuring that users behave in a trustworthy manner may require more than optimistic access controls. This paper investigates the possibility of enhancing optimistic access controls with usage control to ensure users conduct themselves in a trustworthy manner. Usage control enables finer-grained control over the usage of digital objects than do traditional access control policies and models. Further to ease the development and maintenance of usage control measures, it is posited that it is completely separated from the application logic by using aspect-oriented programming.
1
Introduction
With the advent of agile programming, lightweight software processes are being favoured over the highly formalized approaches of the 80's and 90's, where the emphasis is on "people not processes". Likewise access control may benefit from a less prescriptive approach with an increasing reliance on users to behave ethically. These ideals correlate with optimistic access controls which were first advocated by Povey [11]. However optimistic access controls alone, may not be enough to ensure that users behave in a trustworthy manner. This paper investigates the possibility of enhancing optimistic access controls with usage control to ensure users conduct themselves in a trustworthy manner. Usage control enables finer-grained control over the usage of digital objects than do traditional access control policies and models as trust management concerns are also given consideration.
It is evident that implementing access control is difficult and often in dynamic environments preconfigured access control policies may change dramatically depending on the context. Often in unpredicted circumstances users that are denied access could have prevented a catastrophe had they been allowed access. For example, a nurse at a hospital which been isolated during a tornado, and needs access to a patient's records but cannot access it as nurses are not authorised to access this information[11]. The costs of implementing and maintaining complex preconfigured access control policies sometimes far outweigh the benefits. Optimistic controls are retrospective and allow users to exceed their normal privileges. However, if a user accesses information unethically, the consequences could be disastrous. Hence this paper proposes that optimistic access control be enhanced with some form of usage control which may prevent the user from engaging in risky behaviour.
The next section of this paper discusses typical access control methods while section 3 presents the concept of optimistic access control. Section 4 describes the concept of usage control as a means to enhance optimistic access control, while the discourse in the section 5 focuses on a possible technique to implementing the model proposed using aspect-oriented programming. Section 6 concludes with directions for future work.
2
Background work on access control

Discretionary access control is an access policy that restricts access to files and other system objects such as directories and devices based on the identity of the users and/or the groups to which they belong [14]. With discretionary access control, no control is enforced on the use or dissemination of the information once this information has been released to an authorized user [10]. For example, a subject Jane may at her own discretion decide whether Sam may read the file entitled Logistics, assuming she owns the file. Discretionary access control is very flexible but highly vulnerable to Trojan Horses. As a result of this inadequacy, mandatory access policies were proposed

Mandatory access control [13] refers to access control policy decisions that are made beyond the control of the individual owner of the object. A central authority determines what information is to be accessible by whom, and the user cannot change access rights [10]. With mandatory access policies, every object and user in the system are assigned a sensitivity label, which consists of a level of secrecy and a set of compartments [1]. For example - the sensitivity label of a file may be SECRET [ALPHA, VENUS], where SECRET indicates the level and [ALPHA, VENUS] the compartments. The security level is an element of a totally ordered set. The levels generally considered are: TOPSECRET, SECRET, CONFIDENTIAL and UNCLASSIFIED, where TOPSECRET > SECRET > CONFIDENTIAL > UNCLASSIFIED [14]. The set of compartments is unordered. An access class ci dominates an access class cj if and only if the security level of ci is greater than or equal to cj and the compartments of ci include that of cj.

It is important to note, that the term ‘object’ does not imply ‘object’ in the typical object-oriented sense. In fact the term ‘subject’ is the active process that requests access to the ‘object’, which are passive entities, such as files or records.

