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Abstract

Network research experiments have traditionally been conducted in emulated or

simulated environments. Emulators are frequently deployed on physical networks.

Network simulators provide a self-contained and simple environment that can be

hosted on one host. Simulators provide a synthetic environment that is only an

approximation of the real world and therefore the results might not be a true

reflection of reality.

Recent progress in virtualisation technologies enable the deployment of multiple

interconnected, virtual hosts on one machine. Virtual hosts run real network

protocol stacks and therefore provide an emulated environment on a single host.

The first objective of this dissertation is to build a network emulator (viNEX)

using a virtualisation platform (XEN). The second objective is to evaluate whether

viNEX can be used to conduct some network research experiments. Thirdly, some

limitations of this approach are identified.
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Chapter 1

Introduction

This dissertation investigates the possibility of using a general purpose virtual

platform for network emulation. Network research experiments are frequently con-

ducted using a physical network in a simulated or an emulated environment. Ex-

amples of such environments are Pullen et al. [67], McCanne et al. [52] and White

et al. [85].

Naturally, every network experiment environment has advantages and disadvan-

tages. One of the disadvantages of conducting experiments in a real physical net-

work is the cost of procuring and setting up the infrastructure (servers, routers and

gateways). The installation and configuration of experiments in such an environ-

ment can be complex and results may be hard to repeat. An advantage of physical

network environments is that they are a reasonable reflection of the real world.

This implies that the experiments and protocols developed in these environments

can be applied to production environment, often without major modifications.

A good example of a physical network environment for conducting experiment is

Emulab (White et al. [85]). In Emulab, experiments are run on a physical network

deployed on real networking hardware and servers in a laboratory of the University

of Utah. The complexity of creating and setting up the network topology was made

transparent from the user by making use of NS-2 (Network Simulator version 2)

syntax (McCanne et al. [52]). It should be noted that Emulab only makes use of

the modelling component of NS-2 and not the simulation component.

Simulated environments are based on the use of software modules to model the

behaviour of real network components to create an environment for conducting

1



Chapter 1. Introduction 2

network experiments. Generally, simulated environments are simpler to configure

and they are less expensive than real networks. A significant disadvantage of

software simulated environments is that the environment is only an approximation

of the real world and therefore the results might not be very accurate.

NS-2 (McCanne et al. [52]) is a classical example of a comprehensive software

simulated environment. NS-2 is developed through collaboration of open source

communities that are managed by ISI (Information Sciences Institute) of the Uni-

versity of Southern California. NS-2 is a discrete event simulator targeted at

network research. NS-2 provides substantial support for the simulation of TCP

(Transmission Control protocol), routing, and multicast protocols over wired, wire-

less and satellite networks. Every component of the network is simulated via some

software module in NS-2. NS-2 therefore inherits all the advantages and disad-

vantages of software simulated environments as stated above.

Emulated environments combine the use of elements of both simulated and phys-

ical network environments for creating a network research environment. Network

emulators provide a mechanism of imitating a much larger network in a small lab-

oratory environment. This is achieved by using a relatively small set of network

nodes with some special network nodes introduced between some nodes in order

to simulate the behaviour of a much larger network. An example of such an envi-

ronment is Emulab (White et al. [85]). Inside the special network nodes, software

simulators are installed in order to simulate the characteristics of the larger net-

works such as bandwidth, propagation delays or packet losses. The advantage of

emulated environments is that real network stacks and protocols are deployed on

the network nodes as compared to simulated environments.

Emulab also serves as a good example of a network emulator where simulation

is provided by the FreeBSD [27] nodes that are inserted between network nodes

to simulate network link conditions. Dummynet (Rizzo [70]) is loaded on the

FreeBSD nodes in order to simulate the network link conditions such as propaga-

tion delay, bandwidth limitation or packet loss.

In this research work, we propose a virtual network emulator viNEX, which is a

pseudo-acronym for Virtual INtegrated Network Emulator on Xen. The idea of

constructing a virtual network emulator on a single physical machine has been

explored before, see Section 2.3. Our contribution, however, lies in exploring the

possibility of using a general purpose platform, namely, Xen to create a virtual



1.1. Rationale 3

network emulator that can run on a single physical machine. This objective cor-

responds to the first part of our hypothesis in Section 1.2.1.

Our network emulator viNEX (virtual integrated Network Emulator on XEN)

developed in this dissertation uses a very similar approach as the one for Emulab.

We still make use of the FreeBSD nodes (with Dummynet enabled) to model the

network links and conditions. We are using NetBSD as the Operating System (OS)

for running the network nodes of the OS emulator. Our network nodes therefore

run a real OS with real network protocols stacks. The major difference is that our

emulator makes use of virtual network nodes running on top of a single server,

enabled by the Xen virtualisation technology.

1.1 Rationale

This research seeks to achieve the following objectives:

• Develop a virtual network emulator viNEX.

Recent progress in computer virtualisation (Singh [76]) has offered the flexi-

bility of hosting multiple, fully functional server instances on a single server.

All server instances run real and complete network protocol stacks. viNEX

was built using the XEN virtualisation platform. ViNEX provides network

researchers with a low-cost single-server network emulator that interacts with

real network protocol stacks.

• Demonstrate that viNEX can be used for conducting network experiments.

This objective was demonstrated by conducting the Van Jacobson experi-

ment on viNEX. The results were found to be comparable to those obtained

by Van Jacobson in his original experiment.

• Identifying possible limitations of using general purpose, virtual environ-

ments for network emulation.

Performance bottlenecks will always occur on a virtualisation platform, even

though the underlying virtualisation platforms continue to improve. For ex-

ample, there are future plans to improve network performance on Xen [88].

The current version of viNEX may not be applicable for high network per-

formance emulation, but it might be useful for other applications, such as
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protocol development and verification, as well as educational purposes. Some

limitations of this approach were identified by conducting a scalability ex-

periment in Chapter 5.

1.2 Research problem

Recent progress in virtualisation technologies enable the deployment of multiple

interconnected, virtual hosts on one machine. Such virtual hosts run real network

protocol stacks and therefore provide an emulated environment on a single host.

The literature is somewhat quiet about the use of general purpose virtualisation

platforms (such as Xen and VMware) for virtual emulators.

Our research problem is as follows: To investigate a possibility of building a virtual

network emulator (viNEX) using a virtualisation platform (XEN) and to evaluate

whether such an emulator can be used for conducting network research experi-

ments. We also identify some factors affecting the scalability of this emulator and

suggest possible ways of addressing them.

The above research problem leads us to the following hypothesis.

1.2.1 Hypothesis

Our hypothesis is twofold:

A general purpose virtualisation platform (such as Xen) can be used to build a

network emulator (viNEX) which satisfies the following conditions:

1. The emulator can be used for conducting network research experiments on

networks which fall within limited performance boundaries.

2. Such an emulator (viNEX) can be hosted on a single server.

1.3 Research design and methodology

This section briefly presents the methods used in our research. Our research

uses the literature survey, prototype and experiment methods (Olivier [59]). Our
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literature survey consists of the background of simulation and emulation presented

in Chapter 2.

The primary method used in this research is prototyping. The prototype involves

the construction of the viNEX emulator system which we use to demonstrate the

concept of building an emulator, using a general purpose virtual platform (Xen).

Experimentation was used as a secondary method in this work. We conducted two

experiments on viNEX in Chapter 5. The first experiment (Section 5.1) evaluates

the functionality of the viNEX emulator. The Van Jacobson experiment is con-

ducted on viNEX and the results are compared to those obtained in the original

experiment (Van Jacobson [81]).

Our research is also quantitative. The second experiment examines the scalability

of viNEX (see Section 5.4). This is achieved by measuring the amount of memory

required to run an experiment on viNEX.

Two observations were made while conducting the experiments in Chapter 5. Both

observations are used to justify our twofold hypothesis above. We return to the

hypothesis in Chapter 6.

1.4 Scope

The scope of this research is limited to the development, and evaluation of the

viNEX network emulator. The evaluation of viNEX includes a demonstration of

the ability to host network research experiments on viNEX as well as an assessment

of the performance limiting factors that could affect the scalability of this emulator.

Some virtualisation performance factors affecting the scalability of viNEX have

been identified (see Section 5.4). Since the emulator is designed to run on a single

server, scalability of the network topology is limited to the amount of memory and

the CPU capability of the server.

The development of the emulator includes a set of shell scripts that are used to

perform configuration and management of the emulator. We shall perform the

verification and validation of the emulator by running a set of experiments on the

emulator, capture results and analyse the results graphically. The objective of

such verification is to identify whether network protocols behave as expected and

consistently, when deployed on top of the emulator.
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We have used shell scripting as the language for developing a set of emulator

configuration and management scripts. The set includes scripts to be used for au-

tomating topology creation as well as link configuration. During the initial stages

of this research, we intended to use NS-2 OTcl notation as the modelling language

as implemented in NS-2. However, due to the complexities of the technical chal-

lenges we encountered during the research, the scope was adjusted accordingly. As

a result, the modelling language was changed to shell scripts. NS-2 syntax is quite

common in the network research space. Since NS-2 was successfully implemented

in Emulab (White et al. [85]), we propose the possibility of using NS-2 in viNEX

for future developments.

Regarding the evaluation of the emulator, we made use of some existing TCP anal-

ysis and traffic generation tools. We used the iperf (Gates and Warshavsky [28])

tool for traffic generation and maximum bandwidth measurement. TCP network

data packets were captured using tcpdump (Van Jacobson and McCanne [82]).

Network data packet analysis was done using the tcptrace (Ostermann [61]) tool.

The graphical analysis of the results was initially done by using xplot (Shepard

[74]), but owing to the limited features of xplot we migrated to gnuplot [30].

Migration was achieved by converting xplot datasets to gnuplot input files using

the xpl2gpl (Ostermann [61]) script.

1.5 Related work

The virtualisation of network emulators is currently receiving much research at-

tention. This is mainly due to the need for companies to reduce the number of

computer servers overcrowding data centres, to be alleviated through virtualisa-

tion technologies. The following paragraphs describe some of the research work in

the virtualisation domain.

A large-scale virtualisation initiative is being done on Emulab. Instead of using a

general purpose virtualisation tool like Xen, Emulab opted for the FreeBSD Jail

mechanism. FreeBSD Jails provide a lightweight mechanism for virtualisation by

implementing process isolation. The Emulab virtualisation approach is described

in Hibler et al. [36].

User Mode Linux (UML) is a virtualisation technology that was used quite exten-

sively in network emulation. This includes the following research efforts:
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• The work done using UML (User-Mode Linux), reported on in Spenneberg

[78], targeted mainly at evaluating VPN networks, UML was used to evaluate

VPN protocols such as TCP and IPSec (IP Security).

• The UML-based emulator for MPLS networks (Balachander and Venkataram

[5]).

• UML was also used in the implementation of VNUML (Virtual Network

UML)as described by Fernandez et al. [26]. VNUML is targeted mainly at

the evaluation of IPv6 routing protocols.

FreeBSD OS is also widely used for the virtualisation of network emulators. Some

examples are:

• The FreeBSD network stack was virtualised through the cloning technique

that allows for multiple network stacks on the same kernel as proposed in Zec

[89]. This approach depends on the FreeBSD Jail (Poul-Henning Kamp

[66]) framework for application environment isolation. Each instance of the

protocol stack resembles a full network stack capable of running network

routing protocols as well as networking applications.

• IMUNES is another example of a virtual emulator. It was proposed in Zec

and Mikuc [90]. IMUNES also extends the FreeBSD kernel. The kernel was

extended by introducing the capability of maintaining several networking

stacks that are used to run different networking applications concurrently.

• ENTRAPID introduced the virtualisation of different 4.4BSD kernels. This

enabled the deployment of different network protocol stacks on virtual ker-

nels. ENTRAPID is described in Huang et al. [38].

Other examples of network emulators include the hypervisor-based testbed (Duchamp

and Angelis [20]) aimed at conducting network security experiments, the virtual

integrated TCP testbed (or VITT) aimed at evaluating TCP performance (Caini

et al. [9]). Other research is looking at the possibility of using para-virtualisation

as the basis for a federated PlanetLab architecture (Edwards and Harwood [21]).

PlanetLab [63] is a testbed aimed at rapid prototyping and the testing of Internet-

based experiments.
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1.6 Organisation of the dissertation

The remainder of this dissertation is organised as follows;

Chapter 2 provides background material for this research through a discussion of

the current state of virtualisation techniques. It also presents the literature re-

view of this dissertation with special emphasis on the differences between network

emulation and simulation.

Chapters 3 and 4 describe the implementation of viNEX. In Chapter 3 we present

a high-level design and the architecture of viNEX. The significant components of

the viNEX emulator are also described in this chapter. The foundation of the

viNEX emulator is formed by the ability to model and emulate network links.

Chapter 4 provides the technical details of link implementations in viNEX.

The evaluation of viNEX is discussed in Chapter 5 which includes experiments

conducted on viNEX as well as a discussion of the results. The research work is

concluded in Chapter 6 including the recommendations for future research work.

The paper (Mukwevho et al. [56]) that was published as part of this research

appears as Appendix A. The paper describes the initial version of viNEX which

was based on Xen HVM technology. We have since enhanced viNEX by changing

to Xen PVM to improve network performance. Appendix B presents the source

code of all the emulator configuration and management bash scripts as referenced

in this dissertation.

Appendix C shows the TCP/IP reference model. Examples of modelling some

common network topology structures in viNEX are presented in Appendix D.

Appendix E describes the Van Jacobson experiment that we conducted using NS-

2. Finally, Appendix F presents the remainder of the scripts used to conduct the

Van Jacobson experiment on viNEX.



Chapter 2

Network simulation and

emulation

This chapter presents the background and context of our research work. We be-

gin by presenting an overview of network testbeds in Section 2.1. The network

emulation and simulation concepts are discussed in Section 2.2. This section also

presents an overview of NS-2, Emulab and Dummynet. In Section 2.3 we presents

an overview of Xen [7] and its architecture. We also present an overview of how

the concepts link together in Section 2.4. A summary of the original Van Jacobson

experiment is presented in Section 2.5. Finally, a summary of this chapter appears

in Section 2.6.

2.1 Overview of network testbeds

This section gives an overview of different network testbed environments. We

consider the different categories of network testbeds and outline their benefits to

the network research community. The work in this section is synthesised mostly

from the report on network testbeds done by NSF (Kurose [48]).

Network testbeds play a significant role in the evolution of computer networks.

Network protocols are frequently developed and experimented on a testbed en-

vironment first before being deployed in the real world. For example, the In-

ternet protocols (such as TCP/IP) were first developed and experimented in the

ARPANet [67] testbed before they became publicly available. Furthermore, both

9
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DARTnet [18] and MAGIC (Multidimensional Applications and Gigabit Inter-

network Consortium) (DARPA [17]) testbeds have played a primary role in the

development of IP telephony and high-speed networks. A geographical and func-

tional overview of the MAGIC-I testbed is presented in Figure 2.1.

Figure 2.1: The topology of MAGIC Gigabit testbed, from DARPA [17].

The MAGIC testbed is formed by three major components, namely, the terrain vi-

sualisation application (TerraVision), distributed ISS (Image Server System) and
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a high-speed internetwork. TerraVision creates a dynamic aerial view of the U.S.

Army NTC (National Training Centre) landscape located at Fort Irwin in Cali-

fornia. The main objective of MAGIC is to monitor the locations of vehicles at

the battlefield in real time and thereby provide real time monitoring of the battle-

field to a commander. Coordinates of the vehicles are transmitted to the BCBL

(Battle Command Battle Laboratory) where the rendering of the terrain occurs

— see Figure 2.1. Images are then transmitted over the high-speed network to

EDC (Earth Data Centre) where they are stored on the ISS. TerraVision interacts

with the ISS in order to retrieve the image tiles that form the rendering of the

battlefield. If the requested tile is not stored on the ISS, the ISS sends the raw im-

age data to the supercomputer at MSCI (Minnesota Supercomputer Center Inc.)

where it is processed into tiles. The ISS then transmits the tiles to TerraVision for

over-the-shoulder view of the terrain on a workstation located at KU (University

of Kansas). A detailed description of MAGIC is given in DARPA [17].

Network testbeds may be classified into two main categories, namely, testbeds

that require production quality network services and testbeds that allow some

room for disruptive experimentation on the network infrastructure (Kurose [48]).

The latter are also known as research testbeds. The following paragraphs briefly

describe each category:

• Testbeds that require production quality network services: These

testbeds are dedicated to specific applications and are normally characterised

by high network quality features. Examples of network quality features are

availability, transmission speed, bandwidth and propagation delays.

The Internet2 [41] is an example of this class of testbeds. In the Internet2,

the IP network has 99.999% uptime a year (which equates to a downtime

of less than 5.5 minutes) and over 10 GigE (Gigabit Ethernet) bandwidth

capacity.

• Network research testbeds: These testbeds are used for experimental

research in computer networking. Our network emulator (viNEX) belongs

to this category. Other examples include Netbed (White et al. [84]), Emu-

lab (White et al. [85]) and PlanetLab [63].

Since viNEX is an example of a network research testbed, we discuss this category

further below.
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2.1.1 Network research testbeds

Network research testbeds may be distinguished into two broader classes:

• Multi-user, experimental facilities (MXF): These type of testbeds

are designed to serve a defined set of user communities of network re-

searchers. For example, the MOSIS (Metal Oxide Silicon Implementation

Service) networking system provides university researchers with access to

fast-turnaround semiconductor manufacturing services. MOSIS was devel-

oped at Xerox PARC and institutionalised by DARPA (Connway [14]).

• Proof of concept testbeds (PCT): These testbeds are aimed at address-

ing a specific research objective. PCT testbeds are normally dismantled

once the research objective has been achieved. An example of a PCT is

the SEQUIN project (IST [44]) to check the feasibility of the proposed IP-

Premium implementation in production networks, with a strong emphasis

on end-to-end quality of service (QoS) delivery across networks.

Traditionally, network testbed components (such as links, nodes, routers and

switches) were based in a facility at a single geographical area. An example is

the original Netbed (White et al. [84]) facility at the University of Utah. In re-

sponse to the evolving network research community needs, such as high availability,

dynamic configuration and control of the experiment environment, four additional

types of network testbeds have emerged. These are cluster, overlays as well as

federated and network research kits. A brief description and an example of each

type follow:

• Clustered testbeds: These type of testbeds are based mainly on the con-

cept of network emulation. They are normally formed by a cluster of net-

work elements deployed in a laboratory facility with remote access provided

through an Internet interface. An example of this type is Emulab (White

et al. [85]). In Emulab, network resources are deployed in a laboratory at

the University of Utah. Researchers are provided with a remote interface via

the Internet to access and configure their experiments.

• Overlay testbeds: These testbeds are designed to be an overlay on an

existing network. Some examples of overlay testbeds are:
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– The original ARPAnet which was designed as an overlay over a tele-

phone network (Hauben [33]).

– MBone (Savetz et al. [73]) which was designed as a multicast overlay

over the public Internet.

– Netbed (White et al. [84]) and PlanetLab [63] which both have compo-

nents that communicate over the public Internet across sites.

• Federated testbeds: This type is formed by interconnecting a number of

independent testbeds. Some benefits of federated testbeds are:

– Through the federation, researchers are exposed to more hardware and

are therefore able to run larger scale experiments than what their local

hardware can support.

– Researchers are exposed to a variety of networking technologies in ad-

dition to their locally supported technologies. For example, a remote

testbed may have wireless functionality that can be accessed via the

federation mechanism.

– Federated testbeds enable efficient and optimal use of testbed resources.

Researchers can make use of any idle testbed resources and thereby

facilitate efficiencies.

CONET [13] is an example of a federated testbed. It is composed of a

federation of collaborative research clusters which are located at different

geographical locations.

• Network research kits: Network research kits are composed of a set of

hardware and software components that can be deployed on a local network

laboratory. Some examples include:

– Our emulator viNEX which is designed to run on a single computer

host, serves as a good example of this category.

– IMUNES (Kukec et al. [47]) being a network emulator that can be

installed on a single FreeBSD host.

– Wireless Sensor Network Kit (Crossbow [16]) which is a commercial

classroom kit for teaching wireless sensor and mesh networks. It is

deployed in a classroom environment through a USB device plugged

into students’ PCs.



2.2. Network emulation and simulation 14

2.2 Network emulation and simulation

In this section we present some emulation and simulation concepts in the context

of computer networks.

Network simulators are usually implemented as a collection of software modules,

providing a synthetic environment for conducting network experiments. Simu-

lators are often deployed and executed on a single host. NS-2 [52] is a popular

example of a network simulator in the network research domain. Simulator ex-

periments are normally configured using text files. For example, in NS-2 one text

file is used to configure the entire network experiment. As a result, experiments

are repeatable and more control is provided to the user. Simulators do have some

disadvantages though, since protocols are developed and tested in a synthetic,

simulated environment interacting with simulated components. However, some

realism is lost and a significant amount of code changes might be required to move

the developed artifacts into a live network.

Network emulators are constructed by combining elements of live networks and

simulated software with the objective of imitating a larger network. For example,

a larger WAN network can be emulated by using few network nodes deployed in a

laboratory environment. Some special nodes can be inserted between network links

and simulator software can be loaded to simulate some WAN network conditions.

The Dummynet (Rizzo [70]) module has been used extensively in emulated network

research environments (such as Emulab (White et al. [85])) to emulate network

conditions such as delays, random losses and bandwidth limitations. One of the key

distinctions between network emulation and simulation is that network emulation

runs real protocol stacks on the network nodes while simulators normally use

software models.

Emulab [22] is an example of an emulated environment. In Emulab, some trans-

parent FreeBSD delay nodes are inserted between topology links to simulate the

network boundary conditions using the Dummynet module. NS-2 is an example

of a limited network emulator. Limited emulation functionality was recently in-

troduced to NS-2 whereby real network traffic can be subjected to the simulated

network components. The emulation facility of NS-2 is described in Fall [24].



2.2. Network emulation and simulation 15

2.2.1 Overview of Network Simulator 2 (NS-2)

NS-2 (McCanne et al. [52]) is a discrete event-driven simulator written in

C++ (ISO/IEC [43]) and OTcl (Heidemann et al. [35]) used for conducting net-

work research. NS-2 was developed at the University of California Berkerely; it is

currently at version 2 (commonly referred to as NS-2) and version 3 is currently

under development.

NS-2 works at the network packet level and it provides software mechanisms to

simulate wired and wireless networking protocols. The NS-2 package is comprised

of object-oriented classes to implement protocols, traffic generators and router

queue management techniques. NS-2 implements network protocols such as ATM

(Asynchronous Transfer Mode), IP (Internet Protocol), TCP, FTP (File Trans-

fer Protocol), GSM (Global System for Mobile Telecommunication), and GPRS

(General Packet Radio Service). NS-2 also implement objects to simulated traffic

generators and sinks for network protocols like FTP, CBR (Constant Bit Rate),

HTTP (Hypertext Transfer Protocol), HTTPS (Hypertext Transfer Protocol Se-

cure) and Telnet. NS-2 also implements router queue management schemes such

as DropTail, RED (Random Early Detection) and FIFO (First In First Out). NS-2

also includes mechanisms for simulating LANs (Local Area Networks) and WANs

(Wide Area Networks) by implementing multicasting and MAC (Media Access

Control) layer protocols.

NS-2 was originally targeted at Unix-based platforms (such as Linux and BSD

versions). The recent Cygwin extensions for Windows made it possible to host NS-

2 on a Windows-based platform. Network experiments are modelled using the Tcl

scripting language. NS-2 is quite popular in the network field, for example its Tcl

scripting language syntax was adopted as the modelling language for both Emulab

and Netbed environments (White et al. [85]).

The NS-2 product suite contains a tool called NAM (Network ANimator), which

is a Tcl/Tk-based tool used to animate the network packet traces. NAM works

from the trace files generated as output from running an experiment in NS-2. The

trace file contains network topology details which include nodes, links and packet

traces.
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2.2.2 Emulab

Emulab (White et al. [85]) is an emulated network testbed. The primary instal-

lation of Emulab is managed by the Flux Group and it is hosted in the School of

Computing at the University of Utah [22]. Emulab is a subset of Netbed (White

et al. [84]) and it is aimed at offering emulation capabilities. At the highest level,

Emulab consists of a physical testbed environment and special FreeBSD delay

nodes to simulate different network conditions. The testbed is formed by a collec-

tion of PCs which are interconnected by network switches in a manner that allows

for arbitrary network topology configurations. The testbed PCs can be used as

end-nodes, traffic generators, traffic consumers, routers or link emulators.

Emulab is formed by a collection of different networking environments for con-

ducting research. Some of the supported environments are:

• Emulation: Emulated experiments enable researchers to create an arbitrary

network topology, allowing for a controllable, predictable, and repeatable en-

vironment. Researchers also have full root access to the PC nodes. Emulab

furthermore adds the flexibility by allowing users to load an operating sys-

tem of their choice onto the PC nodes. Details are described in White et al.

[85].

• Live-Internet Experimentation: Emulab is integrated with the RON (An-

dersen et al. [2]) and PlanetLab [63] testbeds through the live Internet. Such

level of integration provides researchers with an opportunity to run their ex-

periments across the live Internet around the world.

• 802.11 Wireless: Emulab has a wireless testbed with devices complying to

the 802.11a/b/g IEEE wireless specifications (IEEE [40]). Emulab provides

a web interface which enables users to have full remote access and control

to mobile devices. The mobile testbed (known as DETER) is comprised of

a set of mobile nodes with two wireless interfaces each, and a wired control

network.

• Software-Defined Radio: Emulab makes use of the USRP devices from

the GNU Radio project (GNU [29]). These USRP devices provide control

over the physical network layer (OSI Layer-1) of the above wireless network.
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• Sensor Networks: Emulab has a sensor-network testbed which is formed

by 25 Mica2 motes. A mote is a serial port that enables maximum control

and debugging capabilities (Emulab [22]).

• Simulation: By making use of the NS-2 emulation facility (Guruprasad

et al. [32]), simulated experiments can interact with a real network. There-

fore, simulators can also interact with Emulab, including some network com-

ponents within Emulab.

Emulab’s software may be bought and installed at a different network site. In

addition to the primary site located at the University of Utah, the software has

been shipped and installed at more than 24 sites located around the world — see

Figure 2.2 for other locations. Emulab is a public facility and it is available to

researchers and students in the academic fields free of charge.

Figure 2.2: Other Emulab sites around the world, from Emulab.net [23]

Experimenters can use NS-2 scripts or a graphic tool to define network topologies

for their experiments. NS-2 scripts are formed by a sequence of commands that

are defined using a specific notation. The notation is referred to as NS-2 syntax.

