
REPRESENTING CHEMICAL STRUCTURES
USING OWL AND DESCRIPTION GRAPHS

by

Joanna Kathleen Hastings

submitted in accordance with the requirements

for the degree of

Master of Science
in the subject

Computer Science

at the

UNIVERSITY OF SOUTH AFRICA

Supervisor: Katarina Britz

Joint Supervisor: Tertia Hörne

Joint Supervisor: Robert Stevens

November 2010

ii

Acknowledgements

Many thanks to my supervisors, Katarina Britz, Tertia Hörne and Robert Stevens, for
their input, invaluable discussions, and patience. Thanks for the valuable input into the
project from Ulrike Sattler and for the early ground work laid in this area by Matthew
Horridge and Duncan Hull. Thanks also to Michel Dumontier and Colin Batchelor for
their expert advice.

Thanks to all my colleages at the European Bioinformatics Institute, in particular
Marcus Ennis and Kirill Degtyarenko, for their patience in answering questions; and
Christoph Steinbeck and Paula de Matos, for allowing me the time to pursue my studies
and for supporting my participation in this and many other fascinating projects.

Finally, this work would not be possible without the continuing love and support of
my partner, Sven Bergmann, and my children Aidan and Aliya, who endure with good
grace the excess of what should be their time that I spend in front of my computer.

The whole is more than the sum of its parts.
—ARISTOTLE (384 BC–322 BC)

iv

Abstract

Objects can be said to be structured when their representation also contains their parts.
While OWL in general can describe structured objects, description graphs are a recent,
decidable extension to OWL which support the description of classes of structured objects
whose parts are related in complex ways. Classes of chemical entities such as molecules,
ions and groups (parts of molecules) are often characterised by the way in which the
constituent atoms of their instances are connected via chemical bonds. For chemoin-
formatics tools and applications, this internal structure is represented using chemical
graphs. We here present a chemical knowledge base based on the standard chemical graph
model using description graphs, OWL and rules. We include in our ontology chemical
classes, groups, and molecules, together with their structures encoded as description
graphs. We show how role-safe rules can be used to determine parthood between groups
and molecules based on the graph structures and to determine basic chemical properties.
Finally, we investigate the scalability of the technology used through the development
of an automatic utility to convert standard chemical graphs into description graphs, and
converting a large number of diverse graphs obtained from a publicly available chemical
database.

Keywords: chemistry, ontology, description graphs, rules, OWL, chemical structures,
structured objects

v

vi

Contents

List of Figures x

List of Tables xii

List of Acronyms xiii

1 Introduction 1
1.1 Research questions . 2
1.2 Out of Scope . 3
1.3 Statement of the contributions . 3
1.4 Structure . 4

2 Some chemistry background 5
2.1 Chemical entities . 6
2.2 Properties of chemical entities . 12
2.3 Chemical substances . 13

3 Chemical Structures 15
3.1 Representation . 18

3.1.1 MOLfile . 18
3.1.2 Chemical Markup Language 19
3.1.3 SMILES . 21
3.1.4 InChI and InChIKey . 22

3.2 Sources of chemical data . 22

4 Description Logics 25
4.1 Logical representation . 26
4.2 Semantic networks and frames . 27
4.3 From semantic networks to Description Logics 29

4.3.1 A note about syntax . 30
4.4 The definition of complex concepts . 31

4.4.1 Constructors . 32
4.4.2 The TBox . 33

4.5 Knowledge about individuals . 34
4.5.1 Defining a Description Logics (DL) knowledge base 35

vii

4.6 Semantics . 36
4.7 Reasoning . 36

4.7.1 Terminological inferences . 36
4.7.2 Assertional inferences and query answering 37
4.7.3 Open world semantics . 38
4.7.4 Decidability and complexity 39

4.8 Basic DL languages . 40

5 Rules 41
5.1 Semantics . 42
5.2 Reasoning . 43

6 OWL - the Web Ontology Language 45
6.1 Background . 45

6.1.1 A note about terminology . 45
6.2 Expressivity and Web Ontology Language (OWL) flavours 46
6.3 Notes on semantics . 47
6.4 OWL Syntaxes . 47
6.5 Tools for working with OWL ontologies 48
6.6 Semantic Web Rule Language . 49

7 Representing chemical structures in OWL 51
7.1 Structured Objects . 51
7.2 Representation in TBox . 52
7.3 Representation in ABox . 54
7.4 Representation with Rules . 55

8 Description Graphs 57
8.1 Definition . 57
8.2 Decidability of Reasoning . 58

8.2.1 Boundedness of graphs . 58
8.2.2 Separation of properties . 59
8.2.3 Acyclicity . 59

8.3 Rules . 60
8.3.1 Definition . 61

8.4 Implementation . 62

viii

9 Software design and implementation 65
9.1 Overview . 65
9.2 Architecture . 66

9.2.1 Downloadable files . 67
9.3 Software libraries . 67

9.3.1 Chemical data conversion . 68
9.3.2 Programmatic manipulation of OWL ontologies 68
9.3.3 Reasoning over graph-enriched knowledge bases 69

9.4 Implementation . 69
9.4.1 Ontology . 69
9.4.2 Description Graphs . 69
9.4.3 Rules . 72

10 Results 75
10.1 Classification based on substructures 76
10.2 Determination of chemical properties from graphs 77
10.3 Scalability of reasoning over knowledge base 78

11 Discussion 81
11.1 Structure-based chemical classification by expert systems 81
11.2 Related work . 85
11.3 Comparison of our research to previous efforts 88

12 Conclusion 91

Bibliography 93

Appendices 99

A Ontology Syntax Formats 101

B Source Code Listing 105
B.1 Conversion of chemical graphs . 105
B.2 Creating the ontology . 108
B.3 Adding rules to the ontology . 110
B.4 Performing the reasoning . 112

C OWLED paper 115

ix

List of Figures

2.1 Some example uses of the science of chemistry 6
2.2 Isotopes of Hydrogen . 7
2.3 Copper(2) Sulphate Salt - an ionically bound crystal structure 8
2.4 Carbon compounds - methane, hexane, isohexane and cyclohexane . . . 10
2.5 Carbon compounds - ethane, ethene and ethyne 10
2.6 Chiral molecules - S-camphor and R-camphor 13
2.7 Diamond - a single large covalently bound molecule 13

3.1 Chemical skeleton graphs and coordinates 16
3.2 R group structural class definition for Carboxylic Acid 17
3.3 Connection table for paracetamol from (Indiana Cheminformatics Educa-

tion Portal, 2010) . 19
3.4 MOLfile format for Paracetamol . 20
3.5 CML format for Paracetamol . 21

4.1 A semantic network populated with some animal concepts 28

6.1 Protégé OWL ontology editing environment 48

7.1 Structured objects in chemistry – hexane, cyclohexane, paracetamol, aspirin 52
7.2 Unintended infinite tree model . 54
7.3 Some molecules which share a cyclohexane skeleton 55

8.1 Description graph representation of cyclohexane molecule 58
8.2 Large molecules and polymer representation 59
8.3 Description Graphs and Rules Syntax 62

9.1 Overall architecture . 67
9.2 Core ontology structure . 70
9.3 Illustration of the cyclobutane description graph 71
9.4 Some cyclic compounds . 73
9.5 Classification based on parthood . 74

10.1 Ontology hierarchy with test classes before classification execution . . . 75
10.2 Ontology hierarchy with test classes after reasoning 76
10.3 Performance results of classification 78

x

11.1 D-threonine and L-threonine . 83
11.2 Polycyclic molecular cages . 84
11.3 Structural relations in the ChEBI ontology 87

xi

List of Tables

6.1 Syntax OWL and DL . 46

10.1 Results of performance evaluation – No generated rules 79
10.2 Results of performance evaluation – Including generated rules 79

xii

List of Acronyms

DL Description Logics

KR Knowledge Representation

OWL Web Ontology Language

OBO Open Biological and Biomedical Ontologies

FOL First-order logic

TBox Terminology box

ABox Assertion box

2D two dimensional

3D three dimensional

DNA Diribonucleic acid

RNA Ribonucleic acid

CML Chemical markup language

PDB Protein Data Bank

XML eXtensible Markup Language

SMILES Simplified Molecular Input Line Entry System

InChI IUPAC International Chemical Identifier

CAS Chemical Abstracts Service

ChEBI Chemical Entities of Biological Interest

RDF Resource Description Framework

SWRL Semantic Web Rule Language

CDK Chemistry Development Kit

QSAR Quantitative Structure-Activity Relationship

xiii

GUI Graphical user interface

API Application programming interface

IUPAC International Union for Pure and Applied Chemistry

xiv

1
Introduction

Recent years have lead to an explosion in the availability of data in the chemistry domain,
just as in many other scientific domains. With this information explosion, however,
retrieving relevant information from the deluge of available information becomes an ever
harder problem. Computers have yet to replicate or even come close to the insight of
human experts, but computational processing is essential to filter the available information
so as to better facilitate the work of human experts. There is thus a clear need for the
development of more usable computational systems, which use some of the knowledge
available to human experts in order to more efficiently filter irrelevant information and
extract relevant information for display to human experts, and to perform some of the
work of human experts, thus enabling the user to cope with the higher volumes. Computer
systems which make use of expert domain knowledge, encoded in a computable format,
have been termed ‘expert systems’, and many such systems are in active use in chemistry
research today (Hemmer, 2008).

These expert systems rely on computable, tractable encodings of human domain
knowledge. Many different formats and systems have been developed for encoding
and storing such knowledge. These include relational databases which store “flat” fact-
like knowledge in structured tables; rule systems which store knowledge about actions
or situations which are triggered by certain preconditions being met in “if-then” type
rules; graph-like semantic networks which structure data in the form of nodes connected
by interrelationships between the nodes; and, more recently, logic-based ontologies

which encode the meaning of data through formal axioms. Such semantic networks
and ontologies are becoming widespread tools within the academic community in many
scientific domains, an example of which is the successful Gene Ontology (The Gene
Ontology Consortium, 2000).

In order to provide the maximum benefit to the academic community, expert systems

1

1.1. RESEARCH QUESTIONS

which are developed, and the domain knowledge which is encoded, must be developed as
open data and provided in formats compliant with open standards. Two of the primary
ontology formats which are in widespread use within the academic community are
the Open Biological and Biomedical Ontologies (OBO) format (The Gene Ontology
Consortium, 2010), which encodes knowledge in a semantic network-style formalism,
and the W3C standard OWL language (Smith et al., 2010), which encodes axiomatic,
logic-based ontologies in a variety of different levels of expressivity and syntaxes for
serialization.

Objects can be said to be structured when their representation also contains their parts.
Many objects in the domain of chemistry are structured in this fashion. While OWL
in general can describe structured objects, description graphs are a recent, decidable
extension to OWL which support the description of classes of structured objects whose
parts are related in complex ways beyond the level at which OWL is capable of modelling
(Motik et al., 2008c,b,a).

Chemical structures are represented as chemical graphs, which encode the connections
between parts of the chemical entity (Trinajstic, 1992). A classic cheminformatics
application on such chemical graphs is chemical classification based on the presence or
absence of substructures within the structures. OWL, as it currently stands, is incapable
of representing the required complex structures, particularly cycles (Cuenca Grau et al.,
2008). However, the required structures could be represented in description graphs, and
it is the subject of this dissertation to evaluate precisely this approach.

The remainder of this introduction is organised as follows. In the next section, we
present the research questions which we address in this dissertation. Section 1.2 describes
some related aspects that are not directly addressed by this work. Section 1.3 presents the
main contributions and, finally, Section 1.4 describes how this dissertation is organized.

1.1 Research questions

The goal of this research is to evaluate the utility, applicability, and practical constraints
in the modelling of complex chemical structures in the description graphs extension to
the standard OWL language.

In this dissertation, we will present a method for transforming chemical graphs into
description graphs, and apply this method to create an OWL knowledge base of chemical
entities enhanced with the structures of the chemical entities as description graphs. We
will consider to what extent the formalism of description graphs, together with rules for

2

1.2. OUT OF SCOPE

expressing conditionality, supports the type of reasoning which domain experts would
expect from a structure-enhanced chemical knowledge base, such as classification based
on chemical structures, and determination of chemical properties based on the structures.
Finally, we will assess the scalability of the technology by evaluating the times taken to
reason over knowledge bases of varying sizes.

The research questions which guide our implementation are:

• Can chemical entities be classified based on their substructures from description
graphs?

• Can basic chemical properties be determined from the description graphs?

• How scalable is the resulting knowledge base?

1.2 Out of Scope

Description graph editing tools. Currently, in the project, the description graphs are
created programmatically and added to the knowledge base. An improvement to the
method we used would be a facility which enabled the creation of description graphs
through a graphical user interface. However, such a utility is out of scope of this
dissertation.

1.3 Statement of the contributions

As a result of the work presented in this dissertation, the following contributions can be
highlighted:

• Implementation of a description graph-enriched knowledge base for chemical
structures.

• Evaluation of the description graph formalism and the scalability of reasoning.

In addition to these contributions, one paper presenting the findings of this dissertation
was produced:

• J. Hastings, M. Dumontier, M. Horridge, D. Hull, U. Sattler, R. Stevens, C. Stein-
beck, T. Hörne and K. Britz (2010), Representing chemical structures using OWL,
Description Graphs, and Rules. In Proceedings of OWL Experiences and Directions

(OWLED 2010), San Francisco, CA.

3

1.4. STRUCTURE

This paper is reproduced in Appendix C.
My contributions to the paper were:

• Designing the translation between chemical data and description graphs, including
selecting the source format, modelling information in terms of the target language
expressivity and defining the mapping.

• Developing the software which generated the OWL ontology, the description graphs
from chemical structures and the rules, adding these to the knowledge base, and
performing the reasoning.

• Writing the initial draft of the paper and revising it after discussion and review by
the other authors.

The other authors’ contributions were as follows: MH and DH provided the OWL API
for Description Graphs and assisted with specifying the software libraries required for
the implementation; RS, US, TH and KB assisted with the project conception and early
specification; RS and CS assisted with the chemistry-specific domain modelling; MD
presented the paper at the conference; and all authors read and reviewed the final paper.

1.4 Structure

The structure of this dissertation is as follows:
Relevant chemistry background is given in Chapter 2 and an overview of the chemical

graph formalism and standard syntaxes in Chapter 3. Chapter 4 gives an introduction to
Description Logics, the knowledge representation formalism on which OWL is based.

Chapter 5 describes the rules formalism which allows the representation of dynamic,
procedural knowledge. Chapter 6 gives an overview of the OWL language including
syntax and semantics, and Chapter 7 describes the core research problem, that is, the
limitation of OWL alone for the representation and reasoning with complex structured
objects.

Chapter 8 presents the description graphs extension to OWL and in Chapter 9 we
describe the implementation of the software for the project, showing how description
graphs can be used to implement a knowledge base about chemical structures. In Chap-
ter 10 we present the results of our research, followed by a discussion and comparison to
related work in Chapter 11.

Finally, we present our conclusions in Chapter 12.

4

2
Some chemistry background

In this chapter, we present an introduction to the domain of chemistry which
will provide the background and the domain-specific terminology which we
will use throughout the remainder of this dissertation.

Chemistry is the science which studies the structure and interactions of the atoms
and molecules from which all of the matter around us is constituted, both living and non-
living. Chemical entities are the atoms, molecules, and substances which are the objects
of study by chemists. The study of these entities and their properties and interactions has
lead to many of the beneficial developments of the modern world, including life-saving
modern medicines, such as antibiotics and anti-cancer drugs (Figure 2.1, a). It has also
lead to the development of novel materials such as plastics, synthetic fabrics, strong
metal alloys such as stainless steel (Figure 2.1, c), and the complex controlled chemical
reactions which underlie the batteries which now power many ubiquitous devices such as
cellular phones and cameras, and drive the colourful displays of these devices (Figure 2.1,
b). The methods of studying the structure of chemical entities have been applied in the
life sciences in the field of molecular biology, where the chemical structure of complex
biological molecules such as proteins have been studied together with their mechanisms
of interaction both with each other and with smaller molecules (Figure 2.1, d)1.

While traditionally an experimental science, advances in theoretical chemistry have
allowed increasingly complex predictions to be made about molecules and reactions
which have not been observed experimentally. This allows scientists to avoid or defer
expensive experimental investigations under certain circumstances. Central to theoretical
chemistry are techniques for the modelling and representation of chemical entities, and the
complex mathematical theories which are developed based on these models. Computers

1Images taken from Wikimedia Commons, except the protein structure which is taken from PDB record
1c0f(PDB, 2010).

5

2.1. CHEMICAL ENTITIES

Figure 2.1 Some example uses of the science of chemistry

are used for virtual experiments on theoretical or predicted chemical structures, and they
are used to help determine the structures of chemicals contained in samples isolated from
nature.

As more and more complex calculations have been relegated to the superior compu-
tational speed and accuracy of computers, the field of chemoinformatics, which is the
application of computers to solve problems in chemistry, has developed many algorithms
and techniques which are in common use in chemical and pharmaceutical industries
today. But in addition, the domain of chemistry, with its plethora of difficult and even
computationally intractable problems, has lead to advances in computing, with the field
of chemoinformatics being one of the drivers. It provided early test cases for the develop-
ment of complex stochastic and heuristic computational techniques which are now widely
used in Artificial Intelligence (Trinajstic, 1992).

2.1 Chemical entities

All of matter is composed from tiny particles called atoms. Atoms, in turn, are composed
from small, solid, positively charged nuclei, surrounded by clouds2 of negatively charged
electrons. Electrons are retained by the atom due to the electrostatic attraction between
the negatively charged electrons and the positively charged nucleus. An atom which is
neutral overall has the same number of electrons as protons, since electrons and protons
have equal but opposite charges.

Atoms have different types depending on the number of protons in the nucleus, which
is called the atomic number. A hydrogen atom, for example, has one proton in its nucleus,

2We here present a simplified description of atoms, deferring questions on the precise quantum mechan-
ical nature of electron orbitals, since this will not be relevant for our purposes.

6

2.1. CHEMICAL ENTITIES

thus has atomic number one. Carbon, on the other hand, has six protons in the nucleus,
thus has atomic number six. Atoms which have the same atomic number are defined
as being of the same chemical element, and share many important properties. There
are 112 known elements. Different numbers of neutrons in the nucleus of atoms of the
same element lead to atoms of the same types but with different weights, called isotopes
(Figure 2.2 illustrates the isotopes of Hydrogen). However, the reactivity is much the
same for different isotopes, as the reactivity is largely driven by electrostatic factors
which depend on the protons and electrons, and only somewhat affected by the total mass,
which depends on the number of protons and neutrons together, of the nucleus. Electrons
are arranged around the nucleus of the atom in regions called orbitals, each of which
can house a maximum of two electrons. The outermost orbitals form the location of the
reactivity of the atom.

Definition 2.1. An atom is a small, massive, positively charged nucleus surrounded by a
cloud of negatively charged electrons. In an atom of neutral charge, there are as many
protons in the nucleus of the atom as there are electrons in the electron cloud.

Definition 2.2. An isotope is the name for the different variants of atoms which have the
same atomic number, i.e. the number of protons in the nucleus, but different numbers of
neutrons. For example, Carbon has atomic number 6 but isotopes with mass number, i.e.
number of protons and neutrons together, 12, 13, and 14.

Definition 2.3. An ion is an atom with a non-zero charge, either positive or negative.
Charge occurs in integral units (...,-2,-1,0,1,2,...) which count the number of extra, or
missing, electrons surrounding that atom relative to the number of protons in the nucleus.

Figure 2.2 Isotopes of Hydrogen

Atoms themselves are very small and the number of different kinds of atoms is not
large enough to account for the range and diversity of chemical substances we observe

7

2.1. CHEMICAL ENTITIES

around us. However, atoms commonly join together semi-permanently in a process called
chemical bonding to form molecules, which consist of multiple atoms joined together in
stable configurations. There are many different ways for atoms to join together through
a wide range of bond strengths and flexibilities. The strongest bond is the covalent

bond, which is when two atoms share a pair of electrons in an energetically stable orbit
between them. Units of covalently bound atoms are called molecules. Ionic bonding

occurs when electrostatic attraction brings together a positively charged atom or molecule
and a negatively charged atom or molecule.

Figure 2.3 Copper(2) Sulphate Salt - an ionically bound crystal structure

Molecules joined together by ionic bonding are often called salts and form solids
which are structured and crystalline. Figure 2.3 illustrates the crystal structure of Cop-
per(2) Sulphate, an ionic crystalline solid. Many other, weaker forms of bonding or
interaction between chemical entities do exist, such as metal bonding, hydrogen bonding
and Van der Waals interactions, but we will discount these for the remainder of this docu-
ment as being somewhat outside of the scope of the current requirements for chemical
ontology. Covalent bonds may be single (one shared pair of electrons between the atoms),
double (two shared pairs of electrons), triple (three shared pairs of electrons) or aromatic.
Aromatic is a term used to refer to the situation in conjugated cycles of alternating single
and double bonds, where the valence electrons seem to form a resonance pattern which
distributes the electron orbitals stably around the ring structure.

Definition 2.4. A covalent bond is a bond between two atoms which consists of a
shared pair of valence electrons positioned between the two atoms. Each atom generally
contributes one electron to the shared pair on bond formation.

The concept of bonding is useful for a formal definition of a molecule in terms of

8

2.1. CHEMICAL ENTITIES

atoms and bonds. Informally, we can view a molecule as consisting of a set of connected
atoms. We must therefore define connection, and this we do, in terms of covalent bonds.

Definition 2.5. A set of atoms are said to be connected if each atom can be reached from
each other atom from a path which traverses only the bonds between atoms, i.e. without
jumping from an atom to another atom without there being a bond present between the
two.

Note that we will consider only covalent bonds as forms of connection in the remainder
of this document, but it is plausible that a different treatment would extend the definition
of connection to other weaker forms of chemical bonding as needed.

Now we are ready to define a molecule in terms of its atoms and their connection.

Definition 2.6. A molecule is a set of atoms which are connected (that is, each atom is
connected to the whole) by covalent bonds. The term is generally used only to refer to
entities which have a neutral charge overall, with molecular entity being used when the
overall charge is not necessarily neutral.

Definition 2.7. A molecular ion is a molecular entity which has an overall non-zero
charge.

The field of organic chemistry, in contrast to inorganic chemistry, is the domain of
chemistry interested in the study of Carbon-containing molecules. Historically, the term
‘organic’ was used because it was concerned with the study of the molecules involved
in the processes of living organisms. However, it was determined that these molecules
almost universally contained Carbon, and the field was later generalised to include all
Carbon-containing molecules whether biological or synthetic. The size and flexibility
of the molecules which form the subject matter of organic chemistry extends far beyond
what has been achieved in inorganic chemistry. This is largely due to the remarkable
flexibility of Carbon in terms of the bonds it is able to form with neighbouring atoms.

Carbon has four bonding electrons in its valence shell, which means that it can form
four bonds with other atoms, each bond consisting of one of the Carbon atom’s electrons
and one of the bonding atom’s electrons. A carbon atom’s bonds will be distributed
evenly over the atom’s surface, forming a tetrahedron, as illustrated in Figure 2.4 (a).

What differentiates organic from inorganic chemistry is the many ways Carbon can
bond to other atoms including other Carbon atoms. Carbon atoms bonded to other Carbon
atoms can form chains such as in Figure 2.4 (b) (hexane), branched chains (Figure 2.4 (c),
isohexane), and rings (Figure 2.4 (d), cyclohexane). Furthermore, neighboring Carbon

9

2.1. CHEMICAL ENTITIES

Figure 2.4 Carbon compounds - methane, hexane, isohexane and cyclohexane

atoms can form double and triple bonds in addition to single bonds, as illustrated in
Figure 2.5 (a), (b) and (c).

Figure 2.5 Carbon compounds - ethane, ethene and ethyne

Carbon and Hydrogen thus chain together through Carbon-Carbon bonds to form
complex structural skeletons for organic molecules. These skeletons may additionally
have other kinds of atoms attached, and those are crucial for rendering the differences
in bioactivity of the different kinds of organic molecule, but the main bulk of organic
molecules is generally made up of the Carbon skeleton or backbone (Carpi, 2003).

Definition 2.8. A skeleton of an organic compound is the chains, branches and/or rings
of carbon atoms that form the basis of the structure of an organic molecule.

10

2.1. CHEMICAL ENTITIES

Molecules may clearly be divided into parts, each of which may be interesting in
its own right. It is common to refer to the atoms within the molecule, but also to refer
to parts of the molecule which are especially interesting (by virtue of explaining the
reactivity, or structural composition, of the molecule) as groups. A group is a molecular
part together with one or more attachment points, which represent the location at which
the group is bonded to the whole. In this document the only molecular parts we will
consider will be those that are themselves internally connected (each atom within the part
can be reached by every other atom via a path which traverses bonds). In a more general
treatment structurally disconnected parts might be considered, such as pharmacophores,
which are a set of groups or features of a molecule which are spatially dispersed but
which together are responsible for a certain kind of biological or pharmacological activity,
usually described in terms of the parts and the angles and distances between them.

In organic chemistry, groups which are attached to the main carbon-hydrogen skeleton
of the molecule are commonly termed functional groups as they are usually the sites of
highest reactivity of the molecule and responsible for many of the molecule’s properties.

Definition 2.9. A group is a defined linked collection of one or more atoms, within a
molecular entity.

Definition 2.10. A functional group is an atom, or a group of atoms that has similar
chemical properties whenever it occurs in different compounds. It defines the characteris-
tic physical and chemical properties of families of organic compounds (McNaught and
Wilkinson, 1997).

We find it convenient to refer to “chemical entities”, to be understood as any of the
different named individual chemical entities mentioned here, together with others which
we have not defined here but which include radicals (a molecular entity with an unpaired
electron; the unpaired electron makes the entity highly reactive) and residues (a kind of
group, having two attachment points rather than one, commonly used to refer to the amino
acids which chain together to form polypeptide chains such as Diribonucleic acid (DNA)
and Ribonucleic acid (RNA)).

