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AbstractAbstractAbstractAbstract    

With the exception of holders of default-free instruments, a key risk run by investors 

is credit risk.  To meet the need of investors to hedge this risk, the market uses credit 

derivatives. 

 

The South African credit derivatives market is still in its infancy and only the very 

simplistic instruments are traded.  One of the reasons is due to the technical 

sophistication required in pricing these instruments.  This dissertation introduces the 

key concepts of risk neutral probabilities, arbitrage free pricing, martingales, default 

probabilities, survival probabilities, hazard rates and forward spreads.  These 

mathematical concepts are then used as a building block to develop pricing formulae 

which can be used to infer valuations to the most popular credit derivatives in the 

South African financial markets.  

 

Key Terms:  Key Terms:  Key Terms:  Key Terms:      

Risk neutral probabilities; Arbitrage free pricing; Martingales; Default probabilities; 

Survival probabilities; Hazard rates; Forward spreads; Credit derivatives; Credit 

default swaps; Default digital swaps; Asset swap packages    
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Chapter 1Chapter 1Chapter 1Chapter 1    

IntroductionIntroductionIntroductionIntroduction    

 

For the past decade, we have witnessed a new, sophisticated and increasingly 

popular development in the derivatives market – credit derivatives.  Instead of the 

normal derivatives where prices are dependent on prices of the underlying asset, 

credit derivatives are instruments where their evaluations are driven by the credit risk 

of commercial or government entities.  Essentially, the underlying asset in credit 

derivatives is the credit risk on an underlying bond, loan or other financial instrument.   
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1.11.11.11.1    Credit RiskCredit RiskCredit RiskCredit Risk    

DefinitionDefinitionDefinitionDefinition    1111....1111.1.1.1.1::::        Credit risk is the risk that a borrowing entity will default on a loan, 

either through inability to maintain the interest servicing or because of bankruptcy on 

insolvency leading to inability to repay the principal itself.   

 

When an entity defaults, the corresponding entity’s bondholders suffer a loss as the 

value of their asset declines, and the potential greatest loss is that of the entire bond 

which they hold.  The extent of credit risk fluctuates as the fortunes of the entity 

changes in line with their own economic circumstances and the macroeconomic 

business cycle.  The magnitude of credit risk can be described by a firm’s credit 

rating.  

 

DefinitionDefinitionDefinitionDefinition    1111.1.1.1.1.2:.2:.2:.2:  In personal finance, the term credit rating commonly refers to a 

score issued by a credit monitoring organisation.  A person’s credit rating indicates 

how creditworthy he or she is.  In corporate finance, a credit rating is a “grade” 

assigned to a bond, bond issuer, insurance company, or other entity or security to 

indicate its riskiness. 
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Bond rating agencies like Moody’s and Standard & Poor’s (S&P) provide a service to 

investors by grading fixed income securities based on current research and 

prevailing market conditions.  The rating indicates the likelihood that the issuer will 

default either on interest or capital payments.   

 

• For S&P, the ratings vary from AAA (the most secure) to C. 

• For Moody’s, the ratings vary from Aaa (the most secure) to D. 

 

Only bonds with a rating of BBB or better are considered to be suitable for 

investment by institutions.  Anything below BBB, is considered to be junk, or below 

“investment grade”.  Bond ratings are periodically revised based on most recent 

available information.  The following table gives a brief summary of the ratings issued 

by Moody’s and S&P. 
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Moody's S&P Meaning

Aaa AAA
Bonds of the highest quality that offer the lowest 
degree of investment risk. Issuers are considered 
to be extremely stable and dependable.

Aa1, Aa2, Aa3 AA+, AA, AA-
Bonds are of high quality by all standards, but carry 
a slightly greater degree of long-term investment 
risk.

A1, A2, A3 A+, A, A- Bonds with many positive investment qualities.

Baa1, Baa2, 
Baa3

BBB+, BBB, BBB-
Bonds of medium grade quality. Security currently 
appears sufficient, but may be unreliable over the 
long term.

Ba1, Ba2, Ba3 BB+, BB, BB-
Bonds with speculative fundamentals. The security 
of future payments is only moderate.

B1, B2, B3 B+, B, B-
Bonds that are not considered to be attractive 
investments. Little assurance of long term 
payments.

Caa1, Caa2, 
Caa3

CCC+, CCC, 
CCC-

Bonds of poor quality. Issuers may be in default or 
are at risk of being in default.

Ca CC
Bonds of highly speculative features. Often in 
default.

C C Lowest rated class of bonds.
- D In default.

Investment Grade Bonds

Non Investment Grade Bonds 

 

          Source:  Moody’s and S&P Websites 

 

Ratings agencies undertake a formal analysis of the various corporate entities, after 

which a rating is announced.  The analyses on an entity by the rating agencies are 

fairly comprehensive and the issues considered in the analysis most frequently 

include the following: 

 

• the financial position of the firm itself, for example, its balance sheet position 

and anticipated cash flows and revenues. 

• other qualitative firm-specific issues such as the quality of the management 

and succession planning. 
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• an assessment of the firm’s ability to meet scheduled interest and principal 

payments, both in its domestic and foreign currencies. 

• the outlook for the industry and the competition within it. 

• general assessments for the domestic economy.  

 

Hence credit ratings can be used as an indication of the magnitude of an entities 

credit risk.   

 

Another measure of credit risk (a market driven approach) is the credit risk premium, 

which is the difference between yields on the same-currency government 

benchmarks bonds and corporate bonds.  If we consider a local investment in a local 

bond, government benchmark bonds can be assumed to be default-free, as the 

government can print more money in order to fund any shortfall in its obligations. This 

premium between a corporate bond and a similar government benchmark bond is the 

compensation required by investors for holding bonds that are not default-free.  The 

credit premium required will fluctuate as individual firms and sectors are perceived to 

offer improved or worsening credit risk, and as the general health of the economy 

improves or worsens.  For example, the graph below illustrates the variability in credit 
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spread premium in the South African corporate bond market.  We can observe that 

there is a reasonable spread differential between each of the credit ratings.  This can 

be associated to investors demanding higher yields for greater credit risk taken on.  

Furthermore, the credit spreads in recent years indicate an increased credit risk 

environment.  This can be associated to the recent sub-prime credit crises 

experienced offshore. 
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Some practical examples of credit risk are as follows: 

 

• A holder of a corporate bond bears the risk that the market value of the bond 

will decline due to a deterioration in the credit quality of the issuer and hence 

a decline in the credit rating of the issuer. 

• A bank may suffer a loss if a bank’s debtor defaults on payments of the 

interest due and (or) the principal amount of the loan.  This is typically 

dominant in a home loan or auto loan transaction. 

 

Credit risk can be thought of as a subset of the vast ocean of financial risk.  We now 

attempt to establish its position in the world of financial risk and provide a graphical 

breakdown of the constituents that make up credit risk as follows: 

 

Financial Risk

Market Risk Credit Risk

Arrival Timing Recovery 
Default 

Correlation
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Financial risk  is a measure of adverse changes in a financial position as a result of a 

changing economic environment.  Broadly, financial risk may be divided into market 

risk and credit risk.   

    

DefinitionDefinitionDefinitionDefinition    1111.1.1.1.1.3.3.3.3::::  Market risk is the risk of changes in the market price of a defaultable 

asset, even if no default occurs. 

 

Credit risk may be further categorised into the following four components: 

 

• Arrival risArrival risArrival risArrival risk:k:k:k:  this is a term for the uncertainty whether a default will occur or 

not.  A common measure of arrival risk is the probability of default.    

    

• Timing risTiming risTiming risTiming risk:k:k:k:  refers to the uncertainty about the exact time of default.  Timing 

risk is a more detailed and specific measure than arrival risk, as knowledge 

about the time of default includes knowledge about the arrival risk for all 

possible time horizons.     
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• RecovRecovRecovRecovery risk:ery risk:ery risk:ery risk:  describes the uncertainty about the severity of the losses if a 

default has occurred.  Market convention is to express the recovery rate of a 

bond or loan as the fraction of the notional value of the claim that is actually 

paid to the creditor.      

    

• Default correlation risk:Default correlation risk:Default correlation risk:Default correlation risk:  describes the risk that several obligors default 

together.  This would imply joint arrival risk which is described by the joint 

default probabilities over a given time horizon, and joint timing risk which is 

described by the joint probability distribution function of the times of default.    
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1.1.1.1.2222    Credit DerivativesCredit DerivativesCredit DerivativesCredit Derivatives    

Before we formally introduce a credit derivative, a few key definitions are required: 

 

DefinitionDefinitionDefinitionDefinition    1111.2.2.2.2.1:.1:.1:.1:        A credit event is a general default event related to a legal entity’s 

previously agreed financial obligation.  In this case, a legal entity fails to meet its 

obligation on any significant financial transaction (e.g. coupon on a bond it issued).   

 

DefinitionDefinitionDefinitionDefinition    1111.2.2.2.2.2.2.2.2::::  Reference entity  or reference credit refers to one (or several) 

issuer(s) whose defaults trigger the credit event.  This can be one or several 

defaultable issuers. 

