
 

  
 

Abstract—The problem of timing recovery in cellular 

receiver systems is critical. This is because 

synchronization functions must follow rapid parameter 

changes inherent in mobile systems. The ultimate goal is 

therefore to achieve low bit error rate on the recovered 

information. Traditional timing recovery methods have 

over-relied on phase-locked loops for timing information 

adjustment. However, associated schemes do not exploit 

code properties. This leads to difficulties in 

synchronizing digital receivers with transmitters’ end 

separated by lossy channels. In this paper we present a 

class of fast converging timing recovery algorithm for 

GSM receivers in low signal to noise ratio.  In the 

proposed method, the receiver exploits the soft decisions 

computed at each turbo decoding iteration to provide 

reliable estimates of soft timing signal which in turn 

improves the decoding time. The proposed method 

converges in about 10 iterations and the derived 

sequential minimization technique approaches a 

theoretical Cramer-Rao bound with unbiased estimates. 

Though an 8-PSK GSM baseband communication 

system is simulated, it was found that this model worked 

well with most modulation schemes. The proposed 

scheme is also insensitive to carrier offsets recovery. 

Simulation showed that the proposed method 

outperforms conventional timing extraction methods 

with respect to jitter performance. 

 
Index Terms—iterative turbo principle, matched filter 

output, turbo codes, soft information exchanges. 
                                              

I. INTRODUCTION 

 

 

Cramer-Rao bound (CRB) is a lower bound on the error 

variance of any unbiased estimate, and as such provides a 

benchmark for practical estimators [23, 24]. The CRB is 

known to be asymptotically achievable for a large enough 

number of observations, under mild regularity conditions 

[15]. In many cases, the statistics of the observation depend 

not only on the vector parameter to be estimated, but also on 

a nuisance vector parameter we do not want to estimate [25].   
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In linearly modulated signals the CRB synchronizers have 

been applied [25]. However, timing recovery problem in 

multilevel GSM modulation scheme with unknown data 

symbols as nuisance parameters is still a challenging task. 

This is due to computational complexities involved in low 

SNR scenarios and mobility of the receivers.  Fortunately, 

Berrou et al. developed the revolutionary iterative “turbo” 

receiver for decoding two dimensional product-like 

concatenated codes [1]. The impressive performance of 

turbo codes has triggered the application of this powerful 

coding technique to digital communications at low SNR 

environments [2, 3]. Several receiver functions such as 

combined signal detection, equalization, symbol 

synchronization, respectively, are now possible with turbo 

decoding [4]-[6].  

In most classical timing phase estimations, timing recovery 

and decoding process have been separated with little 

penalty;  timing recovery  uses  an instantaneous decision 

device to provide tentative decisions that are adequately 

reliable to estimate the timing phase error [7]. In such 

situations, however, the timing recovery process assumes 

that the neighboring symbols are mutually independent at 

high SNR and the theoretical framework is normally based 

on least mean square (LMS) and traditional phase-locked 

loops (PLL) [8].  

Such a framework is susceptible to local minima and often 

presents additional block processing complexities which fail 

in low SNR. Since turbo receivers operate in low SNR, the 

future of wireless communication systems’ cell planning 

schemes and battery conservation of portable receivers will 

have to rely on combined timing recovery and decoding 

algorithm. Refs. [9, 10] have shown that classical soft-

input/soft-output (SISO) iterative detection/decoding 

algorithm embed timing parameter estimation in the 

decoding process. For instance in [10], combined iterative 

decoding, equalization and timing error estimation is 

performed with modified forward and backward recursions 

in the SISO decoders using a per-survivor processing 

algorithm [21]. Such methods are reliable but increase the 

receiver’s design complexity with vast memory requirement. 

Inorder to reduce the complexity involved in designing the 

decoder structure, soft information provided at each iteration 

by a conventional turbo decoder can be used to derive 

reliable information on timing error estimation. This is the 

essence of turbo principle synchronization technique [6] 

[22]. Though recent research attention is focused towards 

this turbo synchronization method [11, 12], less effort has 
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been directed towards achieving fast converging timing 

recovery process. 

 

 In the recent past, GSM transmission systems have over-

relied on traditional forward error correction codes in [20], 

to either save bandwidth or reduce power requirements. 

However, not much of coding gain is feasible, moreover, 

symbol synchronization depends on pilot information 

conveyed a long with message information. Though such 

data-aided synchronizers are faster, they are bandwidth 

inefficient. In cellular receivers, bandwidth conservation, 

convergence and jitter variation in steady state 

synchronization is very critical. Thus, to recover majority of 

transmitted symbols and frames with minimum error, time 

and channel impairments become the fundamental question. 