Definition 2.11. A chemical entity is any constitutionally or isotopically distinct atom,
molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a
separately distinguishable entity (McNaught and Wilkinson, 1997).

11

2.2. PROPERTIES OF CHEMICAL ENTITIES

2.2 Properties of chemical entities

In this section we define some properties of chemical entities which may be relevant for
chemical classification.

Aromaticity is the name used to refer to compounds which contain at least one cyclic
part (ring) which is composed of an alternating pattern of single and double bonds3. Rings
of this type are unusually stable; far more stable than the double bonds they are composed
of would usually warrant. Furthermore, their atoms show even spacing, while ordinarily
double bonds have a shorter bond length than single bonds. It is now understood that
aromatic cycles are actually forming a conjugated system with the bonds “shared” across
the ring, such that each bond can be thought of as being composed of 1.5 shared electron
pairs rather than one or two.

Definition 2.12. Aromaticity is a chemical property in which a conjugated ring exhibits
a stabilization stronger than would be expected by the stabilization of conjugation alone.
It can be considered a manifestation of cyclic delocalization and of resonance.

The stereochemistry of a molecule refers to the spatial arrangement of the atoms
within the molecule. Sometimes, a molecule can have the same composition, even to the
level of the bonds between individual atoms, and still have different properties, by virtue
of being shaped differently. Molecules consituted by identical atoms are termed isomers,
and molecules consituted by identical atoms and bonds, but nevertheless displaying
different spatial arrangements, are termed stereoisomers. Molecules are termed chiral

when they lack an internal plane of symmetry and have a mirror image stereoisomer form.
The mirror images are called enantiomers. Figure 2.6 illustrates two chiral molecules.
Notice that they are mirror images of each other. However, should the one be rotated,
the relevant hydroxy group would in fact be pointing upwards from the plane of the
remainder of the molecule, not downwards.

A term commonly used to describe molecules in organic chemistry is saturation:
molecules may be described as being either saturated or unsaturated. Here, what is meant
by saturated is that the molecule contains only single bonds in the hydrocarbon skeleton.
A molecule with double or triple bonds in the skeleton, such as benzene, is described as
unsaturated. This categorisation is useful for describing several properites of molecules
such as the reactivity and the structural rigidity.

3This is a slight simplification of the full story, as not all rings with alternating single and double bonds
are aromatic. The exact criteria for deducing aromaticity are given by Hueckel’s law. For details see
(Trinajstic, 1992).

12

2.3. CHEMICAL SUBSTANCES

Figure 2.6 Chiral molecules - S-camphor and R-camphor

Finally a property of molecules which is often referred to explicitly in organic chem-
istry is the presence of, and number of, cycles and fused cycles. A cycle is a bond path
through a molecule that returns to the same atom; two cycles are fused if they share at
least one bond (but are nevertheless distinct cycles, that is, there is at least one bond
which is not shared).

2.3 Chemical substances

Larger molecules, called macromolecules, are sometimes formed in extended covalently
bound units. The division between small molecules and macromolecules is vague,
however, and at least somewhat dependent on perspective and context. Diamonds, for
example, as illustrated in Figure 2.7, consist entirely of a single huge covalently bound
molecule. DNA, the molecule on which the genetic code of life is encoded, also consists
of a single long covalently bound molecular chain. Other biochemical macromolecules
include proteins and the many different kinds of RNA.

Figure 2.7 Diamond - a single large covalently bound molecule

13

2.3. CHEMICAL SUBSTANCES

Aggregates of molecules, atoms, ions or other kinds of chemical entities are called
chemical substances or chemical species. A chemical substance usually consists of very
many individual chemical entities. For the most part, chemical substances are what we
deal with in everyday life and in the laboratory. It is usually very difficult to isolate or
observe a particular individual molecule, although advances in microscopy have made
this possible in recent years. Chemical substances may be homogeneous (consisting of
individuals of only one kind) or heterogeneous (mixed). Many properties commonly
ascribed to chemical entities are best understood as being properties of substances, for
example state (solid, liquid, gas), or boiling or melting point, do not make sense as a
property of a single molecule, but only of an aggregate (substance).

Definition 2.13. A chemical substance is an aggregate collection of chemical entities.

In the next chapter we discuss chemical structures and present the chemical graph, a
commonly used formalism for describing chemical structures in organic chemistry.

14

3
Chemical Structures

In this chapter, we present chemical structures as special properties of com-
plex chemical entities, and discuss the chemical graph formalism. We present
the representational formats which are commonly used to represent and ma-
nipulate the structural information of chemical entities in Section 3.1, and
publicly available sources of data on chemical structures in Section 3.2.

The term chemical structure refers to the connection of atoms within a complex
chemical whole. For example, molecules are composed of atoms connected by hydrogen
bonds, and salts are composed of charged ions connected by ionic bonds.

Graph theory, as a branch of mathematics, is concerned with mathematical entities
which describe the way in which objects are connected1. The principal entity in graph
theory is the graph, which includes a set of objects as vertices, and the binary relations
between those objects as arcs, or edges, of the graph. Graph theory has found many
applications in chemistry where graphs can be used to represent many different chemical
objects including molecules, reactions, crystals and clusters (Trinajstic, 1992). The
particular type of chemical graph which will be the focus here is the molecular graph,
which represents the constitution of a molecule in terms of its atoms and bonds.

The chemical, i.e. molecular and constitutional, graph describes the atomic con-
nectivity within a molecule in terms of labelled nodes for the atoms or groups within
the molecule, and labelled edges for the (usually covalent) bonds between the atoms or
groups. The graph, strictly speaking, thus encodes only the constituents and their bonds.
However, the representational formalism is usually extended to include other information
such as idealised two dimensional (2D) or three dimensional (3D) coordinates for the
atoms, bond order (single, double, triple) and type (e.g. aromatic). In diagrammatic

1Parts of this section on chemical graphs first appeared in (Hastings et al., 2010).

15

representation, bond order is illustrated by the number of parallel lines connecting atoms –
one line for a single bond, two lines for a double bond, and so on – and aromatic bonds are
represented by either a single line plus a dashed line or an alternating pattern of single and
double lines. Chirality, i.e. stereochemistry, is illustrated by a triangle-shaped ‘wedged’
bond which may be solid (indicating the direction up) or dashed (indicating the direction
down). Figure 3.1 illustrates examples of chemical graphs, 2D and 3D coordinates, and
the corresponding 2D and 3D visualisations as are commonly used in chemistry.

Note that hydrogen nodes, and the edges linking them to their nearest neighbouring
atoms, are not explicitly displayed in Figure 3.1. This is common in the representation of
chemicals by graphs, since the presence and location of hydrogen atoms in the molecule
can be inferred from the nature and connection of the remaining atoms. Also notice that
carbon atoms, which form the ‘corners’ of the images as displayed, are not labelled as
such. These representational economies are due to the prevalence of carbon and hydroden
in organic chemistry, thus allowing these efficiencies which have been introduced for
clarity of depiction and efficiency in storage. Hydrogen-suppressed graphs of this form
are called skeleton graphs.

Figure 3.1 Chemical skeleton graphs and coordinates

The coordinates given in Figure 3.1 are given in ‘coordinate space’ with respect to
the axes of the images, that is, they are unitless. Further chemical detail which can be
encoded in various different representational formalisms includes charge (positive or
negative), radicals (unpaired electrons) and isotopes; types of bonds (single, double, triple,

16

or aromatic2) and chirality3.
Chemical graphs simplify the complex nature of a molecule, and enable the schematic

visualisation of molecules that are commonly used by chemists. They also enable various
useful predictions to be made about physical and chemical properties of molecules which
are based on connectivity. They are crucial tools in the domain of chemoinformatics,
allowing accurate computable representation and identification of chemical entities.
Chemical graphs also allow for the representation of classes of chemical entities, where
a chemical class should be understood as a set of molecules which share a common
element and potentially also a common reactivity or other interesting chemical feature.
Chemical classes are often illustrated by means of one or more ‘R’ groups being included
in the chemical graph, which may be replaced with any chemical group attached at that
point. Figure 3.2 shows an ‘R’ group representation of the class of carboxylic acids. The
group labelled R1 in Figure 3.2 (a) may be replaced with any other molecular group. For
example, in acetic acid (vinegar) illustrated in Figure 3.2 (b), R1 is replaced by a methyl
group (CH3).

Figure 3.2 R group structural class definition for Carboxylic Acid

Much of organic chemistry can be expressed by using the graph formalism. However,
it should be noted that chemical graphs do not describe everything in chemistry. They
do not work for non-pairwise bonding as found in metal coordination compounds, ionic
bonding as found in minerals, and hydrogen bonding which is responsible for base pairing
in DNA and RNA. It is also impossible to draw a chemical graph that defines broad
classes such as ‘organic molecule’, or ‘carbohydrate’, and similarly most of the families
of naturally-occurring chemical compounds. Furthermore, there are molecules such
as D-glucose that rapidly interconvert (tautomerize) between forms with very different

2In the chemical graph formalism, aromaticity may be deduced from an alternating pattern of single
and double bonds in a conjugated cyclic system.

3Chirality can be ‘hacked’ into the 2D connection table by creating special sorts of edges (‘up’ and
‘down’), or not specially represented but following from the properties of the Cartesian coordinates of the
atoms in a 3D connection table

17

3.1. REPRESENTATION

(ring-like and chain-like) chemical graphs.
Nevertheless, a broad range of chemical entities are able to be represented with chem-

ical graphs by various conventions which are widely used and agreed on for approximate
representation within the limits of the graph formalism. For example, polymers are
usually represented by partial, schematic chemical graphs, in which the structure of the
repeating unit is explicitly represented together with linkage points on either end. Ionic
bonding is not considered as resulting in a single molecule, thus, salts are represented as
two (or more) separate chemical graphs, on each of which a non-zero charge is specified.

In this section we have introduced the chemical graph formalism, and in the next
section we discuss specific technical encoding formats which have been developed around
this formalism.

3.1 Representation

Together with the development of chemical graph theory and the theoretical operations
used in predictions of properties, standards for the computational representation of the
graphs themselves were developed4. The core representational formalism is as a decorated
connection table (Gasteiger and Engel, 2003), with both atoms and their connections
(bonds) being assigned additional properties to further describe the molecule. Other,
more compressed forms of representation have been developed, such as the popular line
notations which compactly represent the structure while allowing for efficient computer-
based searching.

Figure 3.3 illustrates the connection table formalism that underlies all of the following
specific representation formats. Each atom in the chemical structure graph is given a
numeric identifier in an atom table, and then bonds are illustrated as connections between
atom numbers illustrated in a bond table.

Note that the numbering of the atoms in a molecule needs to be reproducible if
molecular representations are to be compared. Algorithms thus exist which generate
unique (canonical) numberings for the atoms within molecules in a consistent fashion.

3.1.1 MOLfile

The MOLfile format is owned by the Elsevier MDL company (MDL, 2010), and is the
most commonly used format for chemical data exchange. It is a flat ASCII text file with

4Parts of this section on representation of chemical graphs first appeared in (Hastings and The ChEBI
Team, 2010).

18

3.1. REPRESENTATION

Figure 3.3 Connection table for paracetamol from (Indiana Cheminformatics Education Portal,
2010)

a specific format, consisting of an atom table, describing the atoms contained in the
chemical entity, and a bond table, describing the bonds between the atoms. Both the atom
table and the bond table are extended with additional properties including the isotope and
charge of the individual atoms, and the bond order and type of the bonds.

Figure 3.4 shows the MOLfile for the 2D representation of paracetamol.

3.1.2 Chemical Markup Language

Chemical markup language (CML), is an extensible eXtensible Markup Language (XML)-
based representation of the same information which is encoded in the MOLfile format
(Murray-Rust et al., 2001). The benefit of using CML rather than the MOLfile is that,
like most flat-file-based formats, the MOLfile format is inflexible and vulnerable to minor
formatting errors rendering the entire file incomprehensible by software (i.e. it is very
‘brittle’). Furthermore, it is difficult to extend since with any change to the file format, all
software and tools must be redeveloped to work with the new format. This is avoided
with an extensible XML format such as CML in which the meaning of the data is encoded
in the file together with the data, rather than being specified only by a very specific

19

3.1. REPRESENTATION

Figure 3.4 MOLfile format for Paracetamol

formatting location within the file, thus allowing formatting rearrangements without loss
of interpretability.

The formatted text in Figure 3.5 shows the CML for the 3D representation of parac-
etamol. The core information content of a CML file is equivalent to, and losslessly
interconvertible with, the MOLfile representation. But the CML contains additional meta-
data in the preamble of the file which was not contained in the MOLfile representation
– for example, formula and systematic name – which is possible because the CML is
extensible.

This CML file includes three-dimensional coordinates is included below. This file
was adapted from that provided as the structure of a molecule found bound to a protein
structure in the Protein Data Bank (PDB) (PDB, 2010), molecule code ‘TYL’; hence
the availability of three-dimensional coordinates, as the PDB is a repository for the 3D
structures of proteins together with bound ligands.

Notice that the CML representation of the molecule is more verbose than the MOLfile,
and indeed atoms and bonds have been abbreviated in this illustrative image. As each
data item is explicitly encoded in XML, it allows the meaning of the data to be much
more readily interpreted, whereas the MOLfile is almost uninterpretable unless you know
the meaning of the different columns and blocks in the file format beforehand.

20

3.1. REPRESENTATION

Figure 3.5 CML format for Paracetamol

3.1.3 SMILES

Simplified Molecular Input Line Entry System (SMILES) is a line notation (a typo-
graphical method using printable characters) for entering and representing molecules and
reactions. The original SMILES specification was developed by Arthur Weininger and
David Weininger in the late 1980s. It has since been modified and extended by others,
most notably by Daylight Chemical Information Systems Inc. (Daylight, inc., 2010).

The SMILES format caters for unique representations of distinct chemical entities. A
drawback is that the SMILES output can depend on the program that generates it.

The SMILES for paracetamol is:

CC(=O)Nc1ccc(O)cc1

Here again, hydrogens are implicit. Also, to reduce the space of the representation,
single bonds are also implicit between neighbouring atoms. Atoms are numbered when
necessary to illustrate where the same atom appears again (i.e. when the molecule
contains a cycle). Brackets indicate branching, and ‘=’ indicates a double rather than a
single bond. Lowercase letters indicate aromaticity.

21

3.2. SOURCES OF CHEMICAL DATA

The SMILES representation retains a high degree of human readability while com-
pressing the structural encoding of the molecule into as few characters as possible.
However, as we mentioned before, different algorithms exist which produce different
SMILES codes for the same molecule, so care must be taken to cite the implementation
used when storing structures of molecules primarily as SMILES.

3.1.4 InChI and InChIKey

The IUPAC International Chemical Identifier (InChI) is a non-proprietary, structured
textual identifier for chemical entities (IUPAC, 2010) which is generated by an algorithm
from a MOLfile representation of the chemical entity. The purpose of the InChI is to
provide an identifier for the chemical entity independently of how it is drawn, in contrast
to the MOLfile for a particular structure, which does differ depending on how the structure
is drawn. The generated InChI identifier is not intended to be read and understood by
humans, but is particularly useful for computational matching of chemical entities, such
as when a computer has to align two different sets of data derived from different sources.

The InChIKey is a hashed key for the InChI, which allows easier database lookups as
it has fewer characters and is of a specified, invariant length of 14 characters.

The InChI and InChIKey for paracetamol are:

InChI=1/C8H9NO2/c1-6(10)9-7-2-4-8(11)5-3-7/h2-5,11H,1H3,(H,9,10)/f/h9H

InChIKey=RZVAJINKPMORJF-BGGKNDAXCW

In this section we showed some commonly used representational formalisms for
chemical graphs. In the next section we discuss the main publicly available sources for
chemical data, including chemical structures in one or more of the above representation
formalisms.

3.2 Sources of chemical data

The bioinformatics community has developed a policy of open access and open data since
its inception. This is in sharp constrast to the situation in the field of cheminformatics,
which has traditionally been a closed-access area. Chemical structures and associated data
were published in expensive journals and curated into commercial, expensive databases
such as Chemical Abstracts Service (CAS), provided by the American Chemical Society
(CAS, 2010), and Beilstein, provided by Elsevier since 2007 (Beilstein, 2010). In recent

22

3.2. SOURCES OF CHEMICAL DATA

years this has been changing with more and more chemical data being brought into the
public domain. This has been in part due to the efforts of the bioinformatics community,
which needed access to chemistry data to support systems-wide integrative research. It
has also been in part due to the joint efforts of pharmaceutical companies to reduce the
expense of pre-competitive research, since pharmaceutical companies have historically
each expensively maintained their own database of chemicals for pre-competitive research
(Marx, 2009).

In 2004, two complementary open access databases were initiated by the bioinfor-
matics community, Chemical Entities of Biological Interest (ChEBI) (de Matos et al.,
2010) and PubChem (Sayers, 2005). PubChem, containing 26 million compound struc-
tures, serves as automated repository on the structures and biological activities of small
molecules. ChEBI is a manually annotated database of small molecules containing around
550000 compound structures. Both resources provide their chemical structures in several
different formats and include additional useful information such as names and calculated
chemical properties, and therefore are sources of chemical structural data for primary
academic research in many domains.

ChEBI additionally provides a chemical ontology, which is discussed further in
Chapter 11. Additional publicly available resources for chemistry information which
are becoming more widely used are ChemSpider (Williams, 2008), which provides a
integrated cheminformatics search platform across many publicly available databases,
and Wikipedia Chemistry (Wikipedia, 2010). Many smaller databases also exist, often
dedicated to particular topic areas or types of chemicals. For a full listing of publicly
available chemistry data sources, see (CHEMBIOGRID, 2010). For a discussion see
(Williams, 2009).

23

3.2. SOURCES OF CHEMICAL DATA

24

4
Description Logics

In this chapter, we describe the Description Logics formalism for knowledge
representation. We start with the historical development of logical represen-
tation in Section 4.1 and then describe the development of semantic networks
in Section 4.2. We show how a First-order logic (FOL) formalism can be
used to give a semantics to semantic networks in Section 4.3. The definition
of complex concepts is discussed in Section 4.4 and the specification of the
properties of individuals in a knowledge base in Section 4.5. In Section 4.6
we characterise the semantics of DLs. Section 4.7 gives an overview of the
standard reasoning tasks and methods. Finally, selected important basic DLs
are presented in Section 4.8.

Knowledge representation is the branch of artificial intelligence that is concerned
with the representation of human knowledge in a form that renders it accessible for
computational processing (Nardi and Brachman, 2007). The goal is to provide descrip-
tions of the world in different domain areas that can be used effectively by intelligent
applications. Intelligence in this context refers to the ability of the system to derive the
implicit consequences of the facts which are explicitly provided to it.

Historical approaches to knowledge representation can be divided into those which
were developed within the formal predicate logic, with inferences drawn by verifying
logical consequences of the axioms captured, and others which were modelled around
ideas emerging from studies in cognitive psychology of how humans encoded knowledge
in interconnected semantic networks.

25

4.1. LOGICAL REPRESENTATION

4.1 Logical representation

The logic-based approach to knowledge representation uses the tools of formal logic and
logical deduction to represent and reason over knowledge expressed as logical axioms, in
particular the predicate, or first-order logic (FOL). In the following section, we follow
the terminology and definitions introduced in Ben-Ari (2001).

FOL is used to model axioms about predicates, which are relations that operate on
values from a particular domain.

Definition 4.1. A predicate is a relation R that takes n values from a domain D and maps
them into the boolean domain {T,F}. The number of values that a predicate takes from
the domain is called the arity of the predicate. Predicates taking one value are called
unary predicates, those taking two values are called binary predicates, those taking three
values are called ternary predicates, and so on.

A formula in FOL is built up from predicate symbols, which represent relations
over some domain of interest; variables, which range over values from the domain;
constants, which represent domain elements, the usual boolean connectives, as well as
two quantifiers, ∀ and ∃.

The quantifiers used in predicate logic are ∀ (for all), which means that the formula
within the scope of the quantifier must hold for all values within the domain; and ∃ (there
exists), which means that the formula within the scope of the quantifier must hold for
some value within the domain. For example,
∀x∀y Mother (x,y) −→ (Female (x) ∩ Parent (x,y))

means that for every x and y within our domain of interest (which in this case is human
beings), if x is the Mother of y, then we can derive that x is Female, and furthermore that
x is the Parent of y. This is another example,
∀x∃y Parent (y,x)

means that for all x (human beings, in our domain) there is some y such that y is the
parent of x. Note that the following similar-seeming formulation would not be true in our
domain,
∀x∃y Parent (x,y)

as this states that for all x there exists some y such that x is the parent of y, and this
is clearly not the case, since there are many people who do not have children in their
lifetimes.

Formally, the semantics of formulae in FOL are given by assigning Interpretations to
the formulae. An interpretation assigns values to the variables and constants of a formula

26

4.2. SEMANTIC NETWORKS AND FRAMES

from entities in the domain, such that the truth value of the formula can be evaluated.

Definition 4.2. Given U , a set of formulas such that {p1, ..., pm} are all the predicate
letters and {a1, ...,ak} are all the constant symbols appearing in U ,
an interpretation I is a triple

(D, {R1, ...,Rn }, {d1, ...,dn}),
where D is a non-empty domain, Ri is an assignment of an ni-ary relation on D to the
ni-ary predicate letter pi and di ∈ D is an assignment of an element of D to the constant
ai (Ben-Ari, 2001).

The first-order predicate logic provides a powerful framework for encoding knowledge
which provides many tools for making deductions or inferences from the expressed
knowledge. For example, from a statement that all parents are tired, and that John is a
parent, we can infer that John is tired. Formally,
∀x Parent (x) −→ Tired (x)
Parent (JOHN)

The system can then conclude that
Tired (JOHN)

4.2 Semantic networks and frames

Semantic networks consist of entities and connections between entities. They were based
on studies in cognitive psychology, and considered to be close to the way that knowledge
is actually stored in the human brain. Evidence for the interconnected network storage
model is given by experiments on human cognition which measured that the response
time for assessing category statements (such as ‘a robin is an animal’) increased as
the relative hierarchical distance between the subject (robin) and the object (animal)
increased (Sternberg, 2003). It was also found that the response time for retrieving
properties associated with concepts increased the more general the property was. That
is, it took less time to answer ‘do robins have red breasts’ than it did to answer ‘do
robins breathe’, where the latter (breathing) can be seen as a property that is general to a
large number of living creatures, and thus it might be stored at a further distance in the
cognitive knowledge network (being associated with ‘animal’ rather than with ‘robin’).

Figure 4.1 illustrates the core connection type in a semantic network, namely the
hierarchical connection, which is called ‘IS-A’. It connects more specific entities to more
general entities. The benefit of the hierarchical organisation is that properties can be

27

4.2. SEMANTIC NETWORKS AND FRAMES

Figure 4.1 A semantic network populated with some animal concepts

inherited by all descendents of a general entity, which allows for a compact and concise
representation. For example, robin ‘IS-A’ bird and bird ‘IS-A’ animal. Other relationships
can be used to specify any kind of property relevant for encoding knowledge in the
domain.

Inheritance of properties from general to specific entities in the hierarchy is one form
of inference from explicit to implicit knowledge within semantic network structures that
can be performed by intelligent applications. Additional forms of inference can make
use of additional relationships in order to traverse links between entities and deduce new
facts based on the structure of the network.

In addition to a position in the graph, both hierarchically and in terms of custom
relationships to specify properties, entities in a semantic network may have a prescribed
internal structure. For example, an entity Person may have prescribed attributes age and
name. Such structured entities are referred to as Frames, where the frame can be thought
of as a template for an entity in that domain. Since an attribute of a frame can itself be
another frame, this representation is immediately very powerful in what it can represent.

Due to their similarity to the supposed structure of cognitive representations, their
compactness, and their expressive power, semantic networks and frames became very
popular as forms of knowledge representation (Nardi and Brachman, 2007). However,
they provided no semantics for the knowledge encoded, which hindered the development

28

4.3. FROM SEMANTIC NETWORKS TO DESCRIPTION LOGICS

of computational tools and algorithms to work with knowledge represented in that format,
provide consistency checking, and computationally draw inferences from the explicit
knowledge. Furthermore, in the absence of formal semantics, system implementations
diverged in their interpretation of the underlying data, with the result that different systems
behaved differently even when presented with very similar underlying network structures
and relationships.

An important step in the direction of providing semantics and formal rigour to
semantic networks and frames was the recognition that the core features of frames and
semantic networks could be given a semantics within FOL by regarding the entities
within the network as unary predicates and the relationships between entities as binary

predicates.
It was then recognised that encoding the features of the semantic networks did not

require the full expressive power of FOL, but that such a characterisation of semantic
networks used a fragment of FOL. In fact, different properties of semantic networks lead
to different fragments of FOL. Each fragment has distinct properties and profiles with
respect to drawing computational inferences, and many optimisations were able to be
introduced to solve specific reasoning problems for specific fragments which would not
have applied to full general FOL reasoners.

It is from research in this area that the field of Description Logics was born. Ini-
tially, research began under the label terminological systems to emphasise that logical
formalisms were being used to create models for the terminology and relationships in
a particular domain, following on from semantic networks. However, over time, the
focus gradually shifted to the logical properties of the different fragments, and the term
Description Logics became popular.

4.3 From semantic networks to Description Logics

The core elements in a DL knowledge base are concepts and roles. The concepts represent
entities in a domain, corresponding to the nodes in a semantic network. The roles represent
relations between concepts, corresponding to the links in a semantic network. Considered
as a fragment of FOL, concepts can be viewed as unary predicates and roles as binary

predicates1 (Nardi and Brachman, 2007).
When modelling an extract of the given example semantic network in Figure 4.1,

1Note that some expressive DLs do admit roles with arity greater than two, but most DLs do not, so for
purposes of this introduction we find it sufficient to define roles as having arity two.

