

An Animation-Based Teaching and Learning
Framework for Struggling Introductory

Programming Students

by

Tlou James Ramabu

submitted in accordance with the requirements for
the degree of

DOCTOR OF PHILOSOPHY

in the subject

COMPUTER SCIENCE

at the
University of South Africa

Supervisor: Prof Ian Sanders

Co-supervisor: Prof Marthie Schoeman

August 2023

Declaration

I declare that AN ANIMATION-BASED TEACHING AND LEARNING FRAMEWORK

FOR STRUGGLING INTRODUCTORY PROGRAMMING STUDENTS is my own

work and that all sources used or quoted have been indicated and acknowledged by

means of complete references.

I further declare that I submitted this thesis to the appropriate originality detection

system which is endorsed by Unisa and that it falls within the accepted requirements

for originality.

I further declare that I have not previously submitted this work, or any part of it, for

examination at Unisa for another qualification or at any other higher education

institution.

 16 August 2023

____________________________ ________________________

 James Ramabu Date

Acknowledgements

➢ I would like to thank my supervisors, Prof Ian Sanders and Prof Marthie

Schoeman, for their valuable guidance during this study. Their encouragement

and motivation generated positive energy even during the difficult times of

Covid-19.

➢ I would like to thank my family for their patience and support throughout the

study.

➢ I thank God for the blessing of life and health to complete this study in the name

of Jesus Christ. To God be the glory.

i

Table of Contents

List of Figures ... vii

List of Tables .. xi

Abstract ... xiii

Summary ... xv

Summary (Afrikaans language)..xvi

Summary (Sepedi / Northern Sotho language) .. xvii

List of publications .. xviii

List of abbreviations and acronyms ... xix

Definition of key terms ..xx

Chapter 1: Introduction .. 1

1.1 Introduction ... 2

1.2 Background to the study ... 2

1.2.1 Struggling Introductory Programming Students... 2

1.2.2 Teaching and learning of introductory programming concepts 3

1.2.3 Action research ... 4

1.2.4 Animation programs ... 4

1.3 Problem statement .. 4

1.4 Research questions and objectives .. 6

1.4.1 Research questions ... 6

1.4.2 Research objectives ... 6

1.4.3 Brief methodology .. 7

1.5 Significance of the study ... 7

1.6 Chapter outline ... 8

1.7 Conclusion .. 9

Chapter 2: Literature review .. 10

2.1 Introduction ... 11

2.2 Purpose of the literature review ... 12

2.3 Contextual overview .. 13

2.3.1 Importance of programming.. 13

2.3.2 Learning to program is difficult ... 13

2.3.3 Computer Science at universities and K12 .. 14

2.3.4 Overview of programming education research .. 15

2.4 Challenges in learning to program .. 16

2.4.1 Struggling Introductory Programming Students (SIPS) .. 16

ii

2.4.2 English language .. 17

2.4.3 Mathematics .. 18

2.4.4 Mental models ... 19

2.4.5 Programming jargon .. 20

2.4.6 Problem solving .. 20

2.4.7 Summary ... 21

2.5 Imperative programming approach ... 22

2.5.1 Programming languages ... 22

2.5.2 Programming paradigms ... 23

2.5.3 The structure of procedural programming .. 24

2.5.4 Details of learning challenges .. 28

2.5.5 Summary ... 30

2.6 Approaches to teaching procedural programming ... 31

2.6.1 General teaching challenges in introductory programming 31

2.6.2 Traditional methods of teaching and learning to program ... 32

2.6.3 Analogy-like teaching approaches for introductory programming 32

2.6.4 Manipulatives in teaching and learning introductory programming 33

2.6.5 Using animation programs .. 34

2.6.6 Summary ... 35

2.7 Animation programs .. 36

2.7.1 Block-based programs ... 37

2.7.2 Animation-based programs ... 39

2.7.3 Pedagogical guidelines for uses of animation programs ... 44

2.8 Gap and summary ... 44

Chapter 3: Theoretical framework ... 46

3.1 Introduction ... 47

3.2 Learning theories ... 47

3.2.1 Constructivism .. 48

3.2.2 Piagetian theory .. 48

3.2.3 Neo-Piagetian theories .. 49

3.2.4 Behaviourism .. 51

3.2.5 Cognitivism .. 52

3.2.6 Cognitive theory of multimedia learning .. 52

3.2.7 Conversational framework .. 53

3.3 Learning taxonomies ... 56

3.3.1 Bloom’s taxonomy .. 56

iii

3.3.2 SOLO taxonomy ... 57

3.4 Teaching philosophy ... 59

3.5 Constructive alignment ... 60

3.6 Applicable theoretical components of TLPAP ... 61

3.6.1 Overview TLPAP theoretical components .. 61

3.6.2 Adopted learning theories ... 62

3.6.3 TLPAP teaching philosophy .. 65

3.7 Conclusion .. 68

Chapter 4: Methodological approach ... 70

4.1 Introduction ... 71

4.2 Methodological perspective.. 72

4.3 Research paradigm ... 73

4.3.1 Positivism ... 73

4.3.2 Post-positivism .. 73

4.3.3 Interpretivism ... 74

4.3.4 Critical theory .. 74

4.3.5 Pragmatism ... 74

4.3.6 Adopted research paradigm ... 75

4.4 Research design .. 75

4.4.1 Animation programs design .. 76

4.4.2 Action research ... 79

4.4.3 Experimental setup, pre-testing and post-testing of SIPS ... 81

4.4.4 Background of the participants ... 82

4.4.5 Control and experimental groups setup .. 83

4.5 Evaluation strategy .. 84

4.6 Action cycles progression ... 90

4.6.1 Timeline overview ... 90

4.6.2 Cycle 1 ... 90

4.6.3 Cycle 2 ... 91

4.6.4 Cycle 3 ... 91

4.6.5 Cycle 4 ... 91

4.6.6 Cycle 5 ... 92

4.7 Limitations of the study ... 92

4.8 Ethics statement .. 92

4.9 Conclusion .. 93

Chapter 5: Initial framework – Cycle 1 .. 95

iv

5.1 Introduction ... 96

5.2 Planning for cycle 1 ... 96

5.2.1 SIGCSE members’ participation .. 96

5.2.2 Identification of manipulatives for introductory concepts ... 97

5.3 Implementation of the manipulatives and results ... 100

5.3.1 Cycle 1 (Concept 1) ... 101

5.3.2 Reflection on cycle 1 (Concept 1) .. 104

5.3.3 Cycle 1 (Concept 2) report and reflections ... 105

5.4 Planning for cycle 2 ... 106

5.5 Conclusion .. 107

Chapter 6: Adapted framework – cycle 2 ... 108

6.1 Introduction ... 109

6.2 Concept 1 (Assignment) ... 110

6.2.1 Pre-teaching exercises on the use of assignment .. 110

6.2.2 Animation program 1.. 111

6.2.3 Animation program 2.. 112

6.2.4 Animation program 3.. 114

6.2.5 Animation program 4.. 115

6.3 Concept 2 (Decisions/nested decisions) .. 116

6.3.1 Problem specification for nested-decider ... 116

6.3.2 Nested-decider animation program ... 117

6.4 Concept 3 (Loops/nested loops) ... 122

6.4.1 Problem specification for loops and nested loops ... 122

6.4.2 Animation program for loop .. 123

6.5 Formulated pedagogical guidelines .. 126

6.6 Experimentation results .. 128

6.6.1 Summary of results (Animation programs on assignment) 128

6.6.2 Summary of misconceptions found in the algorithms for decisions/nested

decisions and loops. .. 131

6.6.3 SOLO-adapted algorithms evaluation - Decisions .. 133

6.6.4 SOLO-adapted algorithms evaluation - Loops... 135

6.7 Reflections .. 137

6.8 Planning for cycle 3 ... 138

6.9 Conclusion .. 139

Chapter 7: Adapted framework - Cycle 3 ... 140

7.1 Introduction ... 141

v

7.2 Animation programs for introducing new concepts .. 141

7.2.1 Decisions/nested decisions .. 142

7.2.2 Repetitions ... 149

7.2.3 Arrays ... 156

7.2.4 Functions ... 158

7.3 Animation programs with problem specifications ... 166

7.3.1 Repetitions ... 166

7.3.2 Nested loop ... 168

7.3.3 Arrays ... 171

7.3.4 Functions ... 176

7.4 Adapted pedagogical guidelines ... 181

7.5 Experimentation results and analysis ... 184

7.5.1 Results (assignment) ... 185

7.5.2 Results (decisions/nested decisions) .. 186

7.5.3 Results (Loops) ... 191

7.5.4 Results (nested loops) ... 194

7.5.5 Results (one-dimensional array) .. 197

7.5.6 Results (parallel arrays) .. 200

7.5.7 Results (functions).. 203

7.6 Cycle 4 reflections ... 208

7.7 Planning for cycle 4 ... 211

7.8 Conclusion .. 212

Chapter 8: Adapted framework - Cycles 4 and 5 ... 214

8.1 Introduction ... 215

8.2 Additional animation programs .. 216

8.2.1 Combination of decisions and loops .. 216

8.2.2 Additional animation on concept introduction for arrays .. 219

8.3 Experimentation results and analysis ... 222

8.3.1 Results (assignment) ... 222

8.3.2 Results (decisions/nested decisions) .. 223

8.3.3 Results (loops/decisions) .. 227

8.3.4 Results (parallel arrays) .. 231

8.3.5 Results (functions).. 233

8.4 Summary of reflections on cycle 4 .. 235

8.5 Summary of reflections on cycle 5 .. 236

8.6 Discussions on transitions across cycle 3 to cycle 5 ... 237

vi

8.7 State of the framework .. 241

8.8 Conclusion .. 243

Chapter 9: Conclusion .. 244

9.1 Introduction ... 245

9.2 Structure of the TLPAP framework ... 247

9.3 How the research questions were answered .. 248

9.4 Contributions .. 250

9.5 Validity, generalisation and critical reflection on the findings ... 254

9.6 Limitations ... 257

9.7 Future work ... 257

9.8 Conclusion .. 258

References ... 261

Appendices .. 276

Appendix A: Ethics clearance .. 277

Appendix B: Evaluation sheets for decisions/nested decisions – Cycle 3 280

Appendix C: Evaluation sheets for loops – Cycle 3 ... 286

Appendix D: Evaluation sheets for nested loops – Cycle 3 ... 290

Appendix E: Evaluation sheets for one-dimensional array – Cycle 3 294

Appendix F: Evaluation sheets for parallel arrays – Cycle 3 ... 299

Appendix G: Evaluation sheets for functions – Cycle 3 .. 304

Appendix H: Evaluation sheets for decisions/nested decisions – Cycle 4 310

Appendix I: Evaluation sheets for decisions / loops – Cycle 4 316

Appendix J: Evaluation sheets for parallel arrays – Cycle 4 .. 324

Appendix K: Evaluation sheets for functions – Cycle 4 .. 329

Appendix L: A switch button to Java code – Cycle 5 ... 335

Appendix M: Transition results– Cycle 5 ... 336

vii

List of Figures
Chapter 2:

Figure 2.11: Alice program .. 38

Figure 2.12: UUhistle program .. 41

Figure 2.3: ARAWEs animation program .. 42

Chapter 3:
Figure 3.1: CTML process ... 53

Figure 3.2: Components of a conversational framework .. 55

Figure 3.3: Bloom’s taxonomy ... 57

Figure 3.4: Revised Bloom’s taxonomy ... 57

Figure 3.5: Constructive alignment framework ... 60

Figure 3.6: TLPAP applicable theoretical components ... 62

Figure 3.7: TLPAP adapted constructive alignment .. 63

Figure 3.8: Computation as interaction illustration ... 66

Chapter 4:

Figure 4.1: Action research cycles ... 80

Figure 4.2: A process for both experimental and control groups ... 84

Chapter 5:

Figure 5.1: Sample cups .. 98

Figure 5.2: Components of the manipulative .. 99

Figure 5.3: Program code .. 99

Figure 5.4: Nested-decider .. 99

Figure 5.5: Manipulatives (variables) ... 102

Figure 5.6: Manipulatives (with values) ... 102

Figure 5.7: Manipulatives (three cups) .. 103

Chapter 6:

Figure 6.1: Pre-teaching exercises ... 110

Figure 6.2: Program 1 (Demo 1) ... 111

Figure 6.3: Program 1 (Demo 2) ... 111

Figure 6.4: Program 1 (Demo 3) ... 112

Figure 6.5: Program 1 (Demo 4) ... 112

Figure 6.6: Program 2 (Demo 5) ... 112

Figure 6.7: Program 2 (Demo 1) ... 113

Figure 6.8: Program 2 (Demo 2) ... 113

Figure 6.9: Program 2 (Demo 3) ... 113

Figure 6.10: Program 2 (Demo 4) ... 113

Figure 6.11: Program 2 (Demo 5) ... 114

Figure 6.12: Program 2 (Demo 6) ... 114

Figure 6.13: Program 3 (Demo 1) ... 114

viii

Figure 6.14: Program 3 (Demo 2) ... 114

Figure 6.15: Program 4 (Demo 1) ... 115

Figure 6.16: Program 4 (Demo 2) ... 115

Figure 6.17: Program 4 (Demo 3) ... 115

Figure 6.18: Program 4 (Demo 4) ... 115

Figure 6.19: Program 4 (Demo 5) ... 116

Figure 6.20: Program 4 (Demo 6) ... 116

Figure 6.21: Program 4 (Demo 7) ... 116

Figure 6.22: Problem specification (decisions/nested decisions) .. 117

Figure 6.23: Nested-decider (Demo 1) .. 118

Figure 6.24: Nested-decider (Demo 2) .. 118

Figure 6.25: Nested-decider (Demo 3) .. 119

Figure 6.26: Nested-decider (Demo 4) .. 119

Figure 6.27: Nested-decider (Demo 5) .. 120

Figure 6.28: Nested-decider (Demo 6) .. 121

Figure 6.29: Nested-decider (Demo 7) .. 121

Figure 6.30: Nested-decider (Demo 8) .. 122

Figure 6.31: Problem specifications – loops ... 122

Figure 6.32: Loops (Demo 1) .. 123

Figure 6.33: Loops (Demo 2) .. 123

Figure 6.34: Loops (Demo 3) .. 124

Figure 6.35: Loops (Demo 4) .. 125

Figure 6.36: Loops (Demo 5) .. 125

Figure 6.37: Pedagogical guidelines .. 126

Figure 6.38: Post-teaching exercises (Assignment) .. 129

Figure 6.39: Post-teaching exercise (decisions/nested decisions) ... 131

Figure 6.40: Post-teaching exercise (loops) ... 132

Chapter 7:

Figure 7.1: Simple if-statement (Demo 1) ... 143

Figure 7 2: Simple if-statement (Demo 2) ... 143

Figure 7.3: Simple if-statement (Demo 3) ... 144

Figure 7.4: Simple if-statement (Demo 4) ... 145

Figure 7.5: Simple if-statement (Demo 5) ... 145

Figure 7.6: Simple if-statement (Demo 6) ... 146

Figure 7.7: An if-else statement (Demo 1) .. 147

Figure 7.8: An if-else statement (Demo 2) .. 147

Figure 7.9: An if-else statement (Demo 3) .. 148

Figure 7.10: Nested-if statement (Demo 1) ... 148

Figure 7.11: Nested-if statement (Demo 2) ... 149

Figure 7.12: For-loop (Demo 1) .. 150

Figure 7.13: For-loop (Demo 2) .. 150

Figure 7.14: For-loop (Demo 3) .. 151

Figure 7.15: For-loop (Demo 4) .. 151

Figure 7.16: For-loop (Demo 5) .. 152

Figure 7.17: For-loop (Demo 6) .. 152

Figure 7.18: While-loop (Demo 1) .. 153

ix

Figure 7.19: Do while-loop (Demo 2) .. 153

Figure 7.20: Nested-loop (Demo 1) .. 154

Figure 7.21: Nested-loop (Demo 2) .. 155

Figure 7.22: Nested-loop (Demo 3) .. 156

Figure 7.23: Nested-loop (Demo 4) .. 156

Figure 7.24: Arrays (Demo 1) .. 157

Figure 7.25: Arrays (Demo 2) .. 157

Figure 7.26: Arrays (Demo 3) .. 158

Figure 7.27: Arrays (Demo 4) .. 158

Figure 7.28: Value-returning function (Demo 1) ... 159

Figure 7.29: Value-returning function (Demo 2) ... 160

Figure 7.30: Value-returning function (Demo 3) ... 160

Figure 7.31: Non-value-returning function (Demo 1) ... 161

Figure 7.32: Non-value-returning function (Demo 2) ... 161

Figure 7.33: Value parameters (Demo 1) .. 162

Figure 7.34: Value parameters (Demo 2) .. 163

Figure 7.35: Value parameters (Demo 3) .. 163

Figure 7.36: Value parameters (Demo 4) .. 164

Figure 7.37: Reference parameters (Demo 1) .. 164

Figure 7.38: Reference parameters (Demo 2) .. 165

Figure 7.39: Reference parameters (Demo 3) .. 165

Figure 7.40: Problem specification – loops ... 166

Figure 7.41: Loops (Demo 1) .. 166

Figure 7.42: Loops (Demo 2) .. 167

Figure 7.43: Loops (Demo 3) .. 167

Figure 7.44: Loops (Demo 4) .. 168

Figure 7.45: Loops (Demo 5) .. 168

Figure 7.46: Nested loop problem specifications ... 169

Figure 7.47: Nested-loop (Demo 1) .. 170

Figure 7.48: Nested-loop (Demo 2) .. 170

Figure 7.49: Nested-loop (Demo 3) .. 171

Figure 7.50: Problem specifications – arrays .. 171

Figure 7.51: Arrays (Demo 1) .. 172

Figure 7.52: Arrays (Demo 2) .. 172

Figure 7.53: Arrays (Demo 3) .. 173

Figure 7.54: Arrays (Demo 4) .. 173

Figure 7.55: Parallel array problem specification ... 173

Figure 7.56: Parallel arrays (Demo 1) .. 174

Figure 7.57: Parallel arrays (Demo 2) .. 174

Figure 7.58: Parallel arrays (Demo 3) .. 175

Figure 7.59: Parallel arrays (Demo 4) .. 175

Figure 7.60: Parallel arrays (Demo 4) .. 176

Figure 7.61: Parallel arrays (Demo 5) .. 176

Figure 7.62: Problem specification – functions ... 177

Figure 7.63: Functions (Demo 1) .. 177

Figure 7.64: Functions (Demo 2) .. 178

Figure 7.65: Functions (Demo 3) .. 178

Figure 7.66: Functions (Demo 4) .. 179

x

Figure 7.67: Functions (Demo 5) .. 179

Figure 7.68: Functions (Demo 6) .. 180

Figure 7.69: Functions (Demo 7) .. 180

Figure 7.70: Functions (Demo 8) .. 181

Figure 7.71: Adapted pedagogical guidelines .. 181

Figure 7.72: Pre-teaching algorithm sections on decisions .. 187

Figure 7.73: Post-teaching algorithm sections on decisions .. 187

Figure 7.74: Pre-teaching algorithm sections on loops ... 192

Figure 7.75: Post-teaching algorithm sections on loop ... 192

Figure 7.76: Pre-teaching algorithm sections on nested loops .. 195

Figure 7.77: Problem specification for post-teaching algorithm on nested loops.................. 195

Figure 7.78: Post-teaching algorithm sections on nested loops .. 195

Figure 7.79: Pre-teaching algorithm sections on arrays ... 198

Figure 7.80: Problem specification for post-teaching algorithm on one-dimensional array . 198

Figure 7.81: Post-teaching algorithm sections on one-dimensional array 198

Figure 7.82: Pre-teaching algorithm sections on parallel arrays ... 201

Figure 7.83: Problem specification for post-teaching algorithm on parallel arrays 201

Figure 7.84: Post-teaching algorithm sections on parallel arrays .. 201

Figure 7.85: Pre-teaching algorithm sections on functions... 203

Figure 7.86: Problem specification for post-teaching algorithm on functions 204

Figure 7.87: Post-teaching algorithm sections on functions ... 205

Chapter 8:
Figure 8.1: Problem specification – decisions and loops .. 216

Figure 8.2: Decisions and loops (Demo 1) .. 217

Figure 8.3: Decisions and loops (Demo 2) .. 217

Figure 8.4: Decisions and loops (Demo 3) .. 218

Figure 8.5: Decisions and loops (Demo 4) .. 218

Figure 8.6: Decisions and loops (Demo 5) .. 219

Figure 8.7: Decisions and loops (Demo 6) .. 219

Figure 8.8: Arrays (Demo 1) .. 220

Figure 8.9: Arrays (Demo 2) .. 220

Figure 8.10: Arrays (Demo 3) .. 221

Figure 8.11: Arrays (Demo 4) .. 221

Figure 8.12: Arrays (Demo 5) .. 222

Figure 8.13: Problem specification for post-teaching algorithm on decisions/nested

decisions .. 224

Figure 8 14: Post-teaching algorithm sections on decisions/nested decisions 224

Figure 8.15: Problem specification for post-teaching algorithm on loops/decisions 227

Figure 8.16: Pre-teaching algorithm sections on loops/decisions ... 228

Figure 8.17: Post-teaching algorithm sections on loops/decisions ... 228

Figure 8.18: Generic framework ... 242

xi

List of Tables

Chapter 2:

Table 2.1: Introductory programming misconceptions ... 30

Chapter 3:

Table 3.1: Piaget's cognitive stages ... 49

Table 3.2: Conversational framework teaching media... 55

Table 3.3: SOLO taxonomy ... 58

Table 3.4: SOLO and Whalley et al. (2006) programming code benchmarking 64

Chapter 4:

Table 4.1: Adapted SOLO by Lister et al. (2006) and Izu, Weerasinghe and Pope (2016) ... 85

Table 4.2: SOLO-based evaluation matrix .. 85

Table 4.3: SOLO-based evaluation matrix (with description) ... 86

Table 4.4: Methodological overview ... 93

Chapter 5:

Table 5.1: Average grades for control and experimental groups ... 103

Chapter 6:

Table 6.1: Results (Assignment) ... 130

Table 6.2: Summary of errors with the algorithms (decisions/nested decisions) 132

Table 6.3: Summary of errors with the algorithms (loops) .. 132

Table 6.4: Evaluation sheet (control group on decisions/nested decisions) 133

Table 6.5: Evaluation sheet (experimental group on decisions/nested decisions) 134

Table 6.6: Evaluation matrix .. 135

Table 6.7: Evaluation sheet (control group on loops) .. 135

Table 6.8: Evaluation sheet (experimental group on loops) ... 136

Table 6 9: Evaluation matrix .. 137

Chapter 7:

Table 7.1: Results (Assignment) ... 185

Table 7.2: Paired algorithm section (decisions/nested decisions) ... 188

Table 7.3: Average transitions performance on decisions/nested decisions over all pairs .. 189

Table 7.4: Paired algorithm sections - loop ... 193

Table 7.5: Average transitions performance on loops over all pairs 193

Table 7.6: Pairs algorithm sections – nested loops .. 196

Table 7.7: Average transitions performance on nested loops across pairs 196

Table 7.8: Paired algorithm sections – one-dimensional array .. 199

Table 7.9: Average transitions performance on one-dimensional arrays for all pairs 199

Table 7.10: Transitions performance on parallel arrays .. 202

xii

Table 7.11: Pairs sections/columns names for functions .. 206

Table 7.12: Average transitions performance on functions for all pairs 207

Chapter 8:

Table 8.1: Results (Assignment) ... 223

Table 8.2: Paired algorithm section (decisions/nested decisions) ... 225

Table 8.3: Average transitions performance on decisions/nested decisions for all pairs 226

Table 8.4: Pairs algorithm sections – nested loops .. 229

Table 8.5: Average transitions performance on decisions/loops for all pairs 230

Table 8.6: Transitions performance on parallel arrays .. 232

Table 8.7: Average transitions performance on functions for all pairs 234

xiii

Abstract

Introductory programming can be challenging for educators to teach and students to

learn. Some students struggle to comprehend introductory programming topics like

the uses of assignment, decisions, loops, functions and other basic principles of

programming. Such struggling students are referred to as Struggling Introductory

Programming Students (SIPS) in this study. The struggle to comprehend these basic

programming concepts often results in a low success rate and a low pass rate in the

module itself. Furthermore, the situation can exacerbate the attrition rate in computing

or computing-related courses.

In this study, various methods of teaching and learning to program were investigated.

It was found that the use of animations in teaching and learning can have a significant

impact on enhancing SIPS comprehension of introductory programming concepts. As

a result, we developed a Teaching and Learning Programming with Animation

Programs (TLPAP) framework that can aid SIPS in comprehending the basic

programming principles in a text-based programming environment. TLPAP consists of

two sets of animation programs, namely introductory animation programs for

introducing a new concept and animation programs that are accompanied by problem

specifications. Furthermore, the TLPAP framework includes a set of compatible

pedagogical guidelines for teaching and learning introductory programming with

animation programs. The inclusion of the pedagogical guidelines serves as one of the

essential elements within the TLPAP framework.

To test the efficacy of the TLPAP framework, we adopted an action research

methodology with the actual SIPS from the university participating. The action

research methodology made it possible for the researcher to reflect and continually

improve the design of the animation programs and pedagogical guidelines within

action cycles. The SIPS were divided into two groups: an experimental and a control

group. The experimental group was taught by following the TLPAP framework; the

control group was taught without following the TLPAP framework. The results were

compared through pre-teaching and post-teaching algorithm exercises and the

application of qualitative Structure of Observed Learning Outcomes – adapted (SOLO-

xiv

adapted) evaluations. During the cycles, patterns of improvements were found in the

experimental group as compared to the control group and the TLPAP framework was

finalised.

Key terms: Teaching, learning, pedagogical guidelines, computer science education,

introductory programming, animation programs, struggling students, SOLO.

xv

Summary

An Animation-Based Teaching and Learning Framework for
Struggling Introductory Programming Students

In this study, we investigated the best possible methods for teaching and learning

introductory programming concepts (IPC) through an action research methodology.

The plan was, specifically, to develop a teaching and learning framework for struggling

introductory programming students (SIPS). The use of physical manipulatives, as

aiding tools to teach and learn introductory programming, was attempted in the first

cycle (2019, semester 2, and 2020, semester 1) of action research. We found that the

use of physical manipulatives can aid teaching and learning IPC to a certain extent,

but it was limited in other crucial areas, like covering a large class, visibility of fine

details to all students, and functioning on online platforms. As a result, in the second

cycle (2021, semester 1) of action research, we initiated a framework, named

Teaching and Learning Programming with Animation Programs (TLPAP). TLPAP

consisted of animated versions of manipulatives and relevant pedagogical guidelines.

The pedagogical guidelines are a set of stages or guidelines for the best use of the

animation programs.

Through a SOLO (Structure of Observed Learning Outcome) adapted evaluation, we

experimented with the animation programs on the actual SIPS, at the university. SIPS

were divided into two groups, that is, the control and experimental groups. The control

group was taught traditionally through verbal narration, and the experimental group

was taught by following TLPAP. The results of cycle 2 helped us to refine the TLPAP

framework for cycle 3. As a result, cycle 3 (2021, semester 2) was implemented with

improved TLPAP and SOLO-adapted evaluation. The subsequent cycles (cycles 4 and

5 in 2022, semesters 1 and 2) were implemented with even more improved TLPAP.

The SOLO evaluation indicated more improvements in the experimental group than in

the control group. The conclusion of cycle 5 presented a final TLPAP.

xvi

Summary (Afrikaans language)

’n Animasie-gebaseerde Onderrig- en Leerraamwerk vir sukkelende
Inleidende Programmeringstudente

In hierdie studie, het ons die beste moontlike metodes vir die onderrig en leer van inleidende

programmeringskonsepte (IPK) deur middel van ’n aksienavorsingsmetodologie ondersoek.

Die plan was spesifiek om ’n onderrig- en leerraamwerk vir sukkelende inleidende

programmeringstudente (SIPS) te ontwikkel. Die gebruik van fisiese manipulasies as

hulpmiddels om inleidende programmering te onderrig en te leer, is in die eerste siklus (2019,

semester 2, en 2020, semester 1) van aksienavorsing ingespan. Ons het gevind dat die gebruik

van fisiese manipulasies tot ’n sekere mate kan help in die onderrig en leer van IPK, maar dat

dit beperk is op ander belangrike gebiede, soos om ’n groot klas te dek, sigbaarheid van fyn

besonderhede vir alle studente en funksionering op aanlyn platforms. Gevolglik het ons in die

tweede siklus (2021, semester 1) van aksienavorsing ’n raamwerk geïnisieer, naamlik die

Program vir Onderrig en Leer van Programmering met Animasie (TLPAP). TLPAP het bestaan

uit geanimeerde weergawes van manipulatiewe en relevante pedagogiese riglyne. Die

pedagogiese riglyne is ’n stel stadiums of riglyne vir die beste gebruik van die

animasieprogramme.

Deur ’n SOLU- (struktuur van waargenome leeruitkoms)- aangepaste evaluering het ons by die

universiteit met die animasieprogramme op die werklike SIPS geëksperimenteer. Die SIPS is

in twee groepe verdeel, naamlik die kontrole- en eksperimentele groepe. Die kontrolegroep is

tradisioneel deur verbale vertelling onderrig, en die eksperimentele groep is onderrig deur

TLPAP te volg. Die resultate van siklus 2 het ons gehelp om die TLPAP-raamwerk vir siklus

3 te verfyn. Gevolglik is siklus 3 (2021, semester 2) geïmplementeer met verbeterde TLPAP-

en SOLU-aangepaste evaluering. Die daaropvolgende siklusse (siklusse 4 en 5 in 2022,

semesters 1 en 2) is met selfs beter TLPAP geïmplementeer. Die SOLU-evaluering het meer

verbeterings in die eksperimentele as in die kontrolegroep aangedui. Die afsluiting van siklus

5 het ’n finale TLPAP aangebied.

xvii

Summary (Sepedi / Northern Sotho language)

Foreimiweke ya go Ruta le go Ithuta ye e Theilwego godimo ga di

Animeišene ya Baithuti bao ba nago le Mathata a Tlhamo ya

Mananeo a Tsamaišo ya Khomphutha

Mo nyakišišong ye, re nyakišišitše mekgwa ye mekaone ye e kgonegago ya go ruta le go ithuta

dikgopolo tša tlhamo ya mananeo a khomputhara (IPC) ka mokgwa wa nyakišišo ya tharollo

ya mathata thutong. Leano, gagolo, ebile la go hlama foreimiweke ya go ruta le go ithuta ya

baithuti bao ba nago le mathata a tlhamo ya mananeo a tsamaišo ya khomphutha (SIPS).

Tšhomišo ya dilo tšeo di ka swarwago bjalo ka didirišwa tša go thuša go ruta le go ithuta tlhamo

ya mananeo a tsamaišo ya khomphutha, e lekilwe modikologong wa mathomo (2019,

semesetara sa 2, le 2020, semesetara sa 1) wa nyakišišo ya tharollo ya mathata thutong. Re

hweditše gore tšhomišo ya dilo tšeo di ka swarwago e ka thuša go ruta le go ithuta IPC go fihla

bokgoleng bjo bo itšego, eupša e be e na le magomo ka go dikarolo tše dingwe tše bohlokwa,

go swana le go akaretša phapoši ye kgolo, ponagalo ya dikarolwana tše nnyane go baithuti ka

moka, le go šoma ga diforamo tša inthaneteng. Bjalo, mo modikologong wa bobedi (2021,

semesetara 1) wa nyakišišo ya tharollo ya mathata thutong, re thomile foreimiweke, yeo e

bitšwago Tlhamo ya Mananeo a go Ruta le go Ithuta ka dianimeišene (TLPAP). TLPAP e

bopilwe ke diphetolelo tša dianimeišene tša dithušapalelo le ditlhahli tša maleba tša thuto.

Ditlhahli tša thuto ke sehlopha sa dikgato goba ditlhahli tša tšhomišo ye kaone ya mananeo a

animeišene.

Ka tekolo ye e fetoletšwego SOLO (Structure of Observed Learning Outcome), re dirile diteko

tša mananeo a dianimeišene go SIPS ya nnete, yunibesithing. SIPS di arotšwe ka dihlopha tše

pedi, e lego, dihlopha tša taolo le tša diteko. Sehlopha sa taolo se rutilwe ka mokgwa wa

setlwaedi kanegelo ya molomo, gomme sehlopha sa diteko se rutilwe ka go latela TLPAP.

Dipoelo tša modikologo wa 2 di re thušitše go kaonafatša foreimiweke ya TLPAP ya

modikologo wa 3. Bjalo, modikologo wa 3 (2021, semesetara sa 2) o phethagaditšwe ka tekolo

ye e kaonafaditšwego ya TLPAP le ye e fetoletšwego SOLO. Medikologo ye e latelago

(medikologo ye 4 le 5 ka 2022, disemesetara tša 1 le 2) di phethagaditšwe ka TLPAP ye e

kaonafetšego le go feta. Tekolo ya SOLO e bontšhitše dikaonafatšo tše ntši sehlopheng sa

diteko go feta sehlopheng sa taolo. Sephetho sa modikologo wa 5 se tšweleditše TLPAP ya

mafelelo.

xviii

List of publications

Conference publications from this research

1. Ramabu, T. J., Sanders, I., & Schoeman, M. (2021, May). Teaching and

Learning CS1 with an Assist of Manipulatives. In 2021 IST-Africa Conference

(IST-Africa) (pp. 1-8). IEEE.

2. Ramabu, T., Sanders, I., & Schoeman, M. A. (2021). Manipulatives for

Teaching Introductory Programming to Struggling Students: A Case of Nested-

decisions. In CSEDU (1) (pp. 505-510).

Journal publications from this research

1. Ramabu, T., Sanders, I., Schoeman, M. (2022). Nested-Decider: An Animation

Program for Aiding Teaching and Learning of Decisions/Nested Decisions. In:

Barnett, R.J., le Roux, D.B., Parry, D.A., Watson, B.W. (eds) ICT Education.

SACLA 2022. Communications in Computer and Information Science, vol 1664.

Springer, Cham. https://doi.org/10.1007/978-3-031-21076-1_8.

https://doi.org/10.1007/978-3-031-21076-1_8

xix

List of abbreviations and acronyms

APS Admission Points Score

CA Constructive Alignment

CS Computer Science

CTML Cognitive Theory on Multimedia Learning

HEI Higher Education Institution

ICT Information and Communication Technology

IPC Introductory Programming Concepts

SA South Africa

SIPS Struggling Introductory Programming Students

SOLO Structure of Observed Learning Outcomes

TLPAP Teaching and Learning Programming with Animation Programs

TLPM Teaching and Learning Programming with Manipulatives

TUT Tshwane University of Technology

LMS Learning Management System

xx

Definition of key terms

Animation programs: Means computer graphics that animate or make a

graphical representation of a programming code to enhance comprehension

(Moreno, Sutinen & Joy, 2014).

Introductory programming concepts: These are introductory programming

concepts in the procedural programming paradigm like decisions, loops and

arrays.

Introductory programming students: This is a reference to the students who

enrolled in an introductory programming course. Sometimes they are referred

as novice programmers or Computer Science 1 (CS1) students.

Learners: Is a reference to basic education pupils.

Objects-later: This means that procedural programming concepts are

presented first, and object-oriented programming concepts are introduced later

in the book (introductory programming textbook) or in the curriculum.

Struggling introductory programming students: These are students who

struggle to comprehend introductory programming concepts.

Students: Is a reference to higher education pupils

Text-based programming: This means a programming method that involves

typing of lines of code to develop an algorithm.

1

Chapter 1: Introduction

Chapter

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Content

Introduction

Literature
review

Theoretical
framework

Methodological
approach

Initial
framework -

cycle 1

Adapted
framework -

cycle 2

Adapted
framework -

cycle 3

Adapted
framework -

cycles 4 and 5

Conclusion

2

1.1 Introduction
This study investigated various teaching and learning approaches deemed relevant to

Struggling Introductory Programming Students (SIPS). The intention was to search,

find and improve the potential methods of teaching and learning introductory

programming. The relevant teaching and learning methods were subsequently

experimented through various cycles of action research methodology. The action

research took place at a Higher Education Institution (HEI) with the actual SIPS. At the

end of the last cycle (cycle 5), the Teaching and Learning Programming with Animation

Programs (TLPAP) framework was validated and finalised. The TLPAP framework has

proven to be effective primarily for SIPS and can also be adopted for use as a general

framework for non-SIPS.

To get an overview of the context of this study, section 1.2 discusses the background

to the study; section 1.3 presents the problem statement; section 1.4 outlines the

research questions, objectives and methodology; section 1.5 discusses significance

of the study; section 1.6 gives chapter outlines and section 1.7 concludes the chapter.

1.2 Background to the study

1.2.1 Struggling Introductory Programming Students

Learning to program can be a challenging task or too abstract for some students

(Shuhidan, 2012; Tuparov, Tuparova & Tsarnakova, 2012; Konecki, Lovrenčić &

Kaniški, 2016). As a result, computing courses or computing-related courses

experience some SIPS. The researcher has been teaching text-based introductory

programming and advanced programming since the year 2010 at a South African (SA)

university of technology. Therefore, besides the challenges of teaching and learning

to program identified in the literature review (discussed in Chapter 2), I have come to

know and personally experience SIPS and further have attempted to assist them in

the lecture halls and consultation sessions.

Some of the problems I have experienced while assisting SIPS were basic

programming principles under the object-later programming curriculum. Object-later

programming advocates for teaching and learning of procedural concepts before

3

Object-Oriented Programming (OOP) concepts can be taught (Ehlert & Schulte, 2009).

In my introductory programming class, I came across SIPS that has challenges like

incorrect steps in a program code, misunderstanding of the assignment operator,

ambiguous decision statements, inappropriate iterations structures, misunderstanding

of arrays and incorrect function references and function values. At the end, normal

pedagogical interventions did not yield positive outcomes. I have also come to

experience that the blanket pedagogical approach can only favour non-SIPS, leaving

SIPS as the missing middle.

1.2.2 Teaching and learning of introductory programming

concepts

Programming is one of the subjects that forms part of a university’s computing or

computing-related courses. It is also one of the complex major and essential subjects

in computing courses, therefore methods of teaching and learning to program ought

to take centre stage (Krishnamurthi & Fisler, 2019; Cheah, 2020; Prasad & Chaudhary,

2021). Bart and Shaffer (2016:1) state that “Instructional design is to teaching as

software engineering is to programming”, implying that one cannot just teach

randomly, but proper instructional design can enable smooth teaching and learning in

a specific course. Sometimes teaching and learning can have a positive impact on the

success or failure of students. This is because teaching is the first activity in contact

courses; therefore, it can reduce cognitive load and boost success in comprehension

of Introductory Programming Concepts (IPC).

The most common IPC within the late-objects pedagogical approach include variables,

assignment, data types, strings, arrays, conditional control structures, iterative control

structures, functions, methods, procedures and parameter passing (Luxton-Reilly et

al., 2018). Some of these concepts are also mentioned in the joint task force and

computing curricula (ACM/IEEE-CS Joint Task Force on Computing Curricula, 2013;

Kumar & Raj, 2022). In the light of challenges of comprehending these IPC, it is

necessary to identify, argue and revolutionise the teaching and learning methods for

SIPS. In an attempt to arrive to a relevant solution, an action research methodology

was used to carry out the investigation and experimentation towards the formation and

finalisation of such a teaching framework.

4

1.2.3 Action research

The study applied an action research methodology because the solution is in the

context of an educational setup. Action research in education allows for a reflective

process at the end of each cycle with the aim to revise and improve the experimented

teaching and learning methods (Creswell et at., 2007). Action research in the

education allows the application of theory and practice (Kearney, Wood & Zuber-

Skerritt, 2013), hence the methodology is found to be appropriate for the

implementation and continual improvement of the teaching methods and tools. Action

research methodology consists of four important phases, that is plan, act, observe and

reflect. The process of going through all four phases is referred as action cycles. The

researchers can go through a number of action research cycles before the study can

be concluded or finalised.

1.2.4 Animation programs

The world of animations has great potential to help in teaching and learning IPC

(further explored in Chapter 2, section 2.7). Animation programs make teaching

attractive, interesting and encourage students to learn (Weiss, Knowlton & Morrison,

2002; Cevahir, Özdemir & Baturay, 2022). The use of animation programs takes

advantage of the increasing connectivity and availability of digital platforms. In the

world of teaching and learning to program, animation programs are computer graphics

that animate or make a graphical manipulation of a program code with the idea of

enhancing comprehension (Moreno, Sutinen & Joy, 2014). Through an action

research process, this has realised and uncovered the potential uses of animation

programs. As a result, I developed relevant animation programs for teaching and

learning IPC specifically for SIPS.

1.3 Problem statement
Text-based programming competency requires full attention to details and syntax

which is a challenge for some students (Federici, 2011). As a result, some introductory

programming students in Computer Science (CS) or computing-related courses find

IPC too complex or challenging to comprehend (Tuparov et al., 2012). Several issues

experienced by introductory programming students include misconceptions about

5

assignment, controls, decisions, tracing, functions, parameters, initialisation and

references (Sajaniemi & Kuittinen, 2008; Schoeman, Gelderblom & Muller, 2013;

Brown & Altadmri, 2014; Altadmri & Brown, 2015; Islam et al., 2019). The typical

consequences of these are primarily poor performance, drop out or academic

exclusion (Gomes & Mendes, 2007; Rubio et al., 2015; Brown & Altadmri, 2015;

Grover & Basu, 2017, Ahadi et al., 2018; Luxton-Reilly et al., 2018; Cetin, 2020;

Cheah, 2020; Prasad & Chaudhary, 2021).

In an effort to alleviate these problems, various pedagogical solutions are adopted and

applied in teaching and learning introductory programming (discussed in the literature

review section – Chapter 2), but the problems remain unsolved (Cheah, 2020). Among

existing pedagogical approaches, animation programs are used to aid the teaching

and learning of introductory programming. This is because animation programs are

informative, explanatory, explicit, interactive, effective, clearer and consequently can

be a learning attraction or motivation for students (Lowe, 2001; Lowe & Schnotz, 2008;

Cevahir, Özdemir & Baturay, 2022). However, existing animation programs for

teaching and learning introductory programming have these drawbacks:

- They typically contain overloaded graphics and are poorly designed (Lowe &

Schnotz, 2008). This can result in additional cognitive load away from the actual

learning of programming and can lead to confusion and learning setback.

- They lack introductory animations programs for introducing a new concept,

which hinders smooth teaching and learning transitions into more challenging

stages of the concept.

- They tend to focus on the generic computing concepts in the K12 stream which

are incompatible with a university novice programming student in a text-based

programming environment.

- They lack dedicated animation-based solutions specifically designed for SIPS

in a text-based programming environment.

- They are not grounded in formalised pedagogical guidelines for best design

and use of such animation programs for teaching and learning introductory

programming. Perhaps the assumption is that educators and students would

figure out how to properly use such animation programs for effective use in

teaching and learning. This is a problem, as animation programs can cause

6

more harm than good in teaching due to lack of applicable pedagogical

guidelines.

Based on the stated problems, the thesis statement in this study is formulated as

follows:

A Teaching and Learning Programming with Animation Programs (TLPAP) framework

can improve Struggling Introductory Programming Students (SIPS) comprehension of

Introductory Programming Concepts (IPC).

The above thesis statement forms the basis of the research questions and objectives

in the subsequent section.

1.4 Research questions and objectives

1.4.1 Research questions

The thesis statement informed the following research questions:

(a) What are the leading issues in teaching and learning IPC?

(b) What are the approaches used in teaching IPC?

(c) What are the limitations of existing animation programs used for teaching and

learning IPC?

(d) How can we develop a TLPAP framework for teaching and learning IPC?

(e) How can we prove and evaluate the efficacy of a TLPAP framework?

1.4.2 Research objectives

To carry out our thesis statement, the following objectives were established:

(a) To conduct a literature review on issues of teaching and learning IPC;

(b) To investigate the approaches used in teaching IPC;

(c) To investigate animation programs for teaching and learning IPC;

(d) To develop a TLPAP framework for teaching and learning IPC based on gaps

identified in the literature review and by continually improving the framework

based on the outcome of the action research cycles;

(e) To evaluate the efficacy of the TLPAP framework through teaching the actual

SIPS by following the TLPAP framework.

7

1.4.3 Brief methodology

The overall methodological approach followed in this study is action research as briefly

highlighted in section 1.2.3 and will further be elaborated in the methodology chapter

(Chapter 4). The first three research objectives are achieved with the literature review

(Chapter 2). The fourth research objective is achieved through the development of

TLPAP. The last research objective is achieved by using an evaluation strategy that

uses SOLO-adapted evaluations (see a detailed discussion in Chapter 4).

In the first attempt (cycle 1) of the action research, an investigation into the use of

manipulatives for teaching and learning IPC was carried out and experimented with.

The target framework was referred to as Teaching and Learning Programming with

Manipulatives (TLPM). It was found that the use of manipulatives to teach IPC works

to a certain extent, as a result that prompted further investigations and improvements.

In the second cycle of the action research, the search continued by exploring other

possible methods of teaching and learning IPC. An investigation into the potential of

using animation programs to improve comprehension of SIPS was conducted. The

animation programs were planned, designed and experimented with. The outcome of

the experimentation was successful as compared to the unsatisfactory results in cycle

1. The animation programs were continually improved in the subsequent action cycles

which led to the finalisation of TLPAP framework in cycle 5. The details and results of

each action cycle are presented in Chapters 5, 6, 7 and 8.

1.5 Significance of the study
This study is investigated within the parameters of teaching and learning, as a result

the researcher was exposed to many theories of learning available in the body of

knowledge. The theoretical contribution of this study lies in the development of a

relevant theoretical framework as a backbone and frame for the study. The process of

adopting a theoretical framework, was initiated by studying all relevant teaching and

learning theories followed by the synthesis of the applicable theories for a possible

contribution in this study.

The final TLPAP is expected to directly benefit the computing students in higher

education, learners in basic education that study programming as part of the

curriculum and anyone who is studying programming on their own. The final TLPAP

8

can improve the success rate for teaching and learning to program. Furthermore, the

TLPAP can be a relevant framework aiding the academic community, practitioners or

curriculum developers. In brief, the study has the following potential contributions:

(a) Development of TLPAP framework specifically for SIPS in the text-based

programming environment.

(b) Animation programs in two sets or phases, namely the special animation

programs for introducing a new concept and animation programs with problem

specifications.

(c) Development of specific pedagogical guidelines that form part of TLPAP. The

pedagogical guidelines are to be followed when using TLPAP for effective use

of animation programs.

(d) Theoretical contributions consist of relevant theories that may support the use

of TLPAP.

(e) Methodological contributions consist of SOLO-adapted evaluations for the

given algorithms.

1.6 Chapter outline
Chapter 2: Literature review. The main focus in Chapter 2 are the challenges of

learning to program, imperative programming, approaches of teaching procedural

programming and existing animation programs for IPC.

Chapter 3: Theoretical framework. This chapter discusses the underpinning theories

that frame this study. Relevant sections of the chapter are learning theories, learning

taxonomies, teaching philosophy and constructive alignment.

Chapter 4: Methodological approach. The methodology chapter depicts and

substantiates relevant research methods.

Chapter 5: Initial framework - cycle 1. Reports on the initial plans and experiments

which occurred in cycle 1 of action research.

Chapter 6: Adapted framework - cycle 2. Reports on the adapted plans and

experiments as occurred in cycle 2 of action research.

9

Chapter 7: Adapted framework - cycle 3. Reports on more adaptation and experiments

which occurred in cycle 3 of the action research.

Chapter 8: Adapted framework - cycles 4 and 5. Reports on cycles 4 and 5 and a final

TLPAP framework.

Chapter 9: Conclusion. This chapter concludes the study.

1.7 Conclusion
The intention of this introductory chapter was to present an overview of the study. The

background to the study presented relevant context about the study by giving an

overview on SIPS, teaching and learning IPC, action research methodology and

animation programs. The problem statement has been addressed and relevant thesis

statement has been formulated as: “A Teaching and Learning Programming with

Animation Programs (TLPAP) framework can improve Struggling Introductory

Programming Students (SIPS) comprehension of Introductory Programming Concepts

(IPC).” The design, experimentation and finalisation of the TLPAP was subjected to

rigorous cycles of action research methodology. The research questions and

objectives in this study are carried out sequentially as listed in section 1.4. The first 3

research question and objectives are references to the literature review. A literature

review which was conducted prior to the TLPAP realisation, serves as first and

foremost guidance and identification of a relevant gap. The literature review is

presented in the subsequent chapter (Chapter 2).

10

Chapter 2: Literature review

Chapter

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Content

Introduction

Literature
review

Theoretical
framework

Methodological
approach

Initial
framework -

cycle 1

Adapted
framework -

cycle 2

Adapted
framework -

cycle 3

Adapted
framework -

cycles 4 and 5

Conclusion

11

2.1 Introduction

The thesis statement of this study says: “A Teaching and Learning Programming with

Animation Programs (TLPAP) framework can improve Struggling Introductory

Programming Students (SIPS) comprehension of Introductory Programming Concepts

(IPC)”. In an attempt to present the outcome of this research towards achieving the

thesis statement, in Chapter 1, a background to the study, problem statement,

research questions and research objectives were presented. The problem is that SIPS

find introductory programming concepts difficult to learn. Some of the SIPS’ problems

are mostly found within the imperative programming paradigm or late-objects

pedagogical approach. The methods of teaching and learning introductory

programming have been limited and require further improvements (Rum & Ismail,

2017; Medeiros, Ramalho & Falcão, 2018). In order to address this problem, the study

adopts animation-based teaching and learning to improve SIPS’ comprehension of

IPC.

To design a suitable solution informed by the fundamental problems and identified

gaps, this chapter addresses and presents the literature review based on the three

research questions and study objectives. The first three research questions as per

section 1.4 in Chapter 1 have been stated as follows:

(a) What are the leading issues in teaching and learning IPC?

(b) What are the approaches used in teaching IPC?

(c) What are the limitations of existing animation programs used for teaching and

learning IPC?

The purpose of a literature review is outlined in section 2.2, while section 2.3 provides

a contextual overview. To deepen understanding of existing issues, section 2.4

addresses the challenges in learning to program. The imperative programming

approach is discussed in section 2.5 to offer perspective of the subject under study.

Section 2.6 discusses approaches of teaching procedural programming. Section 2.7

discusses existing animation programs and their limitations. The summary of an

identified gap is presented in section 2.8.

12

2.2 Purpose of the literature review

A literature review is a comprehensive investigation of prior research in a specific

discipline (Denney & Tewksbury, 2013). A proper literature review should be able to

give a reader an overview of what is already known in the area being investigated and

what is missing within that discipline (Creswell, 2003). According to Ridley (2008:2),

the literature review is “where you identify the theories and previous research which

have influenced your choice of the research topic and the methodology you are

choosing to adopt". A well-presented literature review gives the reader an overview of

gaps to be filled by discussing weaknesses or limitations of previous studies.

Therefore, a literature review compels the authors to acquire comprehensive

knowledge about prior studies in the topic under investigation. Moreover, a properly

structured literature review gives credibility to the work being presented.

Arguments in the literature review are supported by sources from scholarly empirical

articles, journal articles, books, dissertations and occasionally even non-empirical

sources (Denney & Tewksbury, 2013). Empirical studies are accumulative; therefore,

it is also important for a literature review to have a thorough mix of both older and

recently published research.

The literature review in this study consists primarily of research published in the area

of computer science education. The specific focus is the key content of programming

(imperative programming), teaching methodologies for introductory programming,

challenges of learning introductory programming and animation programs for aiding

teaching and learning. Google Scholar was mostly used as a search engine to access

scholarly indexed literature from various databases. In addition to Google Scholar, the

ACM digital library, IEEE digital library, Web of Science, Science Direct and Scopus

were directly searched. The search words were “teaching and learning approaches for

introductory programming”, “issues of teaching and learning to program”, “challenges

in learning to program”, “animation programs”, “animation programs in education”,

“animation program for introductory programming”. The subsequent sections in this

chapter present the relevant literature review as per the definitions outlined in this

section.

13

2.3 Contextual overview

2.3.1 Importance of programming

Computer programming is one of the major subjects in the Computer Science (CS),

information systems or other computing-related courses (Prasad & Chaudhary, 2021).

Programming is acknowledged as the core of computing courses and an important

21st century skill (Bers, 2019; Krishnamurthi & Fisler, 2019), similarly programming

education methods ought to improve and take a leading role.

Computing courses are mostly developed by following the guidelines of the Computing

Curriculum 2013 by the joint task force and computing curricula (ACM/IEEE-CS Joint

Task Force on Computing Curricula, 2013; Kumar & Raj, 2022). A joint task force on

computing curricula was developed by an ad-hoc committee consisting of members

from Association of Computing Machinery (ACM) and Institute of Electrical and

Electronics Engineers (IEEE) (ACM/IEEE-CS Joint Task Force on Computing

Curricula, 2013). The majority of subjects within computing courses are more or less

interrelated, overlapping or have emerged from an introductory programming

perspective. For example, subjects like algorithms, databases, data structures,

software engineering, web computing and scripting rely on the understanding of

programming principles and computational thinking ability. This shows the importance

of programming and therefore emphasises the need to improve methods of teaching

and learning to program. However, the methods in teaching and learning introductory

programming have not been adequate to accommodate struggling students (Rum &

Ismail, 2017; Medeiros, Ramalho & Falcão, 2018). The challenge is to devise an

appropriate method of teaching introductory programming for the struggling students.

2.3.2 Learning to program is difficult

Certain programming concepts can be too abstract or challenging to learn (Tuparov,

Tuparova & Tsarnakova, 2012; Shuhidan, 2012; Konecki, Lovrenčić & Kaniški, 2016).

Some novices succeed in programming, while others find it quite difficult to learn

(Kelleher & Pausch, 2005). This has led to high failure and attrition rates in computing

courses or computing-related courses (Lahtinen et al., 2002; Nikula, Gotel &

Kasurinen, 2011; Watson & Li, 2014; Rum & Ismail, 2017; Malik & Coldwell-Neilson,

2017; Prasad & Chaudhary, 2021). While programming can be difficult to learn, it is

14

likewise difficult to teach (Bennedsen & Caspersen, 2007; Bennedsen & Caspersen,

2019). These challenges continue despite various tools used to assist in teaching and

learning to program (Medeiros, Ramalho & Falcão, 2018).

Some of the challenges are found within the concepts of variables, the scope of

variables, Booleans, assignment, tracing, decisions, logical operators, comparison

operators, loops, arrays, recursion, functions, parameters, initialisation and references

(Bayman & Mayer, 1983; Eckerdal & Thuné, 2005; Goldman et al., 2008; Sajaniemi

& Kuittinen, 2008; Schoeman, Gelderblom & Muller, 2013; Bruce, 2015; Veerasamy,

Souza & Laakso, 2016; Brown & Altadmri, 2017; Grover & Basu, 2017; Luxton-Reilly

et al., 2018; Cetin, 2020). Anyango and Suleman (2018), surveyed programming

lecturers in Kenya and South Africa (SA). The authors found that students still struggle

with recursion, arrays and data types. It is evident that there are continuous issues in

the programming education spectrum. Beaubouef and Mason (2005) say another

contributing factor for the persistence challenges in learning programming is a lack of

algorithm practice due to short semesters or short learning hours. This is further

worsened as the students are expected to learn syntax, background theory on

programming and problem solving within that short period (Rubio, 2019).

2.3.3 Computer Science at universities and K12

CS courses were initiated around the 1950s and 1960s (Calitz, 2021). The first CS

programme was offered in 1953 by the University of Cambridge in the United Kingdom

and the first CS department was formed by Purdue University in 1962 (Calitz, 2021).

Subsequently, upon global establishment, departments of CS in SA were gradually

introduced at universities during the 1960s and 1970s. Some of the SA universities

that began offering CS courses during that period include the University of

Stellenbosch, University of South Africa, University of Cape Town, Rhodes University

and North-West University (Calitz, 2021). In the 1980s, many SA universities were

either offering hardcore CS courses or CS-related courses. Recently (in 2022), I have

noted in the course information from various international and SA universities that

computing courses have been further popularised. However, in SA, the CS-related

modules (especially programming) have not been popularised in the K12 stream

(SAPeople, 2020; Fares, Fares & Vegas, 2021).

15

Some of the SA schools lack Information Technology (IT) infrastructure, which is

critical for a successful implementation of computing education at primary and high

schools. Few schools in urban or high-income areas have adequate internet

connectivity, while some are still without enough IT infrastructure to offer CS education

(Fares, Fowler & Vegas, 2021). According to Pyott and Sanders (1991: 1), "a problem

in teaching CS in the South African context is that many students come from

disadvantaged backgrounds and have not been exposed to computer technology". In

2020, only 40% of schools in SA had computer labs (SAPeople, 2020).