 

DefinitionDefinitionDefinitionDefinition    1111.2.2.2.2.3.3.3.3::::  Reference obligations or reference credit assets are a set of assets 

issued by the reference credit.  They are required for the determination of the credit 

event and for the calculation of the recovery rate.   

 

The events triggering a credit derivative are defined in a bilateral swap confirmation 

which is a transaction document that typically refers to an ISDA (International Swaps 

and Derivatives Association) master agreement previously executed between the two 
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counterparties.  There are several standard credit events which are typically referred 

to in credit derivative transactions: 

 

• Bankruptcy 

• Failure to Pay 

• Restructuring 

• Repudiation 

• Moratorium 

    

DefinitionDefinitionDefinitionDefinition    1111.2.2.2.2.4.4.4.4::::        Default payments are the payments which have to be made if a 

credit event has occurred. 

 

Credit Derivatives were introduced to the market in the beginning of the 1990’s.  

Despite their short history their use and applications has grown rapidly.  Credit 

derivatives are now used not only by banks, but also by various funds, insurance 

companies and even corporations, in order to separate and trade credit risk.  The 

term credit derivatives can be used for a broad range of securities. Schonbucher 
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(2003) gives one definition of credit derivatives which covers the different securities 

discussed here: 

 

DefinitionDefinitionDefinitionDefinition    1111....2222.5.5.5.5::::  A credit derivative is a derivative security that has a payoff which is 

conditioned on the occurrence of a credit event.  The credit event is defined with 

respect to a reference credit (or several reference credits), and the reference credit 

asset(s) issued by the reference credit.  If the credit event has occurred, the default 

payment has to be made by one of the counterparties.  Besides the default payment, 

a credit derivative can have further payoffs that are not default contingent. 

(Schonbucher 2003, p8)         

 

Credit derivatives in their simplest form are bilateral contracts between a buyer and 

seller under which the seller sells protection against pre-agreed events occurring in 

relation to a third party (usually a corporate or sovereign) known as a reference 

entity.  The reference entity will not (except in certain very limited circumstances) be 

a part to the credit derivatives contract, and will usually be unaware of the contract’s 

existence. 
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One of the most popular credit derivatives in the South African financial markets is 

the credit default swap (CDS).  Hence, the last section of the introduction is 

dedicated to understanding the cash flow dynamics of a CDS. 
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1111....3333        Credit Default Swaps (CDS)Credit Default Swaps (CDS)Credit Default Swaps (CDS)Credit Default Swaps (CDS) 

Credit default swaps transfer the potential loss on a reference asset that can result 

from specific credit events such as default, bankruptcy, insolvency and credit rating 

downgrades.  Marketable bonds are the most popular form of reference asset 

because of their price transparency.  While bank loans have the potential to become 

the dominant form of reference asset, this is impeded by the fact that loans are more 

heterogeneous and illiquid than bonds.  Credit default swaps involve a protection 

buyer, who pays a periodic or upfront fee to a protection seller in exchange for a 

contingent payment if there is a credit event.  The fee is usually quoted as a basis 

point multiplier of the nominal value.  

 

Some default swaps are based on a basket of assets and pay out on a first to default 

basis whereby the contract terminates and pays out if any of the assets in the basket 

are in default.  Default swaps are the largest component of the global credit 

derivatives market.   

 

However structured, the credit default swap enables one party to transfer its credit 

exposure to another party.  Banks may use default swaps to trade sovereign and 
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corporate credit spreads without trading the actual assets themselves; for example 

someone who has gone long a default swap (the protection buyer) will gain if the 

reference assets’ obligor suffers a rating downgrade or defaults, and can sell the 

default swap at a profit if he can find a suitable counterparty.  This is because the 

cost of protection on the reference asset will have increased as a result of the credit 

event.  The original buyer of the default swap need never have owned a bond issued 

by the reference assets’ obligor.  The maturity of the credit default swap does not 

have to match the maturity of the reference asset and in most cases does not.  On 

default, the swap is terminated and default payment by the protection seller or 

guarantor is calculated and handed over.  The guarantor may have the asset 

delivered to him and pay a pre-specified proportion of the nominal value, or may cash 

settle the swap contract.  

 

Periodic or upfront premium

Protection Protection
Buyer Seller

Payment contingent on credit event
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A A A A Cash Cash Cash Cash FFFFlowlowlowlow    ExampleExampleExampleExample::::    

    

As an example we use a hypothetical transaction between an investment company 

and XYZ bank.  In this case the investment company sells protection (takes on credit 

risk) on R10 million General Motors to XYZ bank.  Let’s assume that credit protection 

is written on 100% of the nominal value.   

 

The term of the transaction is 5 years.  In return for the credit protection on General 

Motors, which the investment company is providing over this five-year period, XYZ 

bank agrees to pay a fixed fee of 1.6% (160 basis points) per annum payable 

quarterly.   

 

Let’s assume that settlement is physical.  Thus, should a credit event occur, XYZ 

bank would be able to deliver any qualifying senior unsecured General Motors paper 

to the investment company in return for a R10 million payment and then the contract 

(and all future payments) would terminate.  The charts below illustrate two potential 

scenarios for this transaction: 
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1.6% P.A

Zero

Chart A

Pre-Credit Event Flows

Investment Company 
(Potection Seller)

XYZ Bank 
(Protection Buyer)

 

 

R 10 million

Senior Unsecured
Obligations of General Motors with

notional amount of R 10 million.

Chart B

Flows if a Credit Event Occurred

Investment Company 
(Potection Seller)

XYZ Bank 
(Protection Buyer)

Payments Stops
Quarterly

 

 

In chart A, no General Motors credit event occurs and XYZ bank simply continues to 

pay the 160 basis points annual premium to the investment company.  For XYZ bank 

there is, therefore, a negative accrual relating to these payments. 
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Chart B however depicts a scenario in which a credit event occurs two years into the 

transaction.  In this case XYZ bank pays the investment company the premium of 

160 basis points for the two years preceding the credit event and then receives R 10 

million from the investment company in return for delivering any qualified senior 

unsecured debt obligation with a notional amount of R 10 million.  Following such 

credit event, it is likely that General Motors’ debt would be trading substantially below 

par – and the investment company would be expected to bear the loss resulting from 

the diminution of value.  The table below summarises the cash flows: 

 

Pays

Receives

160 bps for 5 years zero

zero 160 bps for 5 Years R 10 million

R 10 million

Example Cashflows under "no default" and Credit Eve nt At 2 Years Scenarios

160 bps for 2 years, then 
General Motors Deliverable 

Obligation
160 bps for 2 years, then 

Recovery Value

No Credit Event Credit Event in 2 Years
XYZ Bank Investment Company XYZ Bank Investment Company

 

 

Now that we have introduced the underlying terminology, we proceed to the focal 

point of this dissertation, which is a logical argument to the mathematical concepts 

required to develop credit derivative pricing models. 
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CCCChapter hapter hapter hapter 2222    

Bonds, Credit SpreadBonds, Credit SpreadBonds, Credit SpreadBonds, Credit Spreadssss    and Implied Default and Implied Default and Implied Default and Implied Default 

ProbabilitiesProbabilitiesProbabilitiesProbabilities 

A Bond can be thought of as a securitised version of a loan.  The major difference is 

that bonds are tradeable in small denominations.  This tradeability feature of bonds 

opens access to a much larger number of lenders due to the following advantages 

over conventional loans: 

 

• each lender can lend small amounts. 

• most bonds are more standardised than loans. 



 - 25 -

• lenders do not need to remain invested for the whole borrowing period as 

they can trade their bonds in the secondary market. 

 

As a result the issuer can sell the bonds at competitive prices, which usually results 

in better conditions than bilateral negotiations with just a few potential loan creditors. 

 

The price of defaultable bonds contains extremely important information about the 

markets perceived assessment of the issuer’s default risk.   

 

The three most significant and popular types of bonds are defined as follows: 

 

Definition 2.1:Definition 2.1:Definition 2.1:Definition 2.1:  Fixed-coupon bonds are bonds where the coupon amounts are fixed 

in advance, and the notional is repaid in full at maturity of the bond. 

 

Definition 2.2:Definition 2.2:Definition 2.2:Definition 2.2:  Par floaters are bonds where the coupon amounts are linked to a 

benchmark short-term interest rate plus a constant spread.  Usually, the spread is 

chosen such that the price of the par floater is initially at par. 

 



 - 26 -

Definition 2.3:Definition 2.3:Definition 2.3:Definition 2.3:  Zero-coupon bonds are bonds with no coupon payments.  In order to 

compensate investors, they are usually issued at a discount to par. 

 

We now begin to introduce some of the key mathematical concepts.  We begin by 

setting the probabilistic foundations by defining the following: 

 

Definition 2.Definition 2.Definition 2.Definition 2.4444::::  A sample space  or universal sample space , often denoted, Ω , of an 

experiment or random trial is the set of all possible outcomes. 

