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Abstract 
 

Introductory programming can be challenging for educators to teach and students to 

learn. Some students struggle to comprehend introductory programming topics like 

the uses of assignment, decisions, loops, functions and other basic principles of 

programming. Such struggling students are referred to as Struggling Introductory 

Programming Students (SIPS) in this study. The struggle to comprehend these basic 

programming concepts often results in a low success rate and a low pass rate in the 

module itself. Furthermore, the situation can exacerbate the attrition rate in computing 

or computing-related courses.  

 

In this study, various methods of teaching and learning to program were investigated. 

It was found that the use of animations in teaching and learning can have a significant 

impact on enhancing SIPS comprehension of introductory programming concepts. As 

a result, we developed a Teaching and Learning Programming with Animation 

Programs (TLPAP) framework that can aid SIPS in comprehending the basic 

programming principles in a text-based programming environment. TLPAP consists of 

two sets of animation programs, namely introductory animation programs for 

introducing a new concept and animation programs that are accompanied by problem 

specifications. Furthermore, the TLPAP framework includes a set of compatible 

pedagogical guidelines for teaching and learning introductory programming with 

animation programs. The inclusion of the pedagogical guidelines serves as one of the 

essential elements within the TLPAP framework. 

 

To test the efficacy of the TLPAP framework, we adopted an action research 

methodology with the actual SIPS from the university participating. The action 

research methodology made it possible for the researcher to reflect and continually 

improve the design of the animation programs and pedagogical guidelines within 

action cycles. The SIPS were divided into two groups: an experimental and a control 

group. The experimental group was taught by following the TLPAP framework; the 

control group was taught without following the TLPAP framework. The results were 

compared through pre-teaching and post-teaching algorithm exercises and the 

application of qualitative Structure of Observed Learning Outcomes – adapted (SOLO-
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adapted) evaluations. During the cycles, patterns of improvements were found in the 

experimental group as compared to the control group and the TLPAP framework was 

finalised. 

 

Key terms: Teaching, learning, pedagogical guidelines, computer science education, 

introductory programming, animation programs, struggling students, SOLO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



xv 
 

Summary  
 

An Animation-Based Teaching and Learning Framework for 
Struggling Introductory Programming Students 
 

In this study, we investigated the best possible methods for teaching and learning 

introductory programming concepts (IPC) through an action research methodology. 

The plan was, specifically, to develop a teaching and learning framework for struggling 

introductory programming students (SIPS). The use of physical manipulatives, as 

aiding tools to teach and learn introductory programming, was attempted in the first 

cycle (2019, semester 2, and 2020, semester 1) of action research. We found that the 

use of physical manipulatives can aid teaching and learning IPC to a certain extent, 

but it was limited in other crucial areas, like covering a large class, visibility of fine 

details to all students, and functioning on online platforms. As a result, in the second 

cycle (2021, semester 1) of action research, we initiated a framework, named 

Teaching and Learning Programming with Animation Programs (TLPAP). TLPAP 

consisted of animated versions of manipulatives and relevant pedagogical guidelines. 

The pedagogical guidelines are a set of stages or guidelines for the best use of the 

animation programs.  

Through a SOLO (Structure of Observed Learning Outcome) adapted evaluation, we 

experimented with the animation programs on the actual SIPS, at the university. SIPS 

were divided into two groups, that is, the control and experimental groups. The control 

group was taught traditionally through verbal narration, and the experimental group 

was taught by following TLPAP. The results of cycle 2 helped us to refine the TLPAP 

framework for cycle 3. As a result, cycle 3 (2021, semester 2) was implemented with 

improved TLPAP and SOLO-adapted evaluation. The subsequent cycles (cycles 4 and 

5 in 2022, semesters 1 and 2) were implemented with even more improved TLPAP. 

The SOLO evaluation indicated more improvements in the experimental group than in 

the control group. The conclusion of cycle 5 presented a final TLPAP. 
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Summary (Afrikaans language) 
 

’n Animasie-gebaseerde Onderrig- en Leerraamwerk vir sukkelende 
Inleidende Programmeringstudente  

 

In hierdie studie, het ons die beste moontlike metodes vir die onderrig en leer van inleidende 

programmeringskonsepte (IPK) deur middel van ’n aksienavorsingsmetodologie ondersoek. 

Die plan was spesifiek om ’n onderrig- en leerraamwerk vir sukkelende inleidende 

programmeringstudente (SIPS) te ontwikkel. Die gebruik van fisiese manipulasies as 

hulpmiddels om inleidende programmering te onderrig en te leer, is in die eerste siklus (2019, 

semester 2, en 2020, semester 1) van aksienavorsing ingespan. Ons het gevind dat die gebruik 

van fisiese manipulasies tot ’n sekere mate kan help in die onderrig en leer van IPK, maar dat 

dit beperk is op ander belangrike gebiede, soos om ’n groot klas te dek, sigbaarheid van fyn 

besonderhede vir alle studente en funksionering op aanlyn platforms. Gevolglik het ons in die 

tweede siklus (2021, semester 1) van aksienavorsing ’n raamwerk geïnisieer, naamlik die 

Program vir Onderrig en Leer van Programmering met Animasie (TLPAP). TLPAP het bestaan 

uit geanimeerde weergawes van manipulatiewe en relevante pedagogiese riglyne. Die 

pedagogiese riglyne is ’n stel stadiums of riglyne vir die beste gebruik van die 

animasieprogramme. 

Deur ’n SOLU- (struktuur van waargenome leeruitkoms)- aangepaste evaluering het ons by die 

universiteit met die animasieprogramme op die werklike SIPS geëksperimenteer. Die SIPS is 

in twee groepe verdeel, naamlik die kontrole- en eksperimentele groepe. Die kontrolegroep is 

tradisioneel deur verbale vertelling onderrig, en die eksperimentele groep is onderrig deur 

TLPAP te volg. Die resultate van siklus 2 het ons gehelp om die TLPAP-raamwerk vir siklus 

3 te verfyn. Gevolglik is siklus 3 (2021, semester 2) geïmplementeer met verbeterde TLPAP- 

en SOLU-aangepaste evaluering. Die daaropvolgende siklusse (siklusse 4 en 5 in 2022, 

semesters 1 en 2) is met selfs beter TLPAP geïmplementeer. Die SOLU-evaluering het meer 

verbeterings in die eksperimentele as in die kontrolegroep aangedui. Die afsluiting van siklus 

5 het ’n finale TLPAP aangebied. 
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Summary (Sepedi / Northern Sotho language) 
 

Foreimiweke ya go Ruta le go Ithuta ye e Theilwego godimo ga di 

Animeišene ya Baithuti bao ba nago le Mathata a Tlhamo ya 

Mananeo a Tsamaišo ya Khomphutha 

 
Mo nyakišišong ye, re nyakišišitše mekgwa ye mekaone ye e kgonegago ya go ruta le go ithuta 

dikgopolo tša tlhamo ya mananeo a khomputhara (IPC) ka mokgwa wa nyakišišo ya tharollo 

ya mathata thutong. Leano, gagolo, ebile la go hlama foreimiweke ya go ruta le go ithuta ya 

baithuti bao ba nago le mathata a tlhamo ya mananeo a tsamaišo ya khomphutha (SIPS). 

Tšhomišo ya dilo tšeo di ka swarwago bjalo ka didirišwa tša go thuša go ruta le go ithuta tlhamo 

ya mananeo a tsamaišo ya khomphutha, e lekilwe modikologong wa mathomo (2019, 

semesetara sa 2, le 2020, semesetara sa 1) wa nyakišišo ya tharollo ya mathata thutong. Re 

hweditše gore tšhomišo ya dilo tšeo di ka swarwago e ka thuša go ruta le go ithuta IPC go fihla 

bokgoleng bjo bo itšego, eupša e be e na le magomo ka go dikarolo tše dingwe tše bohlokwa, 

go swana le go akaretša phapoši ye kgolo, ponagalo ya dikarolwana tše nnyane go baithuti ka 

moka, le go šoma ga diforamo tša inthaneteng. Bjalo, mo modikologong wa bobedi (2021, 

semesetara 1) wa nyakišišo ya tharollo ya mathata thutong, re thomile foreimiweke, yeo e 

bitšwago Tlhamo ya Mananeo a go Ruta le go Ithuta ka dianimeišene (TLPAP). TLPAP e 

bopilwe ke diphetolelo tša dianimeišene tša dithušapalelo le ditlhahli tša maleba tša thuto. 

Ditlhahli tša thuto ke sehlopha sa dikgato goba ditlhahli tša tšhomišo ye kaone ya mananeo a 

animeišene. 

Ka tekolo ye e fetoletšwego SOLO (Structure of Observed Learning Outcome), re dirile diteko 

tša mananeo a dianimeišene go SIPS ya nnete, yunibesithing. SIPS di arotšwe ka dihlopha tše 

pedi, e lego, dihlopha tša taolo le tša diteko. Sehlopha sa taolo se rutilwe ka mokgwa wa 

setlwaedi kanegelo ya molomo, gomme sehlopha sa diteko se rutilwe ka go latela TLPAP. 

Dipoelo tša modikologo wa 2 di re thušitše go kaonafatša foreimiweke ya TLPAP ya 

modikologo wa 3. Bjalo, modikologo wa 3 (2021, semesetara sa 2) o phethagaditšwe ka tekolo 

ye e kaonafaditšwego ya TLPAP le ye e fetoletšwego SOLO. Medikologo ye e latelago 

(medikologo ye 4 le 5 ka 2022, disemesetara tša 1 le 2) di phethagaditšwe ka TLPAP ye e 

kaonafetšego le go feta. Tekolo ya SOLO e bontšhitše dikaonafatšo tše ntši sehlopheng sa 

diteko go feta sehlopheng sa taolo. Sephetho sa modikologo wa 5 se tšweleditše TLPAP ya 

mafelelo.  
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Definition of key terms 
 

Animation programs: Means computer graphics that animate or make a 

graphical representation of a programming code to enhance comprehension 

(Moreno, Sutinen & Joy, 2014). 

 

Introductory programming concepts: These are introductory programming 

concepts in the procedural programming paradigm like decisions, loops and 

arrays. 

 

Introductory programming students: This is a reference to the students who 

enrolled in an introductory programming course. Sometimes they are referred 

as novice programmers or Computer Science 1 (CS1) students. 

 

Learners: Is a reference to basic education pupils. 

 

Objects-later: This means that procedural programming concepts are 

presented first, and object-oriented programming concepts are introduced later 

in the book (introductory programming textbook) or in the curriculum. 

 

Struggling introductory programming students: These are students who 

struggle to comprehend introductory programming concepts.  

 

Students: Is a reference to higher education pupils 

 

Text-based programming:  This means a programming method that involves 

typing of lines of code to develop an algorithm. 
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1.1 Introduction 
This study investigated various teaching and learning approaches deemed relevant to 

Struggling Introductory Programming Students (SIPS). The intention was to search, 

find and improve the potential methods of teaching and learning introductory 

programming. The relevant teaching and learning methods were subsequently 

experimented through various cycles of action research methodology. The action 

research took place at a Higher Education Institution (HEI) with the actual SIPS. At the 

end of the last cycle (cycle 5), the Teaching and Learning Programming with Animation 

Programs (TLPAP) framework was validated and finalised. The TLPAP framework has 

proven to be effective primarily for SIPS and can also be adopted for use as a general 

framework for non-SIPS. 

 

To get an overview of the context of this study, section 1.2 discusses the background 

to the study; section 1.3 presents the problem statement; section 1.4 outlines the 

research questions, objectives and methodology; section 1.5 discusses significance 

of the study; section 1.6 gives chapter outlines and section 1.7 concludes the chapter. 

 

1.2 Background to the study 
 

1.2.1 Struggling Introductory Programming Students  

Learning to program can be a challenging task or too abstract for some students 

(Shuhidan, 2012; Tuparov, Tuparova & Tsarnakova, 2012; Konecki, Lovrenčić & 

Kaniški, 2016). As a result, computing courses or computing-related courses 

experience some SIPS. The researcher has been teaching text-based introductory 

programming and advanced programming since the year 2010 at a South African (SA) 

university of technology. Therefore, besides the challenges of teaching and learning 

to program identified in the literature review (discussed in Chapter 2), I have come to 

know and personally experience SIPS and further have attempted to assist them in 

the lecture halls and consultation sessions.  

 

Some of the problems I have experienced while assisting SIPS were basic 

programming principles under the object-later programming curriculum. Object-later 

programming advocates for teaching and learning of procedural concepts before 
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Object-Oriented Programming (OOP) concepts can be taught (Ehlert & Schulte, 2009).  

In my introductory programming class, I came across SIPS that has challenges like 

incorrect steps in a program code, misunderstanding of the assignment operator, 

ambiguous decision statements, inappropriate iterations structures, misunderstanding 

of arrays and incorrect function references and function values. At the end, normal 

pedagogical interventions did not yield positive outcomes. I have also come to 

experience that the blanket pedagogical approach can only favour non-SIPS, leaving 

SIPS as the missing middle. 

 

1.2.2 Teaching and learning of introductory programming 

concepts 

Programming is one of the subjects that forms part of a university’s computing or 

computing-related courses. It is also one of the complex major and essential subjects 

in computing courses, therefore methods of teaching and learning to program ought 

to take centre stage (Krishnamurthi & Fisler, 2019; Cheah, 2020; Prasad & Chaudhary, 

2021). Bart and Shaffer (2016:1) state that “Instructional design is to teaching as 

software engineering is to programming”, implying that one cannot just teach 

randomly, but proper instructional design can enable smooth teaching and learning in 

a specific course. Sometimes teaching and learning can have a positive impact on the 

success or failure of students. This is because teaching is the first activity in contact 

courses; therefore, it can reduce cognitive load and boost success in comprehension 

of Introductory Programming Concepts (IPC).  

 

The most common IPC within the late-objects pedagogical approach include variables, 

assignment, data types, strings, arrays, conditional control structures, iterative control 

structures, functions, methods, procedures and parameter passing (Luxton-Reilly et 

al., 2018). Some of these concepts are also mentioned in the joint task force and 

computing curricula (ACM/IEEE-CS Joint Task Force on Computing Curricula, 2013; 

Kumar & Raj, 2022). In the light of challenges of comprehending these IPC, it is 

necessary to identify, argue and revolutionise the teaching and learning methods for 

SIPS. In an attempt to arrive to a relevant solution, an action research methodology 

was used to carry out the investigation and experimentation towards the formation and 

finalisation of such a teaching framework.  
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1.2.3 Action research 

The study applied an action research methodology because the solution is in the 

context of an educational setup. Action research in education allows for a reflective 

process at the end of each cycle with the aim to revise and improve the experimented 

teaching and learning methods (Creswell et at., 2007). Action research in the 

education allows the application of theory and practice (Kearney, Wood & Zuber-

Skerritt, 2013), hence the methodology is found to be appropriate for the 

implementation and continual improvement of the teaching methods and tools. Action 

research methodology consists of four important phases, that is plan, act, observe and 

reflect. The process of going through all four phases is referred as action cycles. The 

researchers can go through a number of action research cycles before the study can 

be concluded or finalised.  

 

1.2.4 Animation programs 

The world of animations has great potential to help in teaching and learning IPC 

(further explored in Chapter 2, section 2.7). Animation programs make teaching 

attractive, interesting and encourage students to learn (Weiss, Knowlton & Morrison, 

2002; Cevahir, Özdemir & Baturay, 2022). The use of animation programs takes 

advantage of the increasing connectivity and availability of digital platforms. In the 

world of teaching and learning to program, animation programs are computer graphics 

that animate or make a graphical manipulation of a program code with the idea of 

enhancing comprehension (Moreno, Sutinen & Joy, 2014). Through an action 

research process, this has realised and uncovered the potential uses of animation 

programs. As a result, I developed relevant animation programs for teaching and 

learning IPC specifically for SIPS. 

 

1.3 Problem statement 
Text-based programming competency requires full attention to details and syntax 

which is a challenge for some students (Federici, 2011). As a result, some introductory 

programming students in Computer Science (CS) or computing-related courses find 

IPC too complex or challenging to comprehend (Tuparov et al., 2012). Several issues 

experienced by introductory programming students include misconceptions about 
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assignment, controls, decisions, tracing, functions, parameters, initialisation and 

references (Sajaniemi & Kuittinen, 2008; Schoeman, Gelderblom & Muller, 2013; 

Brown & Altadmri, 2014; Altadmri & Brown, 2015; Islam et al., 2019). The typical 

consequences of these are primarily poor performance, drop out or academic 

exclusion (Gomes & Mendes, 2007; Rubio et al., 2015; Brown & Altadmri, 2015; 

Grover & Basu, 2017, Ahadi et al., 2018; Luxton-Reilly et al., 2018; Cetin, 2020; 

Cheah, 2020; Prasad & Chaudhary, 2021). 

In an effort to alleviate these problems, various pedagogical solutions are adopted and 

applied in teaching and learning introductory programming (discussed in the literature 

review section – Chapter 2), but the problems remain unsolved (Cheah, 2020). Among 

existing pedagogical approaches, animation programs are used to aid the teaching 

and learning of introductory programming. This is because animation programs are 

informative, explanatory, explicit, interactive, effective, clearer and consequently can 

be a learning attraction or motivation for students (Lowe, 2001; Lowe & Schnotz, 2008; 

Cevahir, Özdemir & Baturay, 2022). However, existing animation programs for 

teaching and learning introductory programming have these drawbacks: 

- They typically contain overloaded graphics and are poorly designed (Lowe & 

Schnotz, 2008). This can result in additional cognitive load away from the actual 

learning of programming and can lead to confusion and learning setback.  

- They lack introductory animations programs for introducing a new concept, 

which hinders smooth teaching and learning transitions into more challenging 

stages of the concept. 

- They tend to focus on the generic computing concepts in the K12 stream which 

are incompatible with a university novice programming student in a text-based 

programming environment.  

- They lack dedicated animation-based solutions specifically designed for SIPS 

in a text-based programming environment. 

- They are not grounded in formalised pedagogical guidelines for best design 

and use of such animation programs for teaching and learning introductory 

programming. Perhaps the assumption is that educators and students would 

figure out how to properly use such animation programs for effective use in 

teaching and learning. This is a problem, as animation programs can cause 
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more harm than good in teaching due to lack of applicable pedagogical 

guidelines. 

Based on the stated problems, the thesis statement in this study is formulated as 

follows:  

A Teaching and Learning Programming with Animation Programs (TLPAP) framework 

can improve Struggling Introductory Programming Students (SIPS) comprehension of 

Introductory Programming Concepts (IPC). 

The above thesis statement forms the basis of the research questions and objectives 

in the subsequent section. 

1.4 Research questions and objectives 
 

1.4.1 Research questions 

The thesis statement informed the following research questions: 

(a) What are the leading issues in teaching and learning IPC? 

(b) What are the approaches used in teaching IPC? 

(c) What are the limitations of existing animation programs used for teaching and 

learning IPC?  

(d) How can we develop a TLPAP framework for teaching and learning IPC? 

(e) How can we prove and evaluate the efficacy of a TLPAP framework? 

 

1.4.2 Research objectives 

To carry out our thesis statement, the following objectives were established: 

(a) To conduct a literature review on issues of teaching and learning IPC;  

(b) To investigate the approaches used in teaching IPC;  

(c) To investigate animation programs for teaching and learning IPC;  

(d) To develop a TLPAP framework for teaching and learning IPC based on gaps 

identified in the literature review and by continually improving the framework 

based on the outcome of the action research cycles; 

(e) To evaluate the efficacy of the TLPAP framework through teaching the actual 

SIPS by following the TLPAP framework. 
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1.4.3 Brief methodology 

The overall methodological approach followed in this study is action research as briefly 

highlighted in section 1.2.3 and will further be elaborated in the methodology chapter 

(Chapter 4). The first three research objectives are achieved with the literature review 

(Chapter 2). The fourth research objective is achieved through the development of 

TLPAP. The last research objective is achieved by using an evaluation strategy that 

uses SOLO-adapted evaluations (see a detailed discussion in Chapter 4). 

 

In the first attempt (cycle 1) of the action research, an investigation into the use of 

manipulatives for teaching and learning IPC was carried out and experimented with. 

The target framework was referred to as Teaching and Learning Programming with 

Manipulatives (TLPM).  It was found that the use of manipulatives to teach IPC works 

to a certain extent, as a result that prompted further investigations and improvements. 

In the second cycle of the action research, the search continued by exploring other 

possible methods of teaching and learning IPC. An investigation into the potential of 

using animation programs to improve comprehension of SIPS was conducted. The 

animation programs were planned, designed and experimented with. The outcome of 

the experimentation was successful as compared to the unsatisfactory results in cycle 

1. The animation programs were continually improved in the subsequent action cycles 

which led to the finalisation of TLPAP framework in cycle 5. The details and results of 

each action cycle are presented in Chapters 5, 6, 7 and 8. 

 

1.5 Significance of the study 
This study is investigated within the parameters of teaching and learning, as a result 

the researcher was exposed to many theories of learning available in the body of 

knowledge. The theoretical contribution of this study lies in the development of a 

relevant theoretical framework as a backbone and frame for the study. The process of 

adopting a theoretical framework, was initiated by studying all relevant teaching and 

learning theories followed by the synthesis of the applicable theories for a possible 

contribution in this study.  

The final TLPAP is expected to directly benefit the computing students in higher 

education, learners in basic education that study programming as part of the 

curriculum and anyone who is studying programming on their own. The final TLPAP 
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can improve the success rate for teaching and learning to program. Furthermore, the 

TLPAP can be a relevant framework aiding the academic community, practitioners or 

curriculum developers. In brief, the study has the following potential contributions: 

(a) Development of TLPAP framework specifically for SIPS in the text-based 

programming environment. 

