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Abstract

The problem of fitting a material property of the earth to a certain model by

analysing a returned seismic signal is investigated here. Analysis proceeds with

methods taken from the theory of inverse problems. Seismic wave inversion is tack-

led by minimisation of the objective function with respect to the model parameters.

Absorbing boundary conditions are implemented using an exponentially decaying

ansatz.
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Chapter 1

Introduction

Seismology is the study of wave propagation through the earth (right down to its

core) and this can include earthquakes, volcanoes and the tectonic plates in partic-

ular. Seismic studies have also been done based on man-made activities, such as

detonations or prospecting for metals, minerals and oil. An introductory treatment

into this field and elasticity theory is given in sections 2.1 and 2.2, and more exten-

sively dealt with in [1, 2] as well as [3, 4, 5].

One easy and direct way of approaching the topic is to predict what the ob-

served signal will look like, given an already known and surveyed slab of the earth’s

crust. One could set up a simplified model mimicking the referred to region, and

calculate the recorded waves, much like in quantum scattering theory. But more of-

ten than not, there are regions and slabs of the earth’s crust, especially the ocean’s

bottom, that still remain unexplored for mining purposes. What is much more desir-

able is the reverse process: deriving whatever is going on inside the crust, given the

recorded signals. Which is where inverse methods would come in. An introductory

text on inverse problems as a mathematical theory is given by Kirsch [6] This inver-

sion theory is more indirect and can only be achieved numerically in most situations.

Inverse problems have a long history in accoustics, geophysics, optics and elec-

tromagnetics. Some applications of the theory are described next. Wand [7] uses

a Bayesian statistical inference method on stochastic inverse problems in thermo-

1
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dynamics, especially heat transfer. Wei [8] introduces a filtering inverse method

for their unequal travel-time layered model to filter out any unwanted or spurious

reflections. The book of Taroudakis and Makrakis [9] contains a colection of contem-

porary applications for the theory in underwater accoustic porblems, since signals

from ocean sensors have become more numerous and sophisticated enough for the

realistic identification of the ocean’s parameters. Aster [10] focusses on a frequen-

tist statistical inverse approach, discussing such statistical tests as the Student-t

and Chi-square, and compares the theory to the Bayesian methods. Bayesian in-

verse theory is based on a probabilistic approach, but suffers from a drawback in

that an ad-hoc prior distribution for the model is chosen from intuitive experience

and that is considered in the theory as uninformative. Tarantola [11] gets around

this problem by choosing a homogeneous probability distribution and posits that it

is as informative as any other prior distribution.

The aim of this study is to use minimisation techniques, based on the in-

verse problem theory, for the seismic inversion of the material properties (MP) to

within ±1% of the difference between material properties at the surface and the

substratum. These properties are prescribed by model input parameters m through

the Fourier method or finite element method (FEM) as a material property (MP)

function (see below). An optimised amplitude is constructed from m to fit a tar-

get function. The optimised amplitude is constructed through the differential wave

equation containing the MP function, and the ODE represented succintly by the

operator G(m). The target amplitude, represented by a (synthetic) data function

d instead, is constructed the same way but with a MP function already given an-

alytically in advance. The least-square objective function is then a sum of squared

residuals, r2 = (G(m)−d)2, and must be minimised by any least-squares regression

technique. (See [10, 11] for the notation, and section 3.5 for more details).

With this goal in mind, it is possible that, as with quantum inverse scattering

problems, one could reconstruct a profile of the composition of the earth’s crust

from given seismic observations, then apply a model of its composition as a best
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fit to the data, using inversion (minimisation) techniques. Much observation on or

below the ocean bottom have brought out the need for a more theoretical basis to

explain these data. In this work a better technique is sought to predict seismic

signals reflected from the sea floor in these experiments. Our purpose would be to

develop a technique that can approach any given complex physical setup. To achieve

this aim we first concentrate on simple physical systems, then work our way towards

the more complex one’s. All along the way testing them with the actual observations.

This thesis follows on where B.R. Mabuza left off in [12], but now moves in

a different direction. Where Mabuza used quantum inverse scattering theory to

tackle the macroscopic seismic inversion problem, we are using minimisation tech-

niques, such as those described in [13, 14], and implemented with the Merlin package

[15, 16]. This is to achieve inversion of a similar seismic problem modelled after the

inverse problem theory with a probabilistic approach first started in [17] and devel-

oped to the full in [11] by Tarantola. This is used to estimate material properties

in a medium. The minimisation techniques used to invert non-linear models setup

are, for example, the following: The quasi-newton methods [18, 19], conjugate gra-

dient method [20], geometric methods (i.e. simplex) [21], and Levenberg-Marquardt

method [22]. This last technique is best suited for the sum-of-squares objective

function in the minimization.

The finite difference method (FDM) [23, 24, 25] is used for the solution of the

wave equation. Its real use comes when it is applied to functions that can only be

calculated numerically. Analytic expressions can be differentiated analytically and

the result of the derivative simply given as new expressions. Numerically derived

functions must be differentiated with the FDM. There are three varieties: forward

(0,+h), central (-h,+h) and backward (-h,0). We apply mostly the central flavour

as will be explained in section 3.1.

The finite element method (FEM) can be applied to any difficult problem where

a function has part or all of its domain cut up into elements. Smaller elements are
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concentrated at regions of higher slopes of the function for easier approximation,

and vice versa for larger elements. The function is approximated by basis func-

tions of a chosen order in each element. This method was actually invented by

structural engineers for complex elasticity projects with plate and shell elements

[26, 27, 28]. Non-linear material behaviour was also modelled and not only static

but dynamic problems were tackled at the time. Apparently unaware of this, the

applied mathematicians did similar studies, but using variational principles. Once

a convergence proof was given, it was realised the method could be interpreted

in terms of variational techniques and the two communities became aware of each

other. The method became important, thereafter, not only from a practical but

also a theoretical point of view. Academics from the natural sciences then applied

it to problems such as weighted residuals, viscous fluid flow, electromagnetic fields

and the coupled diffusion-convection problem involved in solving the Navier-Stokes

equations. Here we introduce the finite element method only in three dimensions.

However Falk [24] and Kosloff [29] pointed to some drawbacks of the FDM and

FEM. Falk [24] used the FDM on fluid-filled borehole modelling schemes, where grid

spacing was coarse with respect to the accurate representation of the shortest wave-

length. Difficulties originating from the large-scale differences between grid spacing

and the size of their borehole were overcome by a grid refinement technique. Kosloff

[29] used a fast Fourier Transform method (FFTM) to calculate spatial derivatives

instead of finite differences. The resulting operators were more accurate, requiring

only two grid points to resolve the spatial wavelength.

The spectral element method (SEM) was introduced by Patera [30] for fluid

dynamics and applied to elastic wave equations in realistic applications to two-

dimension and three-dimension seismic problems in [31]. It combined the generality

of the FEM, using a high order polynomial basis, with good convergence properties

of the spectral method.

We introduce the finite element method only in three dimensions for compar-
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ison. We used the Fourier series approximation to optimise the material property

function in one and two dimensions only. Such a function should be smooth, no

discontinuities allowed, and can only work on a small region around the space point

on which it is applied. The Fourier coefficients are the MERLIN input parameters

to be optimised.

In order that boundary reflections do not interfere with those of the wave

within the body of a numerical grid, these reflections must be eliminated. Origi-

nally this was attempted by simply adding an ad hoc damping function term to the

wave equation [32]. That did not succeed in eliminating the reflection completely.

Kleefsman [33], in her investigation of the stormy sea’s impact on research ships,

applied a numerical beach region with the addition of a pressure dissipation term.

Vacus [34] studied the corner problem of two intersecting boundaries with absorbing

conditions. Hagstrom used Radiation boundary conditions in his wave simulations

[35]. Further absorbing boundary conditions are described by Givoli in [36]. How-

ever, in this study a new approach is implemented for a non-reflecting boundary

condition [37]. This is based on Berenger’s new NRBC called the perfectly matched

layer (PML) [38] and already applied in [39] by Michou.

This thesis proceeds as follows. In chapter 2 the theory of elasticity and the

differential equations that govern wave propagation are discussed. Chapter 3 de-

scribes firstly the numerical methods to assist in the differentiating, approximating

or optimising the functions involved. Secondly, a method for absorbing the wave

at the boundaries is introduced. Finally, and primarily, the techniques, especially

Levenberg-Marquardt, that recover material properties via minimisation are de-

scribed. The results for the material properties are summarised in chapter 4 where

the methods are tested. The Fourier series is implemented only in one and two

dimensions with parallel layers. Only the finite element method is used in three di-

mensions with a feature. Finally in chapter 5 we give conclusions based upon these

results.



Chapter 2

Theoretical Framework

Here we discuss the elasticity theory, where we begin with the symmetric stress as a

surface traction and strain in deformations. These tensors are used in Hooke’s law

with the Lamé parameters, and the material properties can be derived from certain

experimental setups. Finally, we separate the wave equation via using Helmholtz

potentials into two partial differential equations representing longitudinal and trans-

verse waves. To simplify matters, we only consider propagation through fluids and

gas where the first Lamé parameter is non-homogeneous, the second one is zero, and

the vector potential transverse wave equation falls away.

2.1 Stress

The following is inspired by the treatment in [3]. Let V be a region bounded by

its surface S, occupied at time t by a material body. n is the outward normal unit

vector of S, and there exist two vector fields. One is called the body force f(x)

over V . The other is called the stress vector t(x,n) over S, also known as surface

traction. Then the total force on the volume region is
∫

S

t(x,n)dS +

∫

V

ρf(x)dV, (2.1)

where ρ is the mass density at point x.

Next we define the linear momentum density to be ρv(x) per unit volume,

where v(x) is the velocity of the body and ρ is assumed to be constant for the

6
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Figure 2.1: Region V bounded by surface S with normal n and traction t.

region considered, so that the total linear momentum of the body is

ρ

∫

V

v(x)dV. (2.2)

The rate of change of the linear momentum (Eq.2.2) is taken to be equal to

the resultant total force (Eq.2.1) on the body, i.e.
∫

V

ρ
dv

dt
dV =

∫

S

t(x,n)dS +

∫

V

ρf(x)dV. (2.3)

In this work we assume that the medium is at rest.

Suppose now that region V is cut into two parts V1 and V2 by a surface s. Re-

gion V1 is bounded by s and a part S1 of S, and similarly for V2. As the relationship

holds for any part of the body, it must hold for regions V1 and V2 separately. m

denotes the unit normal to s out of V1 into V2. Therefore
∫

V1

ρ
dv

dt
dV =

∫

s

t(x,m)dS +

∫

S1

t(x,n)dS +

∫

V1

ρf(x)dV

and
∫

V2

ρ
dv

dt
dV =

∫

s

t(x,−m)dS +

∫

S2

t(x,n)dS +

∫

V2

ρf(x)dV.
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Figure 2.2: Regions V1 and V2 with common surface s and normal m and outer

surfaces S1 and S2.
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Figure 2.3: Tetrahedron formed by oblique plane n and coordinate planes e1, e2

and e3.

Since V = V1 + V2 and S = S1 + S2 we have

0 =

∫

s

[t(x,m) + t(x,−m)]dS.

By an extension of this argument, a similar result holds for all sub-regions of

s. We conclude

t(x,m) = −t(x,−m). (2.4)

This shows that, at any given point, the stress vector acting on one side of a surface

balances that on the other side.

Consider a tetrahedron (Figure 2.3), three faces of which meet perpendicularly at

a point P and an oblique face whose unit normal n is at an arbitrary direction in

the first quadrant and has an area of A. Let each perpendicular face be parallel

to a Cartesian coordinate plane. Those planes with normals ei have areas Ai. The

angle between the face with normal ei and the oblique face is cos−1(ni) and its area

is related to A as Ai = niA. The volume of the tetrahedron is 1
3
hA, where h is the
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distance of P from the oblique face.

We apply Eq.2.3 to the tetrahedron. Assuming that |ρdv/dt| and |ρf(x)| are

bounded with maximum values a and b, we take the limit h → 0 keeping n fixed.

Then, since for small h,
∣

∣

∣

∣

∫

V

ρ
dv

dt
dV

∣

∣

∣

∣

≤ hAa

3

and
∣

∣

∣

∣

∫

V

ρf(x)dV

∣

∣

∣

∣

≤ hAb

3
,

we have that, as h → 0,

1

A

∫

V

ρ
dv

dt
dV − 1

A

∫

V

ρf(x)dV → 0. (2.5)

Hence, dividing each term in Eq.2.3 by A and then replacing Eq.2.5 with the stress

tensor

lim
h→0

1

A

∫

S

t(x,n)dS → 0.

The surface integral is taken over all four faces of the tetrahedron. In the limit the

areas tend to zero, since the Ai/A (i = 1; 2; 3) ratios are independent of h,

0 = t(x,n) + t(x,−e1)
A1

A
+ t(x,−e2)

A2

A
+ t(x,−e3)

A3

A
.

Applying Eq.2.4 and Ai = niA,

t(x,n) = n1t(x, e1) + n2t(x, e2) + n3t(x, e3).

