
 

  
 

Abstract—This paper presents a fast converging timing 

recovery algorithm for digital receivers in low signal to noise 

ratio. This solves the problem of traditional slow converging 

phase-locked loop-based timing recovery in low noise 

environments. In this proposal, the receiver exploits the soft 

decisions computed at each turbo decoding iteration to provide 

reliable estimates of soft timing signal which in turn improves 

the decoding time. The proposed alternative tends convergence 

in about 10 iterations and derived sequential minimization 

technique approaches a theoretical Cramer-Rao bound with 

unbiased estimates. The proposed scheme is adaptive to any 

modulation and is insensitive to carrier offsets apparent in 

receivers. We have shown through simulation that the 

proposed method outperforms conventional timing extraction 

methods with respect to jitter performance. We therefore note 

that this timing synchronization method is suited to cellular 

communication receivers, where delay variation is intolerable. 
 

Index Terms—iterative turbo principle, matched filter 

output, turbo codes, soft information exchanges. 
                                              

I. INTRODUCTION 

 

In 1993, Berrou et al. developed the revolutionary iterative 

“turbo” receiver for decoding two dimensional product-like 

concatenated codes [1]. The impressive performance of 

turbo codes triggered the application of this powerful coding 

technique to digital communications at low SNR 

environments [2, 3]. Since then the iterative turbo principle 

has been extended to several receiver functions such as joint 

signal detection and decoding, equalization and decoding 

and recently iterative signal synchronization [4]-[6]. In most 

classical timing phase estimations,  timing recovery and 

decoding process have been separated with little penalty;  

timing recovery  uses  an instantaneous decision device to 

provide tentative decisions that are adequately reliable to 

estimate the timing phase error [7]. In such situations, 

however, the timing recovery process assumes that the 

neighboring symbols are independent at high SNR and the 

theoretical framework is normally based on least mean 

square (LMS) and traditional phase-locked loops (PLL) [8].  

Such a framework is susceptible to local minima and often 

presents additional block processing complexities which fail 

in low SNR. Since turbo receivers operate in low SNR, the 

future of wireless communication systems’ cell planning 

schemes and battery conservation of portable receivers will 
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have to rely on joint timing recovery and decoding 

algorithm. Ref. [9, 10] has shown that classical soft-

input/soft-output (SISO) iterative detection/decoding 

algorithm embed timing parameter estimation in the 

decoding process. For instance in [10], combined iterative 

decoding, equalization and timing error estimation is 

performed with modified forward and backward recursions 

in the SISO decoders using a per-survivor processing 

algorithm. Such methods are reliable but increase the 

receiver’s design complexity with vast memory requirement. 

Inorder to reduce the complexity involved in designing the 

decoder structure, soft information provided at each iteration 

by a conventional turbo decoder can be used to derive 

reliable information on timing error estimation. This is the 

essence of turbo principle synchronization technique [6]. 

Though recent research attention is focused towards this 

turbo synchronization method [11, 12], it is clear that more 

attention should be directed towards achieving fast 

converging timing recovery process. In mobile receivers, 

particularly cellular applications, the issue of fast 

convergence and jitter variation in steady state 

synchronization is very critical.  The objective of this paper 

is therefore to develop a mathematical framework for such 

turbo synchronization with a focus on faster convergence 

and jitter reduction. The objective is achieved through 

Sequential Unconstrained Extremization Techniques 

(SUET) from turbo functions and polyphase filtering bank 

(PFB) in place of interpolators hence viable with 

incommensurable sampling rate applications.   

This paper is organized as follows. In section II, turbo 

system model is presented. In section III, improved soft 

timing framework is proposed. Simulations are performed in 

sections IV and V. Conclusions are drawn in section VI.  

 

 II.   SYSTEM MODEL 

 

The baseband-equivalent of such a turbo-coded 

communication encoder and decoder structure is depicted in 

Figure 1. It consists of two recursive systematic 

convolutional encoders (RSC) which are separated by a 

pseudo-random L-bits interleaver (INT), puncturing the 

output of the encoders increases the transmitted code rate 

from 1/3 to 1/2. On the other hand the receiver consists of 

modified turbo decoder with two separate soft-In/Soft-Out 

maximum likelihood a posteriori (MAP) decoders which are  

connected with interleaver (INT) and deinterleaver 

(DEINT).  The most widely used MAP algorithm is the 

recursive Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [4]-

[6], which permits easy calculation of the log likelihood 

ratio (LLR) on block by block basis. BCJR algorithm, 
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however, requires priori knowledge of the channel 

parameters. Fortunately, the feedback loop provides prior 

soft bit information from one decoder to the other hence the 

name ‘turbo code’. It works iteratively, i.e. the decoding 

improves with consecutive iterations upto certain threshold 

limit when performance degrades. Implementing joint 

timing recovery and decoding helps converge the number of 

the iterations faster. 