(b) Animation programs in two sets or phases, namely the special animation 

programs for introducing a new concept and animation programs with problem 

specifications. 

(c) Development of specific pedagogical guidelines that form part of TLPAP. The 

pedagogical guidelines are to be followed when using TLPAP for effective use 

of animation programs. 

(d) Theoretical contributions consist of relevant theories that may support the use 

of TLPAP. 

(e) Methodological contributions consist of SOLO-adapted evaluations for the 

given algorithms. 

 

1.6 Chapter outline 
Chapter 2: Literature review. The main focus in Chapter 2 are the challenges of 

learning to program, imperative programming, approaches of teaching procedural 

programming and existing animation programs for IPC. 

 

Chapter 3: Theoretical framework. This chapter discusses the underpinning theories 

that frame this study. Relevant sections of the chapter are learning theories, learning 

taxonomies, teaching philosophy and constructive alignment. 

 

Chapter 4: Methodological approach. The methodology chapter depicts and 

substantiates relevant research methods.  

 

Chapter 5: Initial framework - cycle 1. Reports on the initial plans and experiments 

which occurred in cycle 1 of action research.  

 

Chapter 6: Adapted framework - cycle 2. Reports on the adapted plans and 

experiments as occurred in cycle 2 of action research.  
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Chapter 7: Adapted framework - cycle 3. Reports on more adaptation and experiments 

which occurred in cycle 3 of the action research. 

 

Chapter 8: Adapted framework - cycles 4 and 5. Reports on cycles 4 and 5 and a final 

TLPAP framework. 

 

Chapter 9: Conclusion. This chapter concludes the study. 

 

1.7 Conclusion 
The intention of this introductory chapter was to present an overview of the study. The 

background to the study presented relevant context about the study by giving an 

overview on SIPS, teaching and learning IPC, action research methodology and 

animation programs. The problem statement has been addressed and relevant thesis 

statement has been formulated as: “A Teaching and Learning Programming with 

Animation Programs (TLPAP) framework can improve Struggling Introductory 

Programming Students (SIPS) comprehension of Introductory Programming Concepts 

(IPC).” The design, experimentation and finalisation of the TLPAP was subjected to 

rigorous cycles of action research methodology. The research questions and 

objectives in this study are carried out sequentially as listed in section 1.4. The first 3 

research question and objectives are references to the literature review. A literature 

review which was conducted prior to the TLPAP realisation, serves as first and 

foremost guidance and identification of a relevant gap. The literature review is 

presented in the subsequent chapter (Chapter 2). 
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Chapter 2: Literature review 
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2.1 Introduction 

The thesis statement of this study says: “A Teaching and Learning Programming with 

Animation Programs (TLPAP) framework can improve Struggling Introductory 

Programming Students (SIPS) comprehension of Introductory Programming Concepts 

(IPC)”.  In an attempt to present the outcome of this research towards achieving the 

thesis statement, in Chapter 1, a background to the study, problem statement, 

research questions and research objectives were presented. The problem is that SIPS 

find introductory programming concepts difficult to learn. Some of the SIPS’ problems 

are mostly found within the imperative programming paradigm or late-objects 

pedagogical approach. The methods of teaching and learning introductory 

programming have been limited and require further improvements (Rum & Ismail, 

2017; Medeiros, Ramalho & Falcão, 2018).  In order to address this problem, the study 

adopts animation-based teaching and learning to improve SIPS’ comprehension of 

IPC. 

To design a suitable solution informed by the fundamental problems and identified 

gaps, this chapter addresses and presents the literature review based on the three 

research questions and study objectives. The first three research questions as per 

section 1.4 in Chapter 1 have been stated as follows: 

(a) What are the leading issues in teaching and learning IPC? 

(b) What are the approaches used in teaching IPC? 

(c) What are the limitations of existing animation programs used for teaching and 

learning IPC?  

The purpose of a literature review is outlined in section 2.2, while section 2.3 provides 

a contextual overview. To deepen understanding of existing issues, section 2.4 

addresses the challenges in learning to program. The imperative programming 

approach is discussed in section 2.5 to offer perspective of the subject under study. 

Section 2.6 discusses approaches of teaching procedural programming. Section 2.7 

discusses existing animation programs and their limitations. The summary of an 

identified gap is presented in section 2.8. 
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2.2 Purpose of the literature review  

A literature review is a comprehensive investigation of prior research in a specific 

discipline (Denney & Tewksbury, 2013). A proper literature review should be able to 

give a reader an overview of what is already known in the area being investigated and 

what is missing within that discipline (Creswell, 2003). According to Ridley (2008:2), 

the literature review is “where you identify the theories and previous research which 

have influenced your choice of the research topic and the methodology you are 

choosing to adopt". A well-presented literature review gives the reader an overview of 

gaps to be filled by discussing weaknesses or limitations of previous studies. 

Therefore, a literature review compels the authors to acquire comprehensive 

knowledge about prior studies in the topic under investigation. Moreover, a properly 

structured literature review gives credibility to the work being presented. 

Arguments in the literature review are supported by sources from scholarly empirical 

articles, journal articles, books, dissertations and occasionally even non-empirical 

sources (Denney & Tewksbury, 2013). Empirical studies are accumulative; therefore, 

it is also important for a literature review to have a thorough mix of both older and 

recently published research.  

 

The literature review in this study consists primarily of research published in the area 

of computer science education. The specific focus is the key content of programming 

(imperative programming), teaching methodologies for introductory programming, 

challenges of learning introductory programming and animation programs for aiding 

teaching and learning. Google Scholar was mostly used as a search engine to access 

scholarly indexed literature from various databases. In addition to Google Scholar, the 

ACM digital library, IEEE digital library, Web of Science, Science Direct and Scopus 

were directly searched. The search words were “teaching and learning approaches for 

introductory programming”, “issues of teaching and learning to program”, “challenges 

in learning to program”, “animation programs”, “animation programs in education”, 

“animation program for introductory programming”. The subsequent sections in this 

chapter present the relevant literature review as per the definitions outlined in this 

section. 
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2.3 Contextual overview  

2.3.1 Importance of programming 

Computer programming is one of the major subjects in the Computer Science (CS), 

information systems or other computing-related courses (Prasad & Chaudhary, 2021). 

Programming is acknowledged as the core of computing courses and an important 

21st century skill (Bers, 2019; Krishnamurthi & Fisler, 2019), similarly programming 

education methods ought to improve and take a leading role.  

 

Computing courses are mostly developed by following the guidelines of the Computing 

Curriculum 2013 by the joint task force and computing curricula (ACM/IEEE-CS Joint 

Task Force on Computing Curricula, 2013; Kumar & Raj, 2022). A joint task force on 

computing curricula was developed by an ad-hoc committee consisting of members 

from Association of Computing Machinery (ACM) and Institute of Electrical and 

Electronics Engineers (IEEE) (ACM/IEEE-CS Joint Task Force on Computing 

Curricula, 2013). The majority of subjects within computing courses are more or less 

interrelated, overlapping or have emerged from an introductory programming 

perspective. For example, subjects like algorithms, databases, data structures, 

software engineering, web computing and scripting rely on the understanding of 

programming principles and computational thinking ability. This shows the importance 

of programming and therefore emphasises the need to improve methods of teaching 

and learning to program. However, the methods in teaching and learning introductory 

programming have not been adequate to accommodate struggling students (Rum & 

Ismail, 2017; Medeiros, Ramalho & Falcão, 2018). The challenge is to devise an 

appropriate method of teaching introductory programming for the struggling students. 

 

2.3.2 Learning to program is difficult 

Certain programming concepts can be too abstract or challenging to learn (Tuparov, 

Tuparova & Tsarnakova, 2012; Shuhidan, 2012; Konecki, Lovrenčić & Kaniški, 2016). 

Some novices succeed in programming, while others find it quite difficult to learn 

(Kelleher & Pausch, 2005). This has led to high failure and attrition rates in computing 

courses or computing-related courses (Lahtinen et al., 2002; Nikula, Gotel & 

Kasurinen, 2011; Watson & Li, 2014; Rum & Ismail, 2017; Malik & Coldwell-Neilson, 

2017; Prasad & Chaudhary, 2021). While programming can be difficult to learn, it is 
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likewise difficult to teach (Bennedsen & Caspersen, 2007; Bennedsen & Caspersen, 

2019). These challenges continue despite various tools used to assist in teaching and 

learning to program (Medeiros, Ramalho & Falcão, 2018). 

Some of the challenges are found within the concepts of variables, the scope of 

variables, Booleans, assignment, tracing, decisions, logical operators, comparison 

operators, loops, arrays, recursion, functions, parameters, initialisation and references 

(Bayman & Mayer, 1983; Eckerdal & Thuné, 2005;  Goldman et al., 2008; Sajaniemi 

& Kuittinen, 2008;  Schoeman, Gelderblom & Muller, 2013;  Bruce, 2015; Veerasamy, 

Souza & Laakso, 2016; Brown & Altadmri, 2017; Grover & Basu, 2017; Luxton-Reilly 

et al., 2018; Cetin, 2020). Anyango and Suleman (2018), surveyed programming 

lecturers in Kenya and South Africa (SA). The authors found that students still struggle 

with recursion, arrays and data types. It is evident that there are continuous issues in 

the programming education spectrum. Beaubouef and Mason (2005) say another 

contributing factor for the persistence challenges in learning programming is a lack of 

algorithm practice due to short semesters or short learning hours. This is further 

worsened as the students are expected to learn syntax, background theory on 

programming and problem solving within that short period (Rubio, 2019). 

 

2.3.3 Computer Science at universities and K12 

CS courses were initiated around the 1950s and 1960s (Calitz, 2021). The first CS 

programme was offered in 1953 by the University of Cambridge in the United Kingdom 

and the first CS department was formed by Purdue University in 1962 (Calitz, 2021). 

Subsequently, upon global establishment, departments of CS in SA were gradually 

introduced at universities during the 1960s and 1970s. Some of the SA universities 

that began offering CS courses during that period include the University of 

Stellenbosch, University of South Africa, University of Cape Town, Rhodes University 

and North-West University (Calitz, 2021). In the 1980s, many SA universities were 

either offering hardcore CS courses or CS-related courses. Recently (in 2022), I have 

noted in the course information from various international and SA universities that 

computing courses have been further popularised. However, in SA, the CS-related 

modules (especially programming) have not been popularised in the K12 stream 

(SAPeople, 2020; Fares, Fares & Vegas, 2021). 



15 
 

Some of the SA schools lack Information Technology (IT) infrastructure, which is 

critical for a successful implementation of computing education at primary and high 

schools. Few schools in urban or high-income areas have adequate internet 

connectivity, while some are still without enough IT infrastructure to offer CS education 

(Fares, Fowler & Vegas, 2021). According to Pyott and Sanders (1991: 1), "a problem 

in teaching CS in the South African context is that many students come from 

disadvantaged backgrounds and have not been exposed to computer technology". In 

2020, only 40% of schools in SA had computer labs (SAPeople, 2020). 

 

2.3.4 Overview of programming education research 

There have been various research initiatives around programming or CS education 

across the globe (Guzdial & du Boulay, 2019).  Since the 70s, research has centred 

more on the technology (software and hardware) part of computing and less on 

pedagogical strategies (Kandemir, Kalelioğlu & Gülbahar, 2021). Luxton-Reilly et al. 

(2018) conducted a comprehensive literature review on introductory programming 

based on 1666 research papers between 2003 and 2017. Papers related to students 

were 489 in total, curriculum 258, assessment 192 and teaching 905. However, a 

concern is that only 24 papers out of 905 papers were related to computer program 

visualisation. The work of Lunn et al. (2021) collected and evaluated computer science 

education publication data between 2015 and 2020 sourced from high-impact 

international organisations, namely, Innovation and Technology in Computer Science 

Education (ITiCSE), ACM International Computing Education Research (ICER) and 

ACM Transaction on Computing Education (TOCE). The authors identified a growing 

trend in CS education research output from individuals and universities. Nevertheless, 

the authors stress that even though research and development seem to be growing 

globally, a target population or contextualised environment should be examined. 

 

The South African Computer Lecturers’ Association (SACLA) conference, formerly 

known as Computer Science Lecturers’ Association (CSLA), is one of the most CS-

focused teaching and learning research meetings held in SA. SACLA was established 

in the 1970s by academics and IBM (International Business Machines), a computer 

manufacturer based in the United States (Calitz, 2021). SACLA contributed 

significantly to collaboration with international scholars in growing computing 
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education research. Most of the time, the thematic areas of research included CS, CS 

curriculum, information systems and teaching and learning of programming. One of 

the main subjects identified and mostly researched as noted in the SACLA 

proceedings is computer programming. The other reputable scientific association 

similar to SACLA in research for teaching and learning CS concepts is the South 

African Institute for Computer Scientists and Information Technologists (SAICSIT).  

 

2.4 Challenges in learning to program 

This section outlines students’ challenges with IPC. Outlining the challenges is 

important because they present better view of the fundamental issues of learning to 

program, which will further inform better instruction or guide more effective 

pedagogical solutions (Spohrer & Soloway, 1986). 

 

2.4.1 Struggling Introductory Programming Students (SIPS) 

Every year, novices enrol in computing courses in various universities. Some students 

are informed about the course they have chosen; some are not informed at all. Some 

students indicate that they selected a certain course simply because it was available 

for enrolment, or they met the requirements. Beaubouef and Mason (2005) suggest 

that students are poorly advised when enrolling in CS, thinking that the course is all 

about computers. It was also found that students have limited career knowledge when 

it comes to Science, Technology, Engineering and Mathematics (STEM) courses 

(Hango, 2013). This problem has triggered various solutions in the form of match-

making algorithms and course recommender systems (Taha, 2012; Joshi et al., 2012, 

Ramabu & Oberholzer, 2017). The basic background about computing, the relevance 

of Mathematics in computing and accurate perceptions about the nature of computing 

courses are not common knowledge among first-year computing students (Galpin & 

Sanders, 2007). This can worsen the performance of students in computing courses. 

The majority of CS subjects are not introduced in the K12 stream (Grandell, Peltomäki, 

Back, & Salakoski, 2006), therefore, it is not unusual for computing students at 

universities to lack adequate prior programming experience. As a result, many first-

year students encounter computing subjects for the first time at a university level. This 

can directly impact the success of computing students at university as they 
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subsequently struggle to comprehend programming concepts. Ultimately universities 

have to deal with SIPS. Furthermore, lack of proper incorporation of computational 

thinking in the K12 curriculum in developing countries (Grover & Pea, 2013; Su & 

Yang, 2023) can be part of the contributing factors that cause SIPS. While some 

university students can cope and comprehend computing modules at the first attempt, 

others do struggle. Ramaano, Ajoodha and Jadhav (2021) compared first-year CS 

students with prior computer experience and first-year students with no computer 

experience. The authors found that first-year students with computer experience 

performed better than students without computer experience. This shows that 

somehow a basic computer background has a positive effect on comprehension. 

 

2.4.2 English language 

Computing courses are mostly offered in the English language by universities in SA 

and globally. English has been deemed the international language and is chosen by 

many countries as a language of teaching and learning (Veerasamy & Shillabeer, 

2014). The language barrier could be experienced by the students who are learning 

CS courses in the English language (Lei & Allen, 2022). This is because the success 

of teaching and learning is initially impacted by the understanding of the English 

language as a medium of instruction. Potentially, native English speakers have an 

advantage of language clarity and fluency over non-native speakers. Such students 

stand a chance to avoid language misconceptions on the programming specifications 

or written exercises to solve a problem through algorithm development. In Figure 2.1, 

we can see that a low-level English proficiency impacts teaching and learning which 

further impacts problem specification in a computer programming context.  

 

  

Figure 2.1: Implications of lack of English ability 
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To select and admit the best students into courses, universities make use of 

Mathematics (discussed in the subsequent section) and English as requirements to 

admit students into CS (Werth, 1986; Rauchas et al., 2006). This further limit the 

chances of prospective students with a low grade subject to be awarded admission 

into computing courses. Many SA students or international students speak and learn 

English as a second or additional language (Lei & Allen, 2022). This means that, 

should such students receive admission into the university, there remains a likelihood 

that they can struggle with English as the instructional medium. 

 

There have not been significant research initiatives to accommodate students who 

experience English misconceptions in the CS education stream (Armenti, 2018). Pal 

(2016) compared native English students and students who used the local language 

to learn in the K12 stream. The authors taught introductory programming to the three 

groups by using the post-test scores methodology. Group 1 (previously learned in their 

non-English local language at K12) was taught introductory programming with the local 

language. Group 2 (previously learned in their non-English local language at K12) was 

taught introductory programming by using English language. Group 3 (used English 

language at K12) was taught introductory programming by using English language. 

Results demonstrated that generally, students who continue being taught introductory 

programming in their local language performed better. An earlier similar study by Lau 

and Yuen (2011) also found that Chinese-instructed students (Chinese as their native 

language) outperform English-instructed students. Idris and Ammar (2018), surveyed 

university students and lecturers in Libya, the authors found that programming 

performance is likely affected by inadequate English proficiency. 

 

The most common programming languages like C, C++, Java and JavaScript also 

have keywords or commands which are English-like (Veerasamy & Shillabeer, 2014). 

Therefore, English proficiency is not only helpful for teaching and learning but also 

within the programming language itself. 

 

2.4.3 Mathematics 

Universities make use of mathematics as one of the main benchmark requirements to 

admit students into CS courses (Werth, 1986; Rauchas et al., 2006).  Nothing has 
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changed so far: as noted in the universities' websites as recently as 2022, most 

universities still use mathematics as one requirement to admit students into CS 

programs. This is because mathematics is a major element of CS course (Beaubouef 

& Mason, 2005; Beaubouef & Mason, 2005; Alpár et al., 2022). CS courses have 

mathematics as a separate module and other modules are somewhat dependent on it 

(Alpár et al., 2022). More importantly, mathematics is critical for a better understanding 

of artificial intelligence, computer graphics and programming (Baldwin et al., 2013). 

The high attrition rate is also noted among those with low mathematical performances 

or poor mathematics skills (Konvalina, Wileman & Stephens, 1983; Beaubouef & 

Mason, 2005). This means that a lack of mathematical knowledge can affect CS 

students’ performance and therefore pedagogical solutions may be necessary to close 

the gap. 

 

2.4.4 Mental models 

“A mental model is a conceptual representation of an abstract concept or a physical 

system that provides predictive and explanatory powers to a person in trying to 

understand the concept or the system and guides their interaction with it ” (Wu, Dale 

& Bethel, 1998: 292). Mental models constitute the representation of students' mental 

understanding of how and why certain things work the way they do. According to Wu, 

Dale and Bethel (1998), educators should have an appropriate conceptual model of 

teaching which is informed by accurate mental models of the students. Non-

experienced students learn differently according to their mental models, experienced 

students learn differently and possibly SIPS can learn differently by adjusting their 

mental model accuracy through pedagogical intervention.  

One of the challenges in the comprehension of IPC is the incorrect mental models of 

students (Ramalingam, LaBelle & Wiedenbeck, 2004). In the case of programming 

education, the mental model is about the knowledge of how a program code and its 

semantics work. All solutions that strive to help students understand program code 

better are about adjusting the state of a student's mental models with that of 

computational or programming thinking. Various methods have been used to measure 

students’ mental models of a program code. For example, Scholtz and Sanders (2010) 

used the tracing method to measure students’ mental models of how recursive 

functions work. Jimoyiannis (2013) used the structure of observed learning outcomes 
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(SOLO) taxonomy to measure students' mental models on the understanding of 

variables and assignments. The viable and non-viable mental models were also 

investigated on the concepts like variables by Sorva (2008), value-passing and 

reference-passing (Madison & Gifford, 2002; Ma et al., 2007). This is an important 

exercise as it is possible for students to produce correct program code while retaining 

an inaccurate mental model of how the code works (Scholtz & Sanders, 2010). The 

understanding of program code represents a programmer’s mental models, therefore 

the design of relevant support systems for teaching and learning of programming can 

lead to the accurate mental models (Storey, Wong & Müller, 2000; Heinonen et al., 

2023).  

 

2.4.5 Programming jargon 

Each module in a specific course has special words which can be difficult to master. 

Such words are referred to as ‘jargon’. Similarly, the computing environment has its 

own jargon. Soloway (1986) says teaching introductory programming students’ the 

syntax and semantics is not enough, but programming terminologies, vocabulary, 

program goals and plans should be emphasised as well. 

 

Mohamed, Hamilton and Souza (2011), surveyed novice programmers in their second 

week of learning and found that some students were able to fix basic errors and 

understood basic jargon while other students struggled with programming jargon. The 

work of Munasinghe, Bell and Robins (2021) further noted that educators also find 

some of computing vocabulary difficult to comprehend. The authors stress that 

sometimes this is caused by a lack of computing background or not being in the 

context of CS. As a result, this can further aggravate the confusion of teaching and 

learning to program. 

 

2.4.6 Problem solving 

In everyday life, the cognitive abilities to solve any problem is critical, even in the 

programming education where algorithms are developed. In programming, an 

algorithm is written so that it can solve a specific problem when it gets deployed in a 

computer or any other device. Problem-solving ability is one of the foremost skills that 
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must be possessed by IPS (Govender, 2021). Lack of problem-solving skills mostly 

lead to high failure rate in programming (Gomes & Mendes, 2007).  

 

There are various approaches for problem-solving in programming education. The 

most common approach for problem solving is described by Bransford and Stein 

(1993) as: 

- Problem Identification or formulation, 

- Definition of the terms or problem, 

- Develop strategies for the solution to the problem, 

- Execute the solution and 

- Observe, reflect, learn through the effect of the execution.  