29

4.3. FROM SEMANTIC NETWORKS TO DESCRIPTION LOGICS

we might have concepts such as Feline and Mammal, and roles such as has_child and
suckles.

Regarding the concepts and roles as unary and binary predicates in a FOL interpreta-
tion, taking values from a domain D, we might be interested in modelling, for example,
that mammals suckle their young. This can be represented in FOL as:

(∀x∀y)[(Mammal(x)∧Mammal(y)∧has_child(x,y))→ suckles(x,y)]

The hierarchical relationship ‘IS-A’, which is the backbone of the hierarchical network-
based approach to knowledge representation, can also be given semantics within a logical
framework. Recall that ‘IS-A’ in a semantic network connects more specific entities to
more general entities, and properties are inherited from more general to more specific
entities in the hierarchy. But this hierarchical relationship corresponds to set inclusion in
the semantics of FOL. The entities can be interpreted as unary predicates picking out a
set of members from a domain. The more specific entities pick out a subset of members
of the domain relative to that picked out by the more general entity. In the case of our
example Feline as a more specific entity and Mammal as a more general entity, we have
that Feline ‘IS-A’ Mammal in our semantic network, and this can be represented in FOL
as:

∀x, Feline(x)→ Mammal(x)
That is, the set of all elements of the domain for which Feline is true, is a subset of

that for which Mammal is true:
{xI ∈ D : FelineI(xI)} ⊆ {yI ∈ D : MammalI(yI)}

where x and y are variables in the FOL language, Feline and Mammal are unary
predicate symbols, and I is an interpretation with domain D. The unary predicate Feline

is interpreted as the set of felines by I, and the predicate Mammal is interpreted as the set
of mammals, and in the interpretation, the set of felines is a subset of the set of mammals.

DLs thereby give a precise semantics to the meaning of nodes and links in semantic
networks. However, DLs are far more expressive than semantic networks, since DLs
provide formal concept constructors which allow complex logical definitions for concepts
in the domain to be built from the basic building blocks provided by the language and the
atomic (undefined) roles and concepts within the domain (Nardi and Brachman, 2007).

After a brief digression to remark on the syntax which will be used in the remainder
of this dissertation, we will give more detail about concept definitions in Section 4.4.

30

4.4. THE DEFINITION OF COMPLEX CONCEPTS

4.3.1 A note about syntax

DLs commonly use an abbreviated syntax compared to FOL, by making implicit the
universal quantification of variables. That is, given concepts such as Feline and Mammal

in the previous example, and an assertion such as:
(∀x)Feline(x)→Mammal(x)

we instead refer simply to Feline, Mammal, dropping the reference to variables
altogether, written as:

FelinevMammal

The DL convention therefore makes implicit the universal quantification of statements.
We will use the term extension of a concept expression to refer to the members of the

domain for which a particular concept expression is true. That is, the extension of the
Mammal concept is the set of all members of the domain which are mammals.

Similarly, role expressions are commonly expressed in a variable-free syntax as ∀R.B.

4.4 The definition of complex concepts

The power of DLs lies in the ability to define complex concepts from the building blocks
of the DL language and the basic (atomic) concepts and roles defined in the domain. Let
us assume we have defined atomic concepts A and B in our domain and an atomic role R.
We can then define new concepts in terms of these atomic concepts and roles using the
constructors of the DL language (Nardi and Brachman, 2007).

For example, we can define a new concept in terms of the conjunction of atomic
concepts, such as:

C ≡ AuB

This means that the extension of the concept C is precisely those domain elements
that are in the extension of A and also in the extension of B.

Alternatively, we can define a new concept in terms of the disjunction of atomic
concepts, such as:

C ≡ AtB

This means that the extension of the concept C consists of those domain elements that
are either in the extension of A or in the extension of B.

Concepts may also be defined in terms of roles by using either value or existential

restrictions on the role fillers. Recall that roles are binary predicates between members
of the domain. An existential restriction, expressed as ∃R.A, picks out those domain

31

4.4. THE DEFINITION OF COMPLEX CONCEPTS

members which are in the relationship R with some member of the extension of the
concept B.

A value restriction, expressed as as ∀R.A, picks out those domain members where,
if they are in the relationship R with another domain member, then the other domain
member is part of the extension of the concept B. The value restriction is therefore a
restriction on the filler of the role to only members of the extension of B.

For example, the following concept definition picks out the set of all domain members
for which, if they participate in the role R, the target of the role is a member of the
extension of concept B:

C ≡ ∀R.B
In fact, not only can complex concepts be defined in terms of atomic concepts, but

the same apparatus can be used to define complex concepts in terms of other complex

concepts. That is, if there is a complex concept C which has already been defined in terms
of atomic concepts (or roles), we can make use of that complex concept in definitions of
other complex concepts in the knowledge base. This allows increasingly complex and
sophisticated definitions of concepts in the domain to be constructed in increasing levels
of complexity.

4.4.1 Constructors

Conjunction, disjunction, value and existential restrictions are all examples of DL con-

structors for the definition of complex concept expressions. A wide variety of such
constructors are available, and different DL languages are distinguished by offering
different combinations of such constructors, which leads to different complexity profiles
for various reasoning tasks2.

While we do not attempt to give an exhaustive listing of all possible DL constructors,
we note several together with brief descriptions, as a reference for use in the remainder of
this dissertation.

There are special constructors that refer to the most general concept in any domain,
the top concept, and the most specific concept in any domain, the bottom concept (Baader
and Nutt, 2007):

• Universal (or Top) concept: >, the extension of which includes all domain elements
in any interpretation.

2Hence the plural in the name ‘Description Logics’

32

4.4. THE DEFINITION OF COMPLEX CONCEPTS

• Bottom concept: ⊥, the extension of which never includes any domain member in
any interpretation (i.e. it is equivalent to the set theoretic /0).

Other concept constructors include (Baader and Nutt, 2007):

• Disjunction (or): CtD, equivalent to set theoretic union.

• Conjunction (and): CuD, equivalent to set theoretic intersection.

• Complement (not): ¬C, equivalent to set theoretic negation.

• Value restriction: ∀R.C, which specifies that the filler of the role R, where it exists,
must be of type C.

• Existential restriction (limited): ∃R.>, which specifies that at least one relation of
type R must be specified, without restricting the type of the filler of the relation.

• Existential restriction (fully qualified): ∃R.C, which specifies that at least one
relation of type R must be specified with some member of type C.

• Number restriction (at-most): ≤ nR, which specifies that the number of fillers for
role R should be less than or equal to n.

• Number restriction (at-least): ≥ nR, which specifies that the number of fillers for
role R should be more than or equal to n.

Concept constructors commonly found only in very expressive DLs include (Cal-
vanese and De Giacoma, 2007):

• Qualified number restrictions: ≤ nR.C or ≥ nR.C, allow the expression of arbitrary
cardinality constraints on roles with role fillers belonging to the specified concept
C.

• Complex role constructors: including role inclusion Rv R′ and inverse roles R−

• Role-value maps: including containment role-value maps R1 ⊆ R2

4.4.2 The TBox

Concept constructors are used to provide definitions for concepts in a domain. These
concept definitions constitute the terminology of the domain. The terminology is defined

33

4.4. THE DEFINITION OF COMPLEX CONCEPTS

in the Terminology box (TBox), one of two components comprising a DL knowledge base.
(The second component is the ABox, which is discussed in the next section.)

Atomic concepts (denoted here by letters A and B – those which have no definition,
the most basic terminology of the domain – are part of the vocabulary of the TBox, as
are the atomic roles. Complex concept definitions, which build on the atomic concepts
and roles, are of the form C ≡ D, where D is a complex concept expression formed from
one of the available constructors for the DL language and the available concepts (both
defined and atomic) and roles3.

Concept definitions provide necessary and sufficient conditions on membership in the
extension of the concept, a form of definition which is much stronger than the definitions
available in many other forms of knowledge representation, which typically include only
necessary conditions (Nardi and Brachman, 2007). However, should concept definitions
in terms of necessary and sufficient conditions not be possible, it is still possible to capture
necessary conditions in a TBox by means of concept inclusion statements of the form
C v D. These can be used to capture hierarchical relationships between concepts in a
domain, when full definitions cannot be provided.

The TBox thus consists of statements of the form

• concept definition C ≡ D, and

• concept inclusion C v D.

For many reasoning tasks making use of a DL knowledge base, it is important that
the TBox has the property of being acyclic, that is, that concepts are neither defined in
terms of themselves, nor in terms of other concepts that indirectly refer to them (Nardi
and Brachman, 2007). Each concept is furthermore assumed to be defined only once.
This is always true in DLs that allow disjunction as a concept constructor, since multiple
concept definitions can thereby be combined into one, but may need to be checked in
DLs that do not. When combined, these restrictions ensure that every concept expression
in the TBox can be expanded into a complex expression involving only atomic concepts,
by recursively replacing defined concepts with their definitions.

The TBox provides the facility to represent knowledge about the entities and properties
that are general in the domain being modelled. However, it does not provide the facility
to make any assertions about individuals, that is, the specific members of the domain of
interest.

3We do not here consider DLs which allow complex role constructors, although these would also form
part of the TBox

34

4.5. KNOWLEDGE ABOUT INDIVIDUALS

4.5 Knowledge about individuals

Knowledge about the actual members of the domain of interest – the extension of the
concepts defined in the TBox – is left entirely implicit in most references to concept
definitions in DL, assisted by the compact, variable-free syntax which is in standard use.
However, it is sometimes necessary to make statements about the world – the extension
– within the knowledge base. Such extensional knowledge consists of statements about
individuals, that is, specific members of the domain, and their membership in concepts
and roles. For example, an assertion might state that a particular individual FLUFFY is a
member of the extension of the concept Feline:

Feline (FLUFFY)
Another assertion might state that the individual FLUFFY has a child named PATCHES:

has_child(FLUFFY, PATCHES)
Individuals can be named, and the DL system may or may not enforce a unique name

assumption which ensures that no two individuals may have the same name without in
fact being the same individual.

Assertions about individuals are expressed in the Assertion box (ABox), which is the
second component of a DL knowledge base.

Note that the known individuals in the DL knowledge base are not assumed to
constitute the full extent of possible individuals in the relevant domain. In contrast
to many relational database systems, in DL knowledge bases something which is not
explicitly expressed is assumed to be not known, rather than known to not be. This will
be of great importance when considering the kinds of inferences which can be made from
the assertions which are provided, as will be discussed further in the section on reasoning,
Section 4.7.

4.5.1 Defining a DL knowledge base

We are now ready to give a formal definition for a DL knowledge base:

Definition 4.3. A knowledge base in a DL language consists of a set of atomic concepts
Ai, a set of atomic roles Ri, a TBox and an ABox. The TBox contains the definitions
of the concepts included in the knowledge base, defined through terminological axioms
which take the form of logical equivalences – C ≡D – or concept inclusions (statements
of subsumption) – C v D – where the concepts themselves are built up from the
constructors available in that DL language. The ABox contains assertions about the

35

4.6. SEMANTICS

individuals (instances) that belong to those classes. That is, the ABox contains a finite set
of assertions of the form C(a) (concept assertion) or R(a,b) (role assertion), where C is a
concept definition, R a role name, and a and b are individual names (Baader and Nutt,
2007).

4.6 Semantics

Recall that one of the motivations for the initiation of research into DLs was the need to
provide a more formal semantics to what had been popular but informally characterised
network-based knowledge representation structures.

The semantics of a DL language is given by assigning an interpretation, I, which
consists of a non-empty set ∆I (the domain of the interpretation), and an interpretation
function which assigns to every atomic concept A a set AI ⊆ ∆I and to every atomic role
R a binary relation RI ⊆ ∆I×∆I (Baader and Nutt, 2007).

This interpretation function is extended to concept descriptions by inductive defini-
tions for each concept constructor, for example:

>I = ∆I

⊥I = /0
(¬A)I = ∆I\AI

(CuD)I = CI ∩DI

(∀R.C)I = { a ∈ ∆I|∀b.(a,b) ∈ RI −→ b ∈CI }
(∃R.>)I = { a ∈ ∆I|∃b.(a,b) ∈ RI }
(∃R.C)I = { a ∈ ∆I|∃b.(a,b) ∈ RI ∧b ∈CI }
(≥ nR)I = { a ∈ ∆I : | { b|(a,b) ∈ RI } | ≥ n }
(≤ nR)I = { a ∈ ∆I : | { b|(a,b) ∈ RI } | ≤ n }

An interpretation I satisfies an inclusion C v D if CI = DI and an equality C ≡ D if
CI ⊆ DI . An interpretation I is a model of an axiom or set of axioms if it satisfies these
axioms. Two axioms (or sets of axioms) are equivalent if they share the same models
(Baader and Nutt, 2007).

36

4.7. REASONING

4.7 Reasoning

4.7.1 Terminological inferences

The main purpose of reasoning within a knowledge representation formalism is to derive
inferences from the explicitly represented knowledge. For the knowledge expressed in the
TBox, i.e. the terminological knowledge, the basic inference operation is classification,
that is, placing concept expressions in the proper place with respect to the taxonomic
hierarchy of concepts. This amounts to inferring subsumption (C v D) between concept
expressions C and D (Baader and Nutt, 2007). Classification is accomplished by checking
subsumption of a new concept against all the other concepts in the knowledge base and
placing the new concept in between the most specific concept that it subsumes and the
most general concepts that subsume it.

Further inferences are that two concept expressions might be found to be equivalent,
written as C≡D, which means that CvD and DvC; or they may be found to be disjoint,
that is, CuD = ⊥.

Another task that is required as the size of a knowledge base increases is the ability to
automatically check for the satisfiability of each of the concept expressions, i.e. whether,
for each concept in the knowledge base, there is an interpretation in which the concept
has a non-empty extension. This assists the engineer in the maintenance and extension of
the knowledge base. Satisfiability depends on there being no logical contradictions in the
definitions of any of the concept expressions in the knowledge base.

Formally, we can define these properties as follows (Baader and Nutt, 2007):

Definition 4.4. A concept C is satisfiable with respect to a TBox T if there exists a model
I of T such that CI is nonempty. We say that I is a model of C.

Definition 4.5. A concept C is subsumed by a concept D with respect to a TBox T if
CI ⊆ DI for every model I of T . This is written as C vT D.

Definition 4.6. Two concepts C and D are equivalent with respect to a TBox T if CI =
DI for every model I of T . This is written as C ≡T D.

Definition 4.7. Two concepts C and D are disjoint with respect to a TBox T if CI ⋂DI =
/0 for every model I of T .

However, by the following observations, it turns out that all of the terminological
inferences can be reduced to the problem of calculating subsumption (Baader and Nutt,

37

4.7. REASONING

2007):
C is unsatifiable⇔C v⊥
C and D are equivalent⇔C v D and DvC

C and D are disjoint⇔CuD v⊥

4.7.2 Assertional inferences and query answering

For ABoxes, that is, the extensional knowledge about individuals in the domain, reasoning
provides the services of checking consistency of the assertional knowledge, that is, that it
contains no logical contradictions. Formally, it can be defined as follows (Baader and
Nutt, 2007):

Definition 4.8. An ABox A is consistent with respect to a TBox T if there is an inter-
pretation I that is a model of both A and T . We simply say that A is consistent if it is
consistent with respect to the empty TBox.

It is also useful for the system to be able to determine membership in the extension
of concepts from the TBox for each individual in the ABox. This is known as instance

checking, and provides the mechanism by which query answering is provided for DL
knowledge bases. Instance checking amounts to the test whether an assertion of concept
membership is entailed by an ABox. Formally, it can be defined as follows (Baader and
Nutt, 2007):

Definition 4.9. An assertion α is entailed by an ABox A, written A |= α if every inter-
pretation that satisfies A also satisfies α .

Instance checking can be reduced to consistency checking by the following observa-
tion:

A |=C(a)⇔ A∪{¬C(a)} is inconsistent.
For query answering in support of applications, information retrieval, which is the

task of finding for a given ABox A, all individuals a such that A |=C(a) for some query
concept C, is needed.

4.7.3 Open world semantics

Relational databases also incorporate data conforming to some specification, in much the
way that DL ABoxes allow the specification of individuals conforming to the conceptual
specification of the TBox. However, an important distinction should be drawn between
the semantics of DL knowledge bases and that of relational databases.

38

4.7. REASONING

The distinction is that a database instance represents only one interpretation: exactly
that interpretation which includes the individuals in the database data. However, an
ABox represents many different interpretations, that is, all of its possible models. In a
database instance, absence of information implies negative information – if something is
not stated, it is not so. This is referred to as closed world semantics. In an ABox, absence
of information only implies lack of knowledge, and negative assertions cannot be derived
from the absence of positive assertions. This is referred to as open world semantics.

Open world semantics has important consequences for reasoning tasks including
query answering. Since an ABox represents up to infinitely many interpretations, query
answering requires nontrivial reasoning (Baader and Nutt, 2007), rendering it more
algorithmically more complex in DL knowledge bases than in databases.

4.7.4 Decidability and complexity

Since DLs are used to represent knowledge, it is important for application purposes that
the inferencing mechanisms available in the languages should be decision procedures,
that is, they should always terminate with an answer (yes or no) in every possible scenario
(Baader and Nutt, 2007). This means that the standard reasoning tasks should be decidable

in the underlying DL language. Investigating the decidability of reasoning in different
DL languages has therefore been a core research area (Baader and Nutt, 2007).

However, even when reasoning problems in a particular DL language are shown to be
decidable, it is not known how much time will be required to reason over knowledge bases
to compute inferences. Decidability guarantees an answer in finite time, but makes no
further statement about the amount of time and how it varies in the size of the knowledge
base. To determine the amount of time that will be required to compute inferences in
different DL languages, research into the complexity profile of the reasoning problems
in that language is required. Complexity varies with the expressivity of the language
– the less expressive the language (the fewer and simpler the constructors available in
that language), the less complex the reasoning is in that language, but of course, the less
elegant it is to model knowledge in real application areas.

An important property influencing the decidability and complexity of a DL language
is whether it enjoys a form of the tree model property. That is, whether all knowledge
bases modelled in the language have a finite tree model (Baader and Nutt, 2007), which
means that they have an interpretation in the shape of a tree with a finite branching factor.
The extent of the tree might be infinite, but the branching factor is finite. More formally:

Definition 4.10. A knowledge base in a DL language exhibits the finite tree model

39

4.8. BASIC DL LANGUAGES

property if for every concept C0 in the knowledge base, there exists a finite interpretation
I that has the shape of a tree whose root belongs to C0, whose depth is linearly bounded
by the size of C0 and whose branching factor is bounded by the sum of the numbers
occurring in at-least (minimum cardinality) restrictions in C0 plus the number of different
existential restrictions in C0.

4.8 Basic DL languages

Recall that DL languages consist of a set of atomic concepts (denoted by letters A and B),
a set of atomic roles (denoted by the letter R), an allowed set of concept constructors and
an allowed set of role constructors. Arbitrary concept descriptions are denoted by the
letters C and D. In this section we provide the names and allowed constructors for some
basic DL languages.

The DL language AL (attributive language) includes the following constructors:

C,D −→ A| (atomic concept)

>| (universal concept)

⊥| (bottom concept)

¬A| (atomic negation)

CuD| (intersection)

∀R.C| (value restriction)

∃R.> (limited existential quantification)

The family of AL languages can be extended with various constructors including

C,D −→ ∃R.C| (full existential quantification, denoted by E in the language name)

CtD| (union, denoted by U in the language name)

≤ nR and≥ nR| (number restrictions, denoted by N in the language name)

¬C (negation of arbitrary concepts, denoted by C in the language name)

The DL languages SHIQ and SHOIN are based on extending ALC (that is, AL

with negation of arbitrary concepts) to include transitively closed primitive roles, which
results in a logic called S (Horrocks et al., 2007), which is then further extended with
features such as role inclusion (denoted H), nominals (O), inverse roles (I) and number

40

4.8. BASIC DL LANGUAGES

restrictions (N) which might be qualified (Q).
In the next chapter we will look in greater detail at one of the extensions to description

logics which allows the specification of dynamic knowledge in knowledge bases, namely,
rules.

41

5
Rules

In this chapter, we describe rules as a form of knowledge representation and
an extension to standard DLs, giving them semantics in terms of an epistemic
operator in Section 5.1, and discussing some considerations surrounding
reasoning with rules in Section 5.2.

DLs allow the representation of static terminological knowledge in the TBox and
assertional knowledge about the world in the ABox. However, to represent knowledge
which is dynamic, and which changes based on the status of knowledge about the world
expressed in the current ABox, it is necessary to make use of an extension to ‘pure’ DL,
in the form of rules.

Rules encode knowledge in the form if-then conditionalities, C⇒ D (Baader and
Nutt, 2007). Procedural rules, or trigger rules, model dynamic knowledge. The meaning
of such a rule is that, if the condition specified in the antecedent is met, the consequent is
asserted into the knowledge base. In this way, a rules-based system is constantly evolving
as the program operates.

Dynamic knowledge is knowledge about a situation that changes over time. Depend-
ing on the purpose of a knowledge base, one approach to dealing with dynamic knowledge
is to ‘freeze’ the situation at a specific point in time and model that point, effectively
excluding the time dimension from the model. The tradeoff is that the model has to be
manually updated every time something changes. This approach is the one followed in
most DL knowledge bases. However, in some application scenarios, change over time
may be integral to the purpose of the application, and therefore it may require a knowledge
representation formalism that is able to represent change over time. Rules provide such a
medium, and are often combined with DLs to achieve hybrid representational models.

A simple example of a dynamic property can be found in the domain of persons.

42

5.1. SEMANTICS

Consider a knowledge base about the persons currently working for an organisation. If
the property age is included in the knowledge base, it would be tiresome for the ontology
maintainer to keep updating the values for each person every time a person had a birthday.
It would be much better to include a rule in the knowledge base of the general form if

today’s date matches the birth date of a person, then add one to the age of the person.
To take a slightly more complex example, imagine that the knowledge base is also

extended with information about the salary of the employees of the organisation. The
administrators, for various complicated tax reporting reasons, require a concept in the
knowledge base for people considered HighEarners based on whether their salary is in
the top 10% of the company’s salary range. This depends on all the known individuals

in the knowledge base, and their salary values, rather than being a property of a general
concept which can be expressed in the TBox of the knowledge base. This knowledge base
could be modelled by including a trigger rule which, every time a new individual was
added to the knowledge base, recalculated the salary range and classified all individuals
as high earners or not based on the outcome.

Another kind of rule which can be used to extend a DL knowledge base is a default

rule, which enable default reasoning in hierarchies. A default rule specifies default
properties of a concept which can be overridden by more specific properties in a child
concept in the hierarchies. For example, a default rule might be created to associate the
property of being able to fly with individuals known to be birds, unless the specific type
of bird that the individual is, is known to not be able to fly (e.g. penguins).

5.1 Semantics

Rules, in the most general sense, consist of conditionals of the form C⇒ D. C is called
the antecedent, and D the consequent. If the conditions expressed in the antecedent (C)
are known to be met in the knowledge base, then the consequent D is asserted. All rules
are expressed and operate over known individuals in the knowledge base.

In order to provide a formal semantics for rules within a DL knowledge base, it is
necessary to introduce an epistemic operator, that is, an operator which refers not to
objects in the domain, but to what is known by the system about objects in the domain.
A procedural rule is triggered only when the antecedent is met, that is, the assertional
knowledge represented in the antecedent of the rule is known to the knowledge base
(Baader and Nutt, 2007).

The epistemic operator is standardly denoted K. We can make use of it to construct

43

5.2. REASONING

epistemic concepts:

C,D −→ KC(epistemic concept)
�
 �	5.1

The concept KC denotes those objects for which the knowledge base knows that they
are instances of C.

Now we can translate rules of the form C⇒ D into inclusion axioms of the form
KC v D. The K operator has the effect that this axiom is only applicable to individuals
for which the TBox and ABox imply (i.e. the system knows) it is true that they are
members of the concept C. We can now define a rule-extended knowledge base (Baader
and Nutt, 2007):

Definition 5.1. A rule knowledge base is a triple K = (T,A,R) where T is a TBox, A is
an ABox, and R is a set of rules written as inclusion axioms of the form 5.1.

Let us consider an example in a simple knowledge base expressing facts about an
individual person named SUSAN, T = ∃friend.Male(SUSAN). If we query this knowledge
base for persons who have male friends (∃friend.Male) we expect the answer SUSAN,
since our knowledge base expresses precisely the fact that there is an individual SUSAN
who has a male friend. On the other hand, if we query the database using the epistemic
operator, ∃friend.KMale, the answer set is empty since there is no friend of SUSAN in
the knowledge base who is known to be male. (Baader et al., 2007).

5.2 Reasoning

We define reasoning with rules procedurally in terms of the operation of the reasoner on
a knowledge base. During reasoning, rules are applied to the knowledge base following
a forward reasoning process, starting with the initial knowledge base K, a series of
knowledge bases K(0), K(1), ... are constructed, where K(i+1) is obtained from K(i) by
adding a new assertion D(a) whenever R contains a rule C⇒ D such that K(i) |=C(a)

holds (Baader and Nutt, 2007).

Definition 5.2. The procudural extension of a rule knowledge base is the knowledge
base K = (T,A) that is obtained from (T,A) by applying the rules as described.

This process eventually terminates since K contains only finitely many individuals
and there are only finitely many rules in R. An important restriction is that the rule is not
able to add new individuals to the knowledge base. It is easy to show that rules which

44

5.2. REASONING

are able to add new individuals to the knowledge base can quickly lead to undecidability.
Such a rule would only have to be defined recursively. For example, in a knowledge base
of persons, a rule could be created which, when a new person is added to the knowledge
base, adds another person in the consequent of the rule. In this fashion, the rule would
never terminate as it would keep triggering itself.