 

Definition 2.Definition 2.Definition 2.Definition 2.5555::::  A non-empty collection of subsets F of Ω  is called a −σ algebra if: 

1.  ,FAFA ∈⇒∈  

2. for any countable sequence }{ iA from F , ,FAi ∈U  

3. ,F∈Θ where Θ denotes the impossible event. 

 

Definition 2.Definition 2.Definition 2.Definition 2.6666: : : :     Suppose F is a −σ algebra.  If for any sequence ,....,..,, 21 nAAA  of 

disjoint sets in F , one has: 

∑
∞

=

∞

=

=








11

)(
n

n
n

n AA µµ U , 

we say that µ  is countably additive or −σ additive. 
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DefinitionDefinitionDefinitionDefinition    2.2.2.2.7777::::  A measurable space ),( FΩ  consists of a sample space Ω  consisting 

of possible outcomes ω and a collection F  of subsets of Ω  called a −σ algebra.  A 

countably additive mapping +ℜ→F:µ is called a measure on ),( FΩ . 

        

Definition 2.Definition 2.Definition 2.Definition 2.8888::::  A probability measure Q  is a normed measure over a measurable 

space ),( FΩ ; that is, Q  is a real-valued function which assigns to every FA∈ a 

number such that: 

1. 0)( ≥AQ  for every FA∈ ; 

2. 1)( =ΩQ ; 

3. for any denumerable sequence }{ nA  of disjoint events from F , 

∑
∞∞

=








11

)( nn AQAQ U  

The triple ),,( QFΩ is called a probability space. 

    

DefinitionDefinitionDefinitionDefinition    2.2.2.2.9999::::  A collection TttF ∈)(  of sub-σ -algebras of F is called a filtration if 

ts FF ⊆  for all ts ≤ .  A stochastic process M defined on ),,( QFΩ and indexed by 

T is called adapted to the filtration if for every Tt ∈ , the random variable tM  is tF - 

measurable. 
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The filtration can be thought of as a flow of information.  The σ -algebra tF  contains 

the events that can happen up to time t .  An adapted process is a process that does 

not look into the future.  If M is a stochastic process, the filtration Tt
M

tF ∈)(  is defined 

by: 

    

):( tsMF s
M

t ≤= σ . 

 

We call this filtration the filtration generated by M , or the natural filtration of M .  

Intuitively, the natural filtration of a process keeps track of the history of the process.  

 

A stochastic process is always adapted to its natural filtration. 

 

DefinitionDefinitionDefinitionDefinition    2.2.2.2.10101010::::  In general, if M is a random variable defined on a probability space 

),,( QFΩ , then the expected value of M , denoted by )(ME or )(MEQ , is defined 

as follows: 

 

∫
Ω

= MdQME )(     
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DefinitionDefinitionDefinitionDefinition    2.2.2.2.11111111::::  (Martingale):  A stochastic process tM adapted to tF  and 

satisfying ( ) ∞<|| tME , ],0[ Tt ∈∀  is called a Q - submartingale if: 

( ) ttTQ MFME ≥|          ],0[ Tt ∈∀ , 

and a Q - supermartingale if: 

( ) ttTQ MFME ≤|          ],0[ Tt ∈∀ , 

tM is a martingale if it is both a submartingale and a supermartingale, i.e., if 

( ) ttTQ MFME =| .   

A martingale can be thought of as a stochastic process such that the conditional 

expected value (a definition can be found in Probability and Measure, page 445) of 

an observation at some time T , given all the observations up to some earlier time t , 

is equal to the observation at that earlier time t . 

    

Definition 2.Definition 2.Definition 2.Definition 2.12121212::::  (Martingale measure):  Let Q be a probability measure.  If for every 

dividend free traded asset with price process )(Tp , the discounted price process 

)(/)( TbTp is a martingale underQ , then Q  is called a martingale measure (or spot-

martingale measure).  Here 









= ∫

T

t

dssrTb )(exp)(  is the value of the default-free 

continuously compounded bank account at timeT , and the default free-continuously 

compounded discount factor from t  to T  is defined as )(/1)( TbT =β . 
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Arbitrage free pricing is a fundamental assumption in deducing pricing equations for 

derivatives.  Arbitrage refers to the practice of taking advantage of a price differential 

between two or more financial instruments; striking a combination of matching deals 

that capitalizes upon the imbalance.  If the market prices do not allow for profitable 

arbitrage, the prices are said to constitute an arbitrage equilibrium or arbitrage-free 

market.  An arbitrage equilibrium is a precondition for a general economic 

equilibrium.   

 

The central importance of the martingale measure in mathematical finance is based 

upon the fact that the existence of an equivalent martingale measure is equivalent to 

the absence of arbitrage in the underlying market. 

 (see Harrison and Pliska, 1981, for technical conditions under which this is true).   

 

DefiniDefiniDefiniDefinition 2.tion 2.tion 2.tion 2.13131313::::  Let 0}{ ≥ttF be a filtration with respect to a non-null Ω  space, which 

belongs to the probability space ),,( QFΩ .  Then the quadruple ( ),,}{, 0 QFF tt ≥Ω is 

said to be the filtered probability space  with respect to filtration 0}{ ≥ttF . 
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The analysis proceeding takes places in a filtered probability space ),,)(,( 0 QFF tt ≥Ω  

under the risk-neutral probability measure (spot martingale measure)Q , and all 

probabilities and expectations are taken under the measureQ .  In order to develop 

the framework, we define as follows: 

 

Definition 2.Definition 2.Definition 2.Definition 2.14141414::::   

Assume that A is any subset of F i.e. FA∈ .  The indicator function of A is denoted 

by }{1 A .  Hence,  

1)(1 }{ =ωA  if A∈ω  

and 

0)(1 }{ =ωA  otherwise 

 

Definition 2.Definition 2.Definition 2.Definition 2.15151515::::    

We denote the time of default asτ , and the survival indicator function as )(tI , where 

)(tI  is defined as }{1)( ttI >= τ .  Hence: 

1)( =tI if t>τ  (if default occurs after time t ) 

and 

0)( =tI if t≤τ  (if default occurs before or at time t ) 
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Definition 2.1Definition 2.1Definition 2.1Definition 2.16666::::    

We denote default free zero coupon bond (ZCB) prices for all maturities tT >  as 

follows: 

),( TtB = Price of a ZCB at time t , which is paying a notional of 1 at T  

 

Definition 2.1Definition 2.1Definition 2.1Definition 2.17777::::    

We denote defaultable zero coupon bond prices for all maturities tT > , if t>τ  as 

follows: 

),( TtB  = Price of a ZCB at time t , if the time of default is beyond t  

 

In order to ensure the absence of arbitrage the following two conditions are required: 

 

1. Defaultable bonds are always worth less than default free bonds of the same 

maturity.  

Hence,  

),(),(0 TtBTtB ≤≤   Tt <∀  

Most defaultable bonds are not secured by collateral.  Hence, investors of such 

bonds must assume not only interest rate risk but also credit risk of the issuer. 
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Depending on the credit quality and probability of default of the issuer, investors will 

usually demand a discount in value to an identically traded default free bond. (usually 

found in the form of a government benchmark bond).  Hence, we don’t restrict 

ourselves by the above condition, as this is also an investor behavioural 

phenomenon. 

 

2. Zero coupon bond prices are a decreasing, non-negative function of maturity, 

with   ),(1),( ttBttB ==    

Hence, 

0),(),( 21 >≥ TtBTtB  and 0),(),( 21 >≥ TtBTtB   21 TTt <<∀ , t>τ  

 

Similarly, this is also an investor behavioural phenomenon as investors demand 

lower yields for bonds with shorter maturities, assuming a constant term structure of 

interest rates.  Hence, this would imply that bonds with shorter maturities will be 

priced higher, since bond yields and bond prices and inversely related. 

 

In order to further develop the framework, the following assumptions are made: 
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Assumption 2.1:Assumption 2.1:Assumption 2.1:Assumption 2.1:   

 

• At time t , the defaultable and default-free zero-coupon bond prices of all 

maturities tT > are known.  This assumption is not unreasonable as most 

bond exchanges throughout the world, would be able to provide this 

information as at close of any business day. 

 

• The bond prices are arbitrage-free.  This is also not an unreasonable 

assumption, as if arbitrage opportunities did occur, traders would take 

advantage of this momentarily and this would consequently result in 

arbitrage-free prices.  

 

• The defaultable zero-coupon bonds have no recovery at default.  The price at 

time t of a defaultable bond with maturity T can be represented as follows: 

 

=),()( TtBtI  ),( TtB  if t>τ     

and 

=),()( TtBtI  0  if t<=τ  (since default has occurred and the recovery value is zero)    
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Assumption 2.2:Assumption 2.2:Assumption 2.2:Assumption 2.2:   

The default-free interest-rate dynamics are independent of the default time, under the 

probability measureQ .  Hence,  

tTTtB ≥|),(  and τ are independent under ),,( QFΩ . 