Using the NS-2 syntax, researchers can specify traffic generators and sinks as well

as discrete network events. Listing 2.1 gives an NS-2 example script for Emulab
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and the resulting topology is depicted in Figure 2.3. Once the topology is defined,

the next step in Emulab is to load the experiment in a process called swap-in.

Emulab automatically maps the virtually-defined topology to physical resources.

1 set ns [new Simulator]
2 set node1 [$ns node]
3 set router [$ns node]
4 set node2 [$ns node]
5 set linkA [$ns duplex -link $node1 $router 100Mb 0ms

DropTail]
6 set linkB [$ns duplex -link $router $node2 1Mb 10ms DropTail]
7 $ns rtproto Static
8 $ns run

Listing 2.1: A sample source NS-2 script for creating the Emulab experiment
topology in Figure 2.3 (White et al. [85]).

Listing 2.1 is an OTcl script which creates a three-node network on Emulab. The

effect of the code in Listing 2.1 is described next.

Line 1 creates a Simulator object and assigns it to a variable ns. The Simulator

object is used as a global object for configuring a network experiment. It is respon-

sible for storing references to experiment nodes, links, event schedulers and basic

protocol configuration settings (e.g packet size). Lines 2 to 4 reserve, create and

boot the experiment nodes. The two network links, namely, linkA and linkB are

created by lines 5 and 6 respectively. Line 5 creates a network link between node1

and the router and calls it linkA. LinkA is configured as a duplex link with a 100

Mb/s capacity, a 0 ms delay and it uses the DropTail queuing strategy. LinkB is

the link between the router and node2 and it is defined to carry traffic using a

1 Mb/s bandwidth, a 10 ms delay and likewise uses the DropTail queueing strat-

egy. Line 7 specifies that no routing protocol will be used for this experiment and

therefore network addresses will be statically assigned during boot time. Finally,

the execution of the script is triggered by the run command at line 8.

In Emulab, network link emulation is provided by special nodes called link emula-

tors which are inserted between the end-points of a network link. Link emulators

run the FreeBSD OS with Dummynet enabled for emulating network link con-

ditions such as bandwidth control, propagation delay and packet losses (White

et al. [85]). Dummynet is also used to implement various network link-queuing

strategies like FIFO, RED, or DropTail.
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A network experiment in Emulab is comprised of two distinct networks, namely,

the control network and the experiment network. At the heart of Emulab lies the

control network as depicted in Figure 2.3. The purpose of the control network

is to provide an isolated network for controlling and managing the experiments

without interfering with the network traffic of the experiment. The experiment

network is only limited to each specific experiment. Applications running inside

the topology nodes are not aware of the main control network. Topology nodes

make use of the control network to gain to the shared network resources such as

the NFS mounted file systems /proj and /users. Once an experiment has been

uploaded into Emulab, researchers have two possible methods of accessing their

experiments. These are:

Figure 2.3: Emulab experiment topology, from Emulab [22]

• Employing a web interface: This is the primary method of access —

users can access Emulab using their web browser application by navigating

to the URL http://www.emulab.net/. They will be required to enter their
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login credentials before being granted access to their experiments. The web

interface is used mainly to load, configure and to execute experiments.

• Using SSH (Secure Shell) via host users.emulab.net: This mechanism

is used mainly for obtaining direct access to the file systems and command

console of the topology nodes. To obtain access to the topology nodes, users

must first access the users.emulab.net node using SSH. From this node,

users can then use SSH to access the file systems of topology nodes. The

SSH access method also provides users with a direct access to the trace

files. This method enables users to issue direct OS commands to the nodes,

allowing them to execute network utilities such as traceroute or tcpdump.

The traceroute utility may be used to check connectivity between two

topology nodes. Tcpdump is used to capture network packets passing through

a network interface.

Next we present an overview of Dummynet.

2.2.3 Dummynet

Dummynet (Rizzo and Carbone [71]) is a tool that was initially designed for testing

network protocols. It is now being used primarily for network bandwidth man-

agement. Dummynet is used to simulate network properties such as queue and

bandwidth limitations, delays and packet losses. The implementation of Dum-

mynet on FreeBSD is aimed at TCP and IP protocols. Dummynet operates on

the inbound or outbound packets between the TCP and the IP layers. Dummynet

operation is shown in Figure 2.4.

Dummynet is implemented as a loadable kernel module on the FreeBSD [27] oper-

ating system. By design, Dummynet operates between any pair of network layers,

as shown in Figure 2.4. It intercepts packets that are being output from one layer

and then it applies some network property on the packets before passing the pack-

ets to the next layer. Dummynet can intercept network packets at either layer 2 or

layer 3 of the OSI reference model (Zimmermann [91]). The following paragraphs

discuss the operation of Dummynet.
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Figure 2.4: Dummynet operating principle, adapted from Rizzo [70]

Dummynet uses the notion of a pipe to regulate network traffic. A pipe can be

configured with settings such as bandwidth, packet delay and loss rate. A pipe is

modelled by two queues, namely, the R and the P queues as shown in Figure 2.4.

A a pair of queues R/P is required in each direction of the communication. The

Rin/P in pair is used for processing inbound traffic. The Rout/P out pair is used

for processing outbound network traffic. To simplify our discussion, we shall refer

to these queues simply by using the R and the P symbols. Assuming tp to be

the link delay, B the maximum link bandwidth and r the probability of packets

getting lost, the operating principles of Dummynet are:

• Bandwidth management: The R queue is used to control bandwidth.

Packets are moved from the R to the P queue at the maximum rate of B

bytes/s. Bandwidth control is achieved by setting or adjusting the size of

the R queue.

• Queuing algorithms: Modelling of network link-queueing algorithms such

as FIFO, Droptail or RED is achieved by setting the queueing algorithm of

the R queue.

• Link delays: The P queue is used to model link delays. Packets are buffered

on the P queue for a maximum duration of tp before being passed to the

next protocol layer. This procedure implements the configured link delay.
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• Packet loss: Random packet loss is implemented before passing the packets

to the next protocol layer from the P queue. Packets are dropped using the

configured random probability (r).

In FreeBSD, the IP Firewall (ipfw) is used to filter and route traffic to the Dum-

mynet pipes. The command-line tool ipfw provides an interface to create firewall

rules for matching packets destined for Dummynet as well as to configure pipe

settings.

The following section presents the design and features of the Xen [7] virtualisation

technology.

2.3 Xen Overview

Xen (Chisnall [10]) is an open source virtualisation platform based on the hyper-

visor (Singh [76]) technology. The Xen Hypervisor is also known as the VMM

(Virtual Machine Monitor). Xen originated at the University of Cambridge as

part of a research project led by Ian Pratt. Xen is currently developed by the Xen

open source community comprising of engineers from technology vendors. A list

of these technology vendors can be referenced at (Xen [87]).

During the initial phases of this research we investigated a number of virtualisation

platforms as part of identifying a suitable platform for implementing viNEX. Some

of the virtualisation platforms examined include Vmware, VPN and Xen. Xen was

selected as the platform for implementing viNEX due to its open source nature

and the active status of its research community. UML is also open source but was

not chosen because of its limited community activity.

Xen supports both para-virtualisation and full virtualisation. The initial releases

of Xen were targeted mainly at supporting para-virtualisation guests on x86 ar-

chitectures, allowing for a maximum of 100 guests running concurrently (Barham

et al. [6]). Support for unmodified guests (full virtualisation) was introduced later

on by Intel after they extended the Xen VMM to use their Intel Virtualisation

Technology (VT) (Dong et al. [19]). AMD [1] followed suit by creating extensions

for Xen to run on their hardware virtualisation technology, known as Pacifica or

AMD-V. Xen can run on a vast majority of architectures which include IA-32,
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x86, x86-64, IA-64 and PowerPC 970, AMD [1] and SPARC (ported by Sun Mi-

crosystems [79]).

We now consider the Xen architecture and present an overview of its internal

components.
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Guest OSGuest OS

Xen Virtual Machine Monitor - HypervisorXen Virtual Machine Monitor - Hypervisor
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(XenLinux Kernel)
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Figure 2.5: The Xen 3.x Architecture Including both PVM and HVM Guests,
adapted from Barham et al. [6]

2.3.1 Xen Architecture

Figure 2.5 shows a high level Xen architecture and its significant components. The

main components of a Xen architecture are the Xen Hypervisor (VMM), Domain-0

(Dom0) and Domain-U (DomU) which can either be a PVM (Paravirtualised Virtual

Machine) or a HVM (Hardware Virtual Machine) guest.

The above components are discussed next.

2.3.1.1 Xen Hypervisor

The Xen hypervisor, also known as the VMM provides the core virtualisation

functions that make guest operating system hosting possible. It runs inside the

special privileged domain known as Domain-0 or Dom0. The hypervisor provides
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a virtualisation layer that controls access to the underlying physical resources. The

virtualisation functions are provided by devices (vIO Devices), memory (vMMU —

virtual Memory Management Unit) and CPU virtualisation (vCPU). The vAPIC

(virtual Advanced Programmable Interrupt Controller) module is responsible for

implementing virtual APIC (Advanced Programmable Interrupt Controller) de-

vices. Similarly, the vPIC module provides virtualisation of the PIC devices. The

vPIT module provides a virtual interface to the platform’s PIT (Programmable

Interrupt Timer). All these modules are depicted in Figure 2.5. A discussion of

the vAPIC, vPIC and vPIT modules is beyond the scope of this dissertation and

further details are presented in Chisnall [10].

An overview of the three main modules of the VMM is presented next.

• Device Virtualisation is provided by the vIO Devices module which is

responsible for the underlying virtual I/O devices. It delegates all the I/O

requests from the guest domains to the physical I/O devices of the system.

The I/O devices include a keyboard, a mouse, network cards and a hard disk.

Event Channels provide a mechanism for the direct communication between

the frontend device drivers and the backend device drivers of paravirtualised

guests.

• Processor Virtualisation is provided by the vCPU unit. The vCPU pro-

vides the abstraction of the the physical CPU to the guests. It is responsible

for executing, suspending and resuming the CPU instructions from each

guest. It delegates the unsafe CPU instructions of the guests and run them

securely on the underlying CPU.

• Memory Virtualisation is provided by the vMMU (virtual Memory Man-

agement Unit) module which is responsible for sharing the physical RAM

among the guests. It provides the abstraction of the hardware MMU (Mem-

ory Management Unit) to the guest operating systems. This is achieved by

maintaining a special table called the shadow page table. The guests use

the GPA (Guest Physical Address) to reference memory pages. The vMMU

module then translates the GPA into the corresponding physical machine

address (known as the MPA) to reference the physical memory page. The

shadow page table is responsible for keeping the mappings between the GPAs

and MPAs. Further details of the memory virtualisation process appear in

Dong et al. [19].
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2.3.1.2 Domain-0

The Domain-0 virtual machine is normally referred to as Dom0. It provides the

management and control functions of the Xen environment. The Xen hypervisor

(VMM) is hosted by the kernel running inside Dom0. Dom0 has the highest system

privileges and as a result, it is the only domain that is allowed direct access to

the underlying physical resources (Barham et al. [7]). Dom0 is always started by

default when a XenLinux kernel boots up. It runs the control panel module which

is responsible for creating, destroying and managing the guest domains (DomUs).

2.3.1.3 PVM Guest Domains

PVM guest domains are paravirtualised machines (DomUs) running on top of the

hypervisor. Each DomU runs a modified kernel ported to run on Xen. To port

a kernel to Xen, system calls of the kernel are replaced by special calls which

invoke the Xen VMM functions. PVMs use these system calls (also known as

hypercalls) as a mechanism for communicating with the hypervisor. Access to

hardware devices is provided through special frontend device drivers. Frontend

device drivers are Xen-aware device drivers that make use of event channels to

communicate to the backend device drivers in Dom0.

2.3.1.4 HVM Guest Domains

HVM guest domains run unmodified versions of the OS. There is no need to port

the OS to run on the Xen platform. The HVM relies on the guest BIOS provided

by the hypervisor to boot-up. The guest BIOS does not have direct access to the

physical hardware, instead, it uses the QEMU device models to process hardware

requests. The HVM communicates with the hypervisor through the VM Entry

and VM Exit requests. HVM guests run standard native device drivers which rely

on the guest BIOS emulation.

A detailed description of HVM and PVM domain types is beyond the scope of

this dissertation, but details appear in Barham et al. [7]. For the rest of this

dissertation the term DomU will be used to refer to a Xen guest domain.
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2.3.2 Xen Networking

Dom0 is the only domain which is allowed direct access to the physical network

interfaces. All guest domains have to forward their network packets via Dom0.

All network packets between the guest domains and Dom0 must pass through the

Hypervisor. The network interfaces inside the guest domains are controlled by

the frontend device drives and they are therefore known as frontend interfaces.

Network interfaces running inside Dom0 and linked to the guest domain’s fron-

tend interfaces are called backend interfaces. For each frontend ethernet interface

(ethX), a corresponding backend interface vifX.Y is created in Dom0 where X is

the guest domain id and Y uniquely identifies the backend interface among all the

backend interfaces allocated for DomX (see Palivan [62]). The Xen hypervisor pro-

vides communication between the frontend and backend devices through the I/O

channels — the low-level implementation details can be referenced in Govindan

et al. [31].

Xen provides two models for network communication between guest domains and

Dom0, namely, routed and bridged networking. Both models can be used with

Network Address Translation (NAT) in order to enable external forwarding of

network packets to, or from guest domains. The routed and bridged networking

models are shown in Figure 2.6 and Figure 2.7 respectively.

The next two sections describe the routed and bridged models further. Further

details on the operation of each model may be observed in Palivan [62]:

2.3.2.1 Routed Network

The routed network model uses Dom0’s IP routing module for routing DomU network

packets. A routing table entry must exist for each guest domain for packets to be

forwarded to that domain. This model is illustrated in Figure 2.6. For packets

to flow to, and from the guest domain, each backend interface linked to the guest

domain’s frontend interface must have an IP address assigned to it. Packets are

routed by Dom0 using the native Linux routing modules at layer-3. Routing is

performed at the IP level and no bridging is involved. This model becomes more

complex as the routing tables grow in size and may become difficult to manage.
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Figure 2.6: The Xen Routed Network Model, adapted from Barham et al.
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2.3.2.2 Bridged Network

Xen uses network bridging by default. When the hypervisor starts, the original

ethernet (eth0) interface is shut down, renamed to peth0 and brought up again.

The real ethernet interface is referenced using peth0 as illustrated in Figure 2.7,

see Barham et al. [7]. A Linux software bridge is created for each ethernet interface.

The bridge is used to link the backend interfaces to the real ethernet (pethX)

interfaces to enable exterior packet forwarding. The bridge forwards packets to

the guest domains using the MAC addresses of their backend (vifX.Y) interfaces.

Bridges (Buytenhek [8]) are layer-2 devices and therefore perform routing using
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Figure 2.7: The Xen Bridged Network Model, adapted from Barham et al.
[7]
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MAC addresses. Network frames are forwarded based on Ethernet addresses and

not IP addresses. As a result, since forwarding is done at layer-2, all protocols

may pass their traffic transparently through the testbed. It is for this reason that

the testbed can be viewed as a network backbone on which network traffic may be

routed and the protocol-specific functions performed at the topology nodes. In this

research, we have modified the default behaviour of the Xen bridged networking in

order to create dynamic links between guest domains. Further details on network

links are presented in Chapter 4.

2.4 Linking the concepts

In this section we present a diagrammatic view of the relationships among the

concepts discussed in this chapter. These relationships are depicted in Figure 2.8.

The links in Figure 2.8 represent ”used by” relationships.
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Figure 2.8: Linking together the concepts discussed in this chapter
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We may summarise Figure 2.8 as follows. Network research environments can

be divided into three categories, namely testbeds, emulators and simulators.

Testbeds are normally based on physical networks. Examples of testbeds in-

clude Emulab (White et al. [85]), ARPANet (Hauben [33]), MAGIC (version I

and II) (DARPA [17]), DARTNet [18] and PlanetLab [63].

Emulators are frequently designed to run on a single machine. For example,

viNEX (Mukwevho et al. [56]) was constructed using the Linux, FreeBSD and

NetBSD operating systems and the Dummynet package was used for link emula-

tion. All the components of viNEX were hosted on a single server by using the

Xen [7] virtualisation platform. Software simulators form a class of network re-

search environments which is based on software models. NS-2 is an example of a

software simulator.

It is also important to note the relationships amoung the above three research

environments. Testbeds can make use of emulators to implement the emulation of

network links. An example of this association is the use of Dummynet in Emulab

for link emulation. Furthermore, testbeds can also make use of simulator compo-

nents. The NS-2 OTcl scripting language was used in Emulab as the modelling

language for defining network experiments.

It is also possible for simulators to communicate with real network testbeds. For

example, part of the VINT/NS project is to introduce emulation to the NS-2 simu-

lator by developing interfaces that enable the simulator to communicate with real

network nodes. Further information on the VINT/NS project can be referenced

in Fall [24].

In our research, we have identified the Van Jacobson [81] experiment as an example

of a class of network experiments that can be conducted on viNEX. This experi-

ment is used extensively as part of the justification of our hypothesis in Chapter 5

and Chapter 6. We therefore provide an overview of the original experiment in

the following section.

2.5 Summary of the Van Jacobson Experiment

The Internet experienced a sequence of collapses due to network congestions start-

ing from October 1986 (Van Jacobson [81]). As a result, the Internet bandwidth
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dropped significantly. For example, the bandwidth between the LBL (Lawrence

Berkeley National Laboratory) and UCB (University of California Berkeley) sites

dropped from 32 Kbps to 40 bps. The two sites (LBL and UCS) are separated by

365.76 metres and three hops between them (Van Jacobson [81]).

Van Jacobson [81] subsequently conducted his experiment in 1988 to investigate

the possible cause of the above collapses. The investigation was focused on study-

ing the 4.6BSD TCP stack under severe network conditions. A microwave bottle-

neck link was introduced between the two sites and all traffic was routed past this

bottleneck link. The network topology used in the Van Jacobson experiment is

depicted in Figure E.1 of Appendix E.

In his paper Van Jacobson [81] describes five algorithms which were constructed

as a result of the initial attempts to resolve the above Internet collapses. The five

algorithms described by Van Jacobson are: round-trip-time variance estimation,

exponential retransmit timer backoff, slow-start, aggressive receiver acknowledge-

ment and dynamic window resizing on congestion.

Van Jacobson conducted his experiment twice by using a different TCP stack for

each iteration. The two TCP stacks used were the original 4.3BSD TCP stack (as

described in RCF793 (Postel [64]) without congestion avoidance and control) and

the enhanced TCP stack (with the above congestion algorithms implemented).

The result of the Van Jacobson experiment showed a significant improvement in

the utilisation of the bottleneck link between the UCB and LBL sites. The im-

proved utilisation confirmed that the new TCP with congestion control algorithms

enabled, performed much better when compared to the old 4.3BSD TCP stack

without congestion control. The results of the experiment indicated that only 1%

of all packets were retransmitted using the new TCP stack whereas the results of

the old TCP stack showed a 50% retransmission of packets. The results of the old

and the new TCP stacks are shown in Figure 8 and Figure 9 respectively in the

Van Jacobson paper [81].

We conducted the above Van Jacobson experiment on viNEX as part of verifying

and validating our emulator. Details of conducting the Van Jacobson experiment

are presented in Chapter 5.
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2.6 Summary

Network testbeds play a primary role in the evolution of computer networks. The

ARPAnet (Pullen et al. [67]) testbed was used to develop and test the original

Internet protocols including TCP and IP. Testbeds were normally constructed

as a real network spanning a large geographic area, for example, the MAGIC-I

Gigabit testbed was deployed across a major part of the Unites States of America,

see Figure 2.1.

As the needs of researchers evolved, new types of testbeds were constructed. Re-

cent advances in computing, such as the Dummynet emulator have made it possible

to emulate wide area networks on a single PC. It is possible to host a cluster of net-

work nodes in one building and use the software simulator to mimic the behaviour

of wide area networks. For example, the Emulab and Netbed (White et al. [85])

testbeds consist of a cluster of PCs and network switches hosted in one building.

This was primarily driven by the need to have a freely accessible research facility

for network researchers across the world. The FreeBSD nodes with Dummynet

loaded have made it possible for the Emulab PCs to emulate a wide area network

despite of having all nodes located in one room.

This chapter also presented the two main classes of network testbeds, namely,

testbeds that require production quality network services and network research

testbeds. Our interest is focused on the network research testbeds class because

these are used by network researchers for creating new knowledge in computer

networks. Network research testbeds are further divided into two broader classes,

namely, the multi-user experimental facilities (MXF) and proof-of-concept testbeds

(PCT). In response to the growing need of network researchers, four new classes

of network research testbeds have emerged. These include the clustered, overlay,

federated and network research kits testbeds. Our emulator OS belongs to the net-

work research kits class, since it consists of a collection of software modules that

are deployed on a single host. The viNEX emulator differs from existing emulators

(such as IMUNES) on the basis that the nodes run real operating systems with

full network protocol stacks as opposed to simulated stacks.

The advances in computer virtualisation have made it possible to create a network

of virtual nodes on a single host computer. As a result, we have seen some emerging

research initiatives aimed at exploring the possibility of hosting an entire network

testbed on a single host. For example the IMUNES (Zec and Mikuc [90]) system



2.6. Summary 32

is a network emulator that runs on a single host. The approach used in the

IMUNES is different to ours (Kukec et al. [47]). In the IMUNES, network nodes

are represented by the cloned network protocol stack, whereas our approach is to

use a traditional virtualisation platform such as Xen.

We also discussed aspects of the Xen hypervisor virtualisation technology. The

discussion on Xen included an overview of its architecture and network models.

Xen supports two types of networking, namely, routed and bridged mode. The

bridged mode is the default and the most preferred owing to its simplicity.

Finally, in Section 2.4 we presented a high-level overview of the concepts discussed

in this chapter and how they link to each other. The relationships among these

concepts are depicted in Figure 2.8. Network research environments are normally

classified into three environments, namely testbeds, emulators, and simulators.

These environments are interrelated. For example, interfaces can be developed for

simulators to communicate with testbeds and vice-versa. Testbeds in turn made

use of emulators to provide link emulation.

The next chapter presents the design and architecture of the viNEX network em-

ulator.



Chapter 3

viNEX Design and Architecture

Chapter 2 provided a background on network research environments. Three classes

of network research environments were described, namely testbeds, emulators and

simulators. ViNEX was identified as an example of a network emulator because

network nodes in viNEX run the standard and real networking protocols without

any modifications or simulations. Details appear in Section 2.4 and Figure 2.4.

In this chapter, we propose the design of the virtual network emulator viNEX,

which is a pseudo-acronym for Virtual INtegrated Network Emulator on Xen. The

objective of this chapter is to develop the viNEX architecture and its components.

This chapter is structured as follows. Section 3.1 provides the high-level archi-

tecture and presents the significant components of viNEX. At the highest level,

viNEX consists of two major components, namely, the control network environ-

ment and the experiment topology environment. The control network environment

and the experiment topology environment are described in Section 3.1.1 and Sec-

tion 3.1.2 respectively. Section 3.2 gives the details of the viNEX development

environment including the additional F/OSS software packages used. A summary

to this chapter is presented in Section 3.3.

As described in Chapter 2, Xen offers two approaches to virtualisation, namely,

PVM (Section 2.3.1.3) and HVM (Section 2.3.1.4). Our initial release of viNEX

(version 1.0) used the HVM approach is documented in our paper (Mukwevho et al.

[56]) which was published as part of the proceedings of the SIMUTOOLS 2009

Conference. This paper is available in A.The preliminary results of the bandwidth

measurement experiment indicated a rather slow network performance, averaging

33
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about 3 Kb/s (Kilobits per second) between the network links. This performance

is slow relative to the default 10 MB/s (Megabytes per second) minimum speed

of most modern network links.

The above performance was attributed mainly to the slow performance of the Xen

networking drivers under HVM guests. This eventually triggered a need to improve

on networking performance in the context of our experiment. Due to the above

slow performance of network links using PVM, a decision was made to switch from

HVM to PVM, leading to the viNEX 2.0 release. In the context of this dissertation,

we shall use the term viNEX to refer to the viNEX 2.0 release. A significant

improvement on networking performance was noted as a result. Using the PVM

approach, a maximum bandwidth of 12 MB/s (Megabytes per second) on a single

network link between two PVM guest domains was measured. The performance

improvement is attributed to the efficiency of the PVM guest’s network drivers

which have been found to perform better than their HVM counterparts (Menon

et al. [53]).

The viNEX emulator runs the TCP/IP protocol stacks for both the control net-

work and the experiment topology network. The standard network layers of the

the TCP/IP protocol suite are described in Appendix C.

Recall that in Section 2.3, we mentioned that in the context of this dissertation

the term DomU will be used to refer to a Xen guest domain. The term Dom0 will be

used to refer to the main Xen domain (also known as Domain0) which hosts the

hypervisor.

In this research, we reuse the core networking functionality of the bridged network

model in Xen. We rely on Xen to pass all the traffic from a guest domain, via a

bridge connected to the backend interface of the guest domain. We then make use

of the Linux Ebtables (Russell [72]) module to intercept network traffic at layer-2

and avoid network routing at layer-3 to optimize performance. Performance is

enhanced by avoiding the execution of layer-3 routing code which in turn saves

the need for CPU time by the virtual machine. The Linux Ebtables module adds

bridging functionality at the Ethernet layer.

ViNEX was originally designed with the following principles in mind:

1. Performance: We aim to achieve acceptable performance by minimising net-

work overheads as a result of performing inter-domain routing at the OSI
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layer-2. Network packets that are passed between two directly connected

nodes (DomUs) are not passed to layer-3 of the Linux Dom0 host for IP

routing, but are passed directly to layer-2 using the Ebtables module.

2. Protocol Independence: The testbed should be generic and be able to carry

traffic independent of the protocol type. This is enabled by the routing at

layer-2 as described above.

3. Simple Configuration: A simple command-line interface for creating complex

network topologies should be used. We create a set of shell scripts to cater

for such an interface. Details are discussed in Section 3.1.1.2.

3.1 viNEX Architecture

The viNEX high-level architecture is comprised of three major components,

namely, the Xen Hypervisor (VMM), Control Network Environment (Dom0) and

the Experiment Topology Environment. These components are depicted in Fig-

ure 3.1.

The VMM provides virtualisation for the entire viNEX environment. It is the

standard VMM as described in the Xen architecture in Section 2.3 of Chapter 2.