 

The above problem-solving steps resonates with the steps indicated by Gomes and 

Mendes (2007) and Sheth et al., (2016). The work of Ring, Giordan and Ransbottom 

(2008) present problem-solving steps as “analyse”, “design”, “build” and “test”. The 

first stage which is “analyse” means understanding and interpretation of the problem. 

The “design” step means using tools like flowchart to present the model to the solution. 

The “build” stage is about developing the actual program code using a specific 

programming language. The last stage (“test”) means using a test case for the 

experimentation of the program.   In an effort to help the students to obtain this 

important skill, there have been various pedagogical attempts (including the 

approaches of teaching and learning in section 2.6) to improve teaching and learning 

to program.  Furthermore, the subtopics discussed in this section like English 

language, Mathematics, mental models and programming jargon have a direct 

influence on problem solving abilities. 

 

2.4.7 Summary 

Various challenges may affect students’ performances in computing courses. 

Generally, prior disadvantaged schools and lack of connectivity serve as the origin of 

these challenges. The other challenge is the lack of CS background and programming 

experience which contribute to the state of SIPS. The lack of accurate mental models 

about how a program code works, poor English language proficiency, lack of 

computational thinking and mathematical thinking further contribute to the state of 
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SIPS. These challenges directly or indirectly affect students’ competence and 

performance in programming and potentially in other computing modules as well. 

 

2.5 Imperative programming approach 

This section focuses on the issues of learning IPC in the imperative programming 

paradigm. An imperative programming paradigm is about placement of a sequence of 

instruction that can be executed at a time by the computer (Pollak, Layka & Sacco, 

2022). Researchers need to discuss the fundamental misconceptions in introductory 

programming which can inform relevant instructional means (Sadler et al., 2013, 

Altadmri & Brown, 2015). This section, therefore, is important for exploring such 

fundamental problems of learning to program. 

 

2.5.1 Programming languages 

The choice of a specific programming language to teach first-year students in 

computing courses has been evolving and debated. We have so many existing 

programming languages and academia is faced with the dilemma of choosing a 

relevant language for teaching and learning at first year level. Three decades ago, the 

Pascal programming language was one of the most prevalent programming languages 

by the industry for developing software and academia for teaching and learning 

purposes (Brilliant & Wiseman, 1996). At this point, popular programming languages 

used in the industry and also adopted by universities for teaching introductory 

programming include Java, C, C++, Visual Basic, PHP and Python (Siegfried et al., 

2012; Rabai, 2015; Aleksić & Ivanović, 2016; Chen et al., 2019).  

 

Various factors can inform the choice of a specific programming language for an 

introductory programming module. However, no significant differences between the 

chosen programming languages being studied in introductory programming have been 

found (Bennedsen & Caspersen, 2007; Watson & Li, 2014). This is true because 

students learn how to program without necessarily learning a programming language. 

Programming languages are similar in logic but differ in language specification 

(syntax). In an attempt to soften the learning process towards programming 

languages, some K12 curriculum features visual programming which in return gives a 

university student an experiential advantage when learning textual programming 



23 
 

(Chen at el., 2019). Visual programming makes use of graphics like drag and drop 

blocks, while textual programming consists of typing in a code (Chen at el., 2019). 

Some examples of visual programming include Alice (Cooper, Dann & Pausch, 2000) 

and Scratch (Resnick et al., 2009). Textual programming languages include Java, C++ 

and JavaScript.  

 

Programming paradigms are another critical factor to be considered when choosing a 

programming language. The subsequent section discusses programming paradigms.  

 

2.5.2 Programming paradigms 

Besides the complexity of selecting an appropriate programming language for 

industries to develop software or universities to teach, there are programming 

paradigms to think of. However, each paradigm can be relevant if selected 

appropriately. According to Krishnamurthi and Fisler (2019), paradigms can be 

referred to as a class of programming languages that behave similarly from a high-

level perspective and have common features. Some programming languages are 

primarily imperative-based paradigms with procedural and object-oriented 

programming (OOP) as sub-paradigms (Sim et al., 2012). An OOP paradigm is 

centred around objects, data in objects and classes, while the procedural paradigm is 

based on a series of steps, subroutines with conditions and functions (Farell, 2011). 

For the most part, the procedural programming paradigm is recommended as 

introductory programming suitable for computing novices at university and for K12 

students (Hendrix & Weeks, 2018).  

 

Vilner, Zur and Gal-Ezer (2007) investigated students who took CS1 with OOP and 

students who took CS1 with a procedural programming approach. The authors found 

no significant differences between the two groups from their comparison. However, 

OOP requires a high level of abstraction which sometimes inhibits the proper learning 

of the fundamentals of programming (Delgado et al., 2016). Some universities in 

Europe and other continents adopt OOP; however, they still begin teaching novices 

with a procedural programming approach first (Aleksić & Ivanović, 2016; Luxton-Reilly 

et al., 2018). This method is generally referred to as the objects-later approach rather 

than objects-first or objects-early. Dümmel, Westfechtel and Ehmann (2019) contend 
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that students should be able to code both procedurally and also code through data in 

objects (OOP). The following section outlines the structure and details of procedural 

programming content for better understanding and context. 

 

2.5.3 The structure of procedural programming  

In the objects-later approach where the procedural programming paradigm is learned 

first, topics covered include problem-solving skills, a brief introduction to programming, 

arithmetic, decisions, nested decisions, loops, nested loops, arrays, parallel arrays 

and functions (Gal-Ezer & Harel, 1999). In Figure 2.2, the contents of the C++ textbook 

by Malik (2018) is presented. As with other similar textbooks, the content of the book 

by Malik (2018) shows an objects-later approach where procedural programming is 

learned and later OOP concepts are also learned. 

 

 

Figure 2.2: C++ Programming from program analysis to program design (Malik, 2018) - 1 

 

The rest of the figures (Figure 2.3 to Figure 2.9) have been abstracted from the Malik 

(2018) textbook to provide a sample description of the content of procedural 

programming concepts. In Figure 2.3, the content consists of a typical introductory 
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phase where students are exposed to programming jargon, language syntax, data 

types and arithmetic. 

 

 

Figure 2.3: C++ Programming from program analysis to program design (Malik, 2018) – 2 

 

In Figure 2.4, the students learn about input and output through cin and cout if the 

programming language is C++. The concept of assignment is also emphasised in this 

type of section.  

 

 

Figure 2.4: C++ Programming from program analysis to program design (Malik, 2018) - 3 

 



26 
 

The content of Figure 2.5 consists of control structures part 1 (referred as decisions 

or selections or if-statements). This section moves to an advanced level where nested 

decisions and compound statements are learned and constructed. 

 

 

Figure 2.5: C++ Programming from program analysis to program design (Malik, 2018) - 4 

 

The content of Figure 2.6 consists of control structures part 2 (referred as repetitions 

or iterations or loops). Advanced concepts include nested loops and a combination of 

loops and decisions. 

 

 

Figure 2.6: C++ Programming from program analysis to program design (Malik, 2018) - 5 
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Figure 2.7 shows how functions are taught. Things like function calls, function return 

type, passing values into a function and returning a value are learned. 

 

 

Figure 2.7: C++ Programming from program analysis to program design (Malik, 2018) - 6 

 

Figure 2.8 is still on functions, but more advanced concepts like reference parameters 

are introduced.  

 

 

Figure 2.8: C++ Programming from program analysis to program design (Malik, 2018) - 7 
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Figure 2.9 shows how the concept of arrays is taught. Strings are sometimes 

introduced with arrays because they are manipulated similarly. Advanced concepts 

like parallel arrays and two-dimensional arrays are also taught.  

 

 

Figure 2.9: C++ Programming from program analysis to program design (Malik, 2018) - 8 

 

Novice programmers are expected to learn the content outlined in this section as part 

of the introductory programming syllabus. As emphasised previously in section 2.3.2, 

some novices find learning certain aspects of introductory programming difficult or 

challenging.  The subsequent section discusses details of challenges in learning to 

program. 

 

2.5.4 Details of learning challenges 

Programming challenges can be categorised within three knowledge areas: 

syntactical, conceptual and strategic knowledge (Qian & Lehman, 2017). Syntactical 

knowledge refers to the correct usage of syntax or programming language (Brown & 

Altadmri, 2017). Conceptual knowledge is a broader understanding of a certain 

concept (Pea, 1986). Strategic knowledge is when a student is capable of combining 

both syntactical and conceptual knowledge to write expert-level programs (Qian & 

Lehman, 2017). The promotion of syntactical knowledge is automated within compilers 

and a student must possess conceptual knowledge before coding can happen. Lack 

of conceptual understanding leads to a ‘conceptual’ bug (Pea, 1986). According to 

Pea (1986), a lack of conceptual understanding of certain programming concepts 
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happens to all primary school to college (university) students. Strategic knowledge can 

be targeted at introductory programming students, not to achieve an expert level but 

rather to master an introductory basis which could serve as a steppingstone to expert 

level. 

 

A comprehensive study by Brown and Altadmri (2015) investigated common 

programming errors. The authors studied Java compilations of 250 000 novice 

programs across the world, summarising some of the errors as follows: 

a. Confusing the difference between = and == operators. 

b. Confusing the parentheses, square brackets and other types of brackets. 

c. Confusing short-circuit operators (&& and ||) and conventional operators (| and 

&). 

d. Forgetting the semicolon at the end of a line. 

e. Putting a semi-colon after the if-statement header, function header or for-loop. 

f. Incorrect separation, in a for-loop.  

g. Forgetting parenthesis when calling a function. 

h. Mixing up >=, <= with =<, =>. 

i. Confusion on how to call non-void and void methods. 

j. Having a function that returns a value but can reach the last line without 

returning any value. Example: 

 

int calcv (int p) 

{ 

 If(p < 0) 

   return 0; 

 p++; 

} 

 

Some of the errors above are syntactical while some are semantic. Syntactical errors 

are sometimes unavoidable as they form part of language proficiency exercise. 

However, semantic errors are prevalent, harder to fix and require special attention 

(Brown & Altadmri, 2015; Ahadi et al., 2018).  
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Table 2.1 contains introductory programming misconceptions. The focus is on the 

errors related to the imperative programming paradigm. 

Table 2.1: Introductory programming misconceptions 

 Misconceptions Sources 

1. Confusing == and =, misunderstanding 
the uses of an assignment operator 

Du Boulay, 1986, Bruce, 2015; Žanko, Mladenović 
& Boljat, 2019 

2. Confusion on data types, variable 
scope, and confusion on whether a 
variable can store many values at a 
time 

Goldman et al., 2008; Sadi, Halder & Saha, 2014; 
Bruce, 2015; Grover & Basu, 2017; Kohn, 2017 

3. Confusion on whether if content and 
the else clauses contents can execute 
at the same time, confusion on nested 
if, Booleans and logical operators and 
if statements in general 

Sirkiä & Sorva; 2012; Altadmri & Brown, 2015; 
Bruce, 2015; Jiang, 2016; Jiang, 2016; Veerasamy, 
D'Souza & Laakso, 2016; Qian & Lehman, 2017 

4. Confusion between relational and 
comparison operators like >, =>, <, =<, 
also comparison like p > x > num 

Altadmri & Brown, 2015; Veerasamy, Jiang, 2016, 
D'Souza & Laakso, 2016;   

5. Not able to trace Veerasamy, D'Souza & Laakso, 2016 

6. Incorrect function references and 
values, calling functions with incorrect 
arguments or parameters, functions 
with incompatible return value/return 
type, and recursive functions 

Wu, Dale, & Bethel, 1998; Altadmri & Brown, 2015; 
Veerasamy; Bruce, 2015; D'Souza & Laakso, 2016; 
Delgado et al., 2016; Malik & Coldwell-Neilson, 
2017 

8. Misunderstanding arrays, usage of 
index in the array 

Bruce, 2015; Souza & Laakso, 2016; Veerasamy, 
D'Souza & Laakso, 2016; Végh, 2016, Corral, 2019 
 

9. Misconception on loops/nested loops Veerasamy, D'Souza & Laakso, 2016; Grover & 
Basu, 2017; Corral, 2019; Cetin, 2020 

10. Incorrect sorting algorithms Veerasamy, D'Souza & Laakso, 2016 

 

2.5.5 Summary 

There are many programming languages and paradigms across the software 

development space. One of the dominating paradigms in the software industry is OOP; 

however, procedural programming has also been dominant across learning institutions 

for novice programmers. The imperative programming paradigm approach tends to 

make use of procedural programming before students advance to OOP. The structure 

of a procedural programming approach has been presented to shed light on what the 

content looks like. The details of challenges experienced by students in the procedural 

programming paradigm have also been demonstrated. The challenges discussed in 

this section expand our problem domain which informs the basis of investigating 

approaches of teaching and learning to program in the subsequent section.  
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2.6 Approaches to teaching procedural programming 

There are many teaching approaches adopted by introductory programming 

educators. Some teaching approaches are generic and traditional, while other 

approaches have been empirically evaluated. This section discusses both empirical 

and non-empirical teaching approaches used in introductory programming education. 

2.6.1 General teaching challenges in introductory programming 

Challenges of teaching and learning range from the limitations of educational tools, 

inadequate methods to keep the students motivated and engaged, the abstract nature 

of programming, the deficiency of mathematical skills and the unstructured curriculum 

in general (Medeiros, Ramalho & Falcão, 2018). These teaching and learning 

challenges are critical for addressing other SIPS’ problems outlined in section 2.4. This 

means that addressing teaching challenges may in return solve many issues 

experienced by a novice programmer. In my opinion, the most important teaching and 

learning issues to improve have to be the methods and tools of teaching. This is the 

first challenge listed by Medeiros, Ramalho and Falcão (2018). The argument is that 

the correct methods and tools can have a positive influence on the remainder of the 

challenges learning to program. For example, keeping students motivated and 

engaged will be affected by the educators’ chosen method of teaching or a tool used 

to aid teaching and learning. If the student does not have a concrete mathematical 

background or has no prior knowledge of programming, a correct teaching method 

and necessary tool can accommodate such a student. 

Various methods and tools have been developed for teaching and learning 

introductory programming in an effort to improve teaching and learning. Such methods 

include using pre-recorded videos, tutorial sessions, tracing approaches, peer 

teaching, gamification, learning by repeated application, mentorship support, 

apprenticeship and active learning exercises (Forbes, Malan, Pon-Barry, Reges & 

Sahami, 2017; Medeiros, Ramalho & Falcão, 2018; Xie et al., 2019). However, these 

methods of teaching have not been effective or conclusive as the challenges remain 

(Rum & Ismail, 2017; Medeiros, Ramalho & Falcão, 2018). The subsequent section 

discusses various teaching approaches in introductory programming education. 
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2.6.2 Traditional methods of teaching and learning to program 

Traditionally, the mode of teaching takes place through verbal, visual or practical 

communication. As an introductory programming educator in the university, I have 

noted that traditional teaching and learning offered through verbal concept explanation 

and demonstration of sample programming code does not improve SIPS’ 

comprehension. In the university or any learning institution, there is no fixed or 

approved method of teaching; hence, each educator adopts routine methods that do 

not necessarily accommodate SIPS. The educators’ attempts to assist SIPS is 

primarily through the use of tutorial classes, assigning tutors to students and 

encouraging the students to make use of consultation hours.  

Live coding through broadcast is another teaching approach practiced by some 

programming educators (Rubin, 2013). I have used this method of teaching several 

times before and can attest to its effectiveness for some students. The good thing 

about live coding is that students can see how you code, how you diagnose errors and 

how you fix the errors – this can help the students to understand. However, I still 

observed increasing numbers of SIPS irrespective of the adoption of live coding. 

Perhaps the issue with live coding is that students are expected to comprehend many 

aspects at the same time, with only verbal and type-in coding. 

 

2.6.3 Analogy-like teaching approaches for introductory 

programming 

A comprehensive systematic literature review on introductory programming by Luxton-

Reilly (2018) investigated students, teaching, curriculum and assessment. One main 

finding indicates that there is much more work to be done in the area of analogies and 

metaphors when teaching programming. Forišek and Steinová (2012) caution that 

poor metaphors can be misleading and can lead to the wrong conclusion. Rum and 

Ismail (2017) investigated the productivity of metacognitive scaffolding, self-directed 

learning, self-questioning, reflective prompts and the use of graphics as pedagogical 

methods that can aid the learning of computer programming. The authors found that 

all the listed methods do contribute to effective teaching and learning of computer 

programming. However, the authors found that the use of graphics helps students 

develop logical thinking and solves a variety of problems that arise due to the 
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complexity of learning to program. This is because the use of graphics or animation 

provides an ‘analogy-like’ teaching approach.  

Students' relational understanding can be invoked by a representative or an analogy 

(manipulative or program animation) (Anwar et al., 2016). The concept of analogy in 

teaching programming can be manifested in the form of verbal explanation, use of 

manipulatives or animations. Educators who adopt the concept of analogy in teaching 

make use of real-world examples. Real-world examples such as analogy help the 

student link programming concepts to context (Konecki, Lovrenčić & Kaniški, 2016; 

Craig, Smith & Petersen, 2017; Moape, Ojo & van Wyk, 2017).  

 

2.6.4 Manipulatives in teaching and learning introductory 

programming 

The use of manipulatives has been evolving gradually in the field of mathematics 

education (Clements & McMillen, 1996; Kaminski, Sloutsky & Heckler, 2009; Bouck et 

al., 2014). There is also evidence of the use of physical manipulatives in teaching 

introductory programming. 

Suzuki and Kato (1995) developed a physical programming language called 

AlgoBlock. AlgoBlock consists of physical blocks which are connected to a computer. 

As the user programs physically by arranging the blocks accordingly, a corresponding 

animated structure reflects on the computer screen. Their work offers a similar solution 

to Horn and Jacob (2007) who developed a physical programming language as well. 

Wyeth and Purchase (2002) developed square blocks with lights and sensors on the 

sides to improve and engage programming thinking in children. Just like Suzuki and 

Kato (1995), their manipulatives reflect on the screen as they are built and 

manipulated. Similar work by Hu, Zekelman, Horn and Judd (2015) resulted in a game 

called Strawbies (from the word strawberry) for children of age five to 10 years to learn 

to program. The game uses physical wooden tiles in conjunction with a mirror to reflect 

images on an iPad. An iPad is used as a real-time reflector for a moving object which 

is channelled to the images of strawberries. Another work by Sullivan, Elkin and Bers 

(2015) developed physical square blocks for use in the robotics-programming 

environment. 
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Aggarwal, Gardner-McCune and Touretzky (2017) use concrete manipulatives (tiles 

and flashcards) to foster basic programming principles.  According to the authors, tiles 

are puzzle-shaped objects for modelling When-Do (When something happens, then 

do something) in programming.  Flashcards contain rules and instructions that assist 

students in knowing how to interact and make moves.  

In an attempt to find better ways of teaching recursion with manipulatives, Russian 

“nested” dolls (Wu, Dale, & Bethel, 1998) were suggested in the early 90s.  Russian 

dolls are a set of wooden dolls where each reduced doll is placed into another, forming 

one doll containing many dolls.  

The CS Unplugged organisation developed interesting physical manipulatives as well. 

CS Unplugged is focused on finding manipulatives relevant to teaching computing-

related concepts. Different types of tools developed by this organisation can be found 

at www.csunplugged.org.za. Concepts like human interface design, communication 

networks, cryptography, programming and image processing have the corresponding 

manipulatives on the CS Unplugged website.  

Overall, the suggested solution for using manipulatives and unplugged material to 

teach introductory programming is more suitable for kindergarten or K12 learners. The 

approach may not be suitable for university students, especially in exhibiting fine 

details of the program code and may also be incompatible with an online teaching and 

learning mode.  

 

2.6.5 Using animation programs 

According to Muller, Lee and Sharma (2008: 1), the “inclusion of multimedia 

technologies into the classroom has changed the educational landscape and 

introduced important changes in the educational system and impact the way students 

communicate information with each other”. These multimedia technologies can be in 

the form of animation programs. Sometimes multimedia technologies in education are 

presented in the form of digitised static pictures. Some of the static pictures or 

diagrams have been used regularly in books and other paper-based material to 

improve teaching and learning.  

The world has since navigated into digital movable diagrams (referred to as 

‘animation’) with the expansion of computer technology. A main feature of a 
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technology-based learning environment is animation (Lowe & Schnotz, 2008). The use 

of animation programs in education has proven to be significant, superior, informative, 

effective and more interactive than the use of static pictures (Lowe, 2001; Lowe & 

Schnotz, 2008; Ruffini, 2009).  

The use of animation in the sphere of teaching and learning has been evolving. The 

developments around animation in education are accelerated by information 

technology infrastructure, more specifically, connectivity. The adoption of animation-

based teaching and learning is convenient and compatible with various learning 

management systems (LMS), and as a result, this approach keeps growing and 

evolving.  

The rationale behind animation-based teaching is that it increases interest, motivates, 

and attracts students to learn, serving as external visualisation that helps internal 

comprehension (Lowe & Schnotz, 2008). This is because a student can lack internal 

visualisation of the phenomena under study or can lack accurate perception or can 

require additional aids for comprehension. Animation programs can reveal some of 

the complex processes that were blurring visualisation, provide context to the learning 

outcome and increase learning speed (Brown & Sedgewick, 1984; Clark & Choi, 2005; 

Lowe & Schnotz, 2008). Moreover, animation programs can bring a powerful 

dimension to the presentation through colours, sounds, the animation itself and other 

visual enhancements (Gurka & Citrin, 1996). Teaching and learning with the aid of 

animation can reduce cognitive load, especially in learning a high demanding cognitive 

process (Lowe & Schnotz, 2008). 

 

2.6.6 Summary 

This section presented various teaching methods to deliver the introductory 

programming module. The range of methods discussed includes general teaching 

practices, traditional teaching practices, analogies, manipulatives and animations. 