With

t(x, e1) = τ11e1 + τ12e2 + τ13e3

t(x, e2) = τ21e1 + τ22e2 + τ23e3

t(x, e3) = τ31e1 + τ32e2 + τ33e3 (2.6)

this becomes

t(x,n) = [n1τ11 + n2τ21 + n3τ31]e1

+ [n1τ12 + n2τ22 + n3τ32]e2

+ [n1τ13 + n2τ23 + n3τ33]e3

= t1(x,n)e1 + t2(x,n)e2 + t3(x,n)e3. (2.7)



CHAPTER 2. THEORETICAL FRAMEWORK 11

In other words ti(x,n) = τjinj where τij are the components of the second order

stress tensor.

Using the divergence theorem on the surface integral we obtain

∫

S

τjinjdS =

∫

V

∂τji

∂xj

dV.

This holds for all regions V assuming the integrand is continuous. In component

form the total force (Eq.2.3) becomes

∂τji

∂xj

+ ρfi = ρ
dvi

dt
. (2.8)

The density of angular momentum about the origin is defined to be x×ρv per

volume, so that the total angular momentum becomes

∫

V

x × ρvdV. (2.9)

Now the rate of change of angular momentum is equal to the total torque

(Eq.2.9) around the origin

d

dt

∫

V

x × ρvdV =

∫

S

x × t(x,n)dS +

∫

V

x × ρf(x)dV, (2.10)

where the surface integral is nonzero only when the stress vector t(x,n) has a nonzero

component and direction perpendicular to both the surface normal vector n and the

position x (n and x is not parallel). In component form

d

dt

∫

V

ǫijkxjρvkdV =

∫

S

ǫijkxjtkdS +

∫

V

ρǫijkxjfkdV,

where ǫijk is the antisymmetric Levi-Civita symbol. Using the divergence theorem

it follows that

∫

V

ǫijk

{

∂(xjτrk)

∂xr

+ ρxjfk − ρ
d(xjvk)

dt

}

dV = 0. (2.11)

Now

ǫijk
∂(xjτrk)

∂xr

= ǫijk

(

δjrτrk + xj
∂τrk

∂xr

)

= ǫijk

(

τjk + xj
∂τrk

∂xr

)

and

ǫijk
d(xjvk)

dt
= ǫijk

(

vjvk + xj
dvk

dt

)

= ǫijk

(

xj
dvk

dt

)

,
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-

u
6

x

dx

((((((dx

P Q

u0 u1

Figure 2.4: Deformations u0 for point P and u1 for Q at each end of a line element

dx.

then using the component-form total force

∫

V

ǫijkτjkdV = 0, (2.12)

which hold for all regions V , then ǫijkTjk = 0. Putting i = 1, 2, 3 in turn we find

τ12 − τ21 = 0, τ13 − τ31 = 0, and τ23 − τ32 = 0. This gives a symmetric stress tensor

τij = τji (2.13)

2.2 Strain

Using the notation of [4] consider (Figure 2.4) two material points P and Q at time

t = 0, separated by a vector dx, that move by displacements u0 and u1 respectively.

We take the Taylor series of u1 around u0, with Einstein sum notation:

u1
i = u0

i +
∂u0

i

∂x0
j

(x1
j − x0

j) + 0(x1
j − x0

j)
2.
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After dropping 0(x1
j − x0

j)
2

u1
i = u0

i +
∂u0

i

∂x0
j

dxj. (2.14)

The second term is a product of a second order tensor and a vector. This tensor

can be separated into a symmetric and an anti-symmetric part,

u1
i = u0

i +
1

2

(

∂u0
i

∂x0
j

+
∂u0

j

∂x0
i

)

dxj +
1

2

(

∂u0
i

∂x0
j

−
∂u0

j

∂x0
i

)

dxj.

These last two terms refer to the strain tensor of second order

εij =
1

2

(

∂u0
i

∂x0
j

+
∂u0

j

∂x0
i

)

(2.15)

and rigid-body rotation vector

ωj =
1

2

(

∂u0
i

∂x0
j

−
∂u0

j

∂x0
i

)

, (2.16)

respectively. Thus

u1
i = u0

i + εijdxj + ǫijkωjdxk. (2.17)

The second term on the right hand side is the rigid-body translation.

In the strain tensor the normal strains are εii, i = 1, 2, 3 and the shear strains

are εi6=j, i, j = 1, 2, 3; while the symmetry of the tensor demands that εij = εji.

2.3 Hooke’s Law

Introduced by the british physicist Robert Hooke (1635-1703), this is stated in com-

ponent form as [4]

τij = cijklεkl, (2.18)

where cijkl are the components of the elastic tensor, and εkl is the strain tensor.

Due to the symmetry of both stress (τij = τji) and strain (εkl = εlk) tensors, the

components of the fourth-order tensor have the following symmetries, respectively:

cijkl = cjikl , cijkl = cijlk.
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The stress is also related to what is called the strain-energy function W =

1
2
cijklεijεkl which, combined with Hooke’s law, is ∂W/∂εij = τij = cijklεkl. This

implies that

cijkl = cklij

from ∂2W/∂εij∂εkl = ∂2W/∂εkl∂εij. These symmetries of the elastic tensor reduce

the number of independent components from 81 to 21.

If an elastic property is the same in any direction, it is called isotropic [5].

This requires that the elastic tensor is not influenced by any rotation of a system

of axes. In the following we are dealing with a isotropic system. With respect to

a Cartesian reference system (x1,x2,x3) the elastic tensor is cijkl, and with respect

to the rotated system (x′
1,x

′
2,x

′
3) it is c′ijkl. Then, because cijkl represents a 4th

order tensor, the transformation becomes

cpqrs = aipajqakralsc
′
ijkl,

where amn = cos(x′
m,xn) = cos(φmn). Because of the invariance under rotation of

the reference system, c′ijkl = cijkl. Thus

cpqrs = aipajqakralscijkl

which, as shown in [5], is satisfied only if

cijkl = λδijδkl + µδikδjl + κδilδjk, (2.19)

where we introduce the Lamé parameters λ, µ, and κ, as well as the Kronecker delta

δij.

Applying the symmetries of cijkl with respect to the two front and two back indices

yields

[κ − µ](δikδjl − δilδjk) = 0.

Let i = k, j = l. Then, δikδjl = 9, δilδjk = 3 is valid, and the last expression is only

accurate if κ− µ = 0 is true. Thus, the number of elastic constants for an isotropic

medium has been reduced to two,

cijkl = λδijδkl + µ(δikδjl + δilδjk). (2.20)
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Substituting this into Hooke’s law and converting it using properties of the delta

function we have the constitutive relationship between stress and strain:

τij = λδijεkk + 2µεij, (2.21)

or in matrix form [3]:





























τ11

τ22

τ33

τ12

τ13

τ23





























= λ(ε11 + ε22 + ε33)





























1

1

1

0

0

0





























+ 2µ





























ε11

ε22

ε33

ε12

ε13

ε23





























.

Hooke’s law for isotropic bodies is therefore given by Eq.2.21.

λ and µ are called Lamé parameters. They are constant for homogeneous

materials and functions of space otherwise. These parameters are determined by

experiments for any given material. Three of them are noteworthy here:

1. Uni-axial tension: A long, thin, cylindrical wire is stretched. When x3 is

taken along the wire, only the stress component τ33 is non-zero and related

to strain ε33 through a scalar constant E to be derived below. Hooke’s law

predicts an extension along the direction of the tension and a contraction in

the perpendicular direction. Thus

τii = λεkk + 2µεii = 0,

with τii = 0 for i = 1, 2 and τ33 = Eε33

Subtracting the first two components from each other

2µ(ε11 − ε22) = 0 → ε11 = ε22.

On the other hand, by defining both ε11 and ε22 equal to −νε33, we have

λ(1 − 2ν)ε33 − 2µνε33 = 0
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λ = 2λν + 2µν → ν =
λ

2(λ + µ)
. (2.22)

This is the ratio of the contraction to the elongation called Poisson’s ratio.

From the equation for τ33 we have

λ(1 − 2ν)ε33 + 2µε33 = Eε33,

E = λ(1 − 2ν) + 2µ = λ

[

1 − λ

λ + µ

]

+ 2µ,

E =
(3λ + 2µ)µ

λ + µ
. (2.23)

This is the ratio of the tension and elongation known as Young’s modulus

2. Pure shear: A bar with a rectangular cross section is in equilibrium under

shearing forces in the x1x2-plane. 2ε12 may be interpreted as a decrease in the

angle of two line elements that are parallel to the x1 and x2 axes respectively

before the deformation. If ε12 = Γ/2, then the corresponding tension is given

by τ12 = µΓ.

The ratio of τ12 to 2ε12 is known as the rigidity or shear modulus, i.e.

µ = γ =
τ12

2ε12

. (2.24)

3. Hydrostatic pressure: A mass is placed in a large container with a liquid inside

and a constant pressure p is applied to the liquid. This situation is also called

a purely normal stress. By Pascal’s law the body experiences only normal

traction T = −pn. Thus, the stress is S = −pI where I is the identity matrix.

Here ε11 = ε22 = ε33 ≡ ε and

τij = 3λεδij + 2µεδij

τii = τ = 3λε + 2µε

p = (3λ + 2µ)ε.

This gives ε = p/(3λ + 2µ).

The ratio of the tension to the expansion is known as three times the bulk

modulus:
τ

ε
= 3κ,
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where substituting for ε gives the bulk modulus:

κ = λ +
2

3
µ. (2.25)

We can now solve for the inverse of Hooke’s law (i.e. for εij):

εij =
1

2µ
τij −

λ

2µ
δijεkk.

Through contraction (i = j, δii = 3) and renaming the index to k, we find that

εkk =
τkk

3λ + 2µ
.

Then replacing εkk back in the previous relation, we get

εij =
1

2µ
τij −

λ

2µ(3λ + 2µ)
δijτkk. (2.26)

In terms of Young’s Modulus E and Poisson’s Ratio ν, Hooke’s Law and its

inverse become

τij =
E

1 + ν

(

ν

1 − 2ν
δijεkk + εij

)

, εij =
1

E
[(1 + ν)τij − νδijτkk] . (2.27)

2.4 Primary and Secondary Waves

In the following treatment the notation of [1] and [2] is used.

The equation of motion for continuous media is

ρ
∂2ui

∂t2
= τij,j + fvi, (2.28)

where the comma notation indicates differentiation with respect to xj, and repeated

indices are summed according to Einstein’s summation convention. It is satisfied at

all points of a continuous medium.

As derived in [1], the constitutive relationship between stress and strain is:

τij = λΘδij + 2µεij, (2.29)

where

Θ = ∇ · u = un,n
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and

εij = [∇u + (∇u)T ]/2 = (ui,j + uj,i)/2.

Thus, more explicitly

τij = λδijun,n + µ(ui,j + uj,i),

with first derivatives

τij,k = λδijun,nk +
∂λ

∂xk

δijun,n + µ(ui,jk + uj,ik) +
∂µ

∂xk

(ui,j + uj,i).

With no body forces and for non-homogeneous isotropic media, we have

ρ
∂2ui

∂t2
= τij,j = λδijun,nj +

∂λ

∂xi

δijun,n + µ(ui,jj + uj,ij) +
∂µ

∂xj

(ui,j + uj,i),

ρ
∂2ui

∂t2
= λun,ni + µ(ui,jj + uj,ij) +

∂λ

∂xi

un,n +
∂µ

∂xj

(ui,j + uj,i),

ρ
∂2ui

∂t2
= λ(u1,1i + u2,2i + u3,3i) +

∂λ

∂xi

(u1,1 + u2,2 + u3,3)

+ µ(ui,11 + u1,i1 + ui,22 + u2,i2 + ui,33 + u3,i3)

+
∂µ

∂x1

(ui,1 + u1,i) +
∂µ

∂x2

(ui,2 + u2,i) +
∂µ

∂x3

(ui,3 + u3,i),

ρ
∂2ui

∂t2
= (λ + µ)un,ni +

∂λ

∂xi

un,n + µui,nn +
∂µ

∂xn

(ui,n + un,i).

Then in vector short form in three dimensions:

ρ
∂2u

∂t2
= (λ + µ)∇(∇ · u) + ∇λ(∇ · u) + µ∇2u + (∇u + (∇u)T )∇µ. (2.30)

Assuming λ and µ to be constant, and substituting the following vector calculus

identity on the Laplacian

∇2u = ∇(∇ · u) −∇× (∇× u)

into Eq.2.30 with λ and µ constant, gives

ρ
∂2u

∂t2
= (λ + 2µ)∇(∇ · u) − µ∇× (∇× u). (2.31)

Using the Helmholtz Ansatz the displacement u is decomposed as the sum of

the gradient of a scalar potential and the curl of a vector potential:

u(r, t) = ∇Φ(r, t) + ∇× A(r, t). (2.32)
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For any vector field A, there is a zero divergence ∇(∇× A) = 0

and for any scalar field Φ, there is a zero curl ∇× (∇Φ) = 0.

Substituting the Helmholtz potentials (Eq.2.32) into the wave equation (Eq.2.31):

ρ
∂2(∇Φ + ∇× A)

∂t2
= (λ + 2µ)∇[∇ · (∇Φ + ∇× A)] − µ∇× [∇× (∇Φ + ∇× A)]

ρ
∂2(∇Φ + ∇× A)

∂t2
= (λ + 2µ)∇[∇ · ∇Φ] − µ∇× [∇×∇× A]

ρ
∂2(∇Φ + ∇× A)

∂t2
= (λ + 2µ)∇[∇2Φ] − µ∇2[∇× A],

where we used the given zero divergence and zero curl together with the following

identities:

∇× [∇×∇× A] = −∇[∇ · (∇× A)] + ∇2(∇× A) = ∇2(∇× A)

and

∇ · (∇Φ) = ∇2Φ.