The Control Network Environment is used to provide Dom0 with a direct connection

to all the experiment network nodes and it is primarily used during the initial

stages of the experiment creation to initialise the DomU experiment nodes. IP

forwarding through the control network is disabled by setting the system variable

/proc/sys/net/ipv4/ip forward to 0. As a result, the DomU experiment nodes

cannot communicate directly with each other through the control network. The

control network is therefore reserved for controlling the DomU nodes from Dom0.

The experiment topology environment provides a network through which the DomU

nodes communicate directly with each other as defined by the topology of the

experiment. Such network is used for sending all the experiment-related traffic.

Inside the Control Network Environment, we find two significant components,

namely, the configuration and management scripts, and the traffic shaping node

(FreeBSD Guest). From now onwards, we shall use the term gateway to refer to the

traffic shaping node. In the context of computer networks, a gateway is a computer

that controls or allows access to another network or computer (Silberschatz et al.
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[75]). In the context of viNEX, we are use the notion of a gateway to refer to

the traffic-shaping node because all traffic between the network nodes must pass

through such gateway. This is to allow for traffic shaping functions to be applied on

the packets through the Dummynet component. The functionality of Dummynet

can be referenced in Section 2.2.3.

The Experiment Topology Environment consists of an experiment network topol-

ogy which is formed by experiment nodes and network links. Due to the IP address

range, the experiment topology network is not directly accessible from Dom0 (refer

to Figure 3.1). This implies that users connecting from Dom0 cannot use any of the

IP addresses of the experiment nodes to communicate directly from the control

network.

Next we discuss the control network and the experiment topology environments of

viNEX.

Xen Hypervisor (VMM)Xen Hypervisor (VMM)

Experiment Topology Environment

Node-2

Node-3
Node-1

Link-1
Link-2

10.0.1.1

10.0.1.2  10.0.2.2

10.0.2.3

Control Network Environment (Domain-0) 

From Destination Gateway

* 192.168.30.1 vif1.0

* 192.168.30.2 vif2.0

* 192.168.30.3 vif3.0

* 192.168.30.4 vif4.0

192.168.30.1
192.168.30.3

192.168.30.2

Users
Control Network's Routing Table

Configuration 
and 

Management Scripts

Gateway
Traffic Shaping 

Node
(FreeBSD)

192.168.30.254

Figure 3.1: The high level architecture of viNEX
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3.1.1 Control Network Environment

Our design approach follows that of Emulab (White et al. [85]). A control network

is created to allow Dom0 users direct access to the experiment nodes. The control

network is critical for the initial configuration of experiment nodes. It is used by

setup scripts to access the experiment nodes and configure their network settings.

Configuration of network settings is achieved by executing direct commands on

the experiment nodes, using the ssh remote connectivity tool from Dom0.

Connectivity of the control network is depicted by dotted-lines in the high-level

architecture diagram in Figure 3.1. The layer-3 routing table in Dom0 is used

for passing traffic directly to the guest domains. Each topology node (Node-X) is

assigned an IP address which resembles a pattern of 196.30.225.X. It is important

to note that any suitable IP address range can be used for this purpose. The first

three octets 196.30.225 can be replaced by any valid values for IP addresses. Two

IP addresses 196.30.225.254 and 196.30.225.252 are assigned to the Gateway

node interfaces. Dom0 is assigned the IP address 196.30.225.253, configured to

its eth0 interface.

Next we discuss the two components of the control network, namely, the traffic

shaping node as well as the configuration and management scripts.

3.1.1.1 Traffic Shaping Node

The traffic-shaping node is used to emulate network links between the topology

nodes. It is also responsible for simulating network conditions such as bandwidth

limitation, packet delay and random packet loss. The network conditions are

provided by Dummynet running on the traffic-shaping node. All network traffic

between any two topology nodes is channeled to pass through the traffic shaping

node, as per Figure 3.1.

The viNEX traffic-shaping node is transparent from the experiment topology

nodes, in other words, the experiment topology nodes cannot communicate di-

rectly with the traffic-shaping node. Traffic shaping is done by Dummynet (Rizzo

[70]). The traffic-shaping node is a FreeBSD 7.0 PVM guest domain running on

top of the Xen hypervisor. We interchangeably use the term FreeBSD gateway

node to refer to the traffic-shaping node as well. A single instance of the FreeBSD
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gateway node is created and every network link that belongs to the experiment

topology is configured to pass through this node.

Next we describe the configuration and management component of viNEX.

3.1.1.2 Configuration and Management Shell Scripts

The configuration and management shell scripts provide an interface for control-

ling and managing viNEX. The interface is provided through a collection of four

shell scripts, namely, start-gateway.sh, start-node.sh, create-link.sh and

modify-link.sh. Appendix B gives the source code listings for these scripts. A

brief description of the functionality provided by each shell script follows:

start-gateway.sh — This script is used for booting up the FreeBSD traffic

shaping node. The source code of this script appears in Listing B.1.

start-node.sh — This script is a generic one which is used for starting any

viNEX experiment topology node, see Listing B.2.

create-link.sh — This is for creating links between each pair of nodes as

specified by the experiment. Link properties governing the behaviour of

the link are passed through the arguments to this command as shown in

Listing B.3.

modify-link.sh — This script is used to alter the properties of a links after it

has been created. It allows for modification of the link behaviour without

having to restart the entire experiment. The source code for this script is

shown in Listing B.4.

3.1.2 Experiment Topology Environment

The Experiment Topology Environment forms the actual network topology used

to emulate a network. It consists of the topology nodes and network links as

discussed next.
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3.1.2.1 Topology Nodes

Topology nodes are the network nodes that make up the experiment under inves-

tigation. They are standard Xen PVM nodes. For the purpose of this research, we

have chosen NetBSD [57] as the operating system to be used for topology nodes.

NetBSD [57] was chosen for its ability to run at a very low RAM footprint, thereby

allowing for the creation of a network experiment with a large number of topology

nodes on viNEX. As part of this research, we reduced the size of NetBSD kernel

to about 4 MB compared to the standard GENERIC kernel of 10 MB in size. The

NetBSD kerned was reduced by commenting out various drivers in its kernel com-

pile configuration file. This prevents the drivers from being compiled or loaded

into memory which results into a more scaled down kernel. Each guest domain

has been configured to run at a maximum RAM of 32 MB to allow for scalability.

The other reason NetBSD was chosen is because of its simplicity in configur-

ing various TCP/IP variants. NetBSD supports TCP/Reno, TCP/NewReno and

TCP/Sack. An overview of these protocols is given in Fall and Floyd [25]. Dif-

ferent TCP/IP flavors may simply be enabled through the use of special kernel

settings using the sysctl command. We need the support for multiple TCP/IP

flavours in order to repeat the Van Jacobson experiment (Van Jacobson [81]) on

viNEX for validating our work. A brief description of the Van Jacobson exper-

iment was presented in Section 2.5 and the details of how this experiment was

conducted on viNEX are presented in Chapter 5.

It should be noted that the experiment topology nodes do not access the traffic

shaper directly. The traffic shaper is configured as a transparent node between

any pair of experiment topology nodes. The main purpose of the traffic shaper

node is to regulate and shape traffic as specified by the experiment definition

in Section 3.1.1.1 above. Link parameters such as bandwidth, delays and random

packet losses are passed through the command line tool for creating links. This was

made possible through the use of Linux bridging together with Ebtables (Russell

[72]).

Using Ebtables, each ethernet frame is intercepted and channelled to go via the

traffic shaper node at layer-2. Since routing occurs at layer-2, no IP address is

used for this purpose. A rule is inserted into the BROUTING (Bridge Routing)

table of Ebtables. The rule uses the MAC addresses of the frames to be forwarded
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to the traffic shaper. A sample of Ebtables rules created for the two-node topology

in Figure 4.1 appears in Listing 4.3.

3.1.2.2 Network Links

Network links are used to define the communication between pairs of experiment

topology nodes. All topology links are defined inside the traffic shaper node, which

exists in the control network as shown in Figure 3.1. The traffic shaper node uses

a combination of software bridging together with VLANs (Virtual Local Area

Networks) in order to model the link between two nodes. Dummynet, together

with ipfw (as described in Section 2.2.3) are then used to model the behavior of

the traffic between the created VLANs.

The notion of network links is of fundamental importance to this research work,

and in Chapter 4 we describe network links and connectivity in viNEX in further

detail.

3.2 Software environment

The construction of viNEX was conducted on a stand-alone Linux server. The

hardware and software configurations used to build viNEX are presented in Ta-

ble 3.1. Table 3.2 presents the additional software components and utilities used

as part of viNEX. ViNEX was built using free and open source software (F/OSS).

All the software technologies which are listed in Table 3.1 are based on F/OSS.

Table 3.1: viNEX development environment

Operating System CentOS 5.1 64-bit

Memory 1 GB

CPU Intel Core 2 Duo, 3.0 GHz CPU with vT-x Support

Other Software Xen 3.2, NetBSD 4.0, FreeBSD 7.0

We also made use of the following F/OSS software utilities to develop viNEX as

well as to document this dissertation.
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Table 3.2: Additional software packages used

Name Function

ipfw
Ipfw (Antsilevich et al. [4]) is a program used to control

the IP firewall and Dummynet on FreeBSD.

dummynet
The Dummynet (Rizzo [69]) package was used for link

emulation in viNEX.

ebtables

Ebtables (Russell [72]) is an OSI layer-2 filter module

used to route bridged packets moving between guest do-

mains in viNEX.

LATEX A type setting language used to write this dissertation.

iperf

Iperf (Gates and Warshavsky [28]) is a UDP and IP

traffic generator. We used iperf to measure bandwidth

performance.

tcptrace
The tcptrace (Ostermann [61]) tool was used for

analysing tcpdump files.

tcpdump
We used tcpdump (Van Jacobson and McCanne [82]) to

capture the network packets during experiment runtime.

NS-2
NS-2 (McCanne et al. [52]) was used to repeat the Van

Jacobson [81] experiment.

pdfcrop.pl

Pdfcrop (Oberdiek [58]) was used to crop the white

spaces of the PDF documents to create some of the fig-

ures in this dissertation.

bridgeutils
Bridgeutils (Buytenhek [8]) is a software module which

implements network bridging functions on Linux.

sysctl

Sysctl is a configuration utility which is used by

most Unix-oriented operating systems (such as Linux,

FreeBSD and NetBSD) to configure their kernel set-

tings.

3.3 Summary

In this chapter, we introduced the high-level architecture of the viNEX emulator.

The high-level architecture of viNEX is depicted in Figure 3.1. viNEX is comprised
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of three logical components, namely, the Xen Hypervisor, the Control Network

Environment and the Experiment Topology Environment.

The Control Network Environment includes the Configuration and Management

Scripts as well as the Traffic Shaping Node components. The configuration and

management scripts provide a command-line interface to manage and control net-

work experiments. The function of the traffic shaping node is to emulate links and

to simulate network properties such as packet delays, random losses and bandwidth

limitations.

The Experiment Topology Environment is composed of experiment nodes and em-

ulated network links which interconnect the nodes. Each network link is configured

to pass traffic through the transparent traffic-shaping node.

In Chapter 4 which follows, we discuss network links further using a sample net-

work topology.



Chapter 4

Network Links and Connectivity

The purpose of this chapter is to extend our discussion on viNEX by considering

the components involved in the abstraction of a network link between a pair of

network topology nodes. All network nodes are DomU virtual nodes, running

NetBSD on top of Xen.

This chapter is structured as follows. Section 4.1 introduces the mechanism for

creating network links by presenting a simple two-node topology on viNEX. This

section also examines the low-level network components forming a network link in

viNEX. The viNEX emulator can be used to create the common network topol-

ogy structures as described by Tanenbaum [80]. These are the fully connected,

partially connected, hierarchical, star and ring network topologies. The common

topology structures and the scripts used to create them on viNEX are presented

in Appendix D.

Section 4.2 provides a sequence of steps which take place during the propagation

of network frames between two communicating nodes in the experiment topology.

Section 4.3 describes how the routing information is propagated across all the

experiment network nodes. We initially chose to use the RIP (Malkin [50]) protocol

for route propagation owing to its simplicity and availability. Both RIP version

1 and 2 are supplied with NetBSD by default. We have since migrated to Open

Shortest Path First (OSPF) as the default routing protocol after experiencing the

15-hop limit on RIP. It may also be possible to configure other routing protocols

such as BGP or EGP on viNEX, but this would be a topic of further research. A

summary of this chapter is presented in Section 4.4.

43
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4.1 Network Links

In this section, we introduce the mechanisms implemented to model network link

connectivity in the viNEX emulator environment. Our objective is to highlight

the low-level network components involved in creating a network link on viNEX.

Each network link in viNEX is associated with a set of properties that governs

how traffic is routed between the nodes. Properties of network links are concerned

mainly with traffic shaping, which addresses issues of bandwidth, packet delays

and loss rates. Such properties enable the virtual links to emulate their real world

counterparts.

Figure 4.1 gives an example of a basic two-node network topology. The corre-

sponding viNEX shell script used to create the topology is shown in Listing 4.1.

As depicted in Figure 4.1, all network links in viNEX are defined to pass through

the FreeBSD-based gateway, regardless of being shaped or not. This is to allow

for full control of the network links by the testbed operators during the execution

of an experiment.

Figure 4.1 shows a network topology with only two experiment nodes connected

together by a network link with bandwidth limited to 2 Mbits, a packet delay

of 10ms and a random loss rate of 50%. The corresponding low-level network

components of the topology in Figure 4.1 are shown in Figure 4.2. We discuss

each component of Figure 4.2 in the following sections.

bandwidth: 2 Mbits/s
delay: 10ms

probability loss rate: 50%

Node-1Node-1 Node-2Node-2
Link-1

10.0.1.1 10.0.1.2

196.30.225.1 196.30.225.2

GatewayGateway
Link-1

Figure 4.1: A basic two-node network topology

A viNEX network link between two domains consists of a number of network el-

ements, namely, frontend interfaces, backend interfaces, bridges, VLAN subinter-

faces, Ebtables rules, Ipfw rules and Dummynet pipes. Some of these components

have already been discussed earlier in the introduction to Xen in Section 2.3. The
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1 # Start the Gateway
2 /xen/freebsd/scripts/start -gateway.sh
3 # Start Node -1
4 /xen/netbsd/scripts/start -node.sh Node -1
5 # Start Node -2
6 /xen/netbsd/scripts/start -node.sh Node -2
7 # Create a link between Node -1 and Node -2
8 /xen/netbsd/scripts/create -link.sh --link -id 1 --from

Node -1 --to Node -2 --bw 2Mbit/s --delay 10ms --plr 0.5

Listing 4.1: viNEX configuration script for creating the topology in Figure 4.1

purpose of revisiting these components in this chapter is to put them into the

context of the viNEX design.

In a two-node topology, three nodes are created, namely, the FreeBSD gateway

node (called Gateway), Node-1 (NetBSD), and Node-2 (NetBSD). A sample Xen

configuration for this scenario is given in Listing 4.2, which is displayed by issuing

the xm list command after booting the nodes. Xen automatically assigns an

integer-based node ID to each node. Using the node IDs, we are able to identify

all the network (vif) backend interfaces allocated to each domain inside Dom0.

In this example, the gateway node is assigned id 1, Node-1 is assigned id 2 and

Node-3 was given id 3 (see the ID column in Listing 4.2).

1 [root@viNEX experiment ]# xm list
2

3 Name ID Mem VCPUs State Time(s)
4 Domain -0 0 1425 2 r----- 102.0
5 Gateway 1 512 1 -b---- 31.7
6 Node -1 2 16 1 -b---- 12.4
7 Node -2 3 16 1 -b---- 13.1

Listing 4.2: Xen configuration of Figure 4.1 topology
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bridge12
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[Domain ID = 3]
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Figure 4.2: The viNEX components forming a network link between two
topology nodes

In the following sections we discuss each of the above network elements of viNEX

in further detail.

4.1.1 Frontend interfaces

Frontend interfaces are network interfaces that are located inside each domain.

Their main responsibility is to provide network connectivity to the topology nodes

with other nodes, for example, see the xennet1 and xennet2 interfaces in Fig-

ure 4.2. Since we are using PVM, all domains are running a specialised netfront

driver built by the Xen team for PVM specific connectivity requirements. The

netfront driver communicates directly with the netback driver running inside

Dom0.

All interfaces involved are depicted in Figure 4.2. Each node is allocated five front-

end interfaces and they are configured during the node startup process. Network

interfaces are created by the Xen hypervisor during the DomU boot-up process,
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hence we have to define a fixed set of five interfaces inside the Xen configuration

scripts before the DomU nodes are started. Each of the frontend interfaces is used

to connect to a unique network link, in other words, an experiment node can have

a maximum of 5 network links.

During the development of viNEX, we defined a set of rules which are used to

create and configure experiments. Seven rules were defined and we describe these

below, starting with rules 1 and 2.

The following rule (Rule 1) is used for creating network interfaces belonging to

each topology node in viNEX:

Rule 1: A network node (DomU) in viNEX is always allocated a set of five

frontend network interfaces called xennet0, xennet1, xennet2, xennet3,

and xennet4 (see Figure 4.2). The lowest interface, xennet0 is always re-

served to provide connectivity of a DomU to the control network.

The xennet0 interface is automatically assigned an IP address belonging to the

control network during startup (see xennet0 in Figure 4.2). The IP address allo-

cation rule for the control network is captured below:

Rule 2: Let Z (a positive integer) be the domain identifier allocated to

Node-X by Xen. The xennet0 interface of Node-X is allocated an IP address

to the value of 196.30.225.Z.

Looking at the sample topology in Figure 4.1, Node-1 and Node-2 are al-

located IP addresses 196.30.225.1 and 196.30.225.2 respectively. Fig-

ure 4.2 captures these allocations.

Note that the above control IP address scheme 196.30.225.X/24 was picked to

ensure that the control and experiment networks are completely isolated from each

other. The 196.30.225 address prefix can be set to any valid IP address prefix

as long as the chosen prefix does not intersect with the experiment network range

which is set to 10.0.X.Y/24 by default.

The control network is required for enabling the link configuration scripts to do

SSH login into the guest domain for network configuration. The remaining four

interfaces (xennet1, xennet2, xennet3 and xennet4) in Figure 4.2 are used to
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create experiment topology links and they are allocated in any order as required

by the topology creation process.

After the execution of the create-link command in line 8 of Listing 4.1, front-

end interfaces are configured and brought up in both Node-1 and Node-2. For

this scenario interface xennet1 is used for both Node-1 and Node-2, because it

happened to be available. Note that interfaces directly connected on opposite

sides do not need to have matching names, since interfaces are picked by the

configuration script based on their availability. The script checks for the next

interface that is available. An interface is available if it has not been enabled.

Every run of the topology creation process will yield the same results provided

the commands of the topology creation script are executed in the same order as

before.

The experiment network is using the IP address range of 10.0.X.Y/24 by de-

fault. This address is completely configurable and can be changed inside the

create-link.sh script. The rule used for allocating IP addresses to link inter-

faces is defined by:

Rule 3: Suppose Node-X was assigned an integer-based domain identifier Z.

Each frontend interface located inside Node-X and directly connected to the

topology network via network link Link-Y is then configured with IP address

10.0.Y.Z/24. Network links in viNEX are named using a pattern Link-Y

where variable Y is a positive integer which is allocated as an identifier to

each link.

An example of this rule is shown in Figure 4.2 where xennet1 frontend

interfaces of both Node-1 and Node-2 are allocated IP addresses 10.0.1.1

and 10.0.1.2 respectively. Node-1 and Node-2 are connected via Link-1

as depicted in Figure 4.1.

In the event that a network researcher requires a different network configuration

scheme, it can be achieved by manually using the SSH remote connectivity tool to

directly connect the topology nodes. Once they connect with SSH, connectivity

can be configured using the ifconfig and route network configuration utilities.

Details of how to use the ifconfig and route utilities can be obtained in the

NetBSD manual pages at [57].
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4.1.2 Backend Interfaces

Backend interfaces are located inside Dom0 and they connect directly to their re-

spective frontend interfaces located inside the topology domains. Considering

Figure 4.2, the xennet1 frontend interfaces of Node-1 and Node-2 are connected

to backend interfaces vif2.1 and vif3.1 respectively. The following rule governs

the allocation of backend interfaces and their mapping onto frontend interfaces for

each topology node (DomU).

Rule 4: Let xennet0, xennet1, xennet2, xennet3 and xennet4 be the

frontend interfaces of Node-X as defined by Rule 1 above, and let integer Z

be the domain identifier of Node-X. The backend interfaces vifZ.0, vifZ.1,

vifZ.2, vifZ.3, vifZ.4 and vifZ.4 are allocated by the Xen hypervisor

inside Dom0 and paired with their corresponding frontend interfaces.

The vif1.0, vif1.1, vif1.2, vif1.3 and vif1.4 interfaces are examples

of backend interfaces allocated to Node-1 as depicted in Figure 4.2.

The following rule is used for connecting frontend and backend interfaces in viNEX:

Rule 5: Suppose xennet0, xennet1, xennet2, xennet3 and xennet4 are the

frontend interfaces of Node-X with domain identifier Z and vifZ.0, vifZ.1,

vifZ.2, vifZ.3 and vifZ.4 be the backend interfaces allocated to Node-X.

The frontend interfaces xennet0, xennet1, xennet2, xennet3 and xennet4

are paired with backend interfaces vifZ.0, vifZ.1, vifZ.2, vifZ.3 and

vifZ.4 respectively.

An example of this pairing is shown in Figure 4.2; the frontend interface

xennet0 of Node-1 is paired with backend interface vif1.0, xennet1 is

paired with vif1.1, xennet2 is paired with vif1.2, xennet3 is paired with

vif1.3 and xennet4 is paired with vif1.2.

The frontend interfaces xn0 and xn1 of the gateway are connected directly to the

backend interfaces vif1.0 and vif1.1 respectively, as shown in Figure 4.2.

4.1.3 Bridges

A total of three bridges are created for each link. These are the two Linux bridges

inside Dom0 and one FreeBSD bridge inside the gateway node. Both Linux and
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FreeBSD bridges are software implementations of the original hardware-based

bridges. Further details on Linux bridge module can be obtained at [49]. In-

formation on the FreeBSD bridge is available in FreeBSD [27].

The purpose of the two Linux bridges is to connect the traffic from the topology

nodes directly to the gateway node for traffic shaping in a protocol independent

manner. Packets are forwarded based on their Ethernet addresses (MAC) and

not IP addresses. The backend interfaces of Node-1 and Node-2 are joined with

the VLAN (Virtual Local Area Network) subinterfaces of the gateway node to

allow for traffic routing at layer-2 of the OSI model.

The single FreeBSD bridge that is created inside the gateway node, is used to

maintain traffic at layer-2. As a result, Dummynet is also configured to operate

at layer-2.

The following rule is used for creating network bridges belonging to a network link

in viNEX.

Rule 6: Suppose Link-X is used to connect Node-Y and Node-Z in viNEX,

and three software-based bridges are created as follows: The two Linux

bridges inside Dom0, namely, bridgeX0 and bridgeX1 together with a sin-

gle FreeBSD bridge inside the gateway node called bridgeX, where X is an

integer, is used to identify a network link in viNEX.

The first bridge (bridgeX0) is used to carry network traffic travelling between

Node-Y and the Gateway. Similarly, bridgeX1 is used to connect Node-Z

with the Gateway node. The FreeBSD bridge (bridgeX) inside the gateway

node is used to link traffic moving between Node-Y and Node-X in both

directions.

Figure 4.2 presents an example of this rule. Three bridges, namely,

bridge10, bridge11 (both inside Dom0) and bridge1 (inside node Gateway)

were created for Link-1.

4.1.4 VLAN Interfaces

The gateway node (see Figure 4.2) has two fixed interfaces (vif1.0 and vif1.1)

connecting it to Dom0. Since all links have to go through gateway node for traffic

shaping, we had to derive a mechanism that will allow the sharing of these two
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fixed interfaces for all the link connections. One such mechanism was to use VLAN

tagging. For each Link-X in the topology, a corresponding VLAN with VLAN ID

= X is created to isolate the link’s traffic. For the example in Figure 4.1, a VLAN

with VLAN ID = 1 is defined for Link-1 (see Figure 4.2).

Two sets of VLAN subinterfaces are created as follows: A set of two VLAN subin-

terfaces (vif3.1.1 and vif3.2.1) is created inside Dom0 and another set of two

VLAN interfaces (vlan11 and vlan12) is created inside the gateway node. For

each Link-X, a VLAN X is created inside Dom0 on the gateway interface. The

purpose of the VLAN is to keep traffic for Link-X separate in its own broadcast

domain so that traffic-shaping rules specific to this link can be applied, once it

enters the gateway node. For Link-1, VLAN interfaces vif3.1.1 and vif3.2.1

were created and enslaved to the corresponding link bridges using the brctl com-

mand of the bridgeutils package. Details about these packages appear in [49].

The purpose of the VLAN interfaces inside the gateway node (vlan11 and vlan12)

is, firstly to enable the filtering of traffic by ipfw for Dummynet at layer-2 without

having to use IP addresses. Secondly, these VLAN interfaces are used to establish

the direction of the traffic flow. Traffic flowing from Node-1 towards Node-2 (see

Figure 4.2) enters the gateway through vlan11. Similarly, traffic flowing from

Node-2 to Node-1 enters the gateway via vlan12. Dummynet modules and ipfw

use the source and target interfaces to select the rule to be applied.

The following rule describes the creation of VLAN interfaces belonging to a viNEX

network:

Rule 7: Suppose we are given the gateway node with domain identifier W.

Assume further that the software bridges have already been created as per

Rule 6 above. Let Node-Y and Node-Z be two arbitrary nodes to be con-

nected by Link-X in a viNEX topology. A total of four VLAN subinterfaces

are created as follows:

The names of the VLAN subinterfaces are vifW.1.X, vifW.2.X, vlanXY

and vlanXZ. The VLAN subinterfaces vifW.1.X and vifW.2.X are both

located inside Dom0 while vlanXY and vlanXZ are located inside the gateway

node.

VLAN subinterfaces vifW.1.X and vifW.2.X are enslaved to bridgeX0 and

bridgeX1 respectively. Inside the gateway node, vlanXY and vlanXZ are

enslaved to the fixed frontend interfaces xn1 and xn2 respectively.
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4.1.5 Ebtables rules

Ebtables (Russell [72]) is a Linux packet filter that enables us to intercept bridged

network traffic at layer-2 and can perform actions such as routing and MAC address

translation. We make use of Ebtables to intercept any bridged traffic submitted to

Dom0 via a backend interface of a DomU node. The PREROUTING (Russell [72])

chain of the NAT table of Ebtables is used to perform MAC address translation of

the destination using the dnat instruction. The destination MAC is changed to the

MAC address of the directly-connected destination as defined by the topology of

the experiment. Using the experiment in Figure 4.1, two Ebtables rules are created

for each link inside the NAT PREROUTING table using the link configuration

script. A fragment of the code is given in Listing 4.3.