2.3.4 Overview of programming education research

There have been various research initiatives around programming or CS education

across the globe (Guzdial & du Boulay, 2019). Since the 70s, research has centred

more on the technology (software and hardware) part of computing and less on

pedagogical strategies (Kandemir, Kalelioğlu & Gülbahar, 2021). Luxton-Reilly et al.

(2018) conducted a comprehensive literature review on introductory programming

based on 1666 research papers between 2003 and 2017. Papers related to students

were 489 in total, curriculum 258, assessment 192 and teaching 905. However, a

concern is that only 24 papers out of 905 papers were related to computer program

visualisation. The work of Lunn et al. (2021) collected and evaluated computer science

education publication data between 2015 and 2020 sourced from high-impact

international organisations, namely, Innovation and Technology in Computer Science

Education (ITiCSE), ACM International Computing Education Research (ICER) and

ACM Transaction on Computing Education (TOCE). The authors identified a growing

trend in CS education research output from individuals and universities. Nevertheless,

the authors stress that even though research and development seem to be growing

globally, a target population or contextualised environment should be examined.

The South African Computer Lecturers’ Association (SACLA) conference, formerly

known as Computer Science Lecturers’ Association (CSLA), is one of the most CS-

focused teaching and learning research meetings held in SA. SACLA was established

in the 1970s by academics and IBM (International Business Machines), a computer

manufacturer based in the United States (Calitz, 2021). SACLA contributed

significantly to collaboration with international scholars in growing computing

16

education research. Most of the time, the thematic areas of research included CS, CS

curriculum, information systems and teaching and learning of programming. One of

the main subjects identified and mostly researched as noted in the SACLA

proceedings is computer programming. The other reputable scientific association

similar to SACLA in research for teaching and learning CS concepts is the South

African Institute for Computer Scientists and Information Technologists (SAICSIT).

2.4 Challenges in learning to program

This section outlines students’ challenges with IPC. Outlining the challenges is

important because they present better view of the fundamental issues of learning to

program, which will further inform better instruction or guide more effective

pedagogical solutions (Spohrer & Soloway, 1986).

2.4.1 Struggling Introductory Programming Students (SIPS)

Every year, novices enrol in computing courses in various universities. Some students

are informed about the course they have chosen; some are not informed at all. Some

students indicate that they selected a certain course simply because it was available

for enrolment, or they met the requirements. Beaubouef and Mason (2005) suggest

that students are poorly advised when enrolling in CS, thinking that the course is all

about computers. It was also found that students have limited career knowledge when

it comes to Science, Technology, Engineering and Mathematics (STEM) courses

(Hango, 2013). This problem has triggered various solutions in the form of match-

making algorithms and course recommender systems (Taha, 2012; Joshi et al., 2012,

Ramabu & Oberholzer, 2017). The basic background about computing, the relevance

of Mathematics in computing and accurate perceptions about the nature of computing

courses are not common knowledge among first-year computing students (Galpin &

Sanders, 2007). This can worsen the performance of students in computing courses.

The majority of CS subjects are not introduced in the K12 stream (Grandell, Peltomäki,

Back, & Salakoski, 2006), therefore, it is not unusual for computing students at

universities to lack adequate prior programming experience. As a result, many first-

year students encounter computing subjects for the first time at a university level. This

can directly impact the success of computing students at university as they

17

subsequently struggle to comprehend programming concepts. Ultimately universities

have to deal with SIPS. Furthermore, lack of proper incorporation of computational

thinking in the K12 curriculum in developing countries (Grover & Pea, 2013; Su &

Yang, 2023) can be part of the contributing factors that cause SIPS. While some

university students can cope and comprehend computing modules at the first attempt,

others do struggle. Ramaano, Ajoodha and Jadhav (2021) compared first-year CS

students with prior computer experience and first-year students with no computer

experience. The authors found that first-year students with computer experience

performed better than students without computer experience. This shows that

somehow a basic computer background has a positive effect on comprehension.

2.4.2 English language

Computing courses are mostly offered in the English language by universities in SA

and globally. English has been deemed the international language and is chosen by

many countries as a language of teaching and learning (Veerasamy & Shillabeer,

2014). The language barrier could be experienced by the students who are learning

CS courses in the English language (Lei & Allen, 2022). This is because the success

of teaching and learning is initially impacted by the understanding of the English

language as a medium of instruction. Potentially, native English speakers have an

advantage of language clarity and fluency over non-native speakers. Such students

stand a chance to avoid language misconceptions on the programming specifications

or written exercises to solve a problem through algorithm development. In Figure 2.1,

we can see that a low-level English proficiency impacts teaching and learning which

further impacts problem specification in a computer programming context.

Figure 2.1: Implications of lack of English ability

18

To select and admit the best students into courses, universities make use of

Mathematics (discussed in the subsequent section) and English as requirements to

admit students into CS (Werth, 1986; Rauchas et al., 2006). This further limit the

chances of prospective students with a low grade subject to be awarded admission

into computing courses. Many SA students or international students speak and learn

English as a second or additional language (Lei & Allen, 2022). This means that,

should such students receive admission into the university, there remains a likelihood

that they can struggle with English as the instructional medium.

There have not been significant research initiatives to accommodate students who

experience English misconceptions in the CS education stream (Armenti, 2018). Pal

(2016) compared native English students and students who used the local language

to learn in the K12 stream. The authors taught introductory programming to the three

groups by using the post-test scores methodology. Group 1 (previously learned in their

non-English local language at K12) was taught introductory programming with the local

language. Group 2 (previously learned in their non-English local language at K12) was

taught introductory programming by using English language. Group 3 (used English

language at K12) was taught introductory programming by using English language.

Results demonstrated that generally, students who continue being taught introductory

programming in their local language performed better. An earlier similar study by Lau

and Yuen (2011) also found that Chinese-instructed students (Chinese as their native

language) outperform English-instructed students. Idris and Ammar (2018), surveyed

university students and lecturers in Libya, the authors found that programming

performance is likely affected by inadequate English proficiency.

The most common programming languages like C, C++, Java and JavaScript also

have keywords or commands which are English-like (Veerasamy & Shillabeer, 2014).

Therefore, English proficiency is not only helpful for teaching and learning but also

within the programming language itself.

2.4.3 Mathematics

Universities make use of mathematics as one of the main benchmark requirements to

admit students into CS courses (Werth, 1986; Rauchas et al., 2006). Nothing has

19

changed so far: as noted in the universities' websites as recently as 2022, most

universities still use mathematics as one requirement to admit students into CS

programs. This is because mathematics is a major element of CS course (Beaubouef

& Mason, 2005; Beaubouef & Mason, 2005; Alpár et al., 2022). CS courses have

mathematics as a separate module and other modules are somewhat dependent on it

(Alpár et al., 2022). More importantly, mathematics is critical for a better understanding

of artificial intelligence, computer graphics and programming (Baldwin et al., 2013).

The high attrition rate is also noted among those with low mathematical performances

or poor mathematics skills (Konvalina, Wileman & Stephens, 1983; Beaubouef &

Mason, 2005). This means that a lack of mathematical knowledge can affect CS

students’ performance and therefore pedagogical solutions may be necessary to close

the gap.

2.4.4 Mental models

“A mental model is a conceptual representation of an abstract concept or a physical

system that provides predictive and explanatory powers to a person in trying to

understand the concept or the system and guides their interaction with it ” (Wu, Dale

& Bethel, 1998: 292). Mental models constitute the representation of students' mental

understanding of how and why certain things work the way they do. According to Wu,

Dale and Bethel (1998), educators should have an appropriate conceptual model of

teaching which is informed by accurate mental models of the students. Non-

experienced students learn differently according to their mental models, experienced

students learn differently and possibly SIPS can learn differently by adjusting their

mental model accuracy through pedagogical intervention.

One of the challenges in the comprehension of IPC is the incorrect mental models of

students (Ramalingam, LaBelle & Wiedenbeck, 2004). In the case of programming

education, the mental model is about the knowledge of how a program code and its

semantics work. All solutions that strive to help students understand program code

better are about adjusting the state of a student's mental models with that of

computational or programming thinking. Various methods have been used to measure

students’ mental models of a program code. For example, Scholtz and Sanders (2010)

used the tracing method to measure students’ mental models of how recursive

functions work. Jimoyiannis (2013) used the structure of observed learning outcomes

20

(SOLO) taxonomy to measure students' mental models on the understanding of

variables and assignments. The viable and non-viable mental models were also

investigated on the concepts like variables by Sorva (2008), value-passing and

reference-passing (Madison & Gifford, 2002; Ma et al., 2007). This is an important

exercise as it is possible for students to produce correct program code while retaining

an inaccurate mental model of how the code works (Scholtz & Sanders, 2010). The

understanding of program code represents a programmer’s mental models, therefore

the design of relevant support systems for teaching and learning of programming can

lead to the accurate mental models (Storey, Wong & Müller, 2000; Heinonen et al.,

2023).

2.4.5 Programming jargon

Each module in a specific course has special words which can be difficult to master.

Such words are referred to as ‘jargon’. Similarly, the computing environment has its

own jargon. Soloway (1986) says teaching introductory programming students’ the

syntax and semantics is not enough, but programming terminologies, vocabulary,

program goals and plans should be emphasised as well.

Mohamed, Hamilton and Souza (2011), surveyed novice programmers in their second

week of learning and found that some students were able to fix basic errors and

understood basic jargon while other students struggled with programming jargon. The

work of Munasinghe, Bell and Robins (2021) further noted that educators also find

some of computing vocabulary difficult to comprehend. The authors stress that

sometimes this is caused by a lack of computing background or not being in the

context of CS. As a result, this can further aggravate the confusion of teaching and

learning to program.

2.4.6 Problem solving

In everyday life, the cognitive abilities to solve any problem is critical, even in the

programming education where algorithms are developed. In programming, an

algorithm is written so that it can solve a specific problem when it gets deployed in a

computer or any other device. Problem-solving ability is one of the foremost skills that

21

must be possessed by IPS (Govender, 2021). Lack of problem-solving skills mostly

lead to high failure rate in programming (Gomes & Mendes, 2007).

There are various approaches for problem-solving in programming education. The

most common approach for problem solving is described by Bransford and Stein

(1993) as:

- Problem Identification or formulation,

- Definition of the terms or problem,

- Develop strategies for the solution to the problem,

- Execute the solution and

- Observe, reflect, learn through the effect of the execution.

The above problem-solving steps resonates with the steps indicated by Gomes and

Mendes (2007) and Sheth et al., (2016). The work of Ring, Giordan and Ransbottom

(2008) present problem-solving steps as “analyse”, “design”, “build” and “test”. The

first stage which is “analyse” means understanding and interpretation of the problem.

The “design” step means using tools like flowchart to present the model to the solution.

The “build” stage is about developing the actual program code using a specific

programming language. The last stage (“test”) means using a test case for the

experimentation of the program. In an effort to help the students to obtain this

important skill, there have been various pedagogical attempts (including the

approaches of teaching and learning in section 2.6) to improve teaching and learning

to program. Furthermore, the subtopics discussed in this section like English

language, Mathematics, mental models and programming jargon have a direct

influence on problem solving abilities.

2.4.7 Summary

Various challenges may affect students’ performances in computing courses.

Generally, prior disadvantaged schools and lack of connectivity serve as the origin of

these challenges. The other challenge is the lack of CS background and programming

experience which contribute to the state of SIPS. The lack of accurate mental models

about how a program code works, poor English language proficiency, lack of

computational thinking and mathematical thinking further contribute to the state of

22

SIPS. These challenges directly or indirectly affect students’ competence and

performance in programming and potentially in other computing modules as well.

2.5 Imperative programming approach

This section focuses on the issues of learning IPC in the imperative programming

paradigm. An imperative programming paradigm is about placement of a sequence of

instruction that can be executed at a time by the computer (Pollak, Layka & Sacco,

2022). Researchers need to discuss the fundamental misconceptions in introductory

programming which can inform relevant instructional means (Sadler et al., 2013,

Altadmri & Brown, 2015). This section, therefore, is important for exploring such

fundamental problems of learning to program.

2.5.1 Programming languages

The choice of a specific programming language to teach first-year students in

computing courses has been evolving and debated. We have so many existing

programming languages and academia is faced with the dilemma of choosing a

relevant language for teaching and learning at first year level. Three decades ago, the

Pascal programming language was one of the most prevalent programming languages

by the industry for developing software and academia for teaching and learning

purposes (Brilliant & Wiseman, 1996). At this point, popular programming languages

used in the industry and also adopted by universities for teaching introductory

programming include Java, C, C++, Visual Basic, PHP and Python (Siegfried et al.,

2012; Rabai, 2015; Aleksić & Ivanović, 2016; Chen et al., 2019).

Various factors can inform the choice of a specific programming language for an

introductory programming module. However, no significant differences between the

chosen programming languages being studied in introductory programming have been

found (Bennedsen & Caspersen, 2007; Watson & Li, 2014). This is true because

students learn how to program without necessarily learning a programming language.

Programming languages are similar in logic but differ in language specification

(syntax). In an attempt to soften the learning process towards programming

languages, some K12 curriculum features visual programming which in return gives a

university student an experiential advantage when learning textual programming

23

(Chen at el., 2019). Visual programming makes use of graphics like drag and drop

blocks, while textual programming consists of typing in a code (Chen at el., 2019).

Some examples of visual programming include Alice (Cooper, Dann & Pausch, 2000)

and Scratch (Resnick et al., 2009). Textual programming languages include Java, C++

and JavaScript.

Programming paradigms are another critical factor to be considered when choosing a

programming language. The subsequent section discusses programming paradigms.

2.5.2 Programming paradigms

Besides the complexity of selecting an appropriate programming language for

industries to develop software or universities to teach, there are programming

paradigms to think of. However, each paradigm can be relevant if selected

appropriately. According to Krishnamurthi and Fisler (2019), paradigms can be

referred to as a class of programming languages that behave similarly from a high-

level perspective and have common features. Some programming languages are

primarily imperative-based paradigms with procedural and object-oriented

programming (OOP) as sub-paradigms (Sim et al., 2012). An OOP paradigm is

centred around objects, data in objects and classes, while the procedural paradigm is

based on a series of steps, subroutines with conditions and functions (Farell, 2011).

For the most part, the procedural programming paradigm is recommended as

introductory programming suitable for computing novices at university and for K12

students (Hendrix & Weeks, 2018).

Vilner, Zur and Gal-Ezer (2007) investigated students who took CS1 with OOP and

students who took CS1 with a procedural programming approach. The authors found

no significant differences between the two groups from their comparison. However,

OOP requires a high level of abstraction which sometimes inhibits the proper learning

of the fundamentals of programming (Delgado et al., 2016). Some universities in

Europe and other continents adopt OOP; however, they still begin teaching novices

with a procedural programming approach first (Aleksić & Ivanović, 2016; Luxton-Reilly

et al., 2018). This method is generally referred to as the objects-later approach rather

than objects-first or objects-early. Dümmel, Westfechtel and Ehmann (2019) contend

24

that students should be able to code both procedurally and also code through data in

objects (OOP). The following section outlines the structure and details of procedural

programming content for better understanding and context.

2.5.3 The structure of procedural programming

In the objects-later approach where the procedural programming paradigm is learned

first, topics covered include problem-solving skills, a brief introduction to programming,

arithmetic, decisions, nested decisions, loops, nested loops, arrays, parallel arrays

and functions (Gal-Ezer & Harel, 1999). In Figure 2.2, the contents of the C++ textbook

by Malik (2018) is presented. As with other similar textbooks, the content of the book

by Malik (2018) shows an objects-later approach where procedural programming is

learned and later OOP concepts are also learned.

Figure 2.2: C++ Programming from program analysis to program design (Malik, 2018) - 1

The rest of the figures (Figure 2.3 to Figure 2.9) have been abstracted from the Malik

(2018) textbook to provide a sample description of the content of procedural

programming concepts. In Figure 2.3, the content consists of a typical introductory

25

phase where students are exposed to programming jargon, language syntax, data

types and arithmetic.

Figure 2.3: C++ Programming from program analysis to program design (Malik, 2018) – 2

In Figure 2.4, the students learn about input and output through cin and cout if the

programming language is C++. The concept of assignment is also emphasised in this

type of section.

Figure 2.4: C++ Programming from program analysis to program design (Malik, 2018) - 3

26

The content of Figure 2.5 consists of control structures part 1 (referred as decisions

or selections or if-statements). This section moves to an advanced level where nested

decisions and compound statements are learned and constructed.

Figure 2.5: C++ Programming from program analysis to program design (Malik, 2018) - 4

The content of Figure 2.6 consists of control structures part 2 (referred as repetitions

or iterations or loops). Advanced concepts include nested loops and a combination of

loops and decisions.

Figure 2.6: C++ Programming from program analysis to program design (Malik, 2018) - 5

27

Figure 2.7 shows how functions are taught. Things like function calls, function return

type, passing values into a function and returning a value are learned.

Figure 2.7: C++ Programming from program analysis to program design (Malik, 2018) - 6

Figure 2.8 is still on functions, but more advanced concepts like reference parameters

are introduced.

Figure 2.8: C++ Programming from program analysis to program design (Malik, 2018) - 7

28

Figure 2.9 shows how the concept of arrays is taught. Strings are sometimes

introduced with arrays because they are manipulated similarly. Advanced concepts

like parallel arrays and two-dimensional arrays are also taught.

Figure 2.9: C++ Programming from program analysis to program design (Malik, 2018) - 8

Novice programmers are expected to learn the content outlined in this section as part

of the introductory programming syllabus. As emphasised previously in section 2.3.2,

some novices find learning certain aspects of introductory programming difficult or

challenging. The subsequent section discusses details of challenges in learning to

program.

2.5.4 Details of learning challenges

Programming challenges can be categorised within three knowledge areas:

syntactical, conceptual and strategic knowledge (Qian & Lehman, 2017). Syntactical

knowledge refers to the correct usage of syntax or programming language (Brown &

Altadmri, 2017). Conceptual knowledge is a broader understanding of a certain

concept (Pea, 1986). Strategic knowledge is when a student is capable of combining

both syntactical and conceptual knowledge to write expert-level programs (Qian &

Lehman, 2017). The promotion of syntactical knowledge is automated within compilers

and a student must possess conceptual knowledge before coding can happen. Lack

of conceptual understanding leads to a ‘conceptual’ bug (Pea, 1986). According to

Pea (1986), a lack of conceptual understanding of certain programming concepts

29

happens to all primary school to college (university) students. Strategic knowledge can

be targeted at introductory programming students, not to achieve an expert level but

rather to master an introductory basis which could serve as a steppingstone to expert

level.

A comprehensive study by Brown and Altadmri (2015) investigated common

programming errors. The authors studied Java compilations of 250 000 novice

programs across the world, summarising some of the errors as follows:

a. Confusing the difference between = and == operators.

b. Confusing the parentheses, square brackets and other types of brackets.

c. Confusing short-circuit operators (&& and ||) and conventional operators (| and

&).

d. Forgetting the semicolon at the end of a line.

e. Putting a semi-colon after the if-statement header, function header or for-loop.

f. Incorrect separation, in a for-loop.

g. Forgetting parenthesis when calling a function.

h. Mixing up >=, <= with =<, =>.

i. Confusion on how to call non-void and void methods.

j. Having a function that returns a value but can reach the last line without

returning any value. Example:

int calcv (int p)

{

 If(p < 0)

 return 0;

 p++;

}

Some of the errors above are syntactical while some are semantic. Syntactical errors

are sometimes unavoidable as they form part of language proficiency exercise.

However, semantic errors are prevalent, harder to fix and require special attention

(Brown & Altadmri, 2015; Ahadi et al., 2018).

30

Table 2.1 contains introductory programming misconceptions. The focus is on the

errors related to the imperative programming paradigm.

Table 2.1: Introductory programming misconceptions

 Misconceptions Sources

1. Confusing == and =, misunderstanding
the uses of an assignment operator

Du Boulay, 1986, Bruce, 2015; Žanko, Mladenović
& Boljat, 2019

2. Confusion on data types, variable
scope, and confusion on whether a
variable can store many values at a
time

Goldman et al., 2008; Sadi, Halder & Saha, 2014;
Bruce, 2015; Grover & Basu, 2017; Kohn, 2017

3. Confusion on whether if content and
the else clauses contents can execute
at the same time, confusion on nested
if, Booleans and logical operators and
if statements in general

Sirkiä & Sorva; 2012; Altadmri & Brown, 2015;
Bruce, 2015; Jiang, 2016; Jiang, 2016; Veerasamy,
D'Souza & Laakso, 2016; Qian & Lehman, 2017

4. Confusion between relational and
comparison operators like >, =>, <, =<,
also comparison like p > x > num

Altadmri & Brown, 2015; Veerasamy, Jiang, 2016,
D'Souza & Laakso, 2016;

5. Not able to trace Veerasamy, D'Souza & Laakso, 2016

6. Incorrect function references and
values, calling functions with incorrect
arguments or parameters, functions
with incompatible return value/return
type, and recursive functions

Wu, Dale, & Bethel, 1998; Altadmri & Brown, 2015;
Veerasamy; Bruce, 2015; D'Souza & Laakso, 2016;
Delgado et al., 2016; Malik & Coldwell-Neilson,
2017

8. Misunderstanding arrays, usage of
index in the array

Bruce, 2015; Souza & Laakso, 2016; Veerasamy,
D'Souza & Laakso, 2016; Végh, 2016, Corral, 2019

9. Misconception on loops/nested loops Veerasamy, D'Souza & Laakso, 2016; Grover &
Basu, 2017; Corral, 2019; Cetin, 2020

10. Incorrect sorting algorithms Veerasamy, D'Souza & Laakso, 2016

2.5.5 Summary

There are many programming languages and paradigms across the software

development space. One of the dominating paradigms in the software industry is OOP;

however, procedural programming has also been dominant across learning institutions

for novice programmers. The imperative programming paradigm approach tends to

make use of procedural programming before students advance to OOP. The structure

of a procedural programming approach has been presented to shed light on what the

content looks like. The details of challenges experienced by students in the procedural

programming paradigm have also been demonstrated. The challenges discussed in

this section expand our problem domain which informs the basis of investigating

approaches of teaching and learning to program in the subsequent section.

31

2.6 Approaches to teaching procedural programming

There are many teaching approaches adopted by introductory programming

educators. Some teaching approaches are generic and traditional, while other

approaches have been empirically evaluated. This section discusses both empirical

and non-empirical teaching approaches used in introductory programming education.

2.6.1 General teaching challenges in introductory programming

Challenges of teaching and learning range from the limitations of educational tools,

inadequate methods to keep the students motivated and engaged, the abstract nature

of programming, the deficiency of mathematical skills and the unstructured curriculum

in general (Medeiros, Ramalho & Falcão, 2018). These teaching and learning

challenges are critical for addressing other SIPS’ problems outlined in section 2.4. This

means that addressing teaching challenges may in return solve many issues

experienced by a novice programmer. In my opinion, the most important teaching and

learning issues to improve have to be the methods and tools of teaching. This is the

first challenge listed by Medeiros, Ramalho and Falcão (2018). The argument is that

the correct methods and tools can have a positive influence on the remainder of the

challenges learning to program. For example, keeping students motivated and

engaged will be affected by the educators’ chosen method of teaching or a tool used

to aid teaching and learning. If the student does not have a concrete mathematical

background or has no prior knowledge of programming, a correct teaching method

and necessary tool can accommodate such a student.

Various methods and tools have been developed for teaching and learning

introductory programming in an effort to improve teaching and learning. Such methods

include using pre-recorded videos, tutorial sessions, tracing approaches, peer

teaching, gamification, learning by repeated application, mentorship support,

apprenticeship and active learning exercises (Forbes, Malan, Pon-Barry, Reges &

Sahami, 2017; Medeiros, Ramalho & Falcão, 2018; Xie et al., 2019). However, these

methods of teaching have not been effective or conclusive as the challenges remain

(Rum & Ismail, 2017; Medeiros, Ramalho & Falcão, 2018). The subsequent section

discusses various teaching approaches in introductory programming education.

32

2.6.2 Traditional methods of teaching and learning to program

Traditionally, the mode of teaching takes place through verbal, visual or practical

communication. As an introductory programming educator in the university, I have

noted that traditional teaching and learning offered through verbal concept explanation

and demonstration of sample programming code does not improve SIPS’

comprehension. In the university or any learning institution, there is no fixed or

approved method of teaching; hence, each educator adopts routine methods that do

not necessarily accommodate SIPS. The educators’ attempts to assist SIPS is

primarily through the use of tutorial classes, assigning tutors to students and

encouraging the students to make use of consultation hours.

Live coding through broadcast is another teaching approach practiced by some

programming educators (Rubin, 2013). I have used this method of teaching several

times before and can attest to its effectiveness for some students. The good thing

about live coding is that students can see how you code, how you diagnose errors and

how you fix the errors – this can help the students to understand. However, I still

observed increasing numbers of SIPS irrespective of the adoption of live coding.

Perhaps the issue with live coding is that students are expected to comprehend many

aspects at the same time, with only verbal and type-in coding.

2.6.3 Analogy-like teaching approaches for introductory

programming

A comprehensive systematic literature review on introductory programming by Luxton-

Reilly (2018) investigated students, teaching, curriculum and assessment. One main

finding indicates that there is much more work to be done in the area of analogies and

metaphors when teaching programming. Forišek and Steinová (2012) caution that

poor metaphors can be misleading and can lead to the wrong conclusion. Rum and

Ismail (2017) investigated the productivity of metacognitive scaffolding, self-directed

learning, self-questioning, reflective prompts and the use of graphics as pedagogical

methods that can aid the learning of computer programming. The authors found that

all the listed methods do contribute to effective teaching and learning of computer

programming. However, the authors found that the use of graphics helps students

develop logical thinking and solves a variety of problems that arise due to the

33

complexity of learning to program. This is because the use of graphics or animation

provides an ‘analogy-like’ teaching approach.

Students' relational understanding can be invoked by a representative or an analogy

(manipulative or program animation) (Anwar et al., 2016). The concept of analogy in

teaching programming can be manifested in the form of verbal explanation, use of

manipulatives or animations. Educators who adopt the concept of analogy in teaching

make use of real-world examples. Real-world examples such as analogy help the

student link programming concepts to context (Konecki, Lovrenčić & Kaniški, 2016;

Craig, Smith & Petersen, 2017; Moape, Ojo & van Wyk, 2017).

2.6.4 Manipulatives in teaching and learning introductory

programming

The use of manipulatives has been evolving gradually in the field of mathematics

education (Clements & McMillen, 1996; Kaminski, Sloutsky & Heckler, 2009; Bouck et

al., 2014). There is also evidence of the use of physical manipulatives in teaching

introductory programming.

Suzuki and Kato (1995) developed a physical programming language called

AlgoBlock. AlgoBlock consists of physical blocks which are connected to a computer.

As the user programs physically by arranging the blocks accordingly, a corresponding

animated structure reflects on the computer screen. Their work offers a similar solution

to Horn and Jacob (2007) who developed a physical programming language as well.

Wyeth and Purchase (2002) developed square blocks with lights and sensors on the

sides to improve and engage programming thinking in children. Just like Suzuki and

Kato (1995), their manipulatives reflect on the screen as they are built and

manipulated. Similar work by Hu, Zekelman, Horn and Judd (2015) resulted in a game

called Strawbies (from the word strawberry) for children of age five to 10 years to learn

to program. The game uses physical wooden tiles in conjunction with a mirror to reflect

images on an iPad. An iPad is used as a real-time reflector for a moving object which

is channelled to the images of strawberries. Another work by Sullivan, Elkin and Bers

(2015) developed physical square blocks for use in the robotics-programming

environment.

34

Aggarwal, Gardner-McCune and Touretzky (2017) use concrete manipulatives (tiles

and flashcards) to foster basic programming principles. According to the authors, tiles

are puzzle-shaped objects for modelling When-Do (When something happens, then

do something) in programming. Flashcards contain rules and instructions that assist

students in knowing how to interact and make moves.

In an attempt to find better ways of teaching recursion with manipulatives, Russian

“nested” dolls (Wu, Dale, & Bethel, 1998) were suggested in the early 90s. Russian

dolls are a set of wooden dolls where each reduced doll is placed into another, forming

one doll containing many dolls.

The CS Unplugged organisation developed interesting physical manipulatives as well.

CS Unplugged is focused on finding manipulatives relevant to teaching computing-

related concepts. Different types of tools developed by this organisation can be found

at www.csunplugged.org.za. Concepts like human interface design, communication

networks, cryptography, programming and image processing have the corresponding

manipulatives on the CS Unplugged website.

Overall, the suggested solution for using manipulatives and unplugged material to

teach introductory programming is more suitable for kindergarten or K12 learners. The

approach may not be suitable for university students, especially in exhibiting fine

details of the program code and may also be incompatible with an online teaching and

learning mode.

2.6.5 Using animation programs

According to Muller, Lee and Sharma (2008: 1), the “inclusion of multimedia

technologies into the classroom has changed the educational landscape and

introduced important changes in the educational system and impact the way students

communicate information with each other”. These multimedia technologies can be in

the form of animation programs. Sometimes multimedia technologies in education are

presented in the form of digitised static pictures. Some of the static pictures or

diagrams have been used regularly in books and other paper-based material to

improve teaching and learning.

The world has since navigated into digital movable diagrams (referred to as

‘animation’) with the expansion of computer technology. A main feature of a

35

technology-based learning environment is animation (Lowe & Schnotz, 2008). The use

of animation programs in education has proven to be significant, superior, informative,

effective and more interactive than the use of static pictures (Lowe, 2001; Lowe &

Schnotz, 2008; Ruffini, 2009).

The use of animation in the sphere of teaching and learning has been evolving. The

developments around animation in education are accelerated by information

technology infrastructure, more specifically, connectivity. The adoption of animation-

based teaching and learning is convenient and compatible with various learning

management systems (LMS), and as a result, this approach keeps growing and

evolving.

The rationale behind animation-based teaching is that it increases interest, motivates,

and attracts students to learn, serving as external visualisation that helps internal

comprehension (Lowe & Schnotz, 2008). This is because a student can lack internal

visualisation of the phenomena under study or can lack accurate perception or can

require additional aids for comprehension. Animation programs can reveal some of

the complex processes that were blurring visualisation, provide context to the learning

outcome and increase learning speed (Brown & Sedgewick, 1984; Clark & Choi, 2005;

Lowe & Schnotz, 2008). Moreover, animation programs can bring a powerful

dimension to the presentation through colours, sounds, the animation itself and other

visual enhancements (Gurka & Citrin, 1996). Teaching and learning with the aid of

animation can reduce cognitive load, especially in learning a high demanding cognitive

process (Lowe & Schnotz, 2008).

2.6.6 Summary

This section presented various teaching methods to deliver the introductory

programming module. The range of methods discussed includes general teaching

practices, traditional teaching practices, analogies, manipulatives and animations.

While each method has advantages and disadvantages, I however found that

animation-based teaching has the potential for enhancing teaching and learning more

than the other teaching methodologies. I therefore investigated and advanced the

discussion on the existing animation programs for introductory programming under the

36

procedural programming approach. Section 2.7 below discusses existing animation

programs to further identify a gap that this study intends to fill.

2.7 Animation programs

Generally, program animation in this study means computer graphics that animate or

make a graphical representation of a programming code to enhance comprehension

(Moreno, Sutinen & Joy, 2014). Animation is an important educational tool that must

be featured in the teaching and learning in the classroom as it can give students a

better mental model for program execution (Levy, Ben-Ari & Uronen, 2003).

While animation programs have the potential to enhance programming education,

shortcomings associated with them are also reported. The study of Sorva, Karavirta

and Malmi (2013) investigated program visualisations for introductory programming.

The authors found that program visualisations are short-lived animation programs and

may not live up to their expectation. According to Hundhausen, Douglas & Stasko

(2002) instructors are unwilling to use algorithm visualisation (animation programs)

because of the following perceptions:

- They think they do not have enough time to learn about the algorithm

visualisation,

- It can take a lot of time to a point where other class activities are compromised,

- It can take time to develop relevant the algorithm visualisation and

- It may not be educationally effective.

Furthermore, the authors investigated the effectiveness of the algorithm visualisation

and found that they can be either ineffective or effective. The authors found that the

algorithm visualization just transfer correct mental models to students, it is not

necessarily effective. To be effective, algorithm visualization has to be used as vehicle

for active learning which incorporates constructivist theory. The incorporation of active

learning and engagement into the animation programs is also supported by Sorva,

Karavirta and Malmi (2013). In the light of these arguments, this section will thoroughly

discuss existing animation programs and their abilities to translate into meaningful

learning within the field of introductory programming education. The discussion of

animation programs will include block-based programming.

37

2.7.1 Block-based programs

Block-based programming is a programming approach that allows students to drag

and drop blocks as a way of building a program (Weintrop & Wilensky 2017). Block-

based programming is used increasingly as an introductory module to programming

(Weintrop & Wilensky 2017). Some K12 curriculum development practitioners prefer

block-based because it lowers barriers to learning programming and motivates

learners for possible interest in CS courses (Moors, Luxton-Reilly & Denny, 2018).

2.7.1.1 Scratch

One of the most common block-based virtual programming languages which covers

topics like variables, decisions and loops is called Scratch (Resnick et al., 2009;

Weintrop & Wilensky 2017; Mladenović, Boljat & Žanko 2018). Scratch programming

is primarily used in high schools but sometimes also in colleges and universities as a

foundation to computing or computing-related courses (Wolz et al., 2009). It has been

reported that Scratch is useful for students with no prior programming knowledge

(Mishra et al., 2014). The block-based programming approach is similar to

pseudocode; hence, it focuses on problem-solving through drag and drop components

(as seen in Figure 2.10) without worrying about the syntax of the solution.

Figure 2.10: Sample scratch program

38

Sometimes starting students with block-based programming languages may not

effective at a university as it prolongs the duration of the course (Jiang, 2016). The

duration of course completion can be further prolonged if there is no transition strategy

from block-based to text-based programming. Also, block-based programming can

reduce student confidence levels during the transition into the actual text-based

programming environment (Moors, Luxton-Reilly & Denny, 2018). It has also been

reported that long, complex Scratch programs are challenging to modify and waste

time in drag and drop exercises because students have to look up each block in a

category with confusing function calls and case statements (Tanrikulu & Schaefer,

2011).

2.7.1.2 Alice

Another block-based programming tool is called Alice (based on Python language).

Alice provides the development of 3D animation programs (Cooper, Dann & Pausch,

2000). Alice features constructs like state transformation such as move, turn, destroy,

decision constructs and looping constructs (see Figure 2.11).

Figure 2.11: Alice program

The Alice-based teaching approach has been tested repeatedly in the K12 computer

science education (Rodger et al., 2010). Just like Scratch, Alice as a block-based

approach is appropriate for K12, however it can also prolong course duration if

39

introduced at university level and may not guarantee success in the text-based

programming environment. Therefore, SIPS at HEI with or without Alice or Scratch

experience from high school may need another pedagogical intervention in a text-

based environment.

2.7.2 Animation-based programs

2.7.2.1 WinTK-3

Matsuda and Shindo (2001) worked to create an animation program called WinTK.

This animation program allowed students to learn and edit source code and then face

a challenged to rewrite, modify or extend it accordingly. There are four kinds of

animation within WinTK. The first one is called WinTK-1 which contains basic tools

and is based on Rabbit animation. The second one, called WinTK-2, is an interactive

paint tool for helping students with keyboard and mouse event handling. The third is

WinTK-3 and is based on photo-realistic animation. The last one, WinTK-4, is based

on OpenGL and consists of 3D animation programs. The main aim of WinTK is

generally reading and rewriting the source code which in return adjusts the outlook of

the desired animation. The approach is not relevant or cannot be used as a

pedagogical tool in a text-based programming environment at a HEI.

2.7.2.2 Jeliot

Jeliot 1 is a basic program animation aimed primarily at helping high school students

learn computer science concepts (Haajanen et al., 1997). Due to the limitations of

Jeliot 1, another version was developed and named Jeliot 2000. According to Levy,

Ben-Ari and Uronen (2000), some added features in Jeliot 2000 include a more flexible

interface, the animated input/output, expressions and animated control decisions. It

was found that Jeliot 2000 can improve vocabulary and concrete models for computer

science concepts (Levy, Ben-Ari & Uronen, 2000).

Levy, Ben-Ari and Uronen (2000) used input/output concepts, if-statements and loops

to test the Jeliot program with control and experimental groups. Even though it

improves vocabulary and concrete models for high school students, such benefits are

not relevant in a text-based programming environment. This is because computing

students would already have been accepted into the courses and would be looking to

40

enhance their knowledge of the actual programming concepts. The development of

both Jeliot 1 and Jeliot 2000 lacked a reference framework that can inform the design

and important aspects of program animation which are linked to program code and

effective teaching and learning practices.

A new version of Jeliot 2000 was developed, named Jeliot 3 (Moreno et al., 2004).

Jeliot 3 has features like the program's ease of use and accommodates a large subset

visualisation. However, Jeliot 3 has many sections in the animation space like method

frame area, constants area, expression evaluation area and instance area which might

be confusing to a novice programmer who needs to understand from the lower level.

Another aspect missing in Jeliot 3 is the simplicity of multimedia design as described

by Mayer (2005) which might be mistaken as a learning subject itself. Many other

similar animation programs for teaching and learning focus on animation itself to a

point where it loses its original intention, which is assisting in comprehending a

program code.

2.7.2.3 UUhistle

UUhistle is a program visualisation where students predict the program flow by

manipulating the graphics components in the program (Sorva & Sirkiä, 2010). In that

way students are able to know if the program visualised the way they predicted. This

makes UUhistle a student-centred animation program which can be used off campus.

However, just like Jeliot 3, the animation program is overloaded with many features

which may add confusion or distract a student from learning the actual concept (see

Figure 2.12). This restricts UUhistle from compliance with the coherent principle in the

principles of multimedia learning by Mayer (2005), which recommends non-

extraneous animation programs. Non-extraneous animation means avoiding

overloaded features of animations programs that can cause students to deviate from

learning the material. Secondly, the program does not feature any motion components

to symbolise a program flow or value transfer from one instance to another.

41

Figure 2.12: UUhistle program

2.7.2.4 ViLLe

ViLLe is a program visualisation that focuses on the abstract level of program code

(Rajala et al., 2007). This means that the uses of Ville can usher in a challenge or

expand a learning gap for students who struggle with lower-level understanding of

program code. The graphic presentation of ViLLe is similar to Jeliot, where graphics

or animation are not fully simplified to the lower-level understanding of a novice.

Therefore, ViLLe will not be compatible with SIPS.

2.7.2.5 MatrixPro

MatrixPro is another animation program that focuses on data structures and algorithms

(Karavirta et al., 2004). The program has drag and drop components which make it

similar to block-based programming languages discussed in section 2.7.1. MatrixPro

animation orientation is more on the abstraction and conceptual level. However,

MatrixPro does not have a record of attempting or extending the animation program

to cover IPC, so it may not be compatible with SIPS.

2.7.2.6 Animation-based worked examples

Animation-based Worked Examples (ARAWEs) is an animation program for

introductory programming that uses Augmented Reality (AR) technology (Cevahir,

42

Özdemir & Baturay, 2022). The ARAWEs focus on one concept (loops) and rely more

on text for explanation which can further divide learner attention (see Figure 2.3).

Figure 2.3: ARAWEs animation program

In the case of ARAWEs, the animation program does not comply with one of Mayer’s

(2005) principles of multimedia learning that cautions against overloaded text on the

animation program as it may introduce divided attention or confusion.

2.7.2.7 Other animation programs for introductory programming

Végh and Stoffová (2017) developed an animation card that assists students in

understanding sorting. Through pre-test and post-test exercises, the authors tested

the efficacy of sorting animation by demonstrating sorting to students. The application

was also designed to aid in the teaching and learning of arrays (Végh, 2016). Similar

animation programs can be found at http://algoanim.ide.sk/index.php. However, the

designs also contain loosely connected graphics, which can result in knowledge that

is not linked to the knowledge of arrays or sorting. Végh and Stoffová (2017) conceded

that their animation card was unable to help students understand sorting in detail.

Osman and Elmusharaf (2014) developed a program animation called Courseware.

Courseware uses various blocks of graphics that reflect a program code. The authors

also tested the approach by using pre-test and post-test methodology, which included

a sorting program and array. The program contains several animation blocks which

http://algoanim.ide.sk/index.php

43

are manipulated through inputs of commands. The program is limited to traditional

data structures and does not cover basic principles of programming in a text-based

programming setup. A similar method is found in the work of Shi, Min and Zhang

(2017) wherein a program animation called PlanAni was also tested through control

and experimental groups. Sajaniemi and Kuittinen (2003) developed the PlanAni

animation program. The program focuses on depicting the roles of variables in a

program. The limitation of PlanAni, however, is that it focuses on one aspect of

introductory programming. Moreover, PlanAni contains a high number of animated

sections that are loosely connected and may confuse a student's attempt to connect

the dots. The interface is not simplified: it contains redundant graphics and is

overloaded with different shapes of graphics which further contradicts Mayer’s (2005)

principles of multimedia learning.

Robomind is another animation-based program. Robomind is a text-based

programming with a focus on robotics-based building blocks (Faisal, Yuana & Basori,

2017), uses English-like commands to interact with an animation on the right side of

the application. This approach is similar to a traditional robotic game, where a physical

robot is controlled through commands; however, in this case a visual robotic is used.

Robomind is suitable for primary and secondary school children (Yuana & Maryono,

2016) because it is aimed at conceptual understanding and encouragement to pursue

computing courses rather than helping students with the actual IPC at HEI.

The work of Ussiph and Seidu (2018) investigated the impact of 3D animation

programs in high school. The authors used a combination of Microsoft Basic and the

Alice program (discussed previously in section 2.7.1.2) to test the effectiveness of the

animation approach. It was found that animation-like programs are capable of helping

students with IPC. However, as emphasised in section 2.7.1.2, the approach remains

relevant as a K12 program and serves as a motivational tool for the learners to pursue

CS at HEI.

Generally, all existing animation programs lack a proper referencing design guide and

are not based on rigorously designed guidelines such as the principles of multimedia

learning by Mayer (2005).

44

2.7.3 Pedagogical guidelines for uses of animation programs

The limitations of existing animation programs are not only limited to weaknesses

mentioned in sections 2.7.1 and 2.7.2, but also lack rigorously developed concrete

pedagogical guidelines. Pedagogical guidelines mean incorporating the best uses of

teaching practices or tools for impactful learning. In the case of this study, pedagogical

guidelines should mean relevant strategies for Teaching and Learning Programming

with Animation Programs. Many teaching and learning materials are developed, but

the effective use of such materials is overlooked. As a result, they are part of factors

contributing to the difficulties of learning to program (Cheah, 2020).

Animation programs can be powerful in helping students learn a program code and

can enhance pedagogical effectiveness (Malone et al., 2009). However, according to

Urquiza-Fuentes and Velázquez-Iturbide (2009), the pedagogical effectiveness of

existing animation programs is not clear. This means that animation program design

should be integral to the overall pedagogical design rather than a standalone teaching

tool. Without this, there is a significant possibility that such animation programs can

cause more harm than the good purpose they were designed for, simply because they

are adopted and used along random pedagogical strategies.

2.8 Gap and summary

I have discussed various teaching and learning challenges and issues regarding SIPS.

The challenges range from language issues, incorrect mental models, lack of

mathematical proficiency, technical jargon and basic problems experienced by

programming students. In an attempt to address these problems, some pedagogical

methods have been used or proposed. I have discussed various teaching approaches

adopted by educators. Among existing methods, educators can make use of animation

programs to enhance SIPS’ comprehension of IPC.

However, a design gap remains in the development of animation programs for

introductory programming. Animation programs can do more harm than good if they

are not properly designed and accompanied by relevant instruction for effective use.

There is also a gap in relation to guidelines that educators can follow or adapt in using

animation programs for teaching and learning introductory programming (Osman &

45

Elmusharaf, 2014). Pedagogical guidelines may be excluded with the assumption that

introductory programming educators will know how to use animation programs.

Existing animation programs for introductory programming are not adequately

designed based on a relevant theoretical basis or guidelines for teaching and learning

like the principles of multimedia learning by Mayer (2005).

Animation programs should be designed in a way that they are not an end in

themselves but serve as a bridge to comprehend program code. It was also noted that

many animation programs have been designed to be suitable for primary and

secondary schools, but inadequate for students at HEI doing text-based introductory

programming. Some animation programs focus on program details only with an

assumption that students understand the basic concepts as important prerequisite

knowledge. It was also found that some of the animation programs contain too many

blocks animating the same program code, enough to confuse students.

As part of advancing towards our proposed solution, the next chapter (Chapter 3)

discusses a theoretical framework in light of the identified gap and proposed solution.

A theoretical framework consists of theories that frame the proposed study, serves as

the underpinning theories that guides the entire study.

46

Chapter 3: Theoretical framework

Chapter

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Content

Introduction

Literature
review

Theoretical
framework

Methodological
approach

Initial
framework -

cycle 1

Adapted
framework -

cycle 2

Adapted
framework -

cycle 3

Adapted
framework -

cycles 4 and 5

Conclusion

47

3.1 Introduction

The thesis statement says: “A Teaching and Learning Programming with Animation

Programs (TLPAP) framework can improve Struggling Introductory Programming

Students (SIPS) comprehension of Introductory Programming Concepts (IPC)”. As a

way to address the stated thesis statement, the previous two chapters provided an

introduction and literature review. In the introduction, it was indicated that

programming can be difficult for some students. The misconceptions regarding various

IPC and the limitations of existing teaching approaches define the root of the problem.

Among various teaching approaches discussed in the literature review, the use of

animation programs was noted as having the potential to advance the teaching and

learning of IPC. Therefore, the literature review chapter further discussed existing

animation programs used in introductory programming. Based on the gap found within

the use of animation programs in programming education, the research proposes a

solution in the form of an animation-based teaching approach for SIPS.

This chapter serves as a continuation of the literature review; however, the focus is

sharpened to the relevant theories that frame the study. This chapter serves as a

blueprint and the underpinning theoretical engine of our proposed solution. As there

are various closely related theories concerning teaching and learning, it is important

to discuss these first before identifying those that will underpin this study. This chapter

begins by discussing relevant learning theories in section 3.2. Learning taxonomies as

part of important educational resources are discussed in section 3.3. The teaching

philosophy and constructive alignment are discussed in sections 3.4 and 3.5,

respectively. Having discussed all relevant theories relating to the nature of the study,

section 3.6 presents and argues the applicable theoretical components. The chapter

is concluded in section 3.7.

3.2 Learning theories

Learning theories describe how a human being learns, thus outlining the process or a

belief behind the learning process (Muhajirah, 2020). Some of the common and

dominant learning theories include behaviourism, cognitivism and constructivism

(Schunk, 1991; Mergel, 1998; Ben-Ari, 1998; Nagowah & Nagowah, 2009; Muhajirah,

48

2020). These theories have been compared in the work of Ertmer and Newby (1993)

and found that each is appropriate in various contexts. This section discusses those

and other learning theories.

3.2.1 Constructivism

Constructivism is a learning theory and epistemology based on the belief that students

learn by constructing their own knowledge rather than receiving and storing ordered

information from the educator (Ben-Ari, 1998). It is an approach that allows students

to continually reflect on their experiences and further construct new knowledge.

The constructivist theory is in contrast with traditional means of learning where

information from books and notes is extracted and received as it is. In the constructivist

teaching approach, active learning and participation happen throughout the outlined

teaching stages. In a constructivist teaching setup, meaning and symbols cannot

merely be passed from an educator to the learner. Instead, active teaching and

learning trigger students to construct knowledge on their own.

The constructivist theory serves as a paradigm shift from an educator-centred teaching

methodology to a learner-centred teaching methodology. According to Adom, Yeboah

and Ankrah (2016), if constructivism is applied properly in the area of teaching and

learning, it can supply powerful learning benefits to students. The roots of

constructivism can be traced to the work of Jean Piaget (discussed in sections 3.2.2

and 3.2.3) (Perkins, 1991). Sometimes constructivism is also referred to as one of the

branches of cognitivism (discussed in section 3.2.5) because both consider learning

as a mental activity (Ertmer & Newby, 2013).

3.2.2 Piagetian theory

Jean Piaget, one of the most influential theorists on children's cognitive development

and learning, developed and modelled a theory of childhood development in 1920

(Piaget, 1929). One of the key observations within his theory is that he is not interested

in whether the answer is correct or not, but in the underlying logic behind the answer.

Piaget emphasises that children interpret the world differently throughout the various

stages of their lives as their intellectual skills progress. The assumption in this theory

49

is that children interact with the environment as they grow and subsequently acquire

learning.

This theory suggests that humans go through four different cognitive stages as they

grow and learn from their childhood stage: Piaget's cognitive stages are sensorimotor,

preoperational, concrete operational and formal operational. Each stage is detailed in

Table 3.1.

Table 3.1: Piaget's cognitive stages

Stage Age Description

Sensorimotor 0 - 2 The child develops and understands through interaction with the
objects in the world.

Preoperational 2 - 7 At this stage, the child uses acceptable language, grammar and
mental images to interact with the world.

Concrete
operational

7 - 11 Reasoning skills improve, they start to think dynamically and can
categorise objects in order.

Formal
operational

11 and older Can evaluate abstract concepts, can form hypotheses and can apply
learned information in a different context.

3.2.3 Neo-Piagetian theories

There is literature that connects classical Piagetian theory as discussed in section

3.2.2 to teaching and learning to program. However, the results have not been clear

and are somehow disputed (Smith, 1992; Lister, 2011). As a result, Piagetian theory

has been adapted by other theorists as a way of seeking a new interpretation or

adapting it to various contexts (Demetriou, Shayer & Efklides, 2016). Such theories

that emerge from Piagetian theory are referred to as Neo-Piagetian theories. There

are several loopholes in the Piagetian theory which have paved way for restructuring

in the form of Neo-Piagetian theories (Sevinç, 2019). According to Orlando and

Machado (1996), several loopholes can be delineated as follows:

• generalising children’s cognitive development;

• confining stages to ages with no confirmation or evidence;

• lacking in-depth details of learning stages development; and

• lacking social consideration.

Some Neo-Piagetian theorists believe in the constructivism learning theory (Sevinç,

2019), which has been discussed in section 3.2.1. According to Lister (2011), the

literature indicates a more revolutionised adoption of Neo-Piagetian frameworks than

the classical Piagetian theory. Nevertheless, Neo-Piagetian theories often contain

50

many assumptions of classical Piagetian theory or have an overlap between them.

Some of the Neo-Piagetian theories are not bound by age restriction in their

assumptions, as the theory applies to any individual at any stage of life.

There are a number of Neo-Piagetian theorists, including Robbie Case, Michael

Commons and Kurt Fischer as examples (Case, 1992; Sevinç, 2019). Kurt Fischer

argues in his theory that cognitive development cannot progress from one stage to

another in a linear process because it ignores the behavioural variation of the learner

(Fischer & Bidell, 2006). Just like constructivists, Fischer emphasises that children

construct knowledge on their own in a favourable environment and with the assistance

of social networks. The theory states that such knowledge construction cannot happen

in a structured or ordered linear procedure.

Michael Commons is another Neo-Piagetian theorist who adapted the last stage of the

Piagetian cognitive development stage. According to Commons and Ross (2008), the

final stage of Piagetian cognitive development should not represent the end-point of

cognitive maturity. Alternatively, Commons and Ross (2008) developed post-formal

stages (post-formal thought) of cognitive development. Post-formal thought means

that the students are curious enough to initiate their own creativity and innovation from

time to time. Commons and Ross’s (2008) post-formal stages are as follows:

• Systematic stage. Ordered relationships between at least two variables are

established and systematic coordination takes a central role.

• Metasystematic stage. At this level, one would have properly mastered the

systematic stage. Two or more variables are evaluated and compared to others

in order to come up with an innovative solution.

• Paradigmatic stage. This stage is dependent on the previous stages, where the

knowledge of the metasystematic stage is used to coordinate different variables

to derive or bring about a new paradigm.

• Cross-paradigmatic stage. At this stage, the new paradigms created in the

previous stage are experimented with and integrated into a new environment.

Another Neo-Piagetian theorist by the name of Robbie Case has developed a theory

of executive control and conceptual structures where he bases his formation of

51

developmental stages (Case, 1984) on three elements, that is: environmental

representation, goals representation and strategical representation to achieve the

goals. Case (1984) insists that these elements are critical for a child to achieve set

goals by employing identified strategies. Case also describes four stages (similar to

the original classical Piaget stages of cognitive development) that interact with

executive control structures. The stages are described as follows:

• Sensorimotor stage. A child learns how to see and hold objects. This happens

from birth to 18 months.

• Inter-relational structure. A child uses pictures and relates them with action or

other objects. This happens from 18 months to five years.

• Dimensional structures. A child develops cognitive abilities through

representations. This happens from five years to 11 years.

• Vectorial structure. At this stage, a child can link up different structures learned

in prior stages and can comprehend difficult relationships. This happens from

11 years to 19 years.

Generally, Neo-Piagetian theories present excellent observations and assumptions

compared to the original Piagetian theory. Some of the theories base their extension

heavily on Piagetian theory while some derive a small portion from it. Educators who

are interested in the Neo-Piagetian theories must investigate all theories to adopt the

most appropriate ones.

3.2.4 Behaviourism

The assumption in behaviourism theory is that conditioning through environmental

interaction or stimuli channels a learner's behaviour (Quevedo-Torrero, 2009). Such

an environment is deliberately constructed to trigger certain behaviours. The three key

assumptions in this theory are environmental triggers, instructional repetition and

disregard of internal cognitive processes in favour of external stimulus.

Behaviourism focuses on the patterns of behaviours that are repeated continually for

mastery purposes (Mergel, 1996). This means that the theory advocates a repetitive

instructional activity for mastery and understanding. Behaviourism theory

concentrates on observable and measured behaviour as a way to measure if learning

52

has occurred (Good & Brophy, 1990). This means learning measurements do not

focus on the internal thought process of a learner but on the change of behaviour as

a result of specific environmental triggers. Therefore, behaviourism is not interested in

the cognitive process of getting the answer, but its focus instead is on the type of

answer itself.

3.2.5 Cognitivism

The cognitivism learning theory is based on observed behaviours which are believed

to have been influenced by internal cognitive processes (Mergel, 1996). “Cognitive

theorists recognise that much learning involves associations established through

contiguity and repetition” (Good & Brophy, 1990: 187).

The assumption in cognitivism learning theory is that the learning process is an internal

mental process that develops over time for better learning (Ertmer & Newby, 2013).

Cognitive theory focuses on the mental structures, state of mind, learning processes,

reception of information, storage of information and retrieval of such information from

the mind (Ertmer & Newby, 2013). The theory is a direct opposite to behaviourism

assumptions which disregard the internal thought processes of a learner. This is

because cognitive theory further focuses on what the learner knows and how learning

is acquired. The basis of this theory is that existing or prior knowledge must be

available for learning to happen (Ertmer & Newby, 2013). This is because it is believed

that existing knowledge will make the processing of new information possible through

linking and comparison process. According to Schunk (1991), cognitive theory can be

used in complex areas of learning more than other theories because of its stand on

the evaluation of mental structures.

3.2.6 Cognitive theory of multimedia learning

Cognitive Theory of Multimedia Learning (CTML) correlates with the constructivist

(discussed in section 3.2.1) learning approach because it also makes use of triggers

to lead students into constructing their own knowledge.

CTML, was developed by Richard Mayer and is based on the assumption that pictures,

words and audio can assist in translating to deep learning (Mayer, 2005). CTML is a

53

combination of text and pictures in the form of graphics, video or photos (Mayer &

Moreno, 1998; Mayer, 2005; Sorden, 2012). Richard Mayer, as a theoretical expert in

multimedia learning, suggests that students are not treating pictures, words and audio

as separate entities but using them for knowledge construction. CTML is based on

cognitive science for multimedia learning which includes dual channels where the

brain processes information through visual and auditory channels. Firstly, when CTML

is put into practice the visual channel is activated and then processes whatever

graphic learning material is presented. Secondly, the auditory channel is activated

and processed by the brain separately. The auditory channel is an important

supplement to pictures, videos or graphic words and further translates to even deeper

learning. The following figure shows the CTML process.

Figure 3.1: CTML process

Mayer further talks about the limited capacity assumption (LCA), emphasising caution

against cognitive overload. He explains that a human being has a limited information

capacity in the brain and that memory is not infinite. As a consequence, educators

should avoid situations where information can overflow and be wasted. To avoid that,

Mayer advises that we choose only relevant information to dispense.