The objective of this paper is therefore to develop a 

mathematical framework for such turbo-aided 

synchronization with a focus on faster convergence and 

jitter reduction. This goal is achieved through simulations of 

combined maximum likelihood estimation, modified 

Newton-raphson minimization model and matched filtering. 

Performance bound of the estimator has been reviewed in 

this sequel with regards to Cramer-Rao bound.   

This paper is organized as follows. Section I, provided a 

broad overview of the problem area, related work and 

results achieved by other researchers. In section II, turbo 

system model is presented. In section III, improved soft 

timing framework is proposed. Simulations tests and results 

shown in sections IV and V. Conclusions are drawn in 

section VI.  

 

 II.  SYSTEM MODEL 

 

The baseband-equivalent of such a turbo-coded 

communication encoder and decoder structure is depicted in 

Figure 1. It consists of two recursive systematic 

convolutional encoders (RSC) which are separated by a 

pseudo-random L-bits interleaver (INT), puncturing the 

output of the encoders increases the transmitted code rate 

from 1/3 to 1/2. On the other hand the receiver consists of 

modified turbo decoder with two separate soft-In/Soft-Out 

maximum likelihood a posteriori (MAP) decoders which are  

connected with interleaver (INT) and deinterleaver 

(DEINT).  The most widely used MAP algorithm is the 

recursive Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [4]-

[6], which permits easy calculation of the log likelihood 

ratio (LLR) on block by block basis. BCJR algorithm, 

however, requires priori knowledge of the channel 

parameters. Fortunately, the feedback loop provides prior 

soft bit information from one decoder to the other hence the 

name ‘turbo code’. It works iteratively, i.e. the decoding 

improves with consecutive iterations upto certain threshold 

limit when performance degrades. Implementing combined 

timing recovery and decoding helps in convergence. 

 

 
Figure 1a.  Structure of a turbo encoder 

 

( )1ˆ,
−i

kf τr

( )τ,kTf=y
( )τ,kTf=y

i

kτ̂

( )( )1ˆ, −i

kk

i

k a τη

 
Figure 1b.  Structure of modified turbo decoder 

 

III. THEORETICAL CONSIDERATIONS 

 

The received signal is  

nHGar +=         ,                                            (1)                       

 

where after sampling the received vector becomes 
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...... −+−−=r . Here, we have collected 

MN 2+ samples from the received pulses, N is the number 

of transmitted symbols, 12 +M is the samples of the 

observation interval (so-called pulse truncation) and where 

we let .∞→M  for best noise performance. 
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is a convolution matrix created from delayed samples of 

pulse shape ( )th by τ . G is an interleaving matrix 

(obtained by permuting the columns of an identity matrix of 

size L-bits), ( )
N

aa , . . . ,
1

=a  are the transmitted symbols 

with consecutive symbol duration, T  and n  is 

independently and identically distributed (i.i.d.) Gaussian 

noise with variance No/2. 

In order to have sufficient statistics in the decoding-timing 

recovery module, (1) must be sampled at ( )α+≤ 1/TsT , 

intervals, where α is the roll-off of the transmitting square 

root raised consine waveform. 

The received sampled vector is passed through discrete 

matched filters whose outputs take the form 
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Computing the output of (3) at correct instants of the 

argument, { }τ+kT  yields the solution to the problem of time 

recovery. 

The solution to the problem of timing recovery is two fold; 

estimating timing phase signal τ and determining the steady 

state location of the timing instants through suitable update 

mechanisms. Traditionally this has been achieved using a 

combination of timing error detector and phase locked-loops 

implemented without decoding algorithm in mind [7][8] and 

[14] or with complexities introduced to the decoder [10]-

[12]. 

 



 

 

In the next section we show how decoder functions can be 

improved with timing recovery with little modifications. We 

further introduce the concepts of a low variance design of 

the timing recovery in digital mobile receivers. 

 

A. Estimating timing information 

 

The problem addressed in this section is the estimation of 

τ̂ of τ subject to a trial valueτ~ . This estimate may be seen 

as the solution of the maximization problem 
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τ
~
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Here, 

( ) ( )ττ ~|ln~ rp=Λ                                                 (5)                                                                                                           

and 
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Where, ( )ap  is a prior probability mass function. The 

logarithmic function of second factor of the integrand in (6) 

is defined as 
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where ( )τ~+kTy  corresponds to the matched filter output  

evaluated at  .~τ+kT   

In order to solve for (4), we take the derivative of (5) with 

respect to τ~   and we equate to zero, that is, 
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We notice that the evaluation of (8) requires the knowledge 

of the priori probabilities, ( )ap   of the transmitted symbols 

at the receiver. However, in this problem, we assume that 

such information can only be derived from posteriori 

information. If we invoke Baye’s rule in the first factor of 

the integrand in (8), we have a posteriori conditional 

probability density function (PDF) of the transmitted 

vector a . We can then represent it as 

 