We group terms of the same potential, and pull out the gradient and curl

operators:

∇
[

(λ + 2µ)∇2Φ − ρ
∂2Φ

∂t2

]

= ∇×
[

µ∇2A − ρ
∂2A

∂t2

]

. (2.33)

These sides are equal for all t and x, and also up to a constant which we take as zero.

This allows us to separate the elastodynamic equation of motion into two partial

differential equations:
∂2Φ

∂t2
=

λ + 2µ

ρ
∇2Φ (2.34)

for the longitudinal (P)rimary waves, and

∂2A

∂t2
=

µ

ρ
∇2A (2.35)

for the transverse (S)econdary waves, with

1. The P-wave Velocity cP (r) =
√

(λ + 2µ)/ρ and

2. The S-wave Velocity cS(r) =
√

µ/ρ.
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Primary or P-waves represent sound waves through solids and water. Secondary or

S-waves can only move through solids since liquids and gases cannot support shear

stresses. S-waves travel at typically half the speed of P-waves, but their amplitudes

are usually much larger, leading to greater destruction during earthquakes.



Chapter 3

Research Procedures and

Proposed Methods

In this chapter we use the following four methods. Firstly, the finite difference

method, calculates derivatives of functions defined on a grid and helps to solve

differential equations numerically. Secondly, the finite element method has been

used only in the Gaussian feature physical setup. This approximates functions on

domains where they are significantly different from zero. These domains are decom-

posed into square or rectangular elements. Each element is represented by fourth

order base functions determined by coefficients on the corners and equidistant points

in between. Thirdly, the Fourier Series is applied for only the single and multiple

interface setups, to optimise the material property (MP) function to a model tar-

get MP function. The Fourier coefficients are used as the optimising parameters.

Fourthly, an absorbing boundary condition is applied on numerical boundaries to

get rid of the reflections there.

The MERLIN package contains optimisation methods that help to recover the

model parameters to fit synthetic data or observed results.

21
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3.1 Finite Difference Method

Derivatives of functions are numerically handled by the finite difference method

[23, 24, 25], and can be used to solve the differential wave equation. This method

is obtained by expanding any sufficiently smooth function f(r) at r = b to a Taylor

series of 2nd order around r = a:

f(b) = f(a) + f ′(a)h +
f ′′(a)h2

2!
+ O(h3), (3.1)

where primes indicate first and second derivatives, and h = b − a should be within

the range of convergence of this series. Functions are called smooth if they contain

no discontinuities and there exist derivatives of up to infinite order.

Setting a = 0 and b = h, 0,−h:

f(h) = f(0) + f ′(0)h + f ′′(0)h2/2,

f(0) = f(0),

f(−h) = f(0) − f ′(0)h + f ′′(0)h2/2,

where O(h3) is dropped. In matrix notation











f(h)

f(0)

f(−h)











=











1 1 1
2

1 0 0

1 −1 1
2





















f(0)h0

f ′(0)h1

f ′′(0)h2











.

This can be solved for f(0)h0, f ′(0)h1, and f ′′(0)h2

f ′(0) =
f(h) − f(−h)

2h
(3.2)

f ′′(0) =
f(h) − 2f(0) + f(−h)

h2
. (3.3)

This is easily applied to space and time coordinates.

Using this in any of the partial differential equations given in the previous

chapter with
∂2u(r, t)

∂t2
= F (r, t),
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one can solve numerically the amplitude of the next time step given the amplitudes

of the current and previous steps:

un+1 = 2un − un−1 + F (r, t) ∆t2, (3.4)

provided F (r, t), which is the spatial derivative part, is also expanded by this

method.

3.2 Finite Element Method (FEM)

3.2.1 The Background

The method of finite elements was actually invented by structural engineers in the

1940s [26]. This method consists of subdividing the domain of the solution to a

differential equation into elements of variable size. On each of the elements, the

function is approximated by basis functions of a chosen order and their values (and

possibly normal derivatives) must match up on the boundaries between elements to

ensure continuity. Coefficients of these basis functions are evaluated from the solu-

tion on the vertices and typically on equidistant points within the element. These

are then interpolated by the basis functions inside of the element. These elements

are influenced only by their nearest neighbour elements that share a boundary (or

corner) with them, and not by elements further away. However on the boundary of

the domain Dirichlet, Neumann, or mixed boundary conditions are applied to make

the solution of the partial differential equation unique. In our program we apply the

FEM to the material parameters in order to minimise the objective function. Coef-

ficients are calculated from this function even on the domain boundaries. Therefore

the boundary condition is simple.

3.2.2 The Formalism

In what follows, we use the approach and notation from [27, 28]. Consider the prob-

lem of approximating a real-valued function f(x) over a finite interval of the x-axis.

Now we break up this interval into a number n of non-overlapping sub-intervals

denoted [xi, xi+1], (i = 0, 1, 2, ..., n − 1) and interpolate linearly between values of



CHAPTER 3. RESEARCH PROCEDURES AND PROPOSED METHODS 24

f(x) at the endpoints of each sub-interval. Then the piece-wise linear approximating

function depends only on the values fi of the functions at the nodal points xi.

In a problem where f(x) is given implicitly by a (differential, integral, func-

tional, etc.) equation, the values fi are the unknown parameters of the problem. In

the problem of interpolation, the values fi are known in advance.

In any one sub-interval, the appropriate linear approximating function is given

by

p
(i)
1 (x) = αi(x)fi + βi+1(x)fi+1, (3.5)

where

αi(x) =
xi+1 − x

xi+1 − xi

and βi+1(x) =
x − xi

xi+1 − xi

. (3.6)

The local functions αi(x) and βi(x) are known as shape functions. The values

fi and fi+1 are nodal parameters. There are only two parameters to an element,

thus the element is said to have two degrees of freedom. The shape function is said

to be of first order.

Hence the piecewise approximating function (Eq.3.5) over the whole interval

x0 ≤ x ≤ xn is

p1(x) =
n

∑

i=0

ϕi(x)fi, (3.7)

where

ϕ0(x) = α0(x) x0 ≤ x ≤ x1

= 0 x1 ≤ x ≤ xn

ϕi(x) = βi(x) xi−1 ≤ x ≤ xi

= αi(x) xi ≤ x ≤ xi+1

= 0 x0 ≤ x ≤ xi−1, xi+1 ≤ x ≤ xn

ϕn(x) = βn(x) xn−1 ≤ x ≤ xn

= 0 x0 ≤ x ≤ xn−1

are pyramid functions, and represent an elementary type of basis function.

These functions are identically zero except in the range xi−1 ≤ x ≤ xi+1 and are
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said to have local support.

Converting this into a standard coordinate X = x/h− i, i = 0, 1, 2, ..., n, with

a uniform element size h:

ϕi(X) = βi(X) = 1 + X −1 ≤ X ≤ 0

= αi(X) = 1 − X 0 ≤ X ≤ 1

= 0 X ≤ −1, X ≥ +1.

This represents a standard linear basis function that is unity at point zero, and zero

at plus or minus unity.

The function f(x) can also be approximated to the second order by piecewise

quadratic functions. They depend on fi at the nodal points xi, i = 0, 1, 2, ..., n, and

intermediary points xj+1/2, i = 0, 1, 2, ..., n − 1. This time the piecewise approxi-

mating function (Eq.3.5) over the same interval is

p2(x) =
n

∑

i=0

ψi(x)fi +
n−1
∑

j=0

χj+1/2(x)fj+1/2, (3.8)

where, in standard coordinates

ψi(X) = 1 + 3X + 2X2 −1 ≤ X ≤ 0

= 1 − 3X + 2X2 0 ≤ X ≤ 1

= 0 X ≤ −1, X ≥ +1,

which is unity at zero point, and zero at the other nodal and intermediary points,

χj+1/2(X) = 4X + 4X2 0 ≤ X ≤ +1;

= 0 X ≤ 0, X ≥ +1,

which is unity at the intermediary point and zero at the nodal points, with X =

x/h − j.

In this work we generalise only to fourth order approximations with

p4(x) =
n

∑

i=0

ψi(x)fi +
n−1
∑

j=0

[χj+1/4(x)fj+1/4 +χj+1/2(x)fj+1/2 +χj+3/4(x)fj+3/4], (3.9)
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where, in standard coordinates, ψi(X) is always unity at zero and zero at any other

point (nodal or intermediary), and χj+1/4(X), χj+1/2(X) and χj+3/4(X) is unity on

only one intermediary point (1/4, 1/2 and 3/4, respectively) and zero at any other

point. For the interpolation points in between both nodal or intermediary points,

ψi(X) with χj+1/4(X), χj+1/2(X) and χj+3/4(X) are otherwise non-zero and less

than unity and represent the 4th order polynomial basis functions.

3.2.3 The Derivative Approximation

In general, first derivatives of piecewise approximating polynomials p1(x) and p2(x)

are not the same as f(x). We would now like to construct an approximating function

which has the same values of function and first derivative as f(x) at the nodal points

xi. These are piecewise cubic polynomials p3(x) such that

Dkf(xi) = Dkp3(xi), (k = 0, 1; i = 0, 1, 2, ..., n),

where D = d/dx.

In the sub-interval [xi, xi+1], the appropriate part of the cubic polynomials is

given by

p
(i)
3 (x) = αi(x)fi + βi+1(x)fi+1 + γi(x)f ′

i + δi+1(x)f ′
i+1, (3.10)

where the shape functions are

αi(x) =
(xi+1 − x)2[(xi+1 − xi) − 2(x − xi)]

(xi+1 − xi)3
,

βi+1(x) =
(x − xi)

2[(xi+1 − xi) − 2(xi+1 − x)]

(xi+1 − xi)3
,

γi(x) =
(x − xi)(xi+1 − x)2

(xi+1 − xi)2
,

δi+1(x) =
(x − xi)

2(x − xi+1)

(xi+1 − xi)2
,

with i = 0, 1, 2, ..., n − 1 and f ′ denotes the derivative of f .



CHAPTER 3. RESEARCH PROCEDURES AND PROPOSED METHODS 27

The piecewise approximating function (Eq.3.10) over the whole interval

x0 ≤ x ≤ xn is given by

p3(x) =
n

∑

i=0

[ϕ
(0)
i (x)fi + ϕ

(1)
i (x)f ′

i ], (3.11)

where ϕ
(0)
i (x) and ϕ

(1)
i (x) are easily obtained from the above αi(x), βi(x), γi(x) and

δi(x).

3.2.4 The Bi-variate Approximation

We now consider approximation of a real-valued function f(x, y) of two variables

by piecewise continuous functions p1(x, y) over a bounded region R with boundary

∂R. The region is cut into a number of elements (which will only be of rectangular

shapes in this thesis).

Let a typical rectangular element be [xi, xi+1] × [yj, yj+1], where xi+1 − xi =

h1 (0 ≤ i ≤ m − 1) and yj+1 − yj = h2 (0 ≤ j ≤ n − 1). The bi-linear form

interpolating f(x, y) over the rectangular element is

p
(i,j)
1 (x, y) = αi,j(x, y)fi,j +βi+1,j(x, y)fi+1,j +γi,j+1(x, y)fi,j+1 +δi+1,j+1(x, y)fi+1,j+1,

(3.12)

where the shape functions are

αi,j(x, y) =
(xi+1 − x)(yj+1 − y)

h1h2

; βi+1,j(x, y) =
(x − xi)(yj+1 − y)

h1h2

;

γi,j+1(x, y) =
(xi+1 − x)(y − yj)

h1h2

; δi+1,j+1(x, y) =
(x − xi)(y − yj)

h1h2

.

The piecewise approximating function (Eq.3.12) over [x0, xm] × [y0, yn] is given by

p1(x, y) =
m

∑

i=0

n
∑

j=0

ϕi,j(x, y)fi,j. (3.13)

The basis functions ϕi,j(x, y) are identically zero except for the rectangular region

[xi−1, xi+1] × [yj−1, yj+1].

For three-dimensional case, the method proceeds in a similar way.
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3.2.5 The Implementation

The method is implemented for two and three dimensions here. The driver routine

calculates the Lamé parameter as follows:

• Firstly, the following variables are defined:

– The number of elements I for the x-axis, J for the y-axis and K for the

z-axis of the domain in question, determining the number of rectangular

elements.

– The positions of the corners of adjacent boundaries [xel(i), yel(j), zel(k)]

where i = 0, 1, ..., I; j = 0, 1, ..., J and k = 0, 1, ..., K.

– The input function λ(x, y, z).

– The final result, as variable splice, as output.

• Three index fields are created to facilitate the bookkeeping of FEM-coefficients,

they are declared as two-dimensional arrays:

Lil = iN + l and Mjm = jN + m and Nkn = kN + n, (3.14)

where l,m, n = 0, ..., N .

• The coefficients cIL,JM,KN are calculated from the input function λ(x, y, z) at

the nodal points (xel(i), yel(j), zel(k)), where l = 0, m = 0, and n = 0; and also

at the equally spaced intermediary points, where l 6= 0, m 6= 0, and n 6= 0.