Another assumption by Mayer is the active processing assumption (APA) which

resonates in the working memory of a student. In this case, a learner must actively

engage the multimedia learning material in working memory until the material is

properly learned, or even pushed towards permanent memory. In this way, Mayer

explains, the student is creating an appropriate mental model of information.

3.2.7 Conversational framework

The conversational framework was “developed by analysing the findings from

research on student learning and using these to generate the requirements of the

54

educator who is responsible for designing the learning process for their students”

(Laurillard, 2002: 158). The conversational framework was developed by Dianna

Laurillard in 1993. The theory emphasises that teaching is a dialogue or a conversation

in a learning process and that learning at a higher level must be both theoretical and

a practical (Laurillard, 2002; Laurillard, 2013). The framework makes use of the ideas

of learning theories like collaborative learning, constructivism, instructions and social

learning.

This framework draws on different media formation, educators, students and other

relevant pedagogical aspects to support the creation of the learning process,

especially between educator and student. The specification in the framework is

important as it can help understand how formal learning occurs and how to best

develop learning materials.

The theory considers four important components, namely:

• educator's (or tutor’s) concepts;

• educator’s constructed environment;

• student’s specific concepts; and

• student’s specific actions.

The relationship between the above components is described in Figure 3.2. Basically,

Figure 3.2 shows various activities, interactions and adaptions of concepts that

happen between the educator and the student. Such interactions include specific

theories from the educator to students followed by questions from the student to the

educator. The students adapt the actions in the educator’s constructed environment

based on the theory and are prompted to reflect based on the experience gained. On

the other side, the educator adapts the students' tasks and reflects on the students'

actions and feedback.

55

Figure 3.2: Components of a conversational framework

Laurillard further groups the characteristics of different teaching media into the

narrative, interactive, adaptive, communicative and productive. The information

plotted in Table 3.2 presents the characteristics of such media.

Table 3.2: Conversational framework teaching media

Media form Learning experience Technology

Narrative Attending, apprehending Talk, video, television, broadcast, podcast

Interactive Investigating, exploring Library, compact disk, learning objects, web

Adaptive Experimenting, practicing Lab, field trip, simulation, virtual environment

Communicative Discussion, debating Collaborative environment, online conference

Productive Articulating, expressing Talk, print, model, digital files, animation, web
page, blog, wiki

Each media form supports a different dimension of teaching and learning; therefore, it

may not be possible for one media form to satisfy and support every dimension.

However, we have noted that some media forms contain possible attributes which

overlap sightly. Therefore, a combination of media forms may be necessary for deep

and meaningful teaching and learning.

Educator's
concepts

Student's
specific

concepts

Educator's
constructed
environment

Student's
specific action

Task

adaption
Reflection

Theory

Questions

Reflection
Adaption of

actions

Goals and

feedback

Actions

and

revisions

56

3.3 Learning taxonomies

Bloom (1956) explains that while different people in the room can view one window,

they may not see the same thing. This view depends on the posing angle of the person,

height and overall perspective of the person. A person who has an overall view has

the chance to see what is happening in the sky compared to what is happening on the

ground. A person with a limited view can rely on the explanations of another person

who has a full view. The person being taught has to rely upon and trust the person

who is explaining the story. On that note, it is very important to understand what

students know and the state of their current cognitive abilities. This can give a narrator

(the educator) an idea of how to approach the narration (or, teaching), and this can

happen through the lens an educational taxonomy.

The existence of educational taxonomies helps by measuring and categorising

students’ intellectual levels, thereby forming an important element in any sort of

pedagogical development. If educational taxonomies are properly used, they can help

the educator to evaluate students’ cognitive levels which can better inform the method

of teaching. There are many educational taxonomies proposed and used by various

institutions of learning. However, Bloom's taxonomy and Structure of Observed

Learning Outcome (SOLO) are popular and preferred by many educational

practitioners. The subsequent sections discuss the Bloom and SOLO taxonomies.

3.3.1 Bloom’s taxonomy

Benjamin Bloom created an educational taxonomy in 1956 to categorise levels of

abstraction (Bloom, 1956). According to Azuma, Coallier and Garbajosa (2003),

Bloom's taxonomy was first discussed at the 1948 American Psychological

Association (APA) in Boston where topics like examining and education were

discussed. Bloom categorises learning domains or educational objectives into

cognitive, affective and psychomotor. This taxonomy classifies learning or thinking

within the cognitive domain into six cognitive levels, from a simple stage to more

complex stages (Forehand, 2010). The original version of Bloom’s taxonomy is

depicted in Figure 3.3. Bloom’s revised version (Figure 3.4) of educational taxonomy

classifies the lowest stage of learning as remembering where students need only to

recognise and recall what they have learned.

57

Figure 3.3: Bloom’s taxonomy

Figure 3.4: Revised Bloom’s taxonomy

The revised Bloom’s taxonomy by Anderson and Krathwohl (2001) is defined as

follows:

• Remembering. This stage is about memorising and being able to recall. For

example, a question like "What is the capital city of the United States?" requires

a learner to remember.

• Understanding. At this stage, the students should be able to explain in their own

words. This means they must interpret, exemplify, classify, summarise, infer

and compare.

• Applying. Here the learner should be able to apply knowledge gained in a

different context.

• Analysing. At this stage, the learner is capable of linking and examining the

relationship between various concepts.

• Evaluating. The learner can appraise, criticise or justify a situation based on the

knowledge gained.

• Creating. At this stage, the learner should be capable of identifying the problem

and creating an original solution.

3.3.2 SOLO taxonomy

SOLO is an educational taxonomy and systematic way of dealing with approaches to

learning and the general intellectual development of a learner (Biggs & Collis, 1982;

Lister et al., 2006; Biggs & Collis, 2014). SOLO was developed by Biggs and Collis

Evalution

Synthesis

Analysis

Application

Comprehension

Knowledge

Creating

Evaluating

Analysing

Applying

Understanding

Remembering

58

(1982) and has primarily been used as a hierarchical model to evaluate or classify

students’ responses to various levels of complexity. Table 3.3 shows the stages of the

SOLO taxonomy.

Table 3.3: SOLO taxonomy

Prestructural Unistructural Multistructural Relational Extended
abstract

Similar to Bloom, the stages of the SOLO taxonomy begin with the lowest stage

(prestructural) progressing until the last stage (extended abstract). According to Biggs

and Collis (1982), the stages are described as follows:

a. The prestructural stage is when the learner is missing a point and not

competent; no learning has taken place and help is needed to initiate learning.

b. The unistructural stage is when the learner is capable of following simple things

like naming, following and identifying. A symbol of one bar line in Table 3.3

means a learner learned one thing which is not related to anything nor

coordinated with other things.

c. The multistructural stage is when the learner can list, describe or combine. A

learner learned several things but cannot relate them yet. A symbol of three

bars in Table 3.3 means that they are not connected, indicating loose or

scattered knowledge.

d. The relational stage is when the learner can integrate a structure, have a

coherent understanding, can analyse, apply, compare, relate, argue and justify.

In this stage, the learner can link ideas and relate them to make sense of one

coordinated whole.

59

e. The extended abstract is when the learner can formulate, create, hypothesise

and reflect. This means that the learner uses the idea or knowledge gained in

the relational stage and extends it.

SOLO has been used and preferred in programming education (Whalley et al., 2006).

For example, the work of Malik, Tawafak and Shakir (2021) has emphasised alignment

and assessment of teaching approaches to SOLO taxonomy. The main features of

SOLO that stands out as compared to Bloom's taxonomy is that it focuses on

observable outcomes, the process and the depth of understanding.

3.4 Teaching philosophy

Teaching philosophy is a personal or public statement about the beliefs, values,

attitudes or culture that is supportive of teaching (Goodyear & Allchin, 1998). The main

component of a teaching philosophy is the description of how learning occurs, the

intervention strategies, goals, professional development and steps to achieve them

(Chism, 1997), “Articulating an individual teaching philosophy provides the foundation

by which to clarify goals, to guide behaviour, to seed scholarly dialogue on teaching

and to organise evaluation” (Goodyear & Allchin, 1998: 103). A teaching philosophy

can serve as a reflection or clarification for the teaching practice (Murray, 1997). There

are many statements of teaching philosophies documented by professors and

educational organisations with varied compositions and structures (Chism, 1997).

Some examples of teaching philosophy can be found in a book by Schmier (1995)

entitled, The humanity of teaching.

Goodyear and Allchin (1998) suggest that a teaching philosophy can be formulated by

reflecting on the experiences, observations, mission, the vision of the faculty and

literature on teaching and learning. This means that a teaching philosophy should not

be in contradiction with an adopted learning theory. Goodyear and Allchin (1998)

further contend that a teaching philosophy should demonstrate creativity and

innovation; the implementation of a teaching philosophy is important as the theory is

put into practice. The details of such actions or implementation strategies are to be

included in the statement of teaching philosophy.

60

Even though there is no fixed format for an acceptable teaching philosophy, Chism’s

(1997) advice on the general format of teaching philosophy is as follows:

• A teaching philosophy should be brief, document length guided by context.

• A teaching philosophy should be written with simple terminology.

• A teaching philosophy should use first person in the narrating statements.

• A teaching philosophy should come from someone who is professionally

committed to teaching and learning.

3.5 Constructive alignment

Constructive alignment (CA) by John Biggs (1996) is an outcome-based approach

wherein the intended learning outcomes are designed before teaching and learning

can happen. This means that teaching and learning methodologies and the

assessments are aligned or shaped to the intended learning outcome (Biggs, 2001;

Biggs & Tang, 2010; Wang et al., 2013) (see CA flow in Figure 3.5).

Figure 3.5: Constructive alignment framework

CA has been popularised, found to be effective, powerful and is viewed as the most

influential model in teaching and learning by many universities (Houghton, 2004; Biggs

& Tang, 2010; Kandlbinder, 2014). CA has also been made a policy in some higher

education institutions as it is in support of the modern curriculum and validates the

quality of the qualifications (Loughlin, Lygo-Baker & Lindberg-Sand, 2021). Teaching

and learning that is aligned to the intended learning outcomes bring necessary

Intended learning
outcomes

Assessment
Teaching and

learning

61

consistency across the board, including the assessment (Kandlbinder, 2014). The

design strategies of traditional approaches to teaching, learning and assessment are

mainly random or consist of loose entities that have no communication links to one

another. Moreover, traditional means view teaching as transmitting of information from

the educator to the student, so the teaching plan is focused on what the educator does

(Biggs & Tang, 2010). Contrary to these traditional means, the CA approach is one in

which the educator focuses on the outcome and each entity is in support of another

entity.

In the CA, the assessment addresses the described learning outcomes (Kandlbinder,

2014). In this way, the educator sees if the intended learning outcomes have been

achieved by the students. Assessment in constructive alignment is rubric-oriented

rather than grading through the calculation of marks (Biggs & Tang, 2010). Biggs and

Tang (2010) emphasise that assessment in CA should be qualitative rather than

quantitative-driven. This means that the evaluation and analysis of the assessment

should adopt qualitative methodologies. It is also recommended to relate the question

to the bigger picture to resemble the relational stage of SOLO taxonomy (Trigwell &

Prosser, 2014).

CA is compatible and aligned with the constructivist learning theory (Biggs, 1996)

(discussed in section 3.2.1.). This is because CA is centred on activities that promote

active learning (Loughlin, Lygo-Baker & Lindberg-Sand, 2021).

3.6 Applicable theoretical components of TLPAP

This section discusses the applicable theoretical components of TLPAP.

3.6.1 Overview TLPAP theoretical components

I have discussed various theories of learning and other related theories in the previous

sections of this chapter. The discussion paved a way for us to select and use relevant

or applicable theories in this study. The TLPAP is therefore underpinned and framed

by CTML, conversational framework, constructivism and the application of

constructive alignment (see Figure 3.6).

62

Figure 3.6: TLPAP applicable theoretical components

3.6.2 Adopted learning theories

Our study is making use of animation programs to trigger knowledge construction.

Therefore, it is vital that the alignment of this research be guided along the lines of

relevant theoretical framing, identified as CTML, constructivism and conversational

framework.

The CTML assumption is appropriate for TLPAP and is further grounding the TLPAP

framework development, animation development and teaching and learning. CTML is

relevant because the theory was designed in relation to how a human mind works

(Mayer, 2005). The general CTML recommendations and guidance like animation

structuring and how human-beings learn with animations are well within the frames of

TLPAP.

The conversational framework by Laurillard (section 3.2.7) is adopted based on its

relevance to the university setup and multimedia learning. Since TLPAP is designed

for students at a higher education level like the university and contains different media

formats, the adaption of the conversational framework comes in handy. More

importantly, the conversational framework focuses on the student and the educator

communication framework when using technology resources like multimedia

63

resources. There are five media forms (depicted in the previous section, in Table 3.2)

in the Laurillard framework and adaptive and narrative media are appropriate to shape

the TLPAP. Adaptive media accommodates and promotes experimentation and

practicing which is relevant to the nature of programming education. The media form

also supports the simulative structure of the TLPAP. I have also found the narrative

media form appropriate, which further validates the discussion and explanation during

the simulation broadcast of the animation programs.

Teaching and learning to program through the traditional methods (opposite to

constructivism) can be incompatible for some students due to the abstract nature of

program coding. Therefore, I find the constructivist approach (also compatible with the

conversational framework and CTML) appropriate as an application and belief that

forms the basis of teaching in the TLPAP framework. The constructivist approach is

also compatible with the CA necessary for TLPAP. CA is a constructivist-oriented

pedagogical approach that emphasises the alignment of learning, teaching and

assessment to the intended learning objectives. In CA, learning outcomes are aligned

to the assessment and teaching. I also adopt and apply CA in TLPAP based on its

novelty and consistency across teaching, learning, assessment and learning

objectives. This is important because teaching does not take place in the absence of

learning and assessment. The view of CA within TLPAP is depicted in Figure 3.7.

Figure 3.7: TLPAP adapted constructive alignment

Intended learning
outcomes:

Programming concepts

Assessment:

SOLO-based

Teaching and learning:
SOLO /

Teaching philosophy

64

In Figure 3.7, the intended learning outcomes are part of programming (in various

cycles of action research) for the effective use of TLPAP. Furthermore, such learning

outcomes are developed under the premises of the SOLO taxonomy. The use of

SOLO further helps in having the appropriate verbs for the intended SOLO level (Biggs

& Tang, 2010).

Successful compilation of programming code or an algorithm requires the learner to

hold the attributes of stage 4 (relational stage) of the SOLO taxonomy. An algorithm

that consists of analysing a scenario, variable declarations, storing values, interacting

with values conditionally, storage, sequential steps, iterating necessary programming

statements and grouping similar programming statements requires a learner to

possess relational stage attributes. This means that anyone who struggles to

comprehend questions in the relational level of SOLO is struggling or is categorised

as SIPS. Therefore, the new means of teaching is a deliberate effort and novel means

to advance students to the relational level of the SOLO taxonomy.

To deal with the assessment/evaluation of feedback, programming code is categorised

as per Whalley et al. (2006) in Table 3.4.

Table 3.4: SOLO and Whalley et al. (2006) programming code benchmarking

SOLO Programming code benchmarking

Prestructural The algorithm is not related to the question.

Unistructural The student answers one aspect of the question in the algorithm.

Multistructural The student can put line by line programming statements together and
sometimes the summary is included.

Relational The student can summarise the programming code according to the question.

Extended abstract No data

We are not able to push SIPS to reach an extended-abstract level of SOLO taxonomy

at this stage as we are dealing with a struggling novice programmer; usually that level

can only be achieved through overtime learning and repetition. In this way, it

substantiates our proposed TLPAP not as a standalone teaching solution but as a

coordinated teaching strategy informed and connected to a relevant cognitive level,

assessment, learning and taxonomy.

65

3.6.3 TLPAP teaching philosophy

In this section, I give directions and the necessary theoretical basis and parameters

for formulating a teaching philosophy compatible with TLPAP or for programming

education in general. It is important to note that in this section I am not able to prescribe

a specific or fixed teaching philosophy as it is a personal or individualised assumption.

While a teaching philosophy differs from person to person, as indicated in section 3.4,

sometimes a person is asked to align a philosophy with certain aspects of the

organisation or literature in order to avoid contrary statements or practice. Similarly,

this section outlines the relevant basis for one to consider formulating a teaching

philosophy within the area of programming education or when adopting TLPAP.

Section 3.6.3.1 describes the nature of program code with a relevant emphasis using

Stein (1998). This is to help the educator understand the structure of programming.

Having understood the structure of programming, the subsequent section (section

3.6.3.2) consists of the fundamental basis of teaching to program which is an attempt

to innovate the teaching of programming relevant to the relational level of SOLO

taxonomy.

3.6.3.1 Computation as interaction

Teaching and learning to program should be viewed from a point of computation as

interaction rather than computation as calculations (Stein, 1998). Programming should

be taught from the introductory programming stage as embedded entities interacting

with a dynamic environment just like in video games and robotics. Programming is

about putting an ordered set of instructions to the computer to act in a certain way.

Such instructions are called an algorithm or program code. A program code must be

designed in a desired sequential order so that the interaction of such instructions is

not ambiguous. Teaching programming from the knowledge of computation as an

interaction view can lay a good foundation for successful comprehension from a high-

level perspective down to fine details of a program code. Therefore, before one can

think of going deeper into developing a teaching philosophy or relating the philosophy

to any learning theory, it is important to have a clear understanding of the nature of

programming. Figure 3.8, accessed from Seaton (2020), is a sample data structure

called sea-of-nodes that shows a novel way of seeing a compilation behind a program

code and shows how interactive programming code can be, which further vindicates

computation as an interaction basis.

66

Figure 3.8: Computation as interaction illustration

The sea-of-nodes in Figure 3.8 presents an overview of how a piece of a program

code was compiled and one can analyse the structure of data flow without seeing the

actual code. The red arrows in the figure are for control flow; the green arrows mean

data flow and boxes (rectangles) are operations. The P stands for the parameter;

therefore, P(0) will mean a parameter of zero. The C stands for constant; thus it means

C(2) value. The case is not necessarily to look into the fine details of Figure 3.8, as

the main purpose of depicting it is to visualise a sea-of-nodes data structure in a high-

level view of program data flow during compilation and program code interactivity. The

main argument is that keeping such structure (any type of data structure) in mind

should influence a teaching philosophy.

67

3.6.3.2 Relational understanding

A thorough understanding of the nature of program code or compilation of program

code as discussed in the previous section should in part inform a relevant teaching

philosophy. The study proposes a teaching philosophy that promotes relational

thinking and understanding. Therefore, I borrow from Skemp’s (1976) theory on

relational understanding to further shape a relevant teaching philosophy which is

compatible with programming education and TLPAP.

In Mathematics education, Skemp (1976) defines two types of understanding or

thinking as instrumental and relational. Skemp’s theory suggests that instrumental

understanding means that students know the rules and how to apply them without

understanding the reason behind them. Basically, the students apply the rules without

substantiated knowledge. For example, a student is taught and learns to get the

algebraic question correct, with no real understanding of a reality or what the solution

means. It is akin to memorising to learn the correct answers, but then it ends there.

Relational understanding is about knowing why and how the rules work the way they

do. As it is about being able to relate or connect to other rules, it means that a student

has succeeded in acquiring contextual knowledge. However, the prerequisite for

relational understanding is instrumental understanding.

According to Skemp, the following are the advantages of relational understanding:

- easily adaptable to other activities;

- easy to recall;

- effective; and

- organic relational schemas.

As part of the TLPAP framework or as a basis for a relevant teaching philosophy,

Skemp’s instrumental understanding is equated to the knowledge of programming

syntax and its application. Syntax is a set of statements written using a certain

programming language. Relational understanding is equated with the understanding

of how to write down and relate a program code, thereby forming a logically

coordinated program code. In mathematics education, a student must learn

instrumentally since it is a requirement to initiate relational understanding. Similarly, in

68

programming education, a student needs the knowledge of syntax (instrumental

understanding) before using the same syntax to write a logical algorithm (relational

understanding) which will likely have a sea-of-node type of data structure, as explained

in section 3.6.3.1. I relate Skemp’s relational understanding with programming

education because introductory programming students need to deeply know how and

why they write a programming code to deliver a coordinated solution. However, unlike

instrumental understanding from the mathematics education side where it is enough

to produce the correct answer, in programming education the knowledge of syntax

alone is not enough to produce a coordinated algorithm.

As indicated in the issues of teaching and learning to program (Chapter 2), some of

the challenges include teaching students to master the syntax, while simultaneously

enhancing comprehension to develop a logically coordinated algorithm. Because of

that issue, some academic departments emphasise relational understanding more

than instrumental understanding by making use of pseudocode. With pseudocode,

the syntax is made easy as it is English-like wording, but sequence and logic remain

the main part of the pseudocode (Pyott & Sanders, 1991). Similarly, the focus on

relational understanding should be aimed at enhancing comprehension and promoting

conceptual understanding (Pea, 1986) more than improving syntax knowledge. For

example, if the programming code’s display statement is incorrect but displays in the

correct place or correct order, then it is logically correct. Syntax knowledge should

improve over time through repetition to master the language. Additionally, compilers

help students to correct syntax errors by detecting and suggesting possible solutions.

Skemp's relational teaching and understanding is also compatible with our target

SOLO level (relational level), which further emphasises the importance and relevance

of this theory to TLPAP or programming education in general.

3.7 Conclusion

Various learning theories have been discussed in the first section of this chapter. The

discussion gave insight into learning theories. As a result, applicable theories were

identified that can shape, design and frame TLPAP. CTML, constructivism and

conversational framework have been identified as applicable theories that underpin

TLPAP. CTML is used as a guide to the design and effective use of animation

programs. Conversational framework and constructivism underpin the design and

69

application of TLPAP. The exact details of how such designs happened are presented

in Chapter 4 (Methodological approach).

The constructive alignment (CA) framework has also been identified as a critical

component of TLPAP. CA is based on developing and aligning learning outcomes to

teaching, learning and assessment. The TLPAP is designed to function within the

parameters of CA which further enables the benefits of consistency and quality across

teaching, learning, learning outcomes and assessment. This chapter has also

presented some background on the nature of program code to guide the formation of

a teaching philosophy, a personal or public statement that is supportive of teaching

and learning. The subsequent methodological approach (Chapter 4) is rendered

compatible under the umbrella of a given theoretical framework.

70

Chapter 4: Methodological approach

Chapter

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Content

Introduction

Literature
review

Theoretical
framework

Methodological
approach

Initial
framework -

cycle 1

Adapted
framework -

cycle 2

Adapted
framework -

cycle 3

Adapted
framework -

cycles 4 and 5

Conclusion

71

4.1 Introduction
My thesis statement states, “A Teaching and Learning Programming with Animation

Programs (TLPAP) framework can improve Struggling Introductory Programming

Students (SIPS) comprehension of Introductory Programming Concepts (IPC)”. This

study has laid out an introduction in Chapter 1 which emphasised the difficulty of

learning programming for SIPS by outlining several challenges of learning to program.

These challenges are found within the introductory concepts like assignment,

decisions, nested decisions, repetitions, nested-repetitions, function parameters,

function references and arrays. More details of these introductory programming

challenges were addressed in Chapter 2 (a literature review). Chapter 2 also

discussed the limitations of the existing approaches of teaching to program, the

potential uses of animations and the limitations of existing animation programs. The

theoretical framework (Chapter 3) discussed various theories relating to teaching,

learning and animation programs. Chapter 3 was concluded with the applicable

theories that frame or underpin this study. These theories include constructivism, the

conversational framework, Cognitive Theory on Multimedia Learning (CTML),

Structure of Observed Learning Outcomes (SOLO) and the Constructive Alignment

(CA) framework.

The discussion of this chapter continues by presenting the research methodology in

this study. A research investigation is typically undertaken under a specific research

methodology. Research methodology is a plan that is theoretically informed to conduct

a study (Ladislav & Ellen, 1984), and further informs the choice of specific research

methods (Crotty, 1998; Grix, 2004; Rehman, & Alharthi, 2016). A research

methodology can be in various dimensions depending on the nature of the study

(Kothari, 2024). A well-organised methodology helps in answering research questions

(Goddard & Melville, 2004). The research question addressed in this chapter is as

follows:

- How can we develop a TLPAP framework for teaching and learning IPC?

This research question is addressed by presenting a research methodology. The

chapter begins by discussing the methodological perspective in section 4.2, research

paradigms in section 4.3, research design in section 4.4, evaluation strategy in section

72

4.5, action cycles progression in section 4.6, limitations of the study in section 4.7,

ethics statement in section 4.8 and conclude the chapter in section 4.9.

4.2 Methodological perspective

There are three main methodological approaches in a scientific investigation:

qualitative, quantitative and mixed method approach (Steckler et al., 1992; Gray et al.

2007; Ortiz & Greene, 2007). The quantitative research approach focuses on quantity,

statistics or numbers while the qualitative approach focuses on quality (Kothari, 2004).

Quantitative research is about quantifying data and analysing variables through

statistical means (Apuke, 2017). Data in quantitative research is concerned with

mathematical models or statistical analysis while qualitative data is concerned with

categorising, summarising or interpreting (Saunders, Lewis & Thornhill, 2007; Apuke,

2017). Furthermore, qualitative research strives to achieve deeper meaning of the

phenomena, exploration of a thought process or the process of in-depth insight

(Strauss & Corbin, 1998; Creswell, 2016). Examples of qualitative methods include

studying documents, interviews, interacting closely with humans or seeking deeper

meaning from field notes or documents (Apuke, 2017).

A mixed-method approach is a combination of quantitative and qualitative methods to

solve a research problem (Creswell, 2003; Tashakkori & Creswell, 2007). A mixed-

method approach is adopted when a problem cannot be fully solved using either a

qualitative or quantitative approach separately (Creswell, 2003). This means that the

nature of the study should inform whether the study is taking a qualitative route,

quantitative route or mixed-method approach.

This study is generally qualitative because it intends to study, understand and interpret

students' algorithms. These algorithms are studied to assess the impact of the adopted

teaching and learning methods adapted in this study. The other qualitative methods of

data collection like interviewing the students and “talk aloud” are not considered as the

written exercises (algorithms) reflects what the students thought and understood

before and after the intervention.

73

4.3 Research paradigm

Research paradigm refers to the philosophical basis that grounds scientific

investigation or a source of the basis for a researcher’s worldview or assumptions

(Lincoln et al., 2011; Krauss, 2005; Babbie, 2014). All research must be guided by a

specific paradigm (Botha & Taylor, 2022). There are three common paradigms that

can underpin a scientific investigation within our field of study: that’s positivism,

interpretivism and critical theory (Rehman & Alharthi, 2016). Post-positivism and

pragmatism (emanating from positivism) have also been noted as common paradigms

(Guba, & Lincoln, 1994; Kankam, 2019; Kaushik & Walsh, 2019). The following

sections explain each research paradigm.

4.3.1 Positivism

The assumption in positivism is that reality exists on its own, is context-free and is not

influenced by humans (Richards, 2003). This means that the ontological assumption

of positivists is more of realism because reality is natural (Rehman & Alharthi, 2016).

The positivists’ epistemological stand is on objectivism, meaning they are anti-

subjective in their scientific investigation. They describe phenomena as they are,

without interference or intentional conditioning that may lead to disturbance to nature.

The positivist approach relies on experiments, observation, deductive analysis and

construction of laws. Positivists also rely more on statistical or quantitative approaches

(De Villiers, 2005). A positivist researcher is not to be influenced by the objects nor

should the objects influence the researcher. Most of the time, the results of a positivist

researcher are claimed as true if the procedure can be repeated and yield the same

results (Guba & Lincoln, 1994).

4.3.2 Post-positivism

Post-positivism was formed as an alternative to positivism, which addresses some of

its criticisms or rejected philosophical assumptions (Henderson, 2011; Kankam,

2019). The assumptions embedded in the post-positivist paradigm are that knowledge

is subjective, is socially or mentally constructed by individuals and is not fixed

(Henderson, 2011). Positivists are regarded as realists; however, post-positivists are

regarded as critical realists (Guba, 1990). In post-positivist research, the period of data

collection can be short, can work with a small sample, and can look for in-depth data

analysis and interpretation (Fischer, 1998). Furthermore, in post-positivism, the

74

quantitative nature is not totally absolved, but it rather advocates for multiple

approaches or dimensions of various methods like triangulation (Fischer, 1998;

Panhwar, Ansari & Shah, 2017). Post-positivism is regarded as a mixed paradigm, a

mixture of positivism and interpretivism (Panhwar, Ansari & Shah, 2017). The

interpretivism paradigm is explained in the subsequent section (section 4.3.3).

4.3.3 Interpretivism

The interpretivist assumption is that reality does not exist on its own, but through the

influence of the senses. Unlike positivists who accept the natural world as it is,

interpretivism accepts constructed realities. The interpretivist epistemological stand is

based on subjectivism; hence reality is socially constructed, not found or accepted as

it is. Interpretivists gather data for a prolonged duration and seek patterns within that

data. Data collection, mainly through a verbal approach rather than statistical methods,

means that they collect qualitative data rather than quantitative data (Gall, Borg & Gall,

1996; Roller, 2016). Examples of interpretivists’ qualitative data include interviews,

observations, field notes and documents (Rehman & Alharthi, 2016). The qualitative

methods of data collection are utilised well under the umbrella of interpretivism.

4.3.4 Critical theory

Critical theory, originating from various philosophers, claims that reality is shaped by

the interaction of history, culture, politics, gender, ethnicity and religion (Guba &

Lincoln, 1994). In critical theory research, the beliefs of the researcher influence the

participants or the overall study and the objects under study are interconnected. This

means that the mindset of an individual in critical theory research can be adjusted by

those in a position of power (Brooke, 2002). Research under critical theory is primarily

conducted by those who are in political positions; their research is to be evaluated

from a critical viewpoint (Kincheloe & McLaren, 2005). The methodological approach

under critical theory is dialogical (Botha & Taylor, 2022).

4.3.5 Pragmatism

The philosophical assumptions in pragmatism state that past experiences, which

include beliefs, form part of human action (Kaushik & Walsh, 2019). Pragmatists

believe that knowledge cannot be viewed as a reality but is socially constructed

through human experience, meaning that assumptions are similar to constructivism

75

which also relies on linking the past experiences to learn new content. Pragmatism is

action-oriented: thought processes always leads to a specific action (Pansiri, 2005;

Goldkuhl, 2012). This assumption further states that each action has its own

consequences and the meanings can be derived from such consequences. In

pragmatism, both reality and world are non-static as action constantly changes

everything.

Pragmatism is typically for practical-based research which strives to solve practical,

real-world problems (Maxcy, 2003). Moreover, pragmatism offers a flexible

methodological approach and research design to conduct a study which is guided by

the nature of the scientific investigation.

4.3.6 Adopted research paradigm

I have discussed what each research paradigm entails. The discussion led to the

insight to adopt a relevant research paradigm that can guide and inform this study.

There are two paradigms which are close to the qualitative nature of this study, that is

the interpretivism and pragmatism. Based on the nature of the study, it is more

appropriate to adopt the pragmatism research paradigm because this allows flexibility

of adopting a relevant research methodology based on the nature of the research

question rather than being restricted to methodologies of an adopted paradigm

(Brayman, 2006; Goldkuhl, 2012). The applicability of pragmatism in this study allows

the adoption of a qualitative approach while making use of quantitative means if

deemed necessary. The study is primarily based on a qualitative approach which

focuses on the analysis of SIPS algorithm exercises during action research cycles

(discussed in section 4.4.2).

4.4 Research design

Research design concerns how the whole scientific study is logically organised for

answering research questions, including research strategies and direction (De Vaus,

2001; Saunders, Lewis & Thornhill, 2007). The following sections present the design

flow of this study.

76

4.4.1 Animation programs design

Chapter 3 (theoretical framework) has discussed and adopted CTML by Mayer (2005).

The theory discusses how the human mind works in learning with the assistance of

multimedia material or animation. The design of our TLPAP animation programs

adopts 12 principles of multimedia as prescribed by Mayer (2005), which are

applicable and compatible with the TLPAP framework. The following section explains

each principle of multimedia learning, indicating its applicability and implications in the

TLPAP animation design.

a Coherence principle. This principle states that the multimedia material should

not be extraneous as it can distract learning of the main content.

TLPAP applicability: The principle is applied in the design of TLPAP animation

programs by ensuring no inclusion of extraneous material that may distract

learning within the animation programs. The visuals and text within the TLPAP

animation programs are simple. More importantly, the animation design has

been deliberately simplified because the target is SIPS.

b Signalling principle. Most of the time, the screen can be populated with various

animations; therefore, this principle is about signalling the learner to a specific

animation or activity at a time to ensure that students do not get lost during a

presentation.

TLPAP applicability: The animation program in the TLPAP draws the attention

of the learner by an arrow or highlighting the currently executing line of code

with blue colour. Furthermore, an animated scenario is a result of a pointed or

highlighted line in a program code section.

c Redundancy principle. The inclusion of visuals, narration and text within the

animation can confuse the learner. This must be avoided as it can divide the

learner’s attention to know whether to focus on narration or text in support of

visuals.

77

TLPAP applicability: To avoid confusion, TLPAP relies on narrative media by

the actual educator (also adopted from the conversational framework) during

animation program visualisation. Text is included but is minimal, short and part

of program code or animation program. The pre-preparation of animation, code

explanation and repetition of animation demonstration as prescribed through

pedagogical guidelines (discussed in Chapter 7 section 7.4) play important role

in text (or program code) clarity.

d Spatial contiguity principle. The space between a text and the corresponding

visuals or animation may increase cognitive load and be difficult for some

students to decipher. The text and the corresponding visuals must be located

strategically next to one another.

TLPAP applicability: All relevant text has been placed next to corresponding

visuals to ease comprehension.

e Temporal contiguity principle. This principle emphasises that a human being

learns much better when narration and animation happen simultaneously. The

method is preferred over having animation first followed by a separate narration

about the animation.

TLPAP applicability: The principle is properly applied in the TLPAP. The

educator narrates as the animation unfolds or progresses and both are in sync.

Occasionally the narration is in the form of an embedded pre-recorded audio;

however, for TLPAP, the narration is done live by the educator at that moment

in time.

f Segmenting principle. This principle states that visuals should be in segments

and should be paced accordingly.

TLPAP applicability: TLPAP segmented animation programs into concepts. For

instance, the animation program on introductory concept is separate from the

animation program on decision statements. Each concept is further segmented

78

into other sub-segments like the animation for introducing a concept and the

animation for presenting the actual concept. Furthermore, an adjusting option

has been placed into the animation program whereby it is possible to set the

pace of the animation program to animate slow, very slow or normal.

g Pre-training principle. This principle is about teaching students’ the basics first

before introducing the main concepts through animations as this can

overwhelm students if it happens suddenly. This can include key concepts,

terms and even basic information about teaching and learning with animations

or visuals.

TLPAP applicability: Each concept is started with simple animation programs

for concept introduction which equates to minimal animation. As a result, the

students progress smoothly into the main concept animation following the basic

prerequisite information on how animations worked on the introductory stage.

h Modality principle. This principle emphasises that a pair of visuals and narration

are more productive in learning than a pair of visuals and text. In the case of

visuals and narration, the cognitive load is distributed through both verbal and

visual channels.

TLPAP applicability: The narration is done during the demonstration of

animation program and emphasised the clarity of visuals in the design of our

animation programs.

i Multimedia principle. This principle emphasises that pictures and words result

in more meaningful learning than words or narration alone.

TLPAP applicability: A combination of relevant animations and text in the

TLPAP have been included. However, as indicated previously, text is minimal.

j Personalisation principle. This principle is about adjusting the tone or language

of teaching and learning into lower formality as it encourages learner

79

engagement more. It states that conversational learning or informal learning

improves learning and comprehension.

TLPAP applicability: The personalisation principle is applied in TLPAP; hence,

the adopted conversational framework (discussed in Chapter 3, section 3.2.7).

This is achieved by delivering conversational narration during animation

program presentations and between segment breaks.

k Voice principle. According to this principle, a recorded human voice is more

effective than computer-generated audio.

TLPAP applicability: A real voice that narrates during the animation program is

used. Moreover, a recorded human voice can be included and embedded in the

animation program when needed.

l Image principle. A talking head video is not an effective learning experience. It

is recommended that learning be incorporated within the text, visuals or audio

rather than in a talking head video.

TLPAP applicability: The TLPAP animation programs do not incorporate a

talking head video, as it relied on text, visuals and narration.

The above principles have shaped the design of the animation programs and are

instrumental for effectiveness of the TLPAP. The same principles have also shaped

the formulated set of pedagogical guidelines (in Chapters 6, 7 and 8) which forms part

of TLPAP. The guidelines evolved during the action research cycles (from cycle 1 to

cycle 5). The following section discusses the action research methodology.

4.4.2 Action research

The research methodology followed in this study is an action research approach

(Creswell, 2003). The action research approach is a type of qualitative research that

also fits in the pragmatism paradigm. Kaushik and Walsh (2019:2) explain that the

“focus is on transforming the lives of socially marginalised populations”. Therefore,

action research is relevant for this study as teaching and learning will be applied in the

80

real world to assist SIPS enrolled in the introductory programming modules. Because

the solution is applied in the educational setup, theory (research) and practice

(intervention in practice), the implementation of the solution in the form of action

research is clearly relevant (Kearney, Wood & Zuber-Skerritt, 2013). This will help us

to improve the TLPAP teaching and learning guidelines and relevant animation

programs towards a fully complete framework.

There are two forms of action research, namely practical action research and

participatory action research (Creswell, 2003). Participatory action research focuses

on life-enhancing changes. This study, however, takes the practical action research

route because it seeks a solution to improve practice by focusing on students,

educators and methods of teaching and learning (Creswell, 2003). Practical action

research in educational environment allows the educators to reflect on their teaching

approaches, to continually improve teaching practices, to explicit about the practical

activities and test new solutions (Newton & Burgess, 2008; Salite, 2008; Elliott, 2011).

Furthermore, educational action research works along with the constructivism learning

theory (Aldridge, Fraser & Sebela, 2004; Zehetmeier et al., 2014). As discussed in

Chapter 3, section 3.2.1 and section 3.6, constructivism has been adopted as one of

the theories that underpin or frame this study.

Figure 4.1 clarifies the action research process and cycles.

Figure 4.1: Action research cycles

At the beginning of each action cycle, the plan is provided for the new cycle of action

research. The implementation of the outlined plan is the action in the action research.

During action research process, the researchers do observation which is necessary

for re-planning and reflections. Reflections is done at the end of each cycle and is

based on the activities and overall results obtained during action cycle. When the re-

81

planning for the new cycle happens, revised reflections are continually put into

practice.

4.4.3 Experimental setup, pre-testing and post-testing of SIPS

To check if the proposed TLPAP yields improved results during implementation, a

relevant experimental setup is adopted. Firstly, I invited all students through an

invitation letter placed in the learning management system. The letter emphasised that

attendance is voluntary but recommended and targeted at the SIPS. The emphasis

on targeting SIPS in the recruitment strategy is important because the pre-test and

post-test methodology requires the actual SIPS. If the invitation was extended to all

students, the risk would be that minimal difference between pre-test and post-test

results could have occurred which would fail to indicate anything about the

experimental progress of TLPAP. For example, the pre-teaching and post-teaching

algorithms of a non-SIPS would have no difference, leaving nothing to analyse or to

compare patterns of improvement within the algorithms. However, I have noted within

the pre-teaching and post-teaching algorithms that a few non-SIPS still participated in

the study. The identification of non-SIPS participants helped us to exclude such

patterns in the analysis of results. The exact criteria to filter SIPS and non-SIPS

participants is discussed in section 4.5 under the “R→R” transition.

The researcher taught in the experimental group and other introductory programming

lecturers taught in the control group. As per educational practical action research

methodology, it was important for the researcher to be in the experimental group to

experiment, experience and observe a teaching practice which then helped in re-

planning and reflection of the subsequent action cycles. Furthermore, the principal

researcher was responsible to evaluate both pre-teaching and post-teaching algorithm

exercises. As a result, the principal researcher was able to plan and implement each

cycle of action research based on the outcome of the previous cycle analysis.

The pre-test (pre-teaching algorithm exercises) approach allowed us to test the state

of students understanding before the implementation of a planned intervention. The

post-test (post-teaching algorithm exercises) approach allowed us to check the state

of students understanding after the intervention was carried out. An algorithm is an

alternative reference to ‘program code’ and is sometimes used interchangeably in this

82

study. The plan behind the teaching algorithm exercises meant to find possible

patterns of improvement, non-improvements or deteriorating learning between pre-

teaching and post-teaching algorithms. The use of pre-test and post-test methods to

qualitatively compare two groups is not new. The work of Levy, Ben-Ari and Uronen

(2000); Osman and Elmusharaf (2014); Shi, Min and Zhang (2017); and Végh and

Stoffová (2017) have also made use of pre-test and post-test methodological

approaches.

The following section discusses the background of the participants.

4.4.4 Background of the participants

The SIPS were from the Faculty of Information and Communication Technology (ICT)

at Tshwane University of Technology (TUT). Some students were in the Information

Technology (IT) course (using C++ programming language), some were in the

Computer Systems Engineering course (using C++ programming language) and some

in the Computer Science (CS) course (using Java programming language). All

animation programs were made for C++ programming language since two courses

used C++ as an introduction to programming language and few animation programs

have the option to demonstrate with C++ code or Java code (and are adaptable to

include other programming languages). The few animation programs adapted to Java

were limited to the concepts offered as introductory programming in the CS course.

TUT uses certain achievements levels/points of subjects to admit students into

courses. If the grade percentage of a subject is in the range of 0% to 29%, the

achievement level is 1, a range of 30% to 39% is equated to achievement level 2, a

range of 40% to 49% is level 3, a range of 50% to 59% is level 4, a range of 60% to

69% is level 5, a range of 70% to 79% is level 6 and finally a range of 80% to 100%

is level 7. The admission requirements for the Computer Systems Engineering diploma

at TUT are as follows: the students should have at least level 3 in English, level 5 in

mathematics or technical mathematics, level 4 for physical science or technical

science and Admission Points Score (APS) of 28. APS score is the sum of the

achievement levels of the required subjects to be admitted into a course. The students

who do not meet these requirements can qualify for the foundation program. To be

admitted into the foundation program a student needs a level 3 in English, level 4 in

mathematics or technical mathematics, level 4 in physical science or technical physical

83

science and an APS of 23. The IT qualification requirements include level 3 in English,

level 4 in mathematics or level 5 in mathematics literacy. An APS score of 18 is

required with mathematics as part of the subjects and APS of 20 with mathematics

literacy as part of the subjects for an admission into an IT qualification.

Note that other background information like age and gender were not considered in

this study. The following section discusses the control and experimental group setup.

4.4.5 Control and experimental groups setup

The SIPS were randomly and equally divided into two groups to implement the

practical action research cycles. In the case where the total participants were odd

numbered or some participants had arrived late then one of the groups had more

students. The first group is referred to as experimental and the second group as

control. The experimental group was taught by following the TLPAP framework. The

control group was taught the same concepts as the experimental group, but without

following the TLPAP framework (through the traditional verbal teaching method). Note

that the participants (students) would have already been taught by their various

lecturers, then the struggling students are invited and divided into two groups (control

and experimental) to get additional teaching in this study.

The post-teaching exercise is given to SIPS after the TLPAP has been followed in the

experimental group and traditional learning in the control group. The teaching session

that occurs between the pre-teaching and post-teaching algorithm exercises in the

control and experimental group is based on the pre-teaching algorithm exercises. This

is because the study is operating under a CA framework (discussed in section 3.5)

which emphasises that teaching, learning, assessments and learning outcomes

should be aligned. The teaching sessions in both groups happened on the same day

and time of the week. Figure 4.2 demonstrates the overall processes on both

experimental and control groups.

84

Figure 4.2: A process for both experimental and control groups

Figure 4.2 shows that the control group writes a pre-teaching algorithm exercise,

followed by a teaching session, then writes a post-teaching algorithm exercise. The

same process occurs in the experimental group except they are taught by following

the TLPAP framework. The SOLO-based evaluation of the pre-teaching and post-

teaching algorithm and between control and experimental groups is explained in detail

in the following section.

4.5 Evaluation strategy

There are many evaluation strategies that can be employed; however, a specific

strategy that fits the nature of the study and answers research questions must be

determined. In this study, the SOLO taxonomy (Biggs & Collis, 1982) is adopted and

adapted to benchmark or evaluate the pre-teaching and post-teaching algorithms.

SOLO allows a qualitative evaluation which investigates the whole understanding in

the response rather than just assessing a program code line by line (Izu, Weerasinghe

& Pope, 2016). Similarly, we adapt SOLO stages to evaluate, analyse and benchmark

the algorithm sections. The first stage of SOLO (prestructural) means that the student

does not understand at all. The second stage (unistructural) means a student can do

one thing which cannot be related to anything else. The third stage (multistructural)

means the student can get several things correct but these are still unrelated. The

fourth stage (relational) means a student can get several things correct and is able to

85

relate them. The last stage (extended abstract) is when the students use relational

stage knowledge to create or formulate new things. Table 4.1 explains how Lister et

al. (2006) and Izu, Weerasinghe and Pope (2016) adopted SOLO into the

programming environment to evaluate student outcome.

Table 4.1: Adapted SOLO by Lister et al. (2006) and Izu, Weerasinghe and Pope (2016)

SOLO stages SOLO-based reading and
understanding of program code
by Lister et al. (2006)

SOLO-based classification of program
code by Izu, Weerasinghe and Pope
(2016)

Prestructural Lack of basic programming
knowledge

No single concept is related to specifications
or unable to select specific design patterns to
form a program code

Unistructural Described one line of code and
cannot explain the rest of the
program code

Based on the specifications, direct
interpretation is applied

Multistructural Described some of the program
code line by line

Based on the specifications, the interpretation
is flexible

Relational Describe what the code does in its
entirety and its purpose

Based on the scenario, the program code is
well structured accordingly

Extended
abstract

Not applicable Based on the scenario, the program code is
well structured and has elements of
abstraction beyond the specifications

In this study, I adopt the work of Biggs and Collis (1982) on SOLO to qualitatively

evaluate student algorithms. The following SOLO-based evaluation matrix (Table 4.2)

has been adapted for a thorough analysis of the pre-teaching and post-teaching

algorithms. In the table, the P stands for prestructural, U for unistructural, M for

multistructural and R for relational. This matrix is set to evaluate the entire algorithm

or a section of an algorithm for a deeper meanings and interpretation.

Table 4.2: SOLO-based evaluation matrix

P P→P U→P M→P R→P

U P→U U→U M→U R→U

M P→M U→M M→M R→M

R P→R U→R M→R R→R

 P U M R

The transition (example P→U) in Table 4.2 means that the first value (P) refers to the

evaluation status of the pre-teaching algorithm or a section of the pre-teaching

algorithm which is placed at the prestructural stage. The first value can also be referred

to as the state of SIPS before interventions as it represents the pre-teaching algorithm.

The second value (U) in P→U means that the status of a post-teaching algorithm or

86

section of a post-teaching algorithm is placed at the unistructural stage. The following

table briefly describes each transition to make the interpretation or feedback more

meaningful.

Table 4.3: SOLO-based evaluation matrix (with description)

P P→P

Stagnant-no-

learning

U→P

Lower-level-

deterioration

M→P

Intermediate-

deterioration+

R→P

Deteriorated++

U P→U

Lower-level-

improvement

U→U

Stagnant-at-

lower-level

M→U

Intermediate-

deterioration

R→U

Deteriorated+

M P→M

Intermediate-

improvement+

U→M

Intermediate-

improvement

M→M

Stagnant-at-

intermediate-

level

R→M

Deteriorated

R P→R

Improved++

U→R

Improved+

M→R

Improved

R→R

Already-know

 P U M R

P→P

Transition description: Stagnant-no-learning

Meaning: The effects of teaching and learning methods are not realised.

P→U

Transition description: Lower-level-improvement

Meaning: This means that learning has taken place but at a small scale. The impact

of a teaching method is noticeable but with little improvement.

P→M

Transition description: Intermediate-improvement+ (The + symbol means, moved 2

stages up)

Meaning: This means that learning has taken place at an acceptable rate. The impact

of a teaching method is noticeable with good improvements, but still lacks a few things

or logical skills to complete the algorithm or a section in an algorithm.

P→R

Transition description: Improved++. (The ++ symbol means, moved 3 stages up)

Meaning: This means that learning has taken place at a high rate because of the

distance between the prestructural and relational stages. The impact of a teaching

87

method is noticeable with great improvements and the student can form one logical

whole in an algorithm.

U→P

Transition description: Lower-level-deterioration

Meaning: This means that the student is confused or has unlearned; hence,

unistructural to prestructural is in the reverse direction. It may also mean that the

teaching methods may be doing more harm than good.

U→U

Transition description: Stagnant-at-lower-level

Meaning: Learning methods used do not make any difference as improvements are

not realised through higher stages like U→M or U→R. This may also mean that the

teaching method has no effect at all.

U→M

Transition description: Intermediate-improvement

Meaning: This means that learning has taken place at a good scale. The impact of a

teaching method is noticeable with significant improvements. Patterns of existing

knowledge about one thing have improved into the upper stage.

U→R

Transition description: Improved+ (The + symbol means, moved 2 stages up)

Meaning: This means that learning has taken place on a great scale. The impact of a

teaching method is noticeable with great improvements. Patterns of existing

knowledge about one thing have improved two stages up to reach the ultimate level.

M→P

Transition description: Intermediate-deterioration+ (The + symbol means, moved 2

stages down)

Meaning: This means that the student is confused or has unlearned; hence,

multistructural to prestructural is in reverse direction (two stages down). It may also

mean that the teaching methods may be doing more harm than good.

M→U

Transition description: Intermediate-deterioration

88

Meaning: This means that the student is confused or has unlearned; hence,

multistructural to prestructural is in reverse mode (one stage down). It may also mean

that the teaching methods may be doing more harm than good.

M→M

Transition description: Stagnant-at-intermediate-level

Meaning: Learning methods do not make any difference as improvements are not

realised through higher stages like M→R. This may also mean that the teaching

method has no effect at all.

M→R

Transition description: Improved

Meaning: This means that learning has taken place on a great scale. The impact of a

teaching method is noticeable with great improvements. Patterns of existing

knowledge about several things have improved into 1 stage up.

R→P

Transition description: Deteriorated++ (The ++ symbol means, moved 3 stages down)

Meaning: This means that the student is confused or mistakenly unlearned; hence,

multistructural to prestructural is in reverse mode (three stages down). It may also

mean that the teaching methods may be doing more harm than good. However, this

is unlikely transition.

R→U

Transition description: Deteriorated+(The + symbol means, moved 2 stages down)

Meaning: This means that the student is confused or mistakenly unlearned; hence,

multistructural to prestructural is in reverse mode (two stages down). It may also mean

that the teaching methods may be doing more harm than good.

R→M

Transition description: Deteriorated

Meaning: This means that the student is confused or has unlearned; hence,

multistructural to prestructural is in reverse mode (one stage down). It may also mean

that the teaching methods may be doing more harm than good.

R→R

Transition description: Already-know

89

Meaning: This means that the student was not struggling at all with that concept or all

sections of the algorithms (pre-test and post-test) are correct. It also means that the

teaching methods were unnecessary as the student was not struggling prior to

intervention.

In summary, the desired transitions which signal improvements are P→U, P→M,

U→M, P→R, U→R and M→R and (highlighted in gold in Table 4.3). The transitions

which show no improvements prior and after interventions are represented by P→P,

U→U, M→M (highlighted in grey in Table 4.3). The undesired or negative transitions

that mean anti-learning or the teaching method is doing harm to learning are U→P,

M→P, R→P, M→U, R→U and R→M (highlighted in blue in Table 4.3). The R→R

means the student knew before and after the teaching and learning intervention, so

improvements cannot be linked to the specific intervention.

Upon the qualitative evaluation through the SOLO-based evaluation matrix, the

number of algorithms sections or students per transitions are represented

quantitatively in the form of a percentage. Example, a total of 20 struggling students

wrote the pre-teaching and post-teaching algorithm exercises. In the case of

evaluating the loop section in that algorithm, I find that 12 students are in

multistructural stage of both the pre-teaching and post-teaching algorithm. This means

that 12 students over a total of 20 struggling students are under M→M transition. The

outcome of 12/20 is 60% when represented as a percentage. Let’s assume that 6

students were in the multistructural stage of the pre-teaching exercise and are in the

relational stage of the post-teaching exercise. This means the transition will be M→R

and 6 students over a total 20 students will be represented by 30%. Lastly, if 2

students are in a relational stage of the pre-teaching and post-teaching exercise, then

the transition will be 10% (2/20). The rest of the algorithm sections are calculated the

same way. At the end, I can see that in the loop section of the algorithm, 60% is M→M

transition, 30% M→R transition and 10% R→R transition. The outcome presents both

qualitative and quantitative interpretation, because I will know which transitions have

emerged, remained the same, deteriorated or improved upon evaluation.

90

4.6 Action cycles progression

This section presents an overview of what happened in each cycle of the action

research.

4.6.1 Timeline overview

In order to provide an overview of the timeline, the information is presented

chronologically per semester. The actual implementation of this action research

started in 2019 and was concluded in 2022. The following section briefly highlights the

activities in each semester or cycle.

2019 Semester 1: Identification of manipulatives to teach programming concepts.

2019 Semester 2: Implementation of physical manipulatives on IPC. Cycle 1.

2020 Semester 1: Implementation of physical manipulatives on IPC. Cycle 2.

Interrupted by Covid-19 and the limitations of physical manipulatives.

2020 Semester 2: Covid-19. No experimental work undertaken.

2021 Semester 1: Transition from physical manipulatives to virtual manipulatives

(animation programs initially referred to as virtual manipulatives). Cycle 2 continued.

2021 Semester 2: Animation programs experimentation. Cycle 3.

2022 Semester 1: Animation programs experimentation. Cycle 4.

2022 Semester 2: Animation programs experimentation. Cycle 5.

4.6.2 Cycle 1

The initial plan in this study was based on the use of physical manipulatives for

teaching and learning the IPC to the actual affected SIPS. The experimentation with

physical manipulatives happened in 2019 semester 2 and 2020 semester 1. Prior to

the implementation, the journey was about identifying potential existing manipulatives

or designing new manipulatives to help in teaching and learning of IPC. The emphasis

in the first cycle was on the fundamentals of introductory programming like the use of

assignment to demonstrate copying, storage and overwriting. A complete report on

91

the planning, action, reflection and observation of results is detailed in Chapter 5 (Initial

framework – Cycle 1).

4.6.3 Cycle 2

The shortcomings, reflections and observations of cycle 1 helped us to improve the

teaching and learning methods that were used for teaching and learning in this cycle.

There was success in using physical manipulatives to emphasise storage, copying

and overwriting and I had planned to advance into the next topic which was decisions

and nested decisions. However, I experienced various shortcomings on the attempt to

use physical manipulatives for teaching other IPC. Such shortcomings include

incompatibility to teach in a large class, in the online platform and Covid-19

restrictions. This was due to the fact that the cycle was implemented in 2021 semester

1, during which time Covid-19 was still in effect.

As a result, a virtual version of the physical manipulatives were developed by creating

an animated program. The animated programs covered IPC (the use of assignment to

emphasise copying, storage and overwriting), decisions, nested decisions, loops and

nested loops. The presentation mode of this cycle was online. The animation programs

were designed using a Rapid Application Development C++ Builder 10.4. The details

of the shortcomings, reflections, observatory results and improvements made in this

cycle are presented in Chapter 6 (Adapted framework – Cycle 2).

4.6.4 Cycle 3

In 2021 semester 2, cycle 3 was implemented with animation programs only and used

a set of pedagogical guidelines that were compatible with TLPAP. In this cycle, the

animation programs for teaching and learning functions and arrays were included. The

improved versions of animation programs for introductory concepts, decisions, nested

decisions, loops and functions were experimented on SIPS. The details of the

shortcomings, reflections, observatory results and improvements in this cycle are

presented in Chapter 7 (Adapted framework – Cycle 3).

4.6.5 Cycle 4

This cycle was implemented with the improved methods or guidelines for TLPAP. The

cycle took place in 2022 semester 1 and the details of the shortcomings, reflections,

92

observatory results and improvements in this cycle are presented in Chapter 8

(Adapted framework – Cycles 4 and 5).

4.6.6 Cycle 5

This cycle (2022 semester 2) was also implemented with improved methods based on

the reflections and observations of cycle 4. In this cycle, there were extra animation

programs with an option to switch to a Java program code. The details of the

shortcomings, reflections, observatory results and improvements in this cycle are

presented in Chapter 8 (Adapted framework – Cycles 4 and 5). This cycle had minimal

adaption, as the framework has attained a satisfactory stage. The final framework is

also presented in the Chapter 8.