( ) ( )
( )

( )τ
τ

τ ~,|
~|

~,|
ra

r

ara
p

p

pp
=                               (9) 

Since from (1) vector, r  is a function of vector, n  but n  is 

not a function ofτ , we can ignore n  in the following 

definition without loss of generality. We had indicated that 

interleaving matrix is an identity matrix, hence (9) becomes 
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The Maximum likelihood estimation problem in (4) now 

becomes an expectation problem given as follows 
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Since τ~  appears in both factors of the expectation problem 

in (10), the solution of (10) is non-trivial. According to [13], 

an iterative approach that generates a set of values for  

{ }nτττ ˆ. . .ˆ . . .ˆˆ i1=τ  is a possible solution. Theoretically it is 

possible to prove that within the limit as ∞→n  the 

sequence of timing estimate converges to a desired solution 

[15]. However, the proof is analytically complex. 

Fortunately, an iterative receiver employing turbo codes will 

help in achieving convergence faster [6]. The turbo principle 

in [1] provides soft information described by posteriori 

means as illustrated in figure 1b and given by 
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The second factor in (12) is the marginal a posteriori 

probability (APPs) computed from extrinsic SISO 

exchanges off log likelihood ratios (LLR) from the second 

maximum a posteriori (MAP) decoder to the first MAP 

decoder. Detailed derivation of (12) can be obtained from 

[2]. The log likelihood ratio as depicted in figure 1b is thus 

given by  
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 Since fast converging estimator is required for our problem, 

Modified Newton-Raphson in [13] is applied to (10) to give 

a numerical solution, that is 
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where ( )y,
~

k
f η=Λ  , as explicitly depicted in (3) and (12) 

and ( )1 and −ii  denotes the current and the previous turbo 

iterations.   

 

 

 



 

B. Updating  timing phase estimates 

 

We begin the iteration by assuming that the ( )th1−i  timing 

offset estimate is zero. The estimated timing offset finally 

updates the early and late samples of the discrete matched 

filter output and optimal synchronization is attained when 

the early and late samples become equal [17]. The new 

timing estimate will be based on the discrete matched filter 

output  ( ) 1ˆ
| −+= ikTs

sy
τ

 as shown in Figure 2 and the mean of 

posterior probabilities 
( )1−i
kη from the previous iteration as 

shown in Figure 1.  This can be seen in the following 

expression 
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Thus, at low SNR (15) is well approximated by 
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and it easy to show that the second derivative in (14) is 
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                                                                            (17) 

where τ̂∆  is an adjustable advance/delay parameter that 

satisfies  .2/ˆ0 T<∆< τ  

 

C. Lower Bound on timing error variance 

 

Our goal is to arrive at a lower bound on timing estimation 

error variance in face of a time-varying timing offset. We 

model the timing offset as a random walk, according to 
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where ( )2,0 ωσω Ν⊂
k

 are i. i. d. of thk  symbol and 2

ωσ  

determines the severity of the timing jitter. The random 

walk is chosen because of its simplicity and because of its 

ability to model a wide range of mobile channels. We 

assume a perfect acquisition by setting .01 =−τ   In [14], 

Cramer-Rao bound (CRB) on the timing estimation error 

variance for generic channel is presented. Timing offset is 

assumed constant over the duration of the packet length 

without loss of generality. Hence, CRB gives a lower bound 

on the estimation error variance of unbiased estimators of 

deterministic parameters [ ] T
T .,τ∆=τ  In [15], the CRB is 

demonstrated by 
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where ( )τ
i

CRB  is the ith  diagonal element of the inverse 

of the Fisher information matrix ( )τJ . The ( )th, ji  element 

of  ( )τJ  is given by 
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The probability density ( )τr |p  of ,r corresponding to a 

given value of τ , is called the likelihood function of τ . The 

expectation [].
r

Ε  is with respect to ( )τr |p . Equivalently 

(15) can be re-written as 
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From a detailed proof in [16], we obtain Cramer-Rao bound 

as 
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 where σ  is standard deviation of noise and other 

parameters retain their definitions as we have given earlier. 

 

IV. SIMULATION TESTS 

 

To verify the performance of our turbo aided timing 

recovery scheme, we simulated a baseband communication 

system transmitting 8-constellation alphabet for phase shift 

keying (8-PSK) symbols in MATLAB. We considered 

convolutional turbo code (031,027) with punctured net rate 

½. The interleaver length set to blocks’ sizes of 460 bits and 

square root raised cosine signaling pulse with roll-off of 

0.25 was used.  1000 blocks were transmitted over Rician 

distributed flat fading channel and additive white Gaussian 

noise (AWGN). The received signal was passed through 

anti-aliasing filter and then sampled at a rate higher than the 

baud rate. Discrete matched filter was embedded at the input 

of the decoder as early-late gate synchronizer. Refer to 

Figure 1b. 