• Next it is determined in which element the grid point falls. Variables

tx =
x − xel(i − 1)

xel(i) − xel(i − 1)
and ty =

y − yel(j − 1)

yel(j) − yel(j − 1)
and tz =

z − zel(k − 1)

zel(k) − zel(k − 1)
(3.15)

local to that element are then calculated.

• The function is obtained as a linear combination of Nth order basis polyno-

mials (here N = 4) in the element:

F (x, y, z) =
N

∑

l=0

N
∑

m=0

N
∑

n=0

ciL,jM,kN fN
l (tx)f

N
m (ty)f

N
n (tz), (3.16)
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where

fN
n (t) =

N
∏

n6=n0

Nt − n

n0 − n
. (3.17)

3.3 Suppression of Reflections at the Boundary

One of the challenges in modelling wave physics on a numerical grid is to get rid

of the back-reflection at the numerical boundaries. The wave ought to move off

the mesh unhindered, or at least diminish there. One way this can happen is if its

amplitude decrease with a numerical beach region at these boundaries [33]. These

functions cannot completely wipe out the reflection, but the wave is simulated to

attenuate as it approaches the boundary. In other words the propagation energy

is absorbed by attenuating (damping) it. By analogy this can be interpreted by

padding sponges to the walls of a studio to prevent sound waves from escaping to

the outside.

In the literature [32] there is a space-based term of the form α(x)[∂u/∂x] with

α(x) = a exp(−c(x − w)2)

on one boundary. We introduce the time-based term α(x)[∂u/∂t] to the differential

equation as

ρ(x)

[

∂2u

∂t2
+ 2α(x)

∂u

∂t

]

=
∂

∂t

[

λ(x)
∂

∂t
u(x, t)

]

. (3.18)

This ad hoc damping function is chosen as

α(x) = α0

[

w − x

w

]

on the original boundary,

= α0

[

x − do + w

w

]

on the opposite boundary,

= 0 in the middle,

and later, in squared form,

α(x) = α0

[

w − x

w

]2

on the original boundary,

= α0

[

x − do + w

w

]2

on the opposite boundary,

= 0 in the middle,
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where do is the space mesh size, w is the zone inner boundary and α0 defines the

damping strength.

This method does not satisfactorily give the correct results of an absorption

of the wave’s reflected amplitude. That is, a reflection starts appearing at the inner

boundary to the damping zone before the reflection at the numerical outer boundary

could disappear. We have two reflections side-by-side, instead of none at all.

So far we have considered only methods that are all ad hoc. Other absorbing

boundary conditions (ABC’s) were tried. For these we go to [36] for a review. Here

Givoli started off with a radiation condition given by Sommerfeld [40] for simple

electromagnetic waves in one dimension. After defining the conditions for a non-

reflecting boundary (the NRBC’s), he went on to the two and three dimensions and

introduced a technique of Engquist & Majda [41, 42] based on pseudodifferential

equations. Then Lindman [43] suggested before anyone else at the time that one-

way wave equations could be used as NRBC’s. These were applied by Trefethen &

Halpern [44, 45] using rational functions to approximate the irrational root function.

Where [41, 42] used only Pade approximations for the rational function, [44, 45] con-

sidered Chebyshev, Chebishev-Pade, Newmann, L2 and Lz approximations as well.

Lindman [43] and Randall [46] considered developing NRBC’s by first discretising

the wave equations and then deriving boundary conditions with good transmitting

properties with respect to the difference equations. In [41, 42] boundary conditions

were developed in the continuous problem before discretisation of both the differ-

ential equations and their conditions. Wagatha [47] started off with the nonlocal

condition of [41, 42] and then considered local approximations to this that depended

on a parameter β. For certain choices of β, these NRBC’s reduces to the local con-

ditions of [41, 42]. Next we have Reynolds [48] who used a similar technique than

[41, 42], with local NRBC’s allowing the wave to continue over the boundary in

cartesian coordinates and thus reducing the reflection coefficients there. This is a

modified version of the one used in [42], although less rigorous. A scheme for Dirich-

let/Newmann boundary conditions in elastodynamics was proposed by him. Bayliss
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& Turkel [49, 50, 51] developed a sequence of boundary conditions, of increasing

order, with axial and spherical symmetries and which is based on the asymptotic

solutions at large distances. Feng [52] also obtained a sequence of NRBC’s by first

deriving an exact nonlocal integral relation on the boundary with an appropriate

Green function. Then this is localised by an asymptotic approximation valid at large

distances. Higdon [53, 54] obtained discrete NRBC’s in a rectangular mesh by con-

sidering plane waves at discrete angles of perfect absorption to the mesh boundary.

He then goes further and proves a theorem which states that if a NRBC is based on

a rational symmetric approximation to the dispersion relation with respect to the

outgoing waves (and cannot be improved by a simple modification of its coefficients),

this would be equivalent to his BC’s at suitable angles. This compares well with

those of [41, 44, 47]. Earlier Keys [55] arrived at the same conditions and compared

them nicely with [41, 48] and those of Lysmer & Kuhlemeyer [56] in the context of

elastodynamics. Kriegsmann & Morawetz [57] obtained a NRBC for time-harmonic

equations while Engquist & Halpern proposed a NRBC for the dispersion relation.

And this concludes the review of NRBC’s from [36]. Some of these methods, and

newer ones, are explained in more recent books like [58, 59]. One new technique will

now be explained next.

3.3.1 A perfectly matched layer.

Some of these NRBC’s has been known to produce spurious reflections in certain

conditions or couldn’t satisfactorily reduce them. Then Berenger [38] proposed a

new NRBC called the perfectly matched layer (PML) boundary condition in two-

dimensional electromagnetic problems. This was later put in book form by him in

[60].

In [38] two special cases are tried, the transverse-electric (TE) [Ex, Ey, Hz]

and the transverse-magnetic (TM) [Hx, Hy, Ez] waves. In the TE problem we have

three Maxwell equations and the magnetic field is split into the components of the

electric field to increase these coupled equations to four. When the wave satisfy an
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impedance condition σ/ǫ0 = σ ∗ /µ0, where σ and σ∗ are the electric and magnetic

conductivities respectively, the medium is a vacuum and the wave propagates unhin-

dered through the barrier without a reflection. Other special cases are considered.

If σx = σy = σ∗x = σ∗y = 0, where subscripts x and y indicates the components

of conductivities, then we have Maxwell equations for a vacuum. If σx = σy 6= 0

and σ∗x = σ∗y = 0, the medium is conducting the waves. If σx = σy 6= 0 and

σ∗x = σ∗y 6= 0, the medium is absorbing the waves. When σy = σ∗y = 0, a

wave propagating along the x-axis, (Ey, Hzx), is absorbed, but not waves (Ex, Hzy)

traveling in the y-direction. Vice versa when σx = σ∗x = 0.

When we approach the TM problem, however, it is the electric field that must

split into the components of the magnetic field. And similar conditions apply here

than in the TE problem. After all the derivations and calculations of Maxwell’s

equations, we finally arrive at a solution wave form of ψ(ρ) = ψ(0)
√

R(ρ.θ) where

R(ρ, θ) = e−2f(θ)ρ which impinges the absorbing layer at angle θ.

3.3.2 A New Non-Reflecting Boundary Method

A better method is desirable and has been presented and published in [37]. It is a

theory of non-reflecting boundary conditions (NRBC) where we use an exponential

function of an absorbing 3rd order polynomial.

In [37] the above-mentioned exponential function is e
R

x

0
α(x)dx where α(x) is the

quadratic polynomial above. Here we define F (x) =
∫ x

0
α(x)dx for simplification.

Any constants resulting from the integration are absorbed in the constant Fo when

F (x) is restated below. Then α(x) = dF (x)/dx and dα(x)/dx = d2F (x)/dx2. F (x)

has the following properties:

F (x) = 0, x < w

lim
x→∞

F (x) = ∞.

We then have v(x − t) = eF (x)u(x − t) with time and space first derivatives

u̇ = e−F v̇ = −e−F v′ and u′ = (e−F v)′ = −e−F F ′v + e−F v′ = −F ′u − u̇,
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where u′ = ∂u/∂x, and u̇ = ∂u/∂t.

Without using λ(x) or ρ(x) we have v̈(x, t) = v′′(x, t). When we substitute for v(x, t)

in this form, the differential equation becomes

ü + 2F ′u̇ = u′′ − [(F ′)2 − F ′′]u or ü + 2αu̇ = u′′ − [α2 − α′]u, (3.19)

where now

F (x) = F0

[

x − w

d − w

]3

x ∈ [w, d]

= 0 otherwise,

with f0 arbitrary, and

α(x) = αo

[

x − w

d − w

]2

x ∈ [w, d]

= 0 otherwise,

where αo = 3F0/(d − w).

With uniform λ implemented, w is set to d/2. With λ(x) as defined in section

4.2 by its function and br at d/2, there are 2 regions, one on each boundary. Then

F (x) = F0

[

x − w2

d − w2

]3

x ∈ [w2, d]

= F0

[

w1 − x

w1

]3

x ∈ [0, w1]

= 0 otherwise,

where w1 and w2 are close to the initial and opposite numerical boundary respec-

tively.

Here again, for v(x − ct) = eF (x)u(x − ct), the first derivatives are

u̇ = e−F v̇ = −e−F v′c and u′ = (e−F v)′ = −e−F F ′v + e−F v′ = −F ′u − u̇/c.

Using λ(x) and ρ(x) we get ρ(x)v̈(x, t) = [λ(x)v′(x, t)]′. The following differential

equation is obtained:

ü

c2
+

[

b2

c2
+ 2F ′

]

u̇

c
= u′′ − {(F ′)2 − F ′′}u (3.20)

or
ü

c2
+

[

b2

c2
+ 2α

]

u̇

c
= u′′ − {α2 − α′}u, (3.21)
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with α(x) and where c2(x) = λ(x)/ρ(x) and b2(x) = λ′(x)/ρ(x).

When λ(x) is uniform and set to unity (λ′(x) is zero), then c(x) = 1 and

b(x) = 0, reducing this differential equation to the previous differential equation

derivation.

This is producing satisfactory results where the wave u(x, t) = e−F (x)v(x, t) de-

cays almost completely on entering the damping zone with no reflections elsewhere

in the zone.

In [37] similar derivations were done and we implemented them in two and

three dimensions with similar results, where the first and second space derivatives

were replaced by their gradient and Laplacian equivalents respectively.

3.4 Fourier Series

For optimisation purposes we approximate the λ(x) by a truncated Fourier series.

The coefficients of this Fourier series are then used as Merlin minimisation param-

eters.

The Fourier series decomposes a given periodic function or signal into a sum

of simple oscillating functions, namely sines and cosines (or complex exponentials).

For a 2π-periodic, continuous function f(x) that is integrable on [π, π], the

numbers

an =
1

π

∫ π

−π

f(t) cos(nt) dt, n ≥ 0

and

bn =
1

π

∫ π

−π

f(t) sin(nt) dt, n ≥ 1

are called the Fourier coefficients of f . One introduces the partial sums of the Fourier

series for f , often denoted by

(SNf)(x) =
a0

2
+

N
∑

n=1

[an cos(nx) + bn sin(nx)], N ≥ 0.
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The partial sums for f are called trigonometric polynomials. One expects that

the functions SNf approximate the function f , and that the approximation improves

as N tends to infinity on points of continuity only. The infinite sum

a0

2
+

∞
∑

n=1

[an cos(nx) + bn sin(nx)] (3.22)

is called the Fourier series of f .

However in our application we do not use the cosine terms because they do

not agree with the required boundary conditions.

3.5 The Merlin Minimisation Package

For minimisation we use the freely available package MERLIN [15, 16]. This package

contains a colection of optimisation techniques to run on our program and requires

two dimensions (number of terms M , number of parameters N), the input param-

eters, and one of two user supplied subroutines: Subsum for the Sum-of-Square

minimisation of the objective function, or Funmin for the minimisation of a general

function.

Suppose we have the points (ti, di); i = 1, 2, ...,M , where M is the ‘number

of terms’ of the objective/general function. We want to construct a function G(t)

such that di ≈ G(ti) for all i = 1, 2, ...,M . We model G(t) = G(t,m1,m2, ...,mN)

with input parameters mj; j = 1, 2, ..., N , where N is the ‘number of parameters’

which will be varied to achieve the above goal. Equivalently this corresponds to

minimising the objective function

F (m1,m2, ...,mN) =
M

∑

i=1

f 2
i (m1,m2, ...,mN) =

M
∑

i=1

[di − G(ti,m1,m2, ...,mN )]2

where di are values from the target function and m = (m1,m2, ...,mN) is

the parameters, in vector form, each component optionally subject to lower and

upper limits [li, ui]. Each and every parameter can also be constrained (or fixed)

individually to certain values and thus not take part in the minimisation process.
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When an optimised technique is chosen to run the program, MERLIN makes use of

the gradient, Jacobian, and Hessian of F (m) to calculate the next step in bringing

the point m closer to the minimum position m0 in the parameter space. These are

g = ∇F, Jij =
∂Fi

∂aj

, Hij =
∂2F

∂ai∂aj

.