4.7 Limitations of the study

The limitations of this research are as follows:

- The invitation to participate in the study was limited to SIPS; consequently, the

sample size was small per cycle. To compensate, I have undertaken multiple

cycles and qualitative interpretation of the algorithms.

- The animation programs were designed for the C++ programming language

and a few have been extended to cover Java programming language in the last

cycle. Other programming languages like Python or C are not included.

- Content of the programming module was limited to what the university (where

the experiments took place) included within the course: for example, some

module content covers only introduction, decisions and loops.

- We have not made any distinction on the gender disparity of the participants.

Other background factors like ethnicity, age and home language were also not

taken in to account in this study.

4.8 Ethics statement

The ethical clearance to conduct this study was obtained from University of South

Africa (UNISA). UNISA is the institution where the PhD programme is registered, and

TUT is the institution where the experimentation was conducted. The main point in

the ethical clearance certificate is that the identity of the participants is not made public

93

and participation in this study is voluntary. It also emphasises that the division of SIPS

into control and experimental group is random across action cycles. The ethics

clearance certificate is attached in Appendix A.

4.9 Conclusion

The research methods described in this chapter are synchronous with our research

question and research objectives. Table 4.4 overviews the linking and alignment of

research questions and objectives to a relevant research method.

Table 4.4: Methodological overview

 Research questions Research objectives Method

1. What are the leading issues in
teaching and learning IPC?

To conduct a literature
review on the challenges of
teaching and learning IPC

Literature review

2. What are the approaches used in
teaching IPC?

To investigate the
approaches used in teaching
IPC

Literature review

3. What are the limitations of
existing animation programs used
for teaching and learning IPC?

To investigate animation
programs for teaching and
learning IPC

Literature review

4. How can we develop a TLPAP
framework for teaching and
learning IPC?

To develop a TLPAP
framework for teaching and
learning IPC based on gaps
identified in the literature
review and continually
improve the framework
based on the outcome of the
action research cycles

Theoretical framework/
Action research

5. How can we prove and evaluate
the efficacy of the TLPAP
framework?

To evaluate the efficacy of
the TLPAP framework
through teaching the actual
SIPS by following the TLPAP
framework

Action research/pre-test
and post-test methodology
/SOLO adapted
evaluations

The TLPAP framework was developed by following the research methodology

described in this chapter. The critical steps toward building the TLPAP framework

derived from the action research process where I reflected, observed, planned and

acted in each cycle. This means that in every cycle, TLPAP was implemented with an

improved and revised approach. Because TLPAP consists of pedagogical guidelines

and animation programs, the improvements affected both. The exact details of what

94

was improved or observed in each action cycle are detailed in Chapters 6 to 8. The

subsequent chapter (Chapter 5) presents the Initial framework – cycle 1.

95

Chapter 5: Initial framework – Cycle 1

Chapter

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Content

Introduction

Literature
review

Theoretical
framework

Methodological
approach

Initial
framework -

cycle 1

Adapted
framework -

cycle 2

Adapted
framework -

cycle 3

Adapted
framework -

cycles 4 and 5

Conclusion

96

5.1 Introduction

The aim of this research was to assist Struggling Introductory Programming Students

(SIPS) by finding ways to improve and accelerate their understanding of IPC. Initially,

the proposed framework was centred around the use of manipulatives to help in

teaching and learning of IPC to SIPS. As discussed in Chapter 2 (Literature review,

section 2.6.4), physical manipulatives are incorporated into education for teaching and

learning purposes. However, there is no concrete, empirical evidence of their reliability

in uplifting student comprehension of IPC. The manipulatives can potentially cause

more harm than good if their use is not rigorously investigated, tested and justified. I

therefore embarked on a research journey to identify possible manipulatives and test

their efficacy in helping SIPS learn IPC.

The main goal in this initial cycle was to identify and test existing manipulatives already

in use by the educators or design new manipulatives where necessary. This is the first

stage of answering the research question which states:

- How can we prove and evaluate the efficacy of the Teaching and Learning

Programming with Animation Programs (TLPAP) framework?

The framework in this initial cycle is referred to as Teaching and Learning

Programming with Manipulatives (TLPM). The name was adapted as we progressed

through the action research cycles and was then modified to TLPAP. In this chapter, I

present and explain the manipulatives used and activities of the first cycle of action

research and how they led to a transition into animation programs. The remainder of

the chapter is outlined as follows: section 5.2 is the planning of cycle 1; section 5.3 is

the implementation of cycle 1; section 5.4 presents the planning of cycle 2; and section

5.5 concludes the chapter.

5.2 Planning for cycle 1

5.2.1 SIGCSE members’ participation

To identify and test appropriate manipulatives, I explored if there are introductory

programming educators who are using manipulatives in teaching introductory

programming. In February 2019, I posted a question in the Special Interest Group on

Computer Science Education (SIGCSE) mailing list to gather evidence and information

97

on the uses of manipulatives to teach introductory programming. SIGCSE is an

Association of Computing Machinery (ACM) sub-group with more than 2 000

members. It consists of Computer Science Education (CSE) researchers, academics,

educators, teachers and experts in the field of education and industry. SIGCSE’s

special focus is on CSE research with researchers from over 60 countries. The

following question was posed on the SIGCSE mailing list:

If anyone has tried using manipulatives in teaching programming concepts (or knows

of anyone else who has), could they please email xxxxx@xxxx? Where xxxxx@xxxx

was the researcher’s address. Posted in February 2019.

I allowed more than 15 days for responses. In that time, there were 21 concrete

responses from academics, CS researchers and former introductory programming

educators. Based on the SIGCSE membership, this is a sample of 0.7% because

introductory programming is a small portion of the broader computer science

education. Some of the responses advised on the type of programming manipulatives

that can be used, some responses pertained to manipulatives they were currently

using, and other responses recommended manipulatives they had used in the past to

teach some IPC. The suggestions ranged from manipulatives that help in sorting,

swapping, linked lists, variables, binary searching, arrays, functions, recursion and

other interactive activities. For example, cardboard was used to set up manipulatives

for demonstrating the use of functions in programming. These results helped us to

identify the most suitable manipulatives for experimental purposes with the actual

SIPS at a university. The results of such experimentation are reported in section 5.3.

5.2.2 Identification of manipulatives for introductory concepts

The focus in this section is on teaching and learning the use of assignment because

the researcher had experimented with the methods and was successful. The focus is

also on teaching and learning of decisions/nested decisions because the tested

methods were tested but not successful.

Concept 1

One of the misconceptions within IPC identified in the literature review is the use of

assignment. The manipulatives used in this case were inspired by one of the SIGCSE

98

respondents who indicated that he was using cups (Figure 5.1) to demonstrate the

swapping of values between variables.

Figure 5.1: Sample cups

The plan was to test if the idea of demonstrating using cups can yield meaningful

learning, especially for SIPS. Therefore, I adapted the idea of cups in emphasising the

uses of assignment between variables.

Concept 2

Concept 2 was about identifying the possible manipulative to teach decisions and

nested decisions. In this case, as the responses of SIGCSE members did not link the

researcher to any existing manipulative, I designed a new manipulative and named it

a nested-decider. The main purpose of the nested-decider manipulative was as

follows:

- demonstrate how the && and || operators work in a decision statement;

- demonstrate how the else clause works and when to use it in a decision

statement;

- ensure SIPS understand that a nested decision stops evaluating the rest of the

conditions if one condition evaluates to true;

- ensure SIPS understand when to construct a nested decision instead of a

sequence of separated decision statements; and

- enhance SIPS overall conceptual understanding of how the nested decision

statement works.

The nested-decider is intended to be used primarily by the lecturer to teach

decisions and nested decisions to SIPS. The components of nested-decider are

99

presented in Figure 5.2 to initiate a full understanding of how the manipulative

works.

Figure 5.2: Components of the manipulative

The manipulative should be used with an appropriate scenario and nested decision

program code. To understand the overall manipulative functionality, the program code

(depicted in Figure 5.3) and the corresponding nested-decider (Figure 5.4) were

developed for teaching purposes. For example, condition 1 in the code (Figure 5.3)

will be demonstrated by condition A (Figure 5.4) in the nested-decider.

Figure 5.3: Program code

Figure 5.4: Nested-decider

An important process for a lecturer to demonstrate a program in Figure 5.3 code with

the nested-decider in Figure 5.4 is for the lecturer to unblock the ball path by removing

decider-rods based on the conditions. Note that the purple decider-rods are for true

conditions and the orange decider-rods are for false conditions. In the first part of the

manipulative in Figure 5.4 (condition A), we see that two decider-rods block the tube

(decider-manip) on the left side and one decider-rod blocks the tube on the right side.

100

All the decider-rods have blocked the tube on the intersection within a decider-manip.

When the correct pattern of removing the decider-rods is applied, the ball will

automatically take the unblocked path.

Condition 1 in Figure 5.3 represents condition A in Figure 5.4, because two conditions

are expected to evaluate to true for the content of an if-statement to execute. Hence,

true && true = true. If value1 = 5, then value1 > 0? is true and the lecturer is expected

to remove one of the two purple decider-rods from the left side. The ball will still be

trapped on the intersection because of the remaining decider-rods on both sides. On

the very same first line in Figure 5.3, the right-side condition says value1 < 9? This

evaluates to true; therefore, the user should remove the second purple decider-rod,

then the ball will instantly take a path to the left side. Now the lecturer is expected to

be able to explain condition 1 better with actions taken on the intersection of the

manipulative. SIPS are expected to see and understand that the && short-circuit

operator requires both conditions to be true for the contents of the decision statement

to execute. Hence the two purple decider rods that represent the true condition on the

left side are both removed when the condition becomes true. SIPS should be able to

see that it is now impossible for the ball to reverse to get into other tubes. Therefore,

the same scenario must be explained in relation to the real programming code.

Furthermore, it should be clear that the ball cannot move into the next intersection if

the decider-rod on the right (orange decider-rod for false condition) is not removed. A

lecturer must also emphasise that a compound decision statement such as (if [value1

> 0] if [value2 < 9]) can also be used to represent condition 1, and it will not affect how

the user interacts with the manipulative. This will help SIPS play around with decision

statements and manipulatives for further improvement and understanding.

This nested-decider idea was accepted and published in a CSEDU proceedings and

the information about the paper can be accessed in the conference repository1.

5.3 Implementation of the manipulatives and results

This section reports on the implementation results of concepts 1 and 2.

1 Ramabu, T., Sanders, I., & Schoeman, M. A. (2021). Manipulatives for Teaching

Introductory Programming to Struggling Students: A Case of Nested-decisions. In CSEDU

(1), 505-510.

101

5.3.1 Cycle 1 (Concept 1)

First semester 2019

In this experiment, the focus is on teaching and learning by making use of

manipulatives explained in section 5.2.2. The idea is to enhance comprehension on

the use of assignment which is one of the introductory concepts with which SIPS

struggle. To compare control and experimental groups, SIPS were given paper-based

pre-teaching and post-teaching exercises. A total of 17 students (experimental group)

were taught with manipulatives to alleviate the misconceptions experienced in the

previous exercises and 13 students (control group) were taught without the use of

manipulatives (verbal teaching without any aiding methods).

Pre-teaching exercise 1:

Given variables x = 7 and p = 12, write a C++ statement that copies the value of p into

variable x. What will be the values of x and p?

The number of students who indicated that the value of x = 7 was 5/30. Two students

from the control group and three students from the experimental group indicated the

value of x = 7. This suggested that they did not understand that x was assigned a new

value that replaced the old value. A total of six students answered that the value of x

= 19. In this case, the misconception is that the statement x = p means the value of x

got incremented by the value of p; hence, 7 + 12 = 19.

Pre-teaching exercise 2:

If x = 8, y = 10, t = 15, what is the value of x and y after the execution of the given code

below? t = x; x = y; y= t;

A total of 12/30 indicated in their answers that the value of y = 15. They did not

understand that the value of t was overwritten with the value of x.

In the TLPM classroom, I made use of cups and papers as manipulatives to explain

the pre-teaching exercise. As seen in Figure 5.5, the names of the variables were

written on the side of the cups. The students were taught that this indicates variable

declaration and is related to how the memory is reserved in the machine upon

declaration.

102

Figure 5.5: Manipulatives (variables)

When a value is assigned into the variable, a piece of paper was used to write a value,

then inserted it into the correct cup (see Figure 5.6).

Figure 5.6: Manipulatives (with values)

The emphasis on x = p is achieved by taking a piece of paper, looking at what is inside

the variable p (the cup with p written on the side), and then writing the same value of

p on the paper as a copy. However, just before I inserted the paper into cup x, took

away the existing paper in cup x and replaced it with the one copied from cup p. With

this demonstration, I emphasised that the value of p is copied into x and that the value

in the variable x gets replaced, not incremented. It was also stressed that the value of

p is not cut or removed from p as it is a copy. This first demonstration of assignment

through manipulatives shed light and served as a crucial prerequisite to the

subsequent TLPAP exercises.

In the second demonstration, I used three plastic cups to represent variables x, y and

t. I demonstrated how swapping is achieved through an assignment. All three cups

were initialised with their respective values by writing on the pieces of paper and then

inserting these into the cups (see Figure 5.7).

103

Figure 5.7: Manipulatives (three cups)

To measure the improvements between the two groups, post-teaching exercises were

designed and completed by both the control and experimental groups.

Post-teaching exercise 1:

Declare x and y as integers. Assign x with the value 20 and y with the value 30. Write

a code that will store the value of x into y and the value of y into x.

Post-teaching exercise 2:

Students were requested to explain what happens in the memory when the code

developed previously (post-teaching exercise 1) is executed. (This is a follow-up

question and was asked to assess if post-teaching exercise 1 was computed with

understanding.)

Both pre-teaching and post-teaching exercises were graded. The pre-teaching

questions were graded out of four, where each correct answer was counted as one

mark. Similarly, the post-teaching exercise was also graded out of four where correct

answers counted as a one mark. For the experimental group, the performance was

better than the control group on post-teaching exercise 1 and much better on post-

teaching exercise 2 (see Table 5.1).

Table 5.1: Average grades for control and experimental groups

Pre-teaching algorithm Post-teaching algorithm

Control Experimental Control Experimental

Average grade: 1.1 Average grade: 1.3 Average grade: 1.08 Average grade: 2.29

104

The average grade mark on post-teaching exercise 1 for the experimental group was

2.29 which is higher than the control group grade average (1.08). This attests that

teaching and learning using physical manipulatives could have a meaningful impact

on teaching and learning, especially for SIPS. The table also shows a big difference

between pre-teaching and post-teaching grades in the experimental group, which

further indicates a positive increase in understanding in the experimental group. In the

control group, the average grade in post-teaching is similar to the average grade in

the pre-teaching. This means that the impact of a traditional teaching method is not

good enough.

Finally, it is worth noting that there were two students from the experimental group

who achieved more than 80% on the pre-teaching exercises and post-teaching

exercises. This suggests they did not necessarily need any pedagogical intervention

as they solved the exercises correctly before interventions. Therefore, this TLPM is

proving to be more meaningful for struggling students.

The results of this cycle were also published in IEEE explore2.

5.3.2 Reflection on cycle 1 (Concept 1)

 End of 2019 semester 1

- I noted positive results using cups and papers for teaching and learning the

concept of assignment.

- Even though the idea of physical manipulatives worked in emphasising the

concept of assignment, it is limited to a demonstration in a small group. It was

observed that those who were seated far away moved closer to clearly see the

demonstration.

- The understanding of the uses of assignment should be analysed in detail in

the cycle 2 experimentation.

- There is a need for additional pre-teaching exercises for even greater

understanding.

2 Ramabu, T. J., Sanders, I., & Schoeman, M. (2021, May). Teaching and Learning CS1 with

an Assist of Manipulatives. In 2021 IST-Africa Conference (IST-Africa), 1-8. IEEE.

105

- I also noted a frequent change of focus from the demonstration of cups and a

program code which was important and required because the code was written

on the board and demonstration was at a bit of distance. Therefore, a need for

a mechanism to bring the demonstration and program code closer to each other

was identified. The solution to the problem was to limit the frequency of

changing the focus through head movements.

5.3.3 Cycle 1 (Concept 2) report and reflections

First semester 2021

It is worth noting that the implementation of concept 2 was anticipated for 2020, but

this did not happen because of the closure of learning institutions due to Covid-19.

The experiment was supposed to be carried out at a university in a contact session

environment with the actual SIPS. Concept 2 was finally attempted for demonstration

in March 2021 when the learning institution opened for contact sessions; however,

that opening was for a short period as the institutions reverted to online multi-modal

sessions when the Coronavirus infection rate rose yet again.

When the institution re-opened, the experimentation of nested-decider was carried out

in a contact session, however it did not yield positive results. The following problems

were encountered during the demonstration:

- Students indicated that they struggled to pay attention or see the fine details of

the manipulatives. This was a common concern as the researcher observed

some students in class change seats to be nearer the demonstration point.

- The experimental group had 18 students and the control group had 17 students.

Both experimental and control groups were taught without the assistance of

manipulatives.

- Pre-teaching and post-teaching exercises were not given to students due to the

experimental shortcomings of the nested-decider.

- A need for a solution to make the details of the nested-decider manipulative

visible enough was identified.

- All experiments planned to use manipulatives with similar fine details were

abandoned and planning to overcome the size problem was initiated.

106

- I also identified a need to use a real-world problem in the nested-decider

program to make the teaching program code more meaningful and relatable to

SIPS. The use of examples ignites excitement, confidence, enthusiasm and

plays a critical role in learning programming (Malan & Halland, 2004). Real-

world examples help students link context to a programming concept for better

understanding (Konecki, Lovrenčić & Kaniški, 2016).

5.4 Planning for cycle 2

To overcome the limitations experienced in cycle 1, it was apparent that significant

changes were required. The first idea was to convert these physical manipulatives into

virtual manipulatives. The advantage of virtual manipulatives is their ability to be

demonstrated through computer broadcasts where each student can see what

happens on their screens. The plan behind virtual manipulatives was also to overcome

the distance between the program code and the actual demonstration. Furthermore,

virtual manipulatives were regarded as a compatible alternative to an online

presentation which was a mode of presentation across learning institutions during that

period of Covid-19. Besides being the teaching and learning mode during Covid-19,

teaching and learning solutions and innovations continue to advance towards

multimedia-based as this is convenient for both students and educators.

I started converting these manipulatives in the middle of 2021 semester 1 and

experimented with them towards the end of the same semester. The advantage was

that the semester was extended to end in August due to Covid-19 outbreaks at the

experimental institution. I therefore had sufficient time to develop and experiment

within that extended semester.

To garner a comprehensive theoretical background on virtual manipulatives, I

conducted a thorough literature review on the field of virtual manipulatives. In the

literature review, I noted that virtual manipulatives were primarily referred to as

program visualisation or animation programs. I likewise began referring to this

intervention as animation programs instead of virtual manipulatives. A detailed

discussion of animation programs and their limitations was presented in the latter

section of the literature review (Chapter 2, section 2.7). The development of these

animation programs was both inspired by physical manipulatives and the identified

107

gap on the design and uses of animation programs in the field of introductory

programming.

5.5 Conclusion

In this cycle, I reported on the use of physical manipulatives to teach introductory

programming. Cups were used as a way to emphasise the use of assignment in

programming and were demonstrated to the actual SIPS at university. It has been

noted that the use of cups can indeed improve understanding of how the assignment

operator works. However, I have noted that the idea of a cups demonstration in a big

group is unlikely to be successful.

A manipulative called nested-decider was designed to emphasise decisions and

nested decisions in programming. However, during the experimentation it was found

that the nested-decider contained fine details which require students to sit very close

to see the demonstration. While this limitation was also identified when using cups to

teach the concept of assignment, after the demonstration it was clear that everyone

was seated closer. Unlike the demonstration with a nested-decider, even after

students sat closer, they still struggled to see fine details of the manipulative.

The remainder of the manipulatives that contained fine details were dropped from the

experiment. It was necessary to revise the type of intervention used and advance

towards a solution that can overcome the stated challenges. The solution in the form

of animation programs was realised, planned and experimented. The experimental

results of teaching and learning with animation programs are reported in Chapter 6

(Adapted framework – Cycle 2).

108

Chapter 6: Adapted framework – cycle 2

Chapter

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Content

Introduction

Literature
review

Theoretical
framework

Methodological
approach

Initial
framework -

cycle 1

Adapted
framework -

cycle 2

Adapted
framework -

cycle 3

Adapted
framework -

cycles 4 and 5

Conclusion

109

6.1 Introduction

The aim of this research is to help Struggling Introductory Programming Students

(SIPS) by finding ways that can improve their understanding of IPC. To determine the

most appropriate and effective teaching and learning methods, I embarked on an

action research study to find and conclude on relevant methods. The action research

methodology consists of several action cycles. The previous chapter (Chapter 5)

presented the activities and the outcomes of cycle 1. The activities in cycle 1 were

based on the use of physical manipulatives for teaching and learning IPC. The concept

of assignment was successfully demonstrated and the findings positive. However, an

attempt to demonstrate the concept of decisions/nested decisions using manipulatives

was unsuccessful and the limitation led to the development of animation programs.

One of the projected advantages of animation programs over physical manipulatives

includes their compatibility to a big group as visual effects are presented on electronic

devices. Electronic devices are important in today’s teaching and learning platforms.

Cycle 2 presented in this chapter reports on the animation programs developed and

the outcomes of the experimentation with SIPS. The development of the animation

programs at this stage was based on the structures of physical manipulatives,

reflections in cycle 1 and the animation program gap identified in the literature review.

This cycle serves as a continuation to answer our last research question which is

formulated as follows:

- How can we prove and evaluate the efficacy of the Teaching and Learning

Programming with Animation Programs (TLPAP) framework?

The framework is now referred to as TLPAP, instead of Teaching and Learning

Programming with Manipulatives (TLPM). This chapter begins with an explanation of

the designed animation programs for teaching and learning the use of assignment

(section 6.2), decisions/nested decisions (section 6.3) and loops (section 6.4). Section

6.5 presents applicable pedagogical guidelines that will be used along the animation

programs. Details of experimental results and analysis are given in section 6.6.

Section 6.7 contains reflections on this cycle. And section 6.8 presents the planning

of cycle 3. Section 6.9 concludes the chapter.

110

6.2 Concept 1 (Assignment)

This section demonstrates the design of animation programs that help SIPS with the

concept of assignment. The concept of assignment is emphasised by focusing on

value storage, copying and overwriting.

6.2.1 Pre-teaching exercises on the use of assignment

The following questions (in Figure 6.1) were formulated and given to students to

answer:

a. What will be the value of x after the following algorithm has executed?

int x;

x = 3;

x = x + 1;

b. What will be the values of p and y after the following algorithm is executed?

int p, y;

p = 5;

y = 8;

p = y;

c. What will be the values of k and t after the following algorithm has been

executed?

int k, t;

k = 1;

t = 2;

k = t;

d. What will be the values of x and y after the following algorithm has executed?

int x, y;

x = 5;

y = 6;

x=y;

y=x;

Figure 6.1: Pre-teaching exercises

The animation program for specification in Figure 6.1 as designed and demonstrated

to SIPS as pre-teaching exercises. The following section demonstrates the designed

111

animation programs and discusses how they are used. The animation programs

animate according to the exercises in Figure 6.1 in sequential order.

6.2.2 Animation program 1

In Figure 6.2, the algorithm is in a white box and the appropriate animation initiates

below the blue line upon button click. In Figure 6.3, a run button has been pressed,

the blue highlight in the white box is in line number 1, and the animated container is

subsequently generated. The container resembles the variable just like in the physical

manipulative (cups).

Figure 6.2: Program 1 (Demo 1)

Figure 6.3: Program 1 (Demo 2)

In Figure 6.4, the blue highlight in the program code box moves automatically into line

number 2 and value 3 appears in the container to resemble storing of a value. In Figure

6.5, x = x + 1 is demonstrated through a floating number (+1) which indicates that the

value of x is being incremented. The number (+1) appears just below the blue line,

and then floats from top to bottom in the direction of the container.

112

Figure 6.4: Program 1 (Demo 3)

Figure 6.5: Program 1 (Demo 4)

When the floating number (+1) reaches variable x container, the new value replaces

the old value (a number 4 replaces a number 3). Figure 6.6 shows a complete

executed program and the final state of the animation process.

Figure 6.6: Program 2 (Demo 5)

6.2.3 Animation program 2

Figure 6.7 contains the program code in the white box. When the blue highlight is at

the first line, the two containers appear. The first container represents variable p and

113

the second container resembles variable y (see Figure 6.8). When p = 5 is highlighted,

the value 5 appears in cup p and the same applies when the blue highlight reaches y

= 8.

Figure 6.7: Program 2 (Demo 1)

Figure 6.8: Program 2 (Demo 2)

In Figure 6.9, the value is duplicated from variable y, thereby making an illusion of a

copied value. Under the animation section, the text (number 8 as a graphic) moves

from 8 towards the variable p container. The arrow in Figure 6.10 is not part of the

animation; it indicates that the value 8 emerged from the container y and its floating

direction.

Figure 6.9: Program 2 (Demo 3)

Figure 6.10: Program 2 (Demo 4)

The arrow in Figure 6.11 indicates that the value 8 was copied from variable y into

variable p. The state of Figure 6.12 is a result of the execution of the last line of the

program code and the end of the animation.

114

Figure 6.11: Program 2 (Demo 5)

Figure 6.12: Program 2 (Demo 6)

6.2.4 Animation program 3

The animation program demonstrated in section 6.2.3 (Animation program 2) and the

animation program to be demonstrated in this section are similar, so I have given two

figures (Figure 6.13 and Figure 6.14) for sample output. The similarity of the questions

was deliberately formulated to give SIPS further understanding of the same concept

but different variables, patterns and values. The appearance of Figure 6.13 is the initial

state of the animation program and Figure 6.14 indicates the final state of the

animation program.

Figure 6.13: Program 3 (Demo 1)

Figure 6.14: Program 3 (Demo 2)

The animation process between Figure 6.12 and Figure 6.13 is the same as

demonstrated in section 6.2.3.

115

6.2.5 Animation program 4

The first appearance of the program is depicted in Figure 6.15. The animation progress

animates accordingly as was previously indicated as the blue highlight automatically

moves line by line. When the program reaches line number 4 (as depicted in Figure

6.16), the value 6 appears inside the variable y container.

Figure 6.15: Program 4 (Demo 1)

Figure 6.16: Program 4 (Demo 2)

In Figure 6.17, the value 6 animates from variable y to reach and overwrite the content

of variable x. The arrow (not part of the animation) in Figure 6.17 demonstrates the

floating direction of the number 6. Figure 6.18 is a version without an arrow.

Figure 6.17: Program 4 (Demo 3)

Figure 6.18: Program 4 (Demo 4)

116

On the last line of the program code, the value of x floats until it reaches and overwrites

the content of variable y (Figure 6.19). The arrow in Figure 6.19 indicates the floating

direction of the number 6. Figure 6.20 is a version without an arrow.

Figure 6.19: Program 4 (Demo 5)

Figure 6.20: Program 4 (Demo 6)

The state of Figure 6.21 is a result of a complete program execution and animation

process.

Figure 6.21: Program 4 (Demo 7)

6.3 Concept 2 (Decisions/nested decisions)

6.3.1 Problem specification for nested-decider

This section demonstrates an animation program called nested-decider. One of the

reflection points in cycle 1 was to formulate a real-world problem specification that can

117

work with nested-decider which can boost SIPS’ comprehension on the concept of

decisions/nested decisions. The problem specification is described in Figure 6.22.

You are requested to write an algorithm that shows the process for an employee to get access to

the office. An employee must go through a gate authentication, then finally go through office door

authentication. At the gate, you need to use a gate access card or Identity document to get in. If

you get access, then in the next stage you need to use both the office access card and office

door pin code for the office door to open.

To demonstrate how the authentication from the gate to the office will work, follow the instructions

below to complete the algorithm.

Prompt the user to enter the letter:

- Y or N for a gate access card. (Y means "Yes" and N means "No").
- Y or N for an identity document. (Y means "Yes" and N means "No").

If the gate access card or identity document contains the value Y, then proceed by prompting the

user to enter the letter (Y or N), otherwise, show a message "Access into the company not granted".

- Y or N for the office access card. (Y means "Yes" and N means "No").
- Y or N for door pin. (Y means “Yes” and N means “No”).

Check if both office access card and office door pin code contain Y, if so, show the message "Access
into the office granted", otherwise show the message "Access into the office not granted".

Figure 6.22: Problem specification (decisions/nested decisions)

6.3.2 Nested-decider animation program

The program code for problem specification stated in Figure 6.22 is demonstrated in

the nested-decider animation program. The nested-decider has two sides: the left side

for a program code and the second side reserved for the unfolding of the animation.

The code on the right side gets executed after the user presses a start button (see

Figure 6.23). The program code and the relevant animation execute synchronously to

give SIPS a clearer mental model of a program code and how decisions/nested

decisions work.

118

Figure 6.23: Nested-decider (Demo 1)

The graphics on the left side start the animation process when the start button is

clicked. Figure 6.24 shows the prompting stage of the program (prompts for gate card).

The blue highlight on the program code side moves gradually and automatically from

one line to another, and the right side animates accordingly based on the currently

highlighted line.

Figure 6.24: Nested-decider (Demo 2)

In Figure 6.25, the prompt is for the ID card.

119

Figure 6.25: Nested-decider (Demo 3)

In Figure 6.26, additional text shows, Have gate card? = false. Have an ID document?

= false. false or false = false. The appearance of text is important as SIPS may not

rely only on the educator's narration but can comprehend independently. The orange

square flickers a few seconds and then turns greyish, indicating that the condition has

completed the evaluation. The flickering stage, which also serves as a pause, allows

the student to read the condition if necessary, then anticipate the direction of the

greyish movement before it finally moves. The movement of a greyish bar will either

take the bottom direction (false evaluation) or the right direction (true evaluation).

Figure 6.26: Nested-decider (Demo 4)

The state of Figure 6.27 is a result of false or false because both values of the gate

card and identity card were “N” for No. The critical point SIPS should catch is the

120

process of understanding the || (or short circuit operator) and how a chunk of code is

jumped and the last line is executed as a result of an else clause. SIPS would have

seen that the animating bars on the left remain green which mean that the path was

jumped (not executed). Furthermore, when the grey bar completely replaced the

green, a message in red font is displayed ("Access into the company not granted")

which also corresponds with the currently highlighted line of code.

Figure 6.27: Nested-decider (Demo 5)

The state of Figure 6.28 is a result of the gate card and identity document as false ||

true or true || false which results in true for any of them. The prompting for the office

card and checking if the office pin was correct is done before the greyish animation

reaches the yellow box for another condition evaluation.

121

Figure 6.28: Nested-decider (Demo 6)

The state of Figure 6.29 represents a complete executed program where the office

card and office pin is true && false or false && true which gives the results of false. At

this stage, SIPS would understand that the true side (green bar) is not greyish.

Figure 6.29: Nested-decider (Demo 7)

Finally, Figure 6.30 is a result of an office card and office pin as true && true which

gives the results of true. The corresponding text on the animation is shown as Have

office card? = true. Have office pin? = true. true and true = true. SIPS would understand

that the true direction is executed only when the condition is true and true.

122

Figure 6.30: Nested-decider (Demo 8)

The Nested-decider animation program was published in a Springer journal3.

6.4 Concept 3 (Loops/nested loops)

This section demonstrates the animation programs developed for teaching and

learning of loops.

6.4.1 Problem specification for loops and nested loops

The following figure (Figure 6.31) shows the problem specification designed for

loops.

Write a program that asks a user to enter an integer between 1 and 10. Continue to prompt the

user while the value entered does not fall within this range. When the user is successful, display

a congratulatory message as many times as the value of the successful number the user

entered.

Figure 6.31: Problem specifications – loops

3 Ramabu, T., Sanders, I., & Schoeman, M. (2022, July). Nested-Decider: An Animation

Program for Aiding Teaching and Learning of Decisions/Nested Decisions. In Annual

Conference of the Southern African Computer Lecturers' Association. Cham: Springer

International Publishing, 129 – 148.

123

6.4.2 Animation program for loop

The problem specification in section 6.4.1 (Figure 6.31) has the program code solution

and the corresponding animation program as seen in Figure 6.32. The state of Figure

6.32 is before the button pressed.

Figure 6.32: Loops (Demo 1)

The prompt to enter a number occurs when the blue highlight reaches cin>>number

as seen in Figure 6.33.

 Figure 6.33: Loops (Demo 2)

124

The first green bar gradually turns greyish from top to bottom after the number has

been entered (see Figure 6.34). This resembles a value being stored inside a variable

number which further reinforces the understanding of assignment and storage.

Figure 6.34: Loops (Demo 3)

The blue highlight on the program then moves into the line of (while number < 1 ||

number > 10). If a number entered is less than 1 or greater than 10, it means is a true

evaluation; then the blue highlight moves inside the loop and re-prompts for a number

when cin>>number is highlighted (see Figure 6.35). The point in this case is for SIPS

to note that a code is repeated by the instruction of the loop condition and what

happens when the code is repeated. Once again, when the code is repeated, the

concept of overwriting through assignment is demonstrated.

125

Figure 6.35: Loops (Demo 4)

If the number is between 1 and 10, the blue highlight will still move into the line of a

while loop evaluation (while number < 1 || number > 10) but will not execute the content

of the while loop; rather, it will jump into the subsequent for-loop to print congratulatory

messages (Figure 6.36). This is because the condition is now true and the true

condition does not allow the content of the while-loop to be executed.

Figure 6.36: Loops (Demo 5)

The key moment in the last loop (for loop) is when the blue highlight moves up and

down between the for-clause and cout<<”Congratulations”<<endl; as the

126

congratulations text is printed at every round of the loop. The same experience is

realised when the user repeatedly keys in an out-of-range value in the while loop.

6.5 Formulated pedagogical guidelines

Animation programs for teaching and learning should not be used in isolation because

these programs are only one important piece of the puzzle that must fit into teaching

pedagogy. The demonstration of the animation must form part of a bigger picture in

the pedagogical sphere. Therefore, these formulated pedagogical guidelines serve as

a manual to ensure the effective use and benefits of animation programs for teaching

introductory programming with TLPAP. The following guidelines (see Figure 6.37)

were followed when demonstrating all animation programs.

Figure 6.37: Pedagogical guidelines

The above pedagogical guidelines are substantiated as follows (note that these

guidelines will be adapted based on the cycle outcomes):

Stage 1: Introduce a concept by giving background and examples.

- Giving thorough background information can help students grasp the overall

basic idea about the concept and can also initiate a high-level understanding

Introduce a concept by giving a background and examplesStage 1

Give a one pre-written problem specificationStage 2

Prepare a multicast for multiple display or a big projector image;
then explain the role of animation in the animation program Stage 3

Use an animation program for given scenarioStage 4

Repeat stage 4Stage 5

127

before explaining fine details in the form of programming code and animations.

This is helpful for avoiding conceptual bugs (Pea, 1986).

- Give an example or metaphor about the concept. The use of examples ignites

excitement, confidence, enthusiasm in playing a vital role in learning

programming (Malan & Halland, 2004). The use of metaphors or analogies in

introductory programming can enhance understanding (Moape, Ojo & van Wyk,

2017).

- Examples should not be too complex or too abstract as this can do more harm

than good (Malan & Halland, 2004). According to Malan and Halland (2004),

examples like "foo" and "bar" are meaningless to students. Real-world

examples help students to link context to a programming concept for better

understanding (Konecki, Lovrenčić & Kaniški, 2016). So, in this framework the

real-world examples are recommended as they are common and familiar.

- Having given students a background in this stage, that knowledge becomes

important for the next stage to link the given example into context. Discussion

and interaction should take place throughout as students’ reconstruction

processes continues.

Stage 2: Read and explain the problem specification to the students.

- A program specification refers to the description of what the student should

program for solving the problem. The problem specification requires a program

code or algorithm as a solution. The problem specification should be in a written

or typed format rather than verbal instruction as the students will benefit from

reference.

- Do not use difficult terminology when writing a problem specification as these

terms could be misinterpreted and subsequently drive students to develop

incorrect code. Simplify the language with basic common terminology (Craig,

Smith & Petersen, 2017).

- Make sure that students understand this part very well to reduce

misconceptions on problem specification, as this is one of a critical barrier to

designing a good program code.

- Ask students to identify the inputs and outputs as this will serve as continuous,

active learning and engagement throughout the teaching and learning session.

128

Stage 3: Run the computer multicast or a big projector image, display the actual first

appearance of the animation and then explain the role of animation in the animation

program.

- A multicast can be prepared during a contact session where the controller

computer displays the same content on all computers. Alternatively, multicast

can be prepared in a standalone platform like Microsoft Teams, Google Meet

or Zoom. Another option is a big projector screen visible to all students in the

room.

- Explain that the purpose of the animation program is to enhance the

programming understanding to ensure that students do not regard the

animation program as an independent entity. This will help students to regard

the animation programs as a way of learning a program code.

Stage 4: Use an animation program for a given scenario.

- At this stage, students should have linked the examples to the introduced

concept, grasped the problem specification, noted the inputs and outputs and

understand the role of the animation program.

- Let an animation program designed for that specific concept play. The lecturer

narrates the programming code in conjunction with the animation unfolding

during the process (Végh & Stoffová, 2017).

Stage 5: Repeat stage 4.

- The repetition of stage 4 strives to further sharpen program understanding.

6.6 Experimentation results

6.6.1 Summary of results (Animation programs on assignment)

The total number of students who participated was 24, with 12 students in the control

group and 12 students in the experimental group. This summary is based on the pre-

teaching and post-teaching exercises (see Figure 6.38) under the concept of

assignment.

129

a. What will be the value of t, p and k after the following algorithm has

executed?

int t, p, k;

t = 5;

p = 6;

k = 2;

t=p;

p=k;

k=t;

b. What will be the value of t, p and k after the following algorithm has

executed?

int t, p, k;

t = 2;

p = 4;

k = 7;

t=p;

k=t;

t=k;

Figure 6.38: Post-teaching exercises (Assignment)

Both pre-teaching and post-teaching exercises were graded. Table 6.1 reports on the

control and experimental results for both pre-teaching and post-teaching exercises.

Note that the pre-teaching exercises are in section 6.2.1. Table 6.1 contains the

statistics of the number of students, the percentage of students who answered certain

questions correct, and the grade average. For example, in the first column (control

group) under pre-teaching exercise 1 there is x (8) – 66.6%. In x (8) – 66.6%, the

number 8 in the brackets means the number of students who got the value of x correct.

The number of students who got the value of x correct is in the form of a percentage.

These calculations apply to all other columns, including the experimental group. The

average percentage is recorded at the end of each column.

130

Table 6.1: Results (Assignment)

Pre-teaching exercises Post-teaching exercises

Control group Experimental group Control group Experimental group

Pre-teaching exercise 1
x (8) - 66.6%

Pre-teaching exercise 2
p (8) - 66.6%
y (7) – 58.3%

Pre-teaching exercise 3
k (7) - 66.6%
t (6) - 50%

Pre-teaching exercise 4
x (7) - 58.3%
y (7) – 58.3%

Average percentage
60.7%

Pre-teaching exercise 1
x (9) - 75%

Pre-teaching exercise 2
p (8) - 66.6%
y (8) – 66.6%

Pre-teaching exercise 3
k (8) - 66.6%
t (7) - 58.3%

Pre-teaching exercise 4
x (6) - 58.3%
y (4) – 33.3%

Average percentage 60.6%

Post-teaching exercise
1
t (7) – 58.3%
p (6) – 50%
k (5) – 41.6%

Post-teaching exercise
2
t (6) – 50%
p (6) – 50%
k (5) – 41.6%

Average percentage
48.6%

Post-teaching exercise 1
t (9) – 75%
p (8) – 66.6%
k (8) – 66.6%

Post-teaching exercise 2
t (10) – 83.3%
p (9) – 75%
k (10) – 83.3%

Average percentage
75%

The control group has an average percentage of 60.7% in the pre-teaching exercise

and a grade average of 48.6% in the post-teaching exercise. Surprisingly, the grade

average dropped instead of increasing in the post-teaching exercise. This means that

the teaching method in the control group did not have a good impact on SIPS. The

experimental group had 60.6% in the pre-teaching exercise and 75% in the post-

teaching exercise. This increase in the post-teaching exercises is an early indication

of the impact of TLPAP on SIPS in the experimental group.

The other notable results is the variation of answers of students who got the value of

k correct in the first exercise of the post-teaching exercise in both groups. This was

caused by the fact that the k=t; was supposed to be updated with the overwritten value

of t, not the initialised value of t. The key line of code SIPS were supposed to trace

and keep in mind is t=p; which changes the value of t. However, 6 students from the

control group claimed that the value of k is 5 instead of 2 in the first pre-teaching

exercise. The problem is that the students in the control group did not properly trace

the value k, as the teaching method was not animation-based and considering that

these students are SIPS.

To realise the impact of the adopted teaching methods of both groups, a similar

question was given as a post-teaching exercise 2. In the case of post-teaching

exercise 2, the tricky part was the value of t. What made it tricky was that the value of

131

k was updated with a value of t, while the value of t was also updated with the value

of k and the value of t was initially updated with the value of p. In the experimental

group more students (83%) got the value of t correct than in the control group (50%).

Generally, the outcome of experimenting with the TLPAP was positive and I will be

experimenting again in the next cycle with adapted TLPAP for even more

improvement.

6.6.2 Summary of misconceptions found in the algorithms for

decisions/nested decisions and loops.

SIPS were able to write both pre-teaching and post-teaching algorithms related to

decisions/nested decisions and loops. The pre-teaching exercise was based on the

problem specification stated earlier in Figure 6.21 section 6.3.1. The post-teaching

exercise was based on the following problem specification (see Figure 6.39).

Write a C++ program that determines a final mark, then check if the student has passed or failed.

Prompt for a year mark and exam mark. The final mark is the average of the year mark and exam

mark. Show a message "You passed" if:

- the final mark is 50 or higher and

- the exam mark is at least 40.

Otherwise, show the message "You failed".

Figure 6.39: Post-teaching exercise (decisions/nested decisions)

A total of 31 students participated in the experiments (15 in the control group and 16

in the experimental group). The test was conducted online through Microsoft Teams.

The algorithms were also written and submitted online. Table 6.2 contains the

summary of errors found within the algorithms that need decisions/nested decision

statements. Note that the number in the brackets means the total number of students

who committed such error.

132

 Table 6.2: Summary of errors with the algorithms (decisions/nested decisions)

Pre-teaching algorithm Post-teaching algorithm

Control group Experimental group Control group Experimental group

-Incorrect use of ||
(3)
-Incorrect use of
&& (3)
-Incorrect use of
else (0)
-Swapped && and
|| (0)
-Not used || (2)
-Not used && (2)
-Not used else (1)
-No if (1)
-Disjointed / non-
nesting decision (5)

-Incorrect use of || (5)
-Incorrect use of &&
(4)
-Incorrect use of else
(3)
-Swapped && and ||
(1)
-Not used || (2)
-Not used && (1)
-Not used else (2)
-Disjointed / non-
nesting decision (6)

-Incorrect use of
&& (6)
-
-Incorrect use of
else or no else (4)
Used ||

unnecessarily (3)

-Incorrect use of &&
(3)

-Incorrect use of else
or no else (3)

The pre-teaching algorithm for loops was based on the problem specification in Figure

6.30 (section 6.4.1). The post-teaching algorithm was based on the following problem

specification (see Figure 6.40).

Write a program that displays the sum of integers from 1 to n value.

The n value is entered by the user.

Figure 6.40: Post-teaching exercise (loops)

The errors found in the algorithms that needed loops were also summarised. Table

6.3 contains the summary of errors. Note that the number in the brackets means the

number of students who committed that error.

 Table 6.3: Summary of errors with the algorithms (loops)

Pre-teaching algorithm Post-teaching algorithm

Control group Experimental group Control group Experimental group

-Incorrect first loop
(2)
-Incorrect second
for loop (6)
-Not displayed the
right content in the
last loop (2)
-Incorrectly used
nested loop (5)

-Incorrect first loop
(2)
-Incorrect second for-
loop (8)
-Not displayed the
right content in the
last loop (3)
-Incorrectly used
nested loop (5)

-Incorrect for loop
(4)
-Incorrect
accumulation of sum
in the loop (3)
-No Display sum
outside the loop (3)
-Incorrectly used
nested loop (4)

-Incorrect for loop (2)
-Incorrect
accumulation sum in
the loop (2)
-Not displayed sum
outside the loop (2)
- Incorrectly used
nested loop (3)

133

6.6.3 SOLO-adapted algorithms evaluation - Decisions

The evaluation of pre-teaching and post-teaching algorithms for the concept of

decisions / nested decisions are SOLO-adapted as discussed in the methodology

chapter (Chapter 4, section 4.5). The teaching and learning method used in the control

group is traditional-based infused with verbal or narrative teaching. The second

teaching and learning method, for the experimental group, is based entirely on TLPAP.

The SOLO-adapted evaluation sheet for the control group is depicted in Table 6.4.

Table 6.4: Evaluation sheet (control group on decisions/nested decisions)

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre ×

Post

U Pre × × × ×

Post ×

M Pre × × × × × × × ×

Post × × × × × × × × × × ×

R Pre × ×

Post × × ×

The evaluation sheet in Table 6.4, s1 means student 1. As there were 15 students in

the control group, this is indicated as s1 to s15. In terms of the abbreviations on the

first column of the sheet, the P stands for prestructural, U for unistructural, M for

multistructural and R for relational. The coordinates form a transition from one stage

to another. The SOLO-adapted evaluation sheet for the experimental group is shown

in Table 6.5 (based on the concept of decisions / nested decisions).

134

Table 6.5: Evaluation sheet (experimental group on decisions/nested decisions)

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

P Pre ×

Post

U Pre × × × × × × × × ×

Post

M Pre × × × × × ×

Post × × × × × × × ×

R Pre

Post × × × × × × × ×

The content of Table 6.6 is the evaluation matrix for the control and experimental

group. The M→M (stagnant-at-intermediate-level) transition has a higher percentage

in the control group than the experimental group, which means no impact on the

teaching and learning method or simply stagnant at intermediate level. This is the first

indicator that the traditional teaching methods only impact to a certain extent,

especially on SIPS. The improvements from the lower level (P→U) were found in one

algorithm and the improvements from the higher level (M→R) were also found in one

algorithm. There were two evaluations that transitioned to R→R (already-know) which

means the teaching methods were not necessary and the success of such transition

cannot be linked to a particular teaching intervention. This is because the knowledge

was acquired prior to our teaching intervention.

The U→R (Improved+) transition had 0 matches in the control group but had 18.7%

matches in the experimental group. Even though the U→R recorded a small number,

this signals the positive impact of TLPAP over SIPS and is referred to as improved+.

This is because U→R means that the struggling students were initially far from the

relational stage; therefore, it took significant teaching and learning methods to bring

them into the relational stage.

The closest the student can reach from the unistructural stage is the multistructural

stage which is defined as U→M (intermediate-improvement). The performance of

U→M (in Figure 6.35) has a marginal difference (26.6% for the control group and

37.5% for the experimental group). This means that both the control and experimental

135

groups had intermediate-improvement status, with the experimental group recording

a higher percentage.

Table 6.6: Evaluation matrix

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

6.6% 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 6.25% 26.7% 37.5% 46.7% 6.3% 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 18.75% 6.6% 31.3% 13.3% 0

 P U M R

6.6.4 SOLO-adapted algorithms evaluation - Loops

The SOLO-adapted evaluation sheet for the concept of loops for the control group is

depicted in Table 6.7.

Table 6.7: Evaluation sheet (control group on loops)

 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n1
4

P Pre × ×

Post ×

U Pre × × × × × ×

Post × × × ×

M Pre × × × × × ×

Post × × × × × × ×

R Pre

Post × ×

The SOLO-adapted evaluation sheet for the concept of loops for the experimental

group is depicted in Table 6.8.

136

Table 6.8: Evaluation sheet (experimental group on loops)

 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13

P Pre ×

Post ×

U Pre × × × × ×

Post ×

M Pre × × × × × × ×

Post × × × × × × × × ×

R Pre

Post × ×

The M→R transition in the control group recorded numbers similar to the experimental

group (see Figure 6.9). The M→R indicates improvement; however, it affected very

few students in either the control and experimental group. The improvement in the

middle level (U→M) affected 30.7% of the experimental students which is a bit more

than the U→M impact (21.4%) in the control group. The U→M means intermediate-

improvement. A small improvement (7.1%) is noticed again under P→U (lower-level-

improvement) in the control group while the experimental group had 0 algorithms in

that transition. The M→M transition (28.6% in the control group and 38.5% in the

experimental group) means there were no improvements for struggling students in the

middle level. The U→U transition (21.4% in the control group and 7.69% in the

experimental group) means there were no improvements for struggling students in the

lower level.

137

Table 6 9: Evaluation matrix

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

7.1% 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-lower-

level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

7.1% 0 21.4% 7.7% 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 21.4% 30.8% 28.6% 38.5% 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 14.3% 15.4% 0 0

 P U M R

Generally, the performance of the teaching method in the experimental group

improved but was not satisfactory, prompting reflection and improvements on both the

animations and pedagogical guidelines on loops.

6.7 Reflections

Based on this cycle, the reflections are as follows:

- There are persistent errors in the post-teaching algorithms in what is supposed to

be basic knowledge. These problems were encountered in the use of decisions

and even more so in the loop conditions.

- Students are not able to identify when to have two or more separate if-statements

and when to have a nested if-statement. This was noted in the pre-teaching and

post-teaching algorithms of both groups.

- Students are not able to identify when to have two or more separate loops and

when to have a nested loop. This was noted in the pre-teaching and post-teaching

algorithms of both groups.

- The animation program for the loops requires further design improvements

because the results are not good enough compared to the success obtained after

using animation programs for teaching and learning assignment and

138

decisions/nested decisions. The animation program for loops does not clearly

depict two separate loops.

- When animation program for decisions/nested decisions was demonstrated, after

stage 5 of pedagogical guidelines (which requires a repeat of stage 4), some

students requested a repeat of the demonstration again. This was a lesson since

the demonstration for the loop animation was repeated three times.

- The need to unify the components in animation program design is identified.

- The animation programs in this cycle were experimented with on Microsoft Teams.

Through the Microsoft Teams platform, I was able to note that the animation

programs are compatible for online presentation, and I can easily record the

session for later access by students. One shortcoming I have experienced was

networks disruptions. Another option can be a pre-recorded session which can be

placed in the LMS, in this way, students can be directed to a recorded version of

the same session in the case of network disruptions, noisy channels or unmuted

microphones.

6.8 Planning for cycle 3

I am using the reflections of cycle 2 discussed in the previous section (section 6.7) to

plan cycle 3. To alleviate the misconceptions about the basics of programming in each

concept, the main idea is to develop another set of animation programs specifically for

introduction of the new concept. These introductory animation programs are

demonstrated before the demonstration of the main animation programs. The

introductory animation programs do not need a predefined problem specification as

the plan is to give students the conceptual, technical view and basic knowledge before

they can solve any problem. Besides identifying the need for animation programs that

specialise in concept introduction, a gap has been noted in the literature on the same

issue.

Methodologically, the plan is to continue with the same SOLO-based evaluation

approach, however in cycle 3 the evaluation will be on various sections of the

algorithm, instead of one algorithm as whole. The evaluation of various sections of the

algorithm can deepen insight into the analysis of an algorithm. This will help us note

the patterns of improvement even in the algorithms which are not 100% correct. The

139

approach will also help us reflect or plan specifically on a certain section of an

algorithm if there are problems.

Having used the animations presented in this cycle in an online platform (MS Teams)

and having experienced no incompatibility issues, the demonstration in cycle 3 will be

through multicasting in a face-to-face contact session.

Chapter 7 will focus on the new addition of animation programs in the TLPAP

(animation for concept introduction and other new concepts to be covered). The

chapter will only repeat the demonstration of the animation programs that are affected

by the improvements (animation for loops).

6.9 Conclusion

 In this study, I have initiated the TLPAP framework for SIPS. This chapter focused on

presenting the second cycle of action research where various TLPAP animation

programs were outlined and demonstrated. This approach is coupled with guidelines

for productive use of animation programs. The process of experimenting, revising and

reflecting on the action research methodology allows us to advance toward the final

version of the TLPAP framework.

This chapter started with animation programs for the uses of assignment, followed by

animation programs for the concept of decisions/nested decisions and the concept of

loops. Through pre-teaching and post-teaching exercises in the control and

experimental groups, I measured the impact of the TLPAP framework. The

experiments were conducted with university students within an introductory

programming module. In the experimental group, the overall improvements were

positive in the concept of assignment and decisions/nested decisions, but more

experiments and improvements may be added. The results for the animation for

teaching and learning loops were not positive as there was only little improvements or

intermediate improvement. As emphasised in the reflection and planning sections

(sections 6.7 and 6.8), the plan is to improve the design of the animation for loops and

develop separate animation programs for use in the introduction of new concepts. This

took place after noting what can be regarded as simple but challenging for SIPS. The

full details of cycle 3 are presented in the next chapter (Chapter 7).

140

Chapter 7: Adapted framework - Cycle 3

Chapter

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Content

Introduction

Literature
review

Theoretical
framework

Methodological
approach

Initial
framework -

cycle 1

Adapted
framework -

cycle 2

Adapted
framework -

cycle 3

Adapted
framework -

cycles 4 and 5

Conclusion

141

7.1 Introduction

As this study is action research, in this chapter I continue to present relevant adapted

teaching methods. The action research methodology consists of several action cycles.

The previous chapter (Chapter 6) presented the activities and the outcomes of cycle

2 which were based on the animation programs for teaching and learning IPC

(assignment and decisions/nested decisions). One main idea to be demonstrated in

this cycle (cycle 3) is the use of a separate set of animation programs specifically for

concept introduction. This implies that the animation programs for concept introduction

are used first, and thereafter the animation programs with problem specifications. The

content of cycle 3 will include animation programs for concepts like nested loops,

arrays and functions. The process of developing, testing various animation programs

and the adoption of pedagogical guidelines is a way to advance and validate the

Teaching and Learning Programming with the Animation Programs (TLPAP)

framework.

This cycle serves as a continuation to answer our last research question which is

formulated as follows:

- How can we prove and evaluate the efficacy of the teaching and learning

programming with the animation programs framework?

The chapter opens by explaining the designed animation programs for introducing a

concept (section 7.2), followed by the animation programs with problem specifications

(section 7.3), then discussing adapted pedagogical guidelines (section 7.4) and

experimental results (section 7.5). Section 7.6 presents the summary of the reflections,

with the planning of cycle 4 in section 7.7, while section 7.8 concludes the chapter.

7.2 Animation programs for introducing new concepts

This section demonstrates the design of animation programs to be used when

introducing a new concept to SIPS. The introductory animation programs are not

accompanied by problem specifications as they are short, basic and precise. The

students are required to gain the basic knowledge of a certain concept before they can

be taught how to solve a problem through a program code. The introductory animation

programs focus on the structural aspects of the concept. The design pattern of

142

introductory animation programs is similar to the animation programs for problem

specification which can further reduce animation complexity and ease the transition

into the animations for problem specifications. Since the introductory animation

programs are short and precise, I found no need to include line indicators (line

numbers) on the left side of the program code. The line indicators are included with

the animation programs for problem specification because they are likely to be a bit

long, so they are helpful in tracing a specific line of code. The uses of these

introductory animation programs are incorporated into the pedagogical guidelines

used and revised in this cycle (presented in section 7.4). Pedagogical guidelines are

followed in efforts to increase the effectiveness of the TLPAP.

7.2.1 Decisions/nested decisions

The introductory animation programs in this section focus on decisions (if-statements).

The intended learning outcomes (ILOs) for this concept are for SIPS to construct a

proper simple if-statement, if-else statement and nested if-statement. These ILOs are

achieved with the introductory animation programs presented in this section and

animation programs with problem specification presented in section 7.5.2.

To introduce SIPS to the flow in decision statements, the introductory animation

programs start with a simple if-statement, followed by an if-else statement and a

nested if-statement.

7.2.1.1 Simple if-statement

The state of Figure 7.1 is the first appearance of the animation program before the

button click. On the left of the animation program is a program code and on the right

are relevant graphics to animate accordingly. Note that cout << "Number is less than 10"

line is grey because it is the statement that must execute in the case of true condition;

therefore, it catches the attention of SIPS during execution.