In this chapter we have presented rules as a formalism for representing dynamic
and default knowledge, both of which are not possible to model within the standard
DL formalism. However, in this dissertation, we will make use of rules to express
conditionality that is neither dynamic nor default; rather we will use the expressivity of
rules as an additional tool to model static, but structured, conditionality. This is described
further in Chapter 9. In the next chapter we describe the popular ontology language for
the semantic web, OWL, and in Section 6.6 we describe the integration of a rule language
with this ontology language.

45

6
OWL - the Web Ontology Language

In this chapter, we present the syntax, semantics, and profiles of the Web
Ontology Language, OWL. We show how OWL is founded on description
logics and how rules can also be included within OWL.

6.1 Background

The Web Ontology Language, OWL, is the W3C standardised format for encoding
ontologies (Smith et al., 2010). OWL developed out of efforts to reconcile DL systems
with developments in the semantic web (Horrocks et al., 2007). More and more data
was being brought onto the semantic web in the form of the Resource Description
Framework (RDF) which describes resources and the relationships between resources
in terms of triples (with a triple representing an arbitrary connection in a graph) and
is encoded in a web-friendly XML format. Ontology developers and researchers were
finding that the use of DL facilitates powerful reasoning which aided and assisted the
ontology development process. Early attempts to combine description logics with the
semantic web were the OIL (Ontology Inference Language) and DAML (DARPA Agent
Markup Language) projects. From these early independent projects, and a tight integration
into the semantic web language RDF, a W3C working group developed what is now
known as OWL, a unified ontology language for the semantic web (Horrocks et al., 2007).

6.1.1 A note about terminology

In previous chapters, we have used the DL terminology concept and role. However,
for historical reasons OWL uses class instead of concept and object property instead of
role. In the remainder of this chapter and the remainder of the dissertation, we will use

46

6.2. EXPRESSIVITY AND OWL FLAVOURS

the OWL terminology. However, it should be noted that, since OWL is founded on the
semantics of DLs, a class in OWL is equivalent to a concept – either atomic or complex –
in the underlying DL. OWL also admits individuals, therefore it corresponds to a full DL
knowledge base.

Additional syntax and terminology discrepancies between OWL and DLs are listed in
Table 6.1.

Construct DL Syntax OWL Syntax
concept equivalence C ≡ D EquivalentClasses(C,D)
subsumption C v D SubClassOf(C,D)
existential quantification ∃R.C C SubClassOf someValuesFrom R
value restriction ∀R.C C SubClassOf allValuesFrom R

Table 6.1 Syntax OWL and DL

6.2 Expressivity and OWL flavours

OWL comes in three different “flavours” (or “species”), each corresponding to differ-
ent levels of expressivity and computational tractability, and also different degrees of
compatibility with RDF. These different flavours allow different rules specifying how
concepts may be constructed. They also permit different DL constructors to be used. The
different flavours of OWL are OWL-Lite, OWL-DL, and OWL-Full. OWL-Full allows
the full expressivity of arbitrary RDF graphs to be encoded in an OWL ontology, but does
not correspond to a DL language, and thus is not necessarily decidable, and will not be
considered further here.

OWL-Lite is the least expressive of the different flavours of OWL, containing fewer
constructors than OWL-DL (Horrocks et al., 2007). OWL-DL is based on the DL
language SHOIN(D) and as such contains the following constructors, where the letters
A, R and o and represent names for classes, object properties, and individuals respectively.
C represents an arbitrary class description.

A – atomic concepts
> (owl:Thing) – top concept
⊥ (owl:Nothing) – bottom concept
C1u ...uCn – intersection (AND)
C1t ...tCn – union (OR)
¬C – negation (complement)
{o1 } t...t { on } – one of

47

6.3. NOTES ON SEMANTICS

∃R.C – some values from
∀R.C – all values from
R.o – has value
≥ nR – minimum cardinality
≤ nR – maximum cardinality

Note that OWL-DL contains additional constructors relating to datatypes, data ranges,
and individuals, which are not listed above.

6.3 Notes on semantics

Like DLs, OWL is assigned an open world semantics, which means that inferences can
only be drawn based on what is explicitly captured in the knowledge base; if it is stated
that Square and Circle are the only subclasses of Shape in a particular knowledge base,
and we know that some concept A has_shape C, we nevertheless cannot infer that C is
either a Square or a Circle, as we do not know anything about which other shapes may
exist that have not been specified (i.e., in the open world). However, we can achieve this
by asserting a value restriction - ∀ has_shape.(Square t Circle). This is called a closure

axiom.
OWL also does not subscribe to the the unique name assumption (Smith et al., 2010),

which means that different names may refer to the same entity. To clarify the semantics
around same and different entities, OWL includes the owl : sameAs property to state
that two given named individuals have the same identity, and the owl : differentFrom
property to state that two given named individuals have different identities.

6.4 OWL Syntaxes

Several syntaxes for serialization have been developed for OWL, including the RDF-XML
serialization (Smith et al., 2010) which is directly backwards compatible with RDF, as
well as the Manchester syntax, which is more concise and allows for greater human
readability1.

Examples of ontologies expressed in RDF-XML and in Manchester syntax are repro-
duced in Appendix A.

1http://www.co-ode.org/resources/reference/manchester_syntax/

48

http://www.co-ode.org/resources/reference/manchester_syntax/

6.5. TOOLS FOR WORKING WITH OWL ONTOLOGIES

Figure 6.1 Protégé OWL ontology editing environment

6.5 Tools for working with OWL ontologies

The primary editor that is used to maintain OWL is Protégé-OWL2. Protégé provides an
extensive framework for ontology development. It facilitates concept editing, property
editing, individual editing, reasoner integration and ontology visualisation. Integral to
the Protégé application is the possibility for developing plug-ins, or custom extensions,
to suit user specific needs. Figure 6.1 shows a screenshot of an ontology (ChEBI) being
edited in Protégé.

Functionality for working with and maintaining OWL ontologies programmatically
is provided by the OWL API, a Java library which provides an extensive toolkit for
developing and maintaining ontologies, including programmatically invoking reasoning
(Horridge and Bechhofer, 2009). The OWL API underlies the Protégé-OWL application
since Protégé version 4.

Many different reasoners have been developed which work with OWL ontologies,
for example Fact++ (Tsarkov and Horrocks, 2006), Racer (Haarslev and Möller, 2003),
Pellet (Sirin et al., 2007) and HermiT (Shearer et al., 2008), each of which supports
different ranges of DL operators and may have different performance profiles on different
reasoning tasks.

2http://protege.stanford.edu/overview/protege-owl.html

49

http://protege.stanford.edu/overview/protege-owl.html

6.6. SEMANTIC WEB RULE LANGUAGE

6.6 Semantic Web Rule Language

OWL is extended with a rule language in order to express conditional if-then (epistemic)
knowledge in the form of rules. As a result, many of the publicly available OWL reasoners
are able to perform epistemic reasoning with rules.

The Semantic Web Rule Language (SWRL) is a rule language for the semantic web.
A description of an RDF based syntax and semantics for rules is given for the SWRL in
Horrocks et al. (2010). This is further extended with a syntax for rules included directly
within OWL ontologies in Glimm et al. (2009).

The semantics of a collection of rules is given by interpreting the rules as first-order
logical implications (Horrocks et al., 2010). Rules are made up of atoms, that is, atomic
assertions. Atoms can be of the form C(x), P(x,y), sameAs(x,y) or differentFrom(x,y),
where C is an OWL concept expression, P is an OWL property, and x,y are either variables,
OWL individuals or OWL data values.

An empty antecedent (body of the rule) is treated as trivially true (i.e. satisfied by
every interpretation), so the consequent (conclusion of the rule) must also be satisfied by
every interpretation. An empty consequent is treated as trivially false (i.e., not satisfied
by any interpretation), so the antecedent must also not be satisfied by any interpretation.
Multiple atoms in a rule are treated as a conjunction (and) (Horrocks et al., 2010).

OWL ontologies extended with arbitrary rules are rendered undecidable, because the
rule extension may be infinite. To remedy this, a restricted expressivity can be employed
in the form of DL-safe rules (Motik et al., 2004). The key restriction which renders a
rule DL safe is that no new existentially quantified variables can be introduced in the
consequent of the rule. In OWL ontologies, this is achieved by forcing all variables
appearing in the consequent of the rules to be known, named individuals in the OWL
knowledge base.

In the next chapter, we start to examine structured objects, and assess the capacity of
OWL to model structured objects.

50

6.6. SEMANTIC WEB RULE LANGUAGE

51

7
Representing chemical structures in OWL

In this chapter, we describe several possible approaches to representing
chemical structures using OWL and rules, and discuss the shortcomings of
each. This explains the research problem that provides the context for this
dissertation, namely, the fact that neither OWL alone, nor OWL enhanced
with rules, provide adequate support for modelling the internal structure of
structured objects at the class level.

7.1 Structured Objects

Objects can be said to be structured when they consist of parts connected in complex
ways. A straight line, therefore, is not a structured object, since even if we consider it
a set of connected parts such as smaller lines or points, they all are connected in a very
straightforward way. If a line is divided, it nevertheless retains the property of ‘lineness’:
it will divide into multiple lines, so doesn’t retain its unity as one thing, but each of
the divided lines is itself a line. By contrast, a triangle is a structured object, since it is
important that there are three sides and that each side is connected to two other sides
at the edges. Without these structural properties of connection, that is if the triangle is
divided, it ceases to be a triangle, although it might become a zigzag, or three separate
lines.

Although most objects in our 3D world are structured in this sense, for the purpose
of creating knowledge based systems, the structure of the object may or may not be
important to model within the knowledge base. For example, we might describe the parts
of a cell, as is done in the Gene Ontology ‘cellular component’ ontology, without ever
referring to the structure of exactly how the parts are connected to each other within the
cell. In anatomy, on the other hand, knowledge bases such as the Foundational Model

52

7.2. REPRESENTATION IN TBOX

of Anatomy (Rosse and Jr, 2007) do concern themselves with attempts to model the
structure of parts with respect to each other in their knowledge artefact. The reason for
this is that, in the domain of anatomy, expert systems need to be able to draw inferences
based on the structure of objects - a misplaced or disconnected part may be a sign that
something is wrong with the organism (e.g. a missing kidney in an individual’s anatomy).

Chemistry is another domain where the structure of the objects is crucial in order to
derive correct inferences. A cyclohexane molecule, which consists of six carbon atoms
bonded in a cycle with six single bonds, has very different properties to a hexane molecule,
which consists of a straight chain of six carbon atoms. A hexane molecule, in turn, has
very different properties to an isohexane molecule, which is branched. Figure 7.1 shows
some examples of differently structured objects in chemistry.

While OWL provides an extensive collection of constructs for logic-based ontology
development, decidability of reasoning problems—e.g., testing consistency of an ontology,
satisfiability of classes or computing its inferred class hierarchy—is obtained by making
sure that OWL has a tree model property (Vardi, 1996): in a nutshell, that means that
every consistent ontology has a model, i.e., a state of affairs that satisfies all axioms in
the ontology, whose relational structure looks like a tree. For this reason, OWL has not
traditionally been able to describe arbitrarily structured objects, but only those which
have structures which can be expressed in the shape of trees.

Figure 7.1 Structured objects in chemistry – hexane, cyclohexane, paracetamol, aspirin

In the sections that follow, we evaluate several different approaches to representing
the internal structure of chemical entities in OWL knowledge bases.

7.2 Representation in TBox

OWL can be used to describe objects consisting of an arbitrary, or infinite, number of
parts, but it only allows for axioms connecting the parts in a tree-like manner. This is
because OWL requires the tree model property (Vardi, 1996) in order to preserve the

53

7.2. REPRESENTATION IN TBOX

decidability of reasoning (Motik et al., 2008c).
The structured object in Figure 7.1 (b), cyclohexane, could be modelled in OWL at

the class level (TBox) in the following manner:

Cyclohexane(M) v ∃.has_atom.C1u∃.has_atom.C2u∃.has_atom.C3

u∃.has_atom.C4u∃.has_atom.C5u∃.has_atom.C6
�
 �	7.1

Cyclohexane(M) v ∀.has_atom.(C1tC2tC3tC4tC5tC6)
�
 �	7.2

Cyclohexane(M) v ∀.has_atom.(∀has_type.Carbon)
�
 �	7.3

C1 v ∃has_bond_with.C2u∀has_bond_with.C2
�
 �	7.4

C2 v ∃has_bond_with.C3u∀has_bond_with.C3
�
 �	7.5

C3 v ∃has_bond_with.C4u∀has_bond_with.C4
�
 �	7.6

C4 v ∃has_bond_with.C5u∀has_bond_with.C5
�� ��7.7

C5 v ∃has_bond_with.C6u∀has_bond_with.C6
�
 �	7.8

C6 v ∃has_bond_with.C1u∀has_bond_with.C1
�
 �	7.9

Equation 7.1 expresses the condition that a molecule M belongs to the class Cyclohexane

if it contains six different atoms expressed with the has_atom role. Equations 7.2 and 7.3
are the closure axioms which prevent this molecule from containing additional atoms, and
constrain the type of the atoms to Carbon expressed with the has_type role. Equations 7.4
– 7.9 then constrain the atoms to express the connections between the atoms in terms of
the has_bond_with role. The combination of existential and value restriction is intended
to faithfully represent the fact that each atom participates in a bond with the neighbouring
atom in the cycle, and only that neighbouring atom. Note that the has_bond_with relation
is not symmetric in this model, and this would mean that a faithful representation in this
model would also need to include the bonds in the opposite direction, but this does not
alter the utility of the example, since the problem with the model appears as soon as there
is a cycle even if the edges are directed.

But what is the problem with this representation in OWL? It is that the representation
is underconstrained, since in addition to a model that corresponds to the structure in
which the atoms are connected as expected, there are additional models where the atom
C6 is connected to another individual atom of type C1 – since C1 is a class in the OWL
TBox, nothing prevents the class from being instantiated by several different individuals.
This model would thus include two individuals, both of type C1. But the second C1
individual can have a bond with a second individual of class C2, and so on around the

54

7.3. REPRESENTATION IN ABOX

entire cycle and into a round of third individuals, quickly resulting in an infinite tree

structure for this model, as illustrated in Figure 7.2 (Motik et al., 2008c). (Note that
individual carbon atoms form the corners of this illustration, in skeleton graph depiction
format as described in Chapter 3.)

Thus, a reasoner cannot make certain types of inferences about this molecule, such
as the inference that an individual of this molecule class consists of six and only six
individual atoms, and that these atoms are arranged in a closed bonding cycle.

Figure 7.2 Unintended infinite tree model

7.3 Representation in ABox

Figure 7.1 (b) (cyclohexane) could instead be represented in OWL using ABox assertions,
in which the atoms could be represented as individuals, i.e. six single concrete carbon
atoms. In this case the connection represented by the has_bond_with role assertions
would be asserted between concrete atoms in the ABox and would thus not be subject to
the misinterpretation that can apply if the cyclic structure is modelled at the class level
(in the TBox).

Representation in the ABox, i.e. by modelling the structure of individuals, would
surely suffice to adequately capture the structure of one concrete cyclohexane molecule.
But this again precludes modeling structured data at the class level, that is, it precludes
modeling structured aspects of commonality across many molecules. For instance, rather
than cyclohexane itself, we may wish to model cyclohexane-like molecules, which contain
a principal cyclohexane skeleton structure, as illustrated in Figure 7.3. To model the
internal structure of a class of such molecules requires class-level modelling of the core
skeleton structure.

In general in biomedical ontologies, most modelling is concerned with class-level
concepts, that is, describing what is common to a set of objects of a certain kind. The

55

7.4. REPRESENTATION WITH RULES

Figure 7.3 Some molecules which share a cyclohexane skeleton

individual objects which can be found in the real world thus instantiate the class, and
a model at the level of individuals does not therefore offer much utility. It may be the
case that for molecules, one can waive this requirement due to the indistinguishability
of individual molecules belonging to a given class (Lesk, 1980). However, if we model
at the level of individuals we would lose the ability to construct models of molecule
classes. A molecule class represents what is common to a group of related molecules,
which may include elements of shared structure, even cyclic elements of shared structure.
Nevertheless, individuals belonging to such a molecule class can differ dramatically in
non-shared structural aspects, thus are clearly distinguishable from one another.

We can extend our earlier class-level OWL formulation of the atoms and connections
within a cyclohexane molecule to a formulation which encodes the core skeleton of any
cyclohexane-like molecule with the removal of the closure axiom 7.2; that is, we remove
the restriction that the only atoms contained in the molecule are C1, . . . ,C6. However, we
still have not addressed the problem of the infinite tree model.

7.4 Representation with Rules

Another possibility is to model the structure of the structured objects in the knowledge
base using rules, which are more expressive than OWL-DL but at the expense of decid-
ability (Horrocks et al., 2010). For example, the following rule can be used to ensure that

56

7.4. REPRESENTATION WITH RULES

the final two connected carbon atoms from Figure 7.1 (b) are actually the same individual:

Cylohexane(m)∧has_atom(m,c1)∧has_atom(m,c2)∧has_atom(m,c3)

∧has_atom(m,c4)∧has_atom(m,c5)∧has_atom(m,c6)

∧has_bond_with(c1,c2)∧has_bond_with(c2,c3)∧has_bond_with(c3,c4)

∧has_bond_with(c4,c5)∧has_bond_with(c5,c6)∧has_bond_with(c6,c7)

−→ c7 = c1
�
 �	7.10

If the rule specified in the antecedent is met (the chain of connected bonds between
individual atoms in a cyclohexane molecule), the consequent of the rule will ensure that
the first and seventh atoms in the connected chain of bonds are the same individual atom.
This does seem to capture the required internal structure, but in a very roundabout way.

This approach seems somehow redundant, since the information is now encoded in the
class specification and again in the rules, with the intended interpretation only accurate
through the interaction of both. Such a modeling formalism is likely to be difficult to use
(Motik et al., 2008a). Also, the information thus specified is not available at the class
level for purposes of classification – rules cannot encode whether a particular class is a
subclass of another class nor provide a logical definition of the class in the ontology.

Bearing in mind that the inclusion of rules of this form for modelling structured
objects leads to undecidability of reasoning, Motik et al. (2004) introduce DL-safe rules,
which are restricted to refer only to known individuals within the knowledge base. We
therefore consider whether a potential work-around for the problem of expressing the
above rules and ensuring decidability would be to use DL-safe rules. But, in fact, we find
that DL-safe rules cannot be used in this way, i.e. to model the structure of objects at the
class level. This is because the restriction to apply only to known individuals within the
knowledge base means that the above formulation cannot be modelled, since it has to
apply to all cyclohexane molecules, and cannot be restricted to known individuals only.

Consequently, we have to conclude that rules will also not suffice to allow the internal
structure of cyclic objects to be modelled at the class level in OWL.

Description Graphs are a formalism which has been introduced by Motik et al.
(Motik et al., 2008c,b,a) to address this weakness of OWL in representing structured
objects, while still preserving the decidability of reasoning on ontologies containing such
structured objects. In the next chapter, we describe the Description Graphs formalism.

57

8
Description Graphs

In this chapter we present description graphs as an extension to the standard
facilities available in OWL specifically targeted to modelling structured
objects. We discuss how this addresses the shortcomings described in the
previous chapter.

8.1 Definition

Description graphs are a representational formalism which has been introduced by Motik
et al. (2008a,b,c) to address the weakness of OWL and traditional DLs in modelling
structured objects, while still preserving the tractability of reasoning on ontologies
containing such structured objects. However, in order to preserve the tractability of
reasoning, some important constraints must be observed. These will be described in
greater detail further on in this chapter.

Structured objects in chemistry, such as molecules or the skeletons common to classes
of molecules, are easily represented as connected graphs, as described in Chapter 3, i.e. in
terms of atoms as nodes and bonds as the connections between them. They thus provide a
natural use case for the description graph formalism. A description graph is a graph-like
extension to the standard underlying DL formalism beneath OWL-DL. Formally, we can
define a description graph as follows:

Definition 8.1. A description graph is a directed graph G = (V,E,λ) in which each
vertex i ∈V is labeled with a set of (possibly negated) class names λ 〈i〉; and each edge
〈i, j〉 ∈ E is labeled with a set of atomic properties λ 〈i, j〉. Each description graph has a
main class, which indicates the object whose structure is being modelled in the graph,
and it is this main class that will be used to link to the remainder of the ontology that the

58

8.2. DECIDABILITY OF REASONING

description graph is a part of (Motik et al., 2008a).

For example, a description graph to represent a cyclohexane molecule might be
constructed as illustrated in Figure 8.1. In this image, atoms are atomic classes, illustrated
in orange square boxes, and the main class is denoted Cyclohexane, illustrated in the pink
rectangle in the centre. Labelled lines represent atomic properties.

Figure 8.1 Description graph representation of cyclohexane molecule

8.2 Decidability of Reasoning

At first glance, it would appear that allowing description graphs in ontologies leads
to the same problem with undecidability of reasoning as the same representation of
the structured data in OWL axioms or non-DL-safe rules. However, certain important
restrictions allow for the development of a decidable reasoning algorithm for knowledge
bases extended with description graphs. These are discussed below.

8.2.1 Boundedness of graphs

An important aspect of structured objects, which differentiates them from standard
concepts usually modelled in OWL knowledge bases, is that the structure is usually
modelled at a certain, fixed level of granularity; and at that level of granularity, the
number of parts of the structure which are modelled is bounded (finite). In chemistry,
chemical graphs are constructed to represent finite molecules, and molecules of arbitrary

59

8.2. DECIDABILITY OF REASONING

Figure 8.2 Large molecules and polymer representation

size such as polymers are not themselves modelled. Instead, a core repeating unit is
chosen which characterises the structure of the larger molecule. This is illustrated in
Figure 8.2.

Thus, although the number of required vertices in a description graph may be large
in any particular domain, the size is bounded by some upper limit. This is crucial for
ensuring termination of the reasoning algorithm developed by Motik et al. (2008a).

8.2.2 Separation of properties

For reasons described in Motik et al. (2008c), to ensure decidability of reasoning over the
main OWL knowledge base, the properties which are used in the description graphs must
not be referred to in the main ontology axioms. Since the main knowledge base consists
of axioms referring to properties which range over the classes in the knowledge base, the
full set of properties in the knowledge base has thus to be separated into tree properties

and graph properties. This is known as the strong separation requirement.
The axioms in the TBox can propagate constraints across tree properties just like in

standard DLs, and rules can be used to propagate constraints within a graph (Motik et al.,
2008c).

8.2.3 Acyclicity

Although description graphs themselves are bounded, description graphs could lead to the
ontology as a whole becoming undecidable if it is possible to create an infinite chain of
description graph instances. This could be the case if a description graph implies another
description graph in a way which creates a cycle of implication, for example if there is a
chain of graph specialisations (Motik et al., 2008a):

60

8.3. RULES

Definition 8.2. A graph specialisation encodes the relationship between two graphs
where one is the specialisation of the other. Graph specialisation is the equivalent of class
subsumption, that is, given two graphs G1 and G2 with main classes C1 and C2 belonging
to an ontology, if C1 vC2, then G1 is a graph specialisation of G2.

However, many domains can be adequately described by arranging the description
graphs in an acyclic hierarchy. Motik et al. (2008a) thus introduce an acyclicity constraint
on the description graphs which may be included in the knowledge base – not, that
is, on the internal structure of the description graphs, but on the relationships between

description graphs – such that a graph lower in the hierarchy may imply a graph higher in
the hierarchy, but not the reverse. With this additional constraint, a decidable reasoning
algorithm is obtained (Motik et al., 2008a).

8.3 Rules

Due to the strong separation requirement which preserves decidability of reasoning
in ontologies enhanced with description graphs, the properties which are used in the
description graphs (i.e. the graph edges) may not be referred to in the main ontology
axioms. The full set of properties in the knowledge base has thus to be separated into tree

properties and graph properties. This provides a limitation in terms of the possibility for
reasoning over the information encoded in the graphs, as the graph properties cannot be
referred to in OWL axioms.

Thus, if has_atom is a graph property, it is not possible to create an OWL axiom using
it, such as the following:
SubClassOf(has_atom only (CarbonAtom or HydrogenAtom)) HydrocarbonMol

Without the possibility to refer to graph properties in OWL class axioms, it makes
classification based on the internal structure of description graphs impossible without the
addition of a construct different to the normal OWL terminological axioms. The construct
which makes classification based on graph properties possible is rules.

Thus, classification based on properties of description graphs must be expressed with
rules. Furthermore, these rules must be role-safe, which means safe with respect to the
strong separation requirement, that is, they must not refer simultaneously to properties
used in the graphs and those used in the OWL ontology axioms. Note that role safety
for rules is not the same as DL safety. For DL safety, rules are restricted to refer only
to known individuals in their consequents, while role safe rules can refer to arbitrary
individuals in their consequents. On the other hand, for role safety, rules cannot refer

61

8.3. RULES

simultaneously both to graph properties and OWL properties, while DL safe rules have
no such restriction. To maintain decidability of the overall knowledge base, therefore, it
is required that the rules either refer only to graph properties and not object properties
(role safety) or refer only to known individuals in their consequent (DL safety).

We thus introduce graph rules (Motik et al., 2008b,a), as follows:
Let NI and NV be disjoint sets of individuals and variables.
An atom is of the form C(s) for a concept assertion, R(s, t) for a role assertion, where

s, t ∈ NI ∪NV , C is a concept, and R is a role.
A rule r is an expression of the form

B1∧B2∧ ...∧Bn→ H1∨ ...∨Hm
�
 �	8.1

where Bi and H j are atoms; n≥ 0, and m≥ 0.
The conjunction B1∧ ...∧Bn is called the antecedent, and the disjunction H1∨ ...∨Hm

is called the consequent. A graph rule is a rule where all concepts and roles in the atoms
are atomic, and that can also contain graph atoms of the form G(t1, ..., tk), for G an l-ary
description graph and ti ∈ NI ∪NV (Motik et al., 2008b,a).