While each method has advantages and disadvantages, I however found that 

animation-based teaching has the potential for enhancing teaching and learning more 

than the other teaching methodologies. I therefore investigated and advanced the 

discussion on the existing animation programs for introductory programming under the 
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procedural programming approach. Section 2.7 below discusses existing animation 

programs to further identify a gap that this study intends to fill. 

 

2.7 Animation programs 

Generally, program animation in this study means computer graphics that animate or 

make a graphical representation of a programming code to enhance comprehension 

(Moreno, Sutinen & Joy, 2014). Animation is an important educational tool that must 

be featured in the teaching and learning in the classroom as it can give students a 

better mental model for program execution (Levy, Ben-Ari & Uronen, 2003). 

 

While animation programs have the potential to enhance programming education, 

shortcomings associated with them are also reported. The study of Sorva, Karavirta 

and Malmi (2013) investigated program visualisations for introductory programming. 

The authors found that program visualisations are short-lived animation programs and 

may not live up to their expectation.  According to Hundhausen, Douglas & Stasko 

(2002) instructors are unwilling to use algorithm visualisation (animation programs) 

because of the following perceptions: 

- They think they do not have enough time to learn about the algorithm 

visualisation, 

- It can take a lot of time to a point where other class activities are compromised, 

- It can take time to develop relevant the algorithm visualisation and 

- It may not be educationally effective.  

Furthermore, the authors investigated the effectiveness of the algorithm visualisation 

and found that they can be either ineffective or effective. The authors found that the 

algorithm visualization just transfer correct mental models to students, it is not 

necessarily effective. To be effective, algorithm visualization has to be used as vehicle 

for active learning which incorporates constructivist theory. The incorporation of active 

learning and engagement into the animation programs is also supported by Sorva, 

Karavirta and Malmi (2013). In the light of these arguments, this section will thoroughly 

discuss existing animation programs and their abilities to translate into meaningful 

learning within the field of introductory programming education. The discussion of 

animation programs will include block-based programming. 
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2.7.1 Block-based programs 

Block-based programming is a programming approach that allows students to drag 

and drop blocks as a way of building a program (Weintrop & Wilensky 2017). Block-

based programming is used increasingly as an introductory module to programming 

(Weintrop & Wilensky 2017). Some K12 curriculum development practitioners prefer 

block-based because it lowers barriers to learning programming and motivates 

learners for possible interest in CS courses (Moors, Luxton-Reilly & Denny, 2018). 

 

2.7.1.1 Scratch 

One of the most common block-based virtual programming languages which covers 

topics like variables, decisions and loops is called Scratch (Resnick et al., 2009; 

Weintrop & Wilensky 2017; Mladenović, Boljat & Žanko 2018). Scratch programming 

is primarily used in high schools but sometimes also in colleges and universities as a 

foundation to computing or computing-related courses (Wolz et al., 2009). It has been 

reported that Scratch is useful for students with no prior programming knowledge 

(Mishra et al., 2014). The block-based programming approach is similar to 

pseudocode; hence, it focuses on problem-solving through drag and drop components 

(as seen in Figure 2.10) without worrying about the syntax of the solution.  

 

 

Figure 2.10: Sample scratch program 
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Sometimes starting students with block-based programming languages may not 

effective at a university as it prolongs the duration of the course (Jiang, 2016). The 

duration of course completion can be further prolonged if there is no transition strategy 

from block-based to text-based programming. Also, block-based programming can 

reduce student confidence levels during the transition into the actual text-based 

programming environment (Moors, Luxton-Reilly & Denny, 2018). It has also been 

reported that long, complex Scratch programs are challenging to modify and waste 

time in drag and drop exercises because students have to look up each block in a 

category with confusing function calls and case statements (Tanrikulu & Schaefer, 

2011).  

 

2.7.1.2 Alice 

Another block-based programming tool is called Alice (based on Python language). 

Alice provides the development of 3D animation programs (Cooper, Dann & Pausch, 

2000). Alice features constructs like state transformation such as move, turn, destroy, 

decision constructs and looping constructs (see Figure 2.11).   

 

 

Figure 2.11: Alice program 

 

The Alice-based teaching approach has been tested repeatedly in the K12 computer 

science education (Rodger et al., 2010). Just like Scratch, Alice as a block-based 

approach is appropriate for K12, however it can also prolong course duration if 
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introduced at university level and may not guarantee success in the text-based 

programming environment. Therefore, SIPS at HEI with or without Alice or Scratch 

experience from high school may need another pedagogical intervention in a text-

based environment. 

 

2.7.2 Animation-based programs 

2.7.2.1 WinTK-3 

Matsuda and Shindo (2001) worked to create an animation program called WinTK. 

This animation program allowed students to learn and edit source code and then face 

a challenged to rewrite, modify or extend it accordingly. There are four kinds of 

animation within WinTK. The first one is called WinTK-1 which contains basic tools 

and is based on Rabbit animation. The second one, called WinTK-2, is an interactive 

paint tool for helping students with keyboard and mouse event handling. The third is 

WinTK-3 and is based on photo-realistic animation. The last one, WinTK-4, is based 

on OpenGL and consists of 3D animation programs. The main aim of WinTK is 

generally reading and rewriting the source code which in return adjusts the outlook of 

the desired animation. The approach is not relevant or cannot be used as a 

pedagogical tool in a text-based programming environment at a HEI.   

 

2.7.2.2 Jeliot 

Jeliot 1 is a basic program animation aimed primarily at helping high school students 

learn computer science concepts (Haajanen et al., 1997). Due to the limitations of 

Jeliot 1, another version was developed and named Jeliot 2000. According to Levy, 

Ben-Ari and Uronen (2000), some added features in Jeliot 2000 include a more flexible 

interface, the animated input/output, expressions and animated control decisions.  It 

was found that Jeliot 2000 can improve vocabulary and concrete models for computer 

science concepts (Levy, Ben-Ari & Uronen, 2000).  

 

Levy, Ben-Ari and Uronen (2000) used input/output concepts, if-statements and loops 

to test the Jeliot program with control and experimental groups. Even though it 

improves vocabulary and concrete models for high school students, such benefits are 

not relevant in a text-based programming environment. This is because computing 

students would already have been accepted into the courses and would be looking to 
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enhance their knowledge of the actual programming concepts. The development of 

both Jeliot 1 and Jeliot 2000 lacked a reference framework that can inform the design 

and important aspects of program animation which are linked to program code and 

effective teaching and learning practices.  

 

A new version of Jeliot 2000 was developed, named Jeliot 3 (Moreno et al., 2004). 

Jeliot 3 has features like the program's ease of use and accommodates a large subset 

visualisation. However, Jeliot 3 has many sections in the animation space like method 

frame area, constants area, expression evaluation area and instance area which might 

be confusing to a novice programmer who needs to understand from the lower level. 

Another aspect missing in Jeliot 3 is the simplicity of multimedia design as described 

by Mayer (2005) which might be mistaken as a learning subject itself. Many other 

similar animation programs for teaching and learning focus on animation itself to a 

point where it loses its original intention, which is assisting in comprehending a 

program code. 

 

2.7.2.3 UUhistle 

UUhistle is a program visualisation where students predict the program flow by 

manipulating the graphics components in the program (Sorva & Sirkiä, 2010). In that 

way students are able to know if the program visualised the way they predicted. This 

makes UUhistle a student-centred animation program which can be used off campus. 

However, just like Jeliot 3, the animation program is overloaded with many features 

which may add confusion or distract a student from learning the actual concept (see 

Figure 2.12). This restricts UUhistle from compliance with the coherent principle in the 

principles of multimedia learning by Mayer (2005), which recommends non-

extraneous animation programs. Non-extraneous animation means avoiding 

overloaded features of animations programs that can cause students to deviate from 

learning the material. Secondly, the program does not feature any motion components 

to symbolise a program flow or value transfer from one instance to another.  
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Figure 2.12: UUhistle program 

 

2.7.2.4 ViLLe 

ViLLe is a program visualisation that focuses on the abstract level of program code 

(Rajala et al., 2007). This means that the uses of Ville can usher in a challenge or 

expand a learning gap for students who struggle with lower-level understanding of 

program code. The graphic presentation of ViLLe is similar to Jeliot, where graphics 

or animation are not fully simplified to the lower-level understanding of a novice. 

Therefore, ViLLe will not be compatible with SIPS. 

2.7.2.5 MatrixPro 

MatrixPro is another animation program that focuses on data structures and algorithms 

(Karavirta et al., 2004). The program has drag and drop components which make it 

similar to block-based programming languages discussed in section 2.7.1. MatrixPro 

animation orientation is more on the abstraction and conceptual level. However, 

MatrixPro does not have a record of attempting or extending the animation program 

to cover IPC, so it may not be compatible with SIPS. 

2.7.2.6 Animation-based worked examples 

Animation-based Worked Examples (ARAWEs) is an animation program for 

introductory programming that uses Augmented Reality (AR) technology (Cevahir, 
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Özdemir & Baturay, 2022). The ARAWEs focus on one concept (loops) and rely more 

on text for explanation which can further divide learner attention (see Figure 2.3).  

 

Figure 2.3: ARAWEs animation program 

 

In the case of ARAWEs, the animation program does not comply with one of Mayer’s 

(2005) principles of multimedia learning that cautions against overloaded text on the 

animation program as it may introduce divided attention or confusion. 

2.7.2.7 Other animation programs for introductory programming 

Végh and Stoffová (2017) developed an animation card that assists students in 

understanding sorting. Through pre-test and post-test exercises, the authors tested 

the efficacy of sorting animation by demonstrating sorting to students. The application 

was also designed to aid in the teaching and learning of arrays (Végh, 2016). Similar 

animation programs can be found at http://algoanim.ide.sk/index.php. However, the 

designs also contain loosely connected graphics, which can result in knowledge that 

is not linked to the knowledge of arrays or sorting. Végh and Stoffová (2017) conceded 

that their animation card was unable to help students understand sorting in detail.  

 

Osman and Elmusharaf (2014) developed a program animation called Courseware.  

Courseware uses various blocks of graphics that reflect a program code.  The authors 

also tested the approach by using pre-test and post-test methodology, which included 

a sorting program and array. The program contains several animation blocks which 

http://algoanim.ide.sk/index.php
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are manipulated through inputs of commands. The program is limited to traditional 

data structures and does not cover basic principles of programming in a text-based 

programming setup. A similar method is found in the work of Shi, Min and Zhang 

(2017) wherein a program animation called PlanAni was also tested through control 

and experimental groups. Sajaniemi and Kuittinen (2003) developed the PlanAni 

animation program. The program focuses on depicting the roles of variables in a 

program. The limitation of PlanAni, however, is that it focuses on one aspect of 

introductory programming. Moreover, PlanAni contains a high number of animated 

sections that are loosely connected and may confuse a student's attempt to connect 

the dots. The interface is not simplified: it contains redundant graphics and is 

overloaded with different shapes of graphics which further contradicts Mayer’s (2005) 

principles of multimedia learning. 

 

Robomind is another animation-based program. Robomind is a text-based 

programming with a focus on robotics-based building blocks (Faisal, Yuana & Basori, 

2017), uses English-like commands to interact with an animation on the right side of 

the application. This approach is similar to a traditional robotic game, where a physical 

robot is controlled through commands; however, in this case a visual robotic is used.  

Robomind is suitable for primary and secondary school children (Yuana & Maryono, 

2016) because it is aimed at conceptual understanding and encouragement to pursue 

computing courses rather than helping students with the actual IPC at HEI. 

 

The work of Ussiph and Seidu (2018) investigated the impact of 3D animation 

programs in high school. The authors used a combination of Microsoft Basic and the 

Alice program (discussed previously in section 2.7.1.2) to test the effectiveness of the 

animation approach. It was found that animation-like programs are capable of helping 

students with IPC. However, as emphasised in section 2.7.1.2, the approach remains 

relevant as a K12 program and serves as a motivational tool for the learners to pursue 

CS at HEI. 

 

Generally, all existing animation programs lack a proper referencing design guide and 

are not based on rigorously designed guidelines such as the principles of multimedia 

learning by Mayer (2005). 
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2.7.3 Pedagogical guidelines for uses of animation programs 

The limitations of existing animation programs are not only limited to weaknesses 

mentioned in sections 2.7.1 and 2.7.2, but also lack rigorously developed concrete 

pedagogical guidelines. Pedagogical guidelines mean incorporating the best uses of 

teaching practices or tools for impactful learning. In the case of this study, pedagogical 

guidelines should mean relevant strategies for Teaching and Learning Programming 

with Animation Programs. Many teaching and learning materials are developed, but 

the effective use of such materials is overlooked. As a result, they are part of factors 

contributing to the difficulties of learning to program (Cheah, 2020). 

 

Animation programs can be powerful in helping students learn a program code and 

can enhance pedagogical effectiveness (Malone et al., 2009).  However, according to 

Urquiza-Fuentes and Velázquez-Iturbide (2009), the pedagogical effectiveness of 

existing animation programs is not clear. This means that animation program design 

should be integral to the overall pedagogical design rather than a standalone teaching 

tool. Without this, there is a significant possibility that such animation programs can 

cause more harm than the good purpose they were designed for, simply because they 

are adopted and used along random pedagogical strategies. 

 

2.8 Gap and summary 

I have discussed various teaching and learning challenges and issues regarding SIPS. 

The challenges range from language issues, incorrect mental models, lack of 

mathematical proficiency, technical jargon and basic problems experienced by 

programming students. In an attempt to address these problems, some pedagogical 

methods have been used or proposed. I have discussed various teaching approaches 

adopted by educators. Among existing methods, educators can make use of animation 

programs to enhance SIPS’ comprehension of IPC.  

 

However, a design gap remains in the development of animation programs for 

introductory programming. Animation programs can do more harm than good if they 

are not properly designed and accompanied by relevant instruction for effective use. 

There is also a gap in relation to guidelines that educators can follow or adapt in using 

animation programs for teaching and learning introductory programming (Osman & 
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Elmusharaf, 2014). Pedagogical guidelines may be excluded with the assumption that 

introductory programming educators will know how to use animation programs.  

Existing animation programs for introductory programming are not adequately 

designed based on a relevant theoretical basis or guidelines for teaching and learning 

like the principles of multimedia learning by Mayer (2005). 

Animation programs should be designed in a way that they are not an end in 

themselves but serve as a bridge to comprehend program code. It was also noted that 

many animation programs have been designed to be suitable for primary and 

secondary schools, but inadequate for students at HEI doing text-based introductory 

programming. Some animation programs focus on program details only with an 

assumption that students understand the basic concepts as important prerequisite 

knowledge. It was also found that some of the animation programs contain too many 

blocks animating the same program code, enough to confuse students. 

 

As part of advancing towards our proposed solution, the next chapter (Chapter 3) 

discusses a theoretical framework in light of the identified gap and proposed solution. 

A theoretical framework consists of theories that frame the proposed study, serves as 

the underpinning theories that guides the entire study. 
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Chapter 3: Theoretical framework 
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3.1 Introduction 

The thesis statement says: “A Teaching and Learning Programming with Animation 

Programs (TLPAP) framework can improve Struggling Introductory Programming 

Students (SIPS) comprehension of Introductory Programming Concepts (IPC)”. As a 

way to address the stated thesis statement, the previous two chapters provided an 

introduction and literature review. In the introduction, it was indicated that 

programming can be difficult for some students. The misconceptions regarding various 

IPC and the limitations of existing teaching approaches define the root of the problem. 

Among various teaching approaches discussed in the literature review, the use of 

animation programs was noted as having the potential to advance the teaching and 

learning of IPC. Therefore, the literature review chapter further discussed existing 

animation programs used in introductory programming. Based on the gap found within 

the use of animation programs in programming education, the research proposes a 

solution in the form of an animation-based teaching approach for SIPS.  

 

This chapter serves as a continuation of the literature review; however, the focus is 

sharpened to the relevant theories that frame the study. This chapter serves as a 

blueprint and the underpinning theoretical engine of our proposed solution. As there 

are various closely related theories concerning teaching and learning, it is important 

to discuss these first before identifying those that will underpin this study. This chapter 

begins by discussing relevant learning theories in section 3.2. Learning taxonomies as 

part of important educational resources are discussed in section 3.3. The teaching 

philosophy and constructive alignment are discussed in sections 3.4 and 3.5, 

respectively. Having discussed all relevant theories relating to the nature of the study, 

section 3.6 presents and argues the applicable theoretical components. The chapter 

is concluded in section 3.7. 

 

3.2 Learning theories 

Learning theories describe how a human being learns, thus outlining the process or a 

belief behind the learning process (Muhajirah, 2020). Some of the common and 

dominant learning theories include behaviourism, cognitivism and constructivism 

(Schunk, 1991; Mergel, 1998; Ben-Ari, 1998; Nagowah & Nagowah, 2009; Muhajirah, 
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2020). These theories have been compared in the work of Ertmer and Newby (1993) 

and found that each is appropriate in various contexts. This section discusses those 

and other learning theories. 

 

3.2.1 Constructivism 

Constructivism is a learning theory and epistemology based on the belief that students 

learn by constructing their own knowledge rather than receiving and storing ordered 

information from the educator (Ben-Ari, 1998). It is an approach that allows students 

to continually reflect on their experiences and further construct new knowledge. 

 

The constructivist theory is in contrast with traditional means of learning where 

information from books and notes is extracted and received as it is. In the constructivist 

teaching approach, active learning and participation happen throughout the outlined 

teaching stages. In a constructivist teaching setup, meaning and symbols cannot 

merely be passed from an educator to the learner. Instead, active teaching and 

learning trigger students to construct knowledge on their own.  

 

The constructivist theory serves as a paradigm shift from an educator-centred teaching 

methodology to a learner-centred teaching methodology. According to Adom, Yeboah 

and Ankrah (2016), if constructivism is applied properly in the area of teaching and 

learning, it can supply powerful learning benefits to students. The roots of 

constructivism can be traced to the work of Jean Piaget (discussed in sections 3.2.2 

and 3.2.3) (Perkins, 1991). Sometimes constructivism is also referred to as one of the 

branches of cognitivism (discussed in section 3.2.5) because both consider learning 

as a mental activity (Ertmer & Newby, 2013). 

  

3.2.2 Piagetian theory 

Jean Piaget, one of the most influential theorists on children's cognitive development 

and learning, developed and modelled a theory of childhood development in 1920 

(Piaget, 1929). One of the key observations within his theory is that he is not interested 

in whether the answer is correct or not, but in the underlying logic behind the answer. 

Piaget emphasises that children interpret the world differently throughout the various 

stages of their lives as their intellectual skills progress. The assumption in this theory 
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is that children interact with the environment as they grow and subsequently acquire 

learning. 

 

This theory suggests that humans go through four different cognitive stages as they 

grow and learn from their childhood stage: Piaget's cognitive stages are sensorimotor, 

preoperational, concrete operational and formal operational. Each stage is detailed in 

Table 3.1. 

Table 3.1: Piaget's cognitive stages 

Stage Age Description 

Sensorimotor 0 - 2 The child develops and understands through interaction with the 
objects in the world. 

Preoperational 2 - 7 At this stage, the child uses acceptable language, grammar and 
mental images to interact with the world.  

Concrete 
operational 

7 - 11 Reasoning skills improve, they start to think dynamically and can 
categorise objects in order. 

Formal 
operational 

11 and older Can evaluate abstract concepts, can form hypotheses and can apply 
learned information in a different context.   

 

3.2.3 Neo-Piagetian theories 

There is literature that connects classical Piagetian theory as discussed in section 

3.2.2 to teaching and learning to program. However, the results have not been clear 

and are somehow disputed (Smith, 1992; Lister, 2011). As a result, Piagetian theory 

has been adapted by other theorists as a way of seeking a new interpretation or 

adapting it to various contexts (Demetriou, Shayer & Efklides, 2016).  Such theories 

that emerge from Piagetian theory are referred to as Neo-Piagetian theories. There 

are several loopholes in the Piagetian theory which have paved way for restructuring 

in the form of Neo-Piagetian theories (Sevinç, 2019). According to Orlando and 

Machado (1996), several loopholes can be delineated as follows: 

• generalising children’s cognitive development; 

• confining stages to ages with no confirmation or evidence;  

• lacking in-depth details of learning stages development; and 

• lacking social consideration. 

 

Some Neo-Piagetian theorists believe in the constructivism learning theory (Sevinç, 

2019), which has been discussed in section 3.2.1. According to Lister (2011), the 

literature indicates a more revolutionised adoption of Neo-Piagetian frameworks than 

the classical Piagetian theory. Nevertheless, Neo-Piagetian theories often contain 
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many assumptions of classical Piagetian theory or have an overlap between them. 

Some of the Neo-Piagetian theories are not bound by age restriction in their 

assumptions, as the theory applies to any individual at any stage of life.  

 

There are a number of Neo-Piagetian theorists, including Robbie Case, Michael 

Commons and Kurt Fischer as examples (Case, 1992; Sevinç, 2019). Kurt Fischer 

argues in his theory that cognitive development cannot progress from one stage to 

another in a linear process because it ignores the behavioural variation of the learner 

(Fischer & Bidell, 2006). Just like constructivists, Fischer emphasises that children 

construct knowledge on their own in a favourable environment and with the assistance 

of social networks. The theory states that such knowledge construction cannot happen 

in a structured or ordered linear procedure.  

 

Michael Commons is another Neo-Piagetian theorist who adapted the last stage of the 

Piagetian cognitive development stage. According to Commons and Ross (2008), the 

final stage of Piagetian cognitive development should not represent the end-point of 

cognitive maturity. Alternatively, Commons and Ross (2008) developed post-formal 

stages (post-formal thought) of cognitive development. Post-formal thought means 

that the students are curious enough to initiate their own creativity and innovation from 

time to time. Commons and Ross’s (2008) post-formal stages are as follows: 

• Systematic stage. Ordered relationships between at least two variables are 

established and systematic coordination takes a central role. 