143

Figure 7.1: Simple if-statement (Demo 1)

An input box pops up after the user presses a process button (Figure 7.2). Initially, the

arrow on the far left of the program code pointed to first line in Figure 7.1, and then

when the arrow progresses to the second line (cin>>…) (Figure 7.2), an input box

appears.

Figure 7 2: Simple if-statement (Demo 2)

Upon value input, the green vertical bar in the graphic is gradually replaced by the

grey bar as a sign of moving to the next line of code. When the move has been

144

completed and the grey bar has shaded the entire bar, the arrow moves to the next

line (see Figure 7.3) which is if (number < 10). While the arrow is being pointed at the

if-condition, as shown in Figure 7.3, the yellow square flickers, indicating the process

of evaluating a condition.

Figure 7.3: Simple if-statement (Demo 3)

In Figure 7.4, an arrow is now pointing at the line of code being executed as a result

of a true evaluation from the if-condition. That line is shaded with a sky-blue colour to

draw SIPS’ attention, but it reverts to the original colour when the arrow moves to the

next line of code. The output is also printed, as seen at the bottom of Figure 7.4.

145

Figure 7.4: Simple if-statement (Demo 4)

Figure 7.5 shows the arrow pointing at the last line of code; the output is printed at the

bottom of the program. At this stage, SIPS should understand that the first output was

processed as a result of a true evaluation from the if-condition and the last output gets

printed without any conditions.

Figure 7.5: Simple if-statement (Demo 5)

To further extend the demonstration and improve understanding, it is important to

restart the program and make use of input that will make the if-condition evaluate to

146

false. In Figure 7.6, the program has been restarted and the value 13 is entered as an

input.

Figure 7.6: Simple if-statement (Demo 6)

The execution of the program is complete and the output is only "Complete". Upon

the flickering of the yellow square, the green horizontal bar remains green which

means that the condition is false and the relevant line of code is not executed. The

arrow will then jump from the if-clause to the cout<<”Complete” line of code.

7.2.1.2 An if-else statement

The following section explains the program that assists in teaching an if-else

statement. Figure 7.7 shows the first appearance of the animation program before the

process button is clicked.

147

Figure 7.7: An if-else statement (Demo 1)

Figure 7.8 shows a result of a complete animation program when the value 3 is

entered. The process of animating and entering a value is the same as explained in

the previous section (section 7.2.1.1).

Figure 7.8: An if-else statement (Demo 2)

A completed program (see Figure 7.9) shows that an else part of the program was

executed and SIPS would have seen that the content of the if-condition was jumped

due to false evaluation. SIPS would also note the arrow jump from the if-clause to the

content of the else section, and further note that the bar leading to execute the content

of the if-condition remained green.

148

Figure 7.9: An if-else statement (Demo 3)

7.2.1.3 Nested-if statement

This section demonstrates the nested if-statement. The logic and concept remain the

same as the previous two sections, but the demonstration in two figures (Figures 7.10

and 7.11) indicates a significant addition that is part of the nested if-statement. In

Figure 7.10, we see another yellow square which represents an additional condition.

Figure 7.10: Nested-if statement (Demo 1)

Figure 7.11 shows the program has completed execution. The content of an else

clause was executed because 23 is not less than 10 and also not less than 21. The

149

significant learning aspect here is that SIPS would understand that when the condition

evaluates to false, the content of that if-condition is jumped (by an arrow) and the

horizontal bars would not have changed to grey.

Figure 7.11: Nested-if statement (Demo 2)

7.2.2 Repetitions

This section demonstrates animation programs that help SIPS with repetitions/loops.

The ILO for this concept is for SIPS to construct looping statements which allow a

certain portion of a program code to repeat accordingly. The types of loops covered

include for-loop, while/do-while loop and nested loop. These ILOs are achieved with

the introductory animation programs presented in this section and animation programs

with problem specification presented in section 7.5.3.

In the animation programs, the important aspects to note for SIPS are the movement

of an arrow and what happens to the repeated code. The following section starts with

the for-loop.

7.2.2.1 For-loop

A sample for-loop code is given in Figure 7.12. The code within a loop gets repeated

three times.

150

Figure 7.12: For-loop (Demo 1)

When the arrow moves to the first line, a container that represents a variable appears.

When the arrow moves to the for-clause, corresponding blue text appears to indicate

the current value of x and whether x < 3; is true or false. When the arrow moves to the

next line (p = p + 1), the green bar gradually turns grey, then executes p = p + 1 (see

Figure 7.13).

Figure 7.13: For-loop (Demo 2)

In Figure 7.14, the number +1 appears and then gradually moves down until it reaches

the location of the value 0. When +1 reaches where 0 is, it then changes the value to

1. The arrow moves back to the for-clause, and then the blue text (x = 1 and x<3? =

true) is updated accordingly (Figure 7.14).

151

Figure 7.14: For-loop (Demo 3)

In Figure 7.15, the +1 graphic moves again to increment the value of p. When the

animating +1 text reaches where the value is, it changes to 2. The arrow will move

back to the for-clause again, change x to 2 and x < 3 remains true because the value

of x is 2.

Figure 7.15: For-loop (Demo 4)

In Figure 7.16, the +1 graphic moves to where the value 2 is, then it changes to 3. This

indicates the third round of the loop.

152

Figure 7.16: For-loop (Demo 5)

On the last round of the loop, an arrow moves back to the for-clause and updates the

text accordingly. In this case it still updates x = 3 with blue font and x < 3? false with

red font to further draw SIPS’ attention. The arrow will not go back to point at p = p +

1 but jump to the first cout<< and print the output, then move to the last cout<< and

print the last output (Figure 7.17). The animation authoring has only been created to

accommodate p = p + 1. Therefore, the emphasis with this demonstration should also

be about the similarity of x++ which is part of a loop counter and p = p + 1 which

increment 1 inside the loop.

Figure 7.17: For-loop (Demo 6)

153

7.2.2.2 While-loop and Do-while loop

The following animation program (Figures 7.18 and 7.19) does exactly what the

previous section did but under a while-loop. Therefore, to avoid repetition, I only show

an executed program in the figures. By Figure 7.18, SIPS should be able to contrast

differences between for-loop and while-loop which are both types of pre-test loops.

This must be emphasised by the educator.

Figure 7.18: While-loop (Demo 1)

By Figure 7.19, SIPS should further comprehend the difference between pre-test and

post-test loops, since a do-while is a type of post-test loop (the condition is evaluated

at the end of the first round of the loop). This should also be emphasised by the

educator as the animation shows how a condition is tested first in the case of a pre-

test loop and later in the case of a post-test loop.

Figure 7.19: Do while-loop (Demo 2)

154

7.2.2.3 Nested loop

In Figure 7.20, the introductory animation program for nested loop consists of two

rectangular shapes. This is designed in a way to encourage SIPS’ understanding of

the nature of a nested loop and how it happens. The right-side rectangular shape

denotes that the code within that shape will be repeated (looped) if necessary. The left

side of the shape is reserved for relevant animation and the second half of the shape

is the program code. The track bars at the top of each square, part of the animation,

are used to trace the state of the loop during a looping process. Likewise, this should

reinforce SIPS’ understanding of the execution of the inner loop in relation to the outer

loop. The nature of the graphics and what they will do are explained by the educator

beforehand, as noted in the TLPAP pedagogical guidelines. This introductory

animation program differs from other loop animation because the graphics clearly

separate the inner loop and outer loop, demonstrating the activities and effects of each

loop over the other.

Figure 7.20: Nested-loop (Demo 1)

The trackbars have small spaces between the beginning and the end. For each round

of a loop, the blue arrow (pointing down) on the track bar moves step by step (it will

have to move five steps before it can reach the end of the bar). Both inner and outer

loops are to loop five times, and hence the track bar steps five times. The arrow

pointing at the line of a program code indicates the currently executing line of code.

The stars (*), printed gradually during code execution, are printed within the inner

155

rectangle because that happens through the inner loop. Figure 7.21 reveals the

animation program execution which currently is in the third round of the outer loop and

fourth round of the inner loop.

Figure 7.21: Nested-loop (Demo 2)

The additional text at the top of the outer loop indicates the value of x, the condition

and if that condition has been evaluated to true or false. If the condition evaluates to

true, the font of the text is green. If the condition evaluates to false, the font of the text

turns red. In the case of Figure 7.22, the text at the top of the inner loop is red because

y = 5 and y is not less than 5; therefore, it evaluates to false. Subsequently, the arrow

pointed at the cout<<endl; indicating the end of the line and the next star to be printed

in the new line.

156

Figure 7.22: Nested-loop (Demo 3)

Figure 7.23 indicates the complete execution of the animation program. In that state,

we can see that all stars have been printed (5 x 5) and the conditions of each loop are

false (with red font).

Figure 7.23: Nested-loop (Demo 4)

7.2.3 Arrays

The ILOs for the concept of one-dimensional arrays are for SIPS to write algorithms

for storing and accessing values in a one-dimensional array. The ILO for parallel

arrays is for SIPS to write a one-dimensional array algorithm that can be made parallel

or relate to another one-dimensional array.

157

7.2.3.1 One-dimensional array – storing and access

The program in Figure 7.24 consists of a code and corresponding graphics. Graphics

are tray-like and will help in storing values.

Figure 7.24: Arrays (Demo 1)

When the arrow reaches the cin object, as usual it prompts the user to enter the value.

However, in this case, each value is stored in the array as entered (see Figure 7.25).

Figure 7.25: Arrays (Demo 2)

When the first loop is complete, the second loop takes over and prints the content of

the array. SIPS should be able to see, as the loop's pace is reduced to a point where

they can see how the values are printed during the looping process (see Figure 7.26).

More importantly, the top of the array graphic contains an animating track bar that

points to the currently accessed element in the array. SIPS are also able to see the

158

index of that currently accessed element at the bottom of the array tray and within the

square brackets of arrNumbers[4]. The narrator/educator should emphasise this.

Figure 7.26: Arrays (Demo 3)

The second loop not only prints the content of an array but further determines the sum

of array elements. SIPS should be able to see how to retrieve a value from an array

(See Figure 7.27).

Figure 7.27: Arrays (Demo 4)

7.2.4 Functions

This section discusses introductory animation programs for teaching and learning

functions. The ILOs for the concept of functions are for SIPS to construct a line of code

159

that calls a function that returns a value; that does not return a value; pass parameters

(values and references) in the function calls; and construct proper function headers,

parameters and function content in a way that maps other entities together. These

ILOs are achieved with the introductory animation programs presented in this section

and animation programs with problem specification presented in section 7.5.5.

7.2.4.1 Value returning function

Figure 7.28 shows the animation program for a function that returns a value to the

calling environment.

Figure 7.28: Value-returning function (Demo 1)

Upon a start button click, the arrow reaches cout<<mynumber() then the green bar gets

shaded by the grey colour towards mynumber() rectangle. The mynumber() function

block gets shaded in a sky-blue colour then reverts to its original colour to catch the

attention of the SIPS. This helps SIPS understand that there is a function call and the

actual function gets executed when the function is called. Furthermore, if the function

returns a value, that value is displayed through the cout object. To further emphasise

that the function returns a value, a returned value gets animated as it floats from the

bottom of the function (See Figure 7.29).

160

Figure 7.29: Value-returning function (Demo 2)

In Figure 7.30, the program has completed the execution and SIPS would have

understood how the function is called, when is the function executed and how the

value-returning function gets displayed.

Figure 7.30: Value-returning function (Demo 3)

7.2.4.2 Non-value returning function

The design of the animation program in this section is similar to the previous programs,

except for changes in the function return type and the way the function is called. SIPS

are expected to contrast between the two ways of calling a function. This will further

solve the problem of confusion in calling functions as discussed in the literature review.

The following two figures (See Figures 7.31 & 7.32) are snippets of the program.

161

Figure 7.31: Non-value-returning function (Demo 1)

Figure 7.32 shows a completed execution of the animation program. Note that the bar

has gradually turned from green to grey when the arrow was pointing at a line

(display()) that calls a function.

Figure 7.32: Non-value-returning function (Demo 2)

7.2.4.3 Value parameters

In this section, I demonstrate animation programs for introducing functions but with a

special focus on value parameters. In Figure 7.33, I show the main function and two

functions. One function has parameters and the other is without parameters. SIPS will

be able to see what happens when a function with parameters is called.

162

Figure 7.33: Value parameters (Demo 1)

As usual, the arrow points line by line in the main function. When it points at mysum =

calcsum(number1, number2) the grey of the bar moves from right to left towards a

rectangle containing function code. SIPS also benefit from experiencing the alternative

way of calling a function that returns a value, which is by storing a returned value in a

variable. In section 7.2.4.1, the function was called in an output statement and in this

case, a variable was declared to store a value returned by the function. The copies of

number1 and number2 which are 20 and 3 appear at the top of the calcsum function

(appear as numbers), then gradually move down, creating an animation that indicates

values being received/copied into the function. When the graphics (20 and 3) reach

the variables n1 and n2 they disappear, thereby making a demonstration that the

values were copied into those variables (See Figure 7.34). The colour of the rectangle

temporarily changes to blue to catch the attention of SIPS.

163

Figure 7.34: Value parameters (Demo 2)

Figure 7.35 is like Figure 7.34. In this case, a value calculated by the calcsum function

is copied or received by the display function. The red font text (copy of mysum) further

emphasises the value being copied to the sm variable.

Figure 7.35: Value parameters (Demo 3)

When the animation program execution has been completed (as seen in Figure 7.36),

SIPS would understand that the value parameters are copied and sent to be displayed

in that function. The green font comments at the top of the function call serve as a

notice to function calls.

164

Figure 7.36: Value parameters (Demo 4)

7.2.4.4 Reference parameters

This section demonstrates how reference parameters work. Figure 7.37 shows the

main function and a non-value returning function. The function has two value

parameters and one reference parameter.

Figure 7.37: Reference parameters (Demo 1)

When the function executes, just like with the previous section, value parameters as

graphics move down to be copied into n1 and n2. However, with a reference

parameter, the text reference indicates that the reference instead of a value is passed

(see Figure 7.38).

165

Figure 7.38: Reference parameters (Demo 2)

More importantly, SIPS see that when the sum changes in a function, the mysum value

from the main function changes as well. The sum calculated by the calcsum function

floats upwards as a number (15) towards mysum (Figure 7.39). When the number (15)

reaches mysum, the pointing arrow moves to the next line (cout<<”Sum is ”<<mysum)

and the output will be displayed on the output window.

Figure 7.39: Reference parameters (Demo 3)

166

7.3 Animation programs with problem specifications

7.3.1 Repetitions

The demonstration of the animation program in this section is based on the problem

specification in Figure 7.40.

Write a program that asks a user to enter an integer between 1 and 10. Continue to prompt the user

while the value entered does not fall within this range. When the user is successful, display a

congratulatory message as many times as the value of the successful number the user entered.

Figure 7.40: Problem specification – loops

Figure 7.41 shows the first appearance of the animation program. The borderline

rectangle on the left side indicates a piece of code that is executed inside the loop.

Figure 7.41: Loops (Demo 1)

The first prompt is outside the loop; hence, the animated container is outside the

rectangular borders. The prompt to enter a number happens at line 4 and in this case,

the number 14 was entered (see Figure 7.42).

167

Figure 7.42: Loops (Demo 2)

In Figure 7.43, the blue highlight is in the loop and prompting for the second time is in

line 9. This is because 14 is greater than 10 and therefore triggers a re-prompt as the

condition evaluates to true (false or true = true). The green text at the top of the

rectangle further indicates the true evaluation of the while-loop to the student.

Figure 7.43: Loops (Demo 3)

In Figure 7.44, the number 3 is entered which is expected to evaluate to false because

3 is not less than 1 or greater than 10.

168

Figure 7.44: Loops (Demo 4)

Figure 7.45 indicates a completed execution of the animation program.

Figure 7.45: Loops (Demo 5)

7.3.2 Nested loop

This demonstrates the nested loop animation program aligned to problem

specifications. The following figure (See Figure 7.46) is the problem specification for

the animation program to be demonstrated.

169

Write a program code to produce the following output (note: Make use of a nested loop: any type of

loop):

*

* *

* * *

* * * *

* * * * *

* * * * * *

* * * * * * *

* * * * * * * *

* * * * * * * * *

* * * * * * * * * *

Figure 7.46: Nested loop problem specifications

The animation programs demonstrated through subsequent figures in this section

helps SIPS understand that the inner loop reiterates based on the number of times the

outer loop reiterates. The program code in Figure 7.47 has a borderline rectangular

shape that contains the inner loop code and the big rectangle that covers the outer

loop. This layout of the rectangles with borders denotes that a code will be repeated,

and its uses should be explained before the animation program demonstration

(pedagogical guidelines require the animation to be explained as well before

demonstration). This is important to allow SIPS to comprehend the execution of the

inner and outer loops as the navigating arrow moves up and down across the program

code. The trackbars at the top of each rectangular shape show the status of the loop

towards the final repeat. The blue arrow in the trackbar will take a step to the right

direction until it reaches the tenth final step during animation program execution.

170

Figure 7.47: Nested-loop (Demo 1)

Upon button click, the pointing arrow starts from the first line which is the for-clause of

the outer loop. While the arrow is pointing at the for-clause of the outer loop, the value

of x gets updated with the current value and the condition gets evaluated and the

results are printed at the top. In Figure 7.48 the inner loop had just completed looping

four times and printed four asterisks on the last line. When the condition of the inner

loop evaluates to false, the text at the top of the inner loop changes to a red font and

is further updated as a comment at the top of the loop (see red font comment as y <

x? = false in Figure 7.48).

Figure 7.48: Nested-loop (Demo 2)

171

Figure 7.49 shows an executed animation program. At this stage, SIPS would have a

basic understanding of the concept of a nested loop.

Figure 7.49: Nested-loop (Demo 3)

7.3.3 Arrays

7.3.3.1 One-dimensional array

The program animations in this section are based on the problem specification in

Figure 7.50.

Declare an array named arrNumbers and initialise it with 4, 10, 72, 5, 90, 3. Count the number of
elements in the array that are higher than 49.

Sample output:
Total numbers more than 49 is 2

Figure 7.50: Problem specifications – arrays

The following set of figures will demonstrate the animation programs for arrays. Figure

7.51 is the state of the first appearance of the animation program and contains a

program code and a display window for the program.

172

Figure 7.51: Arrays (Demo 1)

Figure 7.52 shows the initialised array and relevant graphics on the left. The

progress bar at the top indicates the currently accessed element in the array in

relation to the currently executed line in the program code. The text above the array

animation changes font accordingly: if the condition evaluates to false the font is

red, and if the condition evaluates to true the font is green.

Figure 7.52: Arrays (Demo 2)

In Figure 7.53, the condition is true at the pointed element and index.

Subsequently, the font changes to green.

173

Figure 7.53: Arrays (Demo 3)

Figure 7.54 indicates a complete animation program execution.

Figure 7.54: Arrays (Demo 4)

7.3.3.2 Parallel array

The content of Figure 7.55 is a problem specification for parallel arrays.

Initialise an array named arrNames with these names: John, Dias, Linda, Obed, Jack and Ouma.

Declare another array named arrAges that contains ages of the names in arrNames (parallel array).

Initialise arrAges with 22,36,25,20,27,33. Prompt the user to enter the name of a person. If that name

exists in the array, then display the age of that person. If that name does not exist in the array, show

the message "Name does not exist".

Figure 7.55: Parallel array problem specification

174

Figure 7.56 shows the program code and reserved space for the animation

visualisation. The purpose is to demonstrate how parallel arrays work.

Figure 7.56: Parallel arrays (Demo 1)

Figure 7.57 indicates that a program is prompting for a name (a non-existing name is

entered).

Figure 7.57: Parallel arrays (Demo 2)

Just like the previous section on a one-directional array, the searching happens with

the assistance of the track bar (See Figure 7.58).

175

Figure 7.58: Parallel arrays (Demo 3)

The name "Joe" does not exist in the array; this means that the condition evaluation

of the elements were all false. Figure 7.59 shows that the search has completed and

the name does not exist.

Figure 7.59: Parallel arrays (Demo 4)

In the case of Figure 7.60, a name that exists is entered.

176

Figure 7.60: Parallel arrays (Demo 4)

The search continues until it reaches the position of "Obed". Subsequently, the text at

the top of a track bar changes to name == arrNames[3] = true and also changes the

font colour to green (see Figure 7.61). The program prints the output and exits the loop

due to the break keyword.

Figure 7.61: Parallel arrays (Demo 5)

7.3.4 Functions

The animation program presented in this section is based on the program

specifications in Figure 7.62.

177

Maxwell Fitness Centre is a non-membership fitness centre where anyone can exercise and pay a
certain amount per hour. Read and implement the following functions and the main function according
to the specifications below.
Main function

Prompt the user to enter the name of a person, facility code, and the number of hours to
use a certain facility. Note that a facility code is a type of an exercise.
Call the necessary functions in the correct order and with relevant parameters where
necessary.

Functions
➢ Create a function called amountdue that receives facility code and hours worked as

parameters then calculates and returns the amount due. Refer to the table below for the
calculation of the amount due.

Facility Facility code Rates

Squash court squa R13.00/hour

Swimming pool swim R12.00/hour

Gymnasium gym R11.00/hour

Weights wei R8.00/hour

➢ Create a function called finalamountdue of a type void. The function receives an amount

due calculated and returned by the amountdue function, then determines the final amount
due by adding 14% vat. The final amount due must be accessible to the main function.

➢ Create a function called display to display the name of the person entered earlier and the
final amount due.

Figure 7.62: Problem specification – functions

Figure 7.63 shows four functions, the main function and three other functions. The

functions cover value parameters, reference parameters, value-returning function and

non-value-returning functions.

Figure 7.63: Functions (Demo 1)

178

In Figure 7.64, the program prompts the user to enter a name, as per the currently

highlighted line of code. Subsequently, the facility code (wei) and the number of hours

(3) are entered.

Figure 7.64: Functions (Demo 2)

On the animation side, the grey-coloured rectangle symbolises a function. In Figure

7.65, the blue highlight is on the function call, the background colour of the function

being called changing to sky blue. The actual values sent as parameters appear at the

top of the amountdue function as graphic text, then gradually move down as a sample

of copied parameters. When the values ("wei" and "3") reach the parameters ("fcode"

and "hrs"), they disappear with an illusion of being copied into those variables.

Figure 7.65: Functions (Demo 3)

179

In Figure 7.66, the value being returned comes out at the bottom of the function

between the two bars.

Figure 7.66: Functions (Demo 4)

In Figure 7.67, another function call is executed and the program highlighted it in sky

blue as well. The finalamountdue function has two parameters: the value parameter and

the reference parameter. The value (24) floats into the amt variable just like with the

previous function.

Figure 7.67: Functions (Demo 5)

180

Figure 7.68 shows the calculated value from the finalamountdue function move up and

vanish after reaching the finalamount variable.

Figure 7.68: Functions (Demo 6)

In Figure 7.69, the last function named display receives the values and displays

accordingly.

Figure 7.69: Functions (Demo 7)

Figure 7.70 is the state of a completed execution of the animation program.

181

Figure 7.70: Functions (Demo 8)

7.4 Adapted pedagogical guidelines

The following guidelines (see Figure 7.71) were revised from cycle 2 (Chapter 6,

section 6.5), adapted and followed when all animation programs were demonstrated

in this cycle.

Figure 7.71: Adapted pedagogical guidelines

The TLPAP animation programs are designed in way that enable the narrator to

emphasise certain elements of the concept. The assumption is that these guidelines

Introduce a concept by giving a background and examples.Stage 1

Prepare a computer multicast or a big projecting image then explain
the role of animation and its components. Stage 2

Use an animation program for concept introduction.Stage 3

Repeat stage 3, then move to stage 5. Stage 4

Ready the problem specification and its animation program.Stage 5

Use an animation program with problem specification.Stage 6

Repeat stage 6 and ask if there are questionsStage 7

182

should be followed after the narrator (educator) has familiarised himself or herself with

how the animation programs work, as discussed in sections 7.2 and 7.3. This will assist

in transitioning TLPAP to the SIPS. The pedagogical guidelines in Figure 7.71 are

substantiated as follows.

Stage 1: Introduce a concept by providing background information and examples.

- Giving a good background helps students grasp the overall basic idea about

the concept, it initiates a high-level understanding before the educator can

explain fine details of the program code and it is further helpful to avoid

conceptual bugs (Pea, 1986).

- Give example or metaphor about the concept. The use of examples ignites

excitement, confidence and enthusiasm and plays a vital role in learning

programming (Malan & Halland, 2004). The use of metaphors or analogies in

introductory programming enhances understanding (Moape, Ojo & van Wyk,

2017).

- Examples should not be too complex or too abstract as they can do more harm

than good (Malan & Halland, 2004). According to Malan and Halland (2004)

examples like "foo" and "bar" are meaningless to students; therefore, in this

framework, we recommend real-world examples which are commonly familiar.

Real-world examples help students link the context to a programming concept

for better understanding (Konecki, Lovrenčić & Kaniški, 2016).

- Having given students some background in this stage, that knowledge becomes

important in the next stages to link the example into context. Discussion and

interaction should carry on throughout as students’ reconstruction processes

continues.

Stage 2: Prepare the computer multicast or a big projecting image; explain the role of

animation and its components.

- A multicast can be prepared in a contact session where the controller computer

displays the same content on all computers. Alternatively, multicast can be

prepared in an online platform like Microsoft Teams, Google Meet or Zoom.

Another option is a large projector screen visible to all students in the room.

183

- Explain that the purpose of the animation programs is to enhance programming

understanding to ensure that students do not regard the animation program as

an independent entity. This will help students regard animation programs as

one way of learning and understanding how program code works. Highlight the

components of the animation where possible.

Stage 3: Use an animation program for concept introduction.

- The first appearance of all our animation programs shows a program code with

no animation or graphics at this point. Before the educator can press the start

button, a verbal narration of how that program works should be prepared. This

is done so that when the narration is presented with animation later, the

students can construct their knowledge by linking it with previous knowledge or

triggering aspects that were not clear in the program code.

- Secondly, play the animation program and narrate synchronously. Mayer and

Anderson (1991), refers to this approach as the ‘words-with-pictures’ approach,

found it to be more effective than the ‘words-before-pictures’ approach. With

words-with-pictures, the narration and the animation occur synchronously. With

words-before-pictures, the narration happens first without the involvement of

pictures (animation), and later the animation plays without a supporting

narration.

Stage 4: Repeat stage 3, then move to stage 5.

- The repeat is necessary for SIPS to further grasp the fundamental aspects of

the concept introduced. If the program allows different values, a repeat with

different values is recommended. If the program gives a varied flow of a

program, it is recommended that the number of repeats be made accordingly.

Stage 5: Ready the problem specification and its animation programs.

- A program specification refers to the description of what the student should

program to solve the problem. The solution to the problem requires a program

code or algorithm. This should be in written format rather than verbal instruction

as the students will benefit from reference.

184

- Do not use difficult terminology when writing a problem specification as terms

may be misinterpreted and mislead students to develop incorrect program

code. Simplify the language with basic, common terminology (Craig, Smith &

Petersen, 2017).

- Make sure students understand this part very well as it can reduce

misconceptions on problem specification and reduce barriers to designing a

good program code.

- Ask the students to identify inputs and outputs as this will serve as continuous

active learning and engagement throughout the teaching and learning session.

- Open the animation program for the explained problem specification as the

preparation to carry out stage 6.

Stage 6: Use an animation program with problem specification.

- At this stage, students should have grasped the problem specification, noted

the inputs and outputs and understand the role of that animation program as

already introduced through animation programs for concept introduction.

- Let an animation program designed for that specific concept/problem play. The

lecturer narrates the program code in conjunction with the animation unfolding

during the process (Végh & Stoffová, 2017).

Stage 7: Repeat stage 6 two times and then call for questions.

- The three times repeat serves as a minimum; otherwise one can repeat several

times accordingly as required. In the case where values are entered, it is

recommended that alternative values be used in each repeat.

- The repetition of the stage serves to further sharpen program understanding.

7.5 Experimentation results and analysis

This section reports on the experimental results in cycle 3 in 2021 semester 2. The

results in section 7.5.1 use the animation programs for assignment discussed in cycle

2 (Chapter 6, section 6.2). The results in section 7.5.2 are based on the animation

program for problem specification discussed in cycle 2 (Chapter 6, section 6.3).

However, in this cycle, the animation program for problem specification is coupled with

185

the animation program for introducing a concept. The results in section 7.5.3 and 7.5.4

are based on the same problem specification as in cycle 2 (Chapter 6, section 6.4.1),

but the animation program for loops/nested loops has been updated. The animation

programs experimented and reported for the first time are for nested loops (section

7.5.4), one-dimensional and parallel arrays (section 7.5.5) and functions (section

7.5.6). Therefore, the problem specifications will be explained in those sections.

7.5.1 Results (assignment)

The table (Table 7.1) reports on the control and experimental group results for both

pre-teaching and post-teaching exercises on the uses of assignment. A total of 28

students were in attendance. The students were equally but randomly divided between

the groups. The control group had 13 students and the experimental group had 15. In

the first column (control group) under pre-teaching exercise 1 the x (7) – 66.6%, the

number 7 in the brackets means the number of students who got the value of x correct

and the subsequent number represents the same number as a percentage. All other

columns have been calculated the same way.

Table 7.1: Results (Assignment)

Control group Experimental group

Pre-teaching
exercises

Post-teaching
exercise

Pre-teaching
exercises

Post-teaching
exercises

Pre-teaching
exercise 1
x (7) – 53.8%

Pre-teaching
exercise 2
p (9) – 69.2%
y (8) – 61.5%

Pre-teaching
exercise 3
k (6) - 46.2%
t (7) – 53.8%

Pre-teaching
exercise 4
x (8) – 61.5%
y (6) – 46.2%

Post-teaching
exercise 1
t (8) – 61.5%
p (7) – 53.8%
k (7) – 53.8%

Post-teaching
exercise 2
t (8) – 61.5%
p (7) – 53.8%
k (6) – 46.2%

Pre-teaching
exercise 1
x (8) – 53.3%

Pre-teaching
exercise 2
p (8) – 53.3%
y (9) – 60%

Pre-teaching
exercise 3
k (8) – 53.3%
t (7) – 46.7%

Pre-teaching
exercise 4
x (7) – 46.7%
y (8) – 53.3%

Post-teaching
exercise 1
t (13) – 86.7%
p (11) – 73.3%
k (12) – 80%

Post-teaching
exercise 2
t (12) – 80%
p (13) – 86.7%
k (11) – 73.3%

The pre-teaching and post-teaching exercises emphasised the declaration of a

variable, initialisation and overwriting (copying a value from one variable to another)

through animation programs. If SIPS get the values correct, the assumption is that

186

they would have understood initialisation and overwriting which happens using an

assignment operator.

The experimental group shows a high number of students who got the answers correct

in the post-teaching exercise (see the percentage on the value of t, p and k in table

7.1). Based on the post-teaching exercises, the values of t, p and k are initialised and

changed accordingly through an assignment operator. The results of the post-teaching

exercise in the experimental group are higher as compared to the pre-teaching

exercise and as compared to the post-teaching exercise in the control group. The main

aspects of this experiment were to instil proper understanding of how assignment

works in programming, as this is a significant challenge of learning to program.

7.5.2 Results (decisions/nested decisions)

The nested-decider experiment was repeated during the second semester of 2021.

For more accurate analysis and comparison, both pre-teaching and post-teaching

algorithms were dissected into comparative sections for SOLO-adapted evaluation

purposes. The description of the transitions in the matrix applies as defined in the

methodology section (Chapter 4, section 4.5). This SOLO-adapted evaluation also

applies to all other experiments in this cycle. There were 21 SIPS participating, 10

SIPS were in the control group and 11 in the experimental group. The following section

presents necessary information on the algorithm sections/pairs for decisions/nested

decisions to ready the SOLO-adapted evaluations.

7.5.2.1 Algorithm sections

The problem specification and its algorithm for the pre-teaching exercise were

explained in Chapter 6, section 6.3.1 in Figure 6.21. The problem specification and its

algorithm for the post-teaching exercise were also explained in Chapter 6, section

6.6.2 in Figure 6.38. Each dissected section is given a suitable descriptive name for

later references and evaluations (see Figures 7.72 & 7.73).

187

Figure 7.72: Pre-teaching algorithm sections on decisions

Figure 7.73: Post-teaching algorithm sections on decisions

The content of Table 7.2 consists of paired algorithm sections to be used for SOLO-

adapted evaluation.

188

Table 7.2: Paired algorithm section (decisions/nested decisions)

Pair Section name

Pair 1 Pre_nested_if Represents the correct structure of the if-statement or
nested if-statement

Post_if_else

Pair 2 Pre_inner_if_AND Refers to the use the correct structure of the if-clause that
has the “&&” operator or uses alternative method

Post_if_AND

Pair 3 Pre_outer_if_content Refers to the correct content in the block following the if-
statement condition when it evaluates to true

Post_if_content

Pair 4 Pre_inner_if_content Refers to the correct content in the block following the if-
statement condition when it evaluates to true

Post_if_content

Pair 5 Pre_outer_else_content Refers to the correct content in the else part of the if-
statement (the code between the blocks)

Post_else_content

Pair 6 Pre_inner_else_content Refers to the correct content of the else part of the if-
statement (the code between the blocks)

Post_else_content

Since the algorithm has been dissected accordingly, the following section presents the

SOLO-adapted evaluation results for the concept.

7.5.2.2 Concept and pairs performance

This concept consists of six pairs, that is, pair 1 to pair 6. The references and what

each pair means were described in the previous section (section 7.5.1, Table 7.2).

Each pair is evaluated through SOLO-adapted evaluation to locate its state before and

after a teaching intervention. Just like in cycle 2, the evaluation sheets are used for

each pair on both the control and experimental group. The evaluation sheets per pair

are presented in Appendix B. Table 7.3 presents the average percentage of transitions

across pair 1 to pair 6 which are the algorithm sections on decisions / nested decisions.

The average percentage across pairs gives an overall performance of a concept

(decisions / nested decisions).

189

Table 7.3: Average transitions performance on decisions/nested decisions over all pairs

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-lower-

level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 3.3% 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 6.7% 7.3
%

26.7% 7.6% 17% 7.6%

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 3.3% 4.6
%

26.7% 48.5
%

13.3% 30.3%

 P U M R

As described in the methodology (section 4.5), the most desired transitions are M→R

(improved), U→R (improved+) and P→R (improved++) because such transitions

represent an ultimate improvement. The overall comparison across pair 1 to pair 6 in

relation to decisions/nested decisions shows more of the experimental group under

the improved transition (M→R) than the control group.

The average percentage for M→R transition in this concept for the control group is

26.7% and for the experimental group is 48.5%. The recorded percentage of 48.5% in

the experimental group is almost double the average percentage in the control group.

This means that the TLPAP in the experimental group has been two times more

effective for the concept of decisions/nested decisions than the normal teaching

method in the control group. However, I hope for the same or even more improvements

in the experimental group under the M→R transition in the next cycle of the action

research.

The performance of the M→R transition could have been higher if the M→M (stagnant-

at-intermediate-level) transition did not record 26.7% in the control group.

Furthermore, the M→M transition outcome means that the teaching method in the

control group may be not enough to push more students into the M→R transition. The

190

average percentage of the M→M transition recorded 7.6% in the experimental group

which is less as compared to the control group. There have been instances in both the

control and experimental groups that resulted in the R→M transition, which means

deteriorated learning; however, both have small average percentages (17% in the

control group which is bit higher than the 7.6% in the experimental group). This

transition means students are confused and signals additional adjustment of a

teaching method. Since the experimental group has a 7.6% average percentage, the

effect does not outdo the positives achieved from other transitions and cannot be the

indicator of significant adjustments on the adopted teaching approach or tool. The rest

of the transitions recorded less than 10% outcome: their difference cannot have major

impact on the method of teaching.

In the case of R→R transition which means already-know, I am not able to control how

students are taught or gain knowledge outside the experimental setup of this study.

As a result, the R→R transition outcome cannot be linked to the teaching intervention

neither in the control nor experimental group. This applies to all R→R transition

outcomes across the action research cycles in this study. The other possibility that can

cause R→R transition is that the student is not struggling with that pair or concept. As

a result of these implications, there is no further analysis on the R→R transition

outcomes unless deemed necessary.

In the experimental group, there were pairs that recorded 100% M→R (improved)

transition, meaning that all sections of the algorithm which were in the multistructural

category of a pre-test have transitioned into a relational category of the post-test. If

there is no 100% M→R transition, it means the transitions have split into one or more

of the undesirable transitions which are M→M (Stagnant-at-intermediate-level), M→U

(Intermediate-deterioration) or M→P (Intermediate-deterioration+). Such pairs with

100% M→R transition include pair 1 (Pre_nested_if and Post_if_else) in Appendix B

Table B.3; pair 3 (Pre_outer_if_content and Post_if_content) in Appendix B Table B.9;

pair 4 (Pre_inner_if_content and Post_if_content) in Appendix B Table B.12; pair 5

(Pre_outer_else_content and Post_else_content) in Appendix B Table B.15; and pair

6 (Pre_inner_else_content and Post_else_content) in Appendix B Table B.18. The

only pair that has a split transition in the experimental group is pair 2

(Pre_inner_if_AND and Post_if_AND) in Appendix B Table B.6. However, pair 2 has

a small percentage (9.1%) in the M→M transition of the experimental group as

191

compared to the higher percentage M→M transition (40%) in the control group. This

means that pair 2 is close to 100% M→R transition.

A 100% transition can also occur under the U→R transition or P→R transition. Just

like 100% M→R transition, a 100% U→R transition occurs when all sections of the

algorithm are at the unistructural stage in the pre-test have resulted into relational

stage in the post-test. If there is no 100% U→R transition, it means that the transitions

spilt into one or more undesirable transitions which are U→U (Stagnant-at-lower-level),

U→M (Intermediate-improvement) or U→P (Lower-level-deterioration) transitions.

Similarly, in the case of a 100% P→R transition, split transition will be P→P (Stagnant-

no-learning), P→U (Lower-level-improvement) or P→M (Intermediate-improvement+).

The P→R transition has no records because it is unlikely; hence, it means knowing

nothing (prestructural) to knowing everything (relational). In this concept, only pair 6 in

Appendix B Table B.16 has recorded 100% U→R transition in both the control and

experimental groups. It is also worth noting that the U→R transition is denoted by

Improved+ because the improving process jumps one stage up (which is

multistructural) to reach relational stage. This means that a relevant teaching method

would have been more effective to record the U→R transition.

In this concept, the U→M (intermediate-improvement) transition has recorded a similar

small percentage (6.7% in the control group and 7.3% in the experimental group). This

transition is not desirable; however, it is a progress towards the ultimate transition

(U→R). The implication of this U→M transition is that the teaching methods are good

but not enough. In the case of experimental group, as the percentage is small, the

effects do not outdo the overall performance of the TLPAP. There are also records of

R→M (deteriorated) transition with small average percentage across pair 1 to pair 6.

There is a notable record of R→M transition in pair 5 and pair 6 where the control

group recorded 30%. The R→M transition in the experimental group recorded 0% in

pair 5 and 18.5% in pair 6. The R→M transition implies that the teaching method may

be doing more harm than good.

7.5.3 Results (Loops)

7.5.3.1 Algorithm sections

There were 30 SIPS for this experiment,15 in the control group and 15 in the

experimental group. The problem specification for loops on pre-teaching algorithms

192

was described in Chapter 6, section 6.4.1 in Figure 6.30. The problem specification

for loops on post-teaching algorithms was described in Chapter 6, section 6.6.2 in

Figure 6.39. The only change in this cycle is the design of the animation and dissected

sections for SOLO-adapted evaluations. The following figure (Figure 7.74) indicates

the dissected algorithm sections on loops for the pre-teaching algorithm.

Figure 7.74: Pre-teaching algorithm sections on loops

Figure 7.75 shows the dissected algorithm sections on loops for the post-teaching

algorithm.

Figure 7.75: Post-teaching algorithm sections on loop

193

The content of Table 7.4 consists of a paired section for loops.

Table 7.4: Paired algorithm sections - loop

Pair Section name

Pair 1 Pre_prompt Refers to the capability to prompt the values outside
the loop

Post_prompt

Pair 2 Pre_firstloop_structure Means the correct structure of the first loop (including
the condition).

Post_loop_structure

Pair 3 Pre_firstloop_content Is about the correct content first loop in the pre-
teaching algorithm in relation to the loop in the post-
teaching algorithm Post_loop_content

Pair 4 Pre_secondloop_strucuture and
Pre_secondloop_content

Means that the output of the program is in the correct
place (note that the pre-teaching algorithm display is
conditioned by the loop and is part of the display
requirement) (see Figure 7.74)

Post_display

7.5.3.2 Concept and pairs performance

The content of Table 7.5 is the average percentage of transitions across pair 1 to pair

4. The evaluation sheets per pair are presented in Appendix C.

 Table 7.5: Average transitions performance on loops over all pairs

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-lower-

level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 1.7% 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 18.4% 31.6% 25% 6.7% 1.7% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 1.7% 0 23.3% 41.7% 30% 23.4%

 P U M R

194

The M→R (improved) transition recorded 41.7% in the experimental and 23.3% in the

control group. This M→R transition (for loops) is similar to the same transition for the

concept of decisions/nested decisions (discussed in section 7.5.2.3). This means that

the TLPAP in the experimental group has once again been two times more effective

than the teaching method in the control group. The other key results which indicate

the performance of the teaching method is the M→M (Stagnant-at-intermediate-level)

transition. The M→M transition resulted in 25% in the control group and 6.7% in the

experimental group, providing evidence that teaching methods in the control group

need to be improved more than in the experimental group in this concept of loops. The

U→M (Intermediate-improvement) transition resulted in 18.4% in the control group and

31.6% in the experimental group. The transition means that although progress is

apparent, teaching methods may be not enough to result in the U→R transition instead

of U→M.

The 100% M→R transition is only found in the experimental group with 60% for pair 4

(Pre_secondloop_strucuture/Pre_secondloop_content and Post_display) as depicted

in Appendix C Table C.12. Pair 2 (Pre_firstloop_structure and Post_loop_structure) in

the control group has an M→M transition of 46.7% and the experimental group has

6.7% (see Appendix C, Table C.6). This is the highest recorded result across all pairs

in this concept (loops) and previous concept (decisions/nested decisions). This

suggests that the normal teaching method in the control group did not do enough (in

pair 2) for teaching the structure of loop as compared to the TLPAP in the experimental

group.

7.5.4 Results (nested loops)

7.5.4.1 Algorithm sections

Figure 7.76 indicates the dissected algorithm sections on the nested loop for the pre-

teaching algorithm.

195

Figure 7.76: Pre-teaching algorithm sections on nested loops

Figure 7.77 shows the problem specification for the one-dimensional array.

Write a program to produce the following output: (Use nested loop: Any type of loop)

9 8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

7 6 5 4 3 2 1

6 5 4 3 2 1

5 4 3 2 1

4 3 2 1

3 2 1

2 1

1

Figure 7.77: Problem specification for post-teaching algorithm on nested loops

The following figure (Figure 7.78) indicates the dissected algorithm sections on the

nested loop for the post-teaching algorithm.

Figure 7.78: Post-teaching algorithm sections on nested loops

The content of Table 7.6 consists of a paired section of the nested loop.

196

Table 7.6: Pairs algorithm sections – nested loops

Pair Section name

Pair 1 Pre_outer_loop_structure Refers to the correct structure of the outer loop of the
nested loop

Post_outer_loop_structure

Pair 2 Pre_inner_loop_structure Requires another loop inside the outer loop with the
condition based on the variable of the outer loop or
through using an alternative method

Post_inner_loop_structure

Pair 3 Pre_inner_loop_content Refers to the correct content of the inner loop (the
code between the blocks)

Post_inner_loop_content

Pair 4 Pre_outer_loop_content Means the correct content of the outer loop (the code
between the blocks)

Post_outer_loop_content

7.5.4.2 Concept and pairs performance

The content of Table 7.7 presents the average percentage of transitions across pair 1

to pair 4. The evaluation sheets per pair are presented in Appendix D.

 Table 7.7: Average transitions performance on nested loops across pairs

P P→P
(Stagnant-no-learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-lower-

level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 15% 25% 43.3% 5% 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 20% 43.3% 21.7% 23.4%

 P U M R

197

The overall outcome in this concept (nested loops) is similar to the concept of loops in

all aspects (discussed in section 7.5.3.2) due to the similarity of the concepts in loops

and nested loops.

As discussed in section 7.5.2, the 100% M→R transition means that all students who

were in the multistructural category (in the pre-teaching exercises) have transition into

relational category (in the post-teaching exercise). There is no 100% M→R transition

if some students who were in the multistructural category of the pre-teaching exercise

transition into other categories like unistructural, prestructural or remain in the

multistructural category of the post-teaching exercise. In this concept of nested loops,

the 100% M→R transition is under the pair 2 in the experimental group

(Pre_outer_loop_content and Post_ outer_loop_content) with 40% (see Appendix D,

Table D.6 for pair 2). The M→M transition has risen higher (53.3%) in the same pair

under the control group. The M→M transition resulted in even higher outcome of 73%

in pair 4 (Pre_outer_loop_content and Post_ outer_loop_content) in the control group

while the experimental group has 13.3% (see Appendix D, Table D.12 for pair 4). This

suggests that nested loop is one of the challenging concepts, difficult for students to

construct an accurate nesting loop. In pair 4, the TLPAP has displayed positive effects

in the experimental group as the M→R transition resulted at 60% compared to 13.3%

for the control group.

7.5.5 Results (one-dimensional array)

There were 20 SIPS participating in the experiments, that is 10 in the control group

and 10 in the experimental group.

7.5.5.1 Algorithm sections (one dimensional array)

The following figure (Figure 7.79) indicates the dissected algorithm sections on one-

dimensional array for the post-teaching algorithm.

198

Figure 7.79: Pre-teaching algorithm sections on arrays

 Figure 7.80 shows the problem specification for the one-dimensional array.

Declare a one-dimensional array and name it arrNumbers. Initialise the arrNumbers array with

these numbers: 26, 25, 4, 52, 14, 60, 78, 4. Count the numbers which are odd within an array.

Sample output:

The odd number: 1

Figure 7.80: Problem specification for post-teaching algorithm on one-dimensional array

The following figure (Figure 7.81) indicates the dissected algorithm sections on one-

dimensional array for the post-teaching algorithm.

Figure 7.81: Post-teaching algorithm sections on one-dimensional array

The content of Table 7.8 consists of paired sections for the one-dimensional array.

199

Table 7.8: Paired algorithm sections – one-dimensional array

Pair Section name

Pair 1 Pre_array_initialised Is about the capability to initialise an array

Post_array_initialised

Pair 2 Pre_loop_structure Refers to the structure of the loop which is controlled by the
length of the array.

Post_loop_structure

Pair 3 Pre_if_condition Refers to the condition of the if-statement within the loop, which
uses an array

Post_if_condition

Pair 4 Pre_if_content Refers to the correct content of the if-statement (the code
between the blocks)

 Post_if_content

Pair 5 Pre_display Refers to the correct display at the correct place

Post_display

7.5.5.2 Concept and pairs performance

Table 7.9 presents the average percentage of transitions across pair 1 to pair 5. The

evaluation sheets per pair are presented in Appendix E.

Table 7.9: Average transitions performance on one-dimensional arrays for all pairs

P P→P
(Stagnant-no-learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-lower-

level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 12% 10% 12% 2% 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 36% 66% 40% 20%

 P U M R

In the concept of arrays, the M→R (improved) transition resulted in 36% for the control

group and 66% for the experimental group. The M→R performance in the

200

experimental group is two-thirds outcome as compared to almost one-third results in

the control group. The M→M (Stagnant-at-intermediate-level) transition has 12% in

the control group and 2% in the experimental group. The difference between the two

groups on M→M transition is minimal, as with the U→M transition. The M→R transition

is the only major indicator of the TLPAP performance for this concept of one-

dimensional arrays.

The R→R (Already-know) transition has 40% in the control group and 20% in the

experimental group. As emphasised in the earlier section, the R→R transition has no

direct implications on the intervention (teaching method) in the control or experimental

group. This means there will be little commentary or analysis on the R→R transition

result.

In the concept of arrays, the pairs that resulted in 100% M→R transition are pair 1

(Pre_array_initialised and Post_array_initialised) in Appendix E Table E.3; pair 2

(Pre_loop_structure and Post_loop_structure) in Appendix E Table E.6; pair 3

(Pre_if_condition and Post_ if_condition) in Appendix E Table E.9; and pair 5

(Pre_display and Post_display) in Appendix E Table E.15. The only transition that did

not result in 100% M→R transition in the experimental group is pair 4 (Pre_if_content

and Post_ if_ content) in Appendix E Table E.12. In pair 4, the control group resulted

in 100% M→R transition (with 30%) while the experimental group resulted in 70%,

which is higher. The TLPAP in the experimental group is once again credited due its

capacity to produce more 100% M→R transitions than the control group.

7.5.6 Results (parallel arrays)

7.5.6.1 Algorithm sections (parallel dimensional array)

Figure 7.82 presents the dissected algorithm sections on parallel arrays for the pre-

teaching algorithm.

201

Figure 7.82: Pre-teaching algorithm sections on parallel arrays

Figure 7.83 displays the problem specifications for the post-teaching algorithm.

Declare an array named arrProducts and that will contain product names. Initialise arrProducts with

the product names Apple, Pear, Guava, Banana, Mango and Peach. Declare another array called

arrPrices(parallel array to arrProducts), that will contain the prices of arrProducts. Intialise arrPrices

with these prices R5, R6, R7, R4, R8, R15.

- Determine the average price

- Determine and display the name of the most expensive product

Figure 7.83: Problem specification for post-teaching algorithm on parallel arrays

The following figure (Figure 7.84) displays the problem specifications for the post-

teaching algorithm on parallel arrays.

Figure 7.84: Post-teaching algorithm sections on parallel arrays

202

Note that the algorithm sections for arrays are the same as for parallel arrays (Table

7.8); however, the interpretation for parallel arrays applies.

7.5.6.2 Concept and pairs performance

Table 7.10 presents the average percentage of transitions across pair 1 to pair 5. The

evaluation sheets per pair are presented in Appendix F.

 Table 7.10: Transitions performance on parallel arrays

P P→P
(Stagnant-no-learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-lower-

level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 10% 12% 16% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 8% 36% 62% 38% 18%

 P U M R

The performance of the M→R (Improved) and M→M (Stagnant-at-intermediate-level)

transitions in the concept of parallel arrays is similar to the performance of the arrays

(presented in the previous section in Table 7.9). The M→R transition continues to

double the impact in the experimental group which further credits the capacity of

TLPAP in the over-the-normal teaching method.

One of the key performance outcomes in the concept of parallel arrays in the

experimental group is its records of 100% M→R transition in all pairs: pair 1

(Pre_array_initialised and Post_array_initialised) in Appendix F Table F.3; pair 2

(Pre_loop_structure and Post_loop_structure) in Appendix F Table F.6; pair 3

(Pre_if_condition and Post_ if_condition) in Appendix F Table F.9; pair 4

(Pre_if_content and Post_ if_ content) in Appendix F Table F.12; and pair 5

(Pre_display and Post_display) in Appendix F Table F.15. The TLPAP in the

203

experiment continues to show its capacity through 100% transition outcome in all given

pre-teaching sections from the multistructural stage into a relational stage.

7.5.7 Results (functions)

There were 32 SIPS participating in this concept, that is 17 in the control group and

15 in the experimental group.

7.5.7.1 Algorithm sections

The following figure (Figure 7.85) indicates the dissected algorithm sections on

functions for the pre-teaching algorithm.

Figure 7.85: Pre-teaching algorithm sections on functions

Figure 7.86 shows the problem specifications for the post-teaching algorithm.

204

[No global variables must be declared for this program]

People who want to hire a machine to wash their carpets usually go to the WishyWhishy company.

The company has the three types of machines – type A, B or C for heavy duty, ordinary and light

washes respectively. The prices for using the machines are as follows:

Type of machine Initial cost Additional cost per hour

A R50.00 R30.00

B R62.50 R36.25

C R74.87 R40.50

The amount must be calculated and returned in a function called calcAmount by adding the initial
cost to the calculated cost for the time used.

Create another function called calcTotalAmount of a type void that receives an amount calculated
by calcAmount as parameter, then calculate vat (14%) and final total amount due. Note that both
vat and amount due calculated by calcTotalAmount must be accessible to the calling environment.

On the main function, prompt the user to enter the type of machine and time machine used (in
munities). Call all necessary functions implemented to display an amount before tax, a tax amount
and an amount after tax.

For more clarity see sample output below.

Figure 7.86: Problem specification for post-teaching algorithm on functions

Figure 7.87 displays the dissected algorithm sections on functions for the post-

teaching algorithm.

205

Figure 7.87: Post-teaching algorithm sections on functions

The content of Table 7.11 consists of paired sections for functions.

206

Table 7.11: Pairs sections/columns names for functions

Pair Sections/columns name

Description

Pair 1 Pre_func_call_return Refers to the capability to call a function that returns a
value

 Post_func_call_return

Pair 2 Pre_func_call_void Refers to the capability to call a function that does not
return a value (function of a type void)

Post_func_call_void

Pair 3 Pre_func_header_return Refers to the capability to construct a function header
that returns a value with a relevant return type

Post_func_header_return

Pair 4 Pre_func_return_content Refers to the capability to construct the correct content
in a function that returns a value

Post_func_return_content

Pair 5 Pre_func_header_void Refers to the capability to construct a function header
of a type void that does not return a value

Post_func_header_void

Pair 6 Pre_func_void_content Refers to the capability to provide the correct content in
a function that does not return a value

Post_func_void_content

7.5.7.2 Concept and pairs performance

Table 7.12 presents the average percentage of transitions across pair 1 to pair 6 for

functions. The evaluation sheets per pair are presented in Appendix G.

207

 Table 7.12: Average transitions performance on functions for all pairs

P P→P
(Stagnant-no-learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-lower-

level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 3 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 18.8% 27.3% 29.4% 4.5% 4% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 4.5% 26.5% 62.2% 12.8% 0

 P U M R

In the concept of functions, the M→R (improved) transition resulted in 26.5% in the

control group and 62.2% in the experimental group. The average percentage of M→R

transition in the experimental group is almost a triple what the control group has

achieved. Such achievement is once again credited to the capacity of TLPAP. The

teaching method in the experimental group (the TLPAP group) has been positively

consistent from the first concept to this concept of the experiments. The consistency

was primarily indicated by M→R and M→M transitions in both the control and

experimental groups.

The M→M (stagnant-at-intermediate-level) has continued to be higher in the control

group than in the experimental group. As emphasised in the previous sections, the

average percentage in the M→M transition in the control group could have been added

in the M→R group. This shows that the normal teaching method in the control group

is not sufficient to achieve such results. In the experimental group, the M→M transition

average percentage has been less than 10% while the M→R transition recorded

higher percentages.

The 100% M→R transition in the concept of functions are pair 1 (Pre_func_call_return

and Post_func_call_return) in Appendix G Table G.3; pair 3 (Pre_func_header_return

and Post_func_header_return) in Appendix G Table G.9; and pair 6

208

(Pre_func_void_content and Post_func_void_content) in Appendix G Table G.18. Pair

2 (Pre_func_call_void and Post_func_call_void) in Appendix G Table G.6 and pair 4

(Pre_func_return_content and Post_func_return_content) in Appendix G Table G.12

did not result in 100% the M→R transition in the experimental group. However, the

M→R transition resulted in 73.3% in the experimental group while the control group

had 11.8%. In pair 1, there is a notable 23.5% R→M (deteriorated) transition in the

control group with 0% in comparison to the experimental group. The R→M transition

means learning is not improving nor stagnant, but rather in reverse mode from

relational to multiscriptual. Pedagogically, this suggests the teaching method requires

improvement in the control group due to deteriorating learning.

7.6 Cycle 4 reflections

The following reflection emanates from this cycle:

Uses of assignment

- Generally, students in the experimental group performed better than the control

group. The emphasis on initialisation, copying of values from one variable to

another and overwriting are fundamental skills which must not be overlooked,

especially by SIPS. In this cycle, the TLPAP proved to be impactful on SIPS,

which is similar to the results reported in cycle 2 (Chapter 6, section 6.6.1).

Decisions/nested decisions

- In the pre-test evaluations of pair 1 to pair 6, there is a notable high number of

algorithm sections under the multistructural category in both control and

experimental groups. When the algorithm sections are under multistructural

category in the pre-test stage, that further confirms that the students are SIPS.

- In the previous cycle when nested-decider was demonstrated, after the

demonstration I received a request from students to repeat the animation

process again. However, in this cycle when I demonstrated the same nested-

decider, I did not receive any request to repeat the animation program. The

animation program was repeated based on the number of times stated in the

pedagogical guidelines (section 7.4). It is possible that the SIPS are already

familiar with the concepts being taught due to the impact of the introductory

209

animation programs which are demonstrated before the animation program for

problem specifications.