Mandatory access control is deemed to be superior to discretionary access control as it is not vulnerable to illegal information flows. An illegal flow arises when information is transmitted from one object to another object in violation of the information flow security policy [15]. Even the most dominant model of recent times, the role-based access control model, is vulnerable to illegal information flows, as is demonstrated by Chon et al.[3] [22]. Within role-based access control (RBAC), system administrators create roles according to the job functions performed in a company or organisation, grant permissions (access authorisation) to those roles, and then assign users to the roles on the basis of their specific job responsibilities and qualifications [17].
These models often assume that users want and are able to determine permissions before the actual access is made. These mechanisms require a priori setting of permissions that are difficult to specify and maintain in highly dynamic environments. In other words these models assume that human beings cannot behave in a trustworthy manner and the system has to prevent them from behaving in an undesirable manner. Human trust is subjective and context specific and hence it difficult to form a definition that incorporates all views and types of trusts [6]. Integrating trust/distrust into the computing world requires transforming a complex social concept into an easy-to-use technical product that embodies the basic principles of trust/distrust [5]. Human beings make decisions based on the circumstances of a particular situation. For example, within a typical mandatory access control model, doctors may have the privilege to view sensitive information but nurses and clerks would not. With role-based access control, the role could be based on job responsibilities, for instance, a patient's record can be written by any health professional assigned to the role of ward physician [12]. However, this does not guarantee that a valid user demonstrates integrity or acts professionally.
Hence, if software systems could trust humans to decide how and when they can access information, this would be a more accurate assessment of trust. Trust on a humanistic level is highly complex and there are a variety of factors that influence trust. The emergence of trust-based access control frameworks is largely due to communications occurring among parties where each party is unknown. This communication is typically decentralised. There is a need for a new type of access control where the access is not preconfigured, where the user essentially is trusted to behave ethically, this will be addressed in the next section. If it is left to humans to make that judgement and not to the information system then the complexity of the system is shifted to allow all the users to interact with the system.
 While pessimistic access controls such as DAC, MAC and RBAC maybe highly appropriate in certain contexts, optimistic access controls maybe more appropriate in other circumstances. For instance, Stevens and Wulf [18] considered an actual inter-organizational co-operation scenario where it was found that traditional access control did not comply with the organization's requirements and that co-operation and competitive reasons motivate using interactive and optimistic access controls. Hong and Landany [7] also established that there is a need for privacy-sensitive systems to have a range of control and feedback mechanisms for building pessimistic, optimistic and mixed-initiative applications.
3
Optimistic Access control

 Optimistic access control is useful in cases where openness and availability are more important than complete confidentiality. Optimistic access control also has the advantage that it is far easier for people to use, since it is rather difficult for individuals to predict all of the possible usage scenarios and thus all of the necessary permissions. Optimistic access control is based on the assumption that most access control processes will be legitimate, and relies on controls external to the system to ensure that the organizations security policy is maintained. The scheme allows users to exceed their normal privileges in a way which is constrained so that it is securely audited and may be rolled back [11].
According to Povey [11] the optimistic enforcement of security policies are retrospective and relies on administrators to detect unreasonable access and take steps to compensate for the action. Such steps might include:

· Undoing illegitimate modifications

· Taking punitive action (e.g. firing, or prosecuting individuals)

· Removing privileges.

Most access control methods require setting of permissions that are difficult to specify and maintain in highly dynamic environments. Optimistic access controls trust human beings to perform legitimate accesses and takes retrospective action after such trust is breached. The initial costs of implementing of optimistic access control methods, is minimal however the fallout could be disastrous. If such a breach is discovered it could involve prosecution or performing a roll-back procedure. The roll-back procedure may be able to restore the system back to its original state before the breach. However, it is highly likely that the roll-back procedure may not be to unable to undo the damage done. This paper proposes that this type of access control should be augmented with some sort of control in ensure that humans behave ethically. It is proposed that optimistic access control be complemented with usage control.

4
Enhancing Optimistic Access Control with Usage Control

Sandhu and Park [16], recognizing the inadequacy of traditional access control models, proposed a new approach to access control called usage control (UCON). Consequently, there has been a trend towards complementing access control methods such as role-based access control with usage control (see [8]] and [21])). The UCON model encompasses emerging applications such as trust management in a unified framework. They claim that the missing components of traditional access control are the concepts of obligations and conditions. Obligations require some action by the subject (user) so as to gain or sustain access, e.g. by clicking the ACCEPT button on a licence agreement or agreeing not to distribute the document. Conditions represent system-oriented factors such as time-of-day, where subjects are allowed access only within a specific time period.
Sandhu and Park[16] have expanded usage control into a family of models for usage control, involving pre-authorizations and ongoing-authorizations. The implementation of pre-authorization is relatively simple as it warrants checking the conditions and obligations before the user may proceed however the implementation ongoing authorization is non-trivial. Further Sandhu and Park [16] do not offer a proposition towards how ongoing-authorizations may be implemented. We propose using multithreading to implement ongoing-authorizations (see Figure 1). If a subject (user) requests an object (such a file), the pre-conditions and pre-obligations are checked, then two separate threads are invoked representing ongoing-conditions and the ongoing-obligations respectively. As this model is based on optimistic access control, this model will allow the user proceed even if either the pre-conditions, pre-obligations, ongoing-conditions or the ongoing-obligations are invalid. However the system will advise the user that this access is invalid and the user has to accept responsibility for this illegitimate access. This illicit access
Unprivileged