• Metasystematic stage. At this level, one would have properly mastered the 

systematic stage. Two or more variables are evaluated and compared to others 

in order to come up with an innovative solution. 

• Paradigmatic stage. This stage is dependent on the previous stages, where the 

knowledge of the metasystematic stage is used to coordinate different variables 

to derive or bring about a new paradigm.  

• Cross-paradigmatic stage. At this stage, the new paradigms created in the 

previous stage are experimented with and integrated into a new environment. 

 

Another Neo-Piagetian theorist by the name of Robbie Case has developed a theory 

of executive control and conceptual structures where he bases his formation of 
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developmental stages (Case, 1984) on three elements, that is: environmental 

representation, goals representation and strategical representation to achieve the 

goals. Case (1984) insists that these elements are critical for a child to achieve set 

goals by employing identified strategies. Case also describes four stages (similar to 

the original classical Piaget stages of cognitive development) that interact with 

executive control structures. The stages are described as follows: 

• Sensorimotor stage. A child learns how to see and hold objects. This happens 

from birth to 18 months. 

• Inter-relational structure. A child uses pictures and relates them with action or 

other objects. This happens from 18 months to five years. 

• Dimensional structures. A child develops cognitive abilities through 

representations. This happens from five years to 11 years.  

• Vectorial structure. At this stage, a child can link up different structures learned 

in prior stages and can comprehend difficult relationships. This happens from 

11 years to 19 years. 

 

Generally, Neo-Piagetian theories present excellent observations and assumptions 

compared to the original Piagetian theory. Some of the theories base their extension 

heavily on Piagetian theory while some derive a small portion from it. Educators who 

are interested in the Neo-Piagetian theories must investigate all theories to adopt the 

most appropriate ones.  

 

3.2.4 Behaviourism 

The assumption in behaviourism theory is that conditioning through environmental 

interaction or stimuli channels a learner's behaviour (Quevedo-Torrero, 2009). Such 

an environment is deliberately constructed to trigger certain behaviours. The three key 

assumptions in this theory are environmental triggers, instructional repetition and 

disregard of internal cognitive processes in favour of external stimulus.  

 

Behaviourism focuses on the patterns of behaviours that are repeated continually for 

mastery purposes (Mergel, 1996). This means that the theory advocates a repetitive 

instructional activity for mastery and understanding. Behaviourism theory 

concentrates on observable and measured behaviour as a way to measure if learning 
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has occurred (Good & Brophy, 1990). This means learning measurements do not 

focus on the internal thought process of a learner but on the change of behaviour as 

a result of specific environmental triggers. Therefore, behaviourism is not interested in 

the cognitive process of getting the answer, but its focus instead is on the type of 

answer itself.  

 

3.2.5 Cognitivism 

The cognitivism learning theory is based on observed behaviours which are believed 

to have been influenced by internal cognitive processes (Mergel, 1996). “Cognitive 

theorists recognise that much learning involves associations established through 

contiguity and repetition” (Good & Brophy, 1990: 187).  

 

The assumption in cognitivism learning theory is that the learning process is an internal 

mental process that develops over time for better learning (Ertmer & Newby, 2013). 

Cognitive theory focuses on the mental structures, state of mind, learning processes, 

reception of information, storage of information and retrieval of such information from 

the mind (Ertmer & Newby, 2013). The theory is a direct opposite to behaviourism 

assumptions which disregard the internal thought processes of a learner. This is 

because cognitive theory further focuses on what the learner knows and how learning 

is acquired. The basis of this theory is that existing or prior knowledge must be 

available for learning to happen (Ertmer & Newby, 2013). This is because it is believed 

that existing knowledge will make the processing of new information possible through 

linking and comparison process. According to Schunk (1991), cognitive theory can be 

used in complex areas of learning more than other theories because of its stand on 

the evaluation of mental structures. 

3.2.6 Cognitive theory of multimedia learning 

Cognitive Theory of Multimedia Learning (CTML) correlates with the constructivist 

(discussed in section 3.2.1) learning approach because it also makes use of triggers 

to lead students into constructing their own knowledge. 

 

CTML, was developed by Richard Mayer and is based on the assumption that pictures, 

words and audio can assist in translating to deep learning (Mayer, 2005). CTML is a 
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combination of text and pictures in the form of graphics, video or photos (Mayer & 

Moreno, 1998; Mayer, 2005; Sorden, 2012). Richard Mayer, as a theoretical expert in 

multimedia learning, suggests that students are not treating pictures, words and audio 

as separate entities but using them for knowledge construction. CTML is based on 

cognitive science for multimedia learning which includes dual channels where the 

brain processes information through visual and auditory channels. Firstly, when CTML 

is put into practice the visual channel is activated and then processes whatever 

graphic learning material is presented.  Secondly, the auditory channel is activated 

and processed by the brain separately. The auditory channel is an important 

supplement to pictures, videos or graphic words and further translates to even deeper 

learning. The following figure shows the CTML process.  

 

Figure 3.1: CTML process 

 

Mayer further talks about the limited capacity assumption (LCA), emphasising caution 

against cognitive overload.  He explains that a human being has a limited information 

capacity in the brain and that memory is not infinite. As a consequence, educators 

should avoid situations where information can overflow and be wasted. To avoid that, 

Mayer advises that we choose only relevant information to dispense.  

Another assumption by Mayer is the active processing assumption (APA) which 

resonates in the working memory of a student. In this case, a learner must actively 

engage the multimedia learning material in working memory until the material is 

properly learned, or even pushed towards permanent memory. In this way, Mayer 

explains, the student is creating an appropriate mental model of information. 

 

3.2.7 Conversational framework 

The conversational framework was “developed by analysing the findings from 

research on student learning and using these to generate the requirements of the 
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educator who is responsible for designing the learning process for their students” 

(Laurillard, 2002: 158). The conversational framework was developed by Dianna 

Laurillard in 1993. The theory emphasises that teaching is a dialogue or a conversation 

in a learning process and that learning at a higher level must be both theoretical and 

a practical (Laurillard, 2002; Laurillard, 2013). The framework makes use of the ideas 

of learning theories like collaborative learning, constructivism, instructions and social 

learning. 

 

This framework draws on different media formation, educators, students and other 

relevant pedagogical aspects to support the creation of the learning process, 

especially between educator and student. The specification in the framework is 

important as it can help understand how formal learning occurs and how to best 

develop learning materials. 

 

The theory considers four important components, namely: 

• educator's (or tutor’s) concepts; 

• educator’s constructed environment;  

• student’s specific concepts; and  

• student’s specific actions. 

 

The relationship between the above components is described in Figure 3.2.  Basically, 

Figure 3.2 shows various activities, interactions and adaptions of concepts that 

happen between the educator and the student. Such interactions include specific 

theories from the educator to students followed by questions from the student to the 

educator.  The students adapt the actions in the educator’s constructed environment 

based on the theory and are prompted to reflect based on the experience gained. On 

the other side, the educator adapts the students' tasks and reflects on the students' 

actions and feedback.  
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Figure 3.2: Components of a conversational framework 

 

Laurillard further groups the characteristics of different teaching media into the 

narrative, interactive, adaptive, communicative and productive. The information 

plotted in Table 3.2 presents the characteristics of such media.  

Table 3.2: Conversational framework teaching media 

Media form Learning experience Technology 

Narrative Attending, apprehending Talk, video, television, broadcast, podcast 

Interactive Investigating, exploring Library, compact disk, learning objects, web 

Adaptive Experimenting, practicing  Lab, field trip, simulation, virtual environment 

Communicative Discussion, debating Collaborative environment, online conference 

Productive Articulating, expressing Talk, print, model, digital files, animation, web 
page, blog, wiki 

 

Each media form supports a different dimension of teaching and learning; therefore, it 

may not be possible for one media form to satisfy and support every dimension. 

However, we have noted that some media forms contain possible attributes which 

overlap sightly. Therefore, a combination of media forms may be necessary for deep 

and meaningful teaching and learning. 
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3.3 Learning taxonomies 

Bloom (1956) explains that while different people in the room can view one window, 

they may not see the same thing. This view depends on the posing angle of the person, 

height and overall perspective of the person. A person who has an overall view has 

the chance to see what is happening in the sky compared to what is happening on the 

ground. A person with a limited view can rely on the explanations of another person 

who has a full view. The person being taught has to rely upon and trust the person 

who is explaining the story. On that note, it is very important to understand what 

students know and the state of their current cognitive abilities. This can give a narrator 

(the educator) an idea of how to approach the narration (or, teaching), and this can 

happen through the lens an educational taxonomy.  

The existence of educational taxonomies helps by measuring and categorising 

students’ intellectual levels, thereby forming an important element in any sort of 

pedagogical development. If educational taxonomies are properly used, they can help 

the educator to evaluate students’ cognitive levels which can better inform the method 

of teaching. There are many educational taxonomies proposed and used by various 

institutions of learning. However, Bloom's taxonomy and Structure of Observed 

Learning Outcome (SOLO) are popular and preferred by many educational 

practitioners. The subsequent sections discuss the Bloom and SOLO taxonomies.  

3.3.1 Bloom’s taxonomy 

Benjamin Bloom created an educational taxonomy in 1956 to categorise levels of 

abstraction (Bloom, 1956). According to Azuma, Coallier and Garbajosa (2003), 

Bloom's taxonomy was first discussed at the 1948 American Psychological 

Association (APA) in Boston where topics like examining and education were 

discussed. Bloom categorises learning domains or educational objectives into 

cognitive, affective and psychomotor. This taxonomy classifies learning or thinking 

within the cognitive domain into six cognitive levels, from a simple stage to more 

complex stages (Forehand, 2010). The original version of Bloom’s taxonomy is 

depicted in Figure 3.3. Bloom’s revised version (Figure 3.4) of educational taxonomy 

classifies the lowest stage of learning as remembering where students need only to 

recognise and recall what they have learned. 
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Figure 3.3: Bloom’s taxonomy 

 

 

Figure 3.4: Revised Bloom’s taxonomy 

 

The revised Bloom’s taxonomy by Anderson and Krathwohl (2001) is defined as 

follows: 

• Remembering. This stage is about memorising and being able to recall. For 

example, a question like "What is the capital city of the United States?" requires 

a learner to remember. 

• Understanding. At this stage, the students should be able to explain in their own 

words. This means they must interpret, exemplify, classify, summarise, infer 

and compare.   

• Applying. Here the learner should be able to apply knowledge gained in a 

different context.  

• Analysing. At this stage, the learner is capable of linking and examining the 

relationship between various concepts. 

• Evaluating. The learner can appraise, criticise or justify a situation based on the 

knowledge gained.  

• Creating. At this stage, the learner should be capable of identifying the problem 

and creating an original solution.  

3.3.2 SOLO taxonomy 

SOLO is an educational taxonomy and systematic way of dealing with approaches to 

learning and the general intellectual development of a learner (Biggs & Collis, 1982; 

Lister et al., 2006; Biggs & Collis, 2014). SOLO was developed by Biggs and Collis 
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(1982) and has primarily been used as a hierarchical model to evaluate or classify 

students’ responses to various levels of complexity. Table 3.3 shows the stages of the 

SOLO taxonomy. 

Table 3.3: SOLO taxonomy 

Prestructural Unistructural Multistructural Relational Extended 
abstract 

 

  

 

 

 

Similar to Bloom, the stages of the SOLO taxonomy begin with the lowest stage 

(prestructural) progressing until the last stage (extended abstract). According to Biggs 

and Collis (1982), the stages are described as follows: 

a. The prestructural stage is when the learner is missing a point and not 

competent; no learning has taken place and help is needed to initiate learning.  

b. The unistructural stage is when the learner is capable of following simple things 

like naming, following and identifying. A symbol of one bar line in Table 3.3 

means a learner learned one thing which is not related to anything nor 

coordinated with other things. 

c. The multistructural stage is when the learner can list, describe or combine. A 

learner learned several things but cannot relate them yet. A symbol of three 

bars in Table 3.3 means that they are not connected, indicating loose or 

scattered knowledge. 

d. The relational stage is when the learner can integrate a structure, have a 

coherent understanding, can analyse, apply, compare, relate, argue and justify. 

In this stage, the learner can link ideas and relate them to make sense of one 

coordinated whole. 
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e. The extended abstract is when the learner can formulate, create, hypothesise 

and reflect. This means that the learner uses the idea or knowledge gained in 

the relational stage and extends it. 

SOLO has been used and preferred in programming education (Whalley et al., 2006).  

For example, the work of Malik, Tawafak and Shakir (2021) has emphasised alignment 

and assessment of teaching approaches to SOLO taxonomy. The main features of 

SOLO that stands out as compared to Bloom's taxonomy is that it focuses on 

observable outcomes, the process and the depth of understanding.  

3.4 Teaching philosophy 

Teaching philosophy is a personal or public statement about the beliefs, values, 

attitudes or culture that is supportive of teaching (Goodyear & Allchin, 1998). The main 

component of a teaching philosophy is the description of how learning occurs, the 

intervention strategies, goals, professional development and steps to achieve them 

(Chism, 1997), “Articulating an individual teaching philosophy provides the foundation 

by which to clarify goals, to guide behaviour, to seed scholarly dialogue on teaching 

and to organise evaluation” (Goodyear & Allchin, 1998: 103). A teaching philosophy 

can serve as a reflection or clarification for the teaching practice (Murray, 1997). There 

are many statements of teaching philosophies documented by professors and 

educational organisations with varied compositions and structures (Chism, 1997). 

Some examples of teaching philosophy can be found in a book by Schmier (1995) 

entitled, The humanity of teaching. 

 

Goodyear and Allchin (1998) suggest that a teaching philosophy can be formulated by 

reflecting on the experiences, observations, mission, the vision of the faculty and 

literature on teaching and learning. This means that a teaching philosophy should not 

be in contradiction with an adopted learning theory. Goodyear and Allchin (1998) 

further contend that a teaching philosophy should demonstrate creativity and 

innovation; the implementation of a teaching philosophy is important as the theory is 

put into practice. The details of such actions or implementation strategies are to be 

included in the statement of teaching philosophy. 

 



60 
 

Even though there is no fixed format for an acceptable teaching philosophy, Chism’s 

(1997) advice on the general format of teaching philosophy is as follows: 

• A teaching philosophy should be brief, document length guided by context. 

• A teaching philosophy should be written with simple terminology. 

• A teaching philosophy should use first person in the narrating statements. 

• A teaching philosophy should come from someone who is professionally 

committed to teaching and learning.  

 

3.5 Constructive alignment 

Constructive alignment (CA) by John Biggs (1996) is an outcome-based approach 

wherein the intended learning outcomes are designed before teaching and learning 

can happen. This means that teaching and learning methodologies and the 

assessments are aligned or shaped to the intended learning outcome (Biggs, 2001; 

Biggs & Tang, 2010; Wang et al., 2013) (see CA flow in Figure 3.5).  

 

 

Figure 3.5: Constructive alignment framework 

 

CA has been popularised, found to be effective, powerful and is viewed as the most 

influential model in teaching and learning by many universities (Houghton, 2004; Biggs 

& Tang, 2010; Kandlbinder, 2014). CA has also been made a policy in some higher 

education institutions as it is in support of the modern curriculum and validates the 

quality of the qualifications (Loughlin, Lygo-Baker & Lindberg-Sand, 2021). Teaching 

and learning that is aligned to the intended learning outcomes bring necessary 
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consistency across the board, including the assessment (Kandlbinder, 2014). The 

design strategies of traditional approaches to teaching, learning and assessment are 

mainly random or consist of loose entities that have no communication links to one 

another.  Moreover, traditional means view teaching as transmitting of information from 

the educator to the student, so the teaching plan is focused on what the educator does 

(Biggs & Tang, 2010). Contrary to these traditional means, the CA approach is one in 

which the educator focuses on the outcome and each entity is in support of another 

entity. 

 

In the CA, the assessment addresses the described learning outcomes (Kandlbinder, 

2014). In this way, the educator sees if the intended learning outcomes have been 

achieved by the students. Assessment in constructive alignment is rubric-oriented 

rather than grading through the calculation of marks (Biggs & Tang, 2010). Biggs and 

Tang (2010) emphasise that assessment in CA should be qualitative rather than 

quantitative-driven. This means that the evaluation and analysis of the assessment 

should adopt qualitative methodologies. It is also recommended to relate the question 

to the bigger picture to resemble the relational stage of SOLO taxonomy (Trigwell & 

Prosser, 2014). 

 

CA is compatible and aligned with the constructivist learning theory (Biggs, 1996) 

(discussed in section 3.2.1.). This is because CA is centred on activities that promote 

active learning (Loughlin, Lygo-Baker & Lindberg-Sand, 2021).  

 

3.6 Applicable theoretical components of TLPAP  

This section discusses the applicable theoretical components of TLPAP.  

3.6.1 Overview TLPAP theoretical components  

I have discussed various theories of learning and other related theories in the previous 

sections of this chapter. The discussion paved a way for us to select and use relevant 

or applicable theories in this study. The TLPAP is therefore underpinned and framed 

by CTML, conversational framework, constructivism and the application of 

constructive alignment (see Figure 3.6).  
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Figure 3.6: TLPAP applicable theoretical components 

 

3.6.2 Adopted learning theories  

Our study is making use of animation programs to trigger knowledge construction. 

Therefore, it is vital that the alignment of this research be guided along the lines of 

relevant theoretical framing, identified as CTML, constructivism and conversational 

framework. 

The CTML assumption is appropriate for TLPAP and is further grounding the TLPAP 

framework development, animation development and teaching and learning. CTML is 

relevant because the theory was designed in relation to how a human mind works 

(Mayer, 2005). The general CTML recommendations and guidance like animation 

structuring and how human-beings learn with animations are well within the frames of 

TLPAP. 

The conversational framework by Laurillard (section 3.2.7) is adopted based on its 

relevance to the university setup and multimedia learning. Since TLPAP is designed 

for students at a higher education level like the university and contains different media 

formats, the adaption of the conversational framework comes in handy. More 

importantly, the conversational framework focuses on the student and the educator 

communication framework when using technology resources like multimedia 
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resources. There are five media forms (depicted in the previous section, in Table 3.2) 

in the Laurillard framework and adaptive and narrative media are appropriate to shape 

the TLPAP. Adaptive media accommodates and promotes experimentation and 

practicing which is relevant to the nature of programming education. The media form 

also supports the simulative structure of the TLPAP. I have also found the narrative 

media form appropriate, which further validates the discussion and explanation during 

the simulation broadcast of the animation programs. 

Teaching and learning to program through the traditional methods (opposite to 

constructivism) can be incompatible for some students due to the abstract nature of 

program coding. Therefore, I find the constructivist approach (also compatible with the 

conversational framework and CTML) appropriate as an application and belief that 

forms the basis of teaching in the TLPAP framework. The constructivist approach is 

also compatible with the CA necessary for TLPAP. CA is a constructivist-oriented 

pedagogical approach that emphasises the alignment of learning, teaching and 

assessment to the intended learning objectives. In CA, learning outcomes are aligned 

to the assessment and teaching. I also adopt and apply CA in TLPAP based on its 

novelty and consistency across teaching, learning, assessment and learning 

objectives. This is important because teaching does not take place in the absence of 

learning and assessment.  The view of CA within TLPAP is depicted in Figure 3.7.  

 

 

Figure 3.7: TLPAP adapted constructive alignment 
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In Figure 3.7, the intended learning outcomes are part of programming (in various 

cycles of action research) for the effective use of TLPAP. Furthermore, such learning 

outcomes are developed under the premises of the SOLO taxonomy. The use of 

SOLO further helps in having the appropriate verbs for the intended SOLO level (Biggs 

& Tang, 2010).  

 

Successful compilation of programming code or an algorithm requires the learner to 

hold the attributes of stage 4 (relational stage) of the SOLO taxonomy. An algorithm 

that consists of analysing a scenario, variable declarations, storing values, interacting 

with values conditionally, storage, sequential steps, iterating necessary programming 

statements and grouping similar programming statements requires a learner to 

possess relational stage attributes. This means that anyone who struggles to 

comprehend questions in the relational level of SOLO is struggling or is categorised 

as SIPS. Therefore, the new means of teaching is a deliberate effort and novel means 

to advance students to the relational level of the SOLO taxonomy.  

 

To deal with the assessment/evaluation of feedback, programming code is categorised 

as per Whalley et al. (2006) in Table 3.4.  

Table 3.4: SOLO and Whalley et al. (2006) programming code benchmarking 

SOLO Programming code benchmarking 

Prestructural The algorithm is not related to the question. 

Unistructural The student answers one aspect of the question in the algorithm. 

Multistructural The student can put line by line programming statements together and 
sometimes the summary is included.  

Relational The student can summarise the programming code according to the question. 

Extended abstract No data 

 

We are not able to push SIPS to reach an extended-abstract level of SOLO taxonomy 

at this stage as we are dealing with a struggling novice programmer; usually that level 

can only be achieved through overtime learning and repetition. In this way, it 

substantiates our proposed TLPAP not as a standalone teaching solution but as a 

coordinated teaching strategy informed and connected to a relevant cognitive level, 

assessment, learning and taxonomy.  
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3.6.3 TLPAP teaching philosophy 

In this section, I give directions and the necessary theoretical basis and parameters 

for formulating a teaching philosophy compatible with TLPAP or for programming 

education in general. It is important to note that in this section I am not able to prescribe 

a specific or fixed teaching philosophy as it is a personal or individualised assumption. 