- The post-teaching exercise of a nested-decider may be less challenging than

the pre-teaching exercise. Changes to the post-teaching exercise could be part

of cycle 4 planning.

Loops/nested loops

- Overall, the TLPAP had a greater effect on SIPS in the experimental group as

compared to the control group on both the loop and nested-loop.

- I received a suggestion from two students during the question-and-answer

session that the rendering of the animation in the program may be too quick for

them. I should consider slowing the programs a bit, especially the animation for

nested-loop. The plan to slow the pace of the animation rendering was noted

and implemented as part of cycle 4 plans. However, I was able to make

adjustments on program code to lower the animation rendering on the

remaining concepts (arrays and functions) for this current cycle.

- I have also learned from the algorithm exercises that some few SIPS could not

understand when to have a program that requires only a loop or only a decision

statement or a combination of both. This could be because our animation

program did not present a sample combination of a loop and decisions. Even

though I received positive results on TLPAP in relation to loops and decisions,

a plan to design a new animation program that properly requires both loops and

decisions statements within one algorithm is noted and may be part of cycle 4

planning.

One-dimensional and parallel arrays

- One aspect of one-dimensional arrays that was found missing is an animation

that updates elements in the array. The missing aspect is noted and may be

incorporated into animation programs for introducing a new concept or

animation program with problem specification within the next cycle of this action

research.

- As prior knowledge of decisions and loops play a critical role in the

understanding of arrays and subsequently parallel arrays, if some SIPS still

struggle with those concepts, it is unlikely they will succeed with the use of

arrays simply because arrays need a loop to populate it with values and further

210

need the knowledge of decisions to filter on conditions or access relevant

values in the array. A plan for an additional animation program that requires

both loops and decisions statements as stated previously is noted.

- Generally, the TLPAP has resulted in more improvements for parallel arrays in

the experimental group than in the control group, as is evident in the M→R

transition outcome. The concept of parallel arrays resulted in 100% M→R

transition for all pairs in the experimental group, signifying the impact of TLPAP

as compared to normal, traditional teaching methods.

Functions

- The overall picture behind teaching and learning functions seems more

challenging than other concepts. The algorithm sections, where the proper use

of reference parameters and passing of arguments were required, have had

poor results in the control group compared to the experimental group. Once

again, the TLPAP shows consistent improvement, especially in teaching and

learning challenging concepts like passing values by references. SIPS in the

experimental group were able to clearly see what exactly happens when a

reference is passed through these animations.

- The decreased pace of rendering of animation program and narration as per

pedagogical guidelines added value toward the success of teaching and

learning of this concept. The decreased pace also allowed a more relaxed

narration during the rendering of the animation program.

General view on the cycle

- The improved (M→R) pairs in the sections of the algorithm were found mostly

in the experimental group and stagnant-at-lower-level (M→M) were more in the

control group. These two transitions were the main difference between the

interventions in the control and experimental groups.

- The deteriorated (R→M) pairs in the sections of the algorithm were found

mostly in the control group were minimal.

- The improved+ (U→R) pairs in the sections of the algorithm were found mostly

in the experimental group but were minimal.

211

- Based on the pre-teaching algorithm exercises from both the control and

experimental group, most misconceptions are found within the concepts of

nested decisions, nested loops, reference parameters and parallel arrays.

Pedagogical guidelines as part of TLPAP were followed when demonstrating

the animation programs with no foreseeable revision at this stage.

7.7 Planning for cycle 4

The intention was to plan for cycle 4 for further confirmation of the reliability and

efficacy of the TLPAP. The following pointers are planned as part of experimenting

with cycle 4 with an improved approach.

- Verify that all animation programs comply with the 12 principles of multimedia

learning by Mayer, as stated in the methodology section (Chapter 4, section

4.4.1). Apply Mayer’s principles of multimedia learning in all areas of the

animation programs where required. One change that was done during this

cycle was to edit a program code to reduce the speed of the animation program

which already complies to one of the recommended principles of multimedia

learning. However, the overall solution to be applied in all animation programs

is to have a radio button where the educator can set the pace of the animation

rendering as normal, slow and very slow.

- In the case of a nested-decider, the post-teaching exercise is planned to be

adjusted to have a complexity similar to the pre-teaching exercise. Even though

this is not a big problem since the pre-teaching exercise is used for teaching, a

new problem for the post-teaching exercise is planned. This can further work in

our favour to show that the SIPS who have undergone learning through TLPAP

can solve any other type of problem thereafter.

- An additional animation program that should be capable of combining a

decision-statement and a loop is planned. This is to give students an additional

perspective during teaching and learning on how decision statements work with

loops.

- Incorporating an animation program for introducing a concept (arrays) that

emphasises the update of existing array elements.

212

- Pedagogical guidelines revised in this cycle (cycle 3) serve as the latest version

and are intended to be used as they are in cycle 4. However, I may take a

flexible route to adjust the guidelines if deemed necessary at that moment in

time.

- The chapter for cycle 4 will only report on the demonstration of the animation

programs that were affected by the improvements.

7.8 Conclusion

 In this chapter, I presented the adapted TLPAP framework where various animation

programs for IPC were designed and tested. In addition to the animation programs

designed and experimented with previously in cycle 2, there are added animation

programs developed and experimented in this cycle (cycle 3). Such animation

programs were designed for the concept of loops, nested loops, arrays and functions.

The pedagogical guidelines used in cycle 2 were revised and used along with the

animation programs as part of TLPAP.

The pre-teaching and post-teaching algorithms were dissected into sections for further

evaluation and analysis. The analysis of students’ algorithms was undertaken through

SOLO-adapted evaluations. The evaluation outcome indicated that students in the

experimental group outperformed students in the control group. This shows the

positive impact of TLPAP, which was used in the experimental group, on teaching and

learning IPC.

State of the framework thus far

At this stage in our action research, the state of the TLPAP framework can be referred

to as adapted TLPAP framework version 3 pending the outcome of cycle 4 results

that could suggest more adaptation for the final framework. The specific items that

form part of this adapted TLPAP framework consist of the following:

- Animation programs focusing on assignment (presented in cycle 2, Chapter 6)

as opposed to the manipulatives version (presented in cycle 1, Chapter 5).

Even though the use of physical manipulatives yielded positive results,

emphasising the uses of assignment, the rationale behind this choice is the

animation’s flexibility to accommodate large classes in a contact teaching

213

session and its compatibility in an online session. Furthermore, in cycle 3, I

repeated the animation program on assignment and still had positive findings.

- Another item that is incorporated into this adapted framework is nested-decider

animation program presented in cycle 2. The experiments in cycle 2 are positive

and the repeat experiments with the same animation program presented in this

cycle (cycle 3) are even more positive. However, the experiments in cycle 3

were coupled with an animation program for introducing a concept; therefore,

such animations are part of the final framework. The inclusion of animation

programs for introducing a concept into the final framework apply to the

remaining concepts which are loops, arrays and functions.

- The animation programs for loops presented in cycle 2 are not part of the

tentative final framework because there were persistent errors like incorrect

sentinel, misplaced loop content, incorrect overall looping structure which were

found in the experimental group upon presenting the animation programs. The

revised animation program for loops presented in this cycle forms part of the

final framework.

- The animation programs for arrays and functions presented in this cycle (cycle

3) are also incorporated into the adapted framework.

- Finally, the adapted pedagogical guidelines revised in this cycle (cycle 3) are

also part of the adapted TLPAP framework pending the outcome of cycle 4.

The subsequent chapter presents the outcome of cycles 4 and 5.

214

Chapter 8: Adapted framework - Cycles 4 and 5

Chapter

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Content

Introduction

Literature
review

Theoretical
framework

Methodological
approach

Initial
framework -

cycle 1

Adapted
framework -

cycle 2

Adapted
framework -

cycle 3

Adapted
framework -

cycles 4 and 5

Conclusion

215

8.1 Introduction

The idea behind this study, the plan, is to investigate, test and adapt appropriate

teaching learning methods relevant for Struggling Introductory Programming Students

(SIPS). The aim is to use the adopted method to improve SIPS understanding of IPC

and further develop a relevant framework. By this stage, I have already established

that the use of animations programs carries the opportunity to advance teaching and

learning of SIPS. As a result, the thesis statement has been posed as, “A Teaching

and Learning Programming with Animation Programs (TLPAP) framework, can

improve Struggling Introductory Programming Students (SIPS) comprehension of

Introductory Programming Concepts (IPC)”.

To reach the final conclusion on the TLPAP, I embarked on focused action research

to be done in several action cycles. The previous chapter (Chapter 7) presented the

activities and the outcomes of cycle 3. The activities in cycle 3 were based on the

animation programs for teaching and learning IPC (assignment, decisions/nested

decisions, loops, nested loops, one-dimensional arrays, parallel arrays and functions).

The content of cycle 4 includes an additional animation program which is a

combination of loops and decisions. The other changes implemented in cycle 4 are

based on the reflections of cycle 3. Since cycle 5 has minimal adjustment, I am

presenting its brief conclusive outcome at the end of this chapter and the actual graphs

with exact data are presented in Appendix M. The process of developing and testing

various animation programs and the adaption of the pedagogical guidelines are ways

to continually advance and validate the teaching and learning programming with the

animation programs (TLPAP) framework.

This cycle serves as a continuation to answer our last research question, formulated

as follows:

- How can we prove and evaluate the efficacy of teaching and learning

programming with the animation programs framework?

The layout of the chapter starts by presenting the additional animation programs in

section 8.2 and the experimental results in section 8.3. Section 8.4 is the summary of

the reflections on cycle 4 and section 8.5 is the summary of reflections on cycle 5.

216

Section 8.6 discuss transitions across cycle 3 to cycle 5 and section 8.7 concludes the

chapter.

8.2 Additional animation programs

8.2.1 Combination of decisions and loops

The need for an additional animation program that includes a program code with loops

and decision statements was identified in cycle 3. The design of this additional

animation program adhered to all other recommendations stated in cycle 3 and cycle

4, such as compliance with Mayer’s principles of multimedia learning. This additional

animation program is based on the problem specification in Figure 8.1.

You are requested to develop a program that counts the number of males and females from a group
of people (there are 6 people). For each person prompt for gender (input in the form of a letter). Letter
“M” for male or “F” for female. The inputs are not case sensitive, meaning that a small letter m for
male or a small letter f for female should work as well. If the user enters any other letter, show this
message “Invalid character, please re-enter the gender”.

The program should display the number of males and females in this format (sample output):
Total males 2
Total females 4

 Figure 8.1: Problem specification – decisions and loops

Figure 8.2 shows the appearance of the animation program which combines decisions

and loops. The borderline rectangle indicates a piece of code executed inside the loop.

The steps of execution are the same as previously explained for similar animation

programs (nested-decider) in cycle 2. The animation speed can be adjusted to normal,

slow or very slow.

217

Figure 8.2: Decisions and loops (Demo 1)

Note that when the blue highlight indicating that a statement is executed in the program

code side passed line 1 and line 2, the zeros appeared in the two containers on the

animation side for the variable males and females (See Figure 8.3). The prompt to

enter a gender happens at line 8, and in this case, an “x” was entered.

Figure 8.3: Decisions and loops (Demo 2)

Since the value “x” falls under invalid characters, the second else part of the program

is executed. However, the key moment is when SIPS have to see the process of

advancing towards the last else part on the animation side when all the conditions are

evaluated first (See Figure 8.4).

218

Figure 8.4: Decisions and loops (Demo 3)

Figure 8.5 shows when the correct gender (“M") has been entered, the variable males

is incremented by 1. The graphic “+1” floats from top to bottom. When it reaches where

“0” is (container labelled variable: males), the 0 is replaced by 1 which indicates that it

has been added.

Figure 8.5: Decisions and loops (Demo 4)

Figure 8.6 shows when the correct gender (“F") has been entered and the variable

females is incremented by 1. As explained in the previous paragraph, the graphic “+1”

floats from top to bottom as a sign of incrementing.

219

 Figure 8.6: Decisions and loops (Demo 5)

Figure 8.7 displays the result of the completed animation process. This means that at

this stage the character “M” or “m” was entered twice and the character “F” or “f” was

entered four times.

 Figure 8.7: Decisions and loops (Demo 6)

8.2.2 Additional animation on concept introduction for arrays

The initial ILOs for the concept of one-dimensional arrays (as stated in Chapter 7,

section 7.2.3) are for SIPS to write an algorithm that store and access values in a one-

dimensional array. Based on the reflection of cycle 3, I have noted that the introductory

animation or animation with program specification does not depict to SIPS how the

array can be updated. The following animation program will be an add-on (with

220

emphasis on updating an element in the array) to the introductory animation programs

for introducing arrays.

The program in Figure 8.8 consists of a code and corresponding graphics. The blue

graphics (tray-like) on the left side represent an array.

Figure 8.8: Arrays (Demo 1)

When the arrow reaches the cin object, as usual it prompts the user to enter the value.

In this case, each value is stored in the array as entered (see Figure 8.9).

Figure 8.9: Arrays (Demo 2)

When the first loop is complete, the second loop takes over. There is an animating

track bar that points to the currently accessed element in the array. SIPS are able to

221

see the index of that currently accessed element. In the case of Figure 8.10, each

element is accessed to check if is greater than 25.

Figure 8.10: Arrays (Demo 3)

The last element in the array is greater than 25, so it gets incremented by 10. The

number 10 will float from the top into the last container of the last tray (See Figure

8.11).

Figure 8.11: Arrays (Demo 4)

The state of Figure 8.12 is a complete executed animation program; we can see that

the last element is now updated.

222

Figure 8.12: Arrays (Demo 5)

8.3 Experimentation results and analysis

This section reports on the experimental results in cycle 4 in 2022 semester 1.

8.3.1 Results (assignment)

The animation programs for assignment discussed in cycle 2 (Chapter 6, section 6.2)

produced the results in Table 8.1. The table (Table 8.1) reports on the control and

experimental group results for both pre-teaching and post-teaching exercises on the

uses of assignment. There were 23 students in attendance. The students were divided

randomly and as equally as possible between two groups. The control group had 11

students and the experimental group had 12. In the first column (control group) under

pre-teaching exercise 1 there is x (8) – 72.7%. In an x (8) – 72.7%, the number 8 in

the brackets means the number of SIPS who got the value of x correct; the subsequent

number represents the same number as a percentage. All other columns have been

calculated in the same manner.

223

Table 8.1: Results (Assignment)

Control group Experimental group

Pre-teaching
exercises

Post-teaching
exercise

Pre-teaching
exercises

Post-teaching
exercises

Pre-teaching exercise 1
x (8) – 72.7%

Pre-teaching exercise 2
p (6) – 54.5%
y (7) – 72.7%

Pre-teaching exercise 3
k (6) – 54.5%
t (8) – 72.7%

Pre-teaching exercise 4
x (7) – 63.6%
y (4) – 36.4%

Post-teaching exercise 1
t (6) – 54.5%
p (5) – 45.5%
k (5) – 45.5%

Post-teaching exercise 2
t (6) – 54.5%
p (8) – 72.7%
k (6) – 54.5%

Pre-teaching exercise 1
x (7) – 58.3%

Pre-teaching exercise 2
p (7) – 58.3%
y (8) – 66.7%

Pre-teaching exercise 3
k (6) – 50.0%
t (8) – 66.7%

Pre-teaching exercise 4
x (6) – 50.0%
y (7) – 58.3%

Post-teaching exercise 1
t (10) – 83.3%
p (9) – 75.0%
k (9) – 75.0%

Post-teaching exercise 2
t (11) – 91.7%
p (12) – 100%
k (10) – 83.3%

The experimental group shows a significant number of students who got the answers

correct in the post-teaching exercise (see percentage on the value of t, p and k in

Table 8.1). When SIPS get the values of t, p and k in the post-exercise correct, the

assumption is that the students now know the uses of assignment in initialisation and

copying (overwriting). This is because the correct answer includes steps which build

on comprehension of initialisation and overwriting. The results of the post-teaching

exercise in the experimental group are higher than the pre-teaching exercise in the

same experimental group and as compared to the post-teaching exercise in the control

group. The main aspects of this experiment were to instil a proper understanding of

how assignment works in programming.

8.3.2 Results (decisions/nested decisions)

There were 25 students participating in this study for this concept, that is 12 students

in the control group and 13 students in the experimental group. The experimental

group has an extra student because the total number of students is odd.

8.3.2.1 Algorithm sections

The problem specification and its algorithm for the pre-teaching exercise are the same,

as explained in Chapter 6, section 6.3, Figure 6.21. The algorithm section for the pre-

teaching exercise remains the same as in Chapter 7, section 7.5.2.1, Figure 7.72. The

post-teaching algorithm has been changed for cycle 4. In cycle 3 reflections, it was

224

noted that the post-teaching algorithm missed an additional pair that can be related to

the pre-teaching exercise. The problem specification for the new post-teaching

exercise is in Figure 8.13.

Write an algorithm that determines a final mark, then check if the student has passed, has a
condoned pass, has qualified for a supplementary exam or has failed. Prompt for a year mark and
exam mark. Calculate the final mark as the average of the year mark and exam mark.

Condition for a pass:
If the final mark is 50 or higher, then show the message "Pass".

Condition for a condoned pass:
If the final mark is either 48 or 49, then reset the final mark to 50 and show the message "Condoned
pass".

Condition to qualify for the supplementary exam:
If the final mark is between 44 and 47, then show the message "You qualify for supplementary exam”.

If any of the above conditions are not true, show the message "Failed".
Figure 8.13: Problem specification for post-teaching algorithm on decisions/nested decisions

The content of Figure 8.14 is the algorithm sections for the post-teaching exercise.

Figure 8 14: Post-teaching algorithm sections on decisions/nested decisions

The content of Table 8.2 consists of paired algorithm sections that are to be used for

SOLO-adapted evaluation.

225

Table 8.2: Paired algorithm section (decisions/nested decisions)

Pair Section name

Pair 1 Pre_nested_if Represents the correct structure of the nested if-
statement

Post_nested_if

Pair 2 Pre_inner_if_AND Refer to using the correct structure of the if-clause that
has the “&&” operator or uses alternative method

Post_if_AND

Pair 3 Pre_outer_if_OR Refer to using the correct structure of the if-clause that
has the “||” operator or uses alternative method

Post_if_OR

Pair 4 Pre_inner_if_content Refers to the correct content in the block following the if-
statement when it evaluates to true

Post_if_OR_content

Pair 5 Pre_outer_else_content Is about the correct content in the else part of the if-
statement

Post_else_content

Pair 6 Pre_inner_else_content Pair 6 refers to the correct content of the else part of the
if-statement

Post_else_content

8.3.2.2 Concept and pairs performance

The content of Table 8.3 is the average percentage of transitions across pair 1 to pair

6. The content of Table 8.3 presents the overall performance of decisions/nested

decisions. The evaluation sheets per pair are presented in Appendix H. In the previous

action cycles, the main indicators of TLPAP’s effect on SIPS were mainly revealed in

two transitions, that is, the M→R (improved) and M→M (Stagnant-at-intermediate-

level).

226

Table 8.3: Average transitions performance on decisions/nested decisions for all pairs

P P→P
(Stagnant-no-learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-lower-

level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 8.3% 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 18.1% 21.8% 23.6% 9% 2.8% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 1.4% 2.6% 30.6% 62.8% 15.3% 5.1%

 P U M R

Most of the time, in the previous cycle, the M→R transition was higher in the

experimental group while the M→M transition was lower in the control group. In this

concept of decisions/nested decision, the transition outcomes look consistent to cycle

3. For example, in cycle 3 (Chapter 7, section 7.5.2) under the concept of

decisions/nested decisions, the M→R transition in the control group resulted in an

average percentage (26.7%) which is half the average percentage (48.5%) in the

experimental group. In this cycle, the same concept results in the M→R transition of

30.6% in the control group and 62.8% in the experimental group. This means that the

effect of TLPAP was two times greater than what the normal teaching method

achieved.

In the concept of decisions/nested decision, the M→M transition continues to be higher

in the control group, while the experimental group resulted in 0% or less than 10%

within the same transition. As emphasised previously, the M→M transition result

should have been in the M→R transition. This means that the higher percentage in the

M→M transition is evidence that a relevant teaching method needs further

improvements.

There are a few pairs that stand out or have a major influence on the overall

performance in understanding a concept. Such pairs include transition outcomes that

are much higher than the others or pairs that resulted in 100% transitions. The 100%

227

M→R transition is found in the experimental group under pair 2 (Pre_inner_if_AND

and Post_if_AND) and in the control group under pair 3 (Pre_outer_if_OR and

Post_if_OR). Pair 2 is in Appendix H Table H.6, and Pair 3 is in Appendix H Table H.9.

However, in pair 3, the 100% M→R transition in the control group has 25% while the

non-100% M→R transition in the experimental group has 69.2%. There is a notable

30.8% in the experimental group under the U→M transition (intermediate-

improvement) in pair 4 (Pre_inner_if_content and Post _if_OR_content) and pair 5

(Pre_outer_else_content and Post_else_content). Pair 4 is in Appendix H Table H.12

and Pair 5 in Appendix H Table H.15. The U→M transition is acceptable since it falls

within the category of improving transitions, but as emphasised in the previous cycle,

the more desirable transition instead of U→M is U→R (Improved+).

The overall comparison across pair 1 to pair 6 in relation to decisions/nested decisions

shows more of the experimental group under the improved category than the control

group. The improvements in the experimental group are positive compared to the

control group, but also compared to the previous cycles under the concept of

decisions/nested decisions.

8.3.3 Results (loops/decisions)

There were 28 SIPS in participation and they were randomly divided into 14 per group.

8.3.3.1 Algorithm sections

The problem specification in Figure 8.15 is the problem specification for the post-

teaching exercise.

You are requested to develop a program that computes students' marks. Prompt the user to enter
the exam mark of each student one by one (there are four students in total). If the user enters an
exam mark lower than 0 or higher than 100, re-prompt the user to enter the exam mark again.

Calculate and display the average exam mark of all four students.
Determine and display the number of students who got an exam mark of 75 or higher.

Figure 8.15: Problem specification for post-teaching algorithm on loops/decisions

The following figure (Figure 8.16) indicates the dissected algorithm sections on

loops/decisions for the pre-teaching algorithm.

228

Figure 8.16: Pre-teaching algorithm sections on loops/decisions

Figure 8.17 displays the dissected algorithm sections on loops/decisions for the post-

teaching algorithm.

Figure 8.17: Post-teaching algorithm sections on loops/decisions

The content of Table 8.4 consists of a paired section of the nested loop.

229

Table 8.4: Pairs algorithm sections – nested loops

Pair Section name

Pair 1 Pre_loop Refers to the correct structure of the loop

Post_loop

Pair 2 Pre_loop_content Means the general content of the first loop

Post_loop_content

Pair 3 Pre_if_OR Means the correct format of the condition in an if-statement
using the || operator

Post_if_OR

Pair 4 Pre_if_OR_content Refers to the correct content of the if-statement

Post_if_OR_content

Pair 5 Pre_if_OR_2 Means the correct format of the condition in the second if
statement using the || operator

Post_if_OR

Pair 6 Pre_if_OR_2_content Refers to the correct content of the if-statement

Post_if_OR_content

Pair 7 Pre_else Means the correct content of the else part of the if-
statement

Post_else

Pair 8 Pre_display Means correct display at the right place

Post_display

8.3.3.2 Concept and pairs performance

The content of Table 8.5 is the average percentage of transitions across pair 1 to pair

8. The table shows the overall performance of the loops/decisions. The problem

specification required a solution that needed both a looping statement and decision

statement. The evaluation sheets per pair are presented in Appendix I.

230

 Table 8.5: Average transitions performance on decisions/loops for all pairs

P P→P
(Stagnant-no-learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-lower-

level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 3.6% 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 20.5% 20.5% 20.5% 2.7% 8% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 2.7% 4.5% 33.2% 64.9% 10.1% 7.1%

 P U M R

An algorithm that requires a combination of loop and decisions was experimented for

the first time in this cycle. The overall transition performance is similar to the previous

concept (decisions/nested decisions) and also to the previous cycles. This further

affirms the consistency of TLPAP which performs in a similar pattern regardless of

new problem specifications or repeat experiments. For example, the M→R transition

still revolves around 30% in the control group and around 60% in the experimental

group, just as in previous experiments. Furthermore, the M→M transition continues to

retain higher percentages in the control group than the experimental group.

The interesting results are in pair 1 (Pre_loop and Post_loop) and pair 2

(Pre_loop_content and Post_loop_content). Pair 1 is in Appendix H Table H.3 and Pair

2 is in Appendix H Table H.6. In pair 1, the M→R transition in the control was close

(42.9%) to the experimental group which resulted in 57.1%. Pair 1 refers to the correct

structure of the loops. This means almost half of both the control and experimental

groups were able to get the overall structure of the loop correct.

In pair 2, which refers to the correct content of the loop (the code between the blocks),

the U→M transition resulted in 42.9% in the control group and 14.2% in the

experimental group. This means that the method of teaching for the control group was

good for intermediate improvement (U→M transition) specifically for pair 2, but not

good enough for U→R (Improved+) transition.

231

The pairs that resulted in 100% M→R transition are pair 1 (Pre_loop and Post_loop),

pair 2 (Pre_loop_content and Post_loop_content), pair 4 (Pre_if_OR_content and

Post_if_OR_content) in Appendix H Table H.12; pair 6 (Pre_if_OR_2_content and

Post_if_OR_content) in Appendix H Table H.18; and pair 8 (Pre_display and

Post_display) in Appendix H Table H.24. Overall, the 100% M→R transition continues

to compleent the effect of the adopted teaching method experimental group.

8.3.4 Results (parallel arrays)

The total number of students is odd (23), that is 11 students were in the control group

and 12 in the experimental group.

8.3.4.1 Algorithm sections

The problem specification for parallel arrays remains the same as indicated in Chapter

7, section 7.3.3.2 in Figure 7.55 (pre-teaching exercise) and section 7.5.6.1 in Figure

7.83 (post-teaching exercise). The algorithm pairs remain the same as in Chapter 7,

section 7.5.5.1 in Table 7.8. The algorithm section also remains the same for the pre-

teaching exercise (Chapter 7, section 7.5.6.1 in Figure 7.82) and the post-teaching

exercise (Chapter 7, section 7.5.6.1 in Figure 7.84).

8.3.4.2 Concept and pairs performance

The content of Table 8.6 is the average percentage of transitions across pair 1 to pair

6. The content of Table 8.6 presents the overall performance of the parallel arrays.

The problem specification required a solution that needed both looping statements

and a decision statement. Evaluation sheets per pair are presented in Appendix J.

232

 Table 8.6: Transitions performance on parallel arrays

P P→P
(Stagnant-no-learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-lower-

level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 5.5% 11.7% 34.6% 1.7% 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 8.3% 16.4% 43.3% 38.2% 36.7%

 P U M R

The average percentage outlook for parallel arrays for M→R (Improved) transition

remains higher in the experimental group and the M→M (Stagnant-at-intermediate-

level) transition also results in higher average percentage in the control group.

The pairs that resulted in 100% transition are pair 1 (Pre_array_initialised and

Post_array_initialised) in Appendix J Table J.3; pair 2 (Pre_loop_structure and

Post_loop_structure) in Appendix J Table J.6; pair 3 (Pre_if_condition and Post_

if_condition) in Appendix J Table J.9; and pair 5 (Pre_display and Post_display) in

Appendix J Table J.15. In cycle 3, this concept of parallel arrays resulted in all pairs

into 100% M→R transition. In this cycle in the same concept, only one pair out of five

pairs did not result in 100% transition. This is a sign of performance consistency of

TLPAP on SIPS.

The R→R (already-know) transition resulted to higher percentages in pair 1 for both

the control (63.6%) and experimental (66.7%) groups. This affected the number of

algorithm sections in the M→R transition as it recorded lower percentages (0% in the

control group, 16.7% in the experimental group). The percentages in the R→R

transition do not have direct pedagogical implication on either the control or

experimental group as I was unable to control what or how students learn outside the

parameter of the action research study.

233

In this concept of parallel arrays, one of the notable results is in pair 3 where the M→M

transition resulted in 54.5% in the control group and 0% in the experimental group.

Based on the previous M→M (Stagnant-at-intermediate-level) transitions across all

concepts, this percentage is the highest – setting a record. Perhaps this is caused by

the pair requirements which need the correct structure of condition in the if-statement

which must make use of parallel array. Irrespective, this is further evidence that the

normal teaching method in the control group can only, to a certain extent, help SIPS.

In pair 5, the U→R (Improved+) transition resulted in 0% in the control group and 25%

in the experimental group. The U→R transition is part of improving categories and

adds on to the success of th4e M→R transition generated by TLPAP in the

experimental group.

8.3.5 Results (functions)

There were 22 SIPS participants here, that is 10 students in the control group and 12

students in the experimental group.

8.3.5.1 Algorithm sections

The problem specification for functions (pre-teaching exercise) remains the same as

indicated in Chapter 7, section 7.3.4 in Figure 7.62. The problem specification for

functions (post-teaching exercise) remains the same as indicated in Chapter 7, section

7.5.7.1 in Figure 7.86. The algorithm section remains the same for the pre-teaching

exercise (section 7.5.7.1 in Figure 7.85) and post-teaching exercise (section 7.5.7.1 in

Figure 7.87). The algorithm pairs remain the same as in Chapter 7, section 7.5.7.1,

Table 7.11.

8.3.5.2 Concept and pair performance

The content of Table 8.7 shows the average percentage of transitions across pair 1 to

pair 6, presenting the overall performance of the functions. The evaluation sheets per

pair are presented in Appendix K.

234

 Table 8.7: Average transitions performance on functions for all pairs

P P→P
(Stagnant-no-learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-lower-

level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 23.3% 8.3% 31.7% 2.8% 10% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 7% 26.7% 72.2% 8.3% 9.7%

 P U M R

The performance of the M→R (Improved) transition has served as the main indicator

of success of TLPAP in the experimental groups in the precious concepts and cycle.

In the concept of functions, the M→R transition has 72.2% in the experimental group

while the control group has 26.7%. This conceptual performance of functions in the

M→R transition is not just higher than the previous cycle (cycle 3) which recorded

62.2%, but has set a record, higher than all previous M→R transitions. The

pedagogical implication of these results is that TLPAP has continued to heighten its

impact in the experimental group as compared to the control group.

The pairs that resulted in 100% M→R transition in the concept of functions are pair 1

(Pre_func_call_return and Post_func_call_return) in Appendix K Table K.3; pair 2

(Pre_func_call_void and Post_func_call_void) in Appendix K Table K.6; pair 3

(Pre_func_header_return and Post_func_header_return) in Appendix K Table K.9;

pair 4 (Pre_func_return_content and Post_func_return_content) in Appendix K Table

K.12; and pair 5 (Pre_func_header_void and Post_func_header_void) in Appendix K

Table K.15. The TLPAP is further proving its capability on 100% M→R transition in the

experimental group as compared to the control group.

The M→M (Stagnant-at-lower-level) transition in the control group has also resulted in

higher percentages in pair 2, pair 5 and pair 6. In pair 2, M→M transition has 50% in

the control group and the experimental group has 8.3%. In pair 5, M→M transition has

40% in the control group and the experimental group has 0%. In pair 6, M→M transition

235

has 40% in the control group and 8.3% in the experimental group. This M→M transition

outcome has been consistently higher in past concepts and cycles within the control

group compared to the experimental group. This is a continuing indication that the

teaching method in the control group is less effective, especially on more challenging

concept like functions. The last notable result is pair 1 which has a 40% U→M

(Intermediate-improvement) transition in the control group and 8.3% in the

experimental group. As emphasised in the earlier concepts, this transition is decent or

can be referred as ‘work in progress’ but is not quite enough – the desired transition

is U→R instead of U→M.

8.4 Summary of reflections on cycle 4

The following reflections emanate from this cycle.

- The uses of assignment put emphasis on initialisation, copying of values from

one variable to another or overwriting. The performance of the experimental

group has been consistently positive from the previous cycles as reported in

cycle 2 (Chapter 6, section 6.6.1) and cycle 3 (Chapter 7, section 7.5.1). This

serves as a confirmation of the validation of TLPAP as this is a repeat

experiment. No changes are foreseen in the next cycle in this experiment.

- Generally, the post-teaching algorithm exercises in the experimental group

recorded higher improved (M→R) results than the control group.

- The post-teaching algorithm exercises in the experimental group recorded

higher intermediate-improvement (U→M) than the control group. However, the

control group has a reasonable share in the U→M transition. This means that

a normal teaching method does help students, but at a slower pace, which

resulted in intermediate achievements.

- The deteriorated (R→M) pairs in the sections of the algorithm were found

mostly in the control group, but they were minimal. This suggests that the

normal teaching method does not cause more harm, but it is still not enough to

reach the ultimate stage of learning.

- The improved+ (U→R) pairs in the sections of the algorithm were found mostly

in the experimental group, but they were minimal. This means the TLPAP in the

236

experimental group was good enough to enforce learning for a few students

who were really struggling to the ultimate stage of learning.

- Pedagogical guidelines as part of TLPAP were followed (using the adapted

version in chapter 7) when demonstrating the animation programs. There are

no revisions at this stage.

- The animation speed adjustment on the animation programs had an impactful

effect on myself as an educator. This is because my narration was relaxed and

not rushed when the animation speed was on slow or very slow. This means

the speed adjustment is not only good for the student but for the educators as

well.

8.5 Summary of reflections on cycle 5

The outcome of cycle 5 is similar to that of cycle 4, with no substantial differences

between those cycles. As a result, I only point out reflections of cycle 5 in this section

and briefly compare significant differences across cycle 3 to cycle 5 in section 8.6. The

intention of proceeding to cycle 5 experimentation was to further confirm the reliability

and efficacy of the TLPAP in the experimental group as compared to the control group.

In cycle 5, the animation programs adapted into Java programming language include

animation for decisions and the combination of decisions and loops (sample programs

in Appendix L). While the animations for the uses of assignment were also part of the

Java experiments, there was no adaption since they are language-independent. The

tutors oversaw the control and experimental groups. The tutors in the experimental

group were properly briefed about TLPAP use. The improvements within the post-

teaching algorithm sections remained consistent even when tutors were in charge.

One suggestion from the tutors included embedding the summary of pedagogical

guidelines into the animation programs where they can be accessed with a button

click. Other concepts, like loops, nested loops, arrays and functions were presented

to C++ introductory programming students.

The outcome of teaching and learning the concept of assignment produced similar

outcomes to the previous cycles. The rest of the concepts presented in cycle 5 also

produced similar experimental outcomes. For a thorough overview across cycles, the

following section compares the most common transitions across cycle 3 to cycle 5.

237

8.6 Discussions on transitions across cycle 3 to cycle 5

The SOLO-adapted evaluations on cycle 3 to cycle 5 were based on the algorithm

pairs/sections while in cycle 2 these were based on the overall algorithm. For a fair

comparative view across cycles, the discussion in this section will focus on cycle 3 to

cycle 5.

The most common frequently occurring SOLO-adapted transitions between cycle 3

and cycle 5 in both the control and experimental groups were M→R (improved), U→M

(intermediate-improvement), M→M (stagnant-at-intermediate-level) and R→R

(already-know). In the previous sections, the discussion indicated that the M→R and

M→M transition had a major implication on the difference between the control group

and experimental group. Each concept from cycle 3 to cycle 5 resulted in higher

average percentages under the M→R transition and lower under the M→M transition.

In the control group, the opposite occurred, that is, a higher M→M transition and lower

M→R transition rate. The results of those transitions further confirm the pedagogical

implications between the two groups where the TLPAP in the experimental group

outperformed the normal teaching method in the control group.

The average percentage for U→M transition in various concepts across cycle 3 to

cycle 5 has been lower than 32% in both the control and experimental groups. The

highest average percentage under the U→M transition is found in the experimental

group with 31.6% for the concept of loops (cycle 3). The second highest average

percentage is also in the experimental group with 27.5% for the concept of functions

(cycle 3). The U→M transition is an improving category; however, the outcome can be

regarded as semi-improvement since the transition resulted into U→M instead of U→R

(improved+). The implications of the U→M results in relation to the intervention in both

groups is that the teaching method has made a good attempt but not enough for

ultimate success.

The transition which occurred most frequently in the control group in a few algorithm

sections is the R→M (deteriorated) transition. The average percentages for R→M

transition in the control group have been 10% or less across cycle 3 to cycle 5, except

in the concept of decisions/nested decisions in cycle 4 which resulted in 17%. The

average percentages for R→M transition in the experimental group have been either

0 or less than 5%. This means that even though the average R→M transitions in the

238

control group are higher than the experimental group, the teaching methods in both

did not lead to severe learning deterioration.

The U→U (stagnant-at-lower-level) transition has the majority of 0% in both groups

across cycle 3 to cycle 5, meaning that there is nothing to comment about the

transition. The average percentage in the R→R (Already-know) transition across cycle

3 to cycle 4 has no direct implication on the intervention in either the control or

experimental group. This is because the intervention occurred while such pairs were

already in the relational stage. Consequently, I was unable to evaluate how they

acquired such knowledge or control how they show learning outside the experimental

setup of this study. However, the R→R transition serves an important methodological

aspect that helps discard the number of algorithm sections that are correct before the

intervention. This further assures that the performance of TLPAP is not linked to the

R→R transition in anyway.

There are instances where the M→R had a 100% transition. The 100% transition in

the M→R category means that all pairs that were categorised in the multistructural

stage in the pre-test evaluation of a certain pair have transitioned into the relational

stage. If the transition split in the post-test evaluation into 2 or more categories, it is no

longer a 100% M→R transition.

The following sections are pairs that resulted in a 100% transition in the

experimental and control groups

In the concept of decisions/nested decisions, the 100% M→R transitions in the group

are:

Pair 1 (Pre_nested_if and Post_nested_if) in cycle 3 and cycle 5

Pair 2 (Pre_inner_if_AND and Post_if_AND) in cycle 4 and cycle 5

Pair 3 (Pre_outer_if_OR and Post_if_OR) in cycle 3

Pair 4 (Pre_inner_if_content and Post_if_OR_content) in cycle 3

Pair 5 (Pre_outer_else_content and Post_else_content) in cycle 3

Pair 6 (Pre_inner_else_content and Post_else_content) in cycle 3 and cycle 5

In the concept of a combination of loops and decisions/nested decisions, the 100%

M→R transitions include:

Pair 1 (Pre_loop and Post_loop) in cycle 4

239

Pair 2 (Pre_loop_content and Post_loop_content) in cycle 4 and cycle 5

Pair 3 (Pre_if_OR and Post_if_OR) in cycle 5

Pair 4 (Pre_if_OR_content and Post_if_OR_content) in cycle 4 and cycle 5

Pair 5 (Pre_if_OR_2 and Post_if_OR) in cycle 5

Pair 6 (Pre_if_OR_2_content and Post_if_OR_content) in cycle 4

Pair 7 (Pre_else and Post_else) in cycle 5

Pair 8 (Pre_display and Post_display) in cycle 4

In the concept of a combination of a loops the 100% M→R transitions include:

Pair 2 (Pre_firstloop_structure and Post_loop_strucutre) in cycle 5

Pair 4 (Pre_secondloop_structure / Pre_secondloop_content and Post_display) in

cycle 3

In the concept of a combination of nested-loop, the 100% M→R transitions include:

Pair 1 (Pre_outer_loop_structure and Post_outer_loop_structure) in cycle 5

Pair 2 (Pre_inner_loop_structure and Post_inner_loop_structure) in cycle 3 and cycle

5

Pair 3 (Pre_inner_loop_content and Post_inner_loop_content) in cycle 5

Pair 4 (Pre_outer_loop_content and Post_ outer_loop_content) in cycle 5

In the concept of one-dimensional arrays, the 100% M→R transitions include:

Pair 1 (Pre_array_initialised and Post_array_initialised) in cycle 3 and cycle 5

Pair 2 (Pre_loop_structure and Post_loop_structure) in cycle 3

Pair 3 (Pre_if_condition and Post_ if_condition) in cycle 3 and cycle 5

Pair 4 (Pre_if_content and Post_ if_ content) in cycle 5

Pair 5 (Pre_display and Post_display) in cycle 3 and cycle 5

In the concept of parallel arrays, the 100% M→R transitions include:

Pair 1 (Pre_array_initialised and Post_array_initialised) in cycle 3 and cycle 4

Pair 2 (Pre_loop_structure and Post_loop_structure) in cycle 3 and cycle 4

Pair 3 (Pre_if_condition and Post_ if_condition) in cycle 3 and cycle 4

Pair 4 (Pre_if_content and Post_ if_ content) in cycle 3

240

Pair 5 (Pre_display and Post_display) in cycle 3 and cycle 4

In the concept of functions, the 100% M→R transitions include:

Pair 1 (Pre_func_call_return and Post_func_call_return) in cycle 3, cycle 4 and cycle

5

Pair 2 (Pre_func_call_void and Post_func_call_void) in cycle 5

Pair 3 (Pre_func_header_return and Post_func_header_return) in cycle 3, cycle 4

and cycle 5

Pair 4 (Pre_func_return_content and Post_func_return_content) in cycle 4 and cycle

5

Pair 5 (Pre_func_header_void and Post_func_header_void) in cycle 4 and cycle 5

Pair 6 (Pre_func_void_content and Post_func_void_content) in cycle 3

The following sections are pairs that resulted in a 100% M→R transition in the

control group

The control group had three instances where the 100% M→R transition occurred. Pair

3 under decisions/nested decisions in cycle 4, pair 1 under the concept of a parallel

array in cycle 3 and pair 4 in a one-dimensional array in cycle 3. The description of

the pairs is as follows:

Pair 3 (Pre_outer_if_OR and Post_if_OR) in cycle 3

Pair 1 (Pre_array_initialised and Post_array_initialised) in cycle 3

Pair 4 (Pre_if_content and Post_ if_ content) in cycle 3

Concluding remarks

In this concept of decisions/nested decisions, the M→R 100% transition occurred

once in the control group and nine times in the experimental group. In the concept of

loops and nested-loops, the 100% transition occurred two times in the experimental

group (for loops) and five times (for nested loops). The control group had no M→R

100% transitions on either loops or nested loops. There were 10 occurrences of 100%

M->R transition in the experimental group under the concept of the combination of

decisions and loops and nothing in the control group. The concept of one-dimensional

arrays recorded in eight instances of 100% M→R transitions and parallel arrays has

241

nine 100% M→R transitions in the experimental group. In the control group, the 100%

M→R transition occurred once for both one-dimensional array and parallel array. In

total, there have been 36 instances of 100% M→R transition in the experimental group

across cycle 3 to cycle 5. The control group has three instances of 100% M→R

transition across cycle 3 to cycle 5.

In the case where the experimental group did not record 100% M→R transition, the

advantage is still in the experimental group due to higher numbers in the M→M

transition of the control group. The 100% M→R transition occurrences are an

important indicator of TLPAP success within algorithm pairs. Its importance is due to

the fact that the transition outcomes all result to improvements. A case where there is

no 100% M→R transition is when other transitions like M→M (stagnant-at-

intermediate-level), M→U (intermediate-deterioration) and M→P (intermediate-

deterioration+) occur in the same algorithm pair.

8.7 State of the framework

At the end of cycle 4 of our action research, the state of the TLPAP framework was

referred to as adapted TLPAP framework version 4 pending the outcome of cycle 5

results that could suggest further adaptation towards a final framework. At the end of

cycle 5 of the action research, the state of the TLPAP framework was referred to as

the final TLPAP framework.

The specific items that form part of this final TLPAP framework consist of the following:

- The animation programs focusing on assignment (presented in cycle 2, chapter

6) as opposed to the manipulatives version (presented in cycle 1, chapter 5).

Even though the use of physical manipulatives yielded positive results in

emphasising the uses of assignment, the rationale behind this choice is the

animation's flexibility to accommodate large classes in a contact teaching

session and its compatibility with an online session.

- All the animation programs for introducing a concept as presented in Chapter

7, section 7.2, as well as an additional introductory animation program

presented in Chapter 8, section 8.2.2.

- The nested-decider animation program presented in cycle 2.

242

- The animation programs for loops, arrays and functions presented in cycle 4.

- The animation program on the combination of decisions and loops as presented

in cycle 4.

- The adapted pedagogical guidelines revised in cycle 4.

The lessons learned in each cycle of action research has provided insight to further

derive a high-level, generic framework for teaching and learning with animation

programs. This framework is deemed generic because it is not limited to introductory

programming only but can be adapted to develop relevant animation programs for

other similar modules or non-programming subjects. See Figure 8.18 for a depicted

generic framework.

Figure 8.18: Generic framework

The generic framework in Figure 8.18 contains the critical high-level components of

the TLPAP framework; that is the animation program design and pedagogical

guidelines. In the part of animation program design, the initial step is the application

of the principles of multimedia learning by Mayer (2005). These principles must be

followed when designing animation programs for educational purposes. Secondly,

243

animation programs for concept introduction are recommended. This is to instil basic

knowledge about the concept before introducing the main aspects of the concept.

Thirdly, the main animation programs must focus on the core of subject matter and

make use of real-world examples or problems for animating. Teaching and learning

through the main animation programs should be less challenging after using the

introductory animation programs and further reduce any cognitive overload in the case

of complex concepts. The inclusion of introductory animation is crucial as struggling

students may not focus on the basics during the main animation programs

demonstration but are expected to focus on the main ideas presented at that stage.

The last part of the generic framework is pedagogical guidelines. Pedagogical

guidelines are a crucial component of the framework because they prescribe the best

practices for teaching and learning with animation programs in that subject or module.

Pedagogical guidelines should be adapted based on the nature of the subject as was

done for the TLPAP framework.

8.8 Conclusion

In this chapter, I presented the adapted TLPAP framework where various animation

programs for IPC were designed and tested. In addition to the animation programs

designed and experimented in previous cycles, added animation programs were

developed and experimented within cycle 4. Such animation programs were designed

under the concept of loops and decisions (a combination of both) and additional

animation for introducing an array. The pedagogical guidelines adapted in cycle 3 were

used in cycle 4 and cycle 5 along with the animation programs as part of TLPAP.

Generally, the experiments in these cycles showed consistent improvements in the

experimental group across the concepts and previous cycles.

At the end of cycle 5, a final TLPAP framework was concluded and prescribed. The

components that form part of TLPAP were all identified and referenced across cycles.

Moreover, based on the experience of developing TLPAP, a generic or high-level

framework was derived and presented. A generic framework can be adapted and used

in other subject areas beyond introductory programming. The next chapter presents

the discussions and conclusion of this study.

244

Chapter 9: Conclusion

Chapter

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Content

Introduction

Literature
review

Theoretical
framework

Methodological
approach

Initial
framework -

cycle 1

Adapted
framework -

cycle 2

Adapted
framework -

cycle 3

Adapted
framework -

cycles 4 and 5

Conclusion

245

9.1 Introduction

The initial aim of this study was to make use of manipulatives for teaching and learning

Introductory Programming Concepts (IPC). Through rigorous action research, the

study evolved into using animation programs for teaching and learning IPC as each

action cycle was reviewed, reflected on and planned accordingly. The core problem

as stated in Chapter 1 is that some students find programming too challenging to

comprehend. The problem deteriorates into reduced programming performance, a

higher dropout rate and academic exclusion in the field of computing.

In the spectrum of pedagogical approaches in teaching and learning programming

(discussed in Chapter 2), the use of multimedia tools/animation programs is found to

be informative, explanatory, explicit, interactive, effective and clear. The gap within the

existing animation programs for teaching and learning IPC is a lack of simplicity which

can be key factor to SIPS. Some animation programs contain overloaded graphics

which can deviate SIPS’ focus or distract from the actual learning. Animation programs

for teaching and learning should not be an end to themselves, but rather a way to learn

IPC. Existing animation programs do not have a set of pedagogical guidelines

compatible with the developed animation programs but rely on the assumption that

users can figure out how to properly use the animation programs. Furthermore, the

existing animation programs focus more on the K12 stream and block-based

programming while there is a dearth of intentional research on struggling text-based

programming students at university.

In Chapter 3, theoretical framework for this study was discussed, including

constructivism, the conversational framework, teaching philosophy, cognitive theory

on multimedia learning and the structure of observed learning outcomes (SOLO). In

Chapter 4 the methodology followed in this study was discussed. The discussion in

the methodology chapter included the research paradigms and multimedia design

guidelines by Mayer (2005). The overall methodology followed is action research in

the educational setting. The results of five action research cycles have been recorded

and analysed in Chapter 5, Chapter 6, Chapter 7 and Chapter 8.

246

In cycle 1 (presented in Chapter 5), the teaching and learning activities were based on

physical manipulatives as this was the initial plan. In that cycle, the framework was

referred to as teaching and learning programming with manipulatives (TLPM). The

planned manipulatives were based on teaching and learning the uses of assignment

and decisions/nested decisions. The experimentation was undertaken through pre-

test and post-test of algorithms in the control and experimental groups.

The outcome of teaching and learning on the uses of assignment was successful, but

the outcome of teaching and learning decisions/nested decisions was not successful.

The main problem encountered in an attempt to use the manipulatives for teaching

and learning decisions/nested decisions was that the details of the manipulatives were

not clearly visible to students. Additionally, the problem was worsened by the Covid-

19 pandemic as I had to comply with government regulations on social distancing and

higher education opted for online teaching and learning. In cycle 2, the physical

manipulatives approach was changed to virtual manipulatives. The virtual

manipulatives were referred to as multimedia teaching and learning tools and

ultimately referred to as animation programs. Pedagogical guidelines were initiated

and followed from this cycle. The framework was referred to as Teaching and Learning

Programming with Animation Programs (TLPAP) from cycle 2 onwards.

The development of the animation programs for assignment was a direct translation

from physical manipulatives to animation programs. The animation programs for

decisions/nested decisions were also designed based on problem specifications and

experimented with in cycle 2. In the case of the animation programs that emphasise

the use of assignment, experimentation was successful, similar to the outcome of

physical manipulatives experimentation in cycle 1. In the case of animation programs

for decisions/nested decisions, the experimentation was also successful; however, a

need to improve the evaluation method was noted and planned for cycle 3.

One challenge encountered by SIPS in cycle 2 (in the concept of decision/nested

decisions) was persistent error in the basics and simple structural aspects of the

concept. The small misalignment between pre-teaching and post-teaching exercises

in the concept of decision/nested decisions was noted for adjustment in the next cycle.

247

A plan to improve and design more animation programs for various IPC was noted for

cycle 3.

In cycle 3, the introductory animation programs were introduced to focus on the basics

and simple structure of the concept before SIPS can be taught with the animation

programs which are tied to a problem specification. The experimented animation

programs were based on the concept of assignment, decisions/nested decisions,

loops/nested loops, one-dimensional arrays/parallel arrays and functions. The

pedagogical guidelines formulated in cycle 2 were adapted and followed in cycle 3. As

part of the action research methodology which allows continual improvements per

cycle, two additional animation programs were planned for cycle 4.

In cycle 4, the first additional animation program based on a problem specification

included the combination of decisions and loops. The other animation program was

an addition to the introductory animation program on the concept of arrays. The

framework was then referred to as TLPAP adapted framework version 4. In cycle 5,

the animation programs were repeated as they were in cycle 4. In the previous cycles,

the animation programs were presented along with a C++ program code, but

adjustments in cycle 5 included a radio button switch from a C++ code to a Java code.

Some of the animations were presented to Java SIPS by tutors and some were still

presented to C++ SIPS. At the end of cycle 5, the framework was then referred to as

TLPAP final framework. The subsequent section discusses the nature of the actual

TLPAP.

9.2 Structure of the TLPAP framework

The TLPAP framework has been designed specifically for SIPS in a text-based

programming environment; however; it can be adopted as a general teaching and

learning framework for all introductory programming students. The TLPAP consists of

animation programs based on imperative programming concepts (objects-later

approach) and the applicable pedagogical guidelines. The pedagogical guidelines are

the stages to be followed for proper use of animation programs and effective learning

benefits. The pedagogical guidelines can also be seen as a mapping model between

TLPAP and other teaching and learning strategies. The animation programs are in two

248

phases: animation programs for introducing a new concept and animation programs

for use after the introduction of a concept. The introductory animation programs

consist of simple animations that give SIPS a structural basis about the concept being

taught. The animation programs to be used after introductory animation programs are

coupled with problem specifications. The idea of these two phases of animation

programs is that SIPS should not be struggling with the basics while attempting to

solve a problem. For example, if the concept of decisions/nested decisions is taught,

introductory animation programs based on decisions/nested decisions are used. The

animation programs with problem specifications should also be based on

decisions/nested decisions.

The design of the animation programs complied with the 12 principles of multimedia

learning by Mayer (2005) to ensure that the animation programs are within the

parameters of the tested theoretical basis in teaching and learning. The animation

programs’ design was simplified for easy comprehension by SIPS. The interface of the

animation programs is divided into two: the left side for animation rendering and the

right side for program code. The rendering of animations occurs synchronously with

program code. When the animation program executes, the program code is

highlighted line by line from top to bottom and the corresponding animation occurs as

per the currently highlighted line of code. It is recommended that the users of the

animation programs familiarise themselves with pedagogical guidelines as this

process forms part of TLPAP.

9.3 How the research questions were answered

The research questions and objectives formulated in this study emanated from the

following thesis statement:

A Teaching and Learning Programming with Animation Programs (TLPAP) framework

can improve Struggling Introductory Programming Students (SIPS) comprehension of

Introductory Programming Concepts (IPC).

The research questions and objectives were developed according to the formulated

thesis statement. The following section explains how each research question was

answered.

249

Research question 1:

What are the leading issues in teaching and learning IPC?

To answer the above research question, the objective was formulated as: To conduct

a literature review on the challenges of teaching and learning IPC. The literature

review on the challenges of teaching and learning to program was conducted and

discussed in Chapter 2, section 2.4. In the literature review, I found that there are many

issues for teaching and learning to program. The attempt to solve these challenges

was addressed in another section of literature review (Chapter 2, section 2.6) which is

addressed through the subsequent research question.

Research question 2:

What are the approaches used in teaching IPC?

To answer the above research question, the objective was formulated as: To

investigate the approaches used in teaching IPC. The literature review on approaches

used in teaching and learning programming concepts was conducted and discussed

in Chapter 2, section 2.6. This section discussed various approaches of teaching and

learning to program like the use of physical manipulatives and animation programs.

The conclusion of this section suggested and substantiated the incorporation of

animation programs in the programming education.

Research question 3:

What are the limitations of existing animation programs used for teaching and learning

IPC?

To answer the above research question, the objective was formulated as: To

investigate animation programs for teaching and learning IPC. The literature review

on animation programs for teaching and learning IPC was conducted and discussed

in Chapter 2, section 2.7. Various animation programs and their limitations were

discussed in this section. The main findings include lack of rigorous reference

framework that can be followed to develop and design the animation programs and

animation programs that are not accompanied by relevant pedagogical guidelines,

250

Research question 4:

How can we develop a TLPAP framework for teaching and learning IPC?

To answer the above research question, the objective was formulated as: To develop

a TLPAP framework for teaching and learning IPC based on gaps identified in the

literature review and by continually improving the framework based on the outcome of

the action research cycles. The objective was carried out by initially outlining a

theoretical framework relevant to TLPAP in Chapter 3 and subsequently a research

plan (methodology) as discussed in Chapter 4. The overall research process followed

an action research methodology. The study went through five action research cycles

from 2019 to 2022 (discussed in Chapters 5, 6, 7 and 8). The development, refinement

and finalisation of the solution (TLPAP) was done through reflection, observation and

planning within every action cycle.

Research question 5:

How can we prove and realise the efficacy of the TLPAP framework?

To answer the above research question, the objective was formulated as: To evaluate

the efficacy of the TLPAP framework through teaching the actual SIPS by following

the TLPAP framework. This objective was carried out by using the methodology in

Chapter 4. The reports on the experiments are in Chapter 5 (action cycle 1), Chapter

6 (action cycle 2), Chapter 7 (action cycle 3), Chapter 8 (action cycles 4 and 5). A

SOLO-adapted evaluation was formulated in cycle 2 in order to have meaningful

evaluation of the pre-teaching and post-teaching algorithms in both the control and

experimental groups. Through the application of a SOLO-adapted evaluation in each

cycle, I was able to continually improve the TLPAP. The TLPAP framework was

concluded and finalised in cycle 5 of the action research.

9.4 Contributions

This research has resulted in the following contributions.