1 [root@viNEX experiment ]# ebtables -t nat -L
2 Bridge table: nat
3

4 Bridge chain: PREROUTING , entries: 2, policy: ACCEPT
5 -i vif2.1 -j dnat --to -dst 0:16:3e:34:28:80 --dnat -target

ACCEPT
6 -i vif3.1 -j dnat --to -dst 0:16:3e:16:3f:66 --dnat -target

ACCEPT
7 ...

Listing 4.3: Ebtables rules for the topology of Figure 4.1

The two rules created are shown in lines 5 and 6 of Listing 4.3. The rule

in line 5 translates the MAC address of any frame that arrived through back-

end interface vif2.1 to the MAC address of the frontend interface of Node-2

(00:16:3e:34:28:80). This enables the frame to be passed to Node-2 directly af-

ter being traffic shaped by the Gateway. Similarly, the rule in line 6 translates the

MAC address of any frame arriving directly from Node-2 through interface vif3.1

to the MAC address of the frontend interface of Node-1 (00:16:3e:16:3f:66).

The MAC addresses are automatically configured by the NetBSD operating sys-

tem during the boot-up phase. Ebtables extracts the MAC interfaces from the

Ethernet frames which contain the IP network packets.

The above mechanism ensures that network traffic is routed at layer-2 without

being passed to any higher OSI layer. Therefore, network traffic flow is maintained

at layer-2 between any two directly-connected network nodes, implying that no IP

routing is performed. IP routing is performed only inside the topology nodes, using
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the routes that are discovered through the configured routing protocol (OSPF is

configured by default). The VLAN and bridge devices that are located inside the

FreeBSD gateway node also assist in maintaining network traffic at layer-2. The

Dummynet and ipfw subsystems inside the gateway are also configured to operate

on packets at layer-2. Network packet filtering is done by using the interface names

and not the IP addresses.

The bridging mechanism described above ensures that all frames are channelled to

pass through the transparent FreeBSD Gateway irrespective of any MAC address

translation. The VLAN mechanism also ensures that the traffic remains within

the link domain without interfering or broadcasting to incorrect destinations.

4.1.6 Ipfw Rules

Ipfw is a notational shorthand for IP firewall. It is a FreeBSD packet filtering

mechanism and a traffic accounting module (FreeBSD [27]). Packet filtering is

specified using a set of rules that are created by using the ipfw command line utility

on FreeBSD. Listing 4.4 presents the ipfw rules for the topology in Figure 4.1.

Dummynet pipes are also created using the ipfw command line.

1 Gateway# ipfw show
2 00800 27 1260 pipe 10 ip4 from any to any via vlan11

layer2
3 00900 27 1260 pipe 11 ip4 from any to any via vlan12

layer2
4 65535 19 4943 allow ip from any to any

Listing 4.4: IPFW rules for the topology of Figure 4.1

4.1.7 Dummynet pipes

Like ipfw, Dummynet (Rizzo [70]) is also a module used for network simulation.

It simulates the presence of a real network by providing mechanisms for defining

network link properties such as finite queues, bandwidth limitations, network de-

lays and loss rates. A Dummynet pipe configuration for the topology in Figure 4.1

is shown in Listing 4.6. This Dummynet pipe was created after the execution of

the command at line 8 of Listing 4.5.
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1 # Start the Gateway
2 /xen/freebsd/scripts/start -gateway.sh
3 # Start Node -1
4 /xen/netbsd/scripts/start -node.sh Node -1
5 # Start Node -2
6 /xen/netbsd/scripts/start -node.sh Node -2
7 # Create a link between Node -1 and Node -2
8 /xen/netbsd/scripts/create -link.sh --link -id 1 --from

Node -1 --to Node -2 --bw 2Mbit/s --delay 10ms --plr 0.5

Listing 4.5: viNEX configuration script for creating the topology in Figure 4.1

1 Gateway# ipfw pipe show
2 00010: 2.000 Mbit/s 50 ms 50 sl.plr 0.500000 1 queues

(1 buckets) droptail
3

4 mask: proto: 0x00 , flow_id: 0x00000000 , ::/0 x0000
-> ::/0 x0000

5 BKT ___Prot___ _flow -id_ ___Source
IPv6/port_______________Dest. IPv6/port_ Tot_pkt/bytes
Pkt/Byte Drp

6 0 udp 1610612736 fe80 ::216:3 eff:fe1f:f3ea /5353
ff02::fb/5353 7 1963 0 0 1

7 00011: 2.000 Mbit/s 50 ms 50 sl.plr 0.500000 1 queues
(1 buckets) droptail

8

9 mask: proto: 0x00 , flow_id: 0x00000000 , ::/0 x0000
-> ::/0 x0000

10 BKT ___Prot___ _flow -id_ ___Source
IPv6/port_______________Dest. IPv6/port_ Tot_pkt/bytes
Pkt/Byte Drp

11 0 udp 1610612736 fe80 ::216:3 eff:fe3e:db80 /5353
ff02::fb/5353 7 1500 0 0 4

Listing 4.6: Dummynet pipe for Link 1 in Figure 4.1

Line 2 of Listing 4.6 shows the link properties that were passed to the link creation

script (line 8 of Listing 4.5). Starting from the left, 00010 is the unique id for the

pipe, 2.000 Mbit/s is the link bandwidth, 50 sl is the queue size and 0.50000 is the

packet loss rate. The link has 1 queue which contains 1 bucket for storing network

packets. The queue uses the tail drop queuing technique as described in (Comer

[12]). The tail drop technique simply drops any arriving packet in the event of the

queue being full.

All network links on viNEX are full duplex links resulting in two Dummynet pipes

being created by the link configuration script. The pipes are used to carry traffic
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moving in two directions across the link. Considering the output of the command

ipfw pipe show at line 1 of Listing 4.6, we note that two Dummynet pipes,

namely, 00010 and 00011 were created for the link (Link-1) between Node-1 and

Node-2. Pipe 00010 is responsible for carrying traffic from the source Node-1 to

the target node Node-2. Pipe 00011 is used for carrying traffic moving in the

opposite direction from Node-2 to Node-1.

Each Dummynet pipe is associated with its own queue. The queue is used for

carrying any network packets that are in transit. The default queue size is 50 slots

but this may be specified manually during link configuration, using the qsize

parameter. The above queues were configured with the default size of 50 slots.

Each queue slot is about 1500 bytes, which is large enough to fit a standard

Ethernet frame.

The following section considers the details of the path followed by network packets

during their transmission between the source and the target nodes in a viNEX

network experiment topology.

4.2 Network traffic flow

The previous sections focused mainly on the description of network elements used

for modelling network links. In this section, we provide an overview of the steps

involved in propagating network traffic between two nodes in an experiment topol-

ogy. We also identify and describe the role played by each network element in the

propagation of network traffic within viNEX. All network links are configured to

pass through the gateway node irrespective of their traffic being shaped or not.

A shaped link refers to a network link with some bandwidth restriction (such as

delay or packet loss rate) applied to the traffic flowing through the link.

A total of sixteen steps are performed in viNEX to transmit traffic across a network

link. To discuss each step, we shall reuse the same two-node topology as depicted

in Figure 4.1. For ease of reference we repeat this configuration as Figure 4.3 in

this section.
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bandwidth: 2 Mbits/s
delay: 10ms

probability loss rate: 50%

Node-1Node-1 Node-2Node-2
Link-1

10.0.1.1 10.0.1.2

196.30.225.1 196.30.225.2

GatewayGateway
Link-1

Figure 4.3: A two-node network topology with a shaped network link (re-
peated from Figure 4.1)

The steps alluded to above are labelled 1 to 16 in Figure 4.4. Traffic is generated

from Node-1 flowing across the traffic-shaping gateway node to the destination

node, Node-2. Both nodes are using the TCP/IP protocol for communication and

therefore, Node-2 generates a TCP acknowledgment (ACK) for every segment

received.

bridge12

Gateway
[Domain ID = 3]
Traffic Shaping

(FreeBSD)

Node-1 [Domain ID = 1]
(NetBSD)

[Domain ID = 2]Node-2
(NetBSD)

Domain-0 Network Configuration
196.30.225.253

bridge11 bridge12
xennet1 vif1.1 vif2.1

vif3.2.1

bridge12bridge1
VLAN_ID=1 vlan12vlan11

xennet3

xennet0

xennet1

xennet0

xennet2

xennet3

xennet4xennet4

10.0.1.1
00:16:3E:16:3F:66

10.0.1.2
00:16:3E:34:28:80

Control Network196.30.225.1 196.30.225.2

196.30.225.3

IPFW
and

DUMMYNET 
PIPE

vif1.0 vif2.0

xennet2 vif1.2

vif1.4

vif1.3

vif2.2

vif2.3

vif2.4

xn0

vif3.0

2

1

4 5

6

7 10

8

9

11

1213

1516

vif3.2

vif3.1.1

14 3

vif3.1

xn1 xn2

VLAN_ID=1 VLAN_ID=1

Figure 4.4: viNEX network traffic flow across the shaped Link-1 between
Node-1 and Node-2 of Figure 4.3

Next we describe each of steps 1 to 16 depicted in Figure 4.4.
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1. Node-1 initiates a transmission by injecting a sequence of TCP/IP packets

that form a segment into its frontend interface, xennet1. Network frames

are transmitted directly into Dom0 through the backend interface vif1.1.

Since the vif1.1 interface is a member of bridge11, the Ethernet frames

are passed into the bridge first instead of Dom0. Recall that the transmission

of network packets occurs at layer-2 until they reach the next hop where IP

routing is performed.

2. At bridge11, the Ebtables PREROUTING chain is invoked resulting in the

execution of the rule at line 5 of Listing 4.3. The rule changes the MAC

address of the frame to the value 00:16:3E:34:28:80. This is the MAC

address of the xennet1 frontend interface located inside Node-2 as shown

in Figure 4.4. The bridge forwarding operation is then performed on the

frame. As a result, the network frame is forwarded to the VLAN subinterface

vif3.1.1 which is linked directly to the backend interface vif3.1. At this

stage, VLAN tagging takes place.

The frame is tagged with VLAN 1 and passed to the backend interface

vif3.1. The packet travels in a VLAN tagged mode until it reaches

vif3.2.1 when VLAN tagging is removed. VLANs play a significant role in

viNEX, since they prevent packets belonging to different network links to in-

teract. Once a packet is VLAN tagged, it will remain within that VLAN and

will not be routed through a different link. The backend interface vif3.1 is

in turn connected to the gateway.

3. Interface vif3.1 passes the network frame to the gateway via the frontend

interface xn1 for traffic-shaping functions to be performed.

4. Interface xn1 passes the frame to bridge1 through the VLAN interface

vlan11. The IPFW rule at line 2 of Listing 4.4 is applied to the network

frames at layer-2 of interface xn1. The rule stipulates that the frame must be

passed to Dummynet pipe 10. Dummynet is then invoked and the network

properties defined on pipe 10 are applied to the frame before it is forwarded.

The Dummynet properties of pipe 10 are shown at lines 2 to 6 of Listing 4.6.

The properties of 2 Mbit/s bandwidth, 10 milliseconds delay and a loss rate

of 0.5 are applied to the frame by Dummynet.
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5. After the above network properties have been simulated on the frame, it is

forwarded by Dummynet through the frontend interface xn2 via the vlan12

interface belonging to bridge1.

6. Interface xn2 passes the frame to its backend interface vif3.2, which in turn

sends the frame to the bridge through its vif3.2.1 interface.

7. The frame is forwarded by bridge12 to the backend interface vif2.1.

8. Interface vif2.1 is connected to the frontend interface xennet1 inside the

destination, Node-1. The frame is passed to Node-2 for processing. Since

the destination MAC address of the frame was set to the value of the in-

terface xennet1’s MAC address, interface xennet1 performs a check on the

destination MAC of the frame and determines that it matches its address.

Therefore, the frame is destined for the Node-2 host. The frame is then

passed to the higher network layers where TCP/IP handles the packet and

generates an acknowledgment. If the IP address of the packet did not match

IP address of Node-2, the packet will be forwarded to the next host according

to the routing table of Node-2.

9. The above acknowledgment packet is mapped onto an Ethernet frame and

injected into the network by Node-2 through the frontend interface xennet1.

The frame is passed to the backend interface vif2.1, a member of bridge12.

10. Ebtables is again invoked to translate the MAC address of the returning

frame to the MAC address of interface xennet1 located inside Node-1. The

MAC address of xennet1 of Node-1 is 00:16:3E:16:3F:66, as per Fig-

ure 4.4. Since the input interface is vif2.1, the Ebtables rule at line 5 of

Listing 4.3 is matched and executed to perform the MAC address translation.

The translated frame is then passed through the VLAN subinterface

vif3.2.1. At this stage, the VLAN tagging process occurs again. The

frame is tagged with VLAN 1 and passed to the backend interface vif3.2.

The packet travels in a VLAN tagged mode until it reaches vif3.1.1 where

the VLAN tagging is removed.

11. The above translated Ethernet frame is passed to the gateway for traffic

shaping by vif3.2 through the frontend interface xn2.

12. All frames received by the gateway node are first passed to the ipfw firewall.

Since the frame was received via interface xn2, the frame is passed to bridge1
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via the VLAN interface vlan12. The ipfw rule at line 3 of Listing 4.4

is matched. This rule makes reference to the Dummynet pipe 11. The

bandwidth limitation of 2 Mbit/s, the delay of 10 milliseconds and a loss

rate of 0.5 are applied to the frame.

13. Dummynet passes the traffic-shaped frame to the VLAN interface vlan11 of

bridge1.

14. Interface vlan11 forwards the frame to the frontend interface xn1 which

in turn sends the frame to the backend interface vif3.1 inside Dom0. The

frame is then passed to bridge11 by vif3.1 through its VLAN subinterface

vif3.1.1.

15. VLAN tagging is removed and the frame is forwarded to the backend inter-

face vif1.1 by bridge11.

16. The acknowledgment Ethernet frame finally reaches Node-1 through xennet1.

This step concludes the sequence of steps involved in the transmission be-

tween two topology nodes through a shaped network link.

In Section 4.1.5, we mentioned that the delay node is transparent from both the

sending and receiving nodes. In other words, the sending and receiving nodes are

not aware that their traffic is passing through an intermediate Gateway. Node-1

and Node-2 in Figure 4.3 communicate as if they were directly connected.

To demonstrate the above, we issued a traceroute command from Node-1 to

Node-2 and we obtained the results shown in Listing 4.7. Listing 4.7 shows all the

network hops encountered along the network route from Node-1 to Node-2. Note

that the IP address of the gateway is not included in the output of the traceroute

command.

1 Node -1# traceroute 10.0.1.2
2 traceroute to 10.0.1.2 (10.0.1.2) , 64 hops max , 40 byte

packets
3 1 10.0.1.2 (10.0.1.2) 30.466 ms

Listing 4.7: Output of traceroute command inside Node-1 of Figure 4.3

Network links in viNEX provide us with the capability of simulating the behaviour

of real networks. Simulation is provided by the Dummynet and ipfw modules of

FreeBSD loaded inside the gateway node. The following section considers how net-

work topology routes are configured and maintained throughout the experiment.
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4.3 Routing and Route Propagation

Routing table maintenance and route propagation is done automatically through

some of the standard Internet routing protocols. We have successfully de-

ployed and ran standard routing protocols such as Routing Information Protocol

(RIP) (Malkin [50]) and OSPF (Moy [55]) on viNEX.

RIP was enabled and configured on all experiment topology nodes during the node

boot-up process. In NetBSD, RIP is implemented by the routed daemon process.

The routed daemon comes with the standard NetBSD OS by default. It is enabled

by using the routed=YES setting inside the /etc/rc.conf file. When a new link is

configured during a topology creation step, RIP automatically broadcasts the IP

addresses of the directly-connected neighbours using the UDP protocol. It is also

possible to manually configure the routes by executing commands at each node.

RIP was used during the initial development phases of viNEX until we experienced

some of its known limitations. The number of hops in RIP are limited to 15 as

described in RFC2453 [50]. Networks beyond the 15 hops limit are considered

unreachable. Clearly this creates a problem when creating a topology with more

than 15 hops in viNEX.

Recall that in viNEX each host is assigned an IP address of the form 10.0.X.Y/24

where X is an integer identifying the link and Y is a unique domain identifier that

was generated by Xen for the host. In viNEX, we make use of the 255.255.255.0

network mask. This implies that each link is considered to be a unique subnetwork

identified by the first three octets (24 bits) of the IP address. Consequently, RIP

will count each network link as a separate network. As stated above we can

reach only the first 15 hops in the network. Any link beyond 15 is considered

unreachable. This limitation resulted in a decision to switch to the more scalable

OSPF (Moy [55]) routing protocol.

In OSPF, the number of hops between nodes is unlimited. OSPF is based on the

shortest path first (SPF) algorithm (Weiss [83]). The OSPF protocol splits the

networks into hierarchical areas. These areas are joined together to form one large

autonomous system. In viNEX, we have created one area, namely, Area 0 which

is known as the backbone area.
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NetBSD OS currently does not come with a standard implementation of the OSPF

protocol. Consequently, we were challenged to find a light-weight and robust dae-

mon process implementing OSPF on NetBSD. We identified the ospfd daemon

from GNU Zebra (Ishiguro [42]) as a possible solution. The ospfd daemon comes

as part of a collection of routing daemons developed by GNU Zebra. GNU Ze-

bra contains a set of daemons for implementing routing protocols such as RIP,

BGP and OSPF. The GNU Zebra project is part of the GNU Projects and it is

distributed as free software under the GNU General Public License.

4.4 Summary

In this chapter, we presented the low level composition of network links in viNEX.

Network links are composed mainly in an aggregation of four main types of network

elements. These are frontend interfaces, backend interfaces, bridges and VLAN

devices. Network links were described in Section 4.1.

A viNEX network link is formed by a collection of thirteen devices as depicted

in Figure 4.2:

• Four frontend interfaces, namely, the two xennet1 interfaces inside Node-1

and Node-2 plus two interfaces xn1 and xn2 inside the gateway node.

• Four backend interfaces. These are vif1.1, vif2.1, vif3.1 and vif3.2.

• Three software bridges, which are bridge11 and bridge12 both located

inside Dom0, and bridge1 located inside the gateway node.

• Two VLAN interfaces (vlan11 and vlan12) which are members of bridge1

inside the gateway node.

Both ipfw and Dummynet are used to simulate network link conditions inside

the FreeBSD Gateway node. All network links are configured to pass through the

transparent gateway node irrespective of being traffic shaped.

In Section 4.2, we presented the steps involved in a flow of network traffic between

a pair of topology nodes. A total of sixteen steps are involved in the transmission

of network frames between two directly-connected topology nodes.
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Finally, we looked at how routes are propagated across a network. Two options

exist for viNEX. Routes can be configured manually using standard networking

commands or by configuring a network routing protocol such as RIP or OSPF.

Initially, RIP was used as the default routing protocol on viNEX, but we have since

migrated to the use of OSPF as the default. This was aimed at overcoming some

of the limitations experienced with RIP. OSPF is only enabled on the NetBSD

nodes that form the experiment topology network. Routing protocols are not

installed on the Gateway and Dom0 nodes, since they do not directly form part of

the experiment topology.

This chapter concludes our technical description of viNEX. The next chapter fo-

cuses on the experiments performed on viNEX as well as a discussion of the results.



Chapter 5

Evaluation of viNEX

In the previous chapter we discussed the low level components which are used in

constructing a viNEX network link. We also extended our discussion in Chapter 4

to observe the steps involved in the propagation of network traffic across a network

link.

In this chapter, we consider a number of experiments conducted on viNEX and

provide an analysis of the results for each experiment. The objective is to evalu-

ate viNEX. The experiments were aimed at addressing three key issues, namely,

verifying the functionality of, analysing packet throughput and determining the

scalability of viNEX.

The rest of this chapter is structured as follows. Section 5.1 provides an assessment

of the functionality of the viNEX emulator, while Section 5.2 focuses on measuring

the amount of memory used to model a network link in viNEX. An enhancement

to iperf to report one-way-delays is discussed in Section 5.3. The details of the

iperf enhancement appear in Appendix G. The measurement of a one-way-delay

time is later used in the calculation of the bandwidth delay product in Section 5.4.

We also conduct an investigation to assess the scalability and limitations of viNEX

in Section 5.4. Finally, we conclude this chapter with a summary in Section 5.5.

5.1 Verifying viNEX

The aim of this section is to conduct an assessment to determine if the operation

of viNEX is comparable to that of a real network. We conduct our comparison

63
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by repeating the Van Jacobson experiment on viNEX as described in the original

paper (Van Jacobson [81]), which is a study of congestion avoidance and control.

A summary of the Van Jacobson experiment is presented in Section 2.5 of this

dissertation. In the context of this research, the term “Van Jacobson experiment”

will be used to refer to the experiment conducted in the study of congestion control

and avoidance by Van Jacobson. We shall reuse the same experiment topology as

depicted in Figure 7 of the Van Jacobson paper [81].

The Van Jacobson experiment was conducted using both the original 4.3BSD TCP

stack and the newer TCP stack enhanced with congestion control and avoidance

algorithms. Due to the lack of a readily available 4.3BSD stack for the NetBSD

operating system, we make use of the TCP/Reno variant of the TCP protocol (Fall

and Floyd [25]). Our results are compared with those obtained by Van Jacobson

using the new TCP with congestion control and avoidance.

In summary, the Van Jacobson experiment was aimed at deriving a set of algo-

rithms to handle TCP/IP congestion avoidance and control. It was critical for

the investigation to be done following the worldwide series of Internet congestion

collapses which started in October 1986.

The Van Jacobson paper [81] describes all five algorithms which were developed

after the congestion collapses were experienced. The algorithms include round-

trip-time (RTT) variance estimation, exponential retransmit timer back-off, slow-

start, a more aggressive receiver acknowledgment policy and dynamic window

sizing during congestion.

We also performed the Van Jacobson experiment using the NS-2 simulator. This

provided us with an additional mechanism to verify the viNEX results against.

The NS-2 simulator provided a platform to validate the effects of changing the

experiment parameters (such as bandwidth) on viNEX. The details of the NS-2

experiment and results appear in Appendix E of this dissertation.

It should be noted that our viNEX emulator is in a prototype phase, and the aim

of conducting this comparisons is to assess the operational state of viNEX.
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5.1.1 Experiment setup and procedure

The viNEX network topology used for this experiment is depicted in Figure 5.1.

This topology resembles the topology used in the original Van Jacobson experi-

ment [81].
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Figure 5.1: The Van Jacobson Experiment topology used for the viNEX repeat
experiment (adopted from Van Jacobson [81])

The Van Jacobson experiment was conducted on the two LANs between the LBL

(Lawrence Berkeley National Laboratory) and the UCB (University of California,

Berkeley) campuses (see Appendix E). In viNEX, there is no notion of LANs,

every network link is a point-to-point link. For example, looking at Figure 5.1, if

node Polo needs to communicate with node Vs which is located on the same LAN

at LBL, the communication traffic will always be routed via the csam node. In a

LAN environment, it would have been possible for the two nodes to communicate

directly without having to send their packets to an intermediate node (csam). This

shortcoming can be addressed by creating a direct network link between Polo and

Vs. A LAN topology can be modeled by creating links between all nodes to enable

direct communication between them.

The experiment topology in Figure 5.1 was created using the shell script in List-

ing 5.1.
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1 # Start Gateway node

2 /vinex/scripts/start -gateway.sh

3

4 # Create nodes at LBL

5 /vinex/scripts/start -node.sh Polo

6 /vinex/scripts/start -node.sh Hot

7 /vinex/scripts/start -node.sh Surf

8 /vinex/scripts/start -node.sh Vs

9 /vinex/scripts/start -node.sh csam

10

11 # Create nodes at UCB

12 /vinex/scripts/start -node.sh cartan

13 /vinex/scripts/start -node.sh Renoir

14 /vinex/scripts/start -node.sh VanGogh

15 /vinex/scripts/start -node.sh Monet

16 /vinex/scripts/start -node.sh Okeeffe

17

18 # Create node links at LBL

19 /vinex/scripts/create -link.sh --link -id 1 --from Polo --to csam

20 /vinex/scripts/create -link.sh --link -id 2 --from Hot --to csam

21 /vinex/scripts/create -link.sh --link -id 3 --from Surf --to csam

22 /vinex/scripts/create -link.sh --link -id 4 --from Vs --to csam

23

24 # Create the Microwave link

25 /vinex/scripts/create -link.sh --link -id 5 --from csam --to cartan --bw 230 Kbit/s

--plr 0.01 --delay 100

26

27 # Create node links at UCB

28 /vinex/scripts/create -link.sh --link -id 6 --from Renoir --to cartan

29 /vinex/scripts/create -link.sh --link -id 7 --from VanGogh --to cartan

30 /vinex/scripts/create -link.sh --link -id 8 --from Monet --to cartan

31 /vinex/scripts/create -link.sh --link -id 9 --from Okeeffe --to cartan

Listing 5.1: Shell script for creating the Van Jacobson Experiment topology
of Figure 5.1

Next we discuss the content of Listing 5.1:

1. Line 2 of the script creates and starts a single instance of a FreeBSD gateway

node used for modelling the network links.

2. The four nodes (Polo, Hot, Surf and Vs) at LBL are created and started by

the instructions at lines 5 to 9.

3. The UCB nodes (Renoir, VanGogh, Monet and Okeeffe) are created by lines

12 to 16.

4. The point-to-point links at LBL are created by lines 19 to 22. The four nodes

are configured to pass their network traffic to csam (refer to Figure 5.1).

5. Line 25 issues the command to create a microwave link between the csam and

cartan gateway routers. The link is configured with a bandwidth limitation

of 230Kbit/s, a packet delay of 100ms and a random packet loss of 1%. The

microwave link queue size is set to the default value of 50 slots.
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6. Network point-to-point links at UCB are created by lines 28 to 31. The links

at UCB are all configured to pass through the cartan router node.

The above steps complete the creation of the network topology in Figure 5.1.

The viNEX topology-creation script in Listing 5.1 is executed through the Linux

command line in Dom0. The network nodes and links are created and remain idle,

waiting for network traffic to be generated for the experiment. All NetBSD nodes

were configured to use the TCP Reno stack and congestion algorithms through the

sysctl command. Details of the sysctl command-line utility may be referenced

in NetBSD [57].