While a teaching philosophy differs from person to person, as indicated in section 3.4, 

sometimes a person is asked to align a philosophy with certain aspects of the 

organisation or literature in order to avoid contrary statements or practice. Similarly, 

this section outlines the relevant basis for one to consider formulating a teaching 

philosophy within the area of programming education or when adopting TLPAP. 

Section 3.6.3.1 describes the nature of program code with a relevant emphasis using 

Stein (1998). This is to help the educator understand the structure of programming. 

Having understood the structure of programming, the subsequent section (section 

3.6.3.2) consists of the fundamental basis of teaching to program which is an attempt 

to innovate the teaching of programming relevant to the relational level of SOLO 

taxonomy.  

3.6.3.1 Computation as interaction 

Teaching and learning to program should be viewed from a point of computation as 

interaction rather than computation as calculations (Stein, 1998). Programming should 

be taught from the introductory programming stage as embedded entities interacting 

with a dynamic environment just like in video games and robotics. Programming is 

about putting an ordered set of instructions to the computer to act in a certain way. 

Such instructions are called an algorithm or program code. A program code must be 

designed in a desired sequential order so that the interaction of such instructions is 

not ambiguous. Teaching programming from the knowledge of computation as an 

interaction view can lay a good foundation for successful comprehension from a high-

level perspective down to fine details of a program code. Therefore, before one can 

think of going deeper into developing a teaching philosophy or relating the philosophy 

to any learning theory, it is important to have a clear understanding of the nature of 

programming. Figure 3.8, accessed from Seaton (2020), is a sample data structure 

called sea-of-nodes that shows a novel way of seeing a compilation behind a program 

code and shows how interactive programming code can be, which further vindicates 

computation as an interaction basis. 
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Figure 3.8: Computation as interaction illustration 

 

The sea-of-nodes in Figure 3.8 presents an overview of how a piece of a program 

code was compiled and one can analyse the structure of data flow without seeing the 

actual code. The red arrows in the figure are for control flow; the green arrows mean 

data flow and boxes (rectangles) are operations. The P stands for the parameter; 

therefore, P(0) will mean a parameter of zero. The C stands for constant; thus it means 

C(2) value. The case is not necessarily to look into the fine details of Figure 3.8, as 

the main purpose of depicting it is to visualise a sea-of-nodes data structure in a high-

level view of program data flow during compilation and program code interactivity. The 

main argument is that keeping such structure (any type of data structure) in mind 

should influence a teaching philosophy.  
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3.6.3.2 Relational understanding 

A thorough understanding of the nature of program code or compilation of program 

code as discussed in the previous section should in part inform a relevant teaching 

philosophy. The study proposes a teaching philosophy that promotes relational 

thinking and understanding. Therefore, I borrow from Skemp’s (1976) theory on 

relational understanding to further shape a relevant teaching philosophy which is 

compatible with programming education and TLPAP. 

 

In Mathematics education, Skemp (1976) defines two types of understanding or 

thinking as instrumental and relational. Skemp’s theory suggests that instrumental 

understanding means that students know the rules and how to apply them without 

understanding the reason behind them. Basically, the students apply the rules without 

substantiated knowledge. For example, a student is taught and learns to get the 

algebraic question correct, with no real understanding of a reality or what the solution 

means. It is akin to memorising to learn the correct answers, but then it ends there. 

Relational understanding is about knowing why and how the rules work the way they 

do. As it is about being able to relate or connect to other rules, it means that a student 

has succeeded in acquiring contextual knowledge. However, the prerequisite for 

relational understanding is instrumental understanding.  

According to Skemp, the following are the advantages of relational understanding: 

- easily adaptable to other activities; 

- easy to recall; 

- effective; and 

- organic relational schemas. 

As part of the TLPAP framework or as a basis for a relevant teaching philosophy, 

Skemp’s instrumental understanding is equated to the knowledge of programming 

syntax and its application. Syntax is a set of statements written using a certain 

programming language. Relational understanding is equated with the understanding 

of how to write down and relate a program code, thereby forming a logically 

coordinated program code. In mathematics education, a student must learn 

instrumentally since it is a requirement to initiate relational understanding. Similarly, in 
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programming education, a student needs the knowledge of syntax (instrumental 

understanding) before using the same syntax to write a logical algorithm (relational 

understanding) which will likely have a sea-of-node type of data structure, as explained 

in section 3.6.3.1. I relate Skemp’s relational understanding with programming 

education because introductory programming students need to deeply know how and 

why they write a programming code to deliver a coordinated solution. However, unlike 

instrumental understanding from the mathematics education side where it is enough 

to produce the correct answer, in programming education the knowledge of syntax 

alone is not enough to produce a coordinated algorithm.  

As indicated in the issues of teaching and learning to program (Chapter 2), some of 

the challenges include teaching students to master the syntax, while simultaneously 

enhancing comprehension to develop a logically coordinated algorithm. Because of 

that issue, some academic departments emphasise relational understanding more 

than instrumental understanding by making use of pseudocode.  With pseudocode, 

the syntax is made easy as it is English-like wording, but sequence and logic remain 

the main part of the pseudocode (Pyott & Sanders, 1991). Similarly, the focus on 

relational understanding should be aimed at enhancing comprehension and promoting 

conceptual understanding (Pea, 1986) more than improving syntax knowledge. For 

example, if the programming code’s display statement is incorrect but displays in the 

correct place or correct order, then it is logically correct. Syntax knowledge should 

improve over time through repetition to master the language. Additionally, compilers 

help students to correct syntax errors by detecting and suggesting possible solutions. 

Skemp's relational teaching and understanding is also compatible with our target 

SOLO level (relational level), which further emphasises the importance and relevance 

of this theory to TLPAP or programming education in general.  

3.7 Conclusion 

Various learning theories have been discussed in the first section of this chapter. The 

discussion gave insight into learning theories. As a result, applicable theories were 

identified that can shape, design and frame TLPAP. CTML, constructivism and 

conversational framework have been identified as applicable theories that underpin 

TLPAP. CTML is used as a guide to the design and effective use of animation 

programs. Conversational framework and constructivism underpin the design and 
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application of TLPAP. The exact details of how such designs happened are presented 

in Chapter 4 (Methodological approach). 

The constructive alignment (CA) framework has also been identified as a critical 

component of TLPAP.  CA is based on developing and aligning learning outcomes to 

teaching, learning and assessment. The TLPAP is designed to function within the 

parameters of CA which further enables the benefits of consistency and quality across 

teaching, learning, learning outcomes and assessment. This chapter has also 

presented some background on the nature of program code to guide the formation of 

a teaching philosophy, a personal or public statement that is supportive of teaching 

and learning. The subsequent methodological approach (Chapter 4) is rendered 

compatible under the umbrella of a given theoretical framework. 
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Chapter 4: Methodological approach 
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4.1 Introduction   
My thesis statement states, “A Teaching and Learning Programming with Animation 

Programs (TLPAP) framework can improve Struggling Introductory Programming 

Students (SIPS) comprehension of Introductory Programming Concepts (IPC)”. This 

study has laid out an introduction in Chapter 1 which emphasised the difficulty of 

learning programming for SIPS by outlining several challenges of learning to program. 

These challenges are found within the introductory concepts like assignment, 

decisions, nested decisions, repetitions, nested-repetitions, function parameters, 

function references and arrays. More details of these introductory programming 

challenges were addressed in Chapter 2 (a literature review). Chapter 2 also 

discussed the limitations of the existing approaches of teaching to program, the 

potential uses of animations and the limitations of existing animation programs. The 

theoretical framework (Chapter 3) discussed various theories relating to teaching, 

learning and animation programs. Chapter 3 was concluded with the applicable 

theories that frame or underpin this study. These theories include constructivism, the 

conversational framework, Cognitive Theory on Multimedia Learning (CTML), 

Structure of Observed Learning Outcomes (SOLO) and the Constructive Alignment 

(CA) framework. 

The discussion of this chapter continues by presenting the research methodology in 

this study. A research investigation is typically undertaken under a specific research 

methodology. Research methodology is a plan that is theoretically informed to conduct 

a study (Ladislav & Ellen, 1984), and further informs the choice of specific research 

methods (Crotty, 1998; Grix, 2004; Rehman, & Alharthi, 2016).  A research 

methodology can be in various dimensions depending on the nature of the study 

(Kothari, 2024). A well-organised methodology helps in answering research questions 

(Goddard & Melville, 2004).  The research question addressed in this chapter is as 

follows:  

- How can we develop a TLPAP framework for teaching and learning IPC?  

This research question is addressed by presenting a research methodology. The 

chapter begins by discussing the methodological perspective in section 4.2, research 

paradigms in section 4.3, research design in section 4.4, evaluation strategy in section 
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4.5, action cycles progression in section 4.6, limitations of the study in section 4.7, 

ethics statement in section 4.8 and conclude the chapter in section 4.9. 

4.2 Methodological perspective 

There are three main methodological approaches in a scientific investigation: 

qualitative, quantitative and mixed method approach (Steckler et al., 1992; Gray et al. 

2007; Ortiz & Greene, 2007). The quantitative research approach focuses on quantity, 

statistics or numbers while the qualitative approach focuses on quality (Kothari, 2004). 

Quantitative research is about quantifying data and analysing variables through 

statistical means (Apuke, 2017). Data in quantitative research is concerned with 

mathematical models or statistical analysis while qualitative data is concerned with 

categorising, summarising or interpreting (Saunders, Lewis & Thornhill, 2007; Apuke, 

2017). Furthermore, qualitative research strives to achieve deeper meaning of the 

phenomena, exploration of a thought process or the process of in-depth insight 

(Strauss & Corbin, 1998; Creswell, 2016). Examples of qualitative methods include 

studying documents, interviews, interacting closely with humans or seeking deeper 

meaning from field notes or documents (Apuke, 2017). 

 

A mixed-method approach is a combination of quantitative and qualitative methods to 

solve a research problem (Creswell, 2003; Tashakkori & Creswell, 2007). A mixed-

method approach is adopted when a problem cannot be fully solved using either a 

qualitative or quantitative approach separately (Creswell, 2003). This means that the 

nature of the study should inform whether the study is taking a qualitative route, 

quantitative route or mixed-method approach. 

 

This study is generally qualitative because it intends to study, understand and interpret 

students' algorithms. These algorithms are studied to assess the impact of the adopted 

teaching and learning methods adapted in this study. The other qualitative methods of 

data collection like interviewing the students and “talk aloud” are not considered as the 

written exercises (algorithms) reflects what the students thought and understood 

before and after the intervention. 
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4.3 Research paradigm 

Research paradigm refers to the philosophical basis that grounds scientific 

investigation or a source of the basis for a researcher’s worldview or assumptions 

(Lincoln et al., 2011; Krauss, 2005; Babbie, 2014). All research must be guided by a 

specific paradigm (Botha & Taylor, 2022). There are three common paradigms that 

can underpin a scientific investigation within our field of study: that’s positivism, 

interpretivism and critical theory (Rehman & Alharthi, 2016). Post-positivism and 

pragmatism (emanating from positivism) have also been noted as common paradigms 

(Guba, & Lincoln, 1994; Kankam, 2019; Kaushik & Walsh, 2019). The following 

sections explain each research paradigm.  

4.3.1 Positivism 

The assumption in positivism is that reality exists on its own, is context-free and is not 

influenced by humans (Richards, 2003). This means that the ontological assumption 

of positivists is more of realism because reality is natural (Rehman & Alharthi, 2016). 

The positivists’ epistemological stand is on objectivism, meaning they are anti-

subjective in their scientific investigation. They describe phenomena as they are, 

without interference or intentional conditioning that may lead to disturbance to nature.  

The positivist approach relies on experiments, observation, deductive analysis and 

construction of laws. Positivists also rely more on statistical or quantitative approaches 

(De Villiers, 2005). A positivist researcher is not to be influenced by the objects nor 

should the objects influence the researcher. Most of the time, the results of a positivist 

researcher are claimed as true if the procedure can be repeated and yield the same 

results (Guba & Lincoln, 1994).  

4.3.2 Post-positivism 

Post-positivism was formed as an alternative to positivism, which addresses some of 

its criticisms or rejected philosophical assumptions (Henderson, 2011; Kankam, 

2019).  The assumptions embedded in the post-positivist paradigm are that knowledge 

is subjective, is socially or mentally constructed by individuals and is not fixed 

(Henderson, 2011). Positivists are regarded as realists; however, post-positivists are 

regarded as critical realists (Guba, 1990). In post-positivist research, the period of data 

collection can be short, can work with a small sample, and can look for in-depth data 

analysis and interpretation (Fischer, 1998). Furthermore, in post-positivism, the 
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quantitative nature is not totally absolved, but it rather advocates for multiple 

approaches or dimensions of various methods like triangulation (Fischer, 1998; 

Panhwar, Ansari & Shah, 2017).  Post-positivism is regarded as a mixed paradigm, a 

mixture of positivism and interpretivism (Panhwar, Ansari & Shah, 2017). The 

interpretivism paradigm is explained in the subsequent section (section 4.3.3). 

4.3.3 Interpretivism 

The interpretivist assumption is that reality does not exist on its own, but through the 

influence of the senses. Unlike positivists who accept the natural world as it is, 

interpretivism accepts constructed realities. The interpretivist epistemological stand is 

based on subjectivism; hence reality is socially constructed, not found or accepted as 

it is. Interpretivists gather data for a prolonged duration and seek patterns within that 

data. Data collection, mainly through a verbal approach rather than statistical methods, 

means that they collect qualitative data rather than quantitative data (Gall, Borg & Gall, 

1996; Roller, 2016). Examples of interpretivists’ qualitative data include interviews, 

observations, field notes and documents (Rehman & Alharthi, 2016). The qualitative 

methods of data collection are utilised well under the umbrella of interpretivism.  

4.3.4 Critical theory 

Critical theory, originating from various philosophers, claims that reality is shaped by 

the interaction of history, culture, politics, gender, ethnicity and religion (Guba & 

Lincoln, 1994). In critical theory research, the beliefs of the researcher influence the 

participants or the overall study and the objects under study are interconnected. This 

means that the mindset of an individual in critical theory research can be adjusted by 

those in a position of power (Brooke, 2002).  Research under critical theory is primarily 

conducted by those who are in political positions; their research is to be evaluated 

from a critical viewpoint (Kincheloe & McLaren, 2005). The methodological approach 

under critical theory is dialogical (Botha & Taylor, 2022).  

4.3.5 Pragmatism  

The philosophical assumptions in pragmatism state that past experiences, which 

include beliefs, form part of human action (Kaushik & Walsh, 2019). Pragmatists 

believe that knowledge cannot be viewed as a reality but is socially constructed 

through human experience, meaning that assumptions are similar to constructivism 
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which also relies on linking the past experiences to learn new content. Pragmatism is 

action-oriented: thought processes always leads to a specific action (Pansiri, 2005; 

Goldkuhl, 2012). This assumption further states that each action has its own 

consequences and the meanings can be derived from such consequences. In 

pragmatism, both reality and world are non-static as action constantly changes 

everything. 

 

Pragmatism is typically for practical-based research which strives to solve practical, 

real-world problems (Maxcy, 2003). Moreover, pragmatism offers a flexible 

methodological approach and research design to conduct a study which is guided by 

the nature of the scientific investigation.  

4.3.6 Adopted research paradigm 

I have discussed what each research paradigm entails. The discussion led to the 

insight to adopt a relevant research paradigm that can guide and inform this study. 

There are two paradigms which are close to the qualitative nature of this study, that is 

the interpretivism and pragmatism. Based on the nature of the study, it is more 

appropriate to adopt the pragmatism research paradigm because this allows flexibility 

of adopting a relevant research methodology based on the nature of the research 

question rather than being restricted to methodologies of an adopted paradigm 

(Brayman, 2006; Goldkuhl, 2012). The applicability of pragmatism in this study allows 

the adoption of a qualitative approach while making use of quantitative means if 

deemed necessary. The study is primarily based on a qualitative approach which 

focuses on the analysis of SIPS algorithm exercises during action research cycles 

(discussed in section 4.4.2). 

4.4 Research design 

Research design concerns how the whole scientific study is logically organised for 

answering research questions, including research strategies and direction (De Vaus, 

2001; Saunders, Lewis & Thornhill, 2007). The following sections present the design 

flow of this study. 
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4.4.1 Animation programs design 

Chapter 3 (theoretical framework) has discussed and adopted CTML by Mayer (2005). 

The theory discusses how the human mind works in learning with the assistance of 

multimedia material or animation. The design of our TLPAP animation programs 

adopts 12 principles of multimedia as prescribed by Mayer (2005), which are 

applicable and compatible with the TLPAP framework. The following section explains 

each principle of multimedia learning, indicating its applicability and implications in the 

TLPAP animation design. 

a Coherence principle. This principle states that the multimedia material should 

not be extraneous as it can distract learning of the main content.  

 

TLPAP applicability: The principle is applied in the design of TLPAP animation 

programs by ensuring no inclusion of extraneous material that may distract 

learning within the animation programs. The visuals and text within the TLPAP 

animation programs are simple. More importantly, the animation design has 

been deliberately simplified because the target is SIPS. 

 

b Signalling principle. Most of the time, the screen can be populated with various 

animations; therefore, this principle is about signalling the learner to a specific 

animation or activity at a time to ensure that students do not get lost during a 

presentation.  

 

TLPAP applicability: The animation program in the TLPAP draws the attention 

of the learner by an arrow or highlighting the currently executing line of code 

with blue colour. Furthermore, an animated scenario is a result of a pointed or 

highlighted line in a program code section. 

 

c Redundancy principle. The inclusion of visuals, narration and text within the 

animation can confuse the learner. This must be avoided as it can divide the 

learner’s attention to know whether to focus on narration or text in support of 

visuals. 
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TLPAP applicability: To avoid confusion, TLPAP relies on narrative media by 

the actual educator (also adopted from the conversational framework) during 

animation program visualisation. Text is included but is minimal, short and part 

of program code or animation program. The pre-preparation of animation, code 

explanation and repetition of animation demonstration as prescribed through 

pedagogical guidelines (discussed in Chapter 7 section 7.4) play important role 

in text (or program code) clarity.  

 

d Spatial contiguity principle. The space between a text and the corresponding 

visuals or animation may increase cognitive load and be difficult for some 

students to decipher. The text and the corresponding visuals must be located 

strategically next to one another.  

 

TLPAP applicability: All relevant text has been placed next to corresponding 

visuals to ease comprehension. 

 

e Temporal contiguity principle. This principle emphasises that a human being 

learns much better when narration and animation happen simultaneously. The 

method is preferred over having animation first followed by a separate narration 

about the animation. 

 

TLPAP applicability: The principle is properly applied in the TLPAP. The 

educator narrates as the animation unfolds or progresses and both are in sync. 

Occasionally the narration is in the form of an embedded pre-recorded audio; 

however, for TLPAP, the narration is done live by the educator at that moment 

in time. 

 

f Segmenting principle. This principle states that visuals should be in segments 

and should be paced accordingly.  

 

TLPAP applicability: TLPAP segmented animation programs into concepts. For 

instance, the animation program on introductory concept is separate from the 

animation program on decision statements. Each concept is further segmented 
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into other sub-segments like the animation for introducing a concept and the 

animation for presenting the actual concept. Furthermore, an adjusting option 

has been placed into the animation program whereby it is possible to set the 

pace of the animation program to animate slow, very slow or normal.  

 

g Pre-training principle. This principle is about teaching students’ the basics first 

before introducing the main concepts through animations as this can 

overwhelm students if it happens suddenly. This can include key concepts, 

terms and even basic information about teaching and learning with animations 

or visuals.  

 

TLPAP applicability: Each concept is started with simple animation programs 

for concept introduction which equates to minimal animation. As a result, the 

students progress smoothly into the main concept animation following the basic 

prerequisite information on how animations worked on the introductory stage.   

 

h Modality principle. This principle emphasises that a pair of visuals and narration 

are more productive in learning than a pair of visuals and text. In the case of 

visuals and narration, the cognitive load is distributed through both verbal and 

visual channels.  

 

TLPAP applicability: The narration is done during the demonstration of 

animation program and emphasised the clarity of visuals in the design of our 

animation programs.  

 

i Multimedia principle. This principle emphasises that pictures and words result 

in more meaningful learning than words or narration alone. 

 

TLPAP applicability: A combination of relevant animations and text in the 

TLPAP have been included. However, as indicated previously, text is minimal.  

 

j Personalisation principle. This principle is about adjusting the tone or language 

of teaching and learning into lower formality as it encourages learner 
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engagement more. It states that conversational learning or informal learning 

improves learning and comprehension.  

 

TLPAP applicability: The personalisation principle is applied in TLPAP; hence, 

the adopted conversational framework (discussed in Chapter 3, section 3.2.7). 

This is achieved by delivering conversational narration during animation 

program presentations and between segment breaks. 

 

k Voice principle. According to this principle, a recorded human voice is more 

effective than computer-generated audio.  

 

TLPAP applicability: A real voice that narrates during the animation program is 

used. Moreover, a recorded human voice can be included and embedded in the 

animation program when needed. 

 

l Image principle. A talking head video is not an effective learning experience. It 

is recommended that learning be incorporated within the text, visuals or audio 

rather than in a talking head video. 

 

TLPAP applicability: The TLPAP animation programs do not incorporate a 

talking head video, as it relied on text, visuals and narration. 

The above principles have shaped the design of the animation programs and are 

instrumental for effectiveness of the TLPAP. The same principles have also shaped 

the formulated set of pedagogical guidelines (in Chapters 6, 7 and 8) which forms part 

of TLPAP. The guidelines evolved during the action research cycles (from cycle 1 to 

cycle 5). The following section discusses the action research methodology.  