Rules form a natural medium for expressing conditionality about structured objects,
which cannot be expressed in the ontology TBox (OWL axioms) if the overall ontology
is to preserve decidability of reasoning. The structure of the structured object is, however,
able to be expressed at the class level in the description graph, and rules can be used
to support additional conditional inferencing based on the structure of the graphs in a
knowledge base.

8.3.1 Definition

We are now in a position to provide a definition for a graph-extended knowledge base.

Definition 8.3. A graph-extended OWL knowledge base is a 4-tuple K = (T,G,P,A)

where T is a set of OWL class axioms, G is a set of description graphs, P is a set of rules,
and A is a set of OWL assertions. T is allowed to refer only to tree properties, G and P

are allowed to refer only to the graph properties, and A is allowed to refer to both graph
and tree properties (Motik et al., 2008c,b,a).

62

8.4. IMPLEMENTATION

8.4 Implementation

Description graphs are implemented as an extension to the OWL API (Horridge and
Bechhofer, 2009; Glimm et al., 2009), and reasoning over description graphs is imple-
mented in the HermiT reasoner (Shearer et al., 2008). HermiT also supports reasoning
with graph rules (Glimm et al., 2009), thus it allows construction of a full knowledge
base about structured objects.

Figure 8.3 Description Graphs and Rules Syntax

Description graphs are implemented in a functional style syntax. Description graphs
consist of description graph axioms, each of which is a set of description graph nodes, a
set of description graph edges, and a set of main classes. Description graph rules consist
of a body and a head, each of which are composed of atoms referring to description graph
properties. Figure 8.3 shows the functional style syntax for description graphs and rules,
as set out in (Glimm et al., 2009).

For example, the graph representation of Cyclohexane illustrated in Figure 8.1, in
functional syntax, is shown below.

DescriptionGraph(

Nodes(

NodeAssertion(Class Cyclohexane)

NodeAssertion(Class C1)

NodeAssertion(Class C2)

NodeAssertion(Class C3)

NodeAssertion(Class C4)

NodeAssertion(Class C5)

NodeAssertion(Class C6)

)

Edges(

63

8.4. IMPLEMENTATION

EdgeAssertion(has_atom Cyclohexane C1)

EdgeAssertion(has_atom Cyclohexane C2)

EdgeAssertion(has_atom Cyclohexane C3)

EdgeAssertion(has_atom Cyclohexane C4)

EdgeAssertion(has_atom Cyclohexane C5)

EdgeAssertion(has_atom Cyclohexane C6)

EdgeAssertion(has_bond_with C1 C2)

EdgeAssertion(has_bond_with C2 C3)

EdgeAssertion(has_bond_with C3 C4)

EdgeAssertion(has_bond_with C4 C5)

EdgeAssertion(has_bond_with C5 C6)

EdgeAssertion(has_bond_with C6 C1)

)

MainClasses(

Cyclohexane

)

)

In conclusion, description graphs are an extension to the standard ontology constructs
which allows for decidable reasoning over structured objects. This is particularly ap-
plicable in the domain of chemistry, where chemists have long used graph theoretical
representations of the structures of chemical entities. However, structured objects are
widespread in biochemistry and the broader biomedical domain, and the description graph
extension to the standard OWL suite of ontology modelling constructs seems promising
for more accurate representation and reasoning over such structured objects.

64

8.4. IMPLEMENTATION

65

9
Software design and implementation

In this chapter, we present the design of the software which implements the
empirical part of this dissertation, in the context of the research questions
which we presented in Chapter 1. The overall technical architecture is
discussed in Section 9.2, software dependencies in Section 9.3 and the
implementation details in Section 9.4.

9.1 Overview

OWL ontologies, based on DLs, are becoming widespread tools to assist in knowledge
based systems development throughout the life sciences. In chemistry, OWL is used in
chemical ontologies such as ChEBI. However, as we have seen, due to their cyclic nature,
OWL is not able to represent the complex structures of chemical entities at the class level
in TBox axioms.

The purpose of this dissertation is to evaluate the utility and scalability of description
graphs and rules for the representation of, and reasoning over, chemical structures in an
enriched OWL knowledge base. To do this, we will make use of the chemical structures
associated with chemical entities in the standard chemical graph format, and convert them
into description graphs. Furthermore, we will create rules to allow conditional reasoning
based on the structures in the graphs.

Recall that we begin with the following three questions, each of which represents
functionality which is expected by domain experts from a structure-enhanced chemical
knowledge base:

• Can chemical entities be classified based on their substructures?

• Can basic chemical properties be determined from the description graphs?

66

9.2. ARCHITECTURE

• How scalable is the resulting knowledge base?

We will address these questions in our software design by:

• Converting chemical structures into description graphs and associating them with
an OWL chemical knowledge base;

• Using rules to test for the the structures of chemical groups (parts) as substructures
in the converted chemical structures, and performing classification if the group is
found;

• Formulating rules to test for basic structure-based chemical properties based on the
information contained in the description graphs; and

• Creating a generator to add additional data in batches to the knowledge base and
testing the performance in terms of time taken to reason over knowledge bases of
different sizes.

9.2 Architecture

Figure 9.1 gives an overview of the architecture.
The knowledge base consists of:

1. A simple ontology describing classes pertaining to chemical entities,

2. Auto-generated description graphs from structures in the ChEBI database, and

3. Rules for structure-based classification.

Data from the ChEBI database (de Matos et al., 2010) was used as a source for
chemical structures. The full ChEBI database is available for download from
http://www.ebi.ac.uk/chebi/downloadsForward.do. The chemical struc-
tures are in MOLfile format in the STRUCTURE field of the Structures table. See
Chapter 3 for an explanation of this format.

The Chemistry Development Kit (CDK) was used to parse the chemical structures
into the CDK’s internal Java object model, and from this the structural information was
converted into description graphs. The description graphs were then combined with the
base OWL ontology as well as the rules and the resulting knowledge base was used as
input to the HermiT reasoner.

67

http://www.ebi.ac.uk/chebi/downloadsForward.do

9.3. SOFTWARE LIBRARIES

Figure 9.1 Overall architecture

9.2.1 Downloadable files

The ontology is available in two files. The main ontology is available at
http://www.ebi.ac.uk/~hastings/owled2010/chemistry_dgs_ontology.

owl, and and the graphs are available in a separate file at
http://www.ebi.ac.uk/~hastings/owled2010/chemistry_dgs_graphs.

owl.
The software including all libraries and sources is available at

http://www.ebi.ac.uk/~hastings/owled2010/descgraphs.zip.
In the next section, we describe the software libraries that we made use of in our

implementation and the role that they played in our architecture.

9.3 Software libraries

The primary language of the implementation was Java, and we made use of several freely
available Java open source libraries in support of our implementation. We briefly describe

68

http://www.ebi.ac.uk/~hastings/owled2010/chemistry_dgs_ontology.owl
http://www.ebi.ac.uk/~hastings/owled2010/chemistry_dgs_ontology.owl
http://www.ebi.ac.uk/~hastings/owled2010/chemistry_dgs_graphs.owl
http://www.ebi.ac.uk/~hastings/owled2010/chemistry_dgs_graphs.owl
http://www.ebi.ac.uk/~hastings/owled2010/descgraphs.zip

9.3. SOFTWARE LIBRARIES

these software libraries in this section.

9.3.1 Chemical data conversion

The CDK is a collaboratively developed open source software library providing im-
plementations for many of the common cheminformatics problems. These range from
Quantitative Structure-Activity Relationship (QSAR) descriptor calculations to 2D and
3D model building, input and output in different formats, SMILES parsing and genera-
tion, ring searches, isomorphism checking, and structure diagram generation (Steinbeck
et al., 2003, 2006). It is written in Java and forms the backbone of a growing number of
cheminformatics and bioinformatics applications.

For this implementation, the particular feature of the CDK that we made use of was
the parsing of chemical structures in MOLfile format into the internal CDK chemical
entity domain model.

9.3.2 Programmatic manipulation of OWL ontologies

Although Graphical user interface (GUI)-based tools with which to manipulate OWL
ontologies do exist, these tools do not yet provide support for recent extensions of which
description graphs is an example. Since the tools which allow graphical manipulation
of graph-enriched ontologies do not yet exist, it was necessary for this research that the
ontology and graphs be created and interfaced with programmatically. The OWL API is an
Application programming interface (API) for the creation, manipulation, and interfacing
with OWL ontologies using the Java programming language (Horridge and Bechhofer,
2009). It is open source and has been developed primarily at the University of Manchester,
providing an in-memory reference implementation for ontology manipulation. It also
provides facilities for input and output of ontologies in several formats including the
popular OWL Manchester syntax and RDF. Finally it provides a standardised mechanism
for passing ontologies to reasoners and interfaces to diverse reasoners including HermiT,
which is the reasoner used in this research and described in Section 9.3.3.

The OWL API formed the backbone of our implementation, allowing us to create the
ontology, graphs and rules, pass the resulting knowledge base programmatically to our
chosen reasoner, and receive the result after reasoning was completed.

69

9.4. IMPLEMENTATION

9.3.3 Reasoning over graph-enriched knowledge bases

For reasoning over the graph-enriched knowledge base, we made use of the HermiT
library1 as this is the only reasoner that currently provides support for both description
graphs and rules.

HermiT is a Java reasoner for OWL ontologies. Given an OWL file, HermiT is able
to perform common reasoning tasks such as determining whether or not the ontology is
consistent, identifying subsumption relationships between classes, and applying any rules
specified in the knowledge base.

HermiT is based on a novel hypertableau calculus which provides much more efficient
reasoning than earlier algorithms. Ontologies which previously required minutes or hours
to classify can often by classified in seconds by HermiT. HermiT is the first reasoner
able to classify a number of ontologies which had previously proven too complex for any
available system to handle (Shearer et al., 2008).

9.4 Implementation

In this section, we describe the structure of the implemented knowledge base.

9.4.1 Ontology

At the root of the ontology is the node ‘chemical entity’, beneath which are nodes for
the primary division in kind of entity, namely ‘group’, ‘atom’, ‘molecule’, and ‘ion’.
‘Atom’ is further divided into the concrete types of atoms as per the periodic table, such
as ‘carbon atom’ and ‘oxygen atom’.

An illustration of the overall structure of the core terms of the ontology is shown in
Figure 9.2.

9.4.2 Description Graphs

Description graphs were automatically generated2 from a MOLfile connection table
format MDL (2010). The standard MOLfile format consists of an atom table, which
provides information about the atoms included in the molecule such as their types, and a

1Version 1.2.2 with slight customisation for input and output of graphs which is currently only partially
supported by the HermiT library and the OWL API.

2Our software for this experiment is available in source and binary at
http://www.ebi.ac.uk/~hastings/owled2010/descgraphs.zip

70

9.4. IMPLEMENTATION

Figure 9.2 Core ontology structure

bond table, which provides information about the bonds included in the molecule such as
which atoms they connect and the bond order. Chapter 3 gives more information about
the MOLfile format.

For example, here is the MOLfile format for a simple cyclobutane molecule:

Marvin 05170622152D

4 4 0 0 0 0 999 V2000

0.4125 0.4125 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

-0.4125 0.4125 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

-0.4125 -0.4125 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

0.4125 -0.4125 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0

4 1 1 0 0 0 0

3 2 1 0 0 0 0

4 3 1 0 0 0 0

M END

71

9.4. IMPLEMENTATION

Each description graph consists of a vertex for the description graph main class which
is a subclass of ‘molecule’ in the ontology, a vertex for each atom which is a subclass of
the atom type e.g. ‘carbon atom’ in the ontology, and a vertex for each bond which is a
subclass of the bond type in the ontology e.g. ‘single’. Each atom vertex is connected to
the molecule by the has_atom property. Atom vertices are associated with bonds with
has_bond. Figure 9.3 shows an illustration of the description graph for cyclobutane.

Figure 9.3 Illustration of the cyclobutane description graph

The description graph representation of cyclobutane which is added to the ontology is
reproduced below in functional-style syntax. Note that 30377 is the ID for cyclobutane in
the ChEBI database. Each atom is a node, and each bond is a node. Edges are has_bond

relationships between atoms and bonds and has_atom relationships between the molecule
(which is the main class) and the atoms.

DescriptionGraph(Nodes(

NodeAssertion(<30377_Atom_(C)0> <30377_Atom_(C)0>)

NodeAssertion(<30377_Atom_(C)1> <30377_Atom_(C)1>)

NodeAssertion(<30377_Atom_(C)2> <30377_Atom_(C)2>)

NodeAssertion(<30377_Atom_(C)3> <30377_Atom_(C)3>)

NodeAssertion(<30377_Bond_(SINGLE)5> <30377_Bond_(SINGLE)5>)

NodeAssertion(<30377_Bond_(SINGLE)4> <30377_Bond_(SINGLE)4>)

NodeAssertion(<30377_Bond_(SINGLE)6> <30377_Bond_(SINGLE)6>)

NodeAssertion(<30377_Bond_(SINGLE)7> <30377_Bond_(SINGLE)7>)

)

Edges(

EdgeAssertion(has_bond 30377_Atom_(C)1 30377_Bond_(SINGLE)4)

EdgeAssertion(has_bond 30377_Atom_(C)0 30377_Bond_(SINGLE)4)

EdgeAssertion(has_bond 30377_Atom_(C)3 30377_Bond_(SINGLE)5)

EdgeAssertion(has_bond 30377_Atom_(C)0 30377_Bond_(SINGLE)5)

EdgeAssertion(has_bond 30377_Atom_(C)2 30377_Bond_(SINGLE)6)

EdgeAssertion(has_bond 30377_Atom_(C)1 30377_Bond_(SINGLE)6)

EdgeAssertion(has_bond 30377_Atom_(C)3 30377_Bond_(SINGLE)7)

72

9.4. IMPLEMENTATION

EdgeAssertion(has_bond 30377_Atom_(C)2 30377_Bond_(SINGLE)7)

EdgeAssertion(has_atom molecule_30377 30377_Atom_(C)0)

EdgeAssertion(has_atom molecule_30377 30377_Atom_(C)1)

EdgeAssertion(has_atom molecule_30377 30377_Atom_(C)2)

EdgeAssertion(has_atom molecule_30377 30377_Atom_(C)3)

)

MainClasses(<molecule_30377>

))

The vertices (but not the properties) of the description graphs are also classified in
the main OWL ontology. The main class is classified beneath ‘molecule’ in the main
ontology, the atoms beneath ‘atom’ and the bonds beneath ‘bond’.

The inclusion of cyclobutane in the main ontology is shown here in OWL Manchester
syntax. Note that no relationship is asserted between this molecule and, for example, the
class of cyclic molecules.

Class: <molecule_30377>

Annotations:

rdfs:label "cyclobutane"@en

SubClassOf:

<molecule>

Atoms are each classified beneath the relevant atom type, as follows:

Class: <30377_Atom_(C)3>

SubClassOf:

<carbon_atom>

And, each of the bonds is classified beneath the relevant bond type, as follows:

Class: <30377_Bond_(SINGLE)5>

SubClassOf:

<single_bond>

9.4.3 Rules

We implemented rules to classify chemical structures based on their composition and
their connectivity. Rules were devised for the classification of cyclic compounds, which
contained a cycle of connected atoms. Figure 9.4 shows examples of cyclic compounds.

Separate rules were created for cycles of different bond path lengths. For exam-
ple, a rule to determine cycles of length three bonds is given in 9.1 below. Note that

73

9.4. IMPLEMENTATION

Figure 9.4 Some cyclic compounds

this was slightly simplified for readability. The full generated version also includes
DifferentFrom statements to ensure non-trivial cycles.

Molecule(M)∧
has_atom(M,A1)∧has_atom(M,A2)∧has_atom(M,A3)∧

Atom(M,A1)∧Atom(M,A2)∧Atom(M,A3)∧
Bond(M,B1)∧Bond(M,B2)∧Bond(M,B3)∧

has_bond(A1,B1)∧has_bond(A2,B1)∧
has_bond(A2,B2)∧has_bond(A3,B2)∧
has_bond(A1,B3)∧has_bond(A3,B3)∧
→ instanceOf(M,CyclicMolecule)

�
 �	9.1

where M is an arbitrary individual of type Molecule; A1 – A3 are atoms; B1 – B3 are bonds
forming a cyclic path such that atom A1 is bonded to atom A2, A2 to A3 and A3 to A1

again. CyclicMolecule is a class in the ontology which has as members all molecules
that contain a cycle.

Rules were also devised to determine parthood between chemical structures. If all
atoms of A are atoms of B, and all bonds of A are bonds of B, then A is a subgraph of B.
The term group is commonly used to denote arbitrary chemical parts, while the terms
molecule, ion and so on refer to entire (complete) structures. Rules were devised for each
group so as to identify these groups within the molecule. However, a consequence of the
strong separation requirement is that a single rule cannot refer to both graph properties
and tree properties. For this reason, even if we determine that a given graph is a subgraph
of another graph, we cannot assert a relationship such as has_part between the two main
classes at the ontology level. A workaround for this is to create a class for every group,
such that if the structure of the group is a subgraph of the structure of the molecule , then

74

9.4. IMPLEMENTATION

the molecule can be classified as belonging to that particular class. This is illustrated in
Figure 9.5.

Figure 9.5 Classification based on parthood

Rules for parthood determination are of the form

Molecule(M)∧
has_atom(M,A1)∧ ...∧has_atom(M,An)∧

Atom(A1)∧ ...∧Atom(An)∧
Bond(B1)∧ ...∧Bond(Bm)∧

has_bond(Ai1,B j1)∧ ...∧has_bond(Ain,B jm)

→ instanceOf(M,Class)
�
 �	9.2

where M is an arbitrary individual of type molecule; A1 – An are group atoms; bonds exist
between the group atoms Ai1 – Ain and A j1 – A jn, and Class is a class the identity of
which depends on the group used to generated the rule, for example ‘carboxylic acid’ for
the ‘carboxy group’.

The properties used as the graph edges (has_atom, has_bond) are available for use in
the rules, as long as a rule does not mix graph properties with properties used in OWL
axioms in the main ontology.

75

10
Results

In this chapter we give the results of our project implementation and discuss
the difficulties which were encountered during the implementation, design
choices which were debated, and experience which was gained.

Our primary result was to establish whether reasoning with the rules over the combined
knowledge base enriched with description graphs did indeed result in classification of
description graph-enriched classes. These were successfully classified as cyclic molecules
and as classes containing specific defined groups such as carboxylic acids1.

Figure 10.1 shows the asserted ontology before classification on the graphs and rules
was executed, and Figure 10.2 shows the inferred hierarchy.

Figure 10.1 Ontology hierarchy with test classes before classification execution

1The resulting inferred ontology is available at
http://www.ebi.ac.uk/~hastings/owled2010/chemistry_dgs_inferred.owl

76

http://www.ebi.ac.uk/~hastings/owled2010/chemistry_dgs_inferred.owl

10.1. CLASSIFICATION BASED ON SUBSTRUCTURES

Figure 10.2 Ontology hierarchy with test classes after reasoning

For example, an extract of the inferred ontology showing membership of the class for
cyclobutane (with ID 30377) in the class of cyclic molecules is shown below. Recall that
the only asserted class membership for this class was to the molecule class.

<Class rdf:about="molecule_30377">

<rdfs:subClassOf rdf:resource="carbon_molecule"/>

<rdfs:subClassOf rdf:resource="cyclic_entity"/>

<rdfs:subClassOf rdf:resource="molecule"/>

We find this result positive in terms of overcoming the previously explicit limitation
of OWL knowledge bases in expressing arbitrarily structured objects at the class level
and performing classification based on the structure.

In the next sections we address the specific research questions we asked and discuss
some limitations and challenges both in the approach in general and in this research
project in particular.

10.1 Classification based on substructures

As presented in the previous chapter, rules were created to determine parthood between
chemical structures, that is, to test whether all atoms of A are atoms of B, and all bonds
of A are bonds of B. This was done, for example, for the highly reactive Carboxy group
which forms the reactive definition of the class of carboxylic acids.

77

10.2. DETERMINATION OF CHEMICAL PROPERTIES FROM GRAPHS

Recall that the consequence of the strong separation requirement for the rule imple-
mentation is that a single rule cannot refer to both graph properties and tree properties.
For this reason, even if we determine that a given graph is a subgraph of another graph,
we cannot assert a relationship such as has_part between the two main classes at the
ontology level. The workaround that we implemented for this is to create a class for every
group, such that if the group’s structure is a subgraph of the molecule’s structure, then the
molecule can be classified as belonging to that class. One such class which we created
in the ontology was the class of carboxylic acids. We were able to create a rule which
performed classification based on parthood by testing, in the antecedent of the rule, for
the graph substructure matching the carboxy group, and then asserting, in the consequent
of the rule, that the main class of the description graph was a subclass of the carboxylic
acid class.

Within our knowledge base, this rule tested for the Carboxy group substructure
and was able to classify graph-enriched classes representing molecules as subclasses of
carboxylic acid when the test successfully matched for a given graph.

10.2 Determination of chemical properties from graphs

The primary chemical property for which we encoded rules in our knowledge base was
cyclicity. Cyclic molecules in general display many different properties (such as reactivity
and stability) when compared to their linear counterparts (Zero et al., 2009), and as a
result chemists frequently classify molecules into different classes depending on the
number and size of the cycles present.

We therefore created rules for determining cycles of connected atoms within molecules,
and these, together with the description graphs and the reasoner, were able to automati-
cally classify the graph-enriched classes as cyclic within the ontology.

One limitation of the current approach is that each different cycle length requires a
different rule. This is because each atom and bond in the cyclic path has to be expressed
by a different individual in the rule antecedent (together with differentFrom clauses to
ensure that different atoms are matched within the description graph for the molecule).
We generated different rules to test graph cycles from length three to eight bonds in the
cyclic path.

A further, and more pressing, limitation, is that the types of conditionality that can be
expressed in rules potentially provide the facility for only a limited set of chemical prop-
erties relative to those required by chemists. For example, it is difficult to express rules

78

10.3. SCALABILITY OF REASONING OVER KNOWLEDGE BASE

that must apply to all atoms from a given molecule’s graph without specifically naming
those atoms, since there is no forAll operator for the rules implemented alongside OWL
as described in Chapter 6, Section 6.6. It is therefore not possible to test for hydrocarbon

molecules, that is, those which contain only Carbon or Hydrogen atoms, since this would
require the facility not only to match for certain atoms within the molecule, but to ensure
that there are no additional atoms within the molecule which do not match. In OWL
axioms, this type of restriction is accomplished with a closure axiom in terms of a value

restriction (∀R.C).

10.3 Scalability of reasoning over knowledge base

To evaluate the performance, we executed reasoning (ontology classification) over itera-
tively increasing sizes of the knowledge base, both with and without rules. The results
are summarised in Figure 10.32.

Figure 10.3 Performance results of classification

We did not attempt to control the size of the graphs which we randomly selected for
inclusion into our knowledge base, but note that the average size of a molecule in the
ChEBI database is around 30 atoms3.

We first present the results for reasoning over a graph-enriched knowledge base
without any generated rules. This tests the capacity of the reasoner to reason over the
OWL knowledge base, together with description graphs, but without any conditionality

based on the graphs. Additional OWL axioms may be expressed in the ontology, making
use of the normal OWL constructors and properties. Table 10.1 gives the times to reason
over the graph-enriched but not rule-enriched knowledge base.

2Tested on a Dell twin core laptop.
3Excluding hydrogen atoms, which are commonly left implicit, as these can be ‘added back’ by

calculations to determine their predicted positions. See Chapter 3 for further details.

79

10.3. SCALABILITY OF REASONING OVER KNOWLEDGE BASE

No. Of Graphs No. Of Axioms Time to reason (seconds)
20 371 8
40 674 35
60 1015 94
80 1277 182
100 1844 379
120 2371 689
140 2677 952
160 2749 1266
180 2862 1388

Table 10.1 Results of performance evaluation – No generated rules

We then added in the generated rules, which provide the ability to perform classifi-
cation based on properties (such as being cyclic) determined from the structure of the
description graphs, and re-tested the scalability of reasoning together with the rules. Table
10.2 gives the times to reason over the graph and rule-enriched knowledge base.

No. Of Graphs No. Of Axioms Time to reason (seconds)
20 371 34
40 674 193
60 1015 687
80 1277 1535
100 1844 4479
120 2371 8952
140 2677 14380

Table 10.2 Results of performance evaluation – Including generated rules

The scalability of the reasoner against the knowledge base enriched with desciption
graphs appears workable, with reasoning time growing to a maximum of 23 minutes
(1388 seconds) for a knowledge base enriched with 180 graphs. However, including
the graphs alone – without rules – does not allow for any classification based on the
information encoded in the graphs. The rules are thus essential to expose the structure in
the graphs to the reasoner. Unfortunately, we find that reasoning over the knowledge base
enriched with graphs and rules appears to grow very rapidly into unmanageable durations,
with the highest duration that we recorded for a knowledge base enriched with 140 graphs
taking four hours (14380 seconds) to classify. This scalability is affected dramatically
by the number and complexity of the generated rules, therefore this would appear to be
a limiting factor in following our approach in a more complete fashion, where many
chemical properties and subgraph relations might be expected to be included in the same

80

10.3. SCALABILITY OF REASONING OVER KNOWLEDGE BASE

knowledge base to adequately model domain knowledge.