 

Figure 1a.  Structure of a turbo encoder 
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 Figure 1b.  Structure of modified turbo decoder. 

 

III. THEORETICAL CONSIDERATIONS 

 

The received complex sampled signal is  

nHGar +=                        (1) 

Where H  is a K -size convolution matrix created from 

delayed samples of pulse shape ( )th  by set 

of [ ]T

K
ττ ,...,

1
=τ . G  is an interleaving matrix (obtained by 

permuting the columns of an identity 

matrix), [ ]T

K
aa ,...,

1
=a   takes values from a finite alphabet 

set χ and are the transmitted complex symbols with 

consecutive symbol duration, T . Vector n  is independently 

identically distributed (i.i.d.) Gaussian noise with variance 

No/2. 

In order to have sufficient statistics in the decoding-timing 

recovery module, (1) must be sampled within a set of   

( )α+≤ 1/TsT , intervals, where α is the roll-off of the 

transmitting square root raised cosine filter waveform. 

The received sampled vector is passed through discrete 

polyphase bank [14] of oversampled matched filters with 

assumed outputs taking the form 
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ks  where n  is the number 

samples per symbol, M  is the M-filter stages in a polyphase 

filter bank and k  is the kth  complex symbol whose timing 

phase is yet to be determined. Computing the output of (2) 

at instants of the argument yields the solution to the problem 

of time recovery. 

The solution to the problem of timing recovery is two fold; 

estimating timing information and determing the steady state 

location of the timing instants. Fortunately, several 

optimization solution to (2) exist, with time-varying timing 

phase among complex symbols one would naturally present 

the problem as  min-max solution using modified variable 

metric methods (MVMM) [13]. 

 

A. Estimating timing information 

 

In general case the imperfection of the wireless channel, 

leads to multi-dimensional random walk jittering timing 

phase, { }
Kττ ...,.1=τ , within a transmitted frame; however, 

for the purpose of simplicity in analysis only, we assume 

vectorial phase in a frame as depicted in [5-6]. The result 

will be then generalized for relevant emphasis in this work’s 

timing phase parameter estimation. 

Consider an estimation of τ̂ of τ  subject to a trial value τ~ . 

This estimate may be seen as the solution of the 

maximization problem 
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Where  
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~|ln~ p=Λ                                               (4)  
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Where ( )ap  is the a prior probability mass function, and 

logarithmic function of second factor of the integrand in (5) 

is defined as 
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Here, in-phase baseband channel model is considered 

without loss of generality. In most theory, complex signal 

model is desirable. In order to solve for (3), we take the 

derivative of (4) with respect to τ~  and we equate to zero, 

that is, 
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   If we use Baye’s rule in the first factor of the integrand in 

(7), we have a posteriori conditional probability density 

function (PDF) of the transmitted vector  a  
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The Maximum likelihood estimation problem in (3) now 

becomes  
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Since τ~  appears in both factors of the expectation problem 

in (9), the solution of (9) follows iterative turbo decoder 

principle whose outputs are soft information described by a 

posteriori mean [6] 

( ) ( )

( )
∑
∈







 −

==

∫ 





 −

≅





 −

χ
ϑ

α
τ

ϑ
α

ϑ
α

ττη

1ˆ,|

1ˆ,|
1ˆ,

i
kk

ap

d
i

k
p

k
a

i
k

i
k

r

a

a

rar

          (10)                                                                           

The second factor in (10) is the marginal a posteriori 

probability (APPs) computed from extrinsic SISO 

exchanges off LLRs from the second MAP decoder to the 

first MAP decoder as depicted in figure 1b. 
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 Since fast converging estimator is required for our problem, 

Modified Newton-Raphson (MNR) in [13] is applied to (9) 

to give a finite discrete approximate solution, that is 

 

( ) ( )
( ) ( )

( ) ( )
Ψ.Ωττ

ττ
τ

ττ
τ

ττ

11ˆˆ

1ˆ~
~

~1

1ˆ~
2~

~2
1ˆˆ

−−
−

=

−
=












∂

Λ∂
−

−
=















∂

Λ∂
−

−
=

ii

ii

ii

  

                                                                                   (12) 

 

Where 

( )y,
~

k
f η=Λ  , as explicitly depicted in (2) and (10).  