will be red-flagged and logged. Perhaps, the user will be asked to justify his or her actions to the system administer at a latter stage.
It is important in terms of the enforcement of security policy that is centrally located and enforced uniformly. Accordingly the same notion would apply to the implementation of such policies in terms of application logic [19]. This type of deployment may be achieved though the use of aspect-oriented methodologies. Hence premise of the model is to create an aspect that will intercept calls when a subject requests access to an object and enforce optimistic access control enhanced with usage control. A significant amount of work has been conducted in aspect-oriented security in respect of access control. It has been shown that implementation of access control using aspect-oriented programming eases the implementation of security type concerns such as access control [4]. It results in an implementation that is easier to maintain and port to different environments. Many recent systems are based on three-tier architecture – access is via the web, the application programs reside within an application server, and the data stored within a database system[8]. However, only the application layer is considered in the next section.
5
An Aspect-Oriented Approach to Usage Control
An aspect is a modular unit of a crosscutting implementation that is provided in terms of pointcuts and advices, specifying what (advice) and when (pointcut) its code is going to be executed [9]. Aspects are similar to objects however, aspects observe objects and react to their behavior [20]. An aspect describes a recurring property of a program and can span multiple classes, interfaces or aspects [2]. Unlike a class though, aspects are injected into other types. They also allow programmers to write, view and edit a crosscutting concern as a separate entity. The application code and aspectual code will be combined at compile time by invoking a special tool called a weaver.
The generic aspect to enhance optimistic access control with usage control, defines the following three pointcuts. The first pointcut - intercepts those calls where a subject requests access to an object. The around advice defines code which is executed before the request is granted. This advice contains operations to test the pre-Obligations and the pre-Conditions. If the pre-Conditions and pre-Obligations are not satisfied, warnings are issued. Additionally the aspect should contain operations to log all accesses. It is important to note that an aspect cannot capture two joinpoints running in two different threads concurrently. Therefore we have to pass the context of this access to the threads via the AccessObject object. This contextual information will be required when ongoing conditions and obligations are no longer satisfied. Note that once the request method of the Access class is allowed to proceed it will have to pause periodically to allow the other threads to execute.
pointcut Intercept_Request(Access AccessObject):

execution(* *.request(..)) &&

!within(OngoingConditions) && target(AccessObject);

void around(Access AccessObject): Intercept_Request(AccessObject){

 pre_Conditions();

 pre_Obligations();

 Conditions conditions = new
Conditions(AccessObject);

 Thread conditionsthread = new Thread(conditions);

 conditionsthread.start();

 Obligations obligations = new
Obligations(AccessObject);

 Thread obligationsthread = new Thread(obligations);

 obligationsthread.start();

 proceed(AccessObject);

 obligationsthread.stop();

 conditionsthread.stop();

}

The next two pointcuts intercepts execution points that indicates the ongoing conditions and ongoing obligations are no longer satisfied. The after advice defines code which is executed after such an irregularity is detected. Here this represented by the stop method. If some action results in the stop method being called on either the conditions object or the obligations object then this call will be intercepted by the aspect. In either case, with optimistic access control, a warning is issued. Perhaps in other contexts the access could be terminated immediately. The getState() method gives contextual information about the access - such as whether the access is sustained despite the illegitimacy of the access.
pointcut OngoingConditions(Conditions conditions): call(* *.stop()) && target(conditions);

after(Conditions conditions):
OngoingConditions(conditions){

if (conditions.getState()){

//Warning Issued
 }

 }

pointcut OngoingObligations(Obligations obligations): call(* *.stop()) && target(obligations);

after(Obligations obligations): OngoingObligations(obligations){

 if (obligations.getState()){

 //Warning Issued
 }

 }

All the pointcuts and advices defined above will be encapsulated within a single aspect. In terms of this generic aspect a request could be either read or write access. Hence this generic aspect has to been re-specified according the application's naming.
6
Conclusions and Future Work
The element of trust within optimistic access control requires an investigation into human behaviours and responses to its application. It would be pragmatic to investigate whether the model presented here does in fact result in human beings behaving in a trustworthy manner? The aspect designed for the enhancement of optimistic access control has not be been tested within a real world context. However, confining all the operations relating to usage control to a single modular structure will ease both development and maintenance costs. This paper also explored the relationship between multithreading and crosscutting behaviour and demonstrated how ongoing authorizations may be maintained with multithreading.
This solution to access control draws inspiration from some of the principles advocated by agile methods. For example, the agile methods about embracing change and maintaining simplicity. Here access control was implemented in its most rudimentary form - as with agile methods, the reliance was on people to maintain control rather complicated processes. Using aspect-oriented programming contributed to the principles of embracing change and maintaining simplicity. As if changes are to be made to the access control procedures only a single aspect needs to be considered this prevents regression faults.
References

1.
Bell, E. and L.J. LaPadula, Secure computer systems: Unified Exposition and Multics Interpretation. 1976, Electronics Systems Division: Bedford USAF Base.

2.
Choi, J.P. 2000. Aspect-Oriented Programming with Enterprise JavaBeans. In Fourth International Enterprise Distributed Object Computing Conference (EDOC'00). Makuhari, Japan. September 2000, p. 252-261.