4.4.2 Action research 

The research methodology followed in this study is an action research approach 

(Creswell, 2003). The action research approach is a type of qualitative research that 

also fits in the pragmatism paradigm. Kaushik and Walsh (2019:2) explain that the 

“focus is on transforming the lives of socially marginalised populations”. Therefore, 

action research is relevant for this study as teaching and learning will be applied in the 
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real world to assist SIPS enrolled in the introductory programming modules. Because 

the solution is applied in the educational setup, theory (research) and practice 

(intervention in practice), the implementation of the solution in the form of action 

research is clearly relevant (Kearney, Wood & Zuber-Skerritt, 2013). This will help us 

to improve the TLPAP teaching and learning guidelines and relevant animation 

programs towards a fully complete framework. 

 

There are two forms of action research, namely practical action research and 

participatory action research (Creswell, 2003). Participatory action research focuses 

on life-enhancing changes. This study, however, takes the practical action research 

route because it seeks a solution to improve practice by focusing on students, 

educators and methods of teaching and learning (Creswell, 2003). Practical action 

research in educational environment allows the educators to reflect on their teaching 

approaches, to continually improve teaching practices, to explicit about the practical 

activities and test new solutions (Newton & Burgess, 2008; Salite, 2008; Elliott, 2011). 

Furthermore, educational action research works along with the constructivism learning 

theory (Aldridge, Fraser & Sebela, 2004; Zehetmeier et al., 2014). As discussed in 

Chapter 3, section 3.2.1 and section 3.6, constructivism has been adopted as one of 

the theories that underpin or frame this study.  

 

Figure 4.1 clarifies the action research process and cycles. 

 

 

Figure 4.1: Action research cycles 

 

At the beginning of each action cycle, the plan is provided for the new cycle of action 

research. The implementation of the outlined plan is the action in the action research. 

During action research process, the researchers do observation which is necessary 

for re-planning and reflections. Reflections is done at the end of each cycle and is 

based on the activities and overall results obtained during action cycle. When the re-
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planning for the new cycle happens, revised reflections are continually put into 

practice. 

4.4.3 Experimental setup, pre-testing and post-testing of SIPS 

To check if the proposed TLPAP yields improved results during implementation, a 

relevant experimental setup is adopted. Firstly, I invited all students through an 

invitation letter placed in the learning management system. The letter emphasised that 

attendance is voluntary but recommended and targeted at the SIPS.  The emphasis 

on targeting SIPS in the recruitment strategy is important because the pre-test and 

post-test methodology requires the actual SIPS. If the invitation was extended to all 

students, the risk would be that minimal difference between pre-test and post-test 

results could have occurred which would fail to indicate anything about the 

experimental progress of TLPAP. For example, the pre-teaching and post-teaching 

algorithms of a non-SIPS would have no difference, leaving nothing to analyse or to 

compare patterns of improvement within the algorithms. However, I have noted within 

the pre-teaching and post-teaching algorithms that a few non-SIPS still participated in 

the study. The identification of non-SIPS participants helped us to exclude such 

patterns in the analysis of results. The exact criteria to filter SIPS and non-SIPS 

participants is discussed in section 4.5 under the “R→R” transition.  

 

The researcher taught in the experimental group and other introductory programming 

lecturers taught in the control group. As per educational practical action research 

methodology, it was important for the researcher to be in the experimental group to 

experiment, experience and observe a teaching practice which then helped in re-

planning and reflection of the subsequent action cycles. Furthermore, the principal 

researcher was responsible to evaluate both pre-teaching and post-teaching algorithm 

exercises. As a result, the principal researcher was able to plan and implement each 

cycle of action research based on the outcome of the previous cycle analysis.  

 

The pre-test (pre-teaching algorithm exercises) approach allowed us to test the state 

of students understanding before the implementation of a planned intervention. The 

post-test (post-teaching algorithm exercises) approach allowed us to check the state 

of students understanding after the intervention was carried out. An algorithm is an 

alternative reference to ‘program code’ and is sometimes used interchangeably in this 
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study. The plan behind the teaching algorithm exercises meant to find possible 

patterns of improvement, non-improvements or deteriorating learning between pre-

teaching and post-teaching algorithms. The use of pre-test and post-test methods to 

qualitatively compare two groups is not new. The work of Levy, Ben-Ari and Uronen 

(2000); Osman and Elmusharaf (2014); Shi, Min and Zhang (2017); and Végh and 

Stoffová (2017) have also made use of pre-test and post-test methodological 

approaches.  

The following section discusses the background of the participants.  

4.4.4 Background of the participants  

The SIPS were from the Faculty of Information and Communication Technology (ICT) 

at Tshwane University of Technology (TUT). Some students were in the Information 

Technology (IT) course (using C++ programming language), some were in the 

Computer Systems Engineering course (using C++ programming language) and some 

in the Computer Science (CS) course (using Java programming language). All 

animation programs were made for C++ programming language since two courses 

used C++ as an introduction to programming language and few animation programs 

have the option to demonstrate with C++ code or Java code (and are adaptable to 

include other programming languages). The few animation programs adapted to Java 

were limited to the concepts offered as introductory programming in the CS course. 

TUT uses certain achievements levels/points of subjects to admit students into 

courses. If the grade percentage of a subject is in the range of 0% to 29%, the 

achievement level is 1, a range of 30% to 39% is  equated to achievement level 2, a 

range of 40% to 49% is  level 3, a range of 50% to 59% is  level 4, a range of 60% to 

69% is  level 5, a range of 70% to 79% is  level 6 and finally a range of 80% to 100% 

is level 7. The admission requirements for the Computer Systems Engineering diploma 

at TUT are as follows: the students should have at least level 3 in English, level 5 in 

mathematics or technical mathematics, level 4 for physical science or technical 

science and Admission Points Score (APS) of 28. APS score is the sum of the 

achievement levels of the required subjects to be admitted into a course. The students 

who do not meet these requirements can qualify for the foundation program. To be 

admitted into the foundation program a student needs a level 3 in English, level 4 in 

mathematics or technical mathematics, level 4 in physical science or technical physical 
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science and an APS of 23. The IT qualification requirements include level 3 in English, 

level 4 in mathematics or level 5 in mathematics literacy. An APS score of 18 is 

required with mathematics as part of the subjects and APS of 20 with mathematics 

literacy as part of the subjects for an admission into an IT qualification.  

Note that other background information like age and gender were not considered in 

this study. The following section discusses the control and experimental group setup. 

4.4.5 Control and experimental groups setup 

The SIPS were randomly and equally divided into two groups to implement the 

practical action research cycles.  In the case where the total participants were odd 

numbered or some participants had arrived late then one of the groups had more 

students. The first group is referred to as experimental and the second group as 

control. The experimental group was taught by following the TLPAP framework. The 

control group was taught the same concepts as the experimental group, but without 

following the TLPAP framework (through the traditional verbal teaching method). Note 

that the participants (students) would have already been taught by their various 

lecturers, then the struggling students are invited and divided into two groups (control 

and experimental) to get additional teaching in this study. 

The post-teaching exercise is given to SIPS after the TLPAP has been followed in the 

experimental group and traditional learning in the control group. The teaching session 

that occurs between the pre-teaching and post-teaching algorithm exercises in the 

control and experimental group is based on the pre-teaching algorithm exercises. This 

is because the study is operating under a CA framework (discussed in section 3.5) 

which emphasises that teaching, learning, assessments and learning outcomes 

should be aligned. The teaching sessions in both groups happened on the same day 

and time of the week. Figure 4.2 demonstrates the overall processes on both 

experimental and control groups. 
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Figure 4.2: A process for both experimental and control groups 

 

Figure 4.2 shows that the control group writes a pre-teaching algorithm exercise, 

followed by a teaching session, then writes a post-teaching algorithm exercise. The 

same process occurs in the experimental group except they are taught by following 

the TLPAP framework. The SOLO-based evaluation of the pre-teaching and post-

teaching algorithm and between control and experimental groups is explained in detail 

in the following section. 

 

4.5 Evaluation strategy  

There are many evaluation strategies that can be employed; however, a specific 

strategy that fits the nature of the study and answers research questions must be 

determined. In this study, the SOLO taxonomy (Biggs & Collis, 1982) is adopted and 

adapted to benchmark or evaluate the pre-teaching and post-teaching algorithms. 

SOLO allows a qualitative evaluation which investigates the whole understanding in 

the response rather than just assessing a program code line by line (Izu, Weerasinghe 

& Pope, 2016). Similarly, we adapt SOLO stages to evaluate, analyse and benchmark 

the algorithm sections. The first stage of SOLO (prestructural) means that the student 

does not understand at all. The second stage (unistructural) means a student can do 

one thing which cannot be related to anything else. The third stage (multistructural) 

means the student can get several things correct but these are still unrelated. The 

fourth stage (relational) means a student can get several things correct and is able to 
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relate them. The last stage (extended abstract) is when the students use relational 

stage knowledge to create or formulate new things. Table 4.1 explains how Lister et 

al. (2006) and Izu, Weerasinghe and Pope (2016) adopted SOLO into the 

programming environment to evaluate student outcome. 

Table 4.1: Adapted SOLO by Lister et al. (2006) and Izu, Weerasinghe and Pope (2016) 

SOLO stages SOLO-based reading and 
understanding of program code 
by Lister et al. (2006) 

SOLO-based classification of program 
code by Izu, Weerasinghe and Pope 
(2016) 

Prestructural Lack of basic programming 
knowledge  

No single concept is related to specifications 
or unable to select specific design patterns to 
form a program code 

Unistructural Described one line of code and 
cannot explain the rest of the 
program code  

Based on the specifications, direct 
interpretation is applied  

Multistructural Described some of the program 
code line by line 

Based on the specifications, the interpretation 
is flexible  

Relational Describe what the code does in its 
entirety and its purpose  

Based on the scenario, the program code is 
well structured accordingly 

Extended 
abstract 

Not applicable  Based on the scenario, the program code is 
well structured and has elements of 
abstraction beyond the specifications  

 

In this study, I adopt the work of Biggs and Collis (1982) on SOLO to qualitatively 

evaluate student algorithms. The following SOLO-based evaluation matrix (Table 4.2) 

has been adapted for a thorough analysis of the pre-teaching and post-teaching 

algorithms. In the table, the P stands for prestructural, U for unistructural, M for 

multistructural and R for relational. This matrix is set to evaluate the entire algorithm 

or a section of an algorithm for a deeper meanings and interpretation.  

Table 4.2: SOLO-based evaluation matrix 

P P→P U→P M→P R→P 

U P→U U→U M→U R→U 

M P→M U→M M→M R→M 

R P→R U→R M→R R→R 

 P U M R 

 

The transition (example P→U) in Table 4.2 means that the first value (P) refers to the 

evaluation status of the pre-teaching algorithm or a section of the pre-teaching 

algorithm which is placed at the prestructural stage. The first value can also be referred 

to as the state of SIPS before interventions as it represents the pre-teaching algorithm. 

The second value (U) in P→U means that the status of a post-teaching algorithm or 
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section of a post-teaching algorithm is placed at the unistructural stage. The following 

table briefly describes each transition to make the interpretation or feedback more 

meaningful.   

Table 4.3: SOLO-based evaluation matrix (with description) 

P P→P 

Stagnant-no-

learning 

U→P 

Lower-level-

deterioration 

M→P 

Intermediate-

deterioration+ 

R→P 

Deteriorated++ 

U P→U 

Lower-level-

improvement 

U→U 

Stagnant-at-

lower-level 

M→U 

Intermediate-

deterioration 

R→U 

Deteriorated+ 

M P→M 

Intermediate-

improvement+ 

U→M 

Intermediate-

improvement 

M→M 

Stagnant-at-

intermediate-

level 

R→M 

Deteriorated 

R P→R 

Improved++ 

U→R 

Improved+ 

M→R 

Improved 

R→R 

Already-know 

 P U M R 

 

P→P  

Transition description: Stagnant-no-learning 

Meaning: The effects of teaching and learning methods are not realised.  

P→U 

Transition description: Lower-level-improvement 

Meaning: This means that learning has taken place but at a small scale. The impact 

of a teaching method is noticeable but with little improvement.  

P→M 

Transition description: Intermediate-improvement+ (The + symbol means, moved 2 

stages up) 

Meaning: This means that learning has taken place at an acceptable rate. The impact 

of a teaching method is noticeable with good improvements, but still lacks a few things 

or logical skills to complete the algorithm or a section in an algorithm.  

P→R 

Transition description: Improved++. (The ++ symbol means, moved 3 stages up) 

 

Meaning: This means that learning has taken place at a high rate because of the 

distance between the prestructural and relational stages. The impact of a teaching 
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method is noticeable with great improvements and the student can form one logical 

whole in an algorithm.  

U→P 

Transition description: Lower-level-deterioration  

Meaning: This means that the student is confused or has unlearned; hence, 

unistructural to prestructural is in the reverse direction. It may also mean that the 

teaching methods may be doing more harm than good. 

U→U 

Transition description: Stagnant-at-lower-level  

Meaning: Learning methods used do not make any difference as improvements are 

not realised through higher stages like U→M or U→R. This may also mean that the 

teaching method has no effect at all. 

U→M 

Transition description: Intermediate-improvement 

Meaning: This means that learning has taken place at a good scale. The impact of a 

teaching method is noticeable with significant improvements. Patterns of existing 

knowledge about one thing have improved into the upper stage.  

U→R  

Transition description: Improved+ (The + symbol means, moved 2 stages up) 

Meaning: This means that learning has taken place on a great scale. The impact of a 

teaching method is noticeable with great improvements. Patterns of existing 

knowledge about one thing have improved two stages up to reach the ultimate level.  

M→P 

Transition description: Intermediate-deterioration+ (The + symbol means, moved 2 

stages down) 

Meaning: This means that the student is confused or has unlearned; hence, 

multistructural to prestructural is in reverse direction (two stages down). It may also 

mean that the teaching methods may be doing more harm than good. 

M→U 

Transition description: Intermediate-deterioration 
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Meaning: This means that the student is confused or has unlearned; hence, 

multistructural to prestructural is in reverse mode (one stage down). It may also mean 

that the teaching methods may be doing more harm than good. 

M→M 

Transition description: Stagnant-at-intermediate-level 

Meaning: Learning methods do not make any difference as improvements are not 

realised through higher stages like M→R. This may also mean that the teaching 

method has no effect at all. 

M→R 

Transition description: Improved 

Meaning: This means that learning has taken place on a great scale. The impact of a 

teaching method is noticeable with great improvements. Patterns of existing 

knowledge about several things have improved into 1 stage up. 

R→P 

Transition description: Deteriorated++ (The ++ symbol means, moved 3 stages down) 

Meaning: This means that the student is confused or mistakenly unlearned; hence, 

multistructural to prestructural is in reverse mode (three stages down). It may also 

mean that the teaching methods may be doing more harm than good. However, this 

is unlikely transition.  

R→U 

Transition description: Deteriorated+(The + symbol means, moved 2 stages down) 

Meaning: This means that the student is confused or mistakenly unlearned; hence, 

multistructural to prestructural is in reverse mode (two stages down). It may also mean 

that the teaching methods may be doing more harm than good.  

R→M 

Transition description: Deteriorated 

Meaning: This means that the student is confused or has unlearned; hence, 

multistructural to prestructural is in reverse mode (one stage down). It may also mean 

that the teaching methods may be doing more harm than good.  

R→R 

Transition description: Already-know 
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Meaning:  This means that the student was not struggling at all with that concept or all 

sections of the algorithms (pre-test and post-test) are correct. It also means that the 

teaching methods were unnecessary as the student was not struggling prior to 

intervention.  

 

In summary, the desired transitions which signal improvements are P→U, P→M, 

U→M, P→R, U→R and M→R and (highlighted in gold in Table 4.3). The transitions 

which show no improvements prior and after interventions are represented by P→P, 

U→U, M→M (highlighted in grey in Table 4.3). The undesired or negative transitions 

that mean anti-learning or the teaching method is doing harm to learning are U→P, 

M→P, R→P, M→U, R→U and R→M (highlighted in blue in Table 4.3). The R→R 

means the student knew before and after the teaching and learning intervention, so 

improvements cannot be linked to the specific intervention.  

 

Upon the qualitative evaluation through the SOLO-based evaluation matrix, the 

number of algorithms sections or students per transitions are represented 

quantitatively in the form of a percentage.  Example, a total of 20 struggling students 

wrote the pre-teaching and post-teaching algorithm exercises. In the case of 

evaluating the loop section in that algorithm, I find that 12 students are in 

multistructural stage of both the pre-teaching and post-teaching algorithm. This means 

that 12 students over a total of 20 struggling students are under M→M transition. The 

outcome of 12/20 is 60% when represented as a percentage. Let’s assume that 6 

students were in the multistructural stage of the pre-teaching exercise and are in the 

relational stage of the post-teaching exercise. This means the transition will be M→R 

and 6 students over a total 20 students will be represented by 30%.  Lastly, if 2 

students are in a relational stage of the pre-teaching and post-teaching exercise, then 

the transition will be 10% (2/20). The rest of the algorithm sections are calculated the 

same way. At the end, I can see that in the loop section of the algorithm, 60% is M→M 

transition, 30% M→R transition and 10% R→R transition. The outcome presents both 

qualitative and quantitative interpretation, because I will know which transitions have 

emerged, remained the same, deteriorated or improved upon evaluation. 
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4.6 Action cycles progression 

This section presents an overview of what happened in each cycle of the action 

research. 

 

4.6.1 Timeline overview  

In order to provide an overview of the timeline, the information is presented 

chronologically per semester. The actual implementation of this action research 

started in 2019 and was concluded in 2022. The following section briefly highlights the 

activities in each semester or cycle. 

 

2019 Semester 1: Identification of manipulatives to teach programming concepts. 

2019 Semester 2: Implementation of physical manipulatives on IPC. Cycle 1. 

2020 Semester 1: Implementation of physical manipulatives on IPC. Cycle 2. 

Interrupted by Covid-19 and the limitations of physical manipulatives. 

2020 Semester 2: Covid-19. No experimental work undertaken. 

2021 Semester 1: Transition from physical manipulatives to virtual manipulatives 

(animation programs initially referred to as virtual manipulatives). Cycle 2 continued. 

2021 Semester 2: Animation programs experimentation. Cycle 3. 

2022 Semester 1: Animation programs experimentation. Cycle 4. 

2022 Semester 2: Animation programs experimentation. Cycle 5. 

4.6.2 Cycle 1 

The initial plan in this study was based on the use of physical manipulatives for 

teaching and learning the IPC to the actual affected SIPS. The experimentation with 

physical manipulatives happened in 2019 semester 2 and 2020 semester 1. Prior to 

the implementation, the journey was about identifying potential existing manipulatives 

or designing new manipulatives to help in teaching and learning of IPC. The emphasis 

in the first cycle was on the fundamentals of introductory programming like the use of 

assignment to demonstrate copying, storage and overwriting. A complete report on 
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the planning, action, reflection and observation of results is detailed in Chapter 5 (Initial 

framework – Cycle 1). 

4.6.3 Cycle 2 

The shortcomings, reflections and observations of cycle 1 helped us to improve the 

teaching and learning methods that were used for teaching and learning in this cycle. 

There was success in using physical manipulatives to emphasise storage, copying 

and overwriting and I had planned to advance into the next topic which was decisions 

and nested decisions. However, I experienced various shortcomings on the attempt to 

use physical manipulatives for teaching other IPC. Such shortcomings include 

incompatibility to teach in a large class, in the online platform and Covid-19 

restrictions. This was due to the fact that the cycle was implemented in 2021 semester 

1, during which time Covid-19 was still in effect. 

As a result, a virtual version of the physical manipulatives were developed by creating 

an animated program. The animated programs covered IPC (the use of assignment to 

emphasise copying, storage and overwriting), decisions, nested decisions, loops and 

nested loops. The presentation mode of this cycle was online. The animation programs 

were designed using a Rapid Application Development C++ Builder 10.4. The details 

of the shortcomings, reflections, observatory results and improvements made in this 

cycle are presented in Chapter 6 (Adapted framework – Cycle 2). 

4.6.4 Cycle 3 

In 2021 semester 2, cycle 3 was implemented with animation programs only and used 

a set of pedagogical guidelines that were compatible with TLPAP. In this cycle, the 

animation programs for teaching and learning functions and arrays were included. The 

improved versions of animation programs for introductory concepts, decisions, nested 

decisions, loops and functions were experimented on SIPS. The details of the 

shortcomings, reflections, observatory results and improvements in this cycle are 

presented in Chapter 7 (Adapted framework – Cycle 3). 

4.6.5 Cycle 4 

This cycle was implemented with the improved methods or guidelines for TLPAP. The 

cycle took place in 2022 semester 1 and the details of the shortcomings, reflections, 
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observatory results and improvements in this cycle are presented in Chapter 8 

(Adapted framework – Cycles 4 and 5). 

4.6.6 Cycle 5 

This cycle (2022 semester 2) was also implemented with improved methods based on 

the reflections and observations of cycle 4. In this cycle, there were extra animation 

programs with an option to switch to a Java program code. The details of the 

shortcomings, reflections, observatory results and improvements in this cycle are 

presented in Chapter 8 (Adapted framework – Cycles 4 and 5). This cycle had minimal 

adaption, as the framework has attained a satisfactory stage. The final framework is 

also presented in the Chapter 8. 

 

4.7 Limitations of the study 

The limitations of this research are as follows: 

- The invitation to participate in the study was limited to SIPS; consequently, the 

sample size was small per cycle. To compensate, I have undertaken multiple 

cycles and qualitative interpretation of the algorithms. 

- The animation programs were designed for the C++ programming language 

and a few have been extended to cover Java programming language in the last 

cycle. Other programming languages like Python or C are not included. 