Inside each of the sending hosts at LBL, a 1 MB file was created to be sent

to the UCB hosts. The hosts were paired to form a total of four simultaneous

conversations. The pairing is indicated by the dotted lines between the nodes in

Figure 5.1.

The default MTU (Maximum Transmission Unit) of the network interface is 1500

bytes. The frontend interfaces of all the experiment nodes were configured to use

a MTU of 552 bytes for the purpose of the experiment. The code of this script

is given in Listing F.1 of Appendix F. The purpose of this configuration was to

ensure that each sending host sends 2048 packets. The size of each packet was

configured to 512 bytes. Note that the remaining 40 bytes (552 - 512 bytes) are

used for the standard IP packet header.

To generate the network traffic, a command-line script was written to perform

simultaneous FTP conversations between the experiment nodes. Algorithm 5.1

captures a pseudocode description of this process. The script is executed from the

Dom0 command shell. For each of the nodes at LBL, the scripts connect with

SSH; it then issues a command to send a 1 MB file (with filename “1.MB”) using

a standard FTP, to the paired host at UCB (see line 6 of Algorithm 5.1). One of

the requirements of the Van Jacobson experiment is to start each conversation 3

seconds apart (line 7). The script achieves this by sleeping for 3 seconds before

issuing the next FTP command for the next host to start sending information.

The experiment terminates once all the nodes have completed sending their 1 MB

files. Next, we present the results we obtained by repeating the Van Jacobson

experiment on viNEX.
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Algorithm 5.1 Initiate the four simultaneous FTP conversations on viNEX

1: begin
2: for all nodei in {Polo, Hot, Surf, Vs} do
3: destinationNodei ← pairedNodeOf(nodei)
4: sshConnectTo(destinationNodei)
5: filename← “1.MB”
6: ftpTransmitF ileInBackgroundMode(filename, destinationNodei)
7: sleep(3)
8: end for
9: end

5.1.2 Results

To analyse the behaviour of the sending hosts, we used the tcpdump utility at the

Dom0 server to capture network packets passing through the backend interfaces of

each LBL host. The results of tcpdump were captured into a trace file. The trace

file contains the recorded IP packets which are used for further analysis. In this

manner, we were able to examine the sequence numbers of the packets sent from

source nodes. From the trace file that was generated by tcpdump, the time and

sequence numbers were extracted and plotted against each other. The resulting

graph is depicted in Figure 5.2.
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Figure 5.2: Analysis of multiple, simultaneous TCP/Reno senders on viNEX
with a bottleneck link running at 230 Kbit/s

The graph in Figure 5.2 shows a consistent behavior of the sending TCP stacks.

All four conversations show a steady incline with a few dips along the graph. All

sending nodes seem to be receiving a fair amount of bandwidth with no single

node appearing to monopolise the link.

A total of 7975 packets were sent for all four conversations. The resulting tcp-

dump showed that 164 out of 7975 packets were retransmitted, implying that

approximately 2% of all packets were retransmitted. The retransmissions were

due to timeouts as a results of the congested link between the csam and cartan

routers. The number of dropped packets was obtained from the Dummynet pipe

used for modelling the link between csam and cartan routers through the ipfw

pipe list command. Van Jacobson recorded a retransmission rate of 1% (Van

Jacobson [81]).

We measured the throughput of each conversation on viNEX. To measure through-

put, we used tcpdump to capture the packets that were successfully received by

the nodes at UCB. This was achieved by configuring tcpdump to listen on the



5.1. Verifying viNEX 70

backend interfaces of the receiving nodes at UCB. The throughput was calculated

as the total size of packets received per second. The resulting graph is shown in

Figure 5.3.
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Figure 5.3: The throughput achieved by the four TCP/Reno conversations on
viNEX as depicted in Figure 5.1

The dotted curve in Figure 5.3 shows the moving average throughput observed

from the beginning of the transmission up to any give point in the graph. The

graph shows the sum of all throughputs of the four simultaneous conversations.

The maximum of the average throughput was 24.5 KBytes/s. The original Van

Jacobson experiment recorded a throughput of 25 KBytes/s (Van Jacobson [81]).

The results obtained on viNEX above compare well with those obtained by Van

Jacobson. The throughput measured on viNEX above is close to the throughput

measured by Van Jacobson. This leads us to an important observation.

• Observation #1: The results obtained by conducting the Van Jacobson

experiment on viNEX are comparable to the results obtained by Van Ja-

cobson in his original experiment. It is plausible therefore that our viNEX

emulator can be used for conducting network research experiments.
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The following section describes the relationship between the kernel network mem-

ory and Dummynet queue size on the FreeBSD gateway node.

5.2 Measuring Dummynet kernel memory

In FreeBSD, the memory allocated to store network traffic is managed by the

kernel IPC (InterProcess Communication) subsystem. The basic unit of memory

management is known as the mbuf. An mbuf is 256 Bytes in size [27]. The size of

an Ethernet packet is 1500 Bytes and therefore it does not fit into one mbuf. As

a result, the mbuf cluster structure is used. A single mbuf cluster is 2 KBytes

in size. For Ethernet packets, the remaining space (548 bytes) is not used.

The above mbuf and mbuf cluster sizes are used as default configurations for a

FreeBSD OS running on a physical machine. In the Xen virtual environment, the

memory settings have been adjusted to optimise performance. The FreeBSD OS

for Xen uses 4 KBytes as the size for an mbuf cluster which is equal to the size

of one memory page. In this configuration, an mbuf is still 256 bytes in size. The

size of an mbuf cluster was made equal to the size of a memory page (4KB) to

enhance the performance of network communications between domains.

Naturally, the memory capacity of viNEX is dependent on the above mbuf

cluster size. The capacity (C ) is calculated as the product of bandwidth and

propagation delay. Given a bandwidth of B Kbytes/s and a propagation delay of

d seconds, the capacity (C ) is calculated by (5.1) below.

C = B × d (5.1)

In FreeBSD, memory is allocated in block sizes of 4 KBytes instead of the standard

2 KBytes. This adds a significant overhead to the memory measurements as we

show next.

Every mbuf cluster (4 KB) has one mbuf (256 bytes) allocated with it. If the

total number of packets in a Dummynet queue buffer is 2315 (say), the total
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amount of memory allocated by FreeBSD to store these packets is:

Memory = (2315× 4) + (2315× (256/1024))

= 9260 + 578.75

= 9838.75 KBytes

We return to these calculations in Section 5.4.3.

For Dummynet, the network packets for the queues are stored using the mbuf

and mbuf cluster architectures. Dummynet does not make physical copies of

the network packets into its queues but only keeps track of the pointers to the

mbuf and mbuf structures. This improves the performance and efficiency of the

Dummynet operation. The performance is improved on as a result of avoiding the

memory copy and move instructions for each packet received. The mbuf and mbuf

clusters are allocated once when the arriving packets are copied from their input

network interfaces into the kernel memory space.

In addition to the memory used for storing network packets a special mbuf tag

(m tag) is created and a pointer to the m tag is inserted into the mbuf for each

packet processed by Dummynet. Mbuf tags are used to carry the meta-data related

to a packet, e.g. for Dummynet the mbuf tags are used to carry the state of

the packet. The state is used to check for any special treatment of Dummynet

packets. Mbuf tags are allocated separately from the mbuf and mbuf cluster

memory allocations. The size of an mbuf tag structure varies and the maximum

size set to 256 bytes.

Both mbuf and mbuf clusters are allocated using the uma(9) kernel zone allo-

cator function in C. The mbuf tags are allocated dynamic kernel memory space

using the malloc(9) function. This distinction is important for any accounting

function of memory usage. In order to account for mbuf and mbuf cluster mem-

ory usage in FreeBSD, the vmstat -z command is used. The amount of mbuf tag

memory allocated can be returned by executing the vmstat -m command.

The memory allocated to store an mbuf tag is relatively small compared to

the UMA (Universal Memory Allocator) memory used for storing both mbuf and

mbuf clusters. Our analysis will therefore focus on the measurement of the mbuf

and mbuf cluster memory usage in the UMA zone.



5.3. Measuring one-way-delay 73

5.3 Measuring one-way-delay

Network experiments for TCP protocols normally make use of the results of the

ping command to estimate network packet delays. Such delays are normally re-

ferred to as as round trip time (RTT) (Choi and Yoo [11]). To determine a one-way

network delay, one could use the value of RTT/2. However, this may not be a

realistic measurement since it does not take into consideration the direction in

which network congestion could occur. For example, a large value of RTT does

not mean congestion is equal in both directions. Congestion may be asymmetric

and any calculation of a one-way-delay has to take this into account.

We use the UDP (User Datagram Protocol) for measuring the scalability and

performance of network links under viNEX. The iperf (Gates and Warshavsky

[28]) tool is used for generating UDP traffic on the client side and also acts as

a receiver on the server side. Iperf calculates and reports on bandwidth and

network jitter, but it does not report on any one-way-delays. Various analytical

models have been constructed in an attempt to estimate end-to-end delays. One

such model is given in (Jin-Hee Choi [45]).

For the purpose of conducting experiments in viNEX, we extended the iperf tool

by modifying its source code to include the one-way transmission delay of packets

in the report. The list of source code changes done to iperf appears in Appendix G.

The end-to-end delay can also be viewed as the amount of time a packet spends

in transit while moving from the source to the destination.

One of the main challenges of calculating an end-to-end delay, stems from a re-

quirement that the clocks of both the sender and receiver are always synchronised.

One possible solution to this challenge could be to make use of the Network Time

Protocol (NTP) [51]. This would require NTP to be configured on each topol-

ogy node. Fortunately for Xen, the clocks of the guest domains are synchronised

with the Dom0 clock by default, during startup. Synchronisation of clocks can be

enabled or disabled using the sysctl command.

The logic of the enhancements done to iperf for reporting on one-way-delays is

presented in Algorithm 5.2. The essence of Algorithm 5.2 is: If iperf is running

in UDP mode, the client embeds the sending time (sendTime) to every datagram

just before it is transmitted. Our modifications were done to the iperf server

(receiver). At the receiver end we modified the program to determine the time a



5.4. Scalability of viNEX 74

packet was sent and to capture the arrival time of the UDP datagram. The arrival

time is taken at line 4 and the time the packet was sent is extracted at line 7.

The transit time for each packet is calculated by subtracting the send time from

the packet arrival time (line 8). The transit times of all successfully received

datagrams are summed and divided by the number of datagrams to obtain the

moving mean transit time. The calculation of this mean is performed by the

calculateMovingMeanTransitTime(...) function at line 10. This answer is

then used in the iperf periodic reports (line 11) as well as the final transmission

report on the server side.

Algorithm 5.2 One-way-delay enhancement to the iperf tool for one datagram

1: {Modified version of the iperf receiver}
2: begin
3: if newUDPDatagramArrived() then
4: receiveT ime← getT imestamp()
5: datagram← receiveDatagram()
6: if isEnabled(UDP) then
7: sendingT ime← getSendingT ime(datagram)
8: transitT ime← (receiveT ime− sendingT ime)
9: meanTransitT ime←

10: calculateMovingMeanTransitT ime(transitT ime)
11: printPeriodicReport(meanTransitT ime)
12: end if
13: end if
14: end

Note that we have an implicit loop in line 10 where we determine the moving

average for datagrams received up to that point.

The next section presents the experiment conducted to assess the scalability of

viNEX.

5.4 Scalability of viNEX

In viNEX, all links are configured to pass through the FreeBSD gateway node

as described in Chapter 4. It is therefore imperative to analyse the amount of

computing resources required for creating a link across the FreeBSD gateway.

The main objective of this investigation is to measure the amount of physical

memory required to model a network link on the FreeBSD gateway. The memory
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required is comprised mainly of the Dummynet memory used for storing network

packets in the queues associated with link pipes. Although it is important to also

measure the amount of CPU time required by the FreeBSD to run the network

link, such study is a topic for future research.

In order to measure memory requirements, we had to generate a large number of

network packets to keep the Dummynet queues constantly occupied with network

traffic. Consequently, the UDP protocol was chosen for its ability to inject network

packets constantly without having to wait for acknowledgments. UDP client

applications (such as iperf (Gates and Warshavsky [28])) are capable of generating

packets at a constant rate. For the purpose of this experiment, the iperf UDP

client was configured to generate packets at a constant rate of 5 MBytes/s.

TCP was not an option in our work owing to its self-clocking feature. In the event

of a Dummynet link becoming congested, a TCP sender will adjust its sending

rate by using appropriate congestion control mechanisms, which could result in a

significant reduction of the number of network packets sent.

5.4.1 Experiment setup

To measure memory utilisation, we conducted an experiment on viNEX using a

topology with three network nodes as depicted in Figure 5.4. The three nodes are

connected by two links to form a chain topology. The bandwidth for each link

(Link-1 and Link-2) was set to 768 Kbit/s.

Node-1Node-1 Node-2Node-2Link-1

bandwidth: 768Kbit/s
delay: 10s

10.0.1.1 10.0.1.2

196.30.225.1 196.30.225.2
Node-3Node-3Link-2

10.0.1.2

196.30.225.2

10.0.1.2

196.30.225.2

bandwidth: 768Kbit/s
delay: 10s

Figure 5.4: The chain network topology used to measure memory utilisation
of the FreeBSD gateway node

Each link in Figure 5.4 was configured with a significantly high delay of 10 seconds.

The purpose of using such a large delay was to allow for a high build up of memory

allocations on the FreeBSD gateway, i.e. to have sufficient amounts of data for

our observations. The network MTU was set to 1500 bytes which is equal to the
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standard Ethernet frame size (IEEE [39]). The queue size for each link was also

configured to a value of 96 KBytes to match the configured bandwidth of 768

Kbits/s.

5.4.2 Experiment procedure

To conduct our experiment, we used the iperf (Gates and Warshavsky [28])

traffic-generating tool to generate UDP (User Datagram Protocol) packets. UDP

was chosen for its ability to send packets at a much higher rate when compared

to TCP (He and Chan [34]).

We configured the iperf client to send datagrams at a rate of 5 MBytes/s for 120

seconds to ensure a sufficient amount of traffic being generated for the FreeBSD

gateway to handle. On the server side, iperf was used as a measurement tool

by generating reports on the performance statistics of the UDP protocol. Our

main focus was on the throughput and the one-way-delay outputs. Iperf was

configured to report on jitter , throughput and one-way-delay every second. The

iperf server automatically generates a summary report at the end of the 120s

transmission time.

On the FreeBSD gateway node, the analysis was focused on measuring the amount

of kernel network memory allocated to manage the packets in the Dummynet

queues. Network memory was measured by using the netstat -m command. The

amount of memory reported on by vmstat -m equates to the number of mbuf

clusters and mbufs allocated in the UMA zone. To view the number of mbufs and

mbuf clusters, the vmstat -z command was used.

As mentioned in Section 5.2 above, for the purpose of this investigation, the

amount of UMA memory allocated to the mbuf and mbuf clusters for storing

network packets will be measured. The memory allocated for storing mbuf tags

storage can be obtained by using the vmstat -m command.

5.4.3 Discussion of results

The results of this experiment are shown in Figure 5.5. The following five elements

were measured during the experiment:
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1. Kernel memory allocated to store the transit packets at any point during

the transmission (Figure 5.5(a)).

2. Total size in number of packets stored in the four Dummynet queues used

for modelling the two links of the experiment topology in Figure 5.4. Fig-

ure 5.5(b) depicts this information.

3. The size of Dummynet queues in byte units, shown in Figure 5.5(c).

4. Throughput achieved across the connection as measured at the receiver node

(Figure 5.5(d)).

5. One-way-delays of packets measured at the receiver (Figure 5.5(e)).

Figure 5.5(a) shows a graph of the kernel memory usage plotted over time. Recall

that the experiment was executed for 120 seconds. The graph shows the total

amount of kernel memory allocated to store network packets being transmitted

over Link-1 and Link-2 of Figure 5.4.

Considering Figure 5.5(a), we observe the initial, steep incline for the first 20

seconds of the transmission. During the first 10 seconds, the UDP packets are

simply building up in the queue for Link-1. After the first 10 seconds, the packets

begin to emerge from Link-1 and start filling up the queue for Link-2. The

system is keeping more and more packets in transit during this stage. After 20

seconds, packets start emerging from the queue of Link-2 and move towards their

destination (Node-3). The gradient of the curve declines as a result of packets

moving out of the queues for the remainder of the experiment. The sending UDP

maintains its constant sending rate and thereby keep the queues of Link-1 and

Link-2 at relative capacity for the 120-seconds duration of the experiment.

Next, we turn our attention to memory allocation. Rizzo and Carbone [71] claim

that, in the worst case scenario, the amount of memory used for storing network

packets belonging to the Dummynet queues and pipes, is proportional to the sum

of the capacity of each pipe. Recall that the capacity of a single pipe is given

by equation (5.1) above. Consequently, for a number of viNEX pipes we propose

formula (5.2) to be an upper bound on the total amount of memory used for all

pipes. In particular, if we have a total of n viNEX pipes and Bi and di are the

bandwidth and delay configured for pipei respectively, the total amount of memory

(M ) allocated for packet storage in viNEX is given by:
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Figure 5.5: The memory allocated, queue size (in packets), queue size (in
Kbytes), throughput and one-way-delay measurements

M ≤
n∑

i=1

Bi × di (5.2)
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To validate formula (5.2), we calculate the expected amount of memory usage for

a number of points on the graph in Figure 5.5(a) and compare each of these with

the corresponding value measured by during the experiment. For example, if we

select a point during the first 20 seconds, say t = 20, we arrive at the following:

According to the graph in Figure 5.5(e) the value of the one-way-delay at t = 20

is 21 241 milliseconds (or 21.241 seconds). For a mathematical approximation

of the corresponding value, recall that in Section 5.2 we identified a single mbuf

cluster to be of size 4 KBytes and an mbuf to be of size 256 bytes. Both these

structures are allocated to store a single network packet. Both Link-1 and Link-2

are configured with a bandwidth of 768 Kbit/s = 96 KBytes/s each. Therefore,

according to formula (5.2), the total amount of memory used to store all the

packets at t = 20 is:

M = (4 + (256/1024)) ∗ 96 ∗ 21.241

= (4.25 ∗ 96) ∗ 21.241

= 8666.3 KBytes

According to Figure 5.5(a), at t = 20s the actual amount of memory used was

measured to be 6261 KBytes which is less than the calculated value of 8666.3

KBytes obtained by formula (5.2).

The above procedure has been applied to further values of t in Figure 5.5(a) and

the results are shown in Table 5.1.

Table 5.1: A comparison of calculated memory values to the measured values

Time

t(s)

Formula (5.2)

(KBytes)

Figure 5.5(a)

(KBytes)

20 8666.3 6261

40 8608.8 5753

60 8573.3 4579

80 8556.1 5353

100 8543.5 4837

120 8542.7 5282
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From the above analysis, we observe that the values calculated by the formula (5.2)

are always larger than the values measured in Figure 5.5(a). Therefore, the results

in Table 5.1 support the conclusion that formula (5.2) can be applied in calculat-

ing a reasonable determinant of an upper-bound on the total amount of memory

required in a worst case scenario to emulate network links.

• Observation 2: Given an experiment topology together with bandwidth

and packet delay requirements, formula (5.2) gives a reasonable determinant

of an upper bound on the the total amount of memory required for the worst

case scenario to host network links on viNEX.

The average throughput measured from the receiver was 735 KBit/s, which is

about 4% less than the configured bandwidth of 768 Kbit/s. There could be

a number of factors contributing to this degradation. One possibility could be

linked to the granularity of the Xen CPU scheduler for allocating CPU time to

the domains. Every node is allocated a small chunk of CPU time to execute and

once its quantum expires, the domain is paused and the next domain is allocated

CPU time. The study on the impact of CPU scheduling to such environments is

beyond the scope of this research and is a topic for future work.

5.5 Summary

In this chapter we furnished details of two network experiments we conducted

on viNEX. The first experiment was aimed at verifying the operation of viNEX.

This was done in Section 5.1. The Van Jacobson experiment was conducted on

viNEX and the results were compared to the original experiment as described in

the paper [81]. Although we only repeated the experiment using the newer version

of TCP (TCP/Reno), our observations were quite similar to what was observed by

Van Jacobson [81]. This result led us to Observation #1, namely, that our viNEX

emulator can be used for conducting network research experiments.

In Section 5.4, we conducted an experiment to assess any scalability constraints

on viNEX. Since all the links are configured to pass through the FreeBSD gateway

node, our focus was to identify any computing resource limitations that may be

imposed on that node. The primary constraint was identified to be the amount of
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memory required to store packets belonging to the Dummynet queues and pipes for

modelling the links. This result led us to Observation #2, namely, formula (5.2)

presents an upper bound on the total amount of memory required to host network

links on viNEX.

For each network packet, the kernel allocates a total amount of memory to the

value of 4.25KB which is comprised of a 4KB mbuf cluster and a single mbuf of

size 256 Bytes. In a worst case scenario, the amount of memory required to store

network packets for a link is proportional to the capacity of the link given by

equation 5.1. The UDP was sending at a much higher rate compared to the link

bandwidths, resulting in many packets being queued for a longer periods in the

Dummynet queues. The one-way-delays were increased as a result. We enhanced

the iperf tool to calculate these delays. In turn these are used in the calculation

of link capacities as reported on in Section 5.3.

The next chapter presents the conclusions to our work and recommendations for

future research in this area.



Chapter 6

Conclusions and Future Work

This chapter presents some conclusions that may be drawn from our work and

considers possible future work in this area. Section 6.1.1 revisits our research

hypothesis and analyses to what extent it has been validated. Our conclusions

and summary of results are discussed in Section 6.1.2. The advantages and dis-

advantages are discussed in Section 6.2 and Section 6.3 respectively. Finally, in

Section 6.4, we provide some proposals for future work.

6.1 Contribution of this work

6.1.1 Hypothesis

In Chapter 1 we proposed the following hypothesis:

A general purpose virtualisation platform (such as Xen) can be used to build a

network emulator (viNEX) which satisfies the following conditions:

1. The emulator can be used for conducting network research experiments on

networks which fall within limited performance boundaries.

2. Such an emulator (viNEX) can be hosted on a single server.
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6.1.2 Justification of the hypothesis

In this dissertation we presented the design and implementation details of a vir-

tual network emulator (viNEX) based on the Xen virtualisation platform. The

approach used for designing viNEX was based on Emulab (White et al. [85]). Two

separate networks were constructed, namely, the control network (described in

Section 3.1.1) and the experiment topology network (discussed in Section 3.1.2).

The control network was used for the configuration and management of the exper-

iment nodes. No experiment traffic was allowed to flow across the control network.

The experiment topology network is dedicated for network traffic related to the

experiment under investigation.

Two experiments were conducted on viNEX, namely, the Van Jacobson experiment

and the scalability experiment, both reported on in Chapter 5.

The purpose of conducting the Van Jacobson experiment was to verify the func-

tionality of viNEX. Four nodes at the LBL laboratory were connected to four

corresponding nodes at the UCB laboratory. A microwave link was used to con-

nect the two networks by linking the gateway routers. In viNEX, the microwave

link was emulated by a 230 Kbit/s connection between the gateway routers. In

order to emulate the behaviour of a microwave link, a probability loss rate of 1%

was configured on the link. We then initiated four simultaneous TCP streams

from each node by sending a 1MB file, using FTP, from LBL to UCB.

Owing to a lack of availability of the original 4.3 BSD TCP stack, we conducted

the Van Jacobson experiment using the TCP Reno which includes the congestion

control algorithms. The entire transmission took 160 seconds to execute on viNEX.

The observation made by Van Jacobson [81] showed a total transmission time of

180 seconds for the whole experiment. We also measured the throughput of each

connection at the receiving nodes, using tcpdump.

Following on the outcome of the Van Jacobson experiment on viNEX (in Sec-

tion 5.1) we made the following observation:

• Observation 1: The results obtained from the Van Jacobson experiment

conducted on viNEX are comparable to the results obtained by Van Jacobson

in his original experiment. We therefore conclude that the viNEX emulator

can be used for conducting network research experiments.
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From the above observation, we infer that viNEX is operational and therefore can

be used as a network emulator for research purposes. Since viNEX was built using

a traditional virtualisation platform (Xen) we conclude that the first part of our

hypothesis, as stated in Section 6.1.1, has been proven.

The second experiment (Section 5.4) aimed to identify a limit on the total amount

of kernel network memory required on the FreeBSD gateway node to host all

viNEX network links. Each network link on viNEX requires some amount of

memory to store the network packets that are in transit at any point during

network transmissions. The FreeBSD gateway node should have sufficient memory

to carry packets from all links that form the experiment topology. Insufficient

memory on the gateway node may lead to a performance bottleneck. The outcome

of the experiment indicated that formula (5.2) represents an upper bound on the

amount of memory required to store packets in the worst case scenario.

During the above scalability experiment, we made the following observation:

• Observation 2: Given an experiment topology together with bandwidth

and packet delay requirements, formula (5.2) gives a reasonable determinant

of an upper bound on the the total amount of memory required for the worst

case scenario to host network links on viNEX.

For the ease of reference, we repeat formula 5.2 below:

M ≤
n∑

i=1

Bi × di (6.1)

Observation 2 implies that we can determine an upper bound on the amount

of memory required to run the FreeBSD gateway node. Additional memory is

required to host the NetBSD nodes that are used to form the experiment topology.

As mentioned in Section 3.1.2.1, each topology node is configured to use 32 MB

of RAM from Dom0. Therefore, given the number of topology nodes required for

an experiment as well as the bandwidth and delay properties for each network

link, it is possible to estimate the total amount of memory required on a single

server to host the experiment on viNEX. From Observation 2 above, we therefore

conclude that viNEX can be hosted on a single server provided it has enough

memory resources to run the FreeBSD and NetBSD nodes, thereby validating the

second part of our hypothesis in Section 6.1.1 above.
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6.2 Advantages

In this section we discuss some of the advantages of viNEX.

6.2.1 Free and open source software (F/OSS)

ViNEX was developed using F/OSS [60]. Some of the major software components

used include Xen, FreeBSD, and NetBSD. We have also used some open source tools

such as iperf, tcptrace, zebra ospfd and pdfcrop. During the development of

viNEX, we realised some important advantages of F/OSS. These are:

• A researcher has direct access to the primary software authors and experts

in the field.

• The source code can be modified to meet our specific requirements. The Xen

kernel was recompiled with the vmxenabled compiler option set to yes to

enable the boot-up of the NetBSD HVM guest kernel. Through direct access

to its source code, the iperf tool was enhanced to allow for the measurement

of one-way-delays of UDP packets (see Section 5.3).