81

11
Discussion

In this chapter, we discuss this research within the broader context of related
research and the requirements of expert systems in the chemistry domain
in general. We begin by discussing the expectations on expert systems
performing chemical classification and to what extent our research has shown,
at least in principle, that the description graph approach will be able to
fulfill these expectations (Section 11.1). We then discuss related work in
Section 11.2 and finally summarise the relationship of our work with these
historical efforts in Section 11.3.

While sources of chemical data abound at an ever-increasing rate, relatively little
of that has heretofore become available in the form of structured ontologies or other
logic-based artificial intelligence ‘knowledge’ representations.

11.1 Structure-based chemical classification by expert
systems

While the chemical graph formalism presents a method by which chemical structural
information is readily encoded in several available standard computable formats, neverthe-
less there remains a gap in the broader area of chemical knowledge representation, since
the chemical graph formalism only applies to fully defined structures. Representation of
chemical structures with the chemical graph does not directly aid in the classification of
those structures. Classification and interpretation of chemical structures is a specialised
task, with chemists studying for years to master the highly developed chemical classifi-
cation system in widespread use, and furthermore to understand the nuances and many

82

11.1. STRUCTURE-BASED CHEMICAL CLASSIFICATION BY EXPERT SYSTEMS

different variants in use within different specialised communities. We will take a closer
look at the main features of chemical classification systems.

Chemical classes, the objects found within a chemical classification system, group
together chemical entities in such a way as to allow meaningful scientifically relevant
groups to be created and described. Ideally, all members of a chemical class should
share important dispositional properties such as chemical reactivity. In fact, almost
the only method of classification which was available to historical chemists, before
compound structures were well understood, was based on the observation of reactivity
through means of performing controlled reactions between different substances. Much
of this historical classification is still inherited today and is taught in chemistry classes
and reproduced in textbooks. Knowledge about the structural features which form the
underlying causes of the shared dispositional properties (where such existed) was only
determined later. However, now that chemical structures are well described (within the
limits of the chemical graph formalism), many more structural features are able to be
used for chemical class definitions. We can distinguish between useful chemical classes
and irrelevant chemical classes. It is clear that classes such as “All compounds containing
exactly 12 atoms” share no such dispositional properties, thus do not represent a useful
chemical class for that reason1.

We here consider the typical class definitions which can be found in the traditional
chemical classes in common use in chemistry, and try to analyse the features required for
such definitions. The first element of chemical class definitions, providing a complete
definition when it can be specified, is a full chemical graph for that class of molecules. The
limits of the chemical graph formalism have been discussed earlier. Furthermore, we note
that chemical graphs can be specified for completely stereochemically specified entities,
and for completely stereochemically unspecified entities, but relative configurations of
stereogenic centers cannot be specified using traditional chemical graph representation
formalisms. For example, ‘allothreonine’ [rel-(2R,3R)-2-amino-3-hydroxybutanoic acid]
and ‘threonine’ [rel-(2R,3S)-2-amino-3-hydroxybutanoic acid] are compounds with a
relative configuration of stereogenic centres, thus for which a graph cannot currently be
drawn. Figure 11.1 illustrates completely stereochemically specified forms of threonine.
The wedge bond convention (dashed or solid) illustrates that the attached groups are going
in or out of the plane of the remainder of the molecule. What cannot be represented in the
current graph formalism is a relative arrangement of these - if the first is up, the second is

1Although, for technical reasons, such specifications may be valuable. Consider the database of all
synthetically accessible, drug-like small molecules with up to 13 atoms, GDB-13(Blum and Reymond,
2009).

83

11.1. STRUCTURE-BASED CHEMICAL CLASSIFICATION BY EXPERT SYSTEMS

down - or conversely, if the first is down, the second is up - for example. However, we
would be able to express this arrangement in rules within a graph enriched knowledge
base such as the one we used.

Figure 11.1 D-threonine and L-threonine

The next element which is common in chemical class definitions is the composition
in terms of which groups are attached (which may be simple atoms) and how many of
them are attached, i.e. the cardinality. For example, ‘tricarboxylic acid’ can be defined as
a compound containing exactly three carboxy groups. This type of classification, as we
have illustrated, is able to be expressed in a graph enriched OWL knowledge base such as
we have designed in this research.

A core structural element used in class definitions in chemistry is the skeleton of
the molecule. For example, the class ‘metalloporphyrins’ is defined as any compound
containing a porphyrin skeleton and a metal atom. Note that as the term is commonly
used in chemistry, a skeleton is not always a straightforward substructure, since bond
order (e.g. single or double) may vary, and bonds may even be added or removed while
retaining the same ‘skeleton’. However, for our present purposes it will be sufficient to
restrict the definition of skeleton to the stronger one which implies that the skeleton must
be a substructure of the molecule it is a skeleton of, and thereby we are able to perform
this type of classification within our knowledge base as illustrated by the successful
classification based on the carboxy group substructure.

Another element commonly used in class definitions is the number and arrangement
of rings (cycles) in a ring system which is a part of the molecule. A ring system is
composed of multiple individual rings connected in a complex fashion. For example, the
classes ‘ring assembly’ and ‘polycyclic cage’ (Figure 11.2) both refer, in their definitions,
to numbers and arrangements of rings in the molecule. We have illustrated our ability to
classify graph-enriched classes representing molecules in terms of the number and size of

84

11.1. STRUCTURE-BASED CHEMICAL CLASSIFICATION BY EXPERT SYSTEMS

cycles which are present, and this is an important step in the direction of defining classes
based on such complex ring arrangements.

Figure 11.2 Polycyclic molecular cages

Straightforward chemical properties such as charge and unpaired electrons are used to
define broad classes of molecules such as ion and radical. These may also apply at a lower
level of classification, such as ‘aromatic diazonium ion’. Aromaticity and saturation
are other properties commonly found in class definitions. Our approach allows for the
classification based on straightforward properties of chemical entities. Unfortunately,
some properties of chemical entities cannot be expressed in the rules formalism due to
the limitation of not having a construct for closure axioms within the rules, as discussed
in the previous chapter.

Finally, an interesting element of chemical class definitions is based on structural
formulae, which is problematic to depict with existing graph-based tools. For example,
‘alkane’ is defined as “an acyclic branched or unbranched hydrocarbon having the general
formula CnH2n+2.” These types of structural formulae also appear to be beyond the
reach of the rules formalism at present.

Our goal in this research project has been restricted to testing whether the OWL,
description graphs and rules approach is able to perform classification based on chemical
properties and substructures. We have not therefore been able to completely evaluate
the extent to which our approach allows for the expression of each of these important
properties as discussed here. However, we have seen that many of the more important
properties relevant for chemical classification do appear possible, and it might be a
direction for future research to extend the evaluation and implement some of these
properties. The scalability concerns as regarding reasoning with rules are of paramount
concern to the future of our approach, as is the limitation in terms of the kinds of
conditionality which can be expressed in rules.

85

11.2. RELATED WORK

11.2 Related work

Armengol and Plaza (2005) describe an ontology-like, formal encoding of chemical
structural features using feature terms which are based on the International Union for
Pure and Applied Chemistry (IUPAC) nomenclature recommendations. Key to their
approach is the representation of the main structural unit of a chemical entity plus
the explicit representation of the additions and modifications to that structural unit.
This is indeed similar to the approach taken in chemical nomenclature, where common
structural units are given trivial or semisystematic ‘common’ names, and the names of
more complicated molecules are built up from these parts by explicitly denoting the
additions and modifications to the structural units which do have common names which
constitute the entire molecule. This makes the resulting names far more memorable and
comprehensible for humans than an approach based on fully systematic specification of
all atoms and attachments within the molecule would be.

Armengol and Plaza specifically consider classifications based on hydrocarbon skele-
tons, number and type of ring systems, and functional groups. The feature terms with
which they encode the structure of molecules for classificatory purposes consist of object
names and relational ‘features’ which relate other objects to the objects being defined
in different ways depending on the name of the feature. For example, they define the
molecule ‘4-hexen-1-yne’, illustrated below, as

(define (unsaturated-hydrocarbon 4-hexen-1-yne)

(cyclic? false)

(main-group hexane)

(p-bonds (define (p-bond)

(bond triple)

(position one)

)

(define (p-bond)

(bond double)

(position four)

)

)

)

Here, the feature terms are ’cyclic’, ’main-group’, ’p-bonds’, etc., each of which has
a definition and takes values of a certain type only. The feature term ‘cyclic’ admits
Boolean values, while the ‘main-group’ feature term takes a hydrocarbon as a value.
Types are thus specified in terms of the features they have, and features can be inherited
between types in a hierarchy (they include hydrocarbon as a child of organic molecule,

86

11.2. RELATED WORK

for example). Particularly interesting is their treatment of positional information about
attachment of interesting parts to the ‘main-group’, or skeleton. They further provide for
the specification of relative positions via the ‘relative-position’ feature term, in which the
distance between two attachments is specified.

The authors used their encoding to correlate features of molecules with toxicology,
and found that their approach compared favourably with existing approaches based on
standard cheminformatics techniques2. However, they did not present a computational
implementation for deriving feature terms from chemical structure specifications, and it
is not clear to what extent automated reasoning over these non-standardised descriptions
could be supported by currently available reasoning tools.

Within the context of the field of bioinformatics and the success of the Gene Ontology
(The Gene Ontology Consortium, 2000) in assisting integration and interpretation of
large scale bioinformatics data, the ChEBI ontology was developed by the European
Bioinformatics Institute alongside their database of small molecules of biological interest
(de Matos et al., 2010). The ChEBI ontology provides a classification for all entities in
ChEBI according to their physical composition and chemical structures. The relationships
used in ChEBI include:

• is a, which is used to relate a more specialised entity to a more general one
which subsumes it, such as L-alanine residue (CHEBI:46217) is a alanine residue
(CHEBI:32441).

• has part, which is used to indicate the constituents of a composite entity, such as
diclofenac sodium (CHEBI:4509) has part diclofenac(1-) (CHEBI:48311).

• has role, which is used to link a molecular entity to a role which it performs in
some contexts, such as kanamycin A sulfate (CHEBI:6109) has role antibacterial
drug (CHEBI:36047). (We will not consider the has role relationship further as it
is not structure-based.)

• various chemical relationships including is enantiomer of, is tautomer of, and
acid/base relations.

See Figure 11.33 for an illustration of the structural relations used in ChEBI.
Villanueva-Rosales and Dumontier (2007) developed an ontology of chemical func-

tional groups encoded in OWL, which was able to be used to automatically link chemical
2For example, QSAR descriptors, which assign numeric values to algorithmically calculated properties

of the structures of molecules which are believed to correlate with activity.
3Figure 11.3 first appeared in (Hastings et al., 2010).

87

11.2. RELATED WORK

Figure 11.3 Structural relations in the ChEBI ontology

entities defined by means of graphs to ontological classes defined by means of functional
groups. They made use of a cheminformatics software application to extract functional
groups from molecules with chemical structures specified in standard cheminformatics
representation formalisms. While not as rich as the feature term representation described
above, and not as large as the ChEBI ontology, the Dumontier representation allows
powerful use to be made of the relatively compact knowledge base of functional groups
in terms of the classification of arbitrary molecules in a defined hierarchy.

Cheminformatics tools and techniques do already exist to detect (for example) sub-
structure relationships between different chemical graphs (a substructure is when one
graph forms a wholly subsumed part of another graph), and graph isomorphism (which is
when two graphs, differently depicted, actually represent the same molecule). Cheminfor-
matics algorithms can also calculate many interesting structures and features of chemical
entities represented as chemical graphs, such as charge, mass, and various “descriptors”
which provide quantitative measures of certain aspects of the bioactivity of chemical
entities.

However, no algorithms or tools yet exist which extensively interrelate chemoinfor-
matics algorithms, representation formalisms, and ontology, such that the former could
provide input into the latter. One exception is the Dumontier ontology we described
earlier, but that is limited to a fixed number of functional groups, providing only a
limited vocabulary for defining chemical classes. Furthermore, it is clear that many of
the elements of chemical class definitions that fall into this ‘gap’ area, rely on these

88

11.3. COMPARISON OF OUR RESEARCH TO PREVIOUS EFFORTS

chemical graphs, or aspects (features) of graphs, which may even be expressed in terms
of structural formulae.

11.3 Comparison of our research to previous efforts

Our results have shown that it is possible to create a chemical knowledge base using
OWL, description graphs and rules. The main strength of our approach is the direct
encoding of complex structures at the class level in the ontology, and the encoding of
rules for determining properties such as being cyclic, which are not able to be expressed
as OWL axioms. We thereby show that this approach allows properties to be calculated
by the reasoner rather than requiring these to be pre-computed and added to the asserted
hierarchy of the ontology.

The main weaknesses are the limitations of rules for arbitrary property encoding and
in particular the lack of quantification operators; and that there seems to be a scalability
performance problem with using rules in this fashion. Pragmatically, the performance of
the system was not where it would need to be to be able to handle the thousands or even
millions of chemical graphs that are included in public databases. However, if ontologies
are restricted to particular sub-domain areas of limited size, this might not be too much
of a limitation.

Armengol and Plaza (2005) describe an ontology-like, formal encoding of chemical
structural features using feature terms. Key to their approach is the representation of
the main structural unit of a chemical entity and then the explicit representation of the
additions and modifications to that structural unit. However, their knowledge base is
not straightforwardly translatable into OWL and therefore it is not clear to what extent a
comparison can be made in terms of conclusions that can be drawn with a reasoner. Many
such frame-based representations of knowledge were found on closer investigation to be
undecidable (Baader and Nutt, 2007), while one of the main strengths of DLs in general
and OWL-DL in particular is their guarantee of decidability.

The ChEBI ontology is a well-known ontology for chemical entities, providing a
deep classification according to the physical composition and chemical structure of
chemical entities. While containing an ever-growing number of chemical entities, ChEBI
is maintained entirely by hand, with no automated link between the structure of the
chemicals captured in the chemical database and the structural definition of ontology
classes. As a result, the ChEBI database has been able to grow at a much faster rate than

89

11.3. COMPARISON OF OUR RESEARCH TO PREVIOUS EFFORTS

the ChEBI ontology, with the sizes currently4 at around 550000 for the database and
22000 for the ontology. Chemical structures are exported into the ontology as annotations

in the InChI format (IUPAC, 2010).
Villanueva-Rosales and Dumontier (2007) developed an OWL ontology for the classi-

fication of chemical compounds based on the presence of specified chemical functional
groups. A key aspect of the approach was that tree-like expressions specified the neces-
sary and sufficient conditions for functional groups such that the taxonomy of functional
groups would be discovered on reasoning, thus reducing the burden of curating such an
ontology. However, they were unable to express arbitrary structure at the class level due
to the known limitations of OWL.

Taking the desiderata of chemical ontology as the ability to center the knowledge
base around an accurate representation of the structures of chemical entities, and to
automatically determine the properties of chemical entities from those structures within
the knowledge base, we find that the description graphs and rules extensions to OWL are
a big step forward on the standard OWL language for this purpose.

4As of Release 69.

90

11.3. COMPARISON OF OUR RESEARCH TO PREVIOUS EFFORTS

91

12
Conclusion

In this chapter we summarise the dissertation, the results and the conclusions.
We also state opportunities for future work.

For this research project we investigated the applicability of using OWL, description
graphs, and rules to implement a structure-enriched knowledge base for chemicals with
classification based on the chemical structures and rules. This work contributes to the
evaluation of new OWL-related technology towards the requirements of expert systems
within the chemistry application domain. We gave an outline of background information
both in terms of the domain of chemistry and in terms of knowledge representation
and in particular DLs. Our results showed that the approach is feasible and does allow
classification based on certain properties of chemical entities, but significant limitations
include the scalability of reasoning with the rules and the limitation on the kind of
structure-based properties that can be tested for within the rule formalism.

Cheminformatics tools and techniques do already exist to detect chemical properties
and subgraphs / graph isomorphisms, and the CDK (Steinbeck et al., 2006) provides
a well-developed open source library of such algorithms. These well-developed and
optimised graph manipulation algorithms already in widespread use in the field of chem-
informatics could provide input into the relatively new development of graph-enriched
ontologies.

Future research in this area could investigate whether different representation strate-
gies and/or rule implementations could alleviate the performance overhead in reasoning
with the rules. Explicitly listed as out of scope for the purposes of this dissertation,
another avenue of future research would be to implement a system to allow visualisation
of the chemical description graphs being created within a visual ontology editing tool
such as Protégé. The proof of concept we have presented here should be extended with

92

implementations for rules to determine several additional chemical properties. Finally,
closer integration with the cheminformatics work which has already been done into the
logic-based ontology domain might be achieved by the incorporation of a ‘chemical
datatype’ into OWL based on InChI strings.

93

Bibliography

Armengol, A. and Plaza, E. (2005). An ontological approach to represent molecular
structure information. In J. L. Oliviera, editor, ISMBA 2005, volume 3745 of LNBI,
pages 294–304.

Baader, F. and Nutt, W. (2007). Basic Description Logics, volume The Description Logic
Handbook, chapter 2. Cambridge University Press, Cambridge, UK, 2nd edition.

Baader, F., Küsters, R., and Wolter, F. (2007). Extensions to Description Logics, volume
The Description Logic Handbook, chapter 5. Cambridge University Press, Cambridge,
UK, 2nd edition.

Beilstein (2010). Crossfire Beilstein Database.
http://info.crossfiredatabases.com/beilsteinacquisitionpressreleasemarch607.pdf.

Ben-Ari, M. (2001). Mathematical Logic for Computer Science. Springer-Verlag, London,
Great Britain, 2nd edition.

Blum, L. C. and Reymond, J.-L. (2009). 970 million druglike small molecules for
virtual screening in the chemical universe database GDB-13. J. Am. Chem. Soc., 131,
8732–8733.

Calvanese, D. and De Giacoma, G. (2007). Expressive Description Logics, volume The
Description Logic Handbook, chapter 5. Cambridge University Press, Cambridge, UK,
2nd edition.

Carpi, A. (2003). Organic chemistry: An introduction. Visionlearning, CHE-2.
http://www.visionlearning.com/library/module_viewer.php?mid=60.

CAS (2010). Chemical Abstracts Service. http://www.cas.org/.

CHEMBIOGRID (2010). CHEMBIOGRID: chemistry databases on the web.
http://www.chembiogrid.org/related/resources/about.html.

Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., and Sattler, U.
(2008). OWL 2: The next step for OWL. Journal of Web Semantics, 4, 309–322.

Daylight, inc. (2010). http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html.

94

BIBLIOGRAPHY

de Matos, P., Alcántara, R., Dekker, A., Ennis, M., Hastings, J., Haug, K., Spiteri, I.,
Turner, S., and Steinbeck, C. (2010). Chemical Entities of Biological Interest: an
update. Nucl. Acids Res., 38, D249–D254.

Gasteiger, J. and Engel, T. (2003). Chemoinformatics: A Textbook. Wiley-VCH, Germany.

Glimm, B., Horridge, M., Parsia, B., and Patel-Schneider, P. F. (2009). A syntax for rules
in OWL 2. In Proc. of OWL Experiences and Directions 2009 (OWLED 2009).

Haarslev, V. and Möller, R. (2003). Racer: A core inference engine for the semantic web.
In Proceedings of the 2nd International Workshop on Evaluation of Ontology-based

Tools (EON2003), located at the 2nd International Semantic Web Conference, ISWC

2003, pages 27–36, Sanibel Island, Florida, USA.

Hastings, J. and The ChEBI Team (2010). The ChEBI tutorial.
http://www.ebi.ac.uk/chebi/tutorialForward.do.

Hastings, J., Batchelor, C., Steinbeck, C., and Schulz, S. (2010). What are chemical
structures and their relations? In A. Galton and R. Mizoguchi, editors, Proceedings of

the 6th Formal Ontology in Information Systems conference, Toronto, Canada.

Hemmer, M. C. (2008). Expert Systems in Chemistry Research. CRC Press/Taylor and
Francis Group, Boca Raton, FL.

Horridge, M. and Bechhofer, S. (2009). The OWL API: A Java API for working with
OWL 2 ontologies. In R. Hoekstra and P. F. Patel-Schneider, editors, Proc. of OWL

Experiences and Directions 2009 (OWLED 2009).

Horrocks, I., Patel-Schneider, P. F., Mcguinness, D. L., and Welty, C. A. (2007). OWL:

a Description Logic Based Ontology Language for the Semantic Web, volume The
Description Logic Handbook, chapter 14. Cambridge University Press, Cambridge,
UK, 2nd edition.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., and Dean, M.
(2010). SWRL: A semantic web rule language combining OWL and RuleML.
http://www.w3.org/Submission/SWRL/.

Indiana Cheminformatics Education Portal (2010). Representation of 2D structures on
computers.
http://icep.wikispaces.com/Representation+of+2D+structures+on+computer.

95

BIBLIOGRAPHY

IUPAC (2010). The IUPAC International Chemical Identifier (InChI).
http://www.iupac.org/inchi/.

Lesk, A. M. (1980). On the Gibbs paradox: what does indistinguishability really mean?
J. Phys. A: Math. Gen., 13, L111–L114.

Marx, V. (2009). Tear down this firewall: Pharma scientists call for a pre-competitive
approach to bioinformatics. GenomeWeb BioInform News.
http://www.genomeweb.com/informatics/tear-down-firewall-pharma-scientists-call-
pre-competitive-approach-bioinformatic?page=show.

McNaught, A. D. and Wilkinson, A. (1997). IUPAC Compendium of Chemical Termi-

nology, 2nd ed. (the “Gold Book"). Blackwell Scientific Publications, Oxford. XML
on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat,
B. Kosata; updates compiled by A. Jenkins.

MDL (2010). MDL. http://www.mdl.com/company/about/history.jsp.

Motik, B., Sattler, U., and Studer, R. (2004). Query answering for OWL-DL with rules.
In Proc. ISWC-2004, pages 549–563.

Motik, B., Cuenca Grau, B., Horrocks, I., and Sattler, U. (2008a). Modeling ontologies
using OWL, description graphs, and rules. In Proc. of the 5th OWLED Workshop on

OWL: Experiences and Directions, Karlsruhe, Germany.

Motik, B., Cuenca Grau, B., Horrocks, I., and Sattler, U. (2008b). Representing structured
objects using description graphs. In Proc. of the 11th Int. Joint Conf. on Principles of

Knowledge Representation and Reasoning (KR 2008). AAAI Press.

Motik, B., Cuenca Grau, B., and Sattler, U. (2008c). Structured objects in OWL:
representation and reasoning. In Proc. of the 17th International World Wide Web

Conference (WWW 2008), Beijing, China. ACM.

Murray-Rust, P., Rzepa, H. S., and Wright, M. (2001). Development of Chemical Markup
Language (CML) as a system for handling complex chemical content. New J. Chem.,
2001, 618–634.

Nardi, D. and Brachman, R. J. (2007). An introduction to Description Logics, volume
The Description Logic Handbook, chapter 1. Cambridge University Press, Cambridge,
UK, 2nd edition.

96

BIBLIOGRAPHY

PDB (2010). The world wide protein data bank. http://www.wwpdb.org/.

Rosse, C. and Jr, M. J. (2007). The foundational model of anatomy ontology. In A. Burger,
D. Davidson, and R. Baldock, editors, Anatomy Ontologies for Bioinformatics: Princi-

ples and Practice, pages 59–117. Springer, London.

Sayers, E. (2005). PubChem: An entrez database of small molecules. NLM Tech Bull.,
2005 Jan-Feb.

Shearer, R., Motik, B., and Horrocks, I. (2008). HermiT: A highly-efficient OWL reasoner.
In C. Dolbear, A. Ruttenberg, and U. Sattler, editors, Proceedings of the 5th Workshop

on OWL: Experiences and Directions, Karlsruhe, Germany.

Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., and Katz, Y. (2007). Pellet: A
practical OWL-DL reasoner. Journal of Web Semantics, 5, 51–53.

Smith, M. K., Welty, C., and McGuinness, D. L. (2010). The web ontology language.
http://www.w3.org/TR/owl-guide/.

Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O., Luttmann, E., and Willighagen, E. (2003).
The Chemistry Development Kit (CDK): An open-source Java library for chemo- and
bioinformatics. ChemInform, 34(21).

Steinbeck, C., Hoppe, C., Kuhn, S., Floris, M., Guha, R., and Willighagen, E. L. (2006).
Recent developments of the Chemistry Development Kit (CDK) - an open-source Java
library for chemo- and bioinformatics. Curr. Pharm. Des., 12, 2111–2120.

Sternberg, R. J. (2003). Cognitive Psychology. Thomson Wadsworth, Belmont, CA,
USA, 3rd edition.

The Gene Ontology Consortium (2000). Gene ontology: tool for the unification of
biology. Nat. Genet., 25, 25–9.

The Gene Ontology Consortium (2010). The OBO language, version 1.2.
http://www.geneontology.org/GO.format.obo-1_2.shtml.

Trinajstic, N. (1992). Chemical graph theory. CRC Press, Florida, USA.

Tsarkov, D. and Horrocks, I. (2006). FaCT++ description logic reasoner: System
description. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
pages 292–297. Springer.

97

BIBLIOGRAPHY

Vardi, M. Y. (1996). Why is modal logic so robustly decidable? In Proc. DIMACS

Workshop, volume 31, pages 149–184.

Villanueva-Rosales, N. and Dumontier, M. (2007). Describing chemical functional
groups in OWL-DL for the classification of chemical compounds. In Proc. of OWL:

Experiences and Directions (OWLED 2007).

Wikipedia (2010). Chemistry. http://en.wikipedia.org/wiki/Chemistry.

Williams, A. (2008). ChemSpider and its expanding web: Building a structure-centric
community for chemists. Chemistry International, 30.

Williams, A. J. (2009). A perspective of publicly accessible/open-access chemistry
databases. Drug Discovery Today, 13, 495–501.

Zero, P., Plucinski, F., and Mazurek, A. P. (2009). Theoretical comparison of molecular
properties of linear and cyclic glycine derived peptides and their phosphor analogues.
Journal of Molecular Structure: THEOCHEM, 915(1-3), 182 – 187.