Contribution 1: Physical manipulatives

The first contribution of this study is the use of physical manipulatives to emphasise

the uses of assignment in programming. The IPC that can be taught with physical

251

manipulatives are limited to basic concepts like the uses of assignment which

emphasise value storage/initialisation and copying of values from one variable to

another (overwriting). Through pre-test and post-test methodology, the experimental

group (using manipulatives to teach) performed better than the control group (no

manipulatives used to teach). The full details of teaching and learning programming

with manipulatives is presented in cycle 1 (Chapter 5).

Contribution 2: Animation programs

The second contribution of this study is the development of animation programs that

are in two parts, namely introductory animation programs and animation programs

with problem specifications. The introductory animation programs, as stressed earlier,

are used to introduce a new concept. The animation programs with problem

specifications are used after the presentation of introductory animation programs. The

animation programs with problem specifications are problem-solving oriented. The

design guidelines of all animation programs are based on principles of multimedia

learning by Mayer (2005).

We found that the learning gains of the physical manipulatives on assignment are

similar to the learning gains of using animation programs. However, the advantages

of animation programs are their online compatibility and accommodation for a large

class for either contact or online presentation modes. The experiments with animation

programs were initiated in cycle 2, then proceeded until the last cycle (cycle 5). Cycle

2 (Chapter 6) experiments were performed in an online mode and cycle 3 (Chapter 7)

to cycle 5 (Chapter 8) in contact mode.

Contribution 3: Pedagogical guidelines

The third contribution is the use of pedagogical guidelines in the TLPAP. One of the

gaps identified in the literature (Chapter 2) is that existing animation programs or other

multimedia-related teaching and learning tools were not coupled with relevant

pedagogical guidelines. If the animation program for teaching and learning is without

compatible guidelines, the assumption is that the users (mostly educators and

students) will have to independently determine how to use them properly. This can

cause animation programs to do more harm than the good purposes they are designed

252

for. In this study, the pedagogical guidelines were developed, substantiated and used

along with the animation programs during action research cycles. The question of

what, when or how to use animation programs for effective use in teaching and

learning IPC have been addressed through prepared pedagogical guidelines. The

pedagogical guidelines, in Chapter 7 section 7.4, form part of the final TLPAP along

with the animation programs.

Contribution 4: TLPAP framework and generic framework

The fourth contribution of this study is the TLPAP framework and generic framework.

Through SOLO-adapted evaluations, we were able to determine that the use of TLPAP

has a positive effect on teaching and learning IPC for SIPS. The TLPAP framework is

specifically intended to assist SIPS but can be used as a blanket teaching and learning

approach for all students. The actual components that form the final TLPAP are

referenced in Chapter 8, section 8.7.

The second part of this contribution is a generic framework. The generic framework

has been derived from the completed TLPAP framework and can also be referred to

as a high-level view of the TLPAP. The main idea behind the generic framework was

to make it adaptable on the development of animation programs for non-programming

subjects. The generic framework contains two main recommendations, namely

animation programs and pedagogical guidelines. There are four main guidelines for a

generic framework. Firstly, the design of the animation programs must follow principles

of multimedia learning by Mayer (2005). Secondly, the introductory animation

programs must be designed for introducing a specific concept. Thirdly, the main

animation programs must be designed to show the core or main aspects of the

concepts and must contain real-world examples. Lastly, the informed pedagogical

guidelines must be developed in accordance with the nature of the subject, animations

and other relevant teaching and learning strategies.

Contribution 5: Methodological contribution

The fifth contribution of this study is methodological. The adaptation of SOLO to form

a SOLO-adapted evaluation was instrumental in validating the efficacy of TLPAP. The

learning transitions in the SOLO-adapted evaluation were given a suitable, brief

253

description for easier cross-referencing between algorithms and meaningful feedback

that informed pedagogical adjustments.

In summary, the SOLO-adapted evaluation is able to do the following:

- To qualitatively assess the pre-teaching and post-teaching sections of the

algorithm in the control and experimental group. As a result, it was possible to

detect the effects of TLPAP in the experimental group compared to the control

group. The SOLO-adapted evaluation can also be used by programming

educators to monitor learning from one written algorithm to another.

- To detect algorithm sections that have already been mastered through the

R→R transition. This transition means already-improved, i.e., mastered before

the teaching commenced. This can be a benefit for programming teachers to

have informed and meaningful feedback on certain areas of the algorithm as it

could further prompt some early interventions.

- To detect algorithm sections that broadened the knowledge from one aspect to

several aspects and if the students still fell short of mastering the relational

stage. Such sections of the algorithms were detected through the U→M

transitions which means Intermediate-improvement, P→U transition (lower-

level-improvement) and P→M transition (Intermediate-improvement+).

- To note whether the algorithm section moved from bad to worse or showed

patterns of deteriorating learning. This can be detected through the R→M, R→U

or R→P transitions.

- To detect whether the teaching intervention has resulted in the ultimate

improvements was traced through the M→R, U→R or P→R transitions.

- To note whether the teaching intervention had no effect at all before and after

the teaching intervention. This was detected through the P→P, U→U or M→M

transitions. Programming educators can use these transitions to note sections

of the algorithm that are stagnant, meaning that they were neither improving

nor deteriorating.

Contribution 6: Theoretical contribution

 A theoretical contribution in this study revolves around guidelines recommended for

forming a teaching philosophy within the field of CS education, programming education

254

or when adopting TLPAP. I recommend that a relevant teaching philosophy be

associated with the nature of programming (coding) or programming education. Since

a teaching philosophy is a personal teaching and learning statement which differs from

educator to educator, I am not prescribing a specific teaching philosophy but provide

guidelines that can channel the formation of a teaching philosophy with the nature of

programming education. There are two main aspects that can help to develop a

teaching philosophy relevant for programming education. Firstly, a programming

educator must view programming from computation as interaction, as supported by

Stein (1998), rather than computation as calculations, and the teaching approach must

promote relational understanding, as borrowed from Skemp’s (1976) theory on

mathematics education. As emphasised in Chapter 3, section 3.6.3, the knowledge of

those two theories can help programming educators formulate a fruitful teaching

philosophy for the promotion of teaching and learning in the TLPAP or programming

education in general.

9.5 Validity, generalisation and critical reflection on the

findings

The animation programs in education can be a short-lived achievement, however

incorporation of active learning and engagement can have a great impact on its

effectiveness (Sorva, Karavirta & Malmi, 2013). In order to incorporate this, this study

has relied on active related activities along with the use of animation programs. These

active activities were drawn from the ideas of constructivism, conversational

framework and principles of multimedia learning.

This study has paved a way to revolutionise the use of animation programs for

teaching and learning purposes. This has also demonstrated the best way possible to

integrate pedagogical guidelines with animation programs for teaching and learning to

program. At the end, the TLPAP was developed and validated through various cycles

of an action research methodology.

The validity of the findings in this can be attributed to its rigorous methodological

approach which is SOLO-adapted evaluation. Through this methodology, it was

possible to qualitatively filter the algorithm sections that were improving, deteriorating,

not improving and already improved. The traditional assessment methods are based

255

on grading an isolated assessment where the results are only quantitative and do not

possess meaningful interpretation. The major difference or advantage of SOLO-

adapted evaluation is its ability to provide meaningful transitional feedback between

two assessments. The SOLO-adapted evaluation can also be adapted to evaluate

three or more assessments. I personally recommend this SOLO-adapted evaluation

to be applied or used in any study field to qualitatively assess or evaluate students’

answers. The SOLO-adapted evaluation can be reliably applied to any relevant field

hence the conclusion of this study has made it possible to generalise or derive a

generic framework based on the final TLPAP. The generic framework allows subjects

like Mathematics, Science and Engineering to apply or reuse the SOLO-adapted

evaluation to achieve similar outcomes as in programming education.

The development of animation programs for teaching and learning purposes cannot

be based on nothing or on random design. It is recommended to follow the principles

of multimedia learning by Mayer (2005) to develop animation programs. The final

TLPAP or generic framework recommend that the animation programs must be in two

phases, that is the introductory animation programs and main animation programs.

The idea behind the separation of the animation programs was realised at the end of

the second cycle of our action research. The introductory animation programs

demonstrate the basic principles of programming and the main animation programs

demonstrate real world problem solving through programming. Similarly, when

applying the generic framework in a non-programming environment like Mathematics

literacy, the introductory animation can be the basic rules of the mathematical

equations while the main animation program contains the real-life experimental

problems.

In the process of TLPAP development, there have been challenges and lessons

learned. Firstly, the research was supposed to advocate the use physical

manipulatives for teaching and learning the IPC. The nature of the action research

methodology allowed me to reflect and plan into a different dimension (animation

programs) of the research in the subsequent cycles. In other words, the “vehicle”

changed to a more convenient “vehicle”, but the trip and mission remained the same.

In the second cycle of an action research, Covid19 restrictions made things difficult to

have face to face experiments. As a result, cycle 2 was conducted online through

Microsoft Teams. The Microsoft Teams experiments made me realised that the

256

animation programs are compatible with online presentation. The development of

animation programs was the biggest challenge as I had to code an advanced program

to depict the dynamics of introductory programming code. However, through

dedication I was able to code and complete all the planned animation programs. The

main agenda for future work remains the development of artificial intelligence methods

to automatically generate a problem specification, program code and the applicable

animation programs.

Reflection is one of the main aspects of an action research methodology. As a result,

reflections were done at the end of each action cycle and planning for the next cycles

was also done based on the reflections. The main point behind the multiple reflections

is a way to improve the teaching methods. At the end of cycle 1, then main reflection

was a transition from physical manipulatives to virtual manipulatives. The reflections

at the end of cycle 2 included the need for additional animation programs and SOLO-

adapted evaluation that need to be applied on the sections of the algorithms. In cycle

5, the main reflection was to do more experiments to improve validity, the inclusion of

Java code and animation pace button. The reflections at the end on cycle 4 minimal,

as a result additional experiments were carried for the confirmation of the effectiveness

of the TLPAP. Furthermore, the additional Java code on the animation program was

included in some animation programs. This means such animation programs has an

option to display the animation programs in C++ code or Java code.

The overall reflections of this study can be summarised in two main printers, which is

the uses of pedagogical guidelines and sample exercises in the animation programs.

The uses of compatible pedagogical guidelines have been identified as a gap in this

study and deemed as the crucial element of teaching and learning with animation

programs in general. The pedagogical guidelines must be used along with the

animation programs developed in this study, in order to realise the full benefits of

TLPAP. These guidelines outline best practices for teaching and learning from body

of knowledge that can be used along with the animation programs. In the case where

the generic framework is adapted into a different field of study, pedagogical guidelines

can be adapted accordingly to fit the nature of the study.

The sample exercises incorporated in the main animation programs are important,

therefore a selection of such examples is also important. Programming is used to solve

257

real-life problem, as a result the TLPAP used a compatible real-world problem

specification that can be solved through an algorithm as a solution. The solution

(algorithm) to the problem specification covered the overall aspects of the concept

within the main animation programs. I recommend the practice of incorporating real-

life examples into the development of animation programs when adapting the generic

framework proposed in this study into a different field. In this study, I developed one

main animation program per concept, however two or more animation programs per

concept can even be more effective as students are exposed to different problem

specifications.

9.6 Limitations

The design of the animation programs was limited to the concepts offered in the

introductory programming module at the university where the experiments took place.

The TLPAP covers a computing education approach that advocates for objects later

rather than objects early; therefore, there were no OOP (object-oriented programming)

concepts. The number of students who participated per cycle was fewer than

expected; hence the reliance on qualitative evaluation and multiple cycles. In the R→R

(already-know) transition, we were not able to trace the transition back to the success

of TLPAP because we were not in full control of the students outside TLPAP

experimentation.

9.7 Future work

The TLPAP framework is a teaching and learning solution for SIPS. The framework is

dynamic and animation-based, rendering it comparable with various teaching and

learning platforms or LMS. The TLPAP framework was experimented through a

multicast broadcast on multiple computers and presented on the online platforms (MS

Teams). Therefore, the assumption is it would work in a contact session using a

projector screen or any other online platform like Google Meet or Zoom. An additional

platform for future use can include a compatible mobile application.

The TLPAP framework has been experimented with in a higher education setup with

the actual programming students on computing courses. Since there are schools that

introduce and teach introductory programming from high school level, the framework

can also be adopted and applied in such environments.

258

The pedagogical guidelines incorporated within TLPAP framework can be applied and

tested with other animation programs for teaching and learning. Pedagogical

guidelines for TLPAP are animation-based; as a result, they could be compatible with

non-programming animation programs for teaching and learning.

The framework has proven effective in the objects-later programming paradigm. As

part of future work, the TLPAP can be adapted into all or challenging aspects of an

OOP paradigm. Some of the potential OOP concepts include classes, inheritance,

encapsulation and polymorphism. This will broaden the TLPAP for both programming

students in the objects-early and objects-later paradigms. Furthermore, the framework

can be adapted to other educational settings (non-programming environments like

engineering, mathematical courses or any other science-related disciplines).

Artificial intelligence tools like ChatGPT have the potential to impact in an academic

sector (Lund & Wang, 2023). As part of future work, the possibility of auto-generating

a problem specification that requires a programming solution for teaching and learning

purposes can be investigated. Furthermore, such auto-generated problem

specifications can auto-generate a short program code and animation programs for

teaching and learning purposes. This will expand the animation program by providing

various problem specifications and other animations.

9.8 Conclusion

In this study, we developed a teaching and learning framework named TLPAP. The

TLPAP framework could, however, potentially be suitable to assist struggling students

in other topics/ fields as well. The TLPAP consists of animation programs and

pedagogical guidelines. The animation programs cover IPC within the imperative

programming paradigm (objects-later approach). The concepts include assignment,

decisions, nested decisions, loops, nested loops, one-dimensional arrays, parallel

arrays and functions.

Through rigorous and repeated experiments, the TLPAP was thoroughly evaluated in

an action research methodology (cycle 2 to cycle 5). The efficacy of the TLPAP was

proven through a qualitative SOLO-adapted evaluation method which offered in-depth

insight into dissected sections of the algorithms. The pre-test and post-test algorithms

were written by both control and experimental groups. The control group was taught

259

through the traditional verbal teaching method (without TLPAP) and the experimental

group was taught by following the TLPAP framework.

Struggling students were recruited to test the efficacy of TLPAP. This was purposeful

to validate the TLPAP framework with actual SIPS rather than non-struggling students.

Through the pre-test and post-test with SOLO-adapted evaluation, it was possible to

detect non-struggling students through patterns of algorithm sections that were correct

before and after the intervention (through R→R transition). This further confirms the

quality and validity of the SOLO-adapted evaluation method to the study.

The SOLO-adapted evaluations showed that the use of TLPAP can enhance

comprehension of SIPS as compared to traditional methods and other existing related

solutions discussed in Chapter 2. The SOLO-adapted evaluations outcomes like M→R

(improved), U→M (intermediate-improvement), U→R (improved+), R→M

(deteriorated), M→M (stagnant-at-intermediate-level), U→U (stagnant-at-lower-level)

and R→R (already-know) were major indicators in validating the efficacy of TLPAP.

The animation programs with problem specifications use specific problems and

animations which are designed for teaching and learning purposes. The assumption

is that SIPS should perform better or improve when given a different problem

specification from the ones used in teaching and learning. To test this, the pre-teaching

consisted of animation programs with certain problem specifications, then the post-

test consisting of different problem specifications, while the concept being taught

between the pre-test and post-test remains the same. It was proven that SIPS can

perform better in different, but similar problem specifications to solve a programming

problem, as noted in the experimental group.

A critical element in the TLPAP is the set of pedagogical guidelines. The pedagogical

guidelines are compatible stages that have been substantiated and followed when

using the designed animation programs. Animation programs are not isolated tools

that can be used randomly or rely on an assumption of proper function; hence, the

inclusion of these pedagogical guidelines.

In the final stages of the study, a generic framework for teaching and learning was

developed based on the final TLPAP. The generic framework (can referred to as high-

level view of the TLPAP framework) can be used to develop animation programs for

260

teaching and learning in subjects related to programming or other non-programming

subjects. The main aspects of the generic framework are the design guidelines of the

animations and the formation of relevant pedagogical guidelines. The belief is that the

generic framework should be adaptable and convenient to adjust in different subject

areas. Personally, I hope to see this framework evolve beyond the introductory

programming education.

261

References
ACM/IEEE-CS Joint Task Force on Computing Curricula. (2013). ACM/IEEE Computing Curricula

2013 Final Report. http://robotics.stanford.edu/users/sahami/CS2013/ironman-draft/cs2013-

ironman-v1.0.pdf.

Adom, D., Yeboah, A., & Ankrah, A. K. (2016). Constructivism philosophical paradigm: Implication for
research, teaching and learning. Global journal of arts humanities and social sciences, 4(10),
1-9.

Aggarwal, A., Gardner-McCune, C., & Touretzky, D. S. (2017, March). Evaluating the effect of using

physical manipulatives to foster computational thinking in elementary school. In Proceedings

of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, 9-14.

Ahadi, A., Lister, R., Lal, S., & Hellas, A. (2018, January). Learning programming, syntax errors and

institution-specific factors. In Proceedings of the 20th Australasian computing education

conference, 90-96.

Aleksić, V., & Ivanović, M. (2016). Introductory programming subject in European higher

education. Informatics in Education, 15(2), 163-182.

Aldridge, J. M., Fraser, B. J., & Sebela, M. P. (2004). Using teacher action research to promote

constructivist learning environments in South Africa. South African Journal of

Education, 24(4), 245-253.

Alpár, G., Yeni, S., Aivaloglou, E., & Hermans, F. (2022, March). Can Math Be a Bottleneck?

Exploring the Mathematics Perceptions of Computer Science Students. In 2022 IEEE Global

Engineering Education Conference (EDUCON), 217-225. IEEE.

Altadmri, A., & Brown, N. C. (2015, February). 37 million compilations: Investigating novice

programming mistakes in large-scale student data. In Proceedings of the 46th ACM

Technical Symposium on Computer Science Education, 522-527. ACM.

Anderson, L. W., & Krathwohl, D.R (2001). Anderson and Krathwohl Bloom’s Taxonomy Revised

Understanding the New Version of Bloom’s Taxonomy.

Anwar, R. B., Yuwono, I., As’ari, A. R., & Rahmawati, D. (2016). Mathematical representation by

students in building relational understanding on concepts of area and perimeter of

rectangle. Educational Research and Reviews, 11(21), 2002-2008.

Anyango, J. T., & Suleman, H. (2018, November). Teaching Programming in Kenya and South Africa:
What is difficult and is it universal? In Proceedings of the 18th Koli Calling International
Conference on Computing Education Research, 1-2.

Apuke, O. D. (2017). Quantitative research methods: A synopsis approach. Kuwait Chapter of

Arabian Journal of Business and Management Review, 33(5471), 1-8.

Armenti, S. M. (2018). Computer Science Education with English Learners. University of Rhode

Island.

Azuma, M., Coallier, F., & Garbajosa, J. (2003, September). How to apply the Bloom taxonomy to

software engineering. In Eleventh annual international workshop on software technology and

engineering practice, 117-122. IEEE.

Babbie, E. (2014). The Practice of Social Research. Boston, Cengage Learning.

Baldwin, D., Walker, H. M., & Henderson, P. B. (2013). The roles of mathematics in computer

science. ACM Inroads, 4(4), 74-80.

262

Bayman, P., & Mayer, R. E. (1983). A diagnosis of beginning programmers' misconceptions of BASIC

programming statements. Communications of the ACM, 26(9), 677-679.

Beaubouef, T. (2002). Why computer science students need math. SIGCSE Bulletin, 34(4), 57-59.

Beaubouef, T., & Mason, J. (2005). Why the high attrition rate for computer science students: some

thoughts and observations. ACM SIGCSE Bulletin, 37(2), 103-106.

Ben-Ari, M. (1998). Constructivism in computer science education. ACM SIGCSE bulletin, 30(1), 257-
261.

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory programming. ACM SIGCSE

Bulletin, 39(2), 32-36.

Bennedsen, J., & Caspersen, M. E. (2019). Failure rates in introductory programming: 12 years later.

ACM Inroads, 10(2), 30-36.

Bers, M. U. (2019). Coding as another language: A pedagogical approach for teaching computer

science in early childhood. Journal of Computers in Education, 6(4), 499-528.

Biggs, J. (1996). Enhancing teaching through constructive alignment. Higher education, 32(3), 347-

364.

Biggs, J. (2001). Constructive alignment. In Background notes to support a seminar given by

Professor John Biggs. jbiggs@ bigpond. com Assessing language or content.

Biggs, J. B., & Collis, K. F. (1982). The psychological structure of creative writing. Australian Journal

of Education, 26(1), 59-70.

Biggs, J. B., & Collis, K. F. (2014). Evaluating the quality of learning: The SOLO taxonomy (Structure

of the Observed Learning Outcome). Academic Press.

Biggs, J., & Tang, C. (2010, February). Applying constructive alignment to outcomes-based teaching

and learning. In Training material for “quality teaching for learning in higher education”

workshop for master trainers, Ministry of Higher Education, Kuala Lumpur, 23-25.

Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational

goals. Cognitive domain.

Botha, L., & Taylor, E. (2022). Information systems research: determining the correct research

paradigm for a specific research problem.

Bouck, E. C., Satsangi, R., Doughty, T. T., & Courtney, W. T. (2014). Virtual and concrete

manipulatives: A comparison of approaches for solving mathematics problems for students

with autism spectrum disorder. Journal of Autism and developmental disorders, 44, 180-193.

Bransford, J. D., & Stein, B. S. (1993). The IDEAL problem solver.

Brooke, C. (2002). What does it mean to be ‘critical’ in IS research?. Journal of Information

Technology, 17(2), 49-57.

Brown, M. H., & Sedgewick, R. (1984, January). A system for algorithm animation. In Proceedings of

the 11th annual conference on Computer graphics and interactive techniques, 177-186.

Brown, N. C., & Altadmri, A. (2014, July). Investigating novice programming mistakes: educator

beliefs vs. student data. In Proceedings of the tenth annual conference on International

computing education research, 43-50. ACM.

Brown, N. C., & Altadmri, A. (2017). Novice Java programming mistakes: Large-scale data vs.

educator beliefs. ACM Transactions on Computing Education (TOCE), 17(2), 1-21.

Bruce. (2015). https://edwinbruce.wordpress.com/2015/07/08/programming-misconceptions-2/

263

Bryman, A. (2006). Paradigm peace and the implications for quality. International journal of social

research methodology, 9(2), 111-126.

Calitz, A. P. (2021, July). The 50 Year History of SACLA and Computer Science Departments in
South Africa. In Annual Conference of the Southern African Computer Lecturers'
Association, 3-23. Springer, Cham.

Case, R. (1984). Intellectual Development: a systematic reinterpretation. New York, Academic Press.

Case, R. (1992). Neo-Piagetian theories of child development. Intellectual development, 161-196.

Cetin, I. (2020). Teaching loops concept through visualization construction. Informatics in Education-

An International Journal, 19(4), 589-609.

Cevahir, H., Özdemir, M., & Baturay, M. H. (2022). The Effect of Animation-Based Worked Examples
Supported with Augmented Reality on the Academic Achievement, Attitude and Motivation of
Students towards Learning Programming. Participatory Educational Research, 9(3), 226-
247.

Cheah, C. S. (2020). Factors contributing to the difficulties in teaching and learning of computer

programming: A literature review. Contemporary Educational Technology, 12(2), 272.

Chen, C., Haduong, P., Brennan, K., Sonnert, G., & Sadler, P. (2019). The effects of first

programming language on college students’ computing attitude and achievement: a

comparison of graphical and textual languages. Computer Science Education, 29(1), 23-48.

Chism, N. V. (1997). Developing a philosophy of teaching statement, Essays on teaching

excellence. Toward the best in the academy, 9(3). 1-2.

Clark, R. E., & Choi, S. (2005). Five design principles for experiments on the effects of animated

pedagogical agents. Journal of Educational Computing Research, 32(3), 209-225.

Clements, D. H., & McMillen, S. (1996). Rethinking “concrete” manipulatives. Teaching children

mathematics, 2(5), 270-279.

Commons, M. L., & Ross, S. N. (2008). What postformal thought is, and why it matters. World

Futures, 64(5-7), 321-329.

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: a 3-D tool for IPC. Journal of computing sciences
in colleges, 15(5), 107-116.

Corral, J. M. R. (2019). Multimedia System for Self-learning C/C++ Programming

Language. Innovation in Information Systems and Technologies to Support Learning

Research: Proceedings of EMENA-ISTL 2019, 7, 55.

Craig, M., Smith, J., & Petersen, A. (2017, November). Familiar contexts and the difficulty of

programming problems. In Proceedings of the 17th Koli Calling International Conference on

Computing Education Research, 123-127. ACM.

Creswell, J. W. (2003). Research design. Thousand Oaks, 155-179. CA: Sage publications.

Creswell, J. W., & Poth, C. N. (2016). Qualitative inquiry and research design: Choosing among five

approaches. Sage publications.

Creswell, J. W., Hanson, W. E., Clark Plano, V. L., & Morales, A. (2007). Qualitative research

designs: Selection and implementation. The counseling psychologist, 35(2), 236-264.

Crotty, M. J. (1998). The foundations of social research: Meaning and perspective in the research

process. The foundations of social research, 1-256.

De Vaus, D. (2001). Research design in social research. Research design in social research, 1-296.

264

Delgado, C. A., da Silva, J. C., Mascarenhas, F., & Duboc, A. L. (2016, July). The teaching of

functions as the first step to learn imperative programming. In Anais do XXIV Workshop

sobre Educação em Computação, 2393-2402. SBC.

Demetriou, A., Shayer, M., & Efklides, A. (2016). Neo-Piagetian theories of cognitive development:

Implications and applications for education. Routledge.

Denney, A. S., & Tewksbury, R. (2013). How to write a literature review. Journal of criminal justice

education, 24(2), 218-234.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational Computing

Research, 2(1), 57-73.

Dümmel, N., Westfechtel, B., & Ehmann, M. (2019, April). Work in progress: Gathering requirements

and developing an educational programming language. In 2019 IEEE Global Engineering

Education Conference (EDUCON), 1-4. IEEE.

Eckerdal, A., Thuné, M., & Berglund, A. (2005, October). What does it take to learn 'programming

thinking'?. In Proceedings of the first international workshop on Computing education

research. 135-142.

Ehlert, A., & Schulte, C. (2009, August). Empirical comparison of objects-first and objects-later.

In Proceedings of the fifth international workshop on Computing education research

workshop (pp. 15-26).

Elliott, J. (2011). Educational action research and the teacher. Action Researcher in Education, 1(1),

1-3.

Ertmer, P. A., & Newby, T. J. (2013). Behaviorism, cognitivism, constructivism: Comparing critical

features from an instructional design perspective. Performance improvement

quarterly, 26(2), 43-71.

Faisal, M., Yuana, R., & Basori, M. (2017, October). Comparative study between robomind and

scratch as programming assistance tool in improving understanding of the basic
programming concepts. In International Conference on Teacher Training and Education
2017 (ICTTE 2017) (pp. 787-797). Atlantis Press.

Fares, K., Fowler, B., & Vegas, E. (2021). How South Africa implemented its computer science

education program.

Farrell, J. (2008). Object-oriented programming using C++. Cengage Learning.

Fischer, B. F. (1998). Postpositivism: the critique of empiricism. Policy Studies Journal, 26(1), 129-

146.

Fischer, K. W., & Bidell, T. R. (2006). Dynamic development of action and thought. Handbook of child

psychology, 1, 313-399.

Forbes, J., Malan, D. J., Pon-Barry, H., Reges, S., & Sahami, M. (2017, March). Scaling introductory

courses using undergraduate teaching assistants. In Proceedings of the 2017 ACM SIGCSE

Technical Symposium on computer science education, 657-658.

Forehand, M. (2010). Bloom's Taxonomy from Emerging Perspectives on Learning. Teaching and

Technology, 26.

Forišek, M., & Steinová, M. (2012, February). Metaphors and analogies for teaching algorithms.

In Proceedings of the 43rd ACM technical symposium on Computer Science Education, 15-

20.

Gal-Ezer, J., & Harel, D. (1999). Curriculum and course syllabi for a high-school CS program.

Computer Science Education, 9(2), 114-147.

265

Gall, M. D., Borg, W. R., & Gall, J. P. (1996). Educational research: An introduction. Longman

Publishing.

Galpin, V. C., & Sanders, I. D. (2007). Perceptions of computer science at a South African
university. Computers & Education, 49(4), 1330-1356.

Goddard, W., & Melville, S. (2004). Research methodology: An introduction. Juta and Company Ltd.

Goldkuhl, G. (2012). Pragmatism vs interpretivism in qualitative information systems research.

European journal of information systems, 21(2), 135-146.

Goldman, K., Gross, P., Heeren, C., Herman, G., Kaczmarczyk, L., Loui, M. C., & Zilles, C. (2008).

Identifying important and difficult concepts in introductory computing courses using a delphi

process. ACM SIGCSE Bulletin, 40(1), 256-260.

Gomes, A., & Mendes, A. J. (2007, September). Learning to program-difficulties and solutions.

In International Conference on Engineering Education–ICEE (7).

Gomes, A., & Mendes, A. J. (2007). Problem Solving in Programming. In PPIG (p. 18).

Good, T. L., & Brophy, J. E. (1990). Educational psychology: A realistic approach. Longman/Addison

Wesley Longman.

Goodyear, G. E., & Allchin, D. (1998). Statements of teaching philosophy. To improve the

academy, 17(1), 103-121.

Govender, I. (2021). Towards understanding information systems students’ experience of learning

introductory programming: A phenomenographic approach. Journal of Information

Technology Education. Innovations in Practice, 20, 81.

Gray, P. S., Williamson, J. B., Karp, D. A., & Dalphin, J. R. (2007). The research imagination: An

introduction to qualitative and quantitative methods. Cambridge University Press.

Grix, J. (2018). The foundations of research. Bloomsbury Publishing.

Grover, S., & Basu, S. (2017, March). Measuring student learning in introductory block-based

programming: Examining misconceptions of loops, variables, and boolean logic.

In Proceedings of the 2017 ACM SIGCSE technical symposium on computer science

education, 267-272.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the

field. Educational researcher, 42(1), 38-43.

Guba, E. G. (1990). The paradigm dialog. In Alternative paradigms conference, Mar, 1989, Indiana U,

School of Education, San Francisco, ca, us. Sage Publications, Inc.

Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research. Handbook of

qualitative research, 2(105), 163-194,.

Gurka, J. S., & Citrin, W. (1996, September). Testing effectiveness of algorithm animation.

In Proceedings 1996 IEEE Symposium on Visual Languages, 182-189. IEEE.

Guzdial, M., & du Boulay, B. (2019). The History of Computing. The Cambridge handbook of

computing education research (2019), 11.

Haajanen, J., Pesonius, M., Sutinen, E., Tarhio, J., Terasvirta, T., & Vanninen, P. (1997, September).
Animation of user algorithms on the Web. In Proceedings. 1997 IEEE Symposium on Visual
Languages (Cat. No. 97TB100180), 356-363. IEEE.

Hango, D. W. (2013). Gender differences in science, technology, engineering, mathematics and

computer science (STEM) programs at university. Ottawa: Statistics Canada= Statistique

Canada.

266

Henderson, K. A. (2011). Post-positivism and the pragmatics of leisure research. Leisure

Sciences, 33(4), 341-346.

Heinonen, A., Lehtelä, B., Hellas, A., & Fagerholm, F. (2023). Synthesizing research on programmers’

mental models of programs, tasks and concepts—A systematic literature review. Information

and Software Technology, 107300.

Hendrix, R., & Weeks, M. (2018, March). First programming language for high school students.

In Society for Information Technology & Teacher Education International Conference.

Association for the Advancement of Computing in Education (AACE), 1896-1903.

Horn, M. S., & Jacob, R. J. (2007, February). Designing tangible programming languages for

classroom use. In Proceedings of the 1st international conference on Tangible and

embedded interaction, 159-162.

Houghton, W. (2004). Engineering subject centre guide: Learning and teaching theory for engineering

academics. Loughborough University.

Hu, F., Zekelman, A., Horn, M., & Judd, F. (2015, June). Strawbies: explorations in tangible

programming. In Proceedings of the 14th International Conference on Interaction Design and

Children, 410-413.

Hundhausen, C. D., Douglas, S. A., & Stasko, J. T. (2002). A meta-study of algorithm visualization

effectiveness. Journal of Visual Languages & Computing, 13(3), 259-290.

Hundhausen, C. D., Brown, J. L., & Farley, S. (2006, September). Adding procedures and pointers to

the ALVIS algorithm visualization software: a preliminary design. In Proceedings of the 2006

ACM symposium on Software visualization, 155-156.

Idris, M. B., & Ammar, H. (2018). The correlation between Arabic student’s English proficiency and

their computer programming ability at the university level. USA International Journal of

Managing Public Sector Information and Communication Technologies (IJMPICT).

Islam, N., Shafi Sheikh, G., Fatima, R., & Alvi, F. (2019). A Study of Difficulties of Students in
Learning Programming. Journal of Education & Social Sciences, 7(2), 38-46.

Izu, C., Weerasinghe, A., & Pope, C. (2016, August). A study of code design skills in novice

programmers using the SOLO taxonomy. In Proceedings of the 2016 ACM Conference on

International Computing Education Research, 251-259.

Jiang, Z. (2016). Uncertainty Avoidance—A New Teaching/Learning Method for an Introductory

Programming Course. Computer Education, 4(4), 52.

Jimoyiannis, A. (2013). Using SOLO taxonomy to explore students’ mental models of the

programming variable and the assignment statement. Themes in Science and Technology

Education, 4(2), 53-74.

Joshi, M., Manoj, L., Oludayo, O. O., Modiba, M. M., & Virendrakumar, C. B. (2012, September).
Automated matchmaking of student skills and academic course requisites. In Proceedings of
the CUBE International Information Technology Conference, 514-519.

Kaminski, J. A., Sloutsky, V. M., & Heckler, A. F. (2009). Research Commentary: Concrete

Instantiations of Mathematics: A Double-Edged Sword. Journal for Research in Mathematics

Education, 40(2), 90-93.

Kandemir, C. M., Kalelioğlu, F., & Gülbahar, Y. (2021). Pedagogy of teaching introductory text‐based

programming in terms of computational thinking concepts and practices. Computer

Applications in Engineering Education, 29(1), 29-45.

Kandlbinder, P. (2014). Constructive alignment in university teaching. HERDSA News, 36(3), 5-6.

267

Kankam, P. K. (2019). The use of paradigms in information research. Library & Information Science

Research, 41(2), 85-92.

Karavirta, V., Korhonen, A., Malmi, L., & Stalnacke, K. (2004, August). Matrixpro-a tool for

demonstrating data structures and algorithms ex tempore. In IEEE International Conference

on Advanced Learning Technologies, 2004. Proceedings, 892-893. IEEE.

Kaushik, V., & Walsh, C. A. (2019). Pragmatism as a research paradigm and its implications for social

work research. Social sciences, 8(9), 255.

Kearney, J., Wood, L., & Zuber-Skerritt, O. (2013). Community-university partnerships: Using

participatory action learning and action research (PALAR). Gateways: International Journal

of Community Research and Engagement, 6, 113-130.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of

programming environments and languages for novice programmers. ACM Computing

Surveys (CSUR), 37(2), 83-137.

Kincheloe, J. L., & McLaren, P. (2005). Rethinking critical theory and qualitative research. In N. K.

Denzin & Y. S. Lincoln (Eds.), The Sage handbook of qualitative research, 303-342. CA:

Sage.

Kohn, T. (2017, March). Variable evaluation: An exploration of novice programmers' understanding

and common misconceptions. In Proceedings of the 2017 ACM SIGCSE Technical

Symposium on Computer Science Education, 345-350.

Konecki, M., Lovrenčić, S., & Kaniški, M. (2016, May). Using real projects as motivators in

programming education. In 2016 39th International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO), 883-886. IEEE.

Konvalina, J., Wileman, S. A., & Stephens, L. J. (1983). Math proficiency: A key to success for

computer science students. Communications of the ACM, 26(5), 377-382.

Kothari, C. R. (2004). Research methodology: Methods and techniques. New Age International.

Krauss, S. E. (2005). Research paradigms and meaning making: A primer. The qualitative

report, 10(4), 758-770.

Krishnamurthi, S., & Fisler, K. (2019). 13 Programming Paradigms and Beyond. The Cambridge

handbook of computing education research, 377.

Kumar, A. N., & Raj, R. K. (2022, March). Computer Science Curricula 2023 (CS2023) Community

Engagement by the ACM/IEEE-CS/AAAI Joint Task Force. In Proceedings of the 54th ACM

Technical Symposium on Computer Science Education (2), 1212-1213.

Ladislav, H. O. L. Y., & Ellen, R. (1984). Theory, methodology and the research process.

Ethnographic research: A guide to general conduct, 11-34.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H.M. (2005). A study of the difficulties of novice

programmers. Proceeding of ITiCSE’05, ACM: Monte de Caparica.

Lau, W. W., & Yuen, A. H. (2011). The impact of the medium of instruction: The case of teaching and

learning of computer programming. Education and Information Technologies, 16(2), 183-

201.

Laurillard, D. (2002, December). Design tools for e-learning. In Ascilite, 3-4.

Laurillard, D. (2013). Rethinking university teaching: A conversational framework for the effective use

of learning technologies. Routledge.

268

Lei, Y., & Allen, M. (2022, February). English Language Learners in Computer Science Education: A

Scoping Review. In Proceedings of the 53rd ACM Technical Symposium on Computer

Science Education V. 1, 57-63.

Levy, R. B. B., Ben-Ari, M., & Uronen, P. A. (2000, July). An extended experiment with Jeliot 2000.

In Proceedings of the First International Program Visualization Workshop, Porvoo, Finland,

131-140.

Levy, R. B. B., Ben-Ari, M., & Uronen, P. A. (2003). The Jeliot 2000 program animation system.
Computers & Education, 40(1), 1-15.

Lincoln, Y. S., Lynham, S. A., & Guba, E. G. (2011). Paradigmatic controversies, contradictions, and

emerging confluences, revisited. The Sage handbook of qualitative research, 4(2), 97-128.

Lister, R. (2011, December). Concrete and other neo-Piagetian forms of reasoning in the novice

programmer. In Conferences in research and practice in information technology series.

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the forest for the

trees: novice programmers and the SOLO taxonomy. ACM SIGCSE Bulletin, 38(3), 118-122.

Loughlin, C., Lygo-Baker, S., & Lindberg-Sand, Å. (2021). Reclaiming constructive

alignment. European Journal of Higher Education, 11(2), 119-136.

Lowe, R. (2001). Beyond “eye-candy”: improving learning with animations. Apple University
Consortium.

Lowe, R., & Schnotz, W. (Eds.). (2008). Learning with animation: Research implications for design.

Cambridge University Press.

Lund, B. D., & Wang, T. (2023). Chatting about ChatGPT: how may AI and GPT impact academia and
libraries? Library Hi Tech News.

Lunn, S., Marques Samary, M., & Peterfreund, A. (2021, March). Where is Computer Science

Education Research Happening? In Proceedings of the 52nd ACM Technical Symposium on

Computer Science Education, 288-294.

Luxton-Reilly, A., Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L., ... & Szabo, C.

(2018, July). Introductory programming: a systematic literature review. In Proceedings

Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer

Science Education, 55-106. ACM.

Madison, S., & Gifford, J. (2002). Modular programming: novice misconceptions. Journal of Research

on Technology in Education, 34(3), 217-229.

Malan, K., & Halland, K. (2004, October). Examples that can do harm in learning programming.

In Companion to the 19th annual ACM SIGPLAN conference on Object-oriented

programming systems, languages, and applications, 83-87.

Malik, DS. (2018) C++ Programming, from program analysis to program design, 5th Ed, Cengage

learning.

Malik, S. I., & Coldwell-Neilson, J. (2017). A model for teaching an introductory programming course
using ADRI. Education and Information Technologies, 22(3), 1089-1120.

Malik, S. I., Tawafak, R. M., & Shakir, M. (2021). Aligning and assessing teaching approaches with

solo taxonomy in a computer programming course. International Journal of Information and

Communication Technology Education (IJICTE), 17(4), 1-15.

Malone, B., Atkison, T., Kosa, M., & Hadlock, F. (2009, October). Pedagogically effective effortless

algorithm visualization with a PCIL. In 2009 39th IEEE Frontiers in Education Conference, 1-

6. IEEE.

269

Matsuda, H., & Shindo, Y. (2001, August). Effect of using computer graphics animation in

programming education. In Proceedings IEEE International Conference on Advanced

Learning Technologies, 164-165. IEEE.

Maxcy, S. J. (2003). Pragmatic threads in mixed methods research in the social sciences: The search

for multiple modes of inquiry and the end of the philosophy of formalism. Handbook of mixed

methods in social and behavioral research, 51-89.

Mayer, R. E. (Ed.). (2005). The Cambridge handbook of multimedia learning. Cambridge University
Press.

Mayer, R. E., & Anderson, R. B. (1991). Animations need narrations: An experimental test of a dual-

coding hypothesis. Journal of educational psychology, 83(4), 484.

Mayer, R. E., & Moreno, R. (1998). A cognitive theory of multimedia learning: Implications for design
principles. Journal of educational psychology, 91(2), 358-368.

Medeiros, R. P., Ramalho, G. L., & Falcão, T. P. (2018). A systematic literature review on teaching

and learning introductory programming in higher education. IEEE Transactions on

Education, 62(2), 77-90.

Mergel, B. (1998). Instructional design and learning theory. Educational Communications and

Technology

Mishra, S., Balan, S., Iyer, S., & Murthy, S. (2014, June). Effect of a 2-week scratch intervention in

CS1 on learners with varying prior knowledge. In Proceedings of the 2014 conference on

Innovation & technology in computer science education, 45-50.

Mladenović, M., Boljat, I., & Žanko, Ž. (2018). Comparing loops misconceptions in block-based and

text-based programming languages at the K-12 level. Education and Information

Technologies, 23(4), 1483-1500.

Moape, T. G., Ojo, S. O., & van Wyk, E. A. (2017, October). A framework for appropriate pedagogical

use of conceptual metaphor in computing. In 2017 International Conference on Computing

Networking and Informatics (ICCNI), 1-9. IEEE.

Mohamed Shuhidan, S., Hamilton, M., & D'Souza, D. (2011, June). Understanding novice

programmer difficulties via guided learning. In Proceedings of the 16th annual joint

conference on Innovation and technology in computer science education, 213-217.

Moors, L., Luxton-Reilly, A., & Denny, P. (2018, April). Transitioning from block-based to text-based

programming languages. In 2018 International Conference on Learning and Teaching in

Computing and Engineering (LaTICE), 57-64. IEEE.

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M. (2004, May). Visualizing programs with Jeliot 3.
In Proceedings of the working conference on Advanced visual interfaces, 373-376.

Moreno, A., Sutinen, E., & Joy, M. (2014, March). Defining and evaluating conflictive animations for

programming education: The case of Jeliot ConAn. In Proceedings of the 45th ACM

technical symposium on Computer science education, 629-634.

Muhajirah, M. (2020). Basic of Learning Theory:(Behaviorism, Cognitivism, Constructivism, and

Humanism). International Journal of Asian Education, 1(1), 37-42.

Muller, D. A., Lee, K. J., & Sharma, M. D. (2008). Coherence or interest: Which is most important in

online multimedia learning?. Australasian Journal of Educational Technology, 24(2).

Munasinghe, B., Bell, T., & Robins, A. (2021, February). Teachers’ understanding of technical terms

in a Computational Thinking curriculum. In Australasian Computing Education Conference,

106-114.

270

Murray, J. P. (1997). Successful Faculty Development and Evaluation: The Complete Teaching

Portfolio. ASHE-ERIC Higher Education Report No. 8, 1995. ERIC Clearinghouse on Higher

Education, Graduate School of Education and Human Development, George Washington

University, One Dupont Circle, Suite 630, Washington DC, 10036-1183.

Nagowah, L., & Nagowah, S. (2009). A Reflection on the Dominant Learning Theories: Behaviourism,

Cognitivism and Constructivism. International Journal of Learning, 16(2).

Newton, P., & Burgess, D. (2008). Exploring types of educational action research: Implications for

research validity. International journal of qualitative methods, 7(4), 18-30.

Orlando, L., & Machado, A. (1996). In defence of Piaget’s theory: A reply to 10 common

criticisms. Psychological Reviews, 103, 143-164.

Ortiz, D., & Greene, J. (2007). Research design: qualitative, quantitative, and mixed methods

approaches. Qualitative Research Journal, 6(2), 205-208.

Osman, W. I., & Elmusharaf, M. M. (2014). Effectiveness of combining algorithm and program

animation: A case study with data structure course. Issues in Informing Science and

Information Technology, 11, 155-168.

Pal, Y. (2016). A framework for scaffolding to teach programming to vernacular medium learners.

Diss. Indian Institute of Technology Bombay.

Panhwar, A. H., Ansari, S., & Shah, A. A. (2017). Post-positivism: An effective paradigm for social and

educational research. International Research Journal of Arts & Humanities (IRJAH), 45(45).

Pansiri, J. (2005). Pragmatism: A methodological approach to researching strategic alliances in

tourism. Tourism and Hospitality Planning & Development, 2(3), 191-206.

Pea, R. D. (1986). Language-independent conceptual “bugs” in novice programming. Journal of

educational computing research, 2(1), 25-36.

Perkins, D. N. (1991). Technology meets constructivism: Do they make a marriage?.

In Constructivism and the technology of instruction, 45-55. Routledge. Source: Educational

Technology, May 1991, 31(5), 18-23. Educational Technology Publications, Inc.

Piaget, J. (1929). The child’s conception of the world. London: Kegan Paul, Trench & Trubner.

Prasad, A., & Chaudhary, K. (2021). Interactive animation and affective teaching and learning in
programming courses. In Advances in Computer, Communication and Computational
Sciences, 613-623. Springer, Singapore.

Pyott, S., & Sanders, I. (1991). ALEX: an aid to teaching algorithms. ACM SIGCSE Bulletin, 23(3), 36-

44.

Qian, Y., & Lehman, J. (2017). Students’ misconceptions and other difficulties in introductory

programming: A literature review. ACM Transactions on Computing Education

(TOCE), 18(1), 1-24.

Quevedo-Torrero, J. U. (2009, April). Learning theories in computer science education. In 2009 Sixth

International Conference on Information Technology: New Generations, 1634-1635. IEEE.

Rabai, B. A. (2015). Programming Language Use in US Academia and Industry. Informatics in

Education, 14(2), 143-160.

Rajala, T., Laakso, M. J., Kaila, E., & Salakoski, T. (2007, November). VILLE: a language-

independent program visualization tool. In Proceedings of the Seventh Baltic Sea

Conference on Computing Education Research, 88, 151-159.

271

Ramaano, T., Ajoodha, R., & Jadhav, A. (2021). Different models relating prior computer experience

with performance in first year computer science. National Research Foundation of South

Africa.

Ramabu, T. J., & Oberholzer, H. J. (2017, May). Designing and exploring study field recommender
system for prospective students. In 2017 IST-Africa Week Conference (IST-Africa), 1-8.
IEEE.

Ramabu, T., Sanders, I., & Schoeman, M. A. (2021). Manipulatives for Teaching Introductory

Programming to Struggling Students: A Case of Nested-decisions. In CSEDU (1), 505-510.

Ramabu, T. J., Sanders, I., & Schoeman, M. (2021, May). Teaching and Learning CS1 with an Assist

of Manipulatives. In 2021 IST-Africa Conference (IST-Africa), 1-8. IEEE.

Ramabu, T., Sanders, I., & Schoeman, M. (2022, July). Nested-Decider: An Animation Program for

Aiding Teaching and Learning of Decisions/Nested Decisions. In Annual Conference of the

Southern African Computer Lecturers' Association. Cham: Springer International Publishing,

129 – 148.

Ramalingam, V., LaBelle, D., & Wiedenbeck, S. (2004, June). Self-efficacy and mental models in

learning to program. In Proceedings of the 9th annual SIGCSE conference on Innovation

and technology in computer science education, 171-175.

Rauchas, S., Rosman, B., Konidaris, G., & Sanders, I. (2006). Language performance at high school

and success in first year computer science. ACM SIGCSE Bulletin, 38(1), 398-402.

Rehman, A. A., & Alharthi, K. (2016). An introduction to research paradigms. International Journal of

Educational Investigations, 3(8), 51-59.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., ... & Kafai, Y.

(2009). Scratch: programming for all. Communications of the ACM, 52(11), 60-67.

Richards, K. (2003). Qualitative inquiry in TESOL. Springer.

Ridley, D. (2008). The literature review: A step-by-step guide for students. Sage publication.

Ring, B. A., Giordan, J., & Ransbottom, J. S. (2008). Problem solving through programming:

motivating the non-programmer. Journal of Computing Sciences in Colleges, 23(3), 61-67.

Rodger, S. H., Bashford, M., Dyck, L., Hayes, J., Liang, L., Nelson, D., & Qin, H. (2010, June).

Enhancing K-12 education with alice programming adventures. In Proceedings of the
fifteenth annual conference on Innovation and technology in computer science education,
234-238.

Roller, M. R. (2016). Qualitative Data Analysis.

https://www.rollerresearch.com/MRR%20WORKING%20PAPERS/Qualitative%20Data%20A

nalysis%20May%202020.pdf

Rubin, M. J. (2013, March). The effectiveness of live-coding to teach introductory programming. In

Proceeding of the 44th ACM technical symposium on Computer science education, 651-656.

ACM.

Rubio, M. A. (2019, May). Automatic Categorization of Introductory Programming Students. In

International Joint Conference: 12th International Conference on Computational Intelligence

in Security for Information Systems (CISIS 2019) and 10th International Conference on

European Transnational Education (ICEUTE 2019), 302-311. Springer, Cham.

Rubio, M. A., Romero-Zaliz, R., Mañoso, C., & de Madrid, A. P. (2015). Closing the gender gap in an

introductory programming course. Computers & Education, 82, 409-420.

272

Ruffini, M. F. (2009). Creating animations in PowerPoint to support student learning and

engagement. EDUCAUSE Quarterly Magazine, 32(4).

Rum, S. N. M., & Ismail, M. A. (2017). Metacognitive support accelerates computer assisted learning

for novice programmers. Journal of Educational Technology & Society, 20(3), 170-181.

Sadi, M. S., Halder, L., & Saha, S. (2014, February). Variable dependency analysis of a computer

program. In 2013 International Conference on Electrical Information and Communication

Technology (EICT), 1-5. IEEE.

Sadler, P. M., Sonnert, G., Coyle, H. P., Cook-Smith, N., & Miller, J. L. (2013). The influence of

teachers’ knowledge on student learning in middle school physical science classrooms.

American Educational Research Journal, 50(5), 1020-1049.

Sajaniemi, J., & Kuittinen, M. (2003, June). Program animation based on the roles of variables.
In Proceedings of the 2003 ACM symposium on Software visualization, 7-17.

Sajaniemi, J., & Kuittinen, M. (2008). From procedures to objects: A research agenda for the

psychology of object-oriented programming education. Human Technology: An

Interdisciplinary Journal on Humans in ICT Environments.

Salīte, I. (2008). Educational action research for sustainability: Constructing a vision for the future in

teacher education. Journal of Teacher Education for Sustainability, 10(2008), 5-16.

SAPeople. (2020, February 10). South African Coding Project is Heading for Paris for UN Global
Event. Accessed on 23/09/2022 at: https://www.sapeople.com/2020/02/10/south-african-
coding-project-is-heading-for-paris-for-un-global-event/

Saunders, M., Lewis & Thornhill (2007). Research methods. Business Students 4th edition Pearson

Education Limited, England.

Schmier, L. (1995). Random Thoughts: The Humanity of Teaching. Atwood Publishing, PO Box 3185,

Madison, WI 53704.

Schoeman, M., Gelderblom, H., & Muller, H. (2013). Investigating the effect of program visualization

on introductory programming in a distance learning environment. African Journal of

Research in Mathematics, Science and Technology Education, 17(1_2), 139-151.

Scholtz, T. L., & Sanders, I. (2010, June). Mental models of recursion: investigating students'

understanding of recursion. In Proceedings of the fifteenth annual conference on Innovation

and technology in computer science education, 103-107.

Schunk, D. H. (1991). Learning theories: An educational perspective. New York: Merrill.

Seaton, C. (2020). Understanding Programs Using Graphs. Accessed on 20/08/2022 at:

https://shopify.engineering/understanding-programs-using-graphs

Sevinç, G. (2019). A review on the neo-Piagetian theory of cognitive development. Ankara University

Journal of Faculty of Educational Sciences (JFES), 52(2), 611-631.

Sheth, S., Murphy, C., Ross, K. A., & Shasha, D. (2016, February). A course on programming and

problem solving. In Proceedings of the 47th ACM Technical Symposium on Computing

Science Education (pp. 323-328).

Shi, N., Min, Z., & Zhang, P. (2017). Effects of visualizing roles of variables with animation and IDE in

novice program construction. Telematics and Informatics, 34(5), 743-754.

Shuhidan, S.M. (2012). Probing the minds of novice programmers through guided learning, PhD

thesis, retrieved July 2013, RMIT University: Australia.

Siegfried, R. M., Greco, D., Miceli, N., & Siegfried, J. (2012). Whatever happened to Richard Reid’s

list of first programming languages? Information Systems Education Journal, 10(4), 24.

https://www.sapeople.com/2020/02/10/south-african-coding-project-is-heading-for-paris-for-un-global-event/
https://www.sapeople.com/2020/02/10/south-african-coding-project-is-heading-for-paris-for-un-global-event/
https://shopify.engineering/understanding-programs-using-graphs

273

Sim, J. M., Tacla, C. A., Stadzisz, P. C., & Banaszewski, R. F. (2012). Notification oriented paradigm

(nop) and imperative paradigm: A comparative study.

Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics

teaching, 77(1), 20-26.

Smith, L. (1992). Jean Piaget Critical Assessments. London, New York: Routledge.

Soloway, E. (1986). Learning to program= learning to construct mechanisms and explanations.

Communications of the ACM, 29(9), 850-858.

Sorden, S. D. (2012). The cognitive theory of multimedia learning. Handbook of educational
theories, 1(2012), 1-22.

Sorva, J. (2008, November). The same but different students' understandings of primitive and object

variables. In Proceedings of the 8th International Conference on Computing Education

Research, 5-15.

Sorva, J., & Sirkiä, T. (2010, October). UUhistle: a software tool for visual program simulation.

In Proceedings of the 10th Koli Calling International Conference on Computing Education

Research, 49-54.

Sorva, J., Karavirta, V., & Malmi, L. (2013). A review of generic program visualization systems for

introductory programming education. ACM Transactions on Computing Education

(TOCE), 13(4), 1-64.

Spohrer, J. C., & Soloway, E. (1986). Novice mistakes: Are the folk wisdoms correct? Communications
of the ACM, 29(7), 624-632.

Steckler, A., McLeroy, K. R., Goodman, R. M., Bird, S. T., & McCormick, L. (1992). Toward integrating

qualitative and quantitative methods: an introduction. Health education quarterly, 19(1), 1-8.

Stein, L. A. (1998). What We Swept Under the Rug: Radically Rethinking CS 1. Computer Science

Education, 8(2), 118-129.

Storey, M. A., Wong, K., & Müller, H. A. (2000). How do program understanding tools affect how

programmers understand programs?. Science of Computer Programming, 36(2-3), 183-207.

Strauss, A., & Corbin, J. (1998). Basics of qualitative research techniques. Sage publications.

Su, J., & Yang, W. (2023). A systematic review of integrating computational thinking in early childhood

education. Computers and Education Open, 100122.

Sullivan, A., Elkin, M., & Bers, M. U. (2015, June). KIBO robot demo: engaging young children in

programming and engineering. In Proceedings of the 14th international conference on

interaction design and children, 418-421.

Suzuki, H., & Kata, H. (1995). Interaction-level support for collaborative learning: AlgoBlock—an open

programming language.

Taha, K. (2012, October). Automatic academic advisor. In 8th International Conference on

Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), 262-

268. IEEE.

Tanrikulu, E., & Schaefer, B. C. (2011). The users who touched the ceiling of scratch. Procedia-Social
and Behavioral Sciences, 28, 764-769.

Tashakkori, A., & Creswell, J. W. (2007). The new era of mixed methods. Journal of mixed methods

research, 1(1), 3-7.

Trigwell, K., & Prosser, M. (2014). Qualitative variation in constructive alignment in curriculum

design. Higher Education, 67(2), 141-154.

274

Tuparov, G., Tuparova, D., & Tsarnakova, A. (2012). Using interactive simulation-based learning

objects in introductory course of programming. Procedia-Social and Behavioral Sciences, 46,

2276-2280.