• One may scale to arbitrary instances without additional licensing constraints.

We can configure an arbitrary number of NetBSD instances and enable all

of them without further licensing restrictions.

• A developer can learn from the readily available source code. Very lit-

tle is documented on the internal operations of Dummynet. Dummynet

technical documentation is included as part of the C source files, namely,

ip dummynet.c and ip dummynet.h.

• One may package and distribute enhancements without additional licensing

costs. Part of our future work is to package viNEX onto a CD or upload it

to SourceForge [77] to allow for a free distribution to network researchers.

SourceForge is a location from which one may download F/OSS software.

6.2.2 Standard network protocols on viNEX

We deployed standard network protocols on viNEX without any modifications

to their source code. For example, we were able to deploy the standard RIP
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and OSPF routing protocols. The transmission of network traffic between any pair

of viNEX nodes takes place at layer-2. The ARP (Address Resolution Protocol)

is enabled to allow for IP to MAC address resolution.

6.2.3 Managing and configuring viNEX experiments

A set of scripts was developed to simplify the management and configuration

of experiments on viNEX. Experiments can be created and configured by using

a set of four scripts: start-gateway.sh, start-node.sh, create-link.sh and

modify-link.sh. The source code of each of these scripts is listed in Appendix B.

6.2.4 viNEX as a research tool

We also propose viNEX as a tool that can be used in academia for teaching com-

puter networks. ViNEX provides an environment in which students can explore

network protocols and make observations that may facilitate their learning pro-

cess. For example, a trace of network packets in a TCP connection can be captured

using tcpdump into a text file. The text file may subsequently be used to analyse

various properties of the TCP packets.

6.2.5 Availability of viNEX

ViNEX is available to users. Unlike Emulab which is available only through an

Internet connection, viNEX can be deployed on a local computer and does not

require an Internet connection in order to conduct experiments on it.

6.3 Disadvantages

During the development of viNEX, we identified a number of disadvantages to be

addressed as future work.
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6.3.1 Inefficient memory allocation

Since every network link is configured to pass through the FreeBSD gateway node,

it was imperative to analyse the amount of memory required by this node. Analysis

of the memory requirements was done in Section 5.4. For each network packet

a total of 4352 bytes is allocated for storage. This is made up of a single 4

KByte mbuf cluster and a 256 byte mbuf. The mbuf cluster was adjusted to 4

KBytes in an attempt to improve on network performance in viNEX. Performance

is improved as a result of the reduced number of calls to the Xen Hypervisor.

ViNEX is configured to use an MTU of 1500 (the standard size of an Ethernet

frame). The maximum size of an IP packet is therefore 1500 bytes. This implies

that only 1500 bytes of the 4352 bytes are used and the remaining 2852 is not

used. Therefore about 65% of the allocated memory is unused.

The amount of unused memory can however be lowered. This may be achieved by

lowering the globally configured size of an mbuf cluster at the FreeBSD operating

system level. The size of an mbuf cluster is controlled by the kernel option. The

mbuf cluster size has to be a power of two, and is computed using 2MCLSHIFT. The

lowest value of MCLSHIFT is 11 which sets the size of mbuf cluster to 211 = 2048

= 2 KBytes. About 548 bytes (26%) will remain unused which is a significant

improvement, compared to the above 65%. MCLSHIFT is a kernel option which can

be configured before the kernel is compiled.

Alternatively, to prevent the above inefficiency of 65% of allocated but unused

memory, the network MTU can be increased to 4096 bytes so that jumbo network

frames are used. This is however a non-standard Ethernet frame size. As a result,

viNEX nodes will not be able to communicate with external Ethernet networks

that use a standard MTU of 1500 bytes. It is possible that this problem may be

solved as part of future Xen releases.

6.3.2 Tracing of dropped packets on viNEX

There are two locations where network packets may be dropped during the execu-

tion of an experiment, namely, at the Dummynet pipes that are hosted inside the

FreeBSD gateway node and also at the NetBSD experiment nodes. It is imperative

for researchers to have a view of the number of packets dropped at both locations.
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Currently we do not have a tool to automatically trace the number of dropped

packets in viNEX. Development of such a tool is a topic for future work. It is,

however, possible to trace dropped packets on viNEX using a manual procedure as

follows. The number of packets dropped on the Dummynet pipes can be obtained

by using the ipfw pipe show command which generates a report on the number

of packets dropped in each pipe queue. Network packets dropped on the NetBSD

nodes can be obtained by using the tcpdump command inside the domain and

capturing the output to a text file.

6.4 Future work

We may improve on viNEX in a number of ways, and in this section we elaborate

on some of these.

6.4.1 Extending NS-2

The experiment configuration and control scripts were written using the bourne

shell scripting language on the Linux platform. The viNEX scripts are presented

in Appendix B. These scripts are not flexible and may be hard for a researcher to

use. To configure complex experiments, a sound knowledge of the shell scripting

language is required. For example, to create an FTP agent for generating exper-

imental source traffic, users have to write their source code in a shell scripting

language. The code has to make use of the SSH tool to open a connection to the

source node and then execute the FTP command.

The NS-2 notation is well known among network researchers and it is used for

configuring experiments on the Emulab testbed (Anderson et al. [3]). We aim

to use the NS-2 Tcl-based format in future to describe the experiment network

topologies in viNEX. This will replace the need to use the shell scripts. Researchers

may benefit from the simpler and more flexible NS-2 notation. We identified six

components of NS-2 to be enhanced for integration with viNEX.

• Tcl scripts:

The basic Tcl commands of NS-2 could be extended to invoke the viNEX
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shell scripts. These include basic commands such as node and link to create

network topologies.

• Agents:

The collection of classes used for configuring the transport layer (4) of

networking in NS-2 is called Agents. In viNEX, we could extend the

C classes of NS-2 to include a viNEX TCP Agent. The viNEX agent

could then be used to configure the network on the NetBSD experiment

nodes. For example, to use TCP/NewReno the viNEX agent can simply set

the sysctl configuration for selecting congestion control to newreno, i.e.,

net.inet.tcp.congctl.selected=newreno.

• Sinks:

Sinks are the consumers of network traffic (refer to the NS-2 manual [52]).

They are responsible for receiving network traffic and to implement protocol-

specific behaviour. For example, the NS-2 Agent/TCPSink class is used to

simulate the TCP protocol receiving functions such as the control of network

traffic by generating acknowledgments. For viNEX, this function can be used

to configure the specific sysctl settings on the receiving side, e.g. the net-

work receiving buffers. Examples of these are net.inet.tcp.recvspace

for TCP and net.inet.udp.recvspace for UDP.

• Application Layer:

Application classes are used to generate experiment network traffic in NS-

2. To model the application layer, a new viNEX application class could be

added to the existing class collection of NS-2. For example, to use FTP for

generating source traffic, the application class for viNEX can simply output

an FTP command into a script which can then be executed by the sending

node.

• Links:

Network links on viNEX are full duplex. In NS-2, duplex links are configured

by invoking the duplex-link function and passing the necessary settings for

configuring the link properties such as the delay, bandwidth, loss rate and
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the queuing algorithm. The duplex-link function can be extended to out-

put the Linux shell command which in turn invokes the viNEX link creation

script (create-link.sh) and pass the necessary information along.

• Discrete event model:

NS-2 uses a discrete event model for generating network events at a specific

time. This is done by using the at(...) method. The at(...) method

can be integrated with viNEX in such a way that it can generate Linux

shell commands which, in turn can issue an SSH command to execute the

required event on the topology node. For example, if Node-1 is required

to begin an FTP transmission at a 3 seconds apart simulation time. The

at(...) command can issue an SSH command via the Linux operating sys-

tem to Node-1 to begin an FTP at a 3 seconds apart simulation time to

perform the necessary function.

In general, the integration of viNEX with NS-2 calls for an extension to the stan-

dard NS-2 parser to output a set of shell scripts to construct and execute a viNEX

network experiment. The NS-2 run command could be used to issue the Linux

operating system command to execute a dynamically constructed viNEX script.

6.4.2 Simplifying network packet tracing

Currently, there is no generic way of tracing network packets belonging to a stream

in viNEX. To trace network packets, we use the tcpdump utility to capture packets

and write them to a text file. This a manual and tedious procedure. Currently,

therefore researchers are required to manually execute the tcpdump utility or to

write custom shell scripts for automating this function.

As part of the above extension to integrate NS-2 with viNEX, a more generic

packet tracing mechanism is required. Such a mechanism could be integrated to

the standard NS-2 packet tracing module. An advantage would be that the NAM

(Network ANimator) component of NS-2 could be used to provide a graphical

display of network packet flows.
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6.4.3 Dummynet on Linux

Dummynet and IPFW have recently been ported to Linux and the source code,

modules and binaries are available at the Dummynet site (Rizzo [69]). It is there-

fore possible to run Dummynet on a Linux host. Consequently, future releases

of viNEX could use the Linux Dom0 for traffic shaping and thereby render the

FreeBSD gateway node redundant.

The VLAN devices and network bridges located inside the FreeBSD gateway node

add some overhead to the transmission of packets between experiment nodes. The

removal of the gateway node will therefore alleviate these overheads, leading to an

improved network performance and throughput in viNEX.
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Appendix A

A Virtual Integrated Network

Emulator on XEN (viNEX)

This appendix contains the peer-reviewed paper on viNEX. The paper was pub-

lished in the proceedings of the 2nd SIMUTOOLS Conference held in Rome (Italy)

from 2 - 6 March 2009.
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ABSTRACT
The recent progress on virtualization technologies has made
it possible to deploy multiple hosts instances with operating
systems running real network protocol stacks on one single
server. The objective of this paper is to explore whether it is
feasible to use such environments for network emulation and
simulation. Some significant amount of research is taking
place in this area, this includes Emulab [6] virtualization,
and IMUNES [12] system. Both Emulab and IMUNES are
based on FreeBSD Jails.

Very little is known about using traditional virtualization
platforms (such as Xen and VMware) for virtual emulators.
As part of our research, we will attempt to develop a vir-
tual emulator (viNEX1) based on Xen. Having identified
the limits and weaknesses of this approach, we also propose
some areas where viNEX can be useful.

Categories and Subject Descriptors
D.4.8 [Performance]: Measurements; I.6.7 [Simulation
Support Systems]: Environments

General Terms
Network Simulation and Emulation

Keywords
Computer networks, Simulators, Emulators

∗Abraham Mukwevho is a M.S student and primary author
of this paper at the University of South Africa.
†Configuration and Administration scripts men-
tioned in this paper can be accessed online at -
http://sites.google.com/site/mukosi/
1from now onwards, viNEX will be used as a short for
Virtual Integrated Network Emulator based on XEN

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools March 02-06 2009 Rome, Italy
Copyright 2009 ICST, 978-963-9799-45-5.

1. INTRODUCTION
Network research experiments have traditionally been con-

ducted in an emulated or simulated environment. Emulators
(such as Emulab [6]) are normally based on physically de-
ployed networks which are associated with high procurement
and maintenance costs, complex configurations and infras-
tructure (servers, routers and gateways). On the other hand,
network simulators such as NS-2 [15] provide a self-contained
and simple environment that can be hosted on a single host.
Simulators provide a synthetic environment which is only
an approximation of the real world and therefore the results
might not be a true reflection of real world. Furthermore,
network protocol components developed in a simulated envi-
ronment require a significant amount of code refactoring in
order to migrate them into the real world. This is mainly be-
cause simulated environments do not run real network pro-
tocol stacks, instead they use software modules that mimic
real world protocol stacks. It is also possible to combine both
emulation and simulation in one environment, for example;
in Emulab simulation can be provided by instantiating NS-2
traffic generators or sinks on one of the topology nodes. To
overcome limitations associated with simulators, emulators
provide an alternative approach whereby network protocols
can be developed while interacting with real protocol stacks,
and hence eliminating the need to migrate protocol code to
the real world. Network emulators have traditionally been
based on physical network deployments (a good example is
the original Emulab). The recent advances on the develop-
ment of virtualization technologies has now made it possi-
ble to deploy multiple hosts on one single environment and
interconnect them to provide a complete network environ-
ment. These virtual hosts run real network protocol stacks
and therefore provide an emulated environment that can be
used for network research experiments.

Our fundamental goal is to explore the possibility of us-
ing a traditional virtualization platform like Xen to build a
stand-alone network emulator hosted on one single server or
PC. Part of the rationale for this research is to be able to
create a freely distributable experimental environment for
use, for example, by distance education students who don’t
have computer laboratory access. We are also aware that
the software bridges will be a performance hit. What we
don’t yet know is how slow will be too slow. Furthermore,
the viNEX environment is never going to be useful for high
performance fast network emulation, but it might still be
useful for other educational scenarios.

Our emulator (viNEX) was built using free and open source
software. The use of open source software in networking re-
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search continues a very long tradition, this includes NS-2,
FreeBSD Jails, and Emulab. We selected Xen as the vir-
tualization platform because at the time the research was
initiated Xen was the most viable open source platform you
could run ”any OS on”. Despite our focus on building mini-
nodes using NetBSD, the system is not, and is not meant to
be, restricted to using NetBSD nodes. In other words the
ability to run any OS is part of our high level design goals.
Other open source technologies used include; FreeBSD 7.0
and NetBSD 4. NetBSD is used to implement the exper-
iment topology nodes. FreeBSD is used to provide traf-
fic shaping and link emulation using Dummynet and IPFW
which are also open source technologies.

We would also like to make a special note to our audience -
please note that our emulator is work-in-progress therefore it
is by no means in a complete status, it an ongoing research
work and we are continually improving it. On the other
hand, we are aware of some limitations of this approach, we
will be addressing some of them as part of the research. All
scripts and progress work on viNEX can be referenced online
at [13]

The rest of this paper is structured as follows. In Sec-
tion 2, we give background work in support of this research.
The original contribution work (viNEX) is described in Sec-
tion 3 through to Section 4. We approach the conclusion of
this paper by looking at current and other related research
work at Section 5. We conclude this paper and give pointers
to future research work in Section 6.

2. BACKGROUND
To begin, we provide some overview on emulation and

simulation to form the foundation work for viNEX. Due to
the limit in scope for this paper, we could not provide a com-
plete background on Xen networking. A significant amount
of technical writing on Xen exists, interested readers can
refer to [19], [5] and [24].

2.1 Network Emulation and Simulation
Network research environments can be classified into three

categories, i.e. testbed, network simulation and network em-
ulation. A network testbed is a physically deployed and
configured environment dedicated for conducting network
research experiments. It is formed by real networking ele-
ments such as end hosts, routers, links (cables), bridges and
switches. Some good examples of testbeds include; Emu-
lab [6], and PlanetLab [4]. Both these environments con-
sist of a set of physical servers deployed in a laboratory
environment interconnected by switches. Network experi-
menters normally access these shared testbed environments
over the Internet to setup and execute their experiments, re-
sults are obtained by downloading captured log files. Some
advantages of testbed environments include; experiments
are executed in real time and interacting with real proto-
col stacks deployed at the end hosts and routers. Testbed
environments are not dynamic and have a lot of drawbacks;
they are difficult to setup, configuration can be tedious and
time consuming, physical hardware is extremely expensive
to procure, hardware logistic and storage space problems.
Furthermore, although offering a real world environment,
conducting experiments on testbed offers an uncontrollable,
unpredictable and non-repeatable environment.

Network simulators are normally implemented as a col-
lection of software modules providing a synthetic network

experiment environment. Simulators achieve this by defin-
ing and modeling network behavior through the abstraction
of network elements, this include a virtual simulated time,
and a discrete network events system for traffic generators.
Simulators are normally deployed and executed on a single
host. Despite the limited emulator functionality of NS-2 [15],
NS-2 is a classical and popular example of a network simu-
lator. Network simulators offer a repeatable and controlled
environment for experiments. Simulators are easy to setup
and configure, and a result, they offer a lot of control to ex-
perimenters making them an ideal choice for rapid protocol
prototyping and evaluation.

Network emulation refers to a hybrid technique that lever-
ages on the features and benefits of both testbed and simu-
lated techniques. Emulation combines the real network ele-
ments of the testbed approach to the synthetic or simulated
elements of simulation. In most cases, simulated elements
of an emulated environment include - network links and in-
termediate nodes.

Emulab, despite being a physical testbed environment, is
a good example of an emulated environment. In Emulab,
a transparent FreeBSD delay nodes are inserted between
topology links in order to simulate the network boundary
conditions using the Dummynet module. NS is also an ex-
ample of a limited network emulator. NS has recently in-
troduced some limited emulation functionality whereby real
network traffic can be subjected to emulated network com-
ponents. The emulation facility of NS is described in detail
at [7].

3. IMPLEMENTATION OF VINEX
The following sections give a technical description of the

emulator (viNEX) and its implementation details. Develop-
ment of viNEX was conducted on a single Linux host, see
Table 1 for environment hardware and software configura-
tions;

Table 1: viNEX Development Environment
Operating System CentOS 5.1
Memory 1 GB
CPU Intel Core 2 Duo, 3.0 GHz CPU

with vT Support
Other Software Xen 3.2, NetBSD 4, FreeBSD 7

(with Dummynet and IPFW en-
abled)

3.1 Architecture and Design
Figure 1 depicts the high-level architecture of viNEX. The

main components of viNEX include: control network, experi-
ment topology nodes, traffic shaping node, network links, and
testbed configuration and management scripts.

3.1.1 Control network
Similar to Emulab [6], a separate control network is cre-

ated to allow users direct access to the experiment nodes
from within Domain 0. The control network is used by setup
scripts for access to the nodes in order to configure them
for networking by executing commands using SSH. Each
topology node (Node X) is assigned a Class C IP address
196.30.225.X for the control network.
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Figure 1: High-Level Testbed Architecture

3.1.2 Experiment topology nodes
These nodes form the topology to be used for conducting

a network experiment. They are standard Xen HVM guest
nodes. All experiment nodes are NetBSD 4 nodes running
a minimal kernel.

3.1.3 Traffic shaping node
The traffic shaping node is a FreeBSD node configured as

a transparent gateway between network links. In addition
to link modeling, the traffic shaper is used to model network
boundary condition such as: bandwidth limitation, packet
delay, and random packet loss.

3.1.4 Network Links
Links are used to model communication between any pair

of experiments topology node. Links are defined inside the
traffic shaper node. The traffic shaper node uses a combina-
tion of software bridging together with VLANs in order to
model the link between two nodes. Dummynet and IPFW
are used for bandwidth and delay simulation.

3.1.5 Configuration scripts
This is provided through a collection of Linux shell scripts

as follows. All these scripts can be obtained online at [13]:

start-gateway.sh - is used to boot the FreeBSD traffic
shaping node.

start-node.sh - is used for starting any NetBSD experi-
ment topology node as required

create-link.sh - is for for creating links between each pair
of nodes as specified by the experiment.

modify-link.sh - is used to alter the link properties after
it has been created.

3.2 Network Links
We now expand and discuss the lower level details of the

network link abstraction between any pair of topology nodes.
For the purpose of this discussion, please assume the two
node topology depicted in Figure 2 below;

A link between any pair of virtual nodes is formed by the
following network elements; front-end interfaces, back-end
interfaces, vlan subinterfaces, bridges, ebtables rules, ipfw

Figure 2: A basic two-node network topology

rules and dummynet pipes. A sample Xen configuration for
the scenario in Figure 2 is shown in Listing 1. The important
information to note here is the IDs assigned by Xen to each
node.

1 [root@mukosi experiment ]# xm list

2 Name ID Mem VCPUs State Time(s)

3 Domain -0 0 1425 2 r----- 102.0

4 Gateway 1 512 1 -b---- 31.7

5 Node -1 2 16 1 -b---- 12.4

6 Node -2 3 16 1 -b---- 13.1

Listing 1: Xen configuration of Figure 2 topology

Figure 3: Components of a link connection between
two nodes

The following paragraphs briefly describe each network
link element as identified above:

3.2.1 Front-end interfaces
These are interfaces running inside each domain. Since we

are using HVM, all domains are running the native unmod-
ified network drivers. All interfaces involved are depicted in
Figure 3. Each node is allocated five front-end interfaces,
they configured during the node startup process. The low-
est interface, rtk0 is always reserved for the control network
and it is automatically assigned the control network IP ad-
dress during startup. The IP address allocation scheme for
the control network is such that for each Node X, interface
rtk0 is allocated a Class C IP address 196.30.225.X.

3.2.2 Back-end interfaces
They are interfaces inside Dom0 and directly connected

to front-end interfaces inside the topology domains as well
as the Gateway node. Looking at Figure 3, Node-1 and
Node-2’s front-end interfaces are directly connected to back-
end interfaces vif2.1 and vif3.1 respectively. Similarly,
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the Gateway node’s front-end interfaces rtk0 and rtk1 are
connected to back-end interfaces vif1.0 and vif1.1 respec-
tively.

3.2.3 Bridges
For each link, two Linux software bridges are created.

The purpose for the bridges is to connect the traffic from
the topology nodes directly to the Gateway node for traf-
fic shaping in a protocol independent manner. Packets are
forwarded based on Ethernet address and not IP address.
Both the node’s back-end interface and the Gateway’s vlan
subinterfaces are joined together to allow traffic routing at
layer 2, as a result all protocols can be carried across the
links.

3.2.4 VLAN Sub-Interfaces
The Gateway node only has two fixed interfaces (vif1.0

and vif1.1) connecting it directly to the Dom0. Since all
links have to go through the FreeBSD Gateway node for
traffic shaping, we had to derive a mechanism that will al-
low the sharing of these two fixed back-end and front-end
interfaces among all links. For each link X in the topology,
a corresponding VLAN with VLAN ID = X is created in
order to isolate the link’s traffic. For the example in Fig-
ure 2, a VLAN with VLAN ID = 1 is defined for Link 1 (see
Figure 3).

3.2.5 Ebtables Rules
Ebtables [20] is a Linux packet filter that enabled us to

intercept bridged traffic at layer 2 and be able to BROUTE
them. Packets are forwarded at layer 2 without having to be
passed to layer 3 for routing. The PREROUTING chain of
the Ebtables NAT table is used to perform the MAC address
translation of the destination using the dnat instruction.
The destination MAC is changed to the MAC address of the
directly connected destination as defined by the topology of
the experiment before the packet is passed into the traffic
shaper Gateway. Using the basic experiment in Figure 2,
for each link, two Ebtables rules are created inside the NAT
PREROUTING table by the link configuration script - see
Listing 2 for details.

1 [root@mukosi experiment ]# ebtables -t nat -L

2 Bridge table: nat

3 Bridge chain: PREROUTING , entries: 2, policy: ACCEPT

4 -i vif2.1 -j dnat --to-dst 0:16:3e:34:28:80 --dnat -target ACCEPT

5 -i vif3.1 -j dnat --to-dst 0:16:3e:16:3f:66 --dnat -target ACCEPT

6 ...

Listing 2: Ebtables rules for the topology of Figure 2

The two Ebtables rules are listed in line 5 and 6 of List-
ing 2. The rule in line 5 simply translates the MAC address
of any frame that arrived through back-end interface vif2.1

and set it to the MAC address of the front-end interface
of Node-2 (00:16:3e:34:28:80) so that the frame can be
passed directly after being traffic shaped by the Gateway.
Similarly, the rule in line 6 is used to translate the MAC
address of any frame arriving directly from Node-2 through
interface vif3.1 and set it to the MAC address of the front-
end interface of Node-1 (00:16:3e:16:3f:66).

3.2.6 IPFW Rules
Packet filtering is specified using a set of rules that are cre-

ated by using the IPFW command line utility of FreeBSD.
See Listing 3 for the list of IPFW rules. Dummynet pipes
are also created using the ipfw command line.

1 Gateway# ipfw show

2 00800 27 1260 pipe 1 ip4 from any to any via vlan11 layer2

3 00900 27 1260 pipe 1 ip4 from any to any via vlan12 layer2

4 65535 19 4943 allow ip from any to any

Listing 3: IPFW rules for the topology of Figure 2

3.2.7 Dummynet Pipes
Dummynet pipes are created inside the FreeBSD traffic

shaper node by IPFW. They are used for simulating the
network adverse conditions such as; delay, bandwidth limi-
tation, probability drop rate, various queueing techniques.

4. PRELIMINARY RESULTS
In this section we provide some of the preliminary results

that where captured as part the verification and validation of
viNEX. At this stage; it should be emphasized that viNEX
is by no means complete, it is in a functional state where
basic networking can be accomplished.

Two experiments were run on the six-node dumbbell topol-
ogy as depicted in Figure 4 below. The main objective of
these experiments is to verify if TCP protocol behaves as
expected when deployed on viNEX nodes. The first experi-
ment is used to assess the maximum possible bandwidth on
viNEX running without traffic loss or delay issues; the sec-
ond experiment investigates the effects of imposing a delayed
and lossy link between Node-3 and Node-4.

4.1 TCP stack and analysis tools used
Since all the nodes envolved in the experiments are NetBSD

4 nodes, we are making use of the latest TCP stack im-
plemented on NetBSD 4, i.e. Reno and NewReno TCP.
NewReno TCP is enabled by default in NetBSD. Table 2
lists all the TCP settings that remained constant between
Experiment 1 and Experiment 2. NetBSD’s NMBCLUS-
TERS setting was adjusted to 16484 and the kernel was
recompiled. In both experiments, we have used the same
synthetic load in order make performance comparisons triv-
ial, files of sizes 5MB, 10MB, 20MB, 50MB and 100MB were
transferred. In both experiments, data is transferred from
Node-1 to Node-6 via the link between Node-3 and Node-4
(see Figure 4). We used the tool iperf [14] for traffic gen-
eration and maximum bandwidth measurement. TCP flow
data packets were captured using tcpdump [23] and the tool
tcptrace [16] was used to analyze them. xplot [21] was
initially used for graphing but eventually converted xplot
datasets to gnuplot [9] and used it for graphing. Data con-
version was done using the xpl2gpl script (located at [16]).
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Figure 4: A six-node dumbbell topology used for ex-
periments

Table 2: TCP stack settings and configurations
TCP Stack Version NewReno + SACK enabled
Initial Congestion Window 4 ( 4068 bytes)
Send Buffer Maximum 32Kb
Receive Buffer Maximum 64Kb)
RFC1323 Enhancements Enabled
NMBCLUSTERS 16384
Traffic Source and Sink Node-1 and Node-2
Bandwidth Measurement Tool iperf

4.2 Experiment 1: Maximum bandwidth
The following results were obtained using iperf to send

data files of sizes 5, 10, 50 and 100MB. TCP statistics were
obtained using tcptrace tool;

Table 3: Results without any delay and loss
Filesize 5MB 50MB 100MB
Bandwidth (Kb/s) 302.5 320.3 154.43
Data packets: 2405 39400 78483
Ack packets: 1565 25603 51196
Total packets: 3974 65007 129683
Dropped/Rexmt pkts: 0 0 0
Duration (MM:ss.mmm): 0:10.561 02:43.736 11:19.054

Figure 5: Time Sequence Graph Graph for traffic
from Node-1 to Node-2

Figure 6: Throughput for the traffic from Node-1 to
Node-2

Figure 7: Round Trip Time (RTT) graph for the
traffic from Node-1 to Node-2

4.3 Experiment 2: Delay and lossy links
For this experiment, the propagation delay of 20ms and

random packet loss of 5% was configured on the link between
Node-3 and Node-4. The same data files were transmitted
and the results are shown in Table 4 below.