98

BIBLIOGRAPHY

99

Appendices

100

101

A
Ontology Syntax Formats

The following extract illustrates an OWL class definition in RDF-XML syntax (taken
from an OWL version of ChEBI).

<owl:Class rdf:about="#CHEBI_9943">

<rdfs:subClassOf rdf:resource="#CHEBI_23480"/>

<rdfs:subClassOf rdf:resource="#CHEBI_32876"/>

<FORMULA>C17H27NO2</FORMULA>

<crossReference

>PubMed citation:15109646</crossReference>

<crossReference

>KEGG COMPOUND accession:C07187</crossReference>

<synonym xml:lang="en"

>1-(2-(dimethylamino)-1-(4-methoxyphenyl)ethyl)cyclohexanol</synonym>

<crossReference

>PubMed citation:9871604</crossReference>

<crossReference

>PubMed citation:1976813</crossReference>

<status>Checked</status>

<MASS>277.40182</MASS>

<crossReference

>CAS Registry Number:93413-69-5</crossReference>

<iupacName xml:lang="en"

>1-[2-(dimethylamino)-1-(4-methoxyphenyl)ethyl]cyclohexanol</iupacName>

<synonym xml:lang="en"

>1-[2-Dimethylamino-1-(4-methoxy-phenyl)-ethyl]-cyclohexanol</synonym>

<synonym xml:lang="en"

>1-[2-Dimethylamino-1-(4-methoxy-phenyl)-ethyl]-cyclohexanol (HCl)</synonym>

<synonym xml:lang="en"

>1-[2-Dimethylamino-1-(4-methoxy-phenyl)-ethyl]-cyclohexanol(HCl)</synonym>

<crossReference

>Beilstein Registry Number:4234848</crossReference>

<crossReference

>PubMed citation:15990295</crossReference>

<SMILES

>COc1ccc(cc1)C(CN(C)C)C1(O)CCCCC1</SMILES>

<synonym xml:lang="en">EFFEXOR</synonym>

102

<InChIKey

>InChIKey=PNVNVHUZROJLTJ-UHFFFAOYAJ</InChIKey>

<crossReference

>PubMed citation:14640559</crossReference>

<crossReference

>PubMed citation:14971904</crossReference>

<CHARGE>0</CHARGE>

<crossReference

>DrugBank accession:DB00285</crossReference>

<synonym xml:lang="en">Elafax</synonym>

<crossReference

>PubMed citation:10891117</crossReference>

<crossReference

>PubMed citation:17725338</crossReference>

<InChI

>InChI=1/C17H27NO2/c1-18(2)13-16(17(19)11-5-4-6-12-17)14-7-9-15

(20-3)10-8-14/h7-10,16,19H,4-6,11-13H2,1-3H3</InChI>

<synonym xml:lang="en">VENLAFAXINE</synonym>

<synonym xml:lang="en">Venlafaxine</synonym>

<dc:name xml:lang="en">venlafaxine</dc:name>

<synonym xml:lang="en">venlafaxine</synonym>

<synonym xml:lang="es">venlafaxina</synonym>

<synonym xml:lang="fr">venlafaxine</synonym>

<synonym xml:lang="la">venlafaxinum</synonym>

</owl:Class>

The following illustrates the same concept expression in the more compact, Manch-
ester OWL syntax:

Class: chebi_ontology:CHEBI_9943

SubClassOf:

chebi_ontology:CHEBI_23480,

chebi_ontology:CHEBI_32876

Facts:

dc:name "venlafaxine"@en,

chebi_ontology:CHARGE "0",

chebi_ontology:FORMULA "C17H27NO2",

chebi_ontology:InChI "InChI=1/C17H27NO2/c1-18(2)13-16(17(19)11-5-4-6-12-17)

14-7-9-15(20-3)10-8-14/h7-10,16,19H,4-6,11-13H2,1-3H3",

chebi_ontology:InChIKey "InChIKey=PNVNVHUZROJLTJ-UHFFFAOYAJ",

chebi_ontology:MASS "277.40182",

chebi_ontology:SMILES "COc1ccc(cc1)C(CN(C)C)C1(O)CCCCC1",

chebi_ontology:crossReference "Beilstein Registry Number:4234848",

chebi_ontology:crossReference "CAS Registry Number:93413-69-5",

chebi_ontology:crossReference "DrugBank accession:DB00285",

chebi_ontology:crossReference "KEGG COMPOUND accession:C07187",

chebi_ontology:crossReference "PubMed citation:10891117",

chebi_ontology:crossReference "PubMed citation:14640559",

103

chebi_ontology:crossReference "PubMed citation:14971904",

chebi_ontology:crossReference "PubMed citation:15109646",

chebi_ontology:crossReference "PubMed citation:15990295",

chebi_ontology:crossReference "PubMed citation:17725338",

chebi_ontology:crossReference "PubMed citation:1976813",

chebi_ontology:crossReference "PubMed citation:9871604",

chebi_ontology:iupacName

"1-[2-(dimethylamino)-1-(4-methoxyphenyl)ethyl]cyclohexanol"@en,

chebi_ontology:status "Checked",

chebi_ontology:synonym

"1-(2-(dimethylamino)-1-(4-methoxyphenyl)ethyl)cyclohexanol"@en,

chebi_ontology:synonym

"1-[2-Dimethylamino-1-(4-methoxy-phenyl)-ethyl]-cyclohexanol"@en,

chebi_ontology:synonym

"1-[2-Dimethylamino-1-(4-methoxy-phenyl)-ethyl]-cyclohexanol (HCl)"@en,

chebi_ontology:synonym

"1-[2-Dimethylamino-1-(4-methoxy-phenyl)-ethyl]-cyclohexanol(HCl)"@en,

chebi_ontology:synonym "EFFEXOR"@en,

chebi_ontology:synonym "Elafax"@en,

chebi_ontology:synonym "VENLAFAXINE"@en,

chebi_ontology:synonym "Venlafaxine"@en,

chebi_ontology:synonym "venlafaxina"@es,

chebi_ontology:synonym "venlafaxine"@en,

chebi_ontology:synonym "venlafaxine"@fr,

chebi_ontology:synonym "venlafaxinum"@la

104

105

B
Source Code Listing

In this appendix we provide relevant extracts from the source code used in the project
implementation in Java to illustrate our solution to central problems. All source code
is downloadable in the file http://www.ebi.ac.uk/~hastings/owled2010/
descgraphs.zip.

B.1 Conversion of chemical graphs

The following source code uses the CDK to parse chemical graphs expressed in MOLfile
format and creates description graphs for them. This extract is taken from the file
MolfileToDGConverter.java in the downloadable source code.

MDLV2000Reader reader = new MDLV2000Reader(new StringReader(molFile)) ;

ChemFile chemFile = (ChemFile) reader.read(new ChemFile());

IChemModel model = chemFile.getChemSequence(0).getChemModel(0);

IAtomContainer cont = model.getMoleculeSet().getAtomContainer(0);

try {

AtomContainerManipulator.percieveAtomTypesAndConfigureAtoms(cont);

} catch (NullPointerException npe) {

npe.printStackTrace();

}

List<OWLClass> atoms = new ArrayList<OWLClass>();

Map<Integer,OWLClass> bonds = new HashMap<Integer,OWLClass>();

Map<OWLClass, DescriptionGraph.Edge[]> bondsToEdges =

new HashMap<OWLClass, DescriptionGraph.Edge[]>();

//Mapping of IAtomContainer to AtomicConcept vertices: atoms and bonds are each atomic concepts

AtomicConcept[] concepts = new

AtomicConcept [cont.getAtomCount()+cont.getBondCount()+1];

//Mapping to edges: bonds

DescriptionGraph.Edge[] edges =

106

http://www.ebi.ac.uk/~hastings/owled2010/descgraphs.zip
http://www.ebi.ac.uk/~hastings/owled2010/descgraphs.zip

B.1. CONVERSION OF CHEMICAL GRAPHS

new DescriptionGraph.Edge[(cont.getBondCount()*2)+cont.getAtomCount()];

//Start concepts: in this case just one for the molecule itself

Set<AtomicConcept> startConcepts = new HashSet<AtomicConcept>();

AtomicConcept molecule = AtomicConcept.create(

DGOwlUtilities.ontologyIRI+"#molecule_"+title/*+"("+label+")"*/);

OWLClass clsMainConcept = dataFactory.getFactory().getOWLClass(

IRI.create(DGOwlUtilities.ontologyIRI+"#molecule_"+title));

startConcepts.add(molecule);

int nodeIndex = 0;

Map<IAtom,Integer> atomIndexMap = new HashMap<IAtom, Integer>();

Map<IBond,Integer> bondIndexMap = new HashMap<IBond, Integer>();

//AtomicConcepts for atoms

while (nodeIndex < cont.getAtomCount()) {

IAtom atom = cont.getAtom(nodeIndex);

AtomicConcept atomicConcept =

AtomicConcept.create(DGOwlUtilities.ontologyIRI

+"#"+title+"_Atom_("+atom.getSymbol()+")"+nodeIndex);

concepts[nodeIndex] = atomicConcept;

atomIndexMap.put(atom,nodeIndex);

nodeIndex++;

IRI atomIri = IRI.create(atomicConcept.getIRI());

OWLClass atomClass = dataFactory.getFactory().getOWLClass(atomIri);

atoms.add(atomClass); //save the vertex for later

if (atom.getSymbol().equals("C")) {

dataFactory.getManager().addAxiom(dataFactory.getOntology(),

dataFactory.getFactory().getOWLSubClassOfAxiom(

atomClass, dataFactory.getClsCarbonAtom()));

} else if (atom.getSymbol().equals("N")) {

dataFactory.getManager().addAxiom(dataFactory.getOntology(),

dataFactory.getFactory().getOWLSubClassOfAxiom(

atomClass, dataFactory.getClsNitrogenAtom()));

} else if (atom.getSymbol().equals("O")) {

dataFactory.getManager().addAxiom(dataFactory.getOntology(),

dataFactory.getFactory().getOWLSubClassOfAxiom(

atomClass, dataFactory.getClsOxygenAtom()));

} else if (atom.getSymbol().equals("H")) {

dataFactory.getManager().addAxiom(dataFactory.getOntology(),

dataFactory.getFactory().getOWLSubClassOfAxiom(

atomClass, dataFactory.getClsHydrogenAtom()));

} else if (atom.getSymbol().equals("S")) {

dataFactory.getManager().addAxiom(dataFactory.getOntology(),

dataFactory.getFactory().getOWLSubClassOfAxiom(

atomClass, dataFactory.getClsSulfurAtom()));

} else if (atom.getSymbol().equals("Co")) {

dataFactory.getManager().addAxiom(dataFactory.getOntology(),

dataFactory.getFactory().getOWLSubClassOfAxiom(

atomClass, dataFactory.getClsCobaltAtom()));

} else if (atom.getSymbol().equals("Pt")) {

107

B.1. CONVERSION OF CHEMICAL GRAPHS

dataFactory.getManager().addAxiom(dataFactory.getOntology(),

dataFactory.getFactory().getOWLSubClassOfAxiom(

atomClass, dataFactory.getClsPlatinumAtom()));

} else if (atom.getSymbol().equals("P")) {

dataFactory.getManager().addAxiom(dataFactory.getOntology(),

dataFactory.getFactory().getOWLSubClassOfAxiom(

atomClass, dataFactory.getClsPhosphorusAtom()));

} else if (atom.getSymbol().equals("Cl")) {

dataFactory.getManager().addAxiom(dataFactory.getOntology(),

dataFactory.getFactory().getOWLSubClassOfAxiom(

atomClass, dataFactory.getClsChlorineAtom()));

} else {

dataFactory.getManager().addAxiom(dataFactory.getOntology(),

dataFactory.getFactory().getOWLSubClassOfAxiom(

atomClass, dataFactory.getClsAtom()));

}

}

//AtomicConcepts for bonds

while ((nodeIndex-cont.getAtomCount()) < cont.getBondCount()) {

IBond bond = cont.getBond((nodeIndex-cont.getAtomCount()));

AtomicConcept atomicConcept =

AtomicConcept.create(DGOwlUtilities.ontologyIRI

+"#"+title+"_Bond_("+bond.getOrder()+")"+nodeIndex);

concepts[nodeIndex] = atomicConcept;

bondIndexMap.put(bond,nodeIndex);

IRI bondIri = IRI.create(atomicConcept.getIRI());

OWLClass bondClass = dataFactory.getFactory().getOWLClass(bondIri);

bonds.put(nodeIndex, bondClass); //save the vertex for later

//Bond order only covering single, double and triple

if (bond.getOrder().toString().equals("SINGLE")) {

dataFactory.getManager().addAxiom(dataFactory.getOntology(),

dataFactory.getFactory().getOWLSubClassOfAxiom(

bondClass, dataFactory.getClsSingleBond()));

} else if (bond.getOrder().toString().equals("DOUBLE")) {

dataFactory.getManager().addAxiom(dataFactory.getOntology(),

dataFactory.getFactory().getOWLSubClassOfAxiom(

bondClass, dataFactory.getClsDoubleBond()));

} else if (bond.getOrder().toString().equals("TRIPLE")) {

dataFactory.getManager().addAxiom(dataFactory.getOntology(),

dataFactory.getFactory().getOWLSubClassOfAxiom(

bondClass, dataFactory.getClsTripleBond()));

} else {

dataFactory.getManager().addAxiom(dataFactory.getOntology(),

dataFactory.getFactory().getOWLSubClassOfAxiom(

bondClass, dataFactory.getClsBond()));

}

nodeIndex++;

}

//AtomicConcept for molecule (DG) itself

concepts[nodeIndex] = molecule; //add the molecule itself

108

B.2. CREATING THE ONTOLOGY

//edges link ATOMS to BONDS; therefore TWO edges for each bond

int edgeIndex = 0;

for (int i=0; i < cont.getBondCount(); i++) {

DescriptionGraph.Edge[] edgesForBond = new DescriptionGraph.Edge[2];

IBond bond = cont.getBond(i);

//atom(0) has bond with bond(i)

edges[edgeIndex] = new DescriptionGraph.Edge(

dataFactory.getHasBondWithRole(),

atomIndexMap.get(bond.getAtom(0)),

bondIndexMap.get(bond));

edgesForBond[0] = edges[edgeIndex];

edgeIndex++;

//atom(1) has bond with bond(i)

edges[edgeIndex] = new DescriptionGraph.Edge(

dataFactory.getHasBondWithRole(),

atomIndexMap.get(bond.getAtom(1)),

bondIndexMap.get(bond));

edgesForBond[1] = edges[edgeIndex];

edgeIndex++;

bondsToEdges.put(bonds.get(bondIndexMap.get(bond)) , edgesForBond);

}

//join the molecule to the atoms

for (int i=0; i<cont.getAtomCount(); i++) {

edges[edgeIndex] = new DescriptionGraph.Edge(

dataFactory.getHasAtomRole(),

nodeIndex,

i); //one for each atom

edgeIndex++;

}

B.2 Creating the ontology

The following source code shows an extract of the code used to create the main on-
tology and add classes to it with the OWL API. The extract was taken from the file
DGOntologyCreator.java in the downloadable source code.

//chemical entity

IRI classIRI = IRI.create(DGOwlUtilities.ontologyIRI + "#chemical_entity");

dataFactory.setClsChemEnt(factory.getOWLClass(classIRI));

OWLAnnotationProperty rdfLabel = factory.getRDFSLabel();

OWLAnnotation labelAnn = factory.getOWLAnnotation(rdfLabel,

factory.getOWLStringLiteral("chemical entity", DGOwlUtilities.ENGLISH));

OWLAxiom ax = factory.getOWLAnnotationAssertionAxiom(classIRI, labelAnn);

109

B.2. CREATING THE ONTOLOGY

manager.addAxiom(ontology,ax);

manager.addAxiom(ontology, factory.getOWLSubClassOfAxiom(dataFactory.

getClsChemEnt(), factory.getOWLThing()));

//molecule

classIRI = IRI.create(DGOwlUtilities.ontologyIRI + "#molecule");

dataFactory.setClsMolecule(factory.getOWLClass(classIRI));

labelAnn = factory.getOWLAnnotation(rdfLabel, factory.

getOWLStringLiteral("molecule", DGOwlUtilities.ENGLISH));

ax = factory.getOWLAnnotationAssertionAxiom(classIRI, labelAnn);

manager.addAxiom(ontology,ax);

manager.addAxiom(ontology, factory.getOWLSubClassOfAxiom(

dataFactory.getClsMolecule(), dataFactory.getClsChemEnt()));

classIRI = IRI.create(DGOwlUtilities.ontologyIRI + "#test_molecule");

dataFactory.setClsTestMolecule(factory.getOWLClass(classIRI));

labelAnn = factory.getOWLAnnotation(rdfLabel, factory.getOWLStringLiteral(

"classes for rule targets - no associated graphs", DGOwlUtilities.ENGLISH));

ax = factory.getOWLAnnotationAssertionAxiom(classIRI, labelAnn);

manager.addAxiom(ontology,ax);

manager.addAxiom(ontology, factory.getOWLSubClassOfAxiom(

dataFactory.getClsTestMolecule(), dataFactory.getClsChemEnt()));

dataFactory.setClsCarboxylicAcid(factory.getOWLClass(

IRI.create(DGOwlUtilities.ontologyIRI+"#molecule_"+33575)));

labelAnn = factory.getOWLAnnotation(rdfLabel, factory.getOWLStringLiteral(

"carboxylic acid", DGOwlUtilities.ENGLISH));

ax = factory.getOWLAnnotationAssertionAxiom(dataFactory.

getClsCarboxylicAcid().getIRI(), labelAnn);

manager.addAxiom(ontology,ax);

manager.addAxiom(ontology, factory.getOWLSubClassOfAxiom(

dataFactory.getClsCarboxylicAcid(), dataFactory.getClsTestMolecule()));

//cyclic entity

classIRI = IRI.create(DGOwlUtilities.ontologyIRI + "#cyclic_entity");

dataFactory.setClsCyclicEntity(factory.getOWLClass(classIRI));

labelAnn = factory.getOWLAnnotation(rdfLabel, factory.

getOWLStringLiteral("cyclic entity", DGOwlUtilities.ENGLISH));

ax = factory.getOWLAnnotationAssertionAxiom(classIRI, labelAnn);

manager.addAxiom(ontology,ax);

manager.addAxiom(ontology, factory.getOWLSubClassOfAxiom(

dataFactory.getClsCyclicEntity(), dataFactory.getClsTestMolecule()));

110

B.3. ADDING RULES TO THE ONTOLOGY

B.3 Adding rules to the ontology

The following source code uses the OWL API to create a rule for the detection of cycles
in description graphs. This extract is taken from the file RuleGenerator.java in
the downloadable source code.

//MainConcept in this case is any molecule or group

//(i.e. chemical entity)

//we create a variable X3 for three length cycles, which

//is a child of any chemical entity

SWRLVariable varX = dataFactory.getFactory().getSWRLVariable(

IRI.create("x"+j));

SWRLClassAtom varXClassAtom = dataFactory.getFactory().

getSWRLClassAtom(dataFactory.getClsMolecule(), varX);

bodyAtoms.add(varXClassAtom);

OWLObjectProperty hasAtomAsProperty = dataFactory.getFactory().

getOWLObjectProperty(IRI.create(dataFactory.getHasAtomRole().getIRI()));

OWLObjectProperty hasBondWithProperty = dataFactory.getFactory().

getOWLObjectProperty(IRI.create(dataFactory.getHasBondWithRole().getIRI()));

List<SWRLVariable> atomVars = new ArrayList<SWRLVariable>();

List<SWRLVariable> bondVars = new ArrayList<SWRLVariable>();

//Create atom and bond variables

for (int x=1; x<=j; x++) {

//an atom ’is’ an atom

SWRLVariable varAtom = dataFactory.getFactory().getSWRLVariable(

IRI.create("atom"+x));

SWRLClassAtom varAtomClassAtom = dataFactory.getFactory().

getSWRLClassAtom(dataFactory.getClsAtom(), varAtom);

bodyAtoms.add(varAtomClassAtom);

SWRLDifferentIndividualsAtom differentFrom = dataFactory.

getFactory().getSWRLDifferentIndividualsAtom(varAtom, varX);

bodyAtoms.add(differentFrom);

atomVars.add(varAtom);

//the molecule ’has’ the atom

SWRLObjectPropertyAtom propertyAtom = dataFactory.getFactory().

getSWRLObjectPropertyAtom(hasAtomAsProperty, varX, varAtom);

bodyAtoms.add(propertyAtom);

//the bond ’is’ a bond

SWRLVariable varBond = dataFactory.getFactory().getSWRLVariable(

IRI.create("bond"+x));

SWRLClassAtom varBondClassBond = dataFactory.getFactory().

getSWRLClassAtom(dataFactory.getClsBond(), varBond);

bodyAtoms.add(varBondClassBond);

111

B.3. ADDING RULES TO THE ONTOLOGY

SWRLDifferentIndividualsAtom differentFrom2 = dataFactory.getFactory().

getSWRLDifferentIndividualsAtom(varAtom, varBond);

bodyAtoms.add(differentFrom2);

bondVars.add(varBond);

}

//Now we created all atoms and bonds, link them up. First: all different

for (int x=0; x<j; x++) {

for (int y=x+1; y<j; y++) {

SWRLVariable varAtom = atomVars.get(x);

SWRLVariable varAtomOther = atomVars.get(y);

SWRLDifferentIndividualsAtom differentFrom = dataFactory.

getFactory().getSWRLDifferentIndividualsAtom(varAtom, varAtomOther);

bodyAtoms.add(differentFrom);

SWRLVariable varBond = bondVars.get(x);

SWRLVariable varBondOther = bondVars.get(y);

SWRLDifferentIndividualsAtom differentFromBonds = dataFactory.

getFactory().getSWRLDifferentIndividualsAtom(varBond, varBondOther);

bodyAtoms.add(differentFromBonds);

}

}

//Now: Bonds

for (int x=0; x<j; x++) {

//has bond with the next atom in the chain

SWRLVariable varAtom = atomVars.get(x);

SWRLVariable varAtomBondedWith = (x==(j-1)?atomVars.get(0):atomVars.get(x+1));

SWRLVariable varBond = bondVars.get(x);

SWRLObjectPropertyAtom atomHasBondOne = dataFactory.getFactory().

getSWRLObjectPropertyAtom(hasBondWithProperty, varAtom, varBond);

SWRLObjectPropertyAtom atomHasBondTwo = dataFactory.getFactory().

getSWRLObjectPropertyAtom(hasBondWithProperty, varAtomBondedWith, varBond);

bodyAtoms.add(atomHasBondOne);

bodyAtoms.add(atomHasBondTwo);

}

//THE CONCLUSION:

//X is cyclic

SWRLClassAtom varXCyclic = dataFactory.getFactory().getSWRLClassAtom(

dataFactory.getClsCyclicEntity(), varX);

headAtoms.add(varXCyclic);

SWRLRule rule2 = dataFactory.getFactory().getSWRLRule(bodyAtoms, headAtoms);

rules.add(rule2);

112

B.4. PERFORMING THE REASONING

B.4 Performing the reasoning

The following extract, taken from MyHermitOWLReasoner.java, shows how the
ontology, together with the description graphs, is passed to the reasoner, extending the
HermiT implementation.

public static OWLReasoner createHermiTOWLReasoner(

OWLOntology ontology, Configuration configuration,

Set<MyDescriptionGraph> descriptionGraphs) {

Set<DescriptionGraph> graphs = new HashSet<DescriptionGraph>();

for (MyDescriptionGraph graph : descriptionGraphs) {

graphs.add((DescriptionGraph)graph);

}

MyHermitOWLReasoner hermit=new MyHermitOWLReasoner(

configuration,ontology.getOWLOntologyManager(),

ontology, graphs, configuration.reasonerProgressMonitor) {

protected OWLOntology m_rootOntology=null;

protected boolean changed=false;

private final OWLOntologyChangeListener ontologyChangeListener =

new OWLOntologyChangeListener() {

public void ontologiesChanged(List<? extends OWLOntologyChange> changes)

throws OWLException {

changed=true;

}

};

protected void initOWLAPI(OWLOntology rootOntology) {

m_rootOntology=rootOntology;

m_rootOntology.getOWLOntologyManager().addOntologyChangeListener(

ontologyChangeListener);

super.initOWLAPI(rootOntology);

}

public void dispose() {

m_rootOntology.getOWLOntologyManager().removeOntologyChangeListener(

ontologyChangeListener);

m_rootOntology=null;

super.dispose();

}

public OWLOntology getRootOntology() {

return m_rootOntology;

}

public void flush() {

if (changed) {

loadOntology(m_rootOntology.getOWLOntologyManager(),m_rootOntology,null);

changed=false;

}

}

113

B.4. PERFORMING THE REASONING

};

hermit.initOWLAPI(ontology);

return hermit;

}

The following extract, taken from file DGOntologyReasoner.java in the down-
loadable source code, shows how the results were collected from the reasoner and
examined.