 

We now state the first fundamental theorem of Asset Pricing, which will be critical to 

formulate our results.  A proof can be found in the seminal paper due to Harrion and 

Pliska (1981, Stochastic Processes and Their Applications, 11, 215-260) 

 

Theorem 2.1:Theorem 2.1:Theorem 2.1:Theorem 2.1: ((((First Fundamental Theorem of Asset Pricing)First Fundamental Theorem of Asset Pricing)First Fundamental Theorem of Asset Pricing)First Fundamental Theorem of Asset Pricing)  

 

A financial market with time horizon T and price processes of the risky asset and 

riskless bond given by TSS ,.......1  and TBB ,.......1 , respectively, is arbitrage-free under 

the probability P  if and only if there exists another probability measure Q such that: 

1.  For any event A , 0)( =AP if and only if 0)( =AQ .  Hence, P and Q are  

       equivalent probability measures. 

2. The discounted price process, TTT BSXBSX /.,........./ 000 ==  is a 

    martingale underQ . 
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2.1 Pricing2.1 Pricing2.1 Pricing2.1 Pricing    the defaultthe defaultthe defaultthe default----free zerofree zerofree zerofree zero----coupon Bondcoupon Bondcoupon Bondcoupon Bond    

Using theorem [2.1], we can deduce that under the spot martingale measure, the 

price of every contingent claim is given by the expected value of its discounted 

expected payoff.  Hence, we can price the default-free zero coupon bond as follows: 

 

]1.[),(
)(∫=

−
T

t
dssr

eETtB                                                Equation [Equation [Equation [Equation [1111]]]]    

                     )]([ TE β= , where )(Tβ is as defined in definition [2.12] 

 

where )(sr  is the default-free continuously compounded short rate. 

 

2.2 Pricing2.2 Pricing2.2 Pricing2.2 Pricing    the defaultable zerothe defaultable zerothe defaultable zerothe defaultable zero----coupcoupcoupcoupon Bondon Bondon Bondon Bond    

For a defaultable zero-coupon bond, the payoff is 1 only if the obligor did not default 

by timeT .  If default did occur by timeT , clearly, the value of the bond is zero.  

Hence, }{1)( TtI >= τ  

1)( =TI if T>τ  (if default occurs after timeT ) 

and 

0)( =TI if T≤τ  (if default occurs before or at timeT ) 
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Therefore, the price of the defaultable zero-coupon bond at time τ<t is: 

 

)]([),(
)(

TIeETtB
T

t
dssr∫=

−
                                                                Equation [Equation [Equation [Equation [2222]]]]    

         )]()([ TITE β= , where )(Tβ is as defined in definition [2.12]  

                     

Using assumption [2.2] (independence), we can factor the expectation operator as a 

product of expectations in equation [2]. Hence: 

)]([),(
)(

TIeETtB
T

t
dssr∫=

−
 

                )]([][
)(

TIEeE

T

t

dssr∫
=

−

 

           )]([]1.[
)(

TIEeE

T

t

dssr∫
=

−

                     Equation [Equation [Equation [Equation [3333]]]]    

 

Substituting equation [1] in equation [3]: 

          )]([),( TIETtB=  

  ),(),( TtPTtB=                                EqEqEqEquation [uation [uation [uation [4444]]]]    

 

where ),( TtP in equation [4] is the implied probability of survival in the interval ],[ Tt .  

The implied probability of survival will be discussed further in chapter 3. 
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Chapter Chapter Chapter Chapter 3333    

An extension to the FramewAn extension to the FramewAn extension to the FramewAn extension to the Framework: Survival ork: Survival ork: Survival ork: Survival 

ProbabilitiesProbabilitiesProbabilitiesProbabilities    

        

This chapter is an extension to the framework developed in chapter 2. In formulating 

equation [4], we briefly mentioned the probability of survival.  We now proceed to 

give a formal definition of the probability of survival as follows: 
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Definition 3.1:Definition 3.1:Definition 3.1:Definition 3.1:  (Implied survival probability) Let the time of default,τ , be greater 

than t . i.e. t>τ  

• The implied survival probability from t  to T , where tT ≥ , at time t  is given by 

the ratio of the defaultable and default-free zero coupon bond prices, as 

follows: 

 
),(

),(
),(

TtB

TtB
TtP =                                        Equation [Equation [Equation [Equation [5555]]]]    

 

where ),( TtB and ),( TtB  is as defined in equation [1] and equation [2] 

respectively. 

 

• The implied default probability over the interval ],[ Tt  is denoted by, 

),( TtPdef and is defined as follows: 

),(1),( TtPTtPdef −=                                   Equation [Equation [Equation [Equation [6666]]]] 

 

If the prices of zero-coupon bonds for all maturities are available (as discussed in 

assumption 2.1), then using definition 3.1, we can obtain the implied survival 

probabilities for all maturities. 
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We now briefly mention some of the important properties of implied survival 

probabilities ),( TtP : 

 

• 1),( =ttP and ),( TtP is non-negative and decreasing inT . 

• 0),( =∞tP  

• Normally ),( TtP is continuous in its second argument, except if an important 

event scheduled at some time TTt << 1 has a direct influence on the survival 

of the obligor.  An example of such an event would be a coupon payment 

date. 

• Viewed as a function of its first argument, all survival probabilities for fixed 

maturity dates will tend to increase. 

 

In order to analyse the default risk over a given time interval in the future, we need to 

introduce the concept of a conditional survival probability.  First, let’s consider 

conditional probabilities as follows: 
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Definition 3.2Definition 3.2Definition 3.2Definition 3.2::::  (Conditional probability) Given a probability space ),,( PFΩ and two 

events FBA ∈, with 0)( >BP , the conditional probability of A  given B is defined by: 

 

  
)(

)(
)|(

BP

BAP
BAP

∩=                                         Equation [Equation [Equation [Equation [7777]]]] 

 

If 0)( =BP , then )|( BAP is undefined (see Borel-Kolmogorov paradox). 

 

We now define the following events: 

• A :  Survival until 2T  

• B :  Survival until 1T  

Hence, BA ∩  will denote survival until 1T  and survival until 2T .  If we assume 

that 21 TT < , ABA =∩ , since event B is contained in A .  In other words, if the 

obligor survives until 2T , he must also have survived until 1T . Hence, applying 

equation [7], the conditional probability of A  given B is as follows: 

 

),(

),(
)|(

1

2

TtP

TtP
BAP =  , for TTT << 21  
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Similarly, we can now define the following: 

    

Definition 3.3:Definition 3.3:Definition 3.3:Definition 3.3:  (conditional survival probability) The conditional survival probability 

over the interval ],[ 21 TT as seen from t , given survival over ],[ 1Tt , is as follows: 

 

),(

),(
),,(

1

2
21 TtP

TtP
TTtP = , where 21 TTt ≤≤                      Equation [Equation [Equation [Equation [8888]]]]    

 

As a consequence of the above definition, we can now define the conditional default 

probability as: 

 

),,(1),,( 2121 TTtPTTtPdef −=                                Equation [Equation [Equation [Equation [9999]]]]    

 

 

Let’s consider the following exampleLet’s consider the following exampleLet’s consider the following exampleLet’s consider the following example, assuming zero recovery, assuming zero recovery, assuming zero recovery, assuming zero recovery::::    

Define: 

• )(Ty :  is the yield on a T -year corporate zero-coupon bond.   

• )(1 Ty :  is the yield on a T -year risk-free zero-coupon bond.   

• τ :  is the random time of default 
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Using equation [2], the present value of a T -year corporate zero-coupon bond with a 

principal of 100 can be quantified as follows: 

 

TTyeTB )(100),0( −=                                                                                                                         Equation [Equation [Equation [Equation [10101010]]]]    

 

 

Similarly, using equation [1], the present value of a T -year risk-free  zero-coupon 

bond with a principal of 100 can be quantified as follows: 

 

 TTyeTB )(1100),0( −=                                                                                                                 Equation [Equation [Equation [Equation [11111111]]]]    

 

Next, the probability that the corporation will default between time zero and time T , 

can be computed using equation [6] as follows: 

 

            ),0(1),0( TPTPdef −=                                                                           

),0(

),0(
1

TB

TB−=  , using the relationship in equation [5] 

         
TTy

TTy

e

e
)(

)(

1100

100
1 −

−

−= , substituting from equation [10] and [11] 
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               TTyTye )]()([ 11 −−−=                                                               Equation [Equation [Equation [Equation [12121212]]]]    

 

Next, the conditional probability of default between 1T and 2T  as seen from time 0 , 

can be computed as follows: 

 

                   ),,0(1),,0( 2121 TTPTTPdef −= , using equation [9] 

),0(

),0(
1

1

2

TP

TP−= , using definition [3.3] 

                                        

),0(

),0(

),0(

),0(

1

1

1

2

2

TB

TB

TB

TB

−= , using equation [5]    

                 

111

11

221

22

)(

)(

)(

)(

100

100
100

100

1

TTy

TTy

TTy

TTy

e

e
e

e

−

−

−

−

−= , using equation [10] and [11] 