Table 4: Results 20ms delay and 5% loss rate
Filesize 5MB 50MB 100MB
Bandwidth (Kb/s) 72.21 70.67 67.97
Data packets: 4129 41053 82071
Ack packets: 2987 29449 58879
Total packets: 7119 70506 140954
Dropped/Rexmt pkts: 229 2085 4156
Duration (MM:ss.mmm): 01:12.724 12:22.036 25:42.748
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Figure 8: Time Sequence Graph Graph for delayed
traffic from Node-1 to Node-2

Figure 9: Throughput for delayed traffic from Node-
1 to Node-2

Figure 10: Round Trip Time (RTT) graph for de-
layed traffic from Node-1 to Node-2

5. RELATED WORK
Virtualization of network emulators is currently receiving

a lot of research attention. During the time of this research,
we have managed to identify a few number of research work
in this space.

The first significant virtualization identified was the cur-
rent large-scale virtualization initiative being done on Em-
ulab. Instead of using a traditional virtualization tool like
Xen, Emulab have chosen the approach of using FreeBSD
Jail mechanism. FreeBSD Jail provide a light weight virtu-
alization mechanism through process isolation. See [10] for
a detailed description of Emulab’s virtualization approach.

UML (User-Mode Linux) has been used quite extensively
in virtualizing network emulation, this includes some key re-
search in; 1) the work done using UML (User-Mode Linux)
at [22], mainly targeted at evaluating VPN networks, UML
was used to evaluate VPN protocols such as PPTP (Point-
to-Point-Tunneling-Protocol) and IPSec (IP Security). 2)
the UML based emulator for MPLS networks [1], 3) UML
was also used in the implementation of VNUML (Virtual
Network UML) [8], VNUML is mainly targeted at the eval-
uation of ipv6 routing protocols.

FreeBSD has also been used to virtualize network emula-
tors; 1) the FreeBSD network stack was virtualized through
the cloning technique that allows for multiple network stacks
on the same kernel as proposed in [25]. This approach
depends on the FreeBSD Jail [18] framework for applica-
tion environment isolation. Each instance of the protocol
stack resembles a full network stack capable of running net-
work routing protocols as well as networking applications.
2) IMUNES is another example, it was proposed in [12].
IMUNES also extends the FreeBSD kernel by enabling it to
maintain several networking stacks that are used to run dif-
ferent networking applications. 3) ENTRAPID introduced
the approach of virtualizing different 4.4BSD kernels. This
enbaled the deployment of different network protocol stacks
on the virtualized kernels. ENTRAPID is described in [11].

Further examples of network emulators virtual attempts
include; the hypervisor based testbed at [3] aimed at con-
ducting network security experiments, the virtual integrated
TCP testbed (or VITT) aimed at evaluating TCP perfor-
mance at [2], another research is looking at the possibility
of using paravirtualization as the basis for a federated Plan-
etLab architecture at [4] - PlanetLab [17] is a testbed aimed
at rapid prototyping and testing of Internet based experi-
ments.

6. CONCLUSIONS AND FUTURE WORK
viNEX is currently a work in progress system in the sense

of being able to create nodes, configure links, and route traf-
fic. The reason viNEX was built to investigate the limits to
this approach. We are aware about the potential limits of
this aproach and we are in the process to establish them.

To take this research work further, three key challenges
have been identified. (1) Network performance; we are not
impressed by the bandwidth rates obtained in Experiment
1 and 2 above (3̃ Mbit/s) - the slow performance is mainly
attributed to the use of QEMU for device emulation. Future
enhancements on the XEN HVM are in the pipeline and
this limitation might be eliminated. (2) there is a need to
identify the class of network experiments that are suitable
to be run on viNEX. During the evaluation phase, we were
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able to deploy the standard IP protocols on viNEX without
any issues, e.g. the RIPv2 protocol was deployed on the
experiment topology nodes without any modification.

Our emulator (viNEX) was developed using open source
technologies; with the major technologies being Xen, FreeBSD,
and NetBSD. As a result, we experienced a significant amount
of the benefits and advantages of open source, such as; (1)
the direct access to the primary software authors and ex-
perts, (2) the ability to modify the source to meet our cus-
tom requirements, Xen kernel was recompiled with setting
vmxenabled=yes to enable booting of NetBSD guest kernel,
(3) the ability to scale to arbitrary instances without ar-
tificial licensing constraints, arbitrary number of NetBSD
instances can be booted without any licensing restrictions
(4) the ability to learn from the availability of source code
(5) the potential to bundle, package and distribute without
additional licensing transaction costs.

There is also another opportunity to improve this research
by enabling the configuration of the testbed to be done using
the NS-2 tool. Key integration points will be identified in
order assist interested reader to extend this work. NS-2 is
a famous tool in the network research space and therefore
is makes sense to use NS-2 as the modeling language for
viNEX. Network researchers are already familiar with NS-2
and therefore it will make a seamless adoption of viNEX into
their space.
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Appendix B

viNEX Configuration and

Management Scripts

This appendix provides the source code listing of all bash scripts we wrote for the

configuration and management utilities of viNEX.

Listing B.1: Listing of bash script — start-gateway.sh

1 #!/ bin/sh

2 _guest_name =" Gateway"

3 xm create /xen/freebsd/scripts/gateway.hvm

4 _domid=‘xm list ${_guest_name} | grep ${_guest_name} | awk ’{print $2}’‘

5 _vif0="vif"${_domid }".0"

6 _vif1="vif"${_domid }".1"

7 _ip0 =196.30.225.254

8 _ip1 =192.30.225.252

9

10 # Add route for all traffic bound to $ip0 and $ip1

11 echo "ip route add $_ip0 dev $_vif0"

12 ip route add $_ip0 dev $_vif0

13 echo "ip route add $_ip1 dev $_vif1"

14 ip route add $_ip1 dev $_vif1

15 ip route add default via $_ip0 dev $_vif0 table xengw

Listing B.1: Listing of bash script — start-gateway.sh
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Listing B.2: Listing of bash script — start-node.sh

1 #!/ bin/sh

2

3 # Script to create and confugre a new NetBSD guest

4 dir=$(dirname "$0")

5

6 . "$dir/common.sh"

7

8

9 # To print usage

10

11 usage() {

12

13 echo "Usage: ‘basename $0‘ [guest_id ]"

14 echo "Options: Required arguments"

15 echo " [node_name] : An integer > 0 used to identify the new

node , new node will be named \’Guest_[guest_id]\’, e.g. Guest -1"

16 exit 1

17 }

18

19

20 # Check arguments

21 if [ "$#" -ne "1" ]

22 then

23 usage

24 exit 1

25 fi

26

27 _guest_name=$1

28 _node_id=$(validate_node_name $_guest_name)

29

30 exit_status=‘echo $?‘

31 if [ $exit_status -ne 0 ]

32 then

33 echo $_node_id

34 echo "Exit: $exit_status"

35 exit $exit_status

36 fi

37

38 echo "Creating a new NetBSD Xen guest named - " $_guest_name

39

40 # Create new guest node root file system device

41 _xen_root ="/ xen/netbsd"

42 _guest_home=$_xen_root "/ images"

43 _guest_root_image=$_guest_home "/" $_guest_name"-root.img"

44 _guest_usr_common=$_guest_home "/" $_guest_name"-usr.img"

45 _guest_scripts_home=$_xen_root "/ scripts"

46 _guest_xen_script=$_guest_scripts_home "/" $_guest_name ".hvm"

47 _template_root_filesystem=$_guest_home "/ template/netbsd -4.0-guest -root.img"

48 _guest_mount_point=$_guest_home "/mnt"

49

50 ln -sf $_guest_home "/ template/netbsd -4.0-usr -common -bigger.img"

$_guest_usr_common

51
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53 # Create Xen guest script for the new node

54 _kernel ="/usr/lib/xen/boot/hvmloader"

55 _device_model ="\"/ usr/lib64/xen/bin/qemu -dm\""

56 _memory ="32"

57 _builder ="hvm"

58 _disk ="[

’file:" $_guest_root_image",ioemu:hda ,w’,’file:" $_guest_usr_common",ioemu:hdb ,r’

]"

59 _boot="c"

60 _guest_vif ="[ ’type=ioemu ,model=rtl8139 ’, ’type=ioemu ,model=rtl8139 ’,

’type=ioemu ,model=rtl8139 ’, ’type=ioemu ,model=rtl8139 ’,

’type=ioemu ,model=rtl8139 ’ ]"

61 _sdl ="0"

62 _vnc ="1"

63 _vncclient ="1"

64 _vncdisplay ="1"

65 _vncconsole ="1"

66 _vcpus ="1"

67 _serial ="\" pty \""

68 _on_reboot ="’restart ’"

69 _on_crash="’restart ’"

70

71 echo "kernel = \"" $_kernel "\"" >

$_guest_xen_script

72 echo "name = \"" $_guest_name "\"" >> $_guest_xen_script

73 echo "builder = \"" $_builder "\"" >>

$_guest_xen_script

74 echo "memory = " $_memory >> $_guest_xen_script

75 echo "disk = " $_disk >>

$_guest_xen_script

76 echo "boot = \"" $_boot "\"" >>

$_guest_xen_script

77 echo "vif = "$_guest_vif >>

$_guest_xen_script

78 echo "device_model = "$_device_model >> $_guest_xen_script

79 echo "sdl = "$_sdl >>

$_guest_xen_script

80 echo "vnc = "$_vnc >>

$_guest_xen_script

81 echo "vncclient = "$_vncclient >> $_guest_xen_script

82 echo "vncdisplay = "$_vncdisplay >>

$_guest_xen_script

83 echo "vncconsole = "$_vncconsole >> $_guest_xen_script

84

85 echo "apic = \"1\"" >>

$_guest_xen_script

86 echo "vcpus =\"" $_vcpus "\"" >>

$_guest_xen_script

87 # echo "cpus =\""0 -1"\"" >>

$_guest_xen_script

88 echo "serial = "$_serial >>

$_guest_xen_script

89 echo "on_reboot = "$_on_reboot >> $_guest_xen_script

90 echo "on_crash = "$_on_crash >> $_guest_xen_script
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92 # Create file device for the root filesystem of the guest node

93 cp $_template_root_filesystem $_guest_root_image

94

95 # Mount the guest root file system device

96 mount -o loop ,offset =32256 $_guest_root_image $_guest_mount_point

97

98

99 # Configure networking by editing the /etc/rc.conf of the guest

100

101 # Create the guest ’s /etc/rc.conf

102 _guest_etc_rc_conf=$_guest_mount_point "/etc/rc.conf"

103

104 _ip =196.30.225. $_node_id

105

106 echo "# \$NetBSD: rc.conf ,v 1.96 2000/10/14 17:01:29 wiz Exp $"

> $_guest_etc_rc_conf

107 echo "#"

>> $_guest_etc_rc_conf

108 echo "# see rc.conf (5) for more information ."

>> $_guest_etc_rc_conf

109 echo "#"

>> $_guest_etc_rc_conf

110 echo "# Use program=YES to enable program , NO to disable it.

program_flags are" >> $_guest_etc_rc_conf

111 echo "# passed to the program on the command line."

>> $_guest_etc_rc_conf

112 echo "#"

>> $_guest_etc_rc_conf

113 echo "# Load the defaults in from /etc/defaults/rc.conf (if it’s

readable)." >> $_guest_etc_rc_conf

114 echo "# These can be overridden below ."

>> $_guest_etc_rc_conf

115 echo "#"

>> $_guest_etc_rc_conf

116 echo "if [ -r /etc/defaults/rc.conf ]; then"

>>

$_guest_etc_rc_conf

117 echo " . /etc/defaults/rc.conf"

>>

$_guest_etc_rc_conf

118 echo "fi"

>> $_guest_etc_rc_conf

119 echo "# If this is not set to YES , the system will drop into single -user

mode." >> $_guest_etc_rc_conf

120 echo "#"

>> $_guest_etc_rc_conf

121 echo "rtsold=NO"

>>

$_guest_etc_rc_conf
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122 echo "ipv6_enable=NO"

>>

$_guest_etc_rc_conf

123 echo "ipv6=NO"

>>

$_guest_etc_rc_conf

124 echo "auto_ifconfig=YES"

>>

$_guest_etc_rc_conf

125 echo "rc_configured=YES"

>>

$_guest_etc_rc_conf

126 echo "hostname =" $_guest_name

>>

$_guest_etc_rc_conf

127 echo "domainname=mukosi.com"

>> $_guest_etc_rc_conf

128 echo "routed=YES"

>>

$_guest_etc_rc_conf

129 echo "routed_flags =\" -t -T /rip_trace.log \""

>> $_guest_etc_rc_conf

130 echo "ftpd=YES"

>>

$_guest_etc_rc_conf

131 echo "sshd=YES"

>>

$_guest_etc_rc_conf

132 echo "dhclient=NO"

>>

$_guest_etc_rc_conf

133 echo "savecore=NO"

>>

$_guest_etc_rc_conf

134 echo "virecover=NO"

>>

$_guest_etc_rc_conf

135 echo "motd=NO"

>>

$_guest_etc_rc_conf

136 echo "powerd=NO"

>>

$_guest_etc_rc_conf

137 echo "postfix=NO"

>>

$_guest_etc_rc_conf

138 echo "flushroutes=YES"

>>

$_guest_etc_rc_conf

139 echo "# Add local overrides below"

>>

$_guest_etc_rc_conf

140 echo "#"

>> $_guest_etc_rc_conf
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141 echo "net_interfaces =\" rtk1 rtk2 rtk3 rtk4 \""

>> $_guest_etc_rc_conf

142 echo "ifconfig_rtk0 =\" $_ip netmask 255.255.255.0 metric 2 \""

>> $_guest_etc_rc_conf

143 echo "ifconfig_rtk1 =\" mtu 1400 \""

>>

$_guest_etc_rc_conf

144 echo "ifconfig_rtk2 =\" mtu 1400 \""

>>

$_guest_etc_rc_conf

145 echo "ifconfig_rtk3 =\" mtu 1400 \""

>>

$_guest_etc_rc_conf

146 echo "ifconfig_rtk4 =\" mtu 1400 \""

>>

$_guest_etc_rc_conf

147 # Unmount the guest file system

148 umount -d $_guest_root_image

149 umount $_guest_mount_point

150

151 # Boot the guest node

152 echo "Starting guest node - [$_guest_name ]"

153 export _CUR_DOMU_IP=$_ip

154

155 xm create $_guest_xen_script

156

157 # Get the XEN DomU ID

158 _domid=‘xm list ${_guest_name} | grep ${_guest_name} | awk ’{print $2}’‘

159 _vif="vif"${_domid }".0"

160 # Add route for all traffic bound to this DomU

161 # Enable proxy ARP for the control network

162 ifconfig $_vif down

163 # echo 1 > /proc/sys/net/ipv4/conf/$vif/proxy_arp

164 ifconfig $_vif up

165 echo "ip route add $_ip dev $_vif"

166 ip route add $_ip dev $_vif

167

168 exit 0

Listing B.2: Listing of bash script — start-node.sh
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Listing B.3: Listing of bash script — create-link.sh

1 #!/ bin/sh

2

3 # Scrtipt to create a link between two nodes

4

5 dir=$(dirname "$0")

6 . "$dir/common.sh"

7

8 _help() {

9 echo "Usage: $0 --link -id identifier --from node --to node [options ]"

10 echo "Required arguments :"

11 echo " --link -id identifier : integer specifying a global

unique identity of the link."

12 echo " --from node : string to set the link ’ source

node."

13 echo " --to node : string to set the link ’ target

node."

14 echo "Optional arguments :"

15 echo " --delay NNms : sets the propagation delay of

the link to the value of NN where NN is in "

16 echo " milliseconds , default is 0 for

no delay."

17 echo " --bw NNunit : sets NN as the link bandwidth ,

where unit can be any of bit/s Kbit/s Mbit/s "

18 echo " Byte/s KByte/s MByte/s,

default is 0 for no bandwiith limitation ."

19 echo " --plr X : set the propability for random

packet loss where X is a floating point "

20 echo " number between 0 and 1 which

causes packets to be dropped at random , "

21 echo " default is 0 for no loss."

22 }

23

24 check_required_argument () {

25 if [ -z "$2" ]

26 then

27 echo "Missing required parameter - [$1]."

28 my_error =1

29 fi

30 }

31

32 check_optional_default () {

33 if [ -z "$1" ]

34 then

35 echo $2

36 else

37 echo $1

38 fi

39 }

40

41 TEMP=‘getopt -o - --long link -id:,from:,to:,delay:,bw:,plr: --name "$0" -- "$@"‘

42

43 if [ $? != 0 ] ; then echo "Terminating ..." >&2 ; exit 1 ; fi

44

45 # Note the quotes around ‘$TEMP ’: they are essential!
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46 eval set -- "$TEMP"

47

48 while true; do

49 case "$1" in

50 --link -id) link_id=$2; shift 2;;

51 --from) source_domain_name=$2 ; shift 2 ;;

52 --to) target_domain_name=$2 ; shift 2;;

53 --delay) link_delay=$2 ; shift 2;;

54 --bw) link_bw=$2 ; shift 2;;

55 --plr) link_plr=$2 ; shift 2;;

56 --) shift ; break ;;

57 *) _help ; exit 1 ;;

58 esac

59 done

60

61 check_required_argument "--link -id" $link_id

62 check_required_argument "--from" $source_domain_name

63 check_required_argument "--to" $target_domain_name

64

65 if [ -n "$my_error" ] # Check if an error occured while trying to parse the

arguments

66 then

67 _help

68 exit 1

69 fi

70

71

72 link_delay=$(check_optional_default "$link_delay" "0ms")

73 link_bw=$(check_optional_default "$link_bw" "0Kbit/s")

74 link_plr=$(check_optional_default "$link_plr" "0")

75

76 # Get the Gateway interface names:

77 _gateway_node =" Gateway"

78 _gateway_id=‘xm list ${_gateway_node} | grep ${_gateway_node} | awk ’{print $2}’‘

79 source_vlan_parent_if ="vif"${_gateway_id }".0"

80 source_vlan_parent_if_mac=‘ifconfig -a | grep ${source_vlan_parent_if} | awk

’{print $5}’‘

81

82 target_vlan_parent_if ="vif"${_gateway_id }".1"

83 target_vlan_parent_if_mac=‘ifconfig -a | grep ${target_vlan_parent_if} | awk

’{print $5}’‘

84

85 source_vlan_bridge =" bridge"$link_id "0"

86 target_vlan_bridge =" bridge"$link_id "1"

87

88 source_node_id=$(validate_node_name "$source_domain_name ")

89 source_dom_id=‘xm list ${source_domain_name} | grep ${source_domain_name} | awk

’{print $2}’‘

90 target_node_id=$(validate_node_name "$target_domain_name ")

91 target_dom_id=‘xm list ${target_domain_name} | grep ${target_domain_name} | awk

’{print $2}’‘

92

93 source_vlan_id=$link_id$source_node_id

94 target_vlan_id=$link_id$target_node_id

95
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96 source_gw_vlan_device ="vlan"$source_vlan_id

97 target_gw_vlan_device ="vlan"$target_vlan_id

98 source_gw_vlan_parent_device ="re0"

99 target_gw_vlan_parent_device ="re1"

100

101 source_cont_ip ="196.30.225." $source_node_id

102 source_link_ip ="10.0." $link_id "." $source_node_id

103

104 target_cont_ip ="196.30.225." $target_node_id

105 target_link_ip ="10.0." $link_id "." $target_node_id

106

107 gateway_ip ="196.30.225.254"

108 gateway_link_bridge =" bridge"$link_id

109

110 ssh_cmd ="ssh -q root@$gateway_ip "

111

112 # Check if all the nodes involved on the link setup are accessible , up and

running.

113 check_node_wait ${_gateway_node} ${gateway_ip}

114 check_node_wait ${source_domain_name} ${source_cont_ip}

115 check_node_wait ${target_domain_name} ${target_cont_ip}

116

117 # Get Source MAC

118 ssh_login =" root@$source_cont_ip "

119 next_if_id=‘ssh -q $ssh_login "/sbin/ifconfig -a | grep 8843 | wc -l" | sed

’s/^ *\(.*\) *$/\1/’‘

120 source_vif ="vif"${source_dom_id }"."${next_if_id}

121 next_if_name ="rtk"${next_if_id}

122 source_mac=‘ssh -q $ssh_login "/sbin/ifconfig ${next_if_name} | grep address " |

awk ’{ print $2 }’‘

123

124 # Get target MAC

125 ssh_login =" root@$target_cont_ip "

126 next_if_id=‘ssh -q $ssh_login "/sbin/ifconfig -a | grep 8843 | wc -l" | sed

’s/^ *\(.*\) *$/\1/’‘

127 target_vif ="vif"${target_dom_id }"."${next_if_id}

128 next_if_name ="rtk"${next_if_id}

129 target_mac=‘ssh -q $ssh_login "/sbin/ifconfig ${next_if_name} | grep address " |

awk ’{ print $2 }’‘

130

131

132 function configure_link_interface () {

133

134 dom_name=$1

135 cont_ip=$2

136 link_ip=$3

137 vlan_ip=$4

138 node_id=$5

139 vlan_bridge=$6

140 vlan_parent_if=$7

141 gw_vlan_device=$8

142 gw_vlan_parent_device=$9

143 vlan_if=$vlan_parent_if "." $vlan_id

144

145 # Run commands to configure links on the source DomU node
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146 ssh_login =" root@$cont_ip "

147

148 echo "Configure link interface on domain - $cont_ip"

149 # - Get the next available interface on thssh_cmde source domain

150 next_if_id=‘ssh -q $ssh_login "/sbin/ifconfig -a | grep 8843 | wc -l" |

sed ’s/^ *\(.*\) *$/\1/’‘

151 next_if_name ="rtk"${next_if_id}

152

153 # Configure and bring the DomU interface up - media 100 baseTX mediaopt

full -duplex

154 echo "next_if_name = " $next_if_name

155 ssh -q $ssh_login "/sbin/ifconfig $next_if_name inet $link_ip netmask

255.255.255.0 metric 1 up "

156

157 #1. Create VLAN for this link

158 # - TODO: Check if VLAN exist first

159 echo "vconfig add $vlan_parent_if $vlan_id "

160 vconfig add $vlan_parent_if $vlan_id

161 echo "ifconfig $vlan_if mtu 1496 up"

162 ifconfig $vlan_if mtu 1496 up

163

164 # Set MAC address of the VLAN interface

165 mac_address=‘python -c ’import random; r=random.randint; print

"00:16:3E:%02X:%02X:%02X" % (r(0, 0x7f), r(0, 0xff), r(0, 0xff))’‘

166 echo "ip link set dev $vlan_if addresss $mac_address"

167 ifconfig $vlan_if down

168 ip link set dev $vlan_if address $mac_address

169 ip link set $vlan_if up

170

171 # Create the bridge

172 brctl addbr $vlan_bridge

173 ip link set $vlan_bridge up

174

175 ifconfig $vif mtu 1400 up

176 echo "brctl addif $vlan_bridge $vlan_if "

177 brctl addif $vlan_bridge $vlan_if

178 echo "brctl addif $vlan_bridge $vif"

179 brctl addif $vlan_bridge $vif

180 # brctl addif $vlan_bridge $d_vlan_if

181

182 # Add ebtables rule to force all DomU generated traffic to be routed to

the FreeBSD gateway first

183 echo "ebtables -t nat -A PREROUTING -i $vif -j dnat --to -destination

$ebtables_target_mac --dnat -target ACCEPT"

184 ebtables -t nat -A PREROUTING -i $vif -j dnat --to -destination

$ebtables_target_mac --dnat -target ACCEPT

185

186 # Configure VLAN on the FreeBSD traffic shaper ...

187 echo ${ssh_cmd} "/sbin/ifconfig $gw_vlan_device create vlan $vlan_id

vlandev $gw_vlan_parent_device "

188 ${ssh_cmd} "/sbin/ifconfig $gw_vlan_device create vlan $vlan_id vlandev

$gw_vlan_parent_device "

189 echo ${ssh_cmd} "/sbin/ifconfig $gw_vlan_device link $mac_address up"

190 ${ssh_cmd} "/sbin/ifconfig $gw_vlan_device link $mac_address up"

191
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192 # Add the VLAN interface to the bridge

193 echo ${ssh_cmd} "/sbin/ifconfig $gateway_link_bridge addm

$gw_vlan_device "

194 ${ssh_cmd} "/sbin/ifconfig $gateway_link_bridge addm $gw_vlan_device

up "

195

196 }

197

198 # Create gateway linking bridge ...