OWLReasoner reasoner = dataFactory.getReasoner();

if (printResults)System.out.println("Starting reasoning");

long startTime = System.currentTimeMillis();

reasoner.prepareReasoner();

long endTime = System.currentTimeMillis();

int seconds = (int) (endTime - startTime)/1000;

if (printResults)System.out.println("Reasoning took "+seconds

+" seconds. Ontology is consistent: "+reasoner.isConsistent());

if (printResults) {

Node<OWLClass> equivNothing = reasoner.getEquivalentClasses(

dataFactory.getFactory().getOWLNothing());

System.out.println("Got "+equivNothing.getSize()+

" clses equivalent to owl:Nothing");

for (OWLClass cls : equivNothing.getEntities()) {

System.out.println("cls: "+cls+ " is equivalent to owl:Nothing");

}

NodeSet<OWLClass> organicChlds = reasoner.getSubClasses(

dataFactory.getClsCarbonEntity(), false);

System.out.println("Got "+organicChlds.getFlattened().size()

+" clses classified under carbon molecule");

for (OWLClass cls : organicChlds.getFlattened()) {

System.out.println("cls: "+cls+ " is a carbon molecule");

}

NodeSet<OWLClass> hcChlds = reasoner.getSubClasses(

dataFactory.getClsHydroCarbon(), false);

System.out.println("Got "+hcChlds.getFlattened().size()

+" clses classified under hydrocarbon molecule");

for (OWLClass cls : hcChlds.getFlattened()) {

System.out.println("cls: "+cls+ " is a hydrocarbon molecule");

}

NodeSet<OWLClass> cyclicChlds = reasoner.getSubClasses(

dataFactory.getClsCyclicEntity(), false);

System.out.println("Got "+cyclicChlds.getFlattened().size()

+" clses classified under cyclic molecule");

for (OWLClass cls : cyclicChlds.getFlattened()) {

System.out.println("cls: "+cls+ " is cyclic ");

114

B.4. PERFORMING THE REASONING

}

NodeSet<OWLClass> carboxylicChlds = reasoner.getSubClasses(

dataFactory.getClsCarboxylicAcid(), false);

System.out.println("Got "+carboxylicChlds.getFlattened().size()

+" clses classified under carboxylic acid");

for (OWLClass cls : carboxylicChlds.getFlattened()) {

System.out.println("cls: "+cls+ " is a carboxylic acid (33575) ");

}

}

115

C
OWLED paper

In this appendix, we reproduce in full the accepted paper which was presented in the
2010 Web Ontology Language Experiences and Directions conference (OWLED 2010),
which was held in San Francisco on the 21st and 22nd June 2010.

The slides which were used in the presentation are available at
http://www.slideshare.net/micheldumontier/owled-descgraphs.

The proceedings were published in CEUR-WS, and the online version is available at
http://ceur-ws.org/Vol-614/owled2010_submission_13.pdf.

The paper is reproduced here with original formatting.

116

http://www.slideshare.net/micheldumontier/owled-descgraphs
http://ceur-ws.org/Vol-614/owled2010_submission_13.pdf

Representing Chemicals using OWL,
Description Graphs and Rules

Janna Hastings1,2,3?, Michel Dumontier4, Duncan Hull1, Matthew Horridge5,
Christoph Steinbeck1, Ulrike Sattler5, Robert Stevens5, Tertia Hörne2, and

Katarina Britz2,3

1 European Bioinformatics Institute, UK
2 University of South Africa

3 Meraka Institute, South Africa
4 Carleton University, Canada
5 University of Manchester, UK

Abstract. Objects can be said to be structured when their represen-
tation also contains their parts. While OWL in general can describe
structured objects, description graphs are a recent, decidable extension
to OWL which support the description of classes of structured objects
whose parts are related in complex ways. Classes of chemical entities
such as molecules, ions and groups (parts of molecules) are often char-
acterised by the way in which the constituent atoms of their instances
are connected via chemical bonds. For chemoinformatics tools and appli-
cations, this internal structure is represented using chemical graphs. We
here present a chemical knowledge base based on the standard chemi-
cal graph model using description graphs, OWL and rules. We include in
our ontology chemical classes, groups, and molecules, together with their
structures encoded as description graphs. We show how role-safe rules
can be used to determine parthood between groups and molecules based
on the graph structures and to determine basic chemical properties. Fi-
nally, we investigate the scalability of the technology used through the
development of an automatic utility to convert standard chemical graphs
into description graphs, and converting a large number of diverse graphs
obtained from a publicly available chemical database.

Key words: chemistry, ontology, description graphs, rules

1 Introduction

Objects can be said to be structured when their representation also contains
their parts. While OWL in general can describe structured objects, description
graphs are a recent, decidable extension to OWL which support the description
of classes of structured objects whose parts are related in complex ways [1–3].

Classes of chemical entities such as molecules, ions and groups (parts of
molecules) are often characterised by the way in which the constituent atoms of

? To whom correspondence should be addressed, hastings@ebi.ac.uk.

2 J. Hastings et al.

their instances are connected via chemical bonds. For example, a cyclic hydro-
carbon such as benzene is characterised as six carbon atoms, each of which is
connected to two other carbon atoms in such a way that it forms a single cy-
cle (or ring). For various cheminformatics applications, chemical structures are
represented as chemical graphs, comprising of atoms as vertices and bonds as
edges. These can be encoded as connection tables [4].

A classic chemoinformatic application is chemical classification by compar-
ing all substructures such general descriptions are subsumed by more complex
and refined substructures. The Web Ontology Language (OWL), as it currently
stands, is incapable of representing the required complex structures, particu-
larly cycles [7]. The chemical graph formalism has previously been reported as
a candidate application for substructure classification using description graphs
[5, 6].

In this paper, we present a method for transforming chemical graphs into
description graphs, and apply this method to create an OWL knowledge base
of chemical entities enhanced with the structures of the chemical entities as de-
scription graphs. We will consider to what extent the formalism of description
graphs, together with rules for expressing conditionality, supports the type of
reasoning which domain experts would expect from a structure-enhanced chem-
ical knowledge base, such as classification based on chemical structures, and
determination of chemical properties based on the structures. Finally, we assess
the scalability of the technology by evaluating the times taken to reason over
knowledge bases of varying sizes.

2 Background

2.1 OWL 2, Description Graphs, and Rules

OWL 2 [7] is the latest release of the Web Ontology Language (OWL) family of
languages. While OWL provides an extensive collection of constructs for logic-
based ontology development, decidability of reasoning problems—e.g., testing
consistency of an ontology, satisfiability of classes or computing its inferred class
hierarchy—is obtained by making sure that OWL has a tree model property [8]:
in a nutshell, that means that every consistent ontology has a model, i.e., a state
of affairs that satisfies all axioms in the ontology, whose relational structure looks
like a tree. For this reason, OWL has not traditionally been able to describe ar-
bitrarily structured objects, but only those which had structures which could be
expressed in the shape of trees. Description Graphs are a formalism which has
been introduced by Motik et al. [1–3] to address this weakness of OWL in rep-
resenting structured objects, while still preserving the decidability of reasoning
on ontologies containing such structured objects.

A description graph is a directed graph G = (V,E, λ) in which each vertex
i ∈ V is labeled with a set of (possibly negated) class names λ〈i〉; and each edge
〈i, j〉 ∈ E is labeled with a set of atomic properties λ〈i, j〉. Each description
graph has a main class, which indicates the object whose structure is being

Chemistry and Description Graphs 3

modelled in the graph, and it is this main class that will be used to link to the
remainder of the ontology that the description graph is a part of.

In order to preserve the decidability of reasoning, some important constraints
must be observed within a graph-enhanced knowledge base [1]. For our purposes,
the most significant of these is that the properties which are used in the descrip-
tion graphs (i.e. the graph edges) must not be referred to in the main ontology
axioms, which is known as the strong separation requirement. The full set of
properties in the knowledge base has thus to be separated into tree properties
and graph properties. This provides a limitation in terms of the possibility for
reasoning over the information encoded in the graphs, as the graph properties
cannot be referred to in OWL axioms, an example of which might be

SubClassOf(has atom only (CarbonAtom or HydrogenAtom)) HydrocarbonMol

Thus chemical classificiation must be expressed with rules. Further, these
rules must be role-safe, that is, they must not refer simultaneously to properties
used in the graphs and those used in the OWL ontology axioms.

A graph-extended OWL knowledge base is thus a 4-tuple K = (T,G, P,A)
where T is a set of OWL class axioms, G is a set of description graphs, P is a
set of rules, and A is a set of OWL assertions. T is allowed to refer only to tree
properties, G and P are allowed to refer only to the graph properties, and A is
allowed to refer to both graph and tree properties [1–3].

2.2 Chemical entities and graphs

At the molecular level, all of matter is composed of atoms of different kinds
(such as Carbon and Oxygen) joined together through chemical bonds of differ-
ent strengths. Covalent bonds (the strongest kind of chemical bond) join atoms
together into composite units called molecules. Chemical entities are usually cat-
egorised into chemical classes by virtue of sharing common substructure or activ-
ity. An example of a chemical class is ‘carboxylic acids’, which groups together
all molecules that share the important carboxy functional group and therefore
hold the disposition to behave similarly in certain chemical reactions involving
that group.

The structure of a molecule is nicely represented by a chemical graph, which
describes the atomic connectivity within a molecule in terms of labelled nodes
for the atoms or groups within the molecule, and labelled edges for the (usually
covalent) bonds between the atoms or groups [4]. The chemical graph formalism
is widely used in the field of cheminformatics to calculate many properties of
chemical entities. Chemical graphs are encoded in a variety of standard formats,
prominent among which is the MOLFile connection table-based format [9].

3 Methods

The purpose of our experiment is to evaluate the utility and scalability of de-
scription graphs and rules for the representation of, and reasoning over, chemi-

4 J. Hastings et al.

cal structures. The knowledge base6 consists of i) a simple ontology describing
classes pertaining to chemical entities, ii) auto-generated description graphs from
structures in the ChEBI database, and iii) rules for structure-based classification.
We used the HermiT [11] reasoner7 for reasoning about the ontology, description
graphs and rules [5]. ChEBI [12] was used as a source for chemical structures,
which were parsed using the Chemical Development Kit [13].

Our evaluation criteria considers the following three aspects expected by
domain experts:

– Can chemical entities be classified based on their substructures?
– Can basic chemical properties be determined from the description graphs?
– How scalable is the resulting knowledge base?

We now describe the structure of the implemented knowledge base.

3.1 Ontology

At the root of the ontology is the node ‘chemical entity’, beneath which are nodes
for the primary division in kind of entity, namely ‘group’, ‘atom’, ‘molecule’,
and ‘ion’. ‘Atom’ is further divided into the concrete types of atoms as per the
periodic table, such as ‘carbon atom’ and ‘oxygen atom’.

An illustration of the overall structure of the core terms of the ontology is
shown in Figure 1.

3.2 Description Graphs

Description graphs were automatically generated8 from a MOLfile connection
table format [9]. The standard MOLfile format consists of an atom table, which
provides information about the atoms included in the molecule such as their
types, and a bond table, which provides information about the bonds included
in the molecule such as which atoms they connect and their order (single, double,
etc.).

Each description graph consists of a vertex for the description graph main
class which is a subclass of ‘molecule’ in the ontology, a vertex for each atom
which is a subclass of the atom type e.g. ‘carbon atom’ in the ontology, and
a vertex for each bond which is a subclass of the bond type in the ontology
e.g. ‘single’. Each atom vertex is connected to the molecule by the has atom
property. Atom vertices are associated with bonds with has bond. Figure 2 shows
an illustration of the description graph for cyclobutane.

6 Ontology availabe in two files, the main ontology at
http://www.ebi.ac.uk/˜hastings/owled2010/chemistry dgs ontology.owl and the
graphs at http://www.ebi.ac.uk/˜hastings/owled2010/chemistry dgs graphs.owl

7 Version 1.2.2 with slight customisation for input and output of graphs which is
currently only partially supported by the HermiT library and the OWL API.

8 Our software for this experiment is available in source and binary at
http://www.ebi.ac.uk/˜hastings/owled2010/descgraphs.zip

Chemistry and Description Graphs 5

Fig. 1. Core ontology structure

The vertices (but not the properties) of the description graphs are also clas-
sified in the main OWL ontology. The main class is classified beneath ‘molecule’
in the main ontology, the atoms beneath ‘atom’ and the bonds beneath ‘bond’.

3.3 Rules

We implemented rules to classify chemical structures based on their composi-
tion and their connectivity. Rules were devised for the classification of cyclic
compounds, which contained a cycle of connected atoms.

For example, a rule to determine cycles of length three atoms is (slightly
simplified for readability, the full generated version also includes DifferentFrom
statements to ensure non-trivial cycles)

Molecule(M) ∧
has atom(M,A1) ∧ has atom(M,A2) ∧ has atom(M,A3) ∧

Atom(M,A1) ∧ Atom(M,A2) ∧ Atom(M,A3) ∧
Bond(M,B1) ∧ Bond(M,B2) ∧ Bond(M,B3) ∧ ∧

has bond(A1, B1) ∧ has bond(A2, B1) ∧
has bond(A2, B2) ∧ has bond(A3, B2) ∧
has bond(A1, B3) ∧ has bond(A3, B3) ∧

→ instanceOf(M, CyclicMolecule) (1)

6 J. Hastings et al.

Fig. 2. Illustration of the cyclobutane description graph

Rules were also devised to determine parthood between chemical structures.
If all atoms of A are atoms of B, and all bonds of A are bonds of B, then
A is a subgraph of B. The term group is commonly used to denote arbitrary
chemical parts, while the terms molecule, ion and so on refer to entire (complete)
structures. Rules were devised for each group so as to identify these groups in the
molecule. However, a consequence of the strong separation requirement is that
a single rule cannot refer to both graph properties and tree properties. For this
reason, even if we determine that a given graph is a subgraph of another graph,
we cannot assert a relationship such as has part between the two main classes
at the ontology level. A workaround for this is to create a class for every group,
such that if the group’s structure is a subgraph of the molecule’s structure, then
the molecule can be classified as belonging to that class. Rules for parthood
determination are of the form

Molecule(M) ∧
has atom(M,A1) ∧ ... ∧ has atom(M,An) ∧

Atom(A1) ∧ ... ∧ Atom(An) ∧
Bond(B1) ∧ ... ∧ Bond(Bm) ∧

has bond(Ai1, Bj1) ∧ ... ∧ has bond(Ain, Bjm)

→ instanceOf(M, Class) (2)

where M is an arbitrary individual of type molecule; A1 – An are group atoms;
bonds exist between the group atoms Ai1 – Ain and Aj1 – Ajn, and Class is a
class the identity of which depends on the group used to generated the rule, for
example ‘carboxylic acid’ for the ‘carboxy group’.

The properties used as the graph edges (has atom, has bond) are available for
use in the rules, as long as a rule does not mix graph properties with properties
used in OWL axioms in the main ontology.

In the next section, we present the results of reasoning over the knowledge
base.

Chemistry and Description Graphs 7

4 Results

Reasoning with the rules over the combined knowledge base resulted in classi-
fication of description graph-enriched classes as cyclic molecules and as classes
containing specific defined groups such as carboxylic acids9. We find this re-
sult positive in terms of overcoming the previously explicit limitation of OWL
knowledge bases in expressing arbitrarily structured objects at the class level
and performing classification based on the structure.

However, we acknowledge that the types of conditionality that can be ex-
pressed in rules potentially provide the facility for only a limited set of chemical
properties relative to those required by chemists. For example, it is difficult to
express rules that must apply to all atoms from a given molecule’s graph without
specifically naming those atoms, since there is no forAll operator in SWRL.

To evaluate the performance, we executed reasoning over iteratively increas-
ing sizes of the knowledge base, both with and without rules. The results are
summarised in Figure 310. We do not attempt to control the size of the graphs
which we randomly selected for inclusion into our knowledge base, but note that
the average size of a molecule in the ChEBI database is around 30 atoms11.

Fig. 3. Performance results of classification

The scalability of the reasoner against the knowledge base enriched with
desciption graphs appears workable, with reasoning time growing to a maximum
of 23 minutes (1388 seconds) for a knowledge base enriched with 180 graphs.
However, including the graphs alone – without rules – does not allow for any
classification based on the information encoded in the graphs. The rules are this
essential to expose the structure in the graphs to the reasoner. Unfortunately,
we find that reasoning over the knowledge base enriched with graphs and rules

9 The resulting inferred ontology is available at
http://www.ebi.ac.uk/˜hastings/owled2010/chemistry dgs inferred.owl

10 Tested on a Dell twin core laptop.
11 Excluding hydrogen atoms, which are commonly implicit, as these can be ‘added

back’ by calculations to determine their predicted positions.

8 J. Hastings et al.

appears to grow very rapidly into unmanageable durations, with the highest
duration that we recorded for a knowledge base enriched with 140 graphs taking
four hours (14380 seconds) to classify. This scalability is affected dramatically by
the number and complexity of the generated rules, therefore this would appear
to be a limiting factor in following our approach in a more complete fashion,
where many chemical properties and subgraph relations might be reasonably
expected to be included in the same knowledge base.

5 Discussion

Our results have shown that it is possible to create a chemical knowledge base
using OWL, description graphs and rules. The main strength of our approach is
the direct encoding of complex structures at the class level in the ontology, and
the encoding of rules for determining properties such as being cyclic, which are
not able to be expressed as OWL axioms. We thereby show that this approach
allows properties to be calculated by the reasoner rather than requiring these to
be pre-computed and added to the asserted hierarchy of the ontology.

The main weaknesses are the limitations of rules for arbitrary property en-
coding and in particular the lack of quantification operators; and that there
seems to be a scalability performance problem with using rules in this fashion.
Pragmatically, the performance of the system was not where it would need to
be to handle thousands or even millions of chemical graphs as are included in
public databases. However, if ontologies are restricted to particular sub-domain
areas of limited size, this might not be too much of a limitation.

Other approaches for partially including chemical structural information in
knowledge bases have been described in recent years. Armengol and Plaza (2005)
[14] describe an ontology-like, formal encoding of chemical structural features
using feature terms. Key to their approach is the representation of the main
structural unit of a chemical entity and then the explicit representation of the
additions and modifications to that structural unit. However, their knowledge
base is not straightforwardly translatable into OWL and therefore it is not clear
to what extent a comparison can be drawn in terms of conclusions that can be
drawn with a reasoner.

The ChEBI ontology is a well known ontology for chemical entities, providing
a deep classification according to the physical composition and chemical struc-
ture of chemical entities. While containing an ever-growing number of chemical
entities, ChEBI is maintained entirely by hand, with no automated link be-
tween the structure of the chemicals captured in the chemical database and the
structural definition of ontology classes. As a result, the ChEBI database has
been able to grow at a much faster rate than the ChEBI ontology, with the
sizes currently12 at around 550000 for the database and 22000 for the ontology.
Chemical structures are exported into the ontology as annotations in the InChI
[15] format.

12 As of Release 69.

Chemistry and Description Graphs 9

In 2007, Dumontier and Villaneuva-Rosales developed an OWL ontology for
the classification of chemical compounds based on the presence of specified chem-
ical functional groups [16]. A key aspect of the approach was that tree-like ex-
pressions specified the necessary and sufficient conditions for functional groups
such that the taxonomy of functional groups would be discovered on reasoning
(thus reducing the burden of curating such an ontology). However, they were
unable to express arbitrary structure at the class level, and they therefore used
SWRL rules to classify instances having more sophisticated structures such as
cycles.

Taking the desiderata of chemical ontology as the ability to center the knowl-
edge base around an accurate representation of the structures of chemical en-
tities, and to automatically determine the properties of chemical entities from
those structures within the knowledge base, we find that the description graphs
and rules extensions to OWL are a big step forward on the standard OWL
language for this purpose.

6 Conclusion

Our approach uses OWL, description graphs, and rules to implement a structure-
enriched knowledge base for chemicals with classification based on the chemical
structures and rules. We see this work as a contribution to the evaluation of new
OWL-related technology towards the requirements of the chemistry application
domain.

Cheminformatics tools and techniques do already exist to detect chemical
properties and subgraphs / graph isomorphisms, and the CDK [13] provides a
well-developed open source library of such algorithms. These well-developed and
optimised graph manipulation algorithms already in widespread use in the field
of cheminformatics could provide input into the relatively new development of
graph-enriched ontologies.

Next steps will be to investigate whether different representation strategies
and/or rule implementations could alleviate the performance overhead in reason-
ing with the rules; to implement a system to allow visualisation of the chemical
description graphs being created; to extend the rules to determine several ad-
ditional chemical properties; and to investigate the incorporation of a ‘chemical
datatype’ into OWL based on InChI strings.

Acknowledgements

We acknowledge the detailed comments from three anonymous reviewers whose
input helped to significantly improve the final result. We further wish to ac-
knowledge invaluable discussions and suggestions from Kirill Degtyarenko, Ste-
fan Schulz, Colin Batchelor, and Birte Glimm. This work has been partially
supported by the BBSRC, grant agreement number BB/G022747/1 within the
“Bioinformatics and biological resources” fund.

10 J. Hastings et al.

References

1. Motik, B., Cuenca Grau, B., and Sattler, U. (2008) Structured Objects in OWL:
Representation and Reasoning. In Proc. of the 17th International World Wide Web
Conference (WWW 2008), Beijing, China, 21-25 April 2008. ACM.

2. Motik, B., Cuenca Grau, B., Horrocks, I. and Sattler, U. (2008) Representing
Structured Objects using Description Graphs. In Proc. of the 11th Int. Joint Conf.
on Principles of Knowledge Representation and Reasoning (KR 2008), AAAI Press,
2008.

3. Motik, B., Cuenca Grau, B., Horrocks, I. and Sattler, U. (2008) Modeling On-
tologies using OWL, Description Graphs, and Rules. In Proc. of the 5th OWLED
Workshop on OWL: Experiences and Directions, Karlsruhe, Germany, October
26-27, 2008.

4. N. Trinajstic. (1992) Chemical Graph Theory. CRC Press, Florida, USA.
5. Glimm, B., Horridge, M., Parsia, B., Patel-Schneider, P.F. (2009). A Syntax for

Rules in OWL 2. In Proc. of OWL Experiences and Directions 2009 (OWLED
2009).

6. Konyk, M., De Leon, A., Dumontier, M. (2008) Chemical Knowledge for the
Semantic Web. 2008. Proceedings of Data Integration in the Life Sciences
(DILS2008), Lecture Notes in Computer Science. LNBI 5109:169-176, Evry, France.

7. Grau, B. and Horrocks, I. and Motik, B. and Parsia, B. and Patel-Schneider, P. and
Sattler, U (2008) OWL 2: The next step for OWL. In Journal of Web Semantics,
4:6 309–322.

8. Vardi, M. Y. (1996) Why Is Modal Logic So Robustly Decidable? In Proc. DIMACS
Workshop, volume 31, pages 149184, 1996.

9. http://www.mdl.com/company/about/history.jsp, last accessed April 2010.
10. Horridge, M. and Bechhofer, S. (2009). The OWL API: A Java API for Work-

ing with OWL 2 Ontologies. In Proc. of OWL Experiences and Directions 2009
(OWLED 2009), R. Hoekstra and P. F. Patel-Schneider, eds.

11. Shearer, R., Motik, B. and Horrocks, I. (2008) HermiT: A Highly-Efficient OWL
Reasoner. In Dolbear, C., Ruttenberg, A. and Sattler, U. (Eds.), Proceedings of the
5th Workshop on OWL: Experiences and Directions, Karlsruhe, Germany, October
2627, 2008.

12. de Matos, P.; Alcntara, R.; Dekker, A.; Ennis, M.; Hastings, J.; Haug, K.; Spiteri,
I.; Turner, S.; and Steinbeck, C. (2010) Chemical Entities of Biological Interest:
an update. Nucl. Acids Res. 2010 38: D249–D254.

13. Steinbeck C., Hoppe C., Kuhn S., Floris M., Guha R., Willighagen E.L. (2006)
Recent Developments of the Chemistry Development Kit (CDK) - An Open-Source
Java Library for Chemo- and Bioinformatics. Curr. Pharm. Des. 2006; 12(17):2111-
2120.

14. Armengol, A. and Plaza, E. (2005) An ontological approach to represent molecular
structure information. In J.L. Oliviera et al. (Eds.): ISMBA 2005, LNBI 3745, pp.
294-304, 2005.

15. http://www.iupac.org/inchi/, last accessed April 2010.
16. Villanueva-Rosales, N. and Dumontier, M. (2007) Describing chemical functional

groups in OWL-DL for the classification of chemical compounds. OWL: Experi-
ences and Directions (OWLED 2007).

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Research questions
	Out of Scope
	Statement of the contributions
	Structure

	Some chemistry background
	Chemical entities
	Properties of chemical entities
	Chemical substances

	Chemical Structures
	Representation
	MOLfile
	Chemical Markup Language
	SMILES
	InChI and InChIKey

	Sources of chemical data

	Description Logics
	Logical representation
	Semantic networks and frames
	From semantic networks to Description Logics
	A note about syntax

	The definition of complex concepts
	Constructors
	The TBox

	Knowledge about individuals
	Defining a DL knowledge base

	Semantics
	Reasoning
	Terminological inferences
	Assertional inferences and query answering
	Open world semantics
	Decidability and complexity

	Basic DL languages

	Rules
	Semantics
	Reasoning

	OWL - the Web Ontology Language
	Background
	A note about terminology

	Expressivity and OWL flavours
	Notes on semantics
	OWL Syntaxes
	Tools for working with OWL ontologies
	Semantic Web Rule Language

	Representing chemical structures in OWL
	Structured Objects
	Representation in TBox
	Representation in ABox
	Representation with Rules

	Description Graphs
	Definition
	Decidability of Reasoning
	Boundedness of graphs
	Separation of properties
	Acyclicity

	Rules
	Definition

	Implementation

	Software design and implementation
	Overview
	Architecture
	Downloadable files

	Software libraries
	Chemical data conversion
	Programmatic manipulation of OWL ontologies
	Reasoning over graph-enriched knowledge bases

	Implementation
	Ontology
	Description Graphs
	Rules

	Results
	Classification based on substructures
	Determination of chemical properties from graphs
	Scalability of reasoning over knowledge base

	Discussion
	Structure-based chemical classification by expert systems
	Related work
	Comparison of our research to previous efforts

	Conclusion
	Bibliography
	Appendices
	Ontology Syntax Formats
	Source Code Listing
	Conversion of chemical graphs
	Creating the ontology
	Adding rules to the ontology
	Performing the reasoning

	OWLED paper