In this thesis the Levenberg-Marquardt algorithm is used and only the gradient and

Jacobian is relevant (see section 3.5.3 below), thus the process terminates when

these quantities reach a minimum tolerance value, whichever comes first. Our above

goal is then reached when m ≈ m0 and F (m0) ≈ 0. The technique also terminates

when the rate of change in the parameters or in the objective function passes below

a minimum tolerance each, separately. Then it also terminates after a maximum

number of steps (calls or iterations) have been reached and it returns a message say-

ing that no further progress is possible. But in this thesis all tolerances is set to zero.

In these optimisation techniques the input parameters m are initialised to start

the process. No intervals are set on, and no equality or inequality constraints apply

to the parameters (or the objective function) in this thesis. Thus no regularation is

done here. These parameters are built into the material property function through

G(t,m) in question. Correspondingly, an analytic function of the material properties

is built for d, to which the optimised function must fit after the technique is run. A

procedure is used to derive the seismic signals (wave equations, amplitude) via finite

differences in both cases: one from the analytically given target, and the other from

the optimised function (where the parameters are yielded by MERLIN). The target

function must return a reference or calculated signal d and the optimised function

is initialised to represent the modeled signal G(t,m). As shown below the objective

function is defined as a sum over propagation time of the squared difference between

the modeled (measured) and referenced (calculated) signals. When the technique

runs, these parameters must return a set of values (the minimum point m0) such

that the optimised function must closely fit the model and the objective function

approaches zero.



CHAPTER 3. RESEARCH PROCEDURES AND PROPOSED METHODS 37

3.5.1 User supplied subroutines

In this thesis we use Subsum. The objective function for one dimension is then a

sum of squared terms over the time grid tk, k = 1, ..., K, where K is the number of

terms, and at a fixed space measurement point xm:

F (t) =
K

∑

k=1

fk(tk)
2 =

K
∑

k=1

[w(xm, tk) − u(xm, tk)]
2, (3.23)

where G(tk,m) = w(xm, tk) is the amplitude resulting from the model (optimised

function) and dk = u(xm, tk) the amplitude resulting from the simulated target

function.

In two dimensions and three dimensions we use several points (xm, ym) or

(xm, ym, zm), m = 1, ...,M , to measure the amplitude. The origin (ax, ay) or

(ax, ay, az) of the point-source, outward-moving wave is one of those points. These

are described in chapter 4. The objective function is now summed not only over the

time grid but also over these measurement points:

F (r, t) =
K

∑

k=1

M
∑

m=1

fkm(rm, tk)
2 =

K
∑

k=1

M
∑

m=1

[w(rm, tk) − u(rm, tk)]
2, (3.24)

where now m is the current point index from a total of M measurement points.

First, a reference amplitude u(rm, t) is calculated during Subsum’s first run to

obtain synthetic data. This is done using the material parameters defined by the

target functions. Then w(rm, t) is calculated using the material parameters as de-

termined by the model input parameters through MERLIN. The objective function

should then decrease to zero, when w(rm, t) approach u(rm, t), as the calculated

material parameters approach the original target material property.

3.5.2 The Minimisation Algorithms

The minimisation techniques used in Merlin are the following: The quasi-newton

methods dfp and bfgs described in [18] and [19] respectively, the conjugate gradi-

ent method congra described in [20], the geometric method simplex in [21] and the

Levenberg-Marquard method leve in [22]. See also [11, 13, 14] for further explana-
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tions of these methods.

The first three algorithms are gradient methods that involve first (gradient)

and second (Hessian) derivatives of the objective function (of quadratic form) with

respect to the input parameters to calculate a search direction and update the pa-

rameters accordingly. The steepest-descent method updates the parameters using

the gradient of the objective function. In the conjugate-gradient method the search

direction must first be adjusted from the gradient to satisfy conjugate conditions.

Among the many different methods to alter the search direction are Fletcher-Reeves

(FR), Polak-Ribière (PR) and Hestenes-Stiefel (HS). These methods are equivalent

for quadratic function problems but differ from each other otherwise. The minimi-

sation technique in Merlin with these options is congra.

A more straightforward method of calculating these quadratic functions is the

Newton search method. Here the space metric information is calculated from the

Hessian of the objective function whose inverse is multiplied by the gradient, and

then used to update the parameters. An approximation to this is what is called the

quasi-Newton methods, in which all second and higher order derivatives within the

Hessian are dropped.

Sometimes it is necessary to precondition the gradient before it is used in the

update. In variable-metric methods the preconditioning operator is allowed to ap-

proach the inverse Hessian by varying it from one iteration to the next. It starts by

behaving like the steepest-descent or conjugate-gradient methods and ends through

the behaviour of the Newton or quasi-Newton methods. The complementary dfp

and bfgs are two such methods used in Merlin. This also suggests a Broyden family

of methods in which a mixture of these methods is used together, one weighted with

the other [14].

Simplex is a technique based on imposing a two-dimensional equilateral triangle

or three-dimensional equidistant tetrahedron on the geometry of the problem. Then
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this simplex moves and changes shape by reflection and contraction until a minimum

of the function is reached.

3.5.3 Levenberg-Marquardt method

Currently we use the leve minimisation subroutine in Merlin: The Levenberg-Marquardt

(LM) algorithm leve is a restricted-step method, only in the L2-norm for least-square

non-linear problems, that locates a minimum of a function expressed as the sum of

squares of nonlinear functions. According to the abstract of Lourakis [22]: “[It]

can be thought of as a combination of [the] steepest-descent and the Gauss-Newton

method[s].” When the current solution is far from the correct one, the steepest-

descent behaviour dominates: slow but guaranteed to converge. When close to the

correct solution, the Gauss-Newton behaviour takes over.

In the following, vectors are small boldface and AT is the transpose of matrix A.

|| · || is a 2-norm. We map a parameter vector p ∈ R
m to an estimated measurement

vector x̂ ∈ R
n with an assumed function x̂ = f(p). An initial parameter estimate

p0 and corresponding measurement x is provided. It is desired to find a vector p+

that best satisfies the functional relation f , i.e., that minimises the squared distance

ǫT ǫ, with ǫ = x − x̂ = δx. The basis of LM is a linear approximation to f in

the neighbourhood of p. For a small ||δp|| a Taylor series expansion leads to the

approximation:

f(p + δp) ≈ f(p) + Jδp, (3.25)

where J is the Jacobian matrix of f(p). Like all non-linear optimisation methods,

LM is iterative, starting from p0 it produces a series of vectors p1,p2, ... that con-

verge to the local minimiser p+ for f . At each step it is required to find the δp that

minimises the following:

||x − f(p + δp)|| ≈ ||x − f(p) − Jδp|| = ||ǫ − Jδp||.

The desired δp is therefore a solution to a linear least-square problem: the

minimum is obtained when Jδp − ǫ is orthogonal to the column space of J . This

leads to JT J(δp − ǫ) = 0. This yields δp as a solution to the so-called Normal
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equation:

JT Jδp = JT
ǫ. (3.26)

The matrix JT J on the left hand side of Eq.3.26 is an approximate Hessian. The LM

actually solves a variation of Eq.3.26, known as the augmented normal equations:

Nδp = JT
ǫ, (3.27)

where N = JT J + ν diag(JT J). The strategy of adjusting diagonal elements of N

is called damping and the ν is referred to as the damping term.

If the updated parameter term leads to a reduction in the error ǫ, the update

is accepted and the process repeats with a decreased value of ν. Otherwise ν is

increased, the augmented normal equation is solved again, and the process iterates

until a value of δp is found that decreases error. The process of repeatedly solving

Eq.3.27 for different values of the damping term until an acceptable parameter vec-

tor update is found, corresponds to one iteration of the LM algorithm.

If the damping term is set to a larger value, the matrix N is nearly diagonal

and the LM update step δp is near the steepest-descent direction. The magnitude of

δp is reduced contributing to its slowness in this behaviour. Damping also handles

situations where the Jacobian is rank-deficient and JT J is singular. The LM then

defensively navigates a region of the parameter space where the model is highly

non-linear. If damping is small, the LM step approximates the exact quadratic

step appropriate for a fully linear problem in a Gauss-Newton way. LM is adaptive

because it controls its own damping: it raises damping if a step fails to reduce error,

otherwise damping is reduced. In this way the LM is capable of alternating between

a slow descent approach when far from the minimum and a fast convergence when

in the neighbourhood of the minimum.

The LM algorithm terminates when at least one of the following conditions is

met:

• The magnitude of the gradient of ǫT ǫ, i.e. ||JT ǫ|| drops below a threshold ε1

• The relative change in the magnitude of δp drops below a threshold ε2
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• The error ǫT ǫ drops below a threshold ε3

• The maximum number of iterations kmax is completed.



Chapter 4

Results

We used a laptop with good computing (1GHz CPU) and memory (1GB RAM)

capability for the simulations. In one dimensional calculations the program run-

times are between seconds and not more than about 3 minutes. In two dimensions

the calculations take between a few minutes and about an hour to complete. In

three-dimensional case, however, the program runs for hours, even up to half a day.

For three dimensions or more complicated setups, these calculations then become

very time-consuming to complete. A supercomputer with more memory capacity or

a server with more than one processor for parallel computing is needed to achieve

faster convergence and shorter run-time.

Here we discuss damping conditions at the boundaries and the behaviour of the

optimisation method before giving material property results for the following setups.

In one dimensional setup are the details firstly for one interface and secondly for

more than one interfaces. In two dimensional setup we have similar results for one

interface and then parallel multiple interfaces. All the results for the interfaces made

use of the Fourier series method. However, all results for the Gaussian feature used

the finite element method (FEM) instead. So for two and three dimensions we have

comparative results for a Gaussian feature standing alone without any interfaces

present. In three dimensions there are no data for any interface setups. These

results are more clearly shown in the material property plots. With the property

plots, we also give plots of the wave propagation.

42
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4.1 Preliminaries

4.1.1 Damping Condition

Throughout the calculations in sections 4.2, 4.3 and 4.4 the following damping con-

ditions are in effect.

One dimension

There is only one zone on the original side of the mesh, with the zone inner boundary

a tenth of the way from the mesh boundary: w = 0.1d, where the total distance is d

and fixed to 1. The zone functions f(x) are cubic polynomials as defined in section

3.3.2. The strength of each zone increases from zero at the inner boundary up to

the value of f0 = 5 on the outer side.

The damping zone function (Figure 4.2) is restated here:

f(x) = f0

[

w − x

w

]3

x ∈ [0, w]

= 0 otherwise.

This is done so that the reflected waves, sampled at position x = 0.125, can also

assist in optimising the objective function at later propagation times t → 2. This

is seen in figures 4.6 and 4.14 in section 4.2. Since the optimisation does a good

job with these reflections, we keep these one dimensional results. They are however

absorbed at the original boundary where damping is still in place.

Two and three dimensions

In one dimension the boundary conditions apply to the amplitude u(x, t) used as

the function in the differential wave equation below. However, in two and three

dimensions the calculated function for the partial differential equation is the scalar

potential Φ(x, t), and the same boundary conditions apply to that.

The damping function on all sides in two and three dimensions is



CHAPTER 4. RESULTS 44
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Domain V

0

1

1

Figure 4.1: The domain V with the damping zones at the sides in 2D. In 3D this

becomes a cube of work volume within a cube of domain V .

f1(x) = f0

[

wx1
− x

wx1

]3

x ∈ [0, wx1
]

= f0

[

x − wx2

d − wx2

]3

x ∈ [wx2
, d]

= 0 otherwise,

f2(y) = f0

[

wy1
− y

wy1

]3

y ∈ [0, wy1
]

= f0

[

y − wy2

d − wy2

]3

y ∈ [wy2
, d]

= 0 otherwise,

f3(z) = f0

[

wz1
− z

wz1

]3

z ∈ [0, wz1
]

= f0

[

z − wz2

d − wz2

]3

z ∈ [wz2
, d]

= 0 otherwise.

.

Then

f(r) = f1(x) + f2(y) + f3(z),

where the inner positions are wx1
= wy1

= wz1
= 0.15 and wx2

= wy2
= wz2

=

0.85, and the zone strength f0 = 10. Zones x1 and x2 add constructively with both
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y1 and y2, and z1 and z2 at the corners and sides. When working in two dimensions,

only f1(z) and f2(z) are used. See Fig.4.3.

These zone strength and position values (here and in one dimension) are chosen

large enough until reflection of the waves can no longer be seen.

As can be seen in the plots of wave propagation in two and three dimensions,

the amplitude falls to zero a short distance from and parallel to the boundaries.

Those regions of near-zero amplitude marks the damping area. Compared with the

amplitude in the middle region, one can see the effectiveness of damping at the

corners, sides and faces. Thus, no boundary reflections are seen in these plots.

4.1.2 Objective Function

Figure 4.4 (for one-dimensional multi-layered results below) shows how the sum-of-

squares was minimised by the Levenberg-Marquard (LM) technique with a maximum

iteration setting after which the MERLIN package would stop with the message in-

dicating that fact. In most cases it stops below its maximum setting, where the

message would be that no further progress is possible.