 

V. RESULTS 

 

 Figure 3 shows the estimator variance approaching Cramer-

Rao bound and indicating unbiased estimator in low SNR 

up-to 0.35 as iteration increases. 

 

 In Figure 4, the number of iterations was set to 10. It is 

clear that for known normalized variances, the performance 

of the synchronizer improves with decrease in variance. In 

addition, known timing indicates good performance. This 

indicates that timing synchronizer uses soft information to 

get good estimates that converge to true channel offsets and 

on the other hand, the turbo iterative decoder uses this soft 

timing signal to converge faster. In Figure 5, it is seen that 

increasing the iterations improves performance, however 

whenever the number of iterations exceeds 10, the 



 

performance degrades as seen in Figure 3.   This means that 

system converges at only 10 iterations or explicitly in about 

10 symbols’ period.  

Figure 6 gives a comparision between the early-gate 

synchronizer, the proposed method and data-aided GSM 

frame error rate performance. Though data-aided gives the 

best performance, both power and bandwidth requirements 

make it a prohibitive option. 

 

 Typical GSM radio channel model performance is depicted 

in Figure 7.  

For simplicity in radio channel modeling, a Rician multipath 

flat fading is considered with a Rician K-factor denoted 

by 2

0

2 2/ σβ=K .  Here, β  and 2

0
σ  are the amplitude of the 

specular path component (dominant LOS) and variances of 

Gaussian random channel samples with zero-means. 

 

For smaller, Rician factor K, the performance of 

synchronizer is worse than for large K. This attributes to the 

fact that, a Rician distribution is best modeled as a Rayleigh 

distribution when K is small. The resulting Rayleigh 

distribution provides poor soft decoder outputs and 

consequently poor soft timing signal for the next decoder 

iterations. 

 To explain our hypothesis of low jitter, the proposed 

method was compared with the well-known work of Mueller 

and Muller in [7]. In Figure 8, we notice that at start-up 

time, the algorithm in [7] demonstrates some jittering effects 

and converges to steady state after 10 symbols. On the other 

hand the proposed algorithm starts up with minimal jittering 

effects and converges to steady state within 10 iterations.  

 

 

 
Fig. 2 demonstrates timing recovery problem  

 
 

Fig. 3. Estimator variance performance 

 
Fig. 4 BER Vs Eb/No at different normalized variances 

 

 
Fig. 5 BER Vs Eb/No at normalized timing offset 0.25 

 
Fig. 6 compares performance of FER Vs Eb/No at 

normalized timing offset 0.25 and Iteration set to 10. 

 
Fig. 7 Multipath fading iterative timing recovery 

performance for different Rician factor-K in dB at 8-PSK 

modulation GSM system.  

 



 

 

 
Fig. 8 Convergence criterion from normalized timing offset 

of 0.25. 

 

 

VI. CONCLUSION 

 

Combined synchronization and decoding of turbo codes is 

likely to give good results in low SNR environments. In 

such applications timing recovery is extremely difficult with 

traditional methods. Deriving good timing estimator 

function is crucial in both decoding process and steady-state 

sampling phase.  In Figure 4, a low variance timing offset 

estimator with promising results is reported. The variance is 

also bounded even when the number of iterations is 

increased beyond 10. The overall performance index in 

Figure 5 and 6 shows that the bit error rate decreases with 

signal to noise ratio to a maximum of 10 iterations. The 

estimator performance may start to degrade after 10 

iterations due to biased response of the system. The timing 

phase is therefore, tracked and locked during this period and 

optimum matched filter outputs are now generated to the 

APP decoder. Deep fading degrades iterative synchronizer 

performance as shown in figure 7. The most interesting 

results are depicted in Figure 8. In comparison of our 

contribution with the work proposed by Mueller and Muller, 

our proposed method indicates a lower jitter at start-up time 

of synchronization. This is a good indication of the solution 

viability in cellular network (e.g. GSM) applications where 

high jitter performance is critical. The proposed solution 

also reaches steady-state earlier than the Mueller and 

Muller’s work hence a better solution for timing recovery 

problem in mobile receivers. Moreover, the proposed 

scheme is both bandwidth and power conservation efficient 

for use in GSM standards.  

However, the proposed scheme is still complex and  a 

scheme of training pilot sequences employed in GSM 

standards  provides lower  bit error-rate. 
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