                                        1111122122 )()()()(1 TTyTTyTTyTTy eeee −−−=  

                            ))()(())()(( 111121221 TyTyTTyTyT ee −−−−=      
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Consider the following numerical example:  Suppose that the spreads over the risk-

free rate for 5-year and a 10-year BBB-rated zero-coupon bond are 130 and 170 

basis points, respectively, and there is no recovery in the event of default.  Using 

equation [12], we can compute probabilities of default as follows: 

 

0629.01)5,0( 5*013.0 =−= −ePdef  

1563.01)10,0( 10*017.0 =−= −ePdef  

 

In the example above, information on only the spreads was sufficient to infer default 

probabilities.  The actual yields on the underlying bonds were not required. 
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ChapterChapterChapterChapter    4444    

An extension to the FramewAn extension to the FramewAn extension to the FramewAn extension to the Framework:  Hazard Ratesork:  Hazard Ratesork:  Hazard Ratesork:  Hazard Rates    

 

A popular concept in descriptive statistics and logistic regression is that of an odds 

ratio.  A very basic definition of an odds ratio is as follows: 

 

Definition 4.1:Definition 4.1:Definition 4.1:Definition 4.1:  (odds ratio) The odds ratio of an event is the (expected) number of 

events divided by the (expected) number of non-events.   
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For example, an odds ratio of 3:1 that a company will default at 2T  as seen from 

time t , mathematically means: 

 

3:1),,(:),,( 2121 =TTtPTTtPdef , where 21 TTt <<  

 

Borrowing this line of thought, we can define the discrete hazard rate of default: 

 

Definition 4.2Definition 4.2Definition 4.2Definition 4.2::::  (discrete hazard rate of default) The discrete implied hazard rate of 

default over the interval ],[ TTT ∆+  as seen from time t  is: 

 

),,(

),,(
),,(

TTTtP

TTTtP
TTTTtH def

∆+
∆+

=∆∆+                                           Equation [Equation [Equation [Equation [13131313]]]]    

                                                                    

),(

),(
),(

),(
1

TtP

TTtP
TtP

TTtP

∆+

∆+−
= , using equation [8] and [9] 

1
),(

),( −
∆+

=
TTtP

TtP
                                                             Equation [Equation [Equation [Equation [14141414]]]]    
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Rearranging equation [14], we get the following relationship: 

 

]),,(1)[,(),( TTTTtHTTtPTtP ∆∆++∆+=                 Equation [Equation [Equation [Equation [15151515]]]]    

 

 

TheoremTheoremTheoremTheorem    4.4.4.4.1111::::  In the limit of 0→∆T , the continuous hazard rate at time T  as seen 

from time t  is given by: 

 

),(ln(),( TtP
T

Tth
∂
∂−=                                Equation [Equation [Equation [Equation [16161616]]]]    

 

provided that the default time t>τ , and that the term structure of survival 

probabilities is differentiable with respect toT . 

    

Proof: Proof: Proof: Proof:     

 

            ),,(
0

lim
),( TTTtH

T
Tth ∆+

→∆
=   

     
),,(

),,(1

0

lim

TTTtTP

TTTtP

T ∆+∆
∆+−

→∆
=  , from equation [13] and [9] 
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                       







−

∆+∆→∆
= 1

),(

),(1

0

lim

TTtP

TtP

TT
 , from equation [14] 








∆
−∆+










∆+
−

→∆
=

T

TtPTTtP

TTtPT

),(),(

),(

1

0

lim  








∂
∂−= ),(

),(

1
TtP

TTtP
 

),(ln TtP
T∂
∂−=  
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CCCChapterhapterhapterhapter    5555    

An extension to the FramewAn extension to the FramewAn extension to the FramewAn extension to the Framework: the relation to ork: the relation to ork: the relation to ork: the relation to 

forward spreadsforward spreadsforward spreadsforward spreads    

    

This chapter explores the relationship that the survival probabilities and implied 

hazard rates have to forward credit spreads.  Let us give a formal definition of 

forward rates. 
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Definition 5.1Definition 5.1Definition 5.1Definition 5.1::::  (default-free simply compounded forward rates) Let 21 TTt ≤≤ .  The 

simply compounded forward rate over the period ],[ 21 TT as seen from t  is: 

 

12

2

1

21

1
),(

),(

),,(
TT

TtB

TtB

TTtF
−

−
=                                 Equation [Equation [Equation [Equation [17171717]]]]    

 

This is the price of the forward contract with expiration date 1T  on a unit par zero 

coupon bond maturing at 2T . To prove, we re-arrange equation [17], and consider 

the compounding of interest rates over successive time intervals as follows: 

 

( )))(,,(1
),(

1

),(

1
1221

12

TTTTtF
TtBTtB

−+=                        Equation [Equation [Equation [Equation [18181818]]]]    

 where: 

 

),(

1

2TtB
 , is the accumulation factor over ),( 2Tt  

),(

1

1TtB
 , is the accumulation factor over ),( 1Tt , and 

( )))(,,(1 1221 TTTTtF −+ , is the simply compounded accumulation factor over ),( 21 TT . 
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Definition 5.2:Definition 5.2:Definition 5.2:Definition 5.2:  (defaultable simply compounded forward rates) Assuming the notation 

from definition [5.1], the defaultable simply compounded forward rate over ),( 21 TT  is: 

 

12

2

1

21

1
),(

),(

),,(
TT

TtB

TtB

TTtF
−

−
=                                  Equation [Equation [Equation [Equation [19191919]]]]    

 

Definition 5.3:Definition 5.3:Definition 5.3:Definition 5.3:        (instantaneous continuously compounded forward rates) The default-

free and defaultable instantaneous continuously compounded forward rate for T as 

seen from t are as follows: 

 

),(ln),,(lim),( 0 TtB
T

tTTtFTtf t ∂
∂−=∆+= →∆                                                             Equation [Equation [Equation [Equation [20202020]]]]    

 

),(ln),,(lim),( 0 TtB
T

tTTtFTtf t ∂
∂−=∆+= →∆                                                             Equation [Equation [Equation [Equation [21212121]]]]    
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Proposition 5.1Proposition 5.1Proposition 5.1Proposition 5.1:  The conditional probability of default per time interval ),( 21 TT is the 

spread of defaultable over default-free forward rates, discounted by the defaultable 

forward rate: 

 

)])(,,(1[

))](,,(),,([
),,(

1221

122121
21

TTTTtF

TTTTtFTTtF
TTtPdef −+

−−
=  

 

Proof:Proof:Proof:Proof:   Using equation [5] and equation [8], we get the following result: 

 

       
),(),(

),(),(
),,(

12

12
21

TtBTtB

TtBTtB
TTtP =                        

))(,,(1

))(,,(1

1221

1221

TTTTtF

TTTTtF

−+
−+= , using equation [17] and [19] 

 

But, from equation [9], we can deduce that: 

 

),,(1),,( 2121 TTtPTTtP def−=  

 

Hence, this implies: 

 



 - 54 -

))](,,(),,([)])(,,(1)[,,( 122121122121 TTTTtFTTtFTTTTtFTTtPdef −−=−+  

 

Re-arranging the equation, gives the result: 

 

)])(,,(1[

))](,,(),,([
),,(

1221

122121
21

TTTTtF

TTTTtFTTtF
TTtPdef −+

−−
= . 

 

As a consequence, this can also be expressed as: 

 

)],,(),,([
),(

),(),,(
2121

1

2

12

21 TTtFTTtF
TtB

TtB

TT

TTtPdef −=
−

             Equation [Equation [Equation [Equation [22222222]]]]    

 

    

Proposition 5.Proposition 5.Proposition 5.Proposition 5.2222:  The discrete implied hazard rate of default is given by the spread of 

defaultable over default-free forward rates, discounted by the default-free forward 

rates:   

),,()(1

),,(),,(
),,(

2112

2121
21 TTtFTT

TTtFTTtF
TTtH

−+
−

=  
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ProofProofProofProof:  From equation [13], we get: 

 

),,()(

),,(
),,(

2112

21
21 TTtPTT

TTtP
TTtH def

−
=  

        
),,(),(

)],,(),,()[,(

211

21212

TTtPTtB

TTtFTTtFTtB −
= , using equation [22] 

   )],,(),,([
),(

),(
2121

1

2 TTtFTTtF
TtB

TtB −=    , using equation [5] and [8]        Equation [Equation [Equation [Equation [23232323]]]]    

       
),,()(1

),,(),,(

2112

2121

TTtFTT

TTtFTTtF

−+
−= , using equation [17] 

 

Proposition 5.Proposition 5.Proposition 5.Proposition 5.3333:  The implied hazard rate of default at time tT > as seen from time t  

is given by the spread of the defaultable over the default-free continuously 

compounded forward rates:   

),(),( TtfTtf −  

Proof:Proof:Proof:Proof:         We obtain the above relation as follows: 

                                               ),( Tth = )),(ln TtP
T∂
∂−  

                                                         
),(

),(
ln

TtB

TtB

T∂
∂−=  

                                                         ),(),( TtfTtf −=  
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The probability of default in a short time interval ],[ TTT ∆+  is proportional to the 

length T∆ of the interval with proportionality factor ),(),( TtfTtf − .  In particular, the 

local default probability at time t  over the next small time step t∆  is approximately 

proportional to the length of the time step, with the short-term credit spread as 

proportionality factor.  Hence, we can define as follows: 

 

Definition 5.Definition 5.Definition 5.Definition 5.4444::::        (local default probability) The local default probability at time t  over 

the next small time step t∆ is given as follows: 

 

)()()(}]{|[
1

ttrtrtFttQ
t t λττ =−≈>∧∆+≤

∆
 

 

where ),()( ttftr = is the risk free short rate and ),()( ttftr = is the defaultable short 

rate.   
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ChapterChapterChapterChapter    6666    

An extension to the FramewAn extension to the FramewAn extension to the FramewAn extension to the Framework: Recovery ork: Recovery ork: Recovery ork: Recovery 

ModellingModellingModellingModelling    

 

We now relax the assumption of zero-recovery as assumed in the previous chapters.  