For the optimisation process to proceed a gradient ∇pf(p) of the objective

function f(p) with respect to the input parameter space p is calculated. There is

one gradient component for each dimension of the parameter space. Say one has

N input parameters, pn, n = 1, .., N , that represents the N -dimensional parameter

space. Each component ∂f(p)/∂pn of this gradient is calculated one MERLIN call

at a time. The technique would calculate one component of the gradient and ad-

vance to the next call, do the next component and advance, until all the components

have been done in about N steps before f(p) can move to its next (lower) value.

As a result a plateau is formed in the objective function data around every N , each

one successively lower than the previous one but constant during the evaluation of

the whole gradient. Once the gradient is evaluated, it is used to move the objective

function to a new (and lower) value. The gradient calculation starts all over again
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Figure 4.2: The damping function in one dimension
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Figure 4.4: The plot of the Sum-of-Squares objective function as used by the

Levenberg-Marquardt method.

and a new plateau then forms there. When one increases the parameter space di-

mension N , the longer the optimisation would take to converge.

As you can see in figure 4.4 the minimisation technique converges fast and,

when it reaches its supposed minimum, it stays at that value for a while longer

before stopping. That seems to indicate the Gauss-Newton behaviour is dominant

in the LM. One drawback of this is that, when the objective function is near its

minimum, the input parameters would also freeze into place with their latest values.

If these values are such that the material property function has not been recovered

properly, then the input parameter vector has stopped at the wrong place, even

though the objective function (sum-of-squares) minimised properly. Many attempts

(by trial-and-error) were made by changing the MERLIN input parameter starting

vector and even altering or tweaking the model to fit the data properly. No penalty

term has yet been introduced to the objective function to regularise it.
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4.1.3 Use of units

Our theoretical framework can be used for any metric unit system (e.g. the cgs, mks

(SI) or British units) since they involve only space, time and mass units. We do not

deal explicitly with mass, rather it is contained implicitly in the material properties

of the mass density and bulk modulus. The wave function can be unitless or in the

case of displacements in the earth’s crust have a length unit.

However, our physical problem is purely theoretical with only mathematical

computations, and no real data from the field or any sources are tested. It is also

simplified in the sense that space in each dimension (and possibly time also) runs

from zero to unity. Mass density is unity throughout and does not feature in the

calculations. The bulk modulus is between one and four for both the interface and

gaussian feature. The wave function has unity amplitude initially until it interacts

with the interface or feature. We concern ourselves only with the basic setup and

therefore it does not matter which metric system of units one uses.

It is only when one starts testing this basic theory with the real data supported

by a survey, that measurement units will become useful. Then we can say that we

work for instance with a distance of 6 kilometers or an area of 20 square miles. But

since the theory has not been tested, the values of all quantities presented remain

dimensionless.

4.2 One-dimensional Calculations

4.2.1 One interface

Wave Propagation

We need to generate a wave amplitude u(x, t) that satisfies the following differential

equation (in one dimension):

ρ(x)
∂2u(x, t)

∂t2
=

∂

∂x

(

λ(x)
∂u(x, t)

∂x

)

=
∂λ(x)

∂x

∂u(x, t)

∂x
+ λ(x)

∂2u(x, t)

∂x2
, (4.1)
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Figure 4.5: The physical setup for wave propagation in a one-dimensional medium

with one interface

where ρ(x) and λ(x) are the mass density and first Lamé parameter of the material

which can be obtained for µ(x) ≡ 0 (second Lamé parameter) and u = u(x, t) from

Eq.2.30. The solution to the wave equation is composed of an incoming and an

outgoing wave:

u(x, t) = u−(x + ct) + u+(x − ct). (4.2)

For the moment we consider only the outgoing wave u+(x − ct). This is not a

boundary value problem, but one with initial conditions only. The functional form

for this is Gaussian:

u(x, 0) = exp(−α(x − a)2),

u(x, ∆t) = exp(−α(x − a − ∆t)2),

where ∆t is the time-step, α = 2002 = 4 × 104 is the Gaussian sharpness and

a = 0.3 is its initial position.

The space and time, in which the amplitude moves, is discretised into a number

of equal steps in either dimension. The total distance is d = h·N = 1 with space-step

h = 0.005 and numerical grid density N = 200. The total time is t = dt ·M = 1 with

time-step dt = 0.002 and number of time steps M = 1000. The Courant-Friedrichs-

Lewy (CFL) condition for this differential equation is satisfied: c dt/h = 2c/5 < 1

where c =
√

µ(x)/ρ (see below) is between 1 and 2.
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Figure 4.6 shows the wave amplitude over both space and time. In this plot the

amplitude starts at a = 0.3 with time reset at zero. After 0.2 time-units it encounters

the single interface, part of which reflects back to the original boundary and part

transmits to the other side. One can see that the reflected wave is absorbed on

t = 0.7 at the original boundary with the damping function as discussed in section

4.1.1. The transmitted wave travels at twice the velocity c(x) =
√

λ(x)/ρo = 2

than before (see next subsection on the material properties), and reflects at the

opposite boundary after a further 0.25 time-units (t = 0.45). A quarter of a time-

unit later a reverse transmission and inner reflection occurs at the interface (t =

0.7) as the boundary reflected wave comes back from below the interface. The

inner reflections below the interface repeats the behaviour of boundary reflections

and interface interactions from below, every half time-unit as the propagation time

carries on. The reverse transmitted waves from below are also absorbed by the

original boundary every half time-unit. Both transmission and reflection amplitude

sizes are reduced by these interaction events at the interface, while the opposite

boundary is an infinitely hard surface that does not allow any transmission there

and the reflected amplitude size is not reduced. The amplitudes also undergoes a sign

change upon all reflections, but not for all transmissions. These are in accordance

with the rules that determine the coefficients for reflections and transmissions of

waves. For clarity we have a cleaner three-dimensional plot in Figure 4.7 where the

grid density is reduced and propagation time only goes to unity.

Calculations are done of the wave amplitudes over propagation time but sam-

pled at xm = 0.125 (Figure 4.8) together with their differences with respect to the

target model reference wave (Figures 4.9 and 4.10) as used for the objective function.

They do not look much like the full wave plots discussed in the previous paragraph,

because the fixed sampling position xx is just 0.025 space-units above the damp-

ing inner boundary wx and 0.175 space-units below where the wave is due to start.

Three minima can be seen at t = 0.55, t = 1.09, and t = 1.58, that correspond to the

absorbed signals returning to the original boundary. The differences are very small,

in the range of between -0.0006 and 0.0008. When the differences are squared, they
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Figure 4.6: A plot of the wave propagation over the whole space-time grid for 1D

single interface with damping only on the original side
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Figure 4.8: Plot of the optimised wave propagation at xfixed = 1/8 for 1D single

interface

show absolute values of up to 4.5 × 10−7. They are most prominent at time ranges

of tǫ[0.55, 0.67], [0.85, 1.13] and [1.6, 2.0].

Material Property

Here the mass density and Lamé parameter related to the velocity of longitudinal

waves are chosen as, respectively, ρ(x) = ρ = 1 and

λ(x) = λo +
λf − λo

1 + exp(−β(x − bx))
,

where the typical values of the parameters are λo = 1 and λf = 4, with the

transition made at position bx = 0.5. The sharpness of this single layer interface

function is β = 200 and is independent of h.

The number of minimisation input parameters is 55. This number is chosen

to give a reasonable fit for more accurate results. A lower number would give less
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accurate results, but we have seen less accurate results at a higher numbers as well.

Thus the number of parameters has to be chosen within an acceptable range. Not

too low, but not too high either. These parameters are equated to the Fourier

components. A Fourier sine series is used on the interval x ∈ [bo, bf ] = [0.3, 0.8].

The equation for λ is thus

λ(x) = λo + (λf − λo)

[

x − bo

bf − bo

+
n

∑

k=1

ck sin

{

kπ

(

x − bo

bf − bo

)}

]

.

Define a function λFS(x) by moving terms to the left hand side and keeping only

the Fourier Series (FS) on the right hand side:

λFS(x) =
λ(x) − λo

λf − λo

− x − bo

bf − bo

=
n

∑

k=1

ck sin

[

kπ

(

x − bo

bf − bo

)]

,

where ck are the Fourier components,

ck =
1

π

∫

λFS(x) sin [kπX(x)] dx, (4.3)

and X(x) = (x − bo)/(bf − bo).

MERLIN is initialised with zero components of the Fourier series as outlined

here for one dimension on the interval given above. That is, it initialises to a piece-

wise linear function with fixed constant λo = 1 (the original material property) for

x ≤ bo, arbitrary constant λf = 4 (the final material property) for x ≥ bf , and a

straight line between bo and bf . The cosine terms are not used because at x = bo

and x = bf they do not vanish.

Figures 4.11 and 4.12 show how close the minimisation has brought the ma-

terial property to the target function. The first plot shows the single interface in

the middle of the space and the final differences are almost indiscernible. The sec-

ond plot shows the differences themselves and they have values to within ±0.02.

Dividing by the difference between the lower λo and upper λf levels (λf − λo), the

difference range is ±0.00667, or plus-minus two thirds of a percent.
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Figure 4.11: Plot of the optimised material property function λ for 1D single

interface
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interface



CHAPTER 4. RESULTS 56

@@
@@
@@
@@
@@
@@

-u -¾

6

Source

Waves

Interfaces

Damping

Measurement point (x = 0.125)

x = 0 0.1 0.3 0.5 0.7 0.9 1

Figure 4.13: The physical setup for wave propagation in a one-dimensional medium

with multiple interfaces

4.2.2 Multiple interfaces

Wave Propagation

We need to generate a wave amplitude u(x, t) that satisfies the same differential

equation (in one-dimension) as for just one interface in the previous section 4.2.1.

Again this is no boundary value problem, but one with initial conditions only, with

the same Gaussian functional form:

u(x, 0) = exp(−α(x − a)2), u(x, ∆t) = exp(−α(x − a − ∆t)2),

where ∆t is the time-step, α = 5 · 2002 = 2 × 105 is the Gaussian sharpness

and a = 0.3 is its initial position.

The space and time are again discretised in the same way. The total distance

is d = h · N = 1 with space-step h = 0.005 and numerical grid density N = 200.

The total time is t = dt · M = 1 with time-step dt = 0.002 and number of time

steps M = 1000. The Courant-Friedrichs-Lewy (CFL) condition for this differential

equation is also satisfied: c dt/h = 2c/5 < 1 where c =
√

µ(x)/ρ (see below) is

between 1 and 2.

Figure 4.14 shows again the wave amplitude over both space and time. One can

see that all reflected waves returning to the original boundary are absorbed there.

The discussion for the one dimensional single interface also applies here. But now
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we have more than one interface which complicates the behaviour of wave propaga-

tion at later times. The plot is less clear after about propagation time t = 1.2, but

reflections and some transmissions can still be seen. There is more overlap without

interference of split waves, as they come together at one point at the same time and

depart again unhindered on their original ways. All the interfaces still allow wave

transmission and reflection with amplitudes reduced at each event, while the oppo-

site boundary still allows only reflections and no transmission with no reduction in

the amplitude.

Calculations are done of the wave amplitudes over propagation time but sam-

pled at xm = 0.125 (Figure 4.15) together with their differences with respect to

the target model reference wave (Figures 4.16 and 4.17) as used for the objective

function. Once again the plots are less clear after time t = 1.2 due to the more

complicated nature of waves in multiple interfaces later on. Three minima are still

visible before t = 1.2, which correspond to the absorbed signals returning to the orig-

inal boundary, with the new minimum at about t = 0.85. This can only come from

reflections at the new additional interface farther away from the original boundary.

The differences are very small once again, in the range of ±0.0002. The squared

forms show absolute values of up to 3.5 × 10−8. They are most prominent at time

ranges of tǫ[0.50, 0.75]; [0.75, 1.15] and [1.75, 2.00].

Material Property

Here the mass density and Lamé parameter related to the velocity of longitudinal

waves are chosen as ρ(x) = ρ = 1 and

λ(x) = λ0 +
3

∑

i=1

λi − λi−1

1 + exp(−β(x − bxi
))

,

where the typical values of the parameters are λi = i + 1, bxi
= (0.3 + 0.2i).

The sharpness of this λ multi-layered interface function is β = 200 and once again

independent of h.

The number of minimisation parameters (equated to Fourier components) is
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Figure 4.14: A plot of the wave propagation over the whole space-time grid with

damping only on the original side for 1D multiple interfaces
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Figure 4.15: Plot of the optimised wave propagation at xfixed = 1/8 for 1D multiple

interfaces
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60. Same accuracy considerations apply with the results than in the previous case

and two dimensional interface problems treated below. A Fourier sine series is used

on the interval x ∈ [bo, bf ] = [0.45, 0.95]. The equation for λ is thus

λ(x) = λo + (λf − λo)

[

X(x) +
n

∑

k=1

ck sin {kπX(x)}
]

.

Define again a function λFS(x) where ck are the Fourier components,

ck =
1

π

∫

λFS(x) sin [kπX(x)] dx, (4.4)

and X(x) = (x − bo)/(bf − bo). The λo and λf correspond to λi, i = 0 and i = 3

respectively. λf is also a Merlin input parameter for scaling the lambda function.

MERLIN is initialised with zero components of the Fourier series.