199 echo "${ssh_cmd} \"/ sbin/ifconfig $gateway_link_bridge create \""

200 ${ssh_cmd} "/sbin/ifconfig $gateway_link_bridge create "

201

202 src_vlan_parent_if_mac=$source_vlan_parent_if_mac

203 tgt_vlan_parent_if_mac=$target_vlan_parent_if_mac

204 ebtables_target_mac=$target_mac

205 remote_host_ip =" $target_link_ip"

206 vlan_id=$link_id

207 vif=$source_vif

208 tgt_gw_vlan_device =" $target_gw_vlan_device"

209 configure_link_interface "$source_domain_name" "$source_cont_ip"

"$source_link_ip" "$source_vlan_ip" "$source_node_id" "$source_vlan_bridge"

"$source_vlan_parent_if" "$source_gw_vlan_device"

"$source_gw_vlan_parent_device" "$source_vlan_parent_if_mac"

210 src_vlan_parent_if_mac=$target_vlan_parent_if_mac

211 tgt_vlan_parent_if_mac=$source_vlan_parent_if_mac

212 ebtables_target_mac=$source_mac

213 remote_host_ip =" $source_link_ip"

214 vif=$target_vif

215 tgt_gw_vlan_device =" $source_gw_vlan_device"

216 configure_link_interface "$target_domain_name" "$target_cont_ip"

"$target_link_ip" "$target_vlan_ip" "$target_node_id" "$target_vlan_bridge"

"$target_vlan_parent_if" "$target_gw_vlan_device"

"$target_gw_vlan_parent_device" "$target_vlan_parent_if_mac"

217

218 # Add Gateway IPFW rules

219 ${ssh_cmd} "ipfw add pipe ${link_id} ip4 from any to any via

${source_gw_vlan_device} layer2"

220 ${ssh_cmd} "ipfw add pipe ${link_id} ip4 from any to any via

${target_gw_vlan_device} layer2"

221 ${ssh_cmd} "ipfw pipe ${link_id} config bw ${link_bw} delay ${link_delay} plr

${link_plr }"

Listing B.3: Listing of bash script — create-link.sh
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Listing B.4: Listing of bash script — modify-link.sh

1 #!/ bin/sh

2

3 # Scrtipt to create a link between two nodes

4

5 dir=$(dirname "$0")

6 . "$dir/common.sh"

7

8 _help() {

9 echo "Usage: $0 --link -id identifier [options ]"

10 echo "Required arguments :"

11 echo " --link -id identifier : integer specifying a global

unique identity of the link."

12 echo "Optional arguments :"

13 echo " --delay NNms : sets the propagation delay of

the link to the value of NN where NN is in "

14 echo " milliseconds , default is 0 for

no delay."

15 echo " --bw NNunit : sets NN as the link bandwidth ,

where unit can be any of bit/s Kbit/s Mbit/s "

16 echo " Byte/s KByte/s MByte/s,

default is 0 for no bandwiith limitation ."

17 echo " --plr X : set the propability for random

packet loss where X is a floating point "

18 echo " number between 0 and 1 which

causes packets to be dropped at random , "

19 echo " default is 0 for no loss."

20 }

21

22 check_required_argument () {

23 if [ -z "$2" ]

24 then

25 echo "Missing required parameter - [$1]."

26 my_error =1

27 fi

28 }

29

30 check_optional_default () {

31 if [ -z "$1" ]

32 then

33 echo $2

34 else

35 echo $1

36 fi

37 }

38

39 TEMP=‘getopt -o - --long link -id:,delay:,bw:,plr: --name "$0" -- "$@"‘

40

41 if [ $? != 0 ] ; then echo "Terminating ..." >&2 ; exit 1 ; fi

42

43 # Note the quotes around ‘$TEMP ’: they are essential!

44 eval set -- "$TEMP"

45

46 while true; do

47 case "$1" in
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48 --link -id) link_id=$2; shift 2;;

49 --delay) link_delay=$2 ; shift 2;;

50 --bw) link_bw=$2 ; shift 2;;

51 --plr) link_plr=$2 ; shift 2;;

52 --) shift ; break ;;

53 *) _help ; exit 1 ;;

54 esac

55 done

56

57 check_required_argument "--link -id" $link_id

58

59 if [ -n "$my_error" ] # Check if an error occured while trying to parse the

arguments

60 then

61 _help

62 exit 1

63 fi

64

65

66 link_delay=$(check_optional_default "$link_delay" "0ms")

67 link_bw=$(check_optional_default "$link_bw" "0Kbit/s")

68 link_plr=$(check_optional_default "$link_plr" "0")

69

70 # Get the Gateway interface names:

71 gateway_ip ="196.30.225.254"

72 ssh_cmd ="ssh -q root@$gateway_ip "

73

74 # Configure link attributes on the Gateway

75 ${ssh_cmd} "ipfw pipe ${link_id} config bw ${link_bw} delay ${link_delay} plr

${link_plr }"

Listing B.4: Listing of bash script — modify-link.sh
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Listing B.5: Listing of bash script — common.sh

1 #!/ bin/sh

2

3 # This script contains a list of common utility functions that are reused by

other viNEX scripts

4

5 function validate_node_name () {

6

7 node_name=$1

8 _node_name=‘echo $node_name | grep -o -P "^Node -[0 -9]+$"‘

9 node_id=‘echo $node_name | grep -o -P "[0-9]+"‘

10 if [ "$_node_name" == "" ] || [ "$node_id" -lt 1 ]

11 then

12 echo "ERROR: Invalid node name specified ($node_name), node name

must be in the format - NodeX where X is an integer number > 0, e.g.

\"Node -1\""

13 exit 65

14 fi

15 echo "$node_id"

16 }

17

18 # To check if a node is reachable using SSH , otherwise we wait until the node is

up/reachable ...

19 function check_node_wait () {

20 node_name=$1

21 node_ip=$2

22 echo "Checking if node (${node_name}, ${node_ip }) is reachable ..."

23 cmd="ssh root@${node_ip} exit"

24 error_code ="1"

25 while [ $error_code != 0 ]

26 do

27 ${cmd}

28 error_code=‘echo $?‘

29 if [ $error_code != 0 ]

30 then

31 echo "Node (${node_name}, ${node_ip }) is not reachable ,

sleeping for 5 seconds before trying again ...."

32 sleep 5

33 else

34 echo "Node (${node_name}, ${node_ip }) is reachable , done

..."

35 fi

36 done

37 }

Listing B.5: Listing of bash script — common.sh



Appendix C

The TCP/IP Reference Model

The TCP/IP model was created in 1969 by DARPA (United States Defense Ad-

vanced Research Projects Agency) (Kozierok [46]). The resulting network was

known as the Arpanet, with the first matured version of the TCP released in 1973

and formally documented in RFC 675. The TCP/IP model consists of only 4 lay-

ers and they do not map directly onto the OSI model. Some of the TCP/IP layers

implement functionality of more than one of the OSI layers. Figure C.1 presents

the TCP/IP reference model with its four layers.
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Figure C.1: The 4-Layered TCP/IP Protocol Stack (Kozierok [46])

The layers of the TCP/IP model are Network Interface, Internet, Transport and

Application. The TCP/IP model is seen as a protocol suite rather than a reference

model (Meyer and Zobrist [54]). Its layers were defined after the initial protocols

have been created. Each of the four layers is used to describe one or more layers

of the OSI model from layer 2 upwards. The TCP model does not describe layer

1 (the physical layer) of the OSI model, therefore it is not concerned with the

underlying details of how data is transmitted over a cable.

We now briefly describe each of the four layers of the TCP/IP model as well as

their mapping onto the OSI model.

Network Interface Layer: The TCP/IP architecture does not define the func-

tionality required at the physical level for transmitting data. The Network Inter-

face layer is concerned with defining the interfaces that make TCP/IP run on the

underlying physical networks. TCP/IP can run on top of a number of different net-

works (this is also known as interworking). The Ethernet, ATM and FDDI (Fiber

Distributed Data Interface) are examples of networks which can carry TCP/IP

traffic. The interworking is described in a number of standards (RFCs) which
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define the encapsulation of IP datagrams over Ethernet frames. Some of the well

known RFCs in this space are:

• RFC 793 of 1984 - Transmission Control Protocol (Postel [64]).

• RFC 894 of 1984 - Standard for the Transmission of IP Datagrams over

Ethernet Networks (Hornig [37]).

• RFC 948 of 1985 - The two methods for transmitting IP datagrams over

IEEE 802.3 networks (Winston [86]).

• RFC 1010 of 1987 - Assigned numbers, now superseded by RFC 3232 of

2002 (Reynolds and Postel [68]).

• RFC 1042 of 1988 - Standard for the Transmission of IP Datagrams over

Ethernet 802.3 Networks (Postel and Reynolds [65]).

• RFC 2464 of 1998 - Describes the transmission of IPv6 over Ethernet Net-

works (Crawford [15]).

Internet Layer: This layer contains the protocols that define the internetwork.

It hides the details of the underlying network by creating a virtual network. The

core of the IP protocol is implemented at this layer, together with its supporting

protocols (such as ICMP) and the routing protocols (e.g. BGP, EGP, RIP, ARP,

RARP etc.) as depicted in Figure C.1.

Transport Layer: The protocols in this layer are responsible for the delivery

of data between the communicating protocols. The services provided in this layer

are equivalent to those described in layer 4 of the OSI model. These protocols rely

on the functionality of the IP protocol. Key services provided at this layer include

congestion control, reliable data delivery, flow control and the ability to recover or

deal with duplicated or missing data. The commonly used protocols at this layer

are TCP and UDP, depending on the requirements for the applications running

on top of this layer.
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Application Layer: This layer contains application protocols that further en-

capsulate the underlying network from the user. These protocols are responsible

for presenting the network functionality to the user in a usable format. Examples

include the HTTP, FTP and SMTP protocols. These protocols are normally made

available to the application developers in the form of an API.



Appendix D

Modelling standard network

topology structures in viNEX

The ViNEX network configuration and control scripts may be used to model most

of the standard network structures. Figure D.1 through to Figure D.4 show these

network structures as identified in Chapter 15 of (Silberschatz et al. [75]). The cor-

responding viNEX configuration scripts for modelling these structures on viNEX

are shown in Listing D.1 through to Listing D.4 below.
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Figure D.1: Fully connected network structure

1 # Start Gateway node

2 /vinex/scripts/start -gateway.sh

3

4 # Create network nodes

5 /vinex/scripts/start -node.sh A

6 /vinex/scripts/start -node.sh B

7 /vinex/scripts/start -node.sh C

8 /vinex/scripts/start -node.sh D

9 /vinex/scripts/start -node.sh E

10

11 # Create network links without bandwidth limitation properties

12 /vinex/scripts/create -link.sh --link -id 1 --from A --to B

13 /vinex/scripts/create -link.sh --link -id 2 --from B --to C

14 /vinex/scripts/create -link.sh --link -id 3 --from A --to E

15 /vinex/scripts/create -link.sh --link -id 4 --from C --to D

16 /vinex/scripts/create -link.sh --link -id 5 --from E --to D

17 /vinex/scripts/create -link.sh --link -id 6 --from B --to E

18 /vinex/scripts/create -link.sh --link -id 7 --from B --to D

19 /vinex/scripts/create -link.sh --link -id 8 --from A --to D

20 /vinex/scripts/create -link.sh --link -id 9 --from C --to E

21 /vinex/scripts/create -link.sh --link -id 10 --from A --to C

Listing D.1: viNEX script to create the fully-connected network in Figure D.1
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Figure D.2: Partially connected network structure

1 # Start Gateway node

2 /vinex/scripts/start -gateway.sh

3

4 # Create network nodes

5 /vinex/scripts/start -node.sh A

6 /vinex/scripts/start -node.sh B

7 /vinex/scripts/start -node.sh C

8 /vinex/scripts/start -node.sh D

9 /vinex/scripts/start -node.sh E

10

11 # Create network links without bandwidth limitation properties

12 /vinex/scripts/create -link.sh --link -id 1 --from A --to B

13 /vinex/scripts/create -link.sh --link -id 2 --from B --to C

14 /vinex/scripts/create -link.sh --link -id 3 --from C --to D

15 /vinex/scripts/create -link.sh --link -id 4 --from A --to E

16 /vinex/scripts/create -link.sh --link -id 5 --from B --to E

Listing D.2: viNEX script to create the partially-connected network in

Figure D.2
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Figure D.3: A tree-structured network

1 # Start Gateway node

2 /vinex/scripts/start -gateway.sh

3

4 # Create network nodes

5 /vinex/scripts/start -node.sh A

6 /vinex/scripts/start -node.sh B

7 /vinex/scripts/start -node.sh C

8 /vinex/scripts/start -node.sh D

9 /vinex/scripts/start -node.sh E

10 /vinex/scripts/start -node.sh F

11

12 # Create network links without bandwidth limitation properties

13 /vinex/scripts/create -link.sh --link -id 1 --from A --to B

14 /vinex/scripts/create -link.sh --link -id 2 --from B --to C

15 /vinex/scripts/create -link.sh --link -id 3 --from B --to D

16 /vinex/scripts/create -link.sh --link -id 4 --from A --to E

17 /vinex/scripts/create -link.sh --link -id 5 --from E --to F

Listing D.3: viNEX script to create the tree-structured network in Figure D.3
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Figure D.4: Star network

1 # Start Gateway node

2 /vinex/scripts/start -gateway.sh

3

4 # Create network nodes

5 /vinex/scripts/start -node.sh A

6 /vinex/scripts/start -node.sh B

7 /vinex/scripts/start -node.sh C

8 /vinex/scripts/start -node.sh D

9 /vinex/scripts/start -node.sh E

10 /vinex/scripts/start -node.sh F

11

12 # Create network links without bandwidth limitation properties

13 /vinex/scripts/create -link.sh --link -id 1 --from C --to A

14 /vinex/scripts/create -link.sh --link -id 2 --from C --to B

15 /vinex/scripts/create -link.sh --link -id 3 --from C --to D

16 /vinex/scripts/create -link.sh --link -id 4 --from C --to E

17 /vinex/scripts/create -link.sh --link -id 5 --from C --to F

Listing D.4: viNEX script to create the star-structured network in Figure D.4



Appendix E

Repeating the Van Jacobson

Experiment using NS-2

This appendix describes a repeat of the Van Jacobson experiment using the NS-2

simulator. During the development of viNEX, we did not have access to a real

physical network to benchmark the functionality of viNEX against. Consequently,

the NS-2 simulator was chosen to be used for comparing the results obtained in

viNEX against those originally obtained by Van Jacobson [81].

E.1 Experiment configuration

The network topology for this experiment was configured to represent the original

topology as described in Van Jacobson [81]. This topology is shown in Figure E.1.
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Figure E.1: The Van Jacobson Experiment topology used for NS-2 simulations
(redrawn from Van Jacobson [81])

The topology in Figure E.1 consists two networks, namely the LBL (Lawrence

Berkeley National Laboratory) and the UCB (University of California Berkeley)

local area networks separated by 365.76 metres and connected by a microwave

link. Each network contains a total of four hosts and one router which is used as

a gateway between the two networks.

At LBL, the four hosts are named Polo, Hot, Surf and Vs and the gateway router

is called csam. The UCB nodes are Renoir, VanGogh, Monet and Okeeffe and

the gateway router is cartan. The microwave link between the two environments

has a bandwidth capacity of 230Kbit/s, a delay of 100ms and a loss rate of 1%.

Each machine at LBL was paired with a machine at UCB to form a total of four

network conversation pairs. Network traffic is generated by the machines at LBL

over the microwave link to the receiving machines at UCB. The NS-2 script for

constructing the simulated topology of Figure E.1 appears in Listing E.1.

The experiment is started by executing command “ns vanjacobson.tcl” from

the shell. The FTP traffic senders are started at three seconds intervals and each

FTP stream is allowed to send up to 1 000 000 bytes (approximately 1MByte)

over the link. All packet traces are captured into one file called out.tr. The

experiment is run for up to 200 seconds using Ns-2 simulated time.
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The operation of the NS-2 script in Listing E.1 is:

1. Network nodes are instantiated and created by line 9 through to line 22 of

the script using the set node-name [$ns node] command.

2. The two local area networks (LANs) at LBL and UCB are created by the

call to the make-lan function at lines 26 and 27 respectively.

3. In NS-2, the network protocol on a sending node is defined by an Agent

class. The Agent definition is also used to specify the version of the protocol

used. The TCP/Reno protocol is implemented by the Agent/TCP/Reno

class. Lines 36 to 39 of the script show the definition of the TCP/Reno

agents. The agents are then attached to their sending nodes by lines 41 to

44 through the attach-agent command.

4. NS-2 models the operation of a TCP traffic receiver using the TCPSink

agent. TCPSink is responsible for implementing the protocol-specific func-

tionality for receiving traffic such as packet reordering and acknowledgment

generation. The TCP sinks are created by lines 46 to 49 of the script. The

agents are then attached to their respective receivers at lines 51 to 54 of the

script using the attach-agent command.

5. The actual network traffic is generated by making use of the Applica-

tion/FTP classes. The Application/FTP class implements the standard

FTP application layer protocol as defined in lines 56 to 59 of the script.

The applications are thereafter attached to their respective agents at lines

61 through to 64.

6. The actual connection (pairing) between the sending and receiving nodes is

achieved by connecting the Agents and Sinks. This is done in lines 66 to 69.

7. The bottleneck link is defined in line 71. The link bandwidth is configured

to 230Kbit/s, the delay is set to 100ms and the queuing model is set to

DropTail. Lines 72 and 73 define a limit on the size of the DropTail queue of

the bottleneck link to 50 packets. Lines 75 to 85 are used to create the error

model for simulating the packet loss rate along the microwave bottleneck.

The loss rate is set to 1%.

8. Packet tracing is enabled through lines 29 and 30 of the script by using the

trace-all command. The packet traces are all collected into a single trace

file called out.tr.
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9. Finally, the FTP transfers of 1 MB (which is roughly 1 000 000 bytes) are

started at three seconds apart. This is achieved by the $ns at command

shown in lines 87 to 93. The experiment is ended by the $ns at 200.0

"finish" command at line 92.

1

2 set ns [new Simulator]

3

4 LanRouter set debug_ false

5

6 # Initialize variables

7 set packetSize 472

8

9 # Create the nodes at LBL

10 set Polo [$ns node]

11 set Hot [$ns node]

12 set Surf [$ns node]

13 set Vs [$ns node]

14 set csam [$ns node]

15 set nodelistLBL "$Polo $Hot $Surf $Vs $csam"

16

17 # Create the nodes at LBL

18 set cartan [$ns node]

19 set Renoir [$ns node]

20 set VanGogh [$ns node]

21 set Monet [$ns node]

22 set Okeeffe [$ns node]

23

24 set nodelistUCB "$cartan $Renoir $VanGogh $Monet $Okeeffe"

25

26 $ns make -lan $nodelistLBL 10Mb 1ms LL Queue/DropTail Mac /802_3

27 $ns make -lan $nodelistUCB 10Mb 1ms LL Queue/DropTail Mac /802_3

28

29 set f [open out.tr w]

30 $ns trace -all $f

31 set nf [open out.nam w]

32 $ns namtrace -all $nf

33

34 Agent/TCP set packetSize_ $packetSize

35

36 set tcp0 [new Agent/TCP/Reno]

37 set tcp1 [new Agent/TCP/Reno]

38 set tcp2 [new Agent/TCP/Reno]

39 set tcp3 [new Agent/TCP/Reno]

40

41 $ns attach -agent $Polo $tcp0

42 $ns attach -agent $Hot $tcp1

43 $ns attach -agent $Surf $tcp2

44 $ns attach -agent $Vs $tcp3

45

46 set sink0 [new Agent/TCPSink]

47 set sink1 [new Agent/TCPSink]

48 set sink2 [new Agent/TCPSink]
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49 set sink3 [new Agent/TCPSink]

50

51 $ns attach -agent $Renoir $sink0

52 $ns attach -agent $VanGogh $sink1

53 $ns attach -agent $Monet $sink2

54 $ns attach -agent $Okeeffe $sink3

55

56 set ftp0 [new Application/FTP]

57 set ftp1 [new Application/FTP]

58 set ftp2 [new Application/FTP]

59 set ftp3 [new Application/FTP]

60

61 $ftp0 attach -agent $tcp0

62 $ftp1 attach -agent $tcp1

63 $ftp2 attach -agent $tcp2

64 $ftp3 attach -agent $tcp3

65

66 $ns connect $tcp0 $sink0

67 $ns connect $tcp1 $sink1

68 $ns connect $tcp2 $sink2

69 $ns connect $tcp3 $sink3

70

71 $ns duplex -link $csam $cartan 230Kb 100ms DropTail

72 set linkQueue [[$ns link $csam $cartan] queue]

73 $linkQueue set limit_ 50

74

75 # Introduce link loss rate ...

76 set errorModel [new ErrorModel]

77 $ns link -lossmodel $errorModel $csam $cartan

78 $errorModel set rate_ 0.01

79 $errorModel set enable_ 1

80 set rv [new RandomVariable/Uniform]

81 set rng [new RNG]

82 $rng seed 2001

83 $rv use -rng $rng

84 $errorModel ranvar $rv

85 $errorModel unit pkt

86

87 # $ns queue -limit $csam $cartan 50 - 1048576

88 $ns at 0.0 "$ftp0 send 1000000"

89 $ns at 3.0 "$ftp1 send 1000000"

90 $ns at 6.0 "$ftp2 send 1000000"

91 $ns at 9.0 "$ftp3 send 1000000"

92 $ns at 200.0 "finish"

93 proc finish {} {

94 global ns f nf

95 $ns flush -trace

96 close $f

97 close $nf

98 exit 0

99 }

100 $ns run

Listing E.1: NS-2 script for creating the Van Jacobson topology in Figure E.1
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The following section provides an analysis of the results obtained from the above

NS-2 experiment.

E.2 Results

The analysis is based on the trace data recorded by NS-2 into the out.tr file. On

the sending side, a total of 8566 packets were transmitted and 81 packets were

found to be retransmissions. In other words, approximately 1% of all packets

were retransmitted. The behaviour of the four TCP Reno senders is plotted in

Figure E.2. The entire transmission of packets from the four nodes lasted approx-

imately 155 seconds. All conversations received a fair amount of the bandwidth

resulting in very little noticeable dropping in the sending rate of the senders (see

Figure E.2).
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Figure E.2: Analysis of multiple, simultaneous TCP/Reno senders using NS-2
with a bottleneck link running at 230Kbit/s

The total throughput which comprises the sum of all throughputs achieved by

the four conversations peaked at 27.5 Kbit/s and is displayed in Figure E.3. The
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original Van Jacobson experiment measured a total throughput of 25 Kbit/s (two

conversations transmitted at 8 Kbit/s each and the other two conversations each

reached 4.5 Kbit/s).
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Figure E.3: The throughput received by the four TCP/Reno conversations as
depicted in Figure E.1



Appendix F

viNEX Scripts Used For

Conducting The Van Jacobson

Experiment

This appendix provides the source code of the shell scripts we wrote for conducting

the Van Jacobson Experiment on viNEX.

1 ./ftp -send.sh Polo Renoir &

2 sleep 3

3 ./ftp -send.sh Hot VanGogh &

4 sleep 3

5 ./ftp -send.sh Surf Monet &

6 sleep 3

7 ./ftp -send.sh Vs Okeeffe &

8 sleep 3

Listing F.1: Listing of the bash script (send.sh) used to initiate the

simultaneous conversations on viNEX 3 seconds apart
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1 # Generate and send traffic ...

2

3 source_node_name=$1

4 target_node_name=$2

5

6 source_node_top_ip=‘cat /vinex/config/topology -net -ip.cfg | grep

$source_node_name | awk ’{print $2}’‘

7 source_node_cnt_ip=‘cat /vinex/config/control -net -ip.cfg | grep

$source_node_name | awk ’{print $2}’‘

8 target_node_top_ip=‘cat /vinex/config/topology -net -ip.cfg | grep

$target_node_name | awk ’{print $2}’‘

9

10 echo "Sending data using FTP from [$source_node_name - $source_node_top_ip] to

[$target_node_name - $target_node_top_ip ]"

11

12 # - Send 1MB file from Node -1 to Node -2

13 tracefile_bin ="./ results/$source_node_name -$target_node_name "". dump"

14 tracefile_txt ="./ results/$source_node_name -$target_node_name "".txt"

15 tracefile_bin1 ="./ results/$source_node_name -$target_node_name "". tput.dump"

16 tracefile_txt1 ="./ results/$source_node_name -$target_node_name "". tput.txt"

17 if [ -e $tracefile_bin ]

18 then

19 rm -f $tracefile_bin

20 rm -f $tracefile_bin1

21 fi

22

23 nohup tcpdump host $source_node_top_ip and $target_node_top_ip -i vif ‘xm domid

$source_node_name ‘.1 -w $tracefile_bin > /dev/null &

24 tcpdump_pid0=$!

25

26 nohup tcpdump host $source_node_top_ip and $target_node_top_ip -i vif ‘xm domid

$target_node_name ‘.1 -w $tracefile_bin1 > /dev/null &

27 tcpdump_pid1=$!

28

29 ssh -q root@$source_node_cnt_ip "/vinex/scripts/ftp -send.sh $target_node_top_ip"

30 kill -2 $tcpdump_pid0

31 kill $tcpdump_pid1

32

33 # Convert the trace file to ASCII

34 tcpdump host $source_node_top_ip and $target_node_top_ip -i vif ‘xm domid

$source_node_name ‘.1 -r $tracefile_bin > $tracefile_txt

35 tcpdump host $source_node_top_ip and $target_node_top_ip -i vif ‘xm domid

$target_node_name ‘.1 -r $tracefile_bin1 > $tracefile_txt1

36 echo "FTP file transfer from [$source_node_name - $source_node_top_ip] to

[$target_node_name - $target_node_top_ip] is COMPLETE ..."

37 exit 0

Listing F.2: Bash script (ftp-send.sh) which is invoked by the send.sh script

in Listing F.1 to perform the actual FTP transfer of the 1MB file



Appendix G

List of changes done to iperf

This appendix lists the source code changes done to iperf version 2.0.2 for

NetBSD to enable the measurement and reporting of the one-way-delay of net-

work traffic. The measured one-way-delay is used to calculate the bandwidth-delay

product. These changes were generated using the diff command on NetBSD.

Changes can be applied by using the patch command.

1 252 c252

2 < Datagrams\n";

3 ---

4 > Datagrams\tTransit -Time\n";

5 255 c255

6 < "[%3d] %4.1f-%4.1f sec %ss %ss/sec %5.3f ms %4d/%5d (%.2g%%)\n";

7 ---

8 > "[%3d] %4.1f-%4.1f sec %ss %ss/sec %5.3f ms %4d/%5d (%.2g%%)\t%.3f\n";

Listing G.1: Listing of the changes done to Locale.c source file.

1 244a245 ,248

2 >

3 > data ->info.countTransit = 0;

4 > data ->info.totalTransit = 0;

5 >

6 699c703 ,708

7 <

8 ---

9 > if( transit < 0)

10 > data ->info.totalTransit -= transit;

11 > else

12 > data ->info.totalTransit += transit;

13 > data ->info.countTransit ++;

14 >

Listing G.2: Listing of the changes done to Reporter.c source file.
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1 252 c252

2 < Datagrams\n";

3 ---

4 > Datagrams\tTransit -Time\n";

5 255 c255

6 < "[%3d] %4.1f-%4.1f sec %ss %ss/sec %5.3f ms %4d/%5d (%.2g%%)\n";

7 ---

8 > "[%3d] %4.1f-%4.1f sec %ss %ss/sec %5.3f ms %4d/%5d (%.2g%%)\t%.3f\n";

Listing G.3: Listing of the changes done to ReportDefault.c source file.
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