We view an asset with positive recovery as an asset with an additional positive payoff 

at the time of default.  The recovery value is the expected value of the recovery 

shortly after the occurrence of a default.   
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There are many different setups that have been proposed to model the recovery of 

defaultable assets.  For purposes of this dissertation, I will present one particular 

framework which is based upon the recovery of par model first presented by Duffie 

[2](1998).   

 

Definition 6.1:Definition 6.1:Definition 6.1:Definition 6.1:        Let’s define ),,( TTTte ∆+ at time Tt < as a deterministic payoff of 1 

that is paid at TT ∆+ if and only if a default happens in ),( TTT ∆+ : 

 

]|)]()()[,([),,( tFTTITITTtBETTTte ∆+−∆+=∆+                                 Equation [Equation [Equation [Equation [24242424]]]]    

 

Note that: 

 

1)()( =∆+− TTITI , if default occurs in ),( TTT ∆+  

and 

0)()( =∆+− TTITI , otherwise 

Furthermore, 

)]([)],([)](),([ TIETTtBETITTtBE ∆+=∆+  

               ),(),( TtPTTtB ∆+=                 Equation [Equation [Equation [Equation [25252525]]]]    
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And, 

),()](),([ TTtBTTITTtBE ∆+=∆+∆+                 Equation [Equation [Equation [Equation [22226666]]]]    

 

 

Since,  
),(

),(
),(

TTtP

TTtB
TTtB

∆+
∆+=∆+  , from equation [5] 

 

Hence, we get: 

 

),(),(),(),,( TTtBTtPTTtBTTTte ∆+−∆+=∆+ , using equation [24], [25] and [26] 

                        







−

∆+
∆+= 1

),(

),(
),(

TTtP

TtP
TTtB             

                        ),,(),( TTTtHTTtBT ∆+∆+∆= , using equation [14]      Equation [Equation [Equation [Equation [27272727]]]] 

 

We now let the time step converge to zero in equation [27] in order to reach a 

continuous coverage of the time axis.  Hence, taking the limit 0→∆T , we obtain, 

),( Tte as defined as follows:  
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Definition 6.2:Definition 6.2:Definition 6.2:Definition 6.2:         

T

TTTte

T
Tte

∆
∆+

→∆
= ),,(

0

lim
),(  

                                   ),(),( TthTtB=                                                       Equation [Equation [Equation [Equation [28282828]]]] 

                                   ),(),(),( TthTtPTtB= , using equation [5]                                                   

 

The value of a security that pays )(sπ if a default occurs at time s for all Tst <<  is 

given by: 

∫
T

t

dsstes ),()(π  

∫=
T

t

dssthstBs ),(),()(π , from equation [28] 

 

Suppose the payoff at default is not a deterministic function )(sπ but a random 

variable π which is drawn at the time of defaultτ .  π  is called a marked point 

process.  For a discussion on marked point processes, see Schoncucher 2003 (Page 

91). 

 

We denote by ),( Tteπ , the expected value (under martingale measure Q -

probabilities) of π conditional on default at T and information at t  as follows: 
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}]{|[),( TFETt tQe =∧= τππ  

 

We can specify any distribution for the random variableπ .  Then, conditional on a 

default occurring at time T we can price a security that pays π  at default as 

),(),( TtBTteπ .  We discount the cash flow ),( Tteπ  by the risk-free discount factor. 

 

If we do not know the time of default, the present value of the security can be 

computed as follows: 

 

∫
T

t

e dssthstPstBst ),(),(),(),(π  

∫=
T

t

e dssthstBst ),(),(),(π , from equation [28] 

 

Since, we do not know the time of default, we have to integrate these values over all 

possible default times and weigh them with the respective probability of default 

occurring, i.e. the density of the time of default in the continuous-time case. 
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CCCChhhhapterapterapterapter    7777    

Application to pricing credit derivativesApplication to pricing credit derivativesApplication to pricing credit derivativesApplication to pricing credit derivatives    

 

This chapter focuses on the pricing dynamics of the most popular credit derivatives 

seen in the South African financial markets. 

 

In order to simplify the numerical implementation, we accept a discrete grid of time 

points, the tenor structure: 

 

KTTTT ,......,,,0 210=  
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The dates are indexed in increasing order )( 1+< kk TT and the distance between two 

tenor dates is denoted by kkk TT −= +1δ for all Kk ≤≤0 . 

 

The coupon and repayment dates for bonds, fixing dates for rates, payment and 

settlement dates for credit derivatives all fall on kT . 
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and  
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we obtain the prices of the default-free zero coupon bonds as follows: 
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Similarly, from 

 

 
),,0(1

),0(
),0(

11

1

iii

i
i TTH

TP
TP

−−

−

+
=

δ
 , using equation [15] 

 

We deduce the price of the defaultable zero-coupon bonds as follows: 

 

                         ),0(),0(),0( kkk TPTBTB =  

∏
= −−+

=
k

i iii
k TTH

TB
1 11 ),,0(1

1
),0(

δ
                          Equation [Equation [Equation [Equation [30303030]]]] 

 

Now, let ),,0( 1+kk TTe be the value of 1 unit at 1+kT  if a default occurred in ),( 1+kk TT . 

Hence, from equation [27] on p.59: 

 

                                    ),0(),,0(),,0( 111 +++ = kkkkkk TBTTHTTe δ                Equation [Equation [Equation [Equation [31313131]]]] 

    

Note that the prices of the bonds given by equations [29], [30], and [31] above are 

expressed in terms of two fundamental modelling quantities as follows: 
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• Term structure of default-free interest rates ),0( TF  

• Term structure of implied hazard rates ),0( TH  

 

Taking the limit 0→iδ , for all ki ,...2,1,0= in equations [29], [30] and [31] 

respectively, we can express the prices in terms of continuously compounded 

instantaneous forward rates and hazard rates:  The results are as follows: 
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7.1 Defaultable fixed7.1 Defaultable fixed7.1 Defaultable fixed7.1 Defaultable fixed----coupon bondscoupon bondscoupon bondscoupon bonds    

 

A defaultable fixed-coupon bond has coupon payments of nc  at NnTn ,....2,1, = .  It is 

possible for the individual fixed-coupon payments to differ slightly from each other 

depending on day count conventions and the bond’s specification.  All the coupon 

payments are known in advance. 

 

Pricing formula:Pricing formula:Pricing formula:Pricing formula:    

The price of a defaultable fixed-coupon bond can be given as follows: 
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1 ),,0(π , this term represent the recovery value.               Equation [Equation [Equation [Equation [32323232]]]] 

 

 

We can also represent the recovery payment as follows: 
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The recovery payments can be considered as an additional coupon payment stream 

of ),,0( 11 kkk TTH −−πδ . 
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7.7.7.7.2222    Defaultable Defaultable Defaultable Defaultable floaterfloaterfloaterfloater    

 

In a defaultable par floater, the coupon payments at times nT , are equal to the 

reference interest rate plus a spread, denoted by pars , assuming a nominal of 1. 

 

Let’s denote )( ,1 nn TTL − as the reference interest rate applied over )( ,1 nn TT − at 1−nT , so 

that 11 ),(1 −−+ nnn TTL δ  is the growth factor over ),( 1 nn TT − . If we apply a no-arbitrage 

argument, we can get the following result: 
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                          EquatEquatEquatEquation [ion [ion [ion [33333333]]]] 

    

If this bond trades at a value greater than ),( 1 nn TTB − , this would imply that its yield is 

less than ),( 1 nn TTL − .  Hence, an arbitrage opportunity exists as a dealer can short 

sell these bonds and invest in other money market securities which would yield 

),( 1 nn TTL − .  At maturity of the bond, the dealer will pay interest to the bondholders at 

a lower rate that what was earned on the invested money market securities. 

 

Similarly, if this bond is trading at a value less than ),( 1 nn TTB − , this would imply that 

its yield is more than ),( 1 nn TTL − .  A dealer can borrow funds at a lower rate and 

invest in the bond which offers a higher rate of return.  Once again, an arbitrage 
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opportunity exists.  Therefore, the relationship in equation [33] has to be true for no 

arbitrage opportunities to occur. 