Figures 4.18 and 4.19 show how close the minimisation has brought the mate-

rial property to the target function. The first plot shows the multiple interfaces at

positions x = 0.5, x = 0.7, and x = 0.9. Once again the final differences are almost

indiscernible. The second plot shows the differences again and they have values

to within ±0.005 in the units of the material property. Dividing by the difference

between the lower and upper levels (λf − λo), the difference range is ±0.001667, or

plus-minus one sixth of a percent. This is four times better than one dimensional

single interface results.

4.3 Two-dimensional Calculations

4.3.1 One interface

Wave Propagation



CHAPTER 4. RESULTS 61

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1

M
at

er
ia

l P
ro

pe
rt

y

Distance
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Figure 4.20: The physical setup for wave propagation in a medium with a layer in

2D.

We need to generate a wave amplitude u(r, t) = ∇Φ(r, t) with a potential

Φ(r, t) that satisfies the following differential equation in two dimensions. (See

section 2.4):

ρ(r)
∂2Φ(r, t)

∂t2
= λ(r)∇2Φ(r, t),

where ∇2 is the Laplace operator and ∇ = (∂/∂x, ∂/∂y). Therefore,

ρ(x, y)
∂2Φ(x, y, t)

∂t2
= λ(x, y)

(

∂2Φ(x, y, t)

∂x2
+

∂2Φ(x, y, t)

∂y2

)

, (4.5)

where ρ(x, y) and λ(x, y) are the mass density and first Lamé parameter of the

material which can be obtained for µ(x, y) = 0 (second Lamé parameter) and

Φ = Φ(x, y, t) from Eq.2.34 and u = ∇Φ.

The radially expanding Gaussian wave from any point of origin is the initial

amplitude for solution of the wave equation. That is

Φ(r, 0) = exp(−αr2
A), Φ(r, dt) = exp(−α(rA − dt)2),

where rA =
√

(x − ax)2 + (y − ay)2 is the wave radius, a = (ax, ay) = (0.3, 0.5)

positions the point of origin, and the Gaussian sharpness is α = 5 · 502 = 12500.

Here h = 0.02, dt = 0.0025 and N = 50, M = 400, all giving a total distance and



CHAPTER 4. RESULTS 63

time of d = Nh = 1, t = M dt = 1. The CFL condition for this differential equation

is satisfied: c dt/h = 0.0025c/0.02 = c/8 < 1/
√

2 where c =
√

µ(r)/ρ is between 1

and 2.

The boundary conditions for two dimensions now apply to the potential Φ(r).

These boundary conditions are absorbing on all boundaries, thus Φ(r) and u = ∇Φ

vanish on all boundaries. These apply to this test case and the other cases in two

and three dimensions.

Multiple fixed position (or measurement points) are used for the sum-of-squares

objective function. These are ri = (3, 3 + i)/10, i = 0, 1, 2, 3, 4. The time develop-

ment and final difference of the wave function at these points is shown in Fig.4.21

and 4.22. In the first plot these curves (but one) are flat in the beginning but then

becomes oscillatory as the waves start to roll back and over these points. One curve

is already wavy and has a much greater amplitude at the beginning than the other

curves later on. The curves of the second plot are flat for up to about 0.4 time-units.

No differences arise since the returned waves do not arrive at the measurement points

before then. After the arrivals the differences are between 1×10−5 and −2.5×10−5.

When squared the absolute differences are up to 4 × 10−10.

The full amplitude over the whole space is shown in Figure 4.23. This is

actually a series of 9 time frames showing the propagation progress from a point

on the one side of the x-axis and in the middle of the y-axis. A spherical outward

leading wave expands from that point and one sees interference effects inside. In

addition the waves are not perfect circles due to the coarseness of the space (fewer

number of space-steps; only 50 by 50 steps). This can be improved, but with a price

of too long computer runtimes. With damping on all boundaries, the wave and all

interferences disappear. There is an interaction with the single interface at x = 0.7

and at the eighth frame. Due to the interference from behind, a reflection is barely

visible. The transmitted wave speeds up to twice its velocity beyond the interface

and has a greater wavelength. During all this time the amplitude is reduced from
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Figure 4.21: The wave amplitude in time at several measurement points for 2D

single interface
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single interface
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unity at the start to 0.05 at the end.

Material Property

Here the λ is modelled by a single interface parallel to the y-axis [mass density

ρ(x, y) = 1]:

λ(r) = λo +
λf − λo

1 + exp(−β(x − bx))
,

where the typical values of the parameters are the same again as in one di-

mension: λo = 1 and λf = 4, but the position was bx = 0.7. Then β = 50 is the

sharpness of λ.

The ansatz for the optimising function on the interval x ∈ [bo, bf ] = [0.5, 0.9],

also independent of y in two dimensions, is

λ(r) = λo + (λf − λo)

[

X(x) +
n

∑

k=1

ck sin (kπX(x))

]

,

with the same defining function λFS(r) within the Fourier coefficients ck, and X(x) =

(x − bo)/(bf − bo). Here the 40 Fourier components ck are initialised to zero, giving

the same piecewise initial function as in one dimension but now extended into and

independent of the y-direction. Same accuracy considerations apply than in one-

dimensional case to the chosen number of components.

The optimised material property function λ and its difference from the target

is plotted in Fig.4.24 and 4.25. In the first plot the optimised function does not quite

fit the target function. This is most pronounced with a dip at x = 0.8. Thus in the

second plot the biggest negative difference at x = 0.8 touches at around −0.14, while

the positive difference is only at around 0.04 in the units for the material property

function.
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Figure 4.23: The amplitude in 2D space: time frames are from t = 0 to t = 0.8 in

0.10 seconds increments for 2D single interface
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Figure 4.24: The optimised material property function λ for 2D single interface
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Figure 4.26: The physical setup for wave propagation in a medium with multiple

layers in 2D.

4.3.2 Multiple interfaces

Wave Propagation

We need to generate a wave amplitude u(r, t) = ∇Φ(r, t) with a potential Φ(r, t)

that satisfies the same differential equation in two dimensions as in the previous

section 4.3.1.

The radially expanding Gaussian wave from any point of origin is the initial

amplitude for solution of the wave equation. That is

Φ(r, 0) = exp(−αr2
A), Φ(r, dt) = exp(−α(rA − dt)2),

where rA =
√

(x − ax)2 + (y − ay)2 is the wave radius, a = (ax, ay) = (0.3, 0.5)

is the point of origin, and the Gaussian sharpness is α = 5 · 402 = 8000. Here

h = 0.025, dt = 0.0025 and N = 40, M = 800 all giving a total distance and time

of d = Nh = 1, t = M dt = 2. The CFL condition for this differential equation is

satisfied: c dt/h = 0.0025c/0.025 = c/100 < 1/
√

2 where c =
√

µ(r)/ρ is between 1

and 2. The same absorbing boundary conditions as in section 4.3.1 apply here.

More than one fixed position (or measurement point) is used for the sum-of-
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squares objective function. These are ri = (3, 3 + i)/10, i = 0, 1, 2, 3, 4. The time

development and optimised difference of the wave function at these points is shown

in Fig.4.27 and 4.28. The first plot shows basically similar behaviour as before. The

curves of the second plot are flat for up to about 0.3 time-units. No differences arise

since the reflected wave do not arrive at the measurement points before then. After

the arrivals the differences are between 2.5 × 10−6 and −3 × 10−6. When squared

the absolute differences are up to 9× 10−12. This is a better result than that for the

single interface.

The full amplitude over the whole space is shown in Figure 4.29. This is also a

series of 9 time frames showing how the propagation progress from a point on the one

side of the x-axis and in the middle of the y-axis. A spherical outward leading wave

expands from that point and one again sees interference effects inside. In addition

the waves are not perfect circles due to the coarseness of the space (only 40 by 40

space-steps). This can be improved, but with a price of too long computer runtimes.

With damping on all boundaries, the wave and all interferences disappear. There

is an interaction with the interfaces beginning at x = 0.5 and at the fifth frame a

reflection is visible, despite the interferences from behind. The transmitted wave

speeds up in steps, depending on the particular level, to twice its velocity beyond

the last interface. In the last three frames standing waves seem to form after the

first interface at position x = 0.5. During all this time the amplitude is reduced

from unity at the start to 0.06 at the end.

Material Property

Here λ is modelled by a multi-layered interface with the layers parallel to the y-axis

[mass density ρ(x, y) = 1]:

λ(r) = λ0 +
3

∑

i=1

λi − λi−1

1 + exp(−β(x − bxi
))

,

where the typical values of the parameters are the same again as in one di-

mension: λi = i + 1, bxi
= (0.3 + 0.2i). β = 40 is the sharpness of λ.
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Figure 4.27: The wave amplitude in time at several measurement points for 2D

multiple interfaces
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Figure 4.28: The final difference of amplitude at several measurement points for 2D

multiple interfaces
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Figure 4.29: The amplitude in 2D space: time frames are from t = 0 to t = 1.6 in

0.20 seconds increments for 2D multiple interfaces
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The optimising function on the interval x ∈ [bo, bf ] = [0.45, 0.95], also inde-

pendent of y in two dimensions, is

λ(r) = λo + (λf − λo)

[

X(x) +
n

∑

k=1

ck sin (kπX(x))

]

,

with the same defining function λFS(r) within the Fourier components ck, and

X(x) = (x − bo)/(bf − bo). The λo and λf again corresponds to λi, i = 0 and

i = 3 respectively. λf is also a Merlin input parameter for scaling the lambda func-

tion. Here the 60 Fourier components ck are initialised to zero, giving the same

piecewise initial function as in one-dimension but now extended into and indepen-

dent of the y-direction. Same accuracy considerations apply as well.

The optimised material property function λ and its difference from the target is

plotted in Fig.4.30 and 4.31. In the first plot the optimised function is seen to differ

at the third plateau from the target material property function. This may be due to

the third interface positioned wholly inside the damping zone at the opposite side

of the x-axis and may have little influence on returning waves at the measurement

points. In the second plot the difference is between −0.025 and 0.03, in the units for

the material property function. These differences arise because the Fourier method

would optimise the components of the longest fundamental (resonant) wavelengths

first, working its way through components to that of the shorter wavelengths until

the objective function reaches a minimum. Once at the minimum, the rest of the

components at the shortest end of wavelength spectrum simply freezes into non-

optimised values. Then the associated short wavelengths are mismatched, leading

to the oscillatory behaviour for the third and fourth plateaus in the material property

function differences.
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Figure 4.30: The optimised material property function λ for 2D multiple interfaces
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Figure 4.32: The physical setup for wave propagation in a medium with a feature

in 2D.

4.3.3 Gaussian feature

Wave Propagation

The same differential wave equation in two dimensions for Φ applies here as in sec-

tion 4.3.1.

The radially expanding Gaussian wave from any point of origin is the initial

amplitude for solution of the wave equation. That is

Φ(r, 0) = exp(−αr2), Φ(r, dt) = exp(−α(r − dt)2),

where r =
√

(x − ax)2 + (y − ay)2 is the wave radius, a = (ax, ay) = (0.3, 0.5)

positions the point of origin, and α = 1/5 · 402 = 320 is the Gaussian sharpness.

Here too h = 0.025, dt = 0.0025 and N = 40 but M = 400. The CFL condition for

this differential equation is satisfied: c dt/h = 0.0025c/0.025 = c/10 < 1/
√

2 where

c =
√

µ(r)/ρ is between 1 and 2. The same absorbing boundary conditions as in

section 4.3.1 apply here.

Once again, more than one fixed position (or measurement point) was used to

improve the minimisation. These are ri = (3, 3 + i)/10, i = 0, 1, 2, 3, 4. The time
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development of the wave function and its difference from the target reference wave at

these points are given in the diagram Figures 4.33 and 4.34. These peaks correspond

to each of the five measurement points. In the first plot each peak position shows

when in time the original wave arrived at each measurement point. The highest

peak occurs at index i = 2 of ri. There is a sort of pairing of the other four peaks.

This means that the higher peak pair at around 0.1 time-units corresponds to the

arrivals at i = 1 and i = 3, while the other pair at around 0.2 time-units are the

arrivals at i = 0 and i = 4. Though barely discernable, reflections of the feature

start to arrive at between t = 0.6 and t = 0.8. The second plot shows the curves are

flat for up to 0.35 time-units. Then reflection effects starts to roll in with differences

between −1 × 10−6 and 4 × 10−6. The squared difference will be up to 1.6 × 10−11.

The full wave function over the whole space follows in Figure 4.35 with 9

time development frames of wave propagation. Again the wave starts as a Gaussian

peak at the point a on one side, which then dissolves into a spherically expanding

wave. Interference behind the wave is less pronounced. Once again the waves are

not perfect circles in regard of a fewer number of space-steps (40 by 40). This can

be increased, but the computer runtimes will go into hours, if not days. When

interacting with the feature (fifth frame), the wave speeds up to twice its velocity

at peak position, then dissolves beyond the feature. Thus, a hole has formed in the

wave around and beyond the feature. The feature does not create any interference

of each part of the wave on either side. Each part just carries on expanding with

the hole widening as time goes on. Damping is visible in the dark regions around

the boundaries where the waves are absorbed. The amplitude reduces from unity to

about 0.07 during this time.

Material Property

Here the λ is represented by a Gaussian feature, with the function [mass density

ρ(x, y) is unity over all space]:

λ(x, y) = λenv + (λpeak − λenv) exp(−βR2),

where β = 320 is the Gaussian steepness, R =
√

(x − bx)2 + (y − by)2 is the
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Figure 4.33: The amplitude of time at several measurement points for 2D Gaussian
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Gaussian radius, and b = (bx, by) = (0.7, 0.5) is the position of the feature. λenv is

the environment level value and λpeak is the value of the peak.