Where second term in (12) is governed by choice of 

the directional unit vector u . Ω  is the Hessian matrix which 

must be a nonpositive definite in extremization problem for 

solution to exist from its inverse.  MNR mitigates a problem 

of Ω  singularity, by choosing the u  such that 
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B. Updating  timing phase estimates 

 

The estimated timing offset finally interpolates the outputs 

of discrete polyphase bank of matched filters constructed 

with M set of weights that are selected from iterative 

decoder memory of pointer index. Synchronization attained 

with increase in turbo iterations, generating reliable 

estimates that maximize the LLRs, hence the selection of the 

maximum eye opening sample to improve the decoder APP 

function computation. The process repeats as long as 

convergence is not attained. 

The variance consideration of the estimator may be given by 

( ){ }

[ ] ( )[ ]2max
ˆ-2

maxˆ

2
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ΕΕ=
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Where  

i
maxˆmaxˆ ττε −=  is the error in estimating the timing 

phase offset of the proposed algorithm. This error 

maximizes the LLF presented in (3). 

For minimum variance steady-state considerations, 

expression in (14) is partially differentiated with respect to 

estimate errors ε̂  and the resulting set to zero. Rigorous 

derivations are beyond the scope of this paper.  

 

IV. COMMUNICATION LINK  SET-UP 

 

To verify the performance of our turbo aided timing 

recovery scheme, we simulated a baseband communication 

system transmitting differential quadrature phase shift 

keying (DQPSK) symbols in MATLAB. We considered 

convolutional turbo code (031,027) with net rate ½ after 

puncturing process. The interleaver length set to blocks’ 

sizes of 512 and square root raised cosine signaling pulse 

with roll-off of 0.25 was used.  1000 blocks were 

transmitted over additive white Gaussian noise (AWGN), 

terrestrial wireless medium. The received signal was passed 

through anti-aliasing filter and then sampled at a rate higher 

than the baud rate. Discrete matched filter was embedded at 

the input of the decoder as polyphase bank of synchronizer.  

 

V. PERFORMANCE RESULTS 

 

Figure 2 shows the estimator variance approaching Cramer-

Rao bound and indicating unbiased estimator in low SNR 

up-to 0.35 as iteration increases. In Figure 3 the number of 

iterations was set to 10, it is clear that for known normalized 

variances, the performance of the synchronizer improves 

with decrease in variance. In addition, known timing 

indicates good performance. This indicates that timing 

synchronizer uses soft information to get good estimates that 

converge to true channel offsets and on the other hand, the 

turbo iterative decoder uses this soft timing signal to 

converge faster. In Figure 4 it is seen that increasing the 

iterations improves performance, however whenever the 

number of iterations exceeds 10, the performance degrades 

as seen in Figure 2. This means that system converges at 

only 10 iterations or explicitly in about 10 symbols’ period. 

To explain our hypothesis of low jitter solution further, our 

proposed alternative was compared with the well-known 

work of Mueller and Muller in [7]. In Figure 5, we notice 

that at start-up time, the algorithm in [7] demonstrates some 

jittering effects and converges to steady state after 10 

symbols or loop cycles. On the other hand the proposed 

algorithm starts up with minimal jittering effects and 

converges towards steady state region within a preset 10 

iterative cycles. For simulation iterations beyond this value, 

the estimator is biased.  

 



 

 
Fig. 2. Estimator variance performance 

 

Fig. 3 BER Vs Eb/No at different normalized variances 

 

 
 

 

Fig. 4 BER Vs Eb/No at normalized timing offset 0.25 

 
 

Fig. 5 Jittering criterion at acquisition and steady state 

VI. CONCLUSION 

 

Joint synchronization and decoding of turbo codes is likely 

to give good results in low SNR environments than ever 

before. In such applications timing recovery is extremely 

difficult with traditional methods. Deriving good timing 

estimator function is crucial in both decoding process and 

steady-state sampling phase. A low variance timing offset 

estimator with promising results is reported in Figure 3. The 

variance is also bounded even when the number of iterations 

is increased beyond 10. The overall performance index in 

Figure 4 shows that the bit error rate decreases with signal to 

noise ratio to a maximum of 10 iterations. The performance 

may start to degrade after 10 iterations due to biasness 

response of the system in further iterations. The most 

interesting results are depicted in Figure 5. In comparison of 

our contribution with the work proposed by Mueller and 

Muller, our alternative algorithm indicates a lower jitter at 

start-up time of synchronization. This is a good indication of 

the solution viability in cellular network applications where 

high jitter performance is critical. The proposed solution 

also reaches steady-state earlier than the Mueller and 

Muller’s work hence a better solution for timing recovery 

problem in mobile receivers.   

However, the combined SUET-PFB and turbo symbol 

synchronization is complex and pilot-aided schemes 

available in GSM/GPRS/EDGE standards outperform it. 
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