 

The coupon payment at nT can be represented as follows: 
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Let’s consider the payment of 
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at time nT . The present value at 1−nT  is 

given as follows: 
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We use the defaultable discount factor, since the coupon payment is exposed to 

credit risk over ),( 1 nn TT − . Seen at 0=t , the present value of ),( 1 nn TTP −  now 

becomes: 
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                   )],()(),0([ 111 nnnnQ TTPTITBE −−−                  

                )],()([),0( 111 nnnQn TTPTIETB −−−=  , using assumption [2.2] 

 ),0(),0( 1 nn TPTB −=                                                                  Equation [Equation [Equation [Equation [34343434]]]] 

 

Combine the above result with the fixed part of the coupon payment and observe the 

following relation: 
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Pricing Pricing Pricing Pricing formula:formula:formula:formula:  

The model price of the defaultable floating-rate bond is: 

 

∑
=

−−=
N

n
nnnn TBTTFC

1
11 ),0(),,0()0( δ   , default reference rate 

                               ∑
=

−+
N

n
nn

par TBs
1

1 ),0(δ  , coupon spread 

                               ),0( KTB+  , principal                   

     ∑
=

−+
N

n
nn TTe

1
1 ),,0(π , recovery                                     Equation [Equation [Equation [Equation [35353535]]]] 

 

 



 - 71 -

7.7.7.7.3 Credit3 Credit3 Credit3 Credit    Default Default Default Default SwapsSwapsSwapsSwaps    (CDS’s)(CDS’s)(CDS’s)(CDS’s) 

CDS’s are a product within the credit derivative asset class, constituting a type of 

over the counter derivative.  They are bilateral contracts in which a protection buyer 

agrees to pay a periodic fee (called a “premium”) in exchange for a payment by the 

protection seller in the case of a credit event (such as a bankruptcy) affecting the 

reference entity.  The market price of the premium is therefore an indication of the 

perceived credit risk related to the reference entity. 

 

A credit default swap consists of two payment legs: 

    

FFFFixed ixed ixed ixed legleglegleg::::  The protection buyer pays a periodic fee, s , for credit protection.  Hence, 

the fixed leg consists of payments of sn 1−δ  at nT  if no default occurs until nT .  The 

present value of the fixed leg is calculated by discounting the payments by the  

 

defaultable zero coupon bond, as the fee payments are subject to credit risk. 
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1 ),0(δ                                  Equation [Equation [Equation [Equation [36363636]]]] 

Floating Floating Floating Floating legleglegleg::::        The protection seller pays an amount of ( π−1 ) at nT  contingent on 

default in ),( 1 nn TT − . The present value of the floating leg is calculated as follows: 
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where ),,0( 1 nn TTe − is the deterministic payoff of 1 that is paid at nT  if and only if a 

default happens in ),( 1 nn TT −  and π  is the recovery rate, as a percentage of the 

notional. 

 

Generally, in most CDS contracts, the market CDS swap rate is chosen such that the 

fixed and floating leg of the CDS has the same value, i.e. the value of the contract to 

the buyer must be zero when the contract is entered into.  Hence, equating equation 

[36] and equation [37] result in the following for the fair swap rate determined at 

0=t : 

 

Pricing formula:Pricing formula:Pricing formula:Pricing formula:  
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Now, let’s define weights as follows: 
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so that 
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Then the fair swap premium rate determined at t = 0 is given by: 
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We can make the following observations: 

 

• Since, H  is a function of P  and P  only, hence s  depends only on the 

defaultable and default-free discount rates B  and B , which are given by the 

market bond prices. 
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• It is similar to the calculation of fixed rate in an interest rate swap (see 

Rebonato, 1998) as follows: 
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When a CDS is traded, the value of the swap rate will change after the initial date, 

due to market movements.  Let’s assume that the original CDS spread was s  and 

the new CDS spread is now s .  The marked-to-market value of the original CDS is as 

follows: 
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1),()( δ                                 Equation [Equation [Equation [Equation [41414141]]]]    

 

Equation [41] can be explained as follows:  If an offsetting trade is entered at the 

current CDS rate s , only the fee difference, )( ss − , will be received over the life of 

the CDS.  Should a default occur, the protection payments will cancel out, and the 

fee difference payment will also be cancelled.  The fee difference stream is 

defaultable and is hence discounted by ),( nTtB .  The diagrams below discuss this 

graphically. 
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Let’s assume a CDS is purchased at time 0 and an offsetting trade is entered into at 

time t .  Then, if no default occurs the cash flows can be represented as follows: 

 

Time Line 0 1 2 ............. t .............. N

Initial CDS

New CDS

Protection Buyer Cash Flows with new CDS at time i: No Default

s s s s

s

ss −
 

Note, the net cash flows at each point in time are the difference in the swap rates. 

 

Similarly, the cash flows if a default occurs at N are as follows: 

Time Line 0 1 2 ............. i .............. N

Initial CDS

New CDS

Protection Buyer Cash Flows with new CDS at time i: Default at N

s s s s

s

ss −

π−1

)1( π−−

0
 

Note, the net cash flows at each point in time are the difference in the swap rates.  

The payment at default cancels out.  Hence, the only cash flows to consider are the 

difference in fee payments.   

 

Hence, it can be seen that credit default swaps are useful instruments to gain 

exposure against spread movements, and not just against default arrival risk. 
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7.7.7.7.4444        Credit Default Credit Default Credit Default Credit Default SwapsSwapsSwapsSwaps    (CDS’s)(CDS’s)(CDS’s)(CDS’s):  :  :  :      Market Valuation ApproachMarket Valuation ApproachMarket Valuation ApproachMarket Valuation Approach    

 

This section is dedicated to developing a logical argument for the most common 

market valuation approach to CDS’s.  In particular, we consider the derivation of a 

pricing formula with commonly assumed market conventions and practices.  Given, 

the popularity of the method, a practical example and implementation is given in the 

appendix. 

 

A typical CDS contract usually specifies two potential cash flow streams; a fixed leg 

and a floating leg.  On the fixed leg side, the buyer of protection makes a series of 

fixed, periodic payments of CDS premium until the maturity, or until the reference 

credit defaults.  On the floating leg side, the protection seller makes one payment 

only if the reference credit defaults.  The amount of a contingent payment is usually 

the notional amount multiplied by π−1 , where π is the recovery rate, as a 

percentage of the notional.  Hence, the value of the CDS contract to the protection 

buyer at any given point in time is the difference between the present value of the 

floating leg, which the protection buyer expects to receive, and that of the fixed leg, 

which he is expected to pay.  Hence: 

 

 

Value of CDS(to protection buyer) = PV(Floating leg) – PV (Fixed leg)   Equation [Equation [Equation [Equation [42424242]]]]    

 

 

In order to calculate these values, one needs information about the default probability 

of the reference credit, the recovery rate in a case of default, and risk-free discount 

factors.  
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Fixed Leg:   On each payment date, the periodic payment is calculated as the annual 

CDS premium, s , multiplied by id , the accrual days (expressed in a fraction of one 

year) between payment dates.  For example, if the CDS premium is 160 basis points 

per annum and payments are made quarterly, the periodic payment will be: 

 

40)160(25.0 ==sd i  

 

However, this payment is only going to be made when the reference credit has not 

defaulted by the payment date.  So, we have to take into account the survival 

probability, or the probability that the reference credit has not defaulted on the 

payment date.  For instance, if the survival probability of the reference credit in the 

first three months is 90%, the expected payment at 1t , or 3 months later, is: 

 

36)160)(25.0(9.0),( 1 ==sdttP i  , 1tt <  

 

where ),( 1ttP is the survival probability at time t .  Then, using the discount factor for 

the particular payment date, ),( ittB , the present value for this payment is 

iii sdttPttB ),(),( .  Summing up PV’s for all these payments, we get: 

    

       iii

N

i

sdttPttB ),(),(
1
∑

=
 , Nttt <<< .....1                      Equation [Equation [Equation [Equation [43434343]]]]    

 

 

Finally, we need to account for the accrued premium paid up to the date of default 

when default happens between the periodic payment dates.  The accrued payment 
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can be approximated by assuming that default, if it occurs, occurs at the middle of 

the interval between consecutive payment dates.  Then, when the reference entity 

defaults between payment date 1−it  and payment date it , the accrued payment 

amount is 2/)( isd .  This accrued payment has to be adjusted by the probability that 

the default actually occurs in this time interval.  In other words, the reference credit 

survived through payment date 1−it , but not to next payment date it .  This probability 

is given by: 

 

),(),( 1 ii ttPttP −−  

 

Accordingly, for a particular interval, the expected accrued premium payment is : 

 

)2/))(,(),(( 1 iii sdttPttP −−  

 

Therefore, the present value of all expected accrued payments is given by: 
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∑                   Equation [Equation [Equation [Equation [44444444]]]]    

 