3.
Chon, R., T. Enokido, and V. Wietrzsk. 2004. Role Locks to Prevent Illegal Information Flow among Objects. In 18th International Conference on Advanced Information Networking and Applications (AINA'04) Volume 1. Fukuoka, Japan. 29-31 March 2004, p. 196-201.

4.
De Win, B., B. Vanhaute, and B. Decker. 2001. Security Through Aspect-Oriented Programming. In Advances in Network and Distributed Systems Security, IFIP TC11 WG11.4 First Working Conference on Network Security. Leuven, Belgium: Kluwer Academic Publishers, Boston. November 2001, p. 125-138.

5.
English, C., P. Nixon, S. Terzis, A. McGettrick, and H. Lowe. 2002. Security Models for Trusting Network Appliances. In 5 th Annual Workshop on Networked Appliances. Liverpool, England. October 2002.

6.
Grandison, T.W.A., Trust Management for Internet Applications (PhD thesis), in Department of Computing. 2003, University of London.

7.
Hong, J.I. and J.A. Landay. 2004. MobiSys' 04. Boston, Massachusetts, USA. p. 177-189.

8.
Li, X., N.A. Naeem, and B. Kemme. 2005. Fine-Granularity Access Control in 3-tier Laboratory Information Systems. In Database Engineering and Application Symposium, IDEAS. Montreal, Canada. 25-27 July 2005, p. 391- 397.

9.
Ortin, F. and J.M. Cueva. 2004. Dynamic adaptation of application aspects. Journal of Systems and Software. 71(3): p. 229-243.

10.Pfleeger, C.P. Security in Computing. 2 ed. 1997, United States of America: Prentice Hall.

11.Povey, D. 1999. Optimistic Security: A New Access Control Paradigm. In Proceedings of the 1999 workshop on New security paradigms. Caledon Hills, Ontario, Canada. September 22 - 24, 1999.

12.Pudney, P., e-Consent in consumer health & telemedicine., in Telemedicine Research Center. 2003, University of South Australia, http://www.pudney.net.au/~phillip/papers/econsent.pdf.

13.Ramachandran, R., D.J. Pearce, and I. Welch. 2006. AspectJ for Multilevel Security. In The 5th AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Software (ACP4IS). Bonn, Germany, 2006. 21 March 2006, p. 1-5.

14.Russell, D. and G.T. Gangemi. Computer Security Basics. 1991, Sebastopol, California.: O'Reilly and Associate.

15.Samarati, P., E. Bertino, A. Ciampichetti, and S. Jajodia. 1997. Information Flow Control in Object-Oriented Systems. IEEE Transactions on Knowledge and Data Engineering. 9(4): p. 624-538.

16.Sandhu, R. and J. Park. 2003. Usage Control: A Vision for Next Generation Access Control. In The Second International Workshop on Mathematical Methods, Models and Architectures for Computer Networks Security. St Petersburg, Russia. p. 17-31.

17.Sandhu, R.S., E.J. Coyne, H.L. Feinstein, and C.E. Youman. 1996. Role-Based Access Control Models. IEEE COMPUTER. 29(2): p. 38-47.

18.Stevens, G. and V. Wulf. 2002. A New Dimension in Access Control: Studying Maintenance
Engineering across Organizational Boundaries. In Proceedings of the ACM conference on
Computer Supported Cooperative Work (CSCW). New Orleans, Louisiana, USA.

19.Verhanneman, T., F. Piessens, B. De Win, and W. Joosen. 2005. Uniform Application-level Access Control Enforcement of Organizationwide Policies. In Proceedings of the 21st Annual Computer Security Applications Conference (ACSAC 2005).

20.Viega, J. and J. Voas. 2000. Can Aspect-Oriented Programming Lead to More Reliable Software. IEEE Software. 17(6): p. 19-21.

21.Xu, Z., D. Feng, L. Li, and H. Chen. 2003. UC-RBAC: A Usage Constrained Role-Based Access Control Model. Lecture Notes in Computer Science. Volume 2836/2003: p. 337-347.

22.Zheng, L.M., A.C. 2004., Dynamic Security Labels and Noninterference,Technical Report 2004 [Online]. Available: www.cs.cornell.edu/andru/papers/dynlabel.pdf <http://www.cs.cornell.edu/andru/papers/dynlabel.pdf> (Last accessed 26/10/2005). 2004.

main thread

Figure � SEQ Figure * ARABIC �1�:. Enhancing Optimistic Access Control with Usage Control

Stop Ongoing Obligations Thread

Stop Ongoing Conditions Thread

End Request

Check obligations – Issue warnings if obligations are not satisfied

Check conditions – Issue warnings if conditions are not satisfied

Start Ongoing Obligations Thread

Start Ongoing Conditions Thread

user requests to access object

Check pre-conditions

Check pre-obligations