Urquiza-Fuentes, J., & Velázquez-Iturbide, J. Á. (2009). A survey of successful evaluations of

program visualization and algorithm animation systems. ACM Transactions on Computing

Education (TOCE), 9(2), 1-21.

Ussiph, N., & Seidu, H. K. (2018). The impact of using 3D interactive animation tool in teaching

computer programming at the senior high school level. Circulation Comput. Sci, 3(2), 18-28.

Veerasamy, A. K., & Shillabeer, A. (2014). Teaching English based programming courses to English

language learners/non-native speakers of English. International Proceedings of Economics

Development and Research, 70, 17.

Veerasamy, A. K., D'Souza, D., & Laakso, M. J. (2016). Identifying novice student programming

misconceptions and errors from summative assessments. Journal of Educational

Technology Systems, 45(1), 50-73.

Végh, L. (2016). Javascript Library for Developing Interactive Micro-Level Animations for Teaching
and Learning Algorithms on One-Dimensional Arrays. Acta Didactica Napocensia, 9(2), 23-
32.

Végh, L., & Stoffová, V. (2017). Algorithm animations for teaching and learning the main ideas of

basic sortings. Informatics in Education, 16(1), 121-140.

Vilner, T., Zur, E., & Gal-Ezer, J. (2007). Fundamental concepts of CS1: procedural vs. object-

oriented paradigm-a case study. ACM SIGCSE Bulletin, 39(3), 171-175.

Wang, P., Bednarik, R., & Moreno, A. (2012, November). During automatic program animation,

explanations after animations have greater impact than before animations. In Proceedings of

the 12th Koli calling international conference on computing education research, 100-109.

Wang, X., Su, Y., Cheung, S., Wong, E., & Kwong, T. (2013). An exploration of Biggs’ constructive

alignment in course design and its impact on students’ learning approaches. Assessment &

Evaluation in Higher Education, 38(4), 477-491.

Watson, C., & Li, F. W. (2014, June). Failure rates in introductory programming revisited.

In Proceedings of the 2014 conference on Innovation & technology in computer science

education, 39-44.

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based programming in high

school computer science classrooms. ACM Transactions on Computing Education

(TOCE), 18(1), 1-25.

Weiss, R. E., Knowlton, D. S., & Morrison, G. R. (2002). Principles for using animation in computer-
based instruction: Theoretical heuristics for effective design. Computers in Human
Behavior, 18(4), 465-477.

Werth, L. H. (1986). Predicting student performance in a beginning computer science class. ACM

SIGCSE Bulletin, 18(1), 138-143.

Whalley, J., Lister, R., Thompson, E., Clear, T., Robbins, P., Kumar, P. A., & Prasad, C. (2006). An

Australasian study of reading and comprehension skills in novice programmers, using the

Bloom and SOLO taxonomies. In 8th Australasian Computing Education Conference

(ACE2006), Australian Computer Science Communications, 28, 243-252. Australian

Computer Society.

Wolz, U., Leitner, H. H., Malan, D. J., & Maloney, J. (2009, March). Starting with scratch in CS 1.
In Proceedings of the 40th ACM technical symposium on Computer science education, 2-3.

275

Wu, C. C., Dale, N. B., & Bethel, L. J. (1998, March). Conceptual models and cognitive learning styles

in teaching recursion. In Proceedings of the twenty-ninth SIGCSE technical symposium on

Computer science education, 292-296.

Wyeth, P., & Purchase, H. C. (2002, April). Tangible programming elements for young children.

In CHI'02 extended abstracts on Human factors in computing systems, 774-775.

Xie, B., Loksa, D., Nelson, G. L., Davidson, M. J., Dong, D., Kwik, H., ... & Ko, A. J. (2019). A theory

of instruction for introductory programming skills. Computer Science Education, 29(2-3), 205-

253.

Yuana, R. A., & Maryono, D. (2016, January). Robomind utilization to improve student motivation and
concept in learning programming. In Proceeding of International Conference on Teacher
Training and Education 1 (1).

Žanko, Ž., Mladenović, M., & Boljat, I. (2019). Misconceptions about variables at the K-12 level.

Education and Information Technologies, 24(2), 1251-1268.

Zehetmeier, S., Andreitz, I., Erlacher, W., & Rauch, F. (2015). Researching the impact of teacher
professional development programmes based on action research, constructivism, and
systems theory. Educational action research, 23(2), 162-177.

276

Appendices

277

Appendix A: Ethics clearance

278

279

280

Appendix B: Evaluation sheets for decisions/nested

decisions – Cycle 3

Pair 1 (Pre_nested_if and Post_if_else)

The evaluation outcome for the control group is in Table B.1 and for the experimental

group in Table B.2. The content of Table B.3 is the evaluation matrix outcome of the

control and the experimental group based on pair 1. Pair 1 represents the correct

structure of the if-statement or nested if-statement.

 Table B.1: Evaluation sheet - control group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre ×

Post ×

M Pre × × × × × × ×

Post × × ×

R Pre × ×

Post × × × × × ×

 Table B.2: Evaluation sheet - experimental group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

P Pre

Post

U Pre ×

Post

M Pre × × × × × ×

Post ×

R Pre × × × ×

Post × × × × × × × × × ×

Table B.3: Pair 1 matrix (Pre_nested_if and Post_if_else)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 10% 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 0 9.1% 20% 0 10% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 50% 54.5% 10% 36.4%

 P U M R

281

Pair 2 (Pre_inner_if_AND and Post_if_AND)

The evaluation outcome for the control group is in Table B.4 and for the experimental

group in Table B.5. The content of Table B.6 is the evaluation matrix outcome of the

control and the experimental group based on pair 2. Pair 2 refers to using the correct

structure of the if-clause that has the “&&” operator or uses alternative method.

Table B.4: Evaluation sheet - control group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre × ×

Post

M Pre × × × × ×

Post × × × × × × ×

R Pre × × ×

Post × × ×

Table B.5: Evaluation sheet - experimental group- pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

P Pre

Post

U Pre

Post

M Pre × × × × × ×

Post × ×

R Pre × × × × ×

Post × × × × × × × × ×

 Table B.6: Pair 2 matrix (Pre_inner_if_AND and Post_if_AND)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 10% 0 40% 9.1% 20% 9.1%

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 10% 0 10% 45.5% 10% 36.4%

 P U M R

282

Pair 3 (Pre_outer_if_content and Post_if_content)

The evaluation outcome for the control group is in Table B.7 and for the experimental

group in Table B.8. The content of Table B.9 is the evaluation matrix outcome of the

control and the experimental group based on pair 3. Pair 3 means the students'

capabilities of placing the right content in the block for when the if-statement evaluates

to true.

Table B.7: Evaluation sheet - control group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre × ×

Post

M Pre × × × × × ×

Post × × × × ×

R Pre × ×

Post × × × × ×

Table B.8: Evaluation sheet - experimental group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

P Pre

Post

U Pre × ×

Post

M Pre × × × × ×

Post × ×

R Pre × × × ×

Post × × × × × × × × ×

 Table B.9: Pair 3 matrix (Pre_outer_if_content and Post_if_content)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 20% 9% 30% 0% 0 9%

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 9% 30% 45.5% 20% 27.3%

 P U M R

283

Pair 4 (Pre_inner_if_content and Post_if_content)

The evaluation outcome for the control group is in Table B.10 and for the experimental

group in Table B.11. The content of Table B.12 is the evaluation matrix outcome of the

control and the experimental group based on pair 4. Pair 4 refers to the correct content

in the block following the if-statement when it evaluates to true.

Table B.10: Evaluation sheet - control group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre

Post

M Pre × × × × × × ×

Post × × × × ×

R Pre × × ×

Post × × × × ×

Table B.11: Evaluation sheet - experimental group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

P Pre

Post

U Pre ×

Post

M Pre × × × × × × ×

Post × ×

R Pre × × ×

Post × × × × × × × × ×

 Table B.12: Pair 4 matrix (Pre_inner_if_content and Post_if_content)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 0 9% 30% 0 20% 9%

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 40% 63.6% 10% 18.2%

 P U M R

284

Pair 5 (Pre_outer_else_content and Post_else_content)

The evaluation outcome for the control group is in Table B.13 and for the experimental

group in Table B.14. The content of Table B.15 is the evaluation matrix outcome of the

control and the experimental group based on pair 5. Pair 5 is about the correct content

in the else part of the if-statement.

Table B.13: Evaluation sheet - control group - pair 5

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre × ×

Post ×

M Pre × × ×

Post × × × × ×

R Pre × × × × ×

Post × × × ×

Table B.14: Evaluation sheet - experimental group - pair 5

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

P Pre

Post

U Pre × ×

Post

M Pre × × × × ×

Post × ×

R Pre × × × ×

Post × × × × × × × × ×

 Table B.15: Pair 5 matrix (Pre_outer_else_content and Post_else_content)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 10% 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 10% 18.2% 10% 0 30% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 20% 45.5% 20% 36.4%

 P U M R

285

Pair 6 (Pre_inner_else_content and Post_else_content)

The evaluation outcome for the control group is in Table B.16 and for the experimental

group in Table B.17. The content of Table B.18 is the evaluation matrix outcome of the

control and the experimental group based on pair 6. Pair 6 refers to the correct content

of the else part of the if-statement (in this case an inner else part of the pre-teaching

exercise).

Table B.16: Evaluation sheet - control group - pair 6

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre ×

Post

M Pre × × × × ×

Post × × × × × ×

R Pre × × × ×

Post × × × ×

Table B.17: Evaluation sheet - experimental group - pair 6

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

P Pre

Post

U Pre × ×

Post

M Pre × × × ×

Post × ×

R Pre × × × × ×

Post × × × × × × × × ×

 Table B.18: Pair 6 matrix (Pre_inner_else_content and Post_else_content)

P

P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 30% 0 30% 18.2%

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 10% 18.2% 20% 36.4% 10% 27.3%

 P U M R

286

Appendix C: Evaluation sheets for loops – Cycle 3

Pair 1 (Pre_prompt and Post_prompt)

The evaluation outcome for the control group is in Table C.1 and for the experimental

group in Table C.2. The content of Table C.3 is the evaluation matrix outcome of the

control and the experimental group based on pair 1. Pair 1 refers to the capability to

prompt the values outside the loop.

 Table C.1: Evaluation sheet - control group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × × ×

Post ×

M Pre × ×

Post × ×

R Pre × × × × × × × × × ×

Post × × × × × × × × × × × ×

 Table C.2: Evaluation sheet - experimental group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × × ×

Post

M Pre ×

Post × × × ×

R Pre × × × × × × × × × × ×

Post × × × × × × × × × × ×

Table C.3: Pair 1 matrix (Pre_prompt and Post_prompt)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 6.7% 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 6.7% 20% 6.7% 6.7% 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 6..7% 0 6.7% 0 73.3% 80%

 P U M R

287

Pair 2 (Pre_firstloop_structure and Post_loop_strucutre)

The evaluation outcome for the control group is in Table C.4 and for the experimental

group in Table C.5. The content of Table C.6 is the evaluation matrix outcome of the

control and the experimental group based on pair 2. Pair 2 means the correct structure

of the first loop (including the condition).

 Table C.4: Evaluation sheet - control group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × × ×

Post

M Pre × × × × × × × × × ×

Post × × × × × × × × × × ×

R Pre × ×

Post × × × ×

 Table C.5: Evaluation sheet - experimental group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × × × × × × ×

Post

M Pre × × × × × × × ×

Post × × × × × × × × ×

R Pre

Post × × × × × ×

 Table C.6: Pair 2 matrix (Pre_firstloop_structure and Post_loop_strucutre)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 20% 53.3% 46.7% 6.7% 6.7% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 20% 40% 6.7% 6.7%

 P U M R

288

Pair 3 (Pre_firstloop_content and Post_loop_content)

The evaluation outcome for the control group is in Table C.7 and for the experimental

group in Table C.8. The content of Table C.9 is the evaluation matrix outcome of the

control and the experimental group based on pair 3. Pair 3 means the first loop in the

pre-teaching algorithm in relation to the loop in the post-teaching algorithm has the

correct content.

 Table C.7: Evaluation sheet - control group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × × ×

Post

M Pre × × × × × × × ×

Post × × × × × ×

R Pre × × × ×

Post × × × × × × × × ×

 Table C.8: Evaluation sheet - experimental group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × × ×

Post

M Pre × × × × × × × × × × × ×

Post × × × × ×

R Pre

Post × × × × × × × × × ×

 Table C.9: Pair 3 matrix (Pre_firstloop_content and Post_loop_content)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 20% 20% 20% 13.3% 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 33.3% 66.7% 26.7% 0

 P U M R

289

Pair 4 (Pre_secondloop_strucuture /Pre_secondloop_content and Post_display)

The evaluation outcome for the control group is in Table C.10 and for the experimental

group in Table C.11. The content of Table C.12 is the evaluation matrix outcome of

the control and the experimental group based on pair 4. Pair 4 means that the output

of the program is in the correct place.

 Table C.10: Evaluation sheet - control group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × × × ×

Post

M Pre × × × × × × × × ×

Post × × × × × × × ×

R Pre × ×

Post × × × × × × ×

 Table C.11: Evaluation sheet - experimental group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × × × × ×

Post

M Pre × × × × × × × × ×

Post × × × × ×

R Pre ×

Post × × × × × × × × × ×

Table C.12: Pair 4 matrix (Pre_secondloop_strucuture / Pre_secondloop_content and

Post_display)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 26.7% 33.3% 26.7% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 33.3% 60% 13.3% 6.7%

 P U M R

290

Appendix D: Evaluation sheets for nested loops – Cycle 3

Pair 1 (Pre_outer_loop_structure and Post_outer_loop_structure)

The evaluation outcome for the control group is in Table D.1 and for the experimental

group in Table D.2. The content of Table D.3 is the evaluation matrix outcome of the

control and the experimental group based on pair 1. Pair 1 refers to the correct

structure of the outer loop of the nested loop.

 Table D.1: Evaluation sheet - control group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre

Post

M Pre × × × ×

Post × × ×

R Pre × × × × × × × × × × ×

Post × × × × × × × × × × × ×

 Table D.2: Evaluation sheet - experimental group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × ×

Post

M Pre

Post × ×

R Pre × × × × × × × × × × × × ×

Post × × × × × × × × × × × × ×

Table D.3: Pair 1 matrix (Pre_outer_loop_structure and Post_outer_loop_structure)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 0 13.3% 20% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 6.5% 0 73.3% 86.7%

 P U M R

291

Pair 2 (Pre_inner_loop_structure and Post_inner_loop_structure)

The evaluation outcome for the control group is in Table D.4 and for the experimental

group in Table D.5. The content of Table D.6 is the evaluation matrix outcome of the

control and the experimental group based on pair 2. Pair 2 requires another loop

inside the outer loop with the condition based on the variable of the outer loop or by

using an alternative method.

 Table D.4: Evaluation sheet - control group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × × × ×

Post

M Pre × × × × × × × × × × ×

Post × × × × × × × × × × × ×

R Pre

Post × × ×

 Table D.5: Evaluation sheet - experimental group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × × × × × × × × ×

Post

M Pre × × × × × ×

Post × × × × × × × × ×

R Pre

Post × × × × × ×

 Table D.6: Pair 2 matrix (Pre_inner_loop_structure and Post_inner_loop_structure)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 26.7% 60% 53.3% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 20% 40% 0 0

 P U M R

292

Pair 3 (Pre_inner_loop_content and Post_inner_loop_content)

The evaluation outcome for the control group is in Table D.7 and for the experimental

group in Table D.8. The content of Table D.9 is the evaluation matrix outcome of the

control and the experimental group based on pair 3. Pair 3 refers to the correct content

of the inner loop.

 Table D.7: Evaluation sheet - control group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × × × ×

Post

M Pre × × × × × × × × × ×

Post × × × × × × × ×

R Pre ×

Post × × × × × × ×

 Table D.8: Evaluation sheet - experimental group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × × × ×

Post

M Pre × × × × × × × × × ×

Post × × × ×

R Pre ×

Post × × × × × × × × × × ×

 Table D.9: Pair 3 matrix (Pre_inner_loop_content and Post_inner_loop_content)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 26.7% 13.3% 26.7% 6.5% 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 40% 66.7% 6.5% 0

 P U M R

293

Pair 4 (Pre_outer_loop_content and Post_ outer_loop_content)

The evaluation outcome for the control group is in Table D.10 and for the experimental

group in Table D.11. The content of Table D.12 is the evaluation matrix outcome of

the control and the experimental group based on pair 4. Pair 4 means the correct

content of the outer loop (the code between the blocks).

 Table D.10: Evaluation sheet - control group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre

Post

M Pre × × × × × × × × × × × ×

Post × × × × × × × × × × × × ×

R Pre × × ×

Post × ×

 Table D.11: Evaluation sheet - experimental group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × × ×

Post

M Pre × × × × × × × × × × ×

Post × × × × ×

R Pre ×

Post × × × × × × × × × ×

Table D.12: Pair 4 matrix (Pre_outer_loop_content and Post_ outer_loop_content)

P

P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 6.5% 20% 73% 13.3% 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 13.3% 60% 6.5% 6.5%

 P U M R

294

Appendix E: Evaluation sheets for one-dimensional array –

Cycle 3

Pair 1 (Pre_array_initialised and Post_array_initialised)

The evaluation outcome for the control group is in Table E.1 and for the experimental

group in Table E.2. The content of Table E.3 is the evaluation matrix outcome of the

control and the experimental group based on pair 1. Pair 1 is about the capability to

initialise an array.

Table E.1: Evaluation sheet - control group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre ×

Post

M Pre × ×

Post × ×

R Pre × × × × × × ×

Post × × × × × × × ×

Table E.2: Evaluation sheet - experimental group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre

Post

M Pre × ×

Post

R Pre × × × × × × × ×

Post × × × × × × × × × ×

 Table E.3: Pair 1 matrix (Pre_array_initialised and Post_array_initialised)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 10% 0 10% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 10% 20% 70% 80%

 P U M R

295

Pair 2 (Pre_loop_structure and Post_loop_structure)

The evaluation outcome for the control group is in Table E.4 and for the experimental

group in Table E.5. The content of Table E.6 is the evaluation matrix outcome of the

control and the experimental group based on pair 2. Pair 2 refers to the structure of

the loop which is controlled by the length of the array.

Table E.4: Evaluation sheet - control group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre

Post

M Pre × × × × ×

Post ×

R Pre × × × × ×

Post × × × × × × × × ×

Table E.5: Evaluation sheet - experimental group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre × ×

Post

M Pre × × × × × × ×

Post × ×

R Pre ×

Post × × × × × × × ×

 Table E.6: Pair 2 matrix (Pre_loop_structure and Post_loop_structure)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 0 20% 10% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 40% 70% 50% 10%

 P U M R

296

Pair 3 (Pre_if_condition and Post_ if_condition)

The evaluation outcome for the control group is in Table E.7 and for the experimental

group in Table E.8. The content of Table E.9 is the evaluation matrix outcome of the

control and the experimental group based on pair 3. Pair 3 refers to the condition of

the if-statement within the loop, which uses an array.

Table E.7: Evaluation sheet - control group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre × ×

Post

M Pre × × × × × × ×

Post × × × ×

R Pre ×

Post × × × × × ×

Table E.8: Evaluation sheet - experimental group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre ×

Post

M Pre × × × × × × × ×

Post ×

R Pre ×

Post × × × × × × × × ×

 Table E.9: Pair 3 matrix (Pre_if_condition and Post_ if_condition)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 20% 10% (20%) 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 50% 80% 10% 10%

 P U M R

297

Pair 4 (Pre_if_content and Post_ if_ content)

The evaluation outcome for the control group is in Table E.10 and for the experimental

group in Table E.11. The content of Table E.12 is the evaluation matrix outcome of the

control and the experimental group based on pair 4. Pair 4 refers to the correct content

of the if-statement.

Table E.10: Evaluation sheet - control group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre × ×

Post

M Pre × × ×

Post

R Pre × × × × ×

Post × × × × × × × × × ×

Table E.11: Evaluation sheet - experimental group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre × ×

Post

M Pre × × × × × × × ×

Post × × ×

R Pre

Post × × × × × × ×

 Table E.12: Pair 4 matrix (Pre_if_content and Post_ if_ content)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 20% 20% 0 10% 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 30% 70% 50% 0

 P U M R

298

Pair 5 (Pre_display and Post_display)

The evaluation outcome for the control group is in Table E.13 and for the experimental

group in Table E.14. The content of Table E.15 is the evaluation matrix outcome of the

control and the experimental group based on pair 5. Pair 5 refers to the correct display

at the correct place.

Table E.13: Evaluation sheet - control group - pair 5

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre ×

Post

M Pre × × × × × × × ×

Post × × × ×

R Pre ×

Post × × × × × ×

Table E.14: Evaluation sheet - experimental group - pair 5

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre

Post

M Pre × × × × × × × × ×

Post

R Pre ×

Post × × × × × × × × × ×

 Table E.15: Pair 5 matrix (Pre_display and Post_display)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 10% 0 30% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 50% 90% 20% 0

 P U M R

299

Appendix F: Evaluation sheets for parallel arrays – Cycle 3

Pair 1 (Pre_array_initialised and Post_array_initialised)

The evaluation outcome for the control group is in Table F.1 and for the experimental

group in Table F.2. The content of Table F.3 is the evaluation matrix outcome of the

control and the experimental group based on pair 1. Pair 1 is about the capability to

initialise an array.

Table F.1: Evaluation sheet - control group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre

Post

M Pre ×

Post

R Pre × × × × × × × × ×

Post × × × × × × × × × ×

Table F.2: Evaluation sheet - experimental group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre ×

Post

M Pre ×

Post ×

R Pre × × × × × × × ×

Post × × × × × × × × ×

 Table F.3: Pair 1 matrix (Pre_array_initialised and Post_array_initialised)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 0 10% 0 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 10% 10% 90% 80%

 P U M R

300

Pair 2 (Pre_loop_structure and Post_loop_structure)

The evaluation outcome for the control group is in Table F.4 and for the experimental

group in Table F.5. The content of Table F.6 is the evaluation matrix outcome of the

control and the experimental group based on pair 2. Pair 2 refers to the structure of

the loop which is controlled by the length of the array.

Table F.3: Evaluation sheet - control group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre ×

Post

M Pre × × × × × ×

Post × ×

R Pre × × ×

Post × × × × × × × ×

Table F.4: Evaluation sheet - experimental group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre × × ×

Post

M Pre × × × × × × ×

Post × ×

R Pre

Post × × × × × × × ×

 Table F.6: Pair 2 matrix (Pre_loop_structure and Post_loop_structure)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 10% 20% 10% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 10% 50% 70% 30% 0

 P U M R

301

Pair 3 (Pre_if_condition and Post_ if_condition)

The evaluation outcome for the control group is in Table F.7 and for the experimental

group in Table F.8. The content of Table F.9 is the evaluation matrix outcome of the

control and the experimental group based on pair 3. Pair 3 refers to the condition of

the if-statement within the loop, which uses an array.

Table F.7: Evaluation sheet - control group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre × ×

Post

M Pre × × × × × ×

Post × × × × ×

R Pre × ×

Post × × × × ×

Table F.8: Evaluation sheet - experimental group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre × ×

Post

M Pre × × × × × × ×

Post

R Pre ×

Post × × × × × × × × × ×

 Table F.9: Pair 3 matrix (Pre_if_condition and Post_ if_condition)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 20% 0 30% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 20% 30% 70% 20% 10%

 P U M R

302

Pair 4 (Pre_if_content and Post_ if_ content)

The evaluation outcome for the control group is in Table F.10 and for the experimental

group in Table F.11. The content of Table F.12 is the evaluation matrix outcome of the

control and the experimental group based on pair 4. Pair 4 refers to the correct content

of the if-statement.

Table F.10: Evaluation sheet - control group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre × ×

Post

M Pre × × × × ×

Post × ×

R Pre × × ×

Post × × × × × × × ×

Table F.11: Evaluation sheet - experimental group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre × × ×

Post

M Pre × × × × × × ×

Post × ×

R Pre

Post × × × × × × × ×

 Table F.12: Pair 4 matrix (Pre_if_content and Post_ if_ content)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 10% 20% 10% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 10% 50% 70% 30% 0

 P U M R

303

Pair 5 (Pre_display and Post_display)

The evaluation outcome for the control group is in Table F.13 and for the experimental

group in Table F.14. The content of Table F.15 is the evaluation matrix outcome of the

control and the experimental group based on pair 5. Pair 5 refers to the correct display

at the correct place.

Table F.13: Evaluation sheet - control group - pair 5

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre ×

Post

M Pre × × × × × × ×

Post × × ×

R Pre × ×

Post × × × × × × ×

Table F.14: Evaluation sheet - experimental group - pair 5

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre ×

Post

M Pre × × × × × × × × ×

Post ×

R Pre

Post × × × × × × × × ×

 Table F.15: Pair 5 matrix (Pre_display and Post_display)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 10% 10% 20% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 50% 90% 20 0

 P U M R

304

Appendix G: Evaluation sheets for functions – Cycle 3

Pair 1 (Pre_func_call_return and Post_func_call_return)

The evaluation outcome for the control group is in Table G.1 and for the experimental

group in Table G.2. The content of Table G.3 is the evaluation matrix outcome of the

control and the experimental group based on pair 1. Pair 1 refers to the capability to

call a function that returns a value.

 Table G.1: Evaluation sheet - control group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17

P Pre

Post

U Pre ×

Post

M Pre × × × × × × × × × ×

Post × × × × × × × × ×

R Pre × × × × × ×

Post × × × × × × × ×

 Table G.2: Evaluation sheet - experimental group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × × × × × ×

Post

M Pre × × × × × × × × ×

Post × × × ×

R Pre

Post × × × × × × × × × × ×

 Table G.3: Pair 1 matrix (Pre_func_call_return and Post_func_call_return)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 6.7% (3.5% 23.5% 0 23.5% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 13.3% 35.3% 60% 11.8% 0

 P U M R

305

Pair 2 (Pre_func_call_void and Post_func_call_void)

The evaluation outcome for the control group is in Table G.4 and for the experimental

group in Table G.5. The content of Table G.6 is the evaluation matrix outcome of the

control and the experimental group based on pair 2. Pair 2 refers to the capability to

call a function that does not return a value (function of a type void).

 Table G.4: Evaluation sheet - control group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17

P Pre

Post

U Pre × × × ×

Post

M Pre × × × × × × × × × ×

Post × × × × × × × × × × × ×

R Pre × ×

Post × × × ×

 Table G.5: Evaluation sheet - experimental group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × ×

Post

M Pre × × × × × × × × × × × × ×

Post × × × ×

R Pre

Post × × × × × × × × × × ×

 Table G.6: Pair 2 matrix (Pre_func_call_void and Post_func_call_void)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 (5.9%) 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 23.3% 13.3% 47.1% 13.3% 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 11.8% 73.3% 11.8% 0

 P U M R

306

Pair 3 (Pre_func_header_return and Post_func_header_return)

The evaluation outcome for the control group is in Table G.7 and for the experimental

group in Table G.8. The content of Table G.9 is the evaluation matrix outcome of the

control and the experimental group based on pair 3. Pair 3 refers to the capability to

construct a function header that returns a value with a relevant return type.

 Table G.7: Evaluation sheet - control group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17

P Pre

Post

U Pre × × × ×

Post

M Pre × × × × × × × ×

Post × × × × × ×

R Pre × × × × ×

Post × × × × × × × × × × ×

 Table G.8: Evaluation sheet - experimental group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × × × × × ×

Post

M Pre × × × × × × × × ×

Post × × × × × ×

R Pre

Post × × × × × × × × ×

Table G.9: Pair 3 matrix (Pre_func_header_return and Post_func_header_return)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 23.5% 40% 11.8% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 35.3% 60% 29.4% 0

 P U M R

307

Pair 4 (Pre_func_return_content and Post_func_return_content)

The evaluation outcome for the control group is in Table G.10 and for the experimental

group in Table G.11. The content of Table G.12 is the evaluation matrix outcome of

the control and the experimental group based on pair 4. Pair 4 refers to the capability

to construct the correct content in a function that returns a value.

 Table G.10: Evaluation sheet - control group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17

P Pre

Post

U Pre × × × ×

Post

M Pre × × × × × × × × × × ×

Post × × × × × × × × × ×

R Pre × ×

Post × × × × × × ×

 Table G.11: Evaluation sheet - experimental group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × × × ×

Post

M Pre × × × × × × × × × × ×

Post × × × ×

R Pre

Post × × × × × × × × × × ×

Table G.12: Pair 4 matrix (Pre_func_return_content and Post_func_return_content)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 23.5% 20% 35.3% 6.7% 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 6.7% 29.4% 66.7% 0 0

 P U M R

308

Pair 5 (Pre_func_header_void and Post_func_header_void)

The evaluation outcome for the control group is in Table G.13 and for the experimental

group in Table G.14. The content of Table G.15 is the evaluation matrix outcome of

the control and the experimental group based on pair 5. Pair 5 refers to the capability

to construct a function header of a type void that does not return a value.

 Table G.13: Evaluation sheet - control group - pair 5

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17

P Pre

Post

U Pre × × × × × ×

Post × ×

M Pre × × × × × × ×

Post × × × × × × × ×

R Pre × × × ×

Post × × × × × × ×

 Table G.14: Evaluation sheet - experimental group - pair 5

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × × × × × × ×

Post ×

M Pre × × × × × × ×

Post × × × × × × × ×

R Pre

Post × × × × × × ×

Table G.15: Pair 5 matrix (Pre_func_header_void and Post_func_header_void)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 11.8% 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 23.5% 40% 23.5% 6.7% 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 6.7% 11.8% 40% 23.5% 0

 P U M R

309

Pair 6 (Pre_func_void_content and Post_func_void_content)

The evaluation outcome for the control group is in Table G.16 and for the experimental

group in Table G.17. The content of Table G.18 is the evaluation matrix outcome of

the control and the experimental group based on pair 6. Pair 6 refers to the capability

to provide the correct content in a function that does not return a value.

 Table G.16: Evaluation sheet - control group - pair 6

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17

P Pre

Post

U Pre × ×

Post

M Pre × × × × × × × × × × × ×

Post × × × × × × × ×

R Pre × × ×

Post × × × × × × × × ×

 Table G.17: Evaluation sheet - experimental group - pair 6

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

P Pre

Post

U Pre × × × ×

Post

M Pre × × × × × × × × × × ×

Post × × × ×

R Pre

Post × × × × × × × × × × ×

Table G.18: Pair 6 matrix (Pre_func_void_content and Post_func_void_content)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 11.8% 26.7% 35.3% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 35.3% 73.3% 0 0

 P U M R

310

Appendix H: Evaluation sheets for decisions/nested

decisions – Cycle 4

Pair 1 (Pre_nested_if and Post_nested_if)

The evaluation outcome for the control group is in Table H.1 and for the experimental

group in Table H.2. The content of Table H.3 is the evaluation matrix outcome of the

control and the experimental group based on pair 1. Pair 1 refers to the correct

structure of the nested if-statement.

 Table H.1: Evaluation sheet - control group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

P Pre

Post

U Pre × ×

Post

M Pre × × × × × ×

Post × × × × ×

R Pre × × × ×

Post × × × × × × ×

 Table H.2: Evaluation sheet - experimental group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

P Pre

Post

U Pre × × × ×

Post

M Pre × × × × × × × × ×

Post × × × × × ×

R Pre

Post × × × × × × ×

 Table H.3: Pair 1 matrix (Pre_nested_if and Post_nested_if)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 16.7% 30.8% 16.7% 15.4% 8.3% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 33.3% 53.8% 25% 0

 P U M R

311

Pair 2 (Pre_inner_if_AND and Post_if_AND)

The evaluation outcome for the control group is in Table H.4 and for the experimental

group in Table H.5. The content of Table H.6 is the evaluation matrix outcome of the

control and the experimental group based on pair 2. Pair 2 refers to the correct

structure of the if-clause using the "&&" operator or using an alternative method.

 Table H.4: Evaluation sheet - control group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

P Pre

Post

U Pre × ×

Post

M Pre × × × × × × ×

Post × × × × × ×

R Pre × × ×

Post × × × × × ×

 Table H.5: Evaluation sheet - experimental group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

P Pre

Post

U Pre × × ×

Post

M Pre × × × × × × × ×

Post × × ×

R Pre × ×

Post × × × × × × × × × ×

 Table H.6: Pair 2 matrix (Pre_inner_if_AND and Post_if_AND)

P

P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 16.7% 23.1% 33.3% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 25% 61.5% 25% 15.4%

 P U M R

312

Pair 3 (Pre_outer_if_OR and Post_if_OR)

The evaluation outcome for the control group is in Table H.7 and for the experimental

group in Table H.8. The content of Table H.9 is the evaluation matrix outcome of the

control and the experimental group based on pair 3. Pair 3 means the students' ability

to use the correct format of comparison in the if-statement with the || operator.

 Table H.7: Evaluation sheet - control group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

P Pre

Post

U Pre × × × × × ×

Post × ×

M Pre × × ×

Post × × × ×

R Pre × × ×

Post × × × × × ×

 Table H.8: Evaluation sheet - experimental group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

P Pre

Post

U Pre ×

Post

M Pre × × × × × × × × × × ×

Post × × ×

R Pre ×

Post × × × × × × × × × ×

 Table H.9: Pair 3 matrix (Pre_outer_if_OR and Post_if_OR)

P

P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 16.7% 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 33.3% 7.7% 0 15.4% 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 25% 69.2% 25% 7.7%

 P U M R

313

Pair 4 (Pre_inner_if_content and Post _if_OR_content)

The evaluation outcome for the control group is in Table H.10 and for the experimental

group in Table H.11. The content of Table H.12 is the evaluation matrix outcome of

the control and the experimental group based on pair 4. Pair 4 refers to the correct

content in the if-statement (the code between the blocks).

 Table H.10: Evaluation sheet - control group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

P Pre

Post

U Pre × × × × × × ×

Post × × × ×

M Pre × × × × ×

Post × ×

R Pre

Post × × × × × ×

 Table H.11: Evaluation sheet - experimental group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

P Pre

Post

U Pre × × × ×

Post

M Pre × × × × × × × × ×

Post × × × × ×

R Pre

Post × × × × × × × ×

 Table H.12: Pair 4 matrix (Pre_inner_if_content and Post _if_OR_content)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 16.7% 30.8% 33.3% 7.7% 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 8.3% 0 41.7% 61.5% 0 0

 P U M R

314

Pair 5 (Pre_outer_else_content and Post_else_content)

The evaluation outcome for the control group is in Table H.13 and for the experimental

group in Table H.14. The content of Table H.15 is the evaluation matrix outcome of

the control and the experimental group based on pair 5. Pair 5 is about comparing

whether the content of the outer else part of the if-statement is correct.

 Table H.13: Evaluation sheet - control group - pair 5

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

P Pre

Post

U Pre × × × ×

Post

M Pre × × × × × ×

Post × × × × × × ×

R Pre × ×

Post × × × × ×

 Table H.14: Evaluation sheet - experimental group - pair 5

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

P Pre

Post

U Pre × × × ×

Post

M Pre × × × × × × × × ×

Post × × × × ×

R Pre

Post × × × × × × × ×

 Table H.15: Pair 5 matrix (Pre_outer_else_content and Post_else_content)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 33.3% 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 0 30.8% 25% 7.7% 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 25% 61.5% 16.7% 0

 P U M R

315

Pair 6 (Pre_inner_else_content and Post_else_content)

The evaluation outcome for the control group is in Table H.16 and for the experimental

group in Table H.17. The content of Table H.18 is the evaluation matrix outcome of

the control and the experimental group based on pair 6. Pair 6 is about comparing

whether the content of the inner else part of the if-statement is correct or not.

 Table H.16: Evaluation sheet - control group - pair 6

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

P Pre

Post

U Pre × × ×

Post

M Pre × × × × × × × ×

Post × × × × × × × ×

R Pre ×

Post × × × ×

 Table H.17: Evaluation sheet - experimental group - pair 6

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

P Pre

Post

U Pre × × ×

Post

M Pre × × × × × × × × × ×

Post × ×

R Pre

Post × × × × × × × × × × ×

 Table H.18: Pair 6 matrix (Pre_inner_else_content and Post_else_content)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 25% 7.7% 33.3% 7.7% 8.3% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 15.4% 33.3% 69.2% 0 7.7%

 P U M R

316

Appendix I: Evaluation sheets for decisions / loops – Cycle

4

Pair 1 matrix (Pre_loop and Post_loop)

The evaluation outcome for the control group is in Table I.1 and for the experimental

group in Table I.2. The content of Table I.3 is the evaluation matrix outcome of the

control and the experimental group based on pair 1. Pair 1 refers to the correct

structure of the loop.

 Table I.1: Evaluation sheet - control group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

P Pre

Post

U Pre × ×

Post

M Pre × × × × × × ×

Post × × × × ×

R Pre × × × × ×

Post × × × × × × × × ×

 Table I.2: Evaluation sheet - experimental group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

P Pre

Post

U Pre × × ×

Post

M Pre × × × × × × × ×

Post × × ×

R Pre × × ×

Post × × × × × × × × × × ×

 Table I.3: Pair 1 matrix (Pre_loop and Post_loop)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 14.3% 21.4% 7.1% 0 14.3% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 42.9% 57.1% 21.4% 21.4%

 P U M R

317

Pair 2 (Pre_loop_content and Post_loop_content)

The evaluation outcome for the control group is in Table I.4 and for the experimental

group in Table I.5. The content of Table I.6 is the evaluation matrix outcome of the

control and the experimental group based on pair 2. Pair 2 means the general content

of the first loop (the code between the blocks).

 Table I.4: Evaluation sheet - control group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

P Pre

Post

U Pre × × × × × ×

Post

M Pre × × × × × × ×

Post × × × × × × × × ×

R Pre ×

Post × × × × ×

 Table I.5: Evaluation sheet - experimental group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

P Pre

Post

U Pre × × ×

Post

M Pre × × × × × × × × × ×

Post × ×

R Pre ×

Post × × × × × × × × × × × ×

 Table I.6: Pair 2 matrix (Pre_loop_content and Post_loop_content)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 42.9% 14.3% 21.4% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 7.1% 28.6% 71.4% 7.1% 7.1%

 P U M R

318

Pair 3 (Pre_if_OR and Post_if_OR)

The evaluation outcome for the control group is in Table I.7 and for the experimental

group in Table I.8. The content of Table I.9 is the evaluation matrix outcome of the

control and the experimental group based on pair 3. Pair 3 refers to the correct format

of the condition in an if-statement using the || operator.

 Table I.7: Evaluation sheet - control group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

P Pre

Post

U Pre × ×

Post

M Pre × × × × × × × ×

Post × × × × × × × × × × ×

R Pre × × × ×

Post × × ×

 Table I.8: Evaluation sheet - experimental group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

P Pre

Post

U Pre × × × × ×

Post

M Pre × × × × × × × ×

Post × × × × × ×

R Pre ×

Post × × × × × × × ×

 Table I.9: Pair 3 matrix (Pre_if_OR and Post_if_OR)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 14.3% 35.7% 42.9% 7.1% 21.4% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 14.3% 50% 7.1% 7.1%

 P U M R

319

Pair 4 (Pre_if_OR_content and Post_if_OR_content)

The evaluation outcome for the control group is in Table I.10 and for the experimental

group in Table I.11. The content of Table I.12 is the evaluation matrix outcome of the

control and the experimental group based on pair 4. Pair 4 refers to the correct content

of the if-statement.

 Table I.10: Evaluation sheet - control group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

P Pre

Post

U Pre ×

Post

M Pre × × × × × × × × × ×

Post × × × ×

R Pre × × ×

Post × × × × × × × × × ×

 Table I.11: Evaluation sheet - experimental group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

P Pre

Post

U Pre ×

Post

M Pre × × × × × × × × × × × ×

Post ×

R Pre ×

Post × × × × × × × × × × × × ×

 Table I.12: Pair 4 matrix (Pre_if_OR_content and Post_if_OR_content)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 7.1% 7.1% 14.3% 0 7.1% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 57.1% 85.7% 14.3% 7.1%

 P U M R

320

Pair 5 (Pre_if_OR_2 and Post_if_OR)

The evaluation outcome for the control group is in Table I.13 and for the experimental

group in Table I.14. The content of Table I.15 is the evaluation matrix outcome of the

control and the experimental group based on pair 5. Pair 5 means the correct format

of the condition in the second if-statement using the || operator.

 Table I.13: Evaluation sheet - control group - pair 5

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

P Pre

Post

U Pre × × × ×

Post ×

M Pre × × × × × × × ×

Post × × × × × × × × ×

R Pre × ×

Post × × × ×

 Table I.14: Evaluation sheet - experimental group - pair 5

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

P Pre

Post

U Pre × × × × ×

Post

M Pre × × × × × × × × ×

Post × × × × × ×

R Pre

Post × × × × × × × ×

 Table I.15: Pair 5 matrix (Pre_if_OR_2 and Post_if_OR)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 7.1% 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 28.6% 35.7% 28.6% 7.1% 7.1% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 21.4% 57.1% 7.1% 0

 P U M R

321

Pair 6 (Pre_if_OR_2_content and Post_if_OR_content)

The evaluation outcome for the control group is in Table I.16 and for the experimental

group in Table I.17. The content of Table I.18 is the evaluation matrix outcome of the

control and the experimental group based on pair 6. Pair 6 refers to the correct content

of the if-statement.

 Table I.16: Evaluation sheet - control group - pair 6

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

P Pre

Post

U Pre × × × × × ×

Post

M Pre × × × × × × × ×

Post × × × ×

R Pre

Post × × × × × × × × × ×

 Table I.17: Evaluation sheet - experimental group - pair 6

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

P Pre

Post

U Pre × ×

Post

M Pre × × × × × × × × × × × ×

Post ×

R Pre

Post × × × × × × × × × × × × ×

Table I.18: Pair 6 matrix (Pre_if_OR_2_content and Post_if_OR_content)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 21.4% 7.1% 7.1% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 21.4% 7.1% 50% 85.7% 0 0

 P U M R

322

Pair 7 (Pre_else and Post_else)

The evaluation outcome for the control group is in Table I.19 and for the experimental

group in Table I.20. The content of Table I.21 is the evaluation matrix outcome of the

control and the experimental group based on pair 7. Pair 7 means the correct content

of the else part of the if-statement.

 Table I.19: Evaluation sheet - control group - pair 7

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

P Pre

Post

U Pre × × × × × ×

Post × × ×

M Pre × × × × ×

Post × × × × × × × ×

R Pre × × ×

Post × × ×

 Table I.20: Evaluation sheet - experimental group - pair 7

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

P Pre

Post

U Pre × × × × × ×

Post

M Pre × × × × × × × ×

Post × × × × ×

R Pre

Post × × × × × × × × ×

 Table I.21: Pair 7 matrix (Pre_else and Post_else)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 21.4% 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 21.4% 28.6% 21.4% 7.1% 14.3% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 14.3% 14.3% 50% 7.1% 0

 P U M R

323

Pair 8 (Pre_display and Post_display)

The evaluation outcome for the control group is in Table I.22 and for the experimental

group in Table I.23. The content of Table I.24 is the evaluation matrix outcome of the

control and the experimental group based on pair 8. Pair 8 means students

demonstrate the ability to display the correct output at the right place in the code.

 Table I.22: Evaluation sheet - control group - pair 8

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

P Pre

Post

U Pre × × ×

Post ×

M Pre × × × × × × × ×

Post × × × × ×

R Pre × × ×

Post × × × × × × × ×

 Table I.23: Evaluation sheet - experimental group - pair 8

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

P Pre

Post

U Pre × × ×

Post

M Pre × × × × × × × × ×

Post × ×

R Pre × ×

Post × × × × × × × × × × × ×

 Table I.24: Pair 8 matrix (Pre_display and Post_display)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 7.1% 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 14.3% 14.3% 21.4% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 7.1% 35.7% 62.3% 21.4% 14.3%

 P U M R

324

Appendix J: Evaluation sheets for parallel arrays – Cycle 4

Pair 1 (Pre_array_initialised and Post_array_initialised)

The evaluation outcome for the control group is in Table J.1 and for the experimental

group in Table J.2. The content of Table J.3 is the evaluation matrix outcome of the

control and the experimental group based on pair 1. Pair 1 refers to the capability to

initialise parallel arrays.

 Table J.1: Evaluation sheet - control group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

P Pre

Post

U Pre ×

Post

M Pre × × ×

Post × × × ×

R Pre × × × × × × ×

Post × × × × × × ×

Table J.2: Evaluation sheet - experimental group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

P Pre

Post

U Pre × ×

Post

M Pre × ×

Post

R Pre × × × × × × × ×

Post × × × × × × × × × × × ×

 Table J.3: Pair 1 matrix (Pre_array_initialised and Post_array_initialised)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 9.1% 0 27.3% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 16.7% 0 16.7% 63.6% 66.7%

 P U M R

325

Pair 2 (Pre_loop_structure and Post_loop_structure)

The evaluation outcome for the control group is in Table J.4 and for the experimental

group in Table J.5. The content of Table J.6 is the evaluation matrix outcome of the

control and the experimental group based on pair 2. Pair 2 refers to the structure of

the loop which is controlled by the length of the array as a delimiter.

Table J.4: Evaluation sheet - control group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

P Pre

Post

U Pre

Post

M Pre × × × × ×

Post × × ×

R Pre × × × × × ×

Post × × × × × × × ×

Table J.5: Evaluation sheet - experimental group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

P Pre

Post

U Pre × ×

Post

M Pre × × × × × ×

Post × ×

R Pre × × × ×

Post × × × × × × × × × ×

Table J.6: Pair 2 matrix (Pre_loop_structure and Post_loop_structure)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 0 16.7% 27.3% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 18.2% 50% 63.6% 33.3%

 P U M R

326

Pair 3 matrix (Pre_if_condition and Post_ if_condition)

The evaluation outcome for the control group is in Table J.7 and for the experimental

group in Table J.8. The content of Table J.9 is the evaluation matrix outcome of the

control and the experimental group based on pair 3. Pair 3 refers to the structure of

condition in the if-statement which must make use of the parallel arrays.

Table J.7: Evaluation sheet - control group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

P Pre

Post

U Pre × ×

Post

M Pre × × × × × ×

Post × × × × × × × ×

R Pre × × ×

Post × × ×

Table J.8: Evaluation sheet - experimental group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

P Pre

Post

U Pre ×

Post

M Pre × × × ×

Post ×

R Pre × × × × × × ×

Post × × × × × × × × × × ×

 Table J.9: Pair 3 matrix (Pre_if_condition and Post_ if_condition)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 0 16.7% 54.5% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 18.2% 33.3% 27.3% 58.3%

 P U M R

327

Pair 4 (Pre_if_content and Post_ if_ content)

The evaluation outcome for the control group is in Table J.10 and for the experimental

group in Table J.11. The content of Table J.12 is the evaluation matrix outcome of the

control and the experimental group based on pair 4. Pair 4 refers to the content of the

if-statement, i.e., the block of code to be executed should the condition in the if-

statement evaluate to true.

Table J.10: Evaluation sheet - control group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

P Pre

Post

U Pre ×

Post

M Pre × × × × × × ×

Post × × × ×

R Pre × ×

Post × × × × × ×

Table J.11: Evaluation sheet - experimental group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

P Pre

Post

U Pre × ×

Post

M Pre × × × × × × × ×

Post × × ×

R Pre × ×

Post × × × × × × × × ×

 Table J.12: Pair 4 matrix (Pre_if_content and Post_ if_ content)

 P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 9.1% 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 9.1% 16.7% 36.4% 8.3% 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 27.3% 58.3% 18.2% 16.7%

 P U M R

328

Pair 5 (Pre_display and Post_display)

The evaluation outcome for the control group is in Table J.13 and for the experimental

group in Table J.14. The content of Table J.15 is the evaluation matrix outcome of the

control and the experimental group based on pair 5. Pair 5 refers to the capability to

display output at the right position in the code.

Table J.13: Evaluation sheet - control group - pair 5

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

P Pre

Post

U Pre × × × ×

Post × × × × ×

M Pre × × × × ×

Post × ×

R Pre × ×

Post × × × ×

Table J.14: Evaluation sheet - experimental group - pair 5

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

P Pre

Post

U Pre × × × ×

Post

M Pre × × × × × × ×

Post ×

R Pre ×

Post × × × × × × × × × × ×

 Table J.15: Pair 5 matrix (Pre_display and Post_display)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 27.3% 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 9.1% 8.3% 27.3% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 25% 18.2% 58.3% 18.2% 8.3%

 P U M R

329

Appendix K: Evaluation sheets for functions – Cycle 4

Pair 1 (Pre_func_call_return and Post_func_call_return)

The evaluation outcome for the control group is in TableK.1 and for the experimental

group in Table K.2. The content of Table K.3 is the evaluation matrix outcome of the

control and the experimental group based on pair 1. Pair 1 refers to the capability to

call a function that returns a value.

Table K.1: Evaluation sheet - control group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre × × × ×

Post

M Pre × × × ×

Post × × × × × × ×

R Pre × ×

Post × × ×

Table K.2: Evaluation sheet - experimental group - pair 1

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

P Pre

Post

U Pre ×

Post

M Pre × × × × × × × × ×

Post ×

R Pre × ×

Post × × × × × × × × × × ×

Table K.3: Pair 1 matrix (Pre_func_call_return and Post_func_call_return)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 40% 8.3% 20% 0 10% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 20% 75% 10% 16.7%

 P U M R

330

Pair 2 (Pre_func_call_void and Post_func_call_void)

The evaluation outcome for the control group is in TableK.4 and for the experimental

group in Table K.5. The content of Table K.6 is the evaluation matrix outcome of the

control and the experimental group based on pair 2. Pair 2 refers to the capability to

call a function that does not return a value.

Table K.4: Evaluation sheet - control group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre ×

Post

M Pre × × × × × × × ×

Post × × × × × × ×

R Pre ×

Post × × ×

Table K.5: Evaluation sheet - experimental group - pair 2

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

P Pre

Post

U Pre

Post

M Pre × × × × × × × × × × ×

Post ×

R Pre ×

Post × × × × × × × × × × ×

Table K.6: Pair 2 matrix (Pre_func_call_void and Post_func_call_void)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 10% 0 50% 8.3% 10% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 30% 83.3% 0 8.3%

 P U M R

331

Pair 3 (Pre_func_header_return and Post_func_header_return)

The evaluation outcome for the control group is in Table K.7 and for the experimental

group in Table K.8. The content of Table K.9 is the evaluation matrix outcome of the

control and the experimental group based on pair 3. Pair 3 refers to the capability to

construct a function header for a function that returns a value with a relevant return

type.

Table K.7: Evaluation sheet - control group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre × × ×

Post

M Pre × × × × × ×

Post × × × × ×

R Pre ×

Post × × × × ×

Table K.8: Evaluation sheet - experimental group - pair 3

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

P Pre

Post

U Pre × ×

Post

M Pre × × × × × × × × ×

Post ×

R Pre ×

Post × × × × × × × × × × ×

 Table K.9: Pair 3 matrix (Pre_func_header_return and Post_func_header_return)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 30% 8.3% 20% 0 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 8.3% 40% 75% 10% 8.3%

 P U M R

332

Pair 4 (Pre_func_return_content and Post_func_return_content)

The evaluation outcome for the control group is in Table K.10 and for the experimental

group in Table K.11. The content of Table K.12 is the evaluation matrix outcome of the

control and the experimental group based on pair 4. Pair 4 refers to the capability to

code the correct content for the body of a function that returns a value.

Table K.10: Evaluation sheet - control group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre × ×

Post

M Pre × × × × ×

Post × × × × × ×

R Pre × × ×

Post × × × ×

Table K.11: Evaluation sheet - experimental group - pair 4

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

P Pre

Post

U Pre × × ×

Post

M Pre × × × × × × × ×

Post ×

R Pre ×

Post × × × × × × × × × × ×

Table K.12: Pair 4 matrix (Pre_func_return_content and Post_func_return_content)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 20% 8.3% 20% 0 20% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 16.7% 30% 66.7% 10% 8.3%

 P U M R

333

Pair 5 (Pre_func_header_void and Post_func_header_void)

The evaluation outcome for the control group is in Table K.13 and for the experimental

group in Table K.14. The content of Table K.15 is the evaluation matrix outcome of the

control and the experimental group based on pair 5. Pair 5 refers to the capability to

construct a function header for a function of a type void that does not return a value.

Table K.13: Evaluation sheet - control group - pair 5

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre ×

Post

M Pre × × × × × ×

Post × × × × × × ×

R Pre × × ×

Post × × ×

Table K.14: Evaluation sheet - experimental group - pair 5

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

P Pre

Post

U Pre × × ×

Post

M Pre × × × × × × ×

Post ×

R Pre × ×

Post × × × × × × × × × × ×

Table K.15: Pair 5 matrix (Pre_func_header_void and Post_func_header_void)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 10% 8.3% 40% 0 20% 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 16.7% 20% 58.3% 10% 16.7%

 P U M R

334

Pair 6 matrix (Pre_func_header_void and Post_func_header_void)

The evaluation outcome for the control group is in Table K.16 and for the experimental

group in Table K.17. The content of Table K.18 is the evaluation matrix outcome of the

control and the experimental group based on pair 6. Pair 6 refers to the capability to

code the correct content for the body of a function that does not return a value.

Table K.16: Evaluation sheet - control group - pair 6

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

P Pre

Post

U Pre × × ×

Post

M Pre × × × × × ×

Post × × × × × × ×

R Pre ×

Post × × ×

Table K.17: Evaluation sheet - experimental group - pair 6

 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

P Pre

Post

U Pre × ×

Post

M Pre × × × × × × × × × ×

Post × × ×

R Pre

Post × × × × × × × × ×

Table K.18: Pair 6 matrix (Pre_func_header_void and Post_func_header_void)

P P→P
(Stagnant-no-

learning)

U→P
(Lower-level-
deterioration)

M→P
(Intermediate-
deterioration+)

R→P
(deteriorated++)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

U P→U
(Lower-level-
improvement)

U→U
(Stagnant-at-
lower-level)

M→U
(Intermediate-
deterioration)

R→U
(deteriorated+)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 0 0 0 0

M P→M
(Intermediate-
improvement+)

U→M
(Intermediate-
improvement)

M→M
(Stagnant-at-

intermediate-level)

R→M
(deteriorated)

Con Exp Con Exp Con Exp Con Exp

0 0 30% 16.7% 40% 8.3% 0 0

R P→R
(Improved++)

U→R
(Improved+)

M→R
(Improved)

R→R
(Already-improved)

Con Exp Con Exp Con Exp Con Exp

0 0 0 0 20% 75% 10% 0

 P U M R

335

Appendix L: A switch button to Java code – Cycle 5

In this cycle, the animation programs for uses of assignment, nested-decider and the

animation program on the combination of decisions and loops have been incorporated

with the Java code. These animation programs have the option to switch to a Java

code.

Figure K.1: Switching nested-decider to a Java code

Figure K.2: Switching decisions/loops to a Java code

.

336

Appendix M: Transition results– Cycle 5

Table M.1 displays the average percentages for the improving transitions in cycle 5.

 Table M.1: Improving transition results

 U→M
(Intermediate-
improvement)

M→R
(Improved)

U→R
(Improved+)

Group Con Exp Con Exp Con Exp

Decisions/
nested
decisions

21.7% 10.5% 46% 72.2% 0 5.5%

Decisions/
loops

16.4% 13.3% 42.2% 70.8% 0 6.7%

Loops 7.5% 2.3% 32.5% 50% 0 2.3%

Nested loops 15% 9.1% 32.5% 72.5% 0 2.3%

One
dimensional
array

18% 10.9% 18% 45.5% 2% 9.1%

Functions 14% 6.1% 32.9% 72.5% 0 6.7%

Table M.2 displays the average percentages for the non-improving transitions and

already improved transitions in cycle 5.

 Table L.2: Non-improving and already-improved transitions results

 U→U
(Stagnant-
at-lower-

level)

M→M
(Stagnant-at-
intermediate

-level)

R→M
(Deteriorated)

R→R
(Already-
improved)

Group Con Exp Con Exp Con Exp Con Exp

Decisions/
nested
decisions

0 0 26.7% 4.8% 1.7% 0 14.2% 11.1%

Decisions/
loops

1.6% 0 24.2% 2.5% 3.9% 0 13.4% 6.7%

Loops 0 0 30% 4.6% 0 0 27.5% 41.1%

Nested loops 0 0 27.5% 0 2.5% 0 22.5% 15.9%

One
dimensional
array

0 0 32% 1.8% 0 0 22% 32.7%

Functions 3.9% 0 32.3% 1.4% 1.3% 0 15.8% 11.7%