We use the finite-element method whose coefficients are now calculated from

the λ-function above at the corner positions of the elements. The Laguerre poly-

nomials are of fourth order, each operating on rectangular regions (the elements)

of an area Hx × Hy. Currently the side-lengths are H = (Hx, Hy) = (6, 6)h within

each element, which makes them square. To accommodate the feature we have 4

squares, arranged in 2× 2, whose common intersecting corners are at position b, in

the middle of the applied FEM-region.

The plots for two-dimensional problem follow. The optimised lambda function

λ and its difference from its target is seen in Fig.4.36 and 4.37. The first plot

shows a nice spherical Gaussian peak at position b on the other side of the space.

In the current view of the second plot a negative difference is seen on the near

side with two minima (the bigger one closer to the opposite y-boundary), and a

positive difference on the far side with two maxima (again the bigger one closer to

the opposite y-boundary). The differences range at ±0.004.

4.4 Three-dimensional Calculations

4.4.1 Gaussian feature

Wave Propagation

We need to generate a wave amplitude u(r, t) = ∇Φ(r, t) for a potential Φ that

satisfies the following differential equation in three dimension of Φ (see section 2.4):

ρ(r)
∂2Φ(r, t)

∂t2
= λ(r)∇2Φ(r, t), (4.6)

where ∇2 is the Laplace operator and ∇ = (∂/∂x, ∂/∂y, ∂/∂z). λ(x, y, z) are the

first Lamé parameter of the material which can be obtained for µ(x, y, z) = 0 (sec-

ond Lamé parameter) and Φ = Φ(x, y, z, t) again from Eq.2.34.
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The spherically expanding Gaussian wave from any point of origin is the initial

amplitude for solution of the wave equation. That is

Φ(r, 0) = exp(−αr2), Φ(r, dt) = exp(−α(r − dt)2),

where r =
√

(x − ax)2 + (y − ay)2 + (z − az)2 is the wave radius, a = (ax, ay, az) =

(0.3, 0.5, 0.5) positions the point of origin, and α = 1/5 · 402 = 320 is the Gaussian

sharpness. Here too h = 0.025, dt = 0.0025 and N = 40 but M = 400. The CFL

condition for this differential equation is satisfied: c dt/h = 0.0025c/0.025 = c/10 <

1/
√

3 where c =
√

µ(r)/ρ (see below) is between 1 and 2. Absorbing boundary

conditions analogous to those in two dimensions (section 4.3.1) are used.

Once again, more than one fixed position (or measurement point) is used to

improve the minimisation. They are rij = (3, 3 + i, 4 + 2j)/10, i = 0, 1, 2, 3, 4; j =

0, 1. The time development of the wave function and its difference from the target

reference wave at these points is given in the Figures 4.40 and 4.41. These peaks

correspond to each of the ten measurement points. However, in the first plot only

five curves are seen corresponding to the original wave arriving at both index j = 0

and j = 1 of rij at the same time symmetrically for each index i. Once again each

peak position shows when in time the original wave arrive at each measurement

point. The highest peak occurs at index i = 2 of ri. Again there is a pairing of the

other four peaks, with the higher peak pair at around 0.1 time-units corresponding

to arrivals at i = 1 and i = 3, while the other pair is at around 0.2 time-units for

arrivals at i = 0 and i = 4. No reflections of the feature is seen here. The curves after

the peaks fell flat to zero. (In the corresponding plot for two-dimensional Gaussian

feature these curves after peaking gradually decreased to, but did not reach, zero,

then flattened to a non-zero value after the reflections). There must be reflections,

however, but they appear to be overshadowed by interference effects from behind

the main wave. The second plot shows the curves are flat for up to 0.3 time-units.

Then reflection effects starts to roll in with differences between −1.5 × 10−7 and

2 × 10−7. The squared difference is up to 4 × 10−14.

The full wave function over the whole space, projected in a two dimensional
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plane at the middle of the third-dimension, follows in Figure 4.42 again with 9 time

development frames of wave propagation. These plots is a projection on a two-

dimensional xy-plane at the middle of the third-dimension z. The same discussion

applies here, as in the case for two-dimensional Gaussian feature. Here the interfer-

ence behind the main wave is even less pronounced. Once again the waves are not

perfect circles in regard of a fewer number of space-steps. This can be increased,

but the computer will run into hours of runtime. The amplitude is reduced from

unity to 0.008 over the entire time period which made the damping zone less visible

except where the wave is absorbed.

Material Property

Here the setup in two-dimensional space above is generalised to three dimensions.

λ is represented by a Gaussian feature with the function [mass density ρ(x, y, z) is

unity over all space]:

λ(x, y, z) = λenv + (λpeak − λenv) exp(−βR2),

where β = 320 is the Gaussian steepness, R =
√

(x − bx)2 + (y − by)2 + (z − bz)2

is the Gaussian radius, and b = (bx, by, bz) = (0.7, 0.5, 0.5) is the position of the fea-

ture. λenv is the environment level value and λpeak is the value of the peak.

We use the finite-element method whose coefficients are now calculated from

the λ-function above at the corner positions of the elements. The Lagrange polyno-

mials are of fourth order, each operating on rectangular regions (the elements) of a

volume Hx ×Hy ×Hz. Currently the side-lengths are H = (Hx, Hy, Hz) = (6, 6, 6)h

within each element, which makes them cubic. To accommodate the feature we have

8 cubes, arranged in 2 × 2 × 2, whose common intersecting corners are at position

b, in the middle of the applied FEM-region.

The plots for three-dimensional problem follows. The optimised lambda func-

tion λ and its difference from its target is seen in Fig.4.43 and 4.44. These plots

are a projection on a two-dimensional xy-plane at the middle of the third-dimension

z. The first plot shows again a nice spherical Gaussian peak at position b on the
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Figure 4.42: The amplitude in 3D space: time frames are from t = 0 to t = 0.8 in

0.10 seconds increments for 3D Gaussian feature
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other side of the space. In the current view of the second plot the differences are

more complex. There are four peaks side-by-side (y-direction) and alternating in

sign between the negative and positive. A maximum is evident in the middle of this

FEM region (y-direction) with one minimum on the near side and two minima on

the far side. The differences are in the range of ±0.012.
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Chapter 5

Conclusions

The property plots in the previous chapter and table 5.1 of relative fraction dif-

ferences show how the Levenberg-Marquardt minimisation method brings the op-

timised material property function close to the target model. In the property dif-

ference plots, the differences shown are more pronounced at the higher layers, after

the transition from the lowest layer has been made. The best results are those for

one-dimensional multi-layered interface and two-dimensional feature.

In a comparison between the Fourier series and the finite element methods,

the latter method seems more successful. But see an explanation about areas or

subregions in section 5.1 below.

The differences of the amplitudes for use in the objective function, as shown

in table 5.2, are significantly reduced with the addition of spatial dimensions or

interfaces.

5.1 Summary of our results

5.1.1 One dimension

By comparing the material property difference results between the single and mul-

tiple interfaces, we see the latter gives a smaller, and thus better, deviation. This

is due to the fact that there are more than two layers in the target function which

87



CHAPTER 5. CONCLUSIONS 88

Table 5.1: Plot ranges of the material property differences of the optimised to the

target function (divided by the difference between the lowest λo and highest λf layer

values), values in units of 10−2.

Material property Single interface Multiple interface Feature

(Method) (Fourier series) (Fourier series) (Finite elements)

One dimension [-0.500,0.667] [-0.100,0.167] —

Two dimensions [-5.333,2.000] [-0.833,1.000] [-0.133,0.133]

Three dimensions — — [-0.333,0.400]

Table 5.2: Plot ranges of the amplitude differences (the optimised relative to the

target reference function) sampled at the measurement points for the objective func-

tion, values in units of 10−6.

Material property Single interface Multiple interface Feature

(Method) (Fourier series) (Fourier series) (Finite elements)

One dimension [-600,800] [-200.0,200.0] —

Two dimensions [ -25, 10] [ -3.0, 2.5] [-1.00,4.00]

Three dimensions — — [-0.15,0.20]
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approximately comes closer to the initialised optimised function that resembles a

piecewise linear function. The minimisation had a closer run to the minimum in the

multiple interface setup than that of the single interface. This can also be seen in

the amplitude differences.

5.1.2 Two dimensions

Comparisons of the material property differences in two dimensions between the

single and multiple interfaces leads to the same conclusion as with one dimensional

results as above. The two dimensional results are less satisfactory. The single

interface material property result does not even reach our goal of less than or equal

to ±10−2 (±1%) difference (see table 5.1). Since the interface position is at x = 0.7,

and not x = 0.5, the waves reflecting at the interface reaches the measurement points

much later and the minimisation did not have much amplitude differences to go by,

while the optimised parameter initial point is far from the minimum position in the

parameter space. Also, just after the transition from the lower layer, a small trench

is visible in the upper layer. For the multi-layer interface results, there are also small

differences still visible at the third layer. See section 4.1.2 for an explanation. Also,

while in one dimension the real space interval the technique worked on is [bo, bf ], in

two dimensions it is the Cartesian product [bo, bf ]× [0, 1] which defines a rectangular

strip running under the y-parallel interface where a radially expanding wave impacts

on it at various times. The Gaussian feature result is much better than the interfaces

due to the feature occupying a smaller area for the FEM region.

5.1.3 Three dimensions

There are no results yet for interface(s) in three dimensions. Thus, for comparison

with the fewer dimensions, we have only the Gaussian feature results. Once again

the material property deviation results are less accurate than the corresponding

two-dimensional feature difference result, which highlights a trend we see across the

real space dimensions.

One may ask why it is that the material property difference results become
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less and less accurate as one adds one more dimension after another to real space

R
m, while the amplitude differences used in the objective function become more ac-

curate. Recall that the more advanced minimisation techniques, such as Levenberg-

Marquardt, are designed to work with slightly non-linear mathematical systems (as

set out in [11]). Therefore, small changes in one variable or function may lead to

large changes in other variables or functions that depend on them. To achieve the

same accuracy in the material property difference results (±1%) throughout, we

want to redesign the minimisation techniques. That is not yet possible with the cur-

rent techniques, since they would sometimes cut out after a while with the message

that no further progress is possible.

One optimisation design would be to replace the built-in gradient of MERLIN

with a more efficient one, so that no plateaus appear in plots of the objective function

against minimisation calls (see Figure 4.4 in section 4.1.2).

5.2 Comparison with B.R. Mabuza’s work

B.R. Mabuza’s work on quantum inverse scattering shows results for square-type

and multi-layered potentials through single and coupled channel inversion (chapter

6 in [12]). These results are similar to what we are doing with our material property

functions, albeit with a different method.

With his quantum potentials, the deviations are also wavy over the whole

space, more pronounced at the transitions from one level to another (and near his

boundaries on either side too), but comparable in sizes to what we had found in our

results. This means our approach with the Fourier series or finite element method

and the minimisation algorithm used, has also been reasonably accurate.
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5.3 Comparison of Aims and Results.

In one dimension the target material property (MP) function was defined in sec-

tion 4.2.1. The corresponding optimised function was designed such that, when its

parameters were initialised, it had three piecewise continuous linear functions. A

Fourier expansion was used only for the difference between the material property

and the linear function. For the single and multiple interface setups the relative

MP differences are given in table 5.1. Thus for the one dimensional calculations the

resulting accuracy did reach our aim of 1%.

For the two dimensional case our calculations were improved by an increase

of the number of measurement points from one to five, ten, or even twenty points

at different positions of this space. The single and multiple interface setups were

extended parallel to the y-axis in two dimensions. The result of the relative MP

difference with the Fourier series method for the single interface is as given in the

table. The lowest minimum (see figure 4.25) highlights the trench (see figure 4.24)

at the same position. For the multiple interface the relative MP difference is also

listed in the table. Figure 4.31 shows oscillating maxima increasing and minima

decreasing as one goes towards the opposite space boundary. Thus for the two di-

mensional interface calculations the resulting accuracy reached our aim of 1% for

the multiple interface setup, but not for the single interface setup as evident from

this trench.

The two and three dimensional Gaussian features, as optimised with the finite

element method, show relative MP differences as given in the table. Figures 4.37 and

4.44 are referred to for more detail. Thus the relative difference is less than for the

interface results above. Thus for the two and three dimensional feature calculations

the resulting accuracy reached our aim of 1%.

We have yet to develop a more advanced technique for the minimisation of

more complex systems and the method as it is, still has to be tested against real

data.
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5.4 Future Work.

Further research may include more complex physical setups, such as layers not par-

allel to the y-axis but going off at an oblique angle to it and layers whose interfaces

are curvilinear with respect to the y-axis. It may include any combination of the

above.

No observed data have been used as input for our methods yet, such as those

from survey experiments done on the earth’s crust or the sea bottom. We would

then be able to fit the model to the given data, and even make alterations to the

model for improvements of a fit, but so far the calculations are still only synthetic.

Other possible improvements would be to invert both Lamé parameters, regu-

larise the objective function, place restrictions on the coeffients to make the solution

set smaller, and add noise to the synthetic data.
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