Now, we have both components of the fixed leg.  Adding equation [43] and equation 

[44], we get the present value of the fixed leg: 
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Equation [Equation [Equation [Equation [45454545]]]]    
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Floating Leg:   Assume the reference entity defaults between payment date 1−it  and 

payment date it .  The protection buyer will receive the floating payment of π−1 , 

where π is the recovery rate.  This payment is made only if the reference credit 

defaults and therefore it has to be adjusted by )),(),(( 1 ii ttPttP −− , the probability 

that the default actually occurs in this time period.  Discounting each expected 

payment and summing up over the term of a contract, we get: 
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i ttPttPttBgFloatingLePV −−= −

=
∑π         Equation [Equation [Equation [Equation [46464646]]]]    

 

When two parties enter a CDS trade, the CDS swap rate is set so that the value of 

the swap transaction is zero.  Hence plugging equation [45] and equation [46] into 

equation [42], we arrive at the following: 
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Pricing formula:Pricing formula:Pricing formula:Pricing formula:  
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Given, all the parameters, s , the annual premium payment is set as: 
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7.7.7.7.5555    Forward StartForward StartForward StartForward Start    Credit Default SwapsCredit Default SwapsCredit Default SwapsCredit Default Swaps 

 

A forward start CDS is a CDS which is contracted at time 0T , but the actual fee 

payments and credit protection only start at a late time point 0kT , where 00 TTk > .  

Should a default occur a some time before 0kT , the forward start CDS is cancelled 

with no cash flows being made. 

 

The pricing argument for a forward start CDS is exactly as in pricing a CDS, except 

for the indices of the summation.   

 

Pricing formulPricing formulPricing formulPricing formula:a:a:a:  
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7.7.7.7.6666    Default Digital SwapsDefault Digital SwapsDefault Digital SwapsDefault Digital Swaps    ((((DDSDDSDDSDDS)))) 

 

Digital is a term that is used to describe electronic technology that generates, stores 

and processes data in terms of two states: positive and non-positive.  Positive is 

expressed or represented by the number 1 and non-positive by the number 0.  In the 

context of DDS, the relevance applies to the floating leg having a payoff of either 1 or 

0. 

 

A default digital swap consists of two payment legs: 

 

Fixed legFixed legFixed legFixed leg::::  Payment of 
DDS

n s1−δ  at nT  if no default until nT .  The value of the fixed leg 

is: 
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Floating legFloating legFloating legFloating leg:  A fixed payment of 1 is paid at default, independent of the actual 

recovery. 
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As with CDS contracts, in most DDS contracts, the market DDS swap rate is chosen 

such that the fixed and floating leg of the DDS has the same value.  Hence, equating 

equation [49] and equation [50] results in the following: 

    

Pricing formula:Pricing formula:Pricing formula:Pricing formula:  

 

∑

∑

=
−

=
−−

=
N

n
nn

N

n
nnnn

DDS

TB

TBTTH
s

1
1

1
11

),0(

),0(),,0(

δ

δ
 

 

If we define weights as in equation [38] and equation [39], then the fair swap 

premium rate is given by: 
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Using equation [40] and equation [51], we can get the following result in terms of 

DDS and CDS fee payments.  Since, DDS is independent of recovery, while CDS’s 
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are contingent on recovery, DDS’s can be considered to be more expensive than a 

corresponding CDS contract. 

 

ss
DDS

π−
=

1

1  

 

 

    

    

    

    

    

    

    

    

    



 - 85 -

7.7.7.7.7777    Asset Swap PackagesAsset Swap PackagesAsset Swap PackagesAsset Swap Packages    

 

An asset swap package consists of a defaultable coupon bond C with coupon c  and 

an interest rate swap.  The bond’s coupon is swapped into the reference interest rate 

plus the asset swap rate As .  An asset swap package is usually sold at par. 

 

Asset swap transactions are driven by the desire to strip out unwanted structured 

features from the underlying asset. 

 

The payoff streams to the buyer of the asset swap package can be described as 

follows: 

 

TimeTimeTimeTime    Defaultable BondDefaultable BondDefaultable BondDefaultable Bond    SwapSwapSwapSwap    NetNetNetNet    

0=t  )0(C−  )0(1 C+−  1−  

itt =  *
c  A

i sLc ++− −1  )(
*

1 ccsL A
i −++−  

Ntt =  *)1( c+  A
N sLc ++− −1  )(1

*

1
* ccsL A

N −+++ −  

* denotes payment contingent on survival 
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We now define as follows: 

 

=)0(s  Fixed-for-floating swap rate (the market quote) 
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1 ),0()0( δ  This is the value of an annuity paying 1 unit, calculated based 

on observable default free bond prices. 

 

The value of an asset swap package is set at par at 0=t , so that : 

 

( ) 1)0()0()0()0()0()0( =−++ cAsAsAC A  

 

The present value of the floating coupons is given by )0()0( sA .  The swap continues 

even after default so that )0(A appears in all terms associated with the swap 

arrangement.  Solving for )0(As : 
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Rearranging the terms, 

 

)0()0()]0()0(1[)0()0()0( CcAsAsAC A =+−=+ , 

 

where the right hand side gives the value of a default free bond with coupon c .  Note 

that )]0()0(1[ sA−  is the present value of receiving 1 unit at maturity Nt .  We 

therefore obtain: 

 

Pricing formula:Pricing formula:Pricing formula:Pricing formula:  
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ChapterChapterChapterChapter    8888    

ConclusionConclusionConclusionConclusion    

 

The evolution of better models for credit risk measurement and better tools for credit 

risk management are mutually reinforcing:  traditionally, without the tools to transfer 

credit risk, it was not possible to properly respond to the recommendations of a 

portfolio model.  Conversely, without a portfolio model, the contribution of credit 

derivatives to portfolio risk-return performance has been difficult to evaluate.  

However, as such technology becomes more widespread, as the necessary data 

becomes more accessible and as credit derivative liquidity improves, the combined 
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effect on the way in which banks and others evaluate and manage credit risks will be 

profound.  Banks have already adopted a more proactive approach to trading and 

managing credit exposures, with a corresponding decline in the typical holding period 

for loans.  It is becoming increasingly common to observe banks taking exposure to 

borrowers with whom they have no meaningful relationships and shedding exposure 

to customers with whom they do have relationships to facilitate further business.   

 

While it is true that banks have been the foremost users of credit derivatives to date, 

it would be wrong to suggest that banks will be the only institutions to benefit from 

them.  Credit derivatives are bringing about greater efficiency of pricing and greater 

liquidity of all credit risks.  This will benefit a broad range of financial institutions, 

institutional investors and also corporates in their capacity both as borrowers and as 

takers of trade credit and receivables exposures. 

 

Given the growth potential of credit derivatives, this will initiate the development of a 

sounder regulatory framework for these instruments. No doubt, the quantitative 

technology used to price these instruments is an evolving process as the credit 

derivatives market becomes more complex and sophisticated.    
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AppendixAppendixAppendixAppendix    

A pricing example of CDS’sA pricing example of CDS’sA pricing example of CDS’sA pricing example of CDS’s:  Market Valuation Approach:  Market Valuation Approach:  Market Valuation Approach:  Market Valuation Approach    

 

The following is a pricing example of a CDS using the methodology in section 7.4. 

 

Let’s see how we can value a hypothetical CDS trade.  Consider a 2-year CDS with 

quarterly premium payments.  Assume a spread of 200 basis points per annum, and 

the discount factors and the survival probability for each payment date are as shown 

below: 
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Fixed Leg:  Fixed, periodic payments  

 

The present value of all expected fixed payments is found by multiplying each 

period’s fixed payment by the respective survival probability, discounted at the risk-

free rate and summed over the term of the CDS.  The PV in the table of R 37,268, is 

the present value of the fixed leg for a notional of 1 million rands. 

 

Fixed Leg:  Accrual payments  

 

Assuming that default occurs, if any, at the middle of the time interval between two 

payment dates, the value of the accrued premium payment if a default occurs is a 

half of 50 basis points, or 25 basis points.  Then, the expected value of the accrued 

payment for each period is 25 basis points multiplied by the probability of default for 

that period, as in column [7] in the table above.  Discount these values for all periods 

and summing them over the term of the CDS, we get a value of R 141.48  (sum of 

column 8), which is the present value of expected accrued fixed payments.  

 

From above, we can see that the present value of the fixed leg over the 2 year term 

is (R 37,268 + R 141.48) = R 37,409.33. 

    

Floating leg:  

 

The expected value of the floating payment if a default occurs during each period is 

π−1  multiplied by the probability of default for that period (column [9]).  Assuming a 

recovery rate of 30%, the expected contingent payment is multiplied by each period’s 

default probability.  Discount this for each period and summing over the term of the 
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CDS, we get a value of R 39,613 as in column [10], which is the present value of the 

expected contingent payments. 

 

Hence, we can find the value of this CDS to the protection buyer when the spread is 

200 basis points per annum as: 

 

R 39,613 – R 37,409.33 = R 2,203.68 
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