- Content of the programming module was limited to what the university (where 

the experiments took place) included within the course: for example, some 

module content covers only introduction, decisions and loops.  

- We have not made any distinction on the gender disparity of the participants. 

Other background factors like ethnicity, age and home language were also not 

taken in to account in this study. 

 

4.8 Ethics statement  

The ethical clearance to conduct this study was obtained from University of South 

Africa (UNISA). UNISA is the institution where the PhD programme is registered, and 

TUT is the institution where the experimentation was conducted.  The main point in 

the ethical clearance certificate is that the identity of the participants is not made public 
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and participation in this study is voluntary. It also emphasises that the division of SIPS 

into control and experimental group is random across action cycles. The ethics 

clearance certificate is attached in Appendix A.  

 

4.9 Conclusion 

The research methods described in this chapter are synchronous with our research 

question and research objectives. Table 4.4 overviews the linking and alignment of 

research questions and objectives to a relevant research method.  

 

Table 4.4: Methodological overview 

    Research questions Research objectives Method 

1. What are the leading issues in 
teaching and learning IPC? 
 

To conduct a literature 
review on the challenges of 
teaching and learning IPC  
 

Literature review 

2. What are the approaches used in 
teaching IPC? 
 

To investigate the 
approaches used in teaching 
IPC 
 

Literature review 

3. What are the limitations of 
existing animation programs used 
for teaching and learning IPC?  
 

To investigate animation 
programs for teaching and 
learning IPC 
 

Literature review 

4. How can we develop a TLPAP 
framework for teaching and 
learning IPC? 
 

To develop a TLPAP 
framework for teaching and 
learning IPC based on gaps 
identified in the literature 
review and continually 
improve the framework 
based on the outcome of the 
action research cycles 

Theoretical framework/ 
Action research  

5. How can we prove and evaluate 
the efficacy of the TLPAP 
framework? 

 

To evaluate the efficacy of 
the TLPAP framework 
through teaching the actual 
SIPS by following the TLPAP 
framework  
 

Action research/pre-test 
and post-test methodology 
/SOLO adapted 
evaluations 
 

 

The TLPAP framework was developed by following the research methodology 

described in this chapter. The critical steps toward building the TLPAP framework 

derived from the action research process where I reflected, observed, planned and 

acted in each cycle. This means that in every cycle, TLPAP was implemented with an 

improved and revised approach. Because TLPAP consists of pedagogical guidelines 

and animation programs, the improvements affected both. The exact details of what 
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was improved or observed in each action cycle are detailed in Chapters 6 to 8. The 

subsequent chapter (Chapter 5) presents the Initial framework – cycle 1. 
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Chapter 5: Initial framework – Cycle 1 
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5.1 Introduction   

The aim of this research was to assist Struggling Introductory Programming Students 

(SIPS) by finding ways to improve and accelerate their understanding of IPC. Initially, 

the proposed framework was centred around the use of manipulatives to help in 

teaching and learning of IPC to SIPS. As discussed in Chapter 2 (Literature review, 

section 2.6.4), physical manipulatives are incorporated into education for teaching and 

learning purposes. However, there is no concrete, empirical evidence of their reliability 

in uplifting student comprehension of IPC. The manipulatives can potentially cause 

more harm than good if their use is not rigorously investigated, tested and justified. I 

therefore embarked on a research journey to identify possible manipulatives and test 

their efficacy in helping SIPS learn IPC.  

 

The main goal in this initial cycle was to identify and test existing manipulatives already 

in use by the educators or design new manipulatives where necessary. This is the first 

stage of answering the research question which states:  

- How can we prove and evaluate the efficacy of the Teaching and Learning 

Programming with Animation Programs (TLPAP) framework? 

The framework in this initial cycle is referred to as Teaching and Learning 

Programming with Manipulatives (TLPM). The name was adapted as we progressed 

through the action research cycles and was then modified to TLPAP. In this chapter, I 

present and explain the manipulatives used and activities of the first cycle of action 

research and how they led to a transition into animation programs. The remainder of 

the chapter is outlined as follows: section 5.2 is the planning of cycle 1; section 5.3 is 

the implementation of cycle 1; section 5.4 presents the planning of cycle 2; and section 

5.5 concludes the chapter. 

5.2 Planning for cycle 1 

5.2.1 SIGCSE members’ participation 

To identify and test appropriate manipulatives, I explored if there are introductory 

programming educators who are using manipulatives in teaching introductory 

programming. In February 2019, I posted a question in the Special Interest Group on 

Computer Science Education (SIGCSE) mailing list to gather evidence and information 
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on the uses of manipulatives to teach introductory programming. SIGCSE is an 

Association of Computing Machinery (ACM) sub-group with more than 2 000 

members. It consists of Computer Science Education (CSE) researchers, academics, 

educators, teachers and experts in the field of education and industry. SIGCSE’s 

special focus is on CSE research with researchers from over 60 countries. The 

following question was posed on the SIGCSE mailing list:  

 

If anyone has tried using manipulatives in teaching programming concepts (or knows 

of anyone else who has), could they please email xxxxx@xxxx? Where xxxxx@xxxx 

was the researcher’s address. Posted in February 2019. 

I allowed more than 15 days for responses. In that time, there were 21 concrete 

responses from academics, CS researchers and former introductory programming 

educators. Based on the SIGCSE membership, this is a sample of 0.7% because 

introductory programming is a small portion of the broader computer science 

education. Some of the responses advised on the type of programming manipulatives 

that can be used, some responses pertained to manipulatives they were currently 

using, and other responses recommended manipulatives they had used in the past to 

teach some IPC. The suggestions ranged from manipulatives that help in sorting, 

swapping, linked lists, variables, binary searching, arrays, functions, recursion and 

other interactive activities. For example, cardboard was used to set up manipulatives 

for demonstrating the use of functions in programming. These results helped us to 

identify the most suitable manipulatives for experimental purposes with the actual 

SIPS at a university. The results of such experimentation are reported in section 5.3. 

5.2.2 Identification of manipulatives for introductory concepts 

The focus in this section is on teaching and learning the use of assignment because 

the researcher had experimented with the methods and was successful. The focus is 

also on teaching and learning of decisions/nested decisions because the tested 

methods were tested but not successful.  

 

Concept 1 

One of the misconceptions within IPC identified in the literature review is the use of 

assignment. The manipulatives used in this case were inspired by one of the SIGCSE 
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respondents who indicated that he was using cups (Figure 5.1) to demonstrate the 

swapping of values between variables.  

 

Figure 5.1: Sample cups 

 

The plan was to test if the idea of demonstrating using cups can yield meaningful 

learning, especially for SIPS. Therefore, I adapted the idea of cups in emphasising the 

uses of assignment between variables.  

Concept 2 

Concept 2 was about identifying the possible manipulative to teach decisions and 

nested decisions. In this case, as the responses of SIGCSE members did not link the 

researcher to any existing manipulative, I designed a new manipulative and named it 

a nested-decider. The main purpose of the nested-decider manipulative was as 

follows:  

 

- demonstrate how the && and || operators work in a decision statement; 

- demonstrate how the else clause works and when to use it in a decision 

statement; 

- ensure SIPS understand that a nested decision stops evaluating the rest of the 

conditions if one condition evaluates to true; 

- ensure SIPS understand when to construct a nested decision instead of a 

sequence of separated decision statements; and 

- enhance SIPS overall conceptual understanding of how the nested decision 

statement works. 

The nested-decider is intended to be used primarily by the lecturer to teach 

decisions and nested decisions to SIPS. The components of nested-decider are 
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presented in Figure 5.2 to initiate a full understanding of how the manipulative 

works. 

 

Figure 5.2: Components of the manipulative 

 

The manipulative should be used with an appropriate scenario and nested decision 

program code. To understand the overall manipulative functionality, the program code 

(depicted in Figure 5.3) and the corresponding nested-decider (Figure 5.4) were 

developed for teaching purposes. For example, condition 1 in the code (Figure 5.3) 

will be demonstrated by condition A (Figure 5.4) in the nested-decider. 

      

Figure 5.3: Program code 

 

Figure 5.4: Nested-decider 

 

An important process for a lecturer to demonstrate a program in Figure 5.3 code with 

the nested-decider in Figure 5.4 is for the lecturer to unblock the ball path by removing 

decider-rods based on the conditions. Note that the purple decider-rods are for true 

conditions and the orange decider-rods are for false conditions. In the first part of the 

manipulative in Figure 5.4 (condition A), we see that two decider-rods block the tube 

(decider-manip) on the left side and one decider-rod blocks the tube on the right side. 
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All the decider-rods have blocked the tube on the intersection within a decider-manip. 

When the correct pattern of removing the decider-rods is applied, the ball will 

automatically take the unblocked path.  

Condition 1 in Figure 5.3 represents condition A in Figure 5.4, because two conditions 

are expected to evaluate to true for the content of an if-statement to execute. Hence, 

true && true = true. If value1 = 5, then value1 > 0? is true and the lecturer is expected 

to remove one of the two purple decider-rods from the left side. The ball will still be 

trapped on the intersection because of the remaining decider-rods on both sides. On 

the very same first line in Figure 5.3, the right-side condition says value1 < 9? This 

evaluates to true; therefore, the user should remove the second purple decider-rod, 

then the ball will instantly take a path to the left side. Now the lecturer is expected to 

be able to explain condition 1 better with actions taken on the intersection of the 

manipulative. SIPS are expected to see and understand that the && short-circuit 

operator requires both conditions to be true for the contents of the decision statement 

to execute. Hence the two purple decider rods that represent the true condition on the 

left side are both removed when the condition becomes true. SIPS should be able to 

see that it is now impossible for the ball to reverse to get into other tubes. Therefore, 

the same scenario must be explained in relation to the real programming code. 

Furthermore, it should be clear that the ball cannot move into the next intersection if 

the decider-rod on the right (orange decider-rod for false condition) is not removed. A 

lecturer must also emphasise that a compound decision statement such as (if [value1 

> 0] if [value2 < 9]) can also be used to represent condition 1, and it will not affect how 

the user interacts with the manipulative. This will help SIPS play around with decision 

statements and manipulatives for further improvement and understanding.   

This nested-decider idea was accepted and published in a CSEDU proceedings and 

the information about the paper can be accessed in the conference repository1.  

5.3 Implementation of the manipulatives and results 

This section reports on the implementation results of concepts 1 and 2. 

 

1  Ramabu, T., Sanders, I., & Schoeman, M. A. (2021). Manipulatives for Teaching 

Introductory Programming to Struggling Students: A Case of Nested-decisions. In CSEDU 

(1), 505-510. 
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5.3.1 Cycle 1 (Concept 1) 

First semester 2019  

In this experiment, the focus is on teaching and learning by making use of 

manipulatives explained in section 5.2.2. The idea is to enhance comprehension on 

the use of assignment which is one of the introductory concepts with which SIPS 

struggle. To compare control and experimental groups, SIPS were given paper-based 

pre-teaching and post-teaching exercises. A total of 17 students (experimental group) 

were taught with manipulatives to alleviate the misconceptions experienced in the 

previous exercises and 13 students (control group) were taught without the use of 

manipulatives (verbal teaching without any aiding methods). 

Pre-teaching exercise 1:  

Given variables x = 7 and p = 12, write a C++ statement that copies the value of p into 

variable x. What will be the values of x and p?  

The number of students who indicated that the value of x = 7 was 5/30. Two students 

from the control group and three students from the experimental group indicated the 

value of x = 7. This suggested that they did not understand that x was assigned a new 

value that replaced the old value. A total of six students answered that the value of x 

= 19. In this case, the misconception is that the statement x = p means the value of x 

got incremented by the value of p; hence, 7 + 12 = 19. 

Pre-teaching exercise 2:  

If x = 8, y = 10, t = 15, what is the value of x and y after the execution of the given code 

below?  t = x; x = y; y= t;  

A total of 12/30 indicated in their answers that the value of y = 15. They did not 

understand that the value of t was overwritten with the value of x. 

In the TLPM classroom, I made use of cups and papers as manipulatives to explain 

the pre-teaching exercise. As seen in Figure 5.5, the names of the variables were 

written on the side of the cups. The students were taught that this indicates variable 

declaration and is related to how the memory is reserved in the machine upon 

declaration.  
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Figure 5.5: Manipulatives (variables) 

 

When a value is assigned into the variable, a piece of paper was used to write a value, 

then inserted it into the correct cup (see Figure 5.6). 

 

Figure 5.6: Manipulatives (with values) 

 

The emphasis on x = p is achieved by taking a piece of paper, looking at what is inside 

the variable p (the cup with p written on the side), and then writing the same value of 

p on the paper as a copy. However, just before I inserted the paper into cup x, took 

away the existing paper in cup x and replaced it with the one copied from cup p. With 

this demonstration, I emphasised that the value of p is copied into x and that the value 

in the variable x gets replaced, not incremented. It was also stressed that the value of 

p is not cut or removed from p as it is a copy. This first demonstration of assignment 

through manipulatives shed light and served as a crucial prerequisite to the 

subsequent TLPAP exercises.  

In the second demonstration, I used three plastic cups to represent variables x, y and 

t. I demonstrated how swapping is achieved through an assignment. All three cups 

were initialised with their respective values by writing on the pieces of paper and then 

inserting these into the cups (see Figure 5.7). 
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Figure 5.7: Manipulatives (three cups) 

 

To measure the improvements between the two groups, post-teaching exercises were 

designed and completed by both the control and experimental groups.  

Post-teaching exercise 1:  

Declare x and y as integers. Assign x with the value 20 and y with the value 30. Write 

a code that will store the value of x into y and the value of y into x.  

Post-teaching exercise 2:  

Students were requested to explain what happens in the memory when the code 

developed previously (post-teaching exercise 1) is executed. (This is a follow-up 

question and was asked to assess if post-teaching exercise 1 was computed with 

understanding.)  

Both pre-teaching and post-teaching exercises were graded. The pre-teaching 

questions were graded out of four, where each correct answer was counted as one 

mark. Similarly, the post-teaching exercise was also graded out of four where correct 

answers counted as a one mark. For the experimental group, the performance was 

better than the control group on post-teaching exercise 1 and much better on post-

teaching exercise 2 (see Table 5.1).  

Table 5.1: Average grades for control and experimental groups 

Pre-teaching algorithm Post-teaching algorithm  

Control Experimental Control Experimental 

Average grade: 1.1 Average grade: 1.3 Average grade: 1.08 Average grade: 2.29 
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The average grade mark on post-teaching exercise 1 for the experimental group was 

2.29 which is higher than the control group grade average (1.08). This attests that 

teaching and learning using physical manipulatives could have a meaningful impact 

on teaching and learning, especially for SIPS. The table also shows a big difference 

between pre-teaching and post-teaching grades in the experimental group, which 

further indicates a positive increase in understanding in the experimental group. In the 

control group, the average grade in post-teaching is similar to the average grade in 

the pre-teaching. This means that the impact of a traditional teaching method is not 

good enough.  

Finally, it is worth noting that there were two students from the experimental group 

who achieved more than 80% on the pre-teaching exercises and post-teaching 

exercises. This suggests they did not necessarily need any pedagogical intervention 

as they solved the exercises correctly before interventions. Therefore, this TLPM is 

proving to be more meaningful for struggling students. 

The results of this cycle were also published in IEEE explore2. 

 

5.3.2 Reflection on cycle 1 (Concept 1) 

 End of 2019 semester 1 

- I noted positive results using cups and papers for teaching and learning the 

concept of assignment.   

- Even though the idea of physical manipulatives worked in emphasising the 

concept of assignment, it is limited to a demonstration in a small group. It was 

observed that those who were seated far away moved closer to clearly see the 

demonstration. 

- The understanding of the uses of assignment should be analysed in detail in 

the cycle 2 experimentation. 

- There is a need for additional pre-teaching exercises for even greater 

understanding. 

 

2  Ramabu, T. J., Sanders, I., & Schoeman, M. (2021, May). Teaching and Learning CS1 with 

an Assist of Manipulatives. In 2021 IST-Africa Conference (IST-Africa), 1-8. IEEE. 
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- I also noted a frequent change of focus from the demonstration of cups and a 

program code which was important and required because the code was written 

on the board and demonstration was at a bit of distance. Therefore, a need for 

a mechanism to bring the demonstration and program code closer to each other 

was identified. The solution to the problem was to limit the frequency of 

changing the focus through head movements. 

 

5.3.3 Cycle 1 (Concept 2) report and reflections  

First semester 2021 

It is worth noting that the implementation of concept 2 was anticipated for 2020, but 

this did not happen because of the closure of learning institutions due to Covid-19. 

The experiment was supposed to be carried out at a university in a contact session 

environment with the actual SIPS. Concept 2 was finally attempted for demonstration 

in March 2021 when the learning institution opened for contact sessions; however, 

that opening was for a short period as the institutions reverted to online multi-modal 

sessions when the Coronavirus infection rate rose yet again.  

When the institution re-opened, the experimentation of nested-decider was carried out 

in a contact session, however it did not yield positive results. The following problems 

were encountered during the demonstration: 

- Students indicated that they struggled to pay attention or see the fine details of 

the manipulatives. This was a common concern as the researcher observed 

some students in class change seats to be nearer the demonstration point. 

- The experimental group had 18 students and the control group had 17 students. 

Both experimental and control groups were taught without the assistance of 

manipulatives. 

- Pre-teaching and post-teaching exercises were not given to students due to the 

experimental shortcomings of the nested-decider. 

- A need for a solution to make the details of the nested-decider manipulative 

visible enough was identified. 

- All experiments planned to use manipulatives with similar fine details were 

abandoned and planning to overcome the size problem was initiated. 
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- I also identified a need to use a real-world problem in the nested-decider 

program to make the teaching program code more meaningful and relatable to 

SIPS. The use of examples ignites excitement, confidence, enthusiasm and 

plays a critical role in learning programming (Malan & Halland, 2004). Real-

world examples help students link context to a programming concept for better 

understanding (Konecki, Lovrenčić & Kaniški, 2016). 

5.4 Planning for cycle 2 

To overcome the limitations experienced in cycle 1, it was apparent that significant 

changes were required. The first idea was to convert these physical manipulatives into 

virtual manipulatives. The advantage of virtual manipulatives is their ability to be 

demonstrated through computer broadcasts where each student can see what 

happens on their screens. The plan behind virtual manipulatives was also to overcome 

the distance between the program code and the actual demonstration.  Furthermore, 

virtual manipulatives were regarded as a compatible alternative to an online 

presentation which was a mode of presentation across learning institutions during that 

period of Covid-19. Besides being the teaching and learning mode during Covid-19, 

teaching and learning solutions and innovations continue to advance towards 

multimedia-based as this is convenient for both students and educators.   

I started converting these manipulatives in the middle of 2021 semester 1 and 

experimented with them towards the end of the same semester. The advantage was 

that the semester was extended to end in August due to Covid-19 outbreaks at the 

experimental institution. I therefore had sufficient time to develop and experiment 

within that extended semester. 

To garner a comprehensive theoretical background on virtual manipulatives, I 

conducted a thorough literature review on the field of virtual manipulatives. In the 

literature review, I noted that virtual manipulatives were primarily referred to as 

program visualisation or animation programs. I likewise began referring to this 

intervention as animation programs instead of virtual manipulatives. A detailed 

discussion of animation programs and their limitations was presented in the latter 

section of the literature review (Chapter 2, section 2.7). The development of these 

animation programs was both inspired by physical manipulatives and the identified 
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gap on the design and uses of animation programs in the field of introductory 

programming.  

5.5 Conclusion  

In this cycle, I reported on the use of physical manipulatives to teach introductory 

programming. Cups were used as a way to emphasise the use of assignment in 

programming and were demonstrated to the actual SIPS at university. It has been 

noted that the use of cups can indeed improve understanding of how the assignment 

operator works. However, I have noted that the idea of a cups demonstration in a big 

group is unlikely to be successful.  

A manipulative called nested-decider was designed to emphasise decisions and 

nested decisions in programming. However, during the experimentation it was found 

that the nested-decider contained fine details which require students to sit very close 

to see the demonstration. While this limitation was also identified when using cups to 

teach the concept of assignment, after the demonstration it was clear that everyone 

was seated closer. Unlike the demonstration with a nested-decider, even after 

students sat closer, they still struggled to see fine details of the manipulative.  

The remainder of the manipulatives that contained fine details were dropped from the 

experiment. It was necessary to revise the type of intervention used and advance 

towards a solution that can overcome the stated challenges. The solution in the form 

of animation programs was realised, planned and experimented. The experimental 

results of teaching and learning with animation programs are reported in Chapter 6 

(Adapted framework – Cycle 2). 
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Chapter 6: Adapted framework – cycle 2 
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6.1 Introduction   

The aim of this research is to help Struggling Introductory Programming Students 

(SIPS) by finding ways that can improve their understanding of IPC. To determine the 

most appropriate and effective teaching and learning methods, I embarked on an 

action research study to find and conclude on relevant methods. The action research 

methodology consists of several action cycles. The previous chapter (Chapter 5) 

presented the activities and the outcomes of cycle 1. The activities in cycle 1 were 

based on the use of physical manipulatives for teaching and learning IPC. The concept 

of assignment was successfully demonstrated and the findings positive. However, an 

attempt to demonstrate the concept of decisions/nested decisions using manipulatives 

was unsuccessful and the limitation led to the development of animation programs. 

One of the projected advantages of animation programs over physical manipulatives 

includes their compatibility to a big group as visual effects are presented on electronic 

devices. Electronic devices are important in today’s teaching and learning platforms. 

  

Cycle 2 presented in this chapter reports on the animation programs developed and 

the outcomes of the experimentation with SIPS. The development of the animation 

programs at this stage was based on the structures of physical manipulatives, 

reflections in cycle 1 and the animation program gap identified in the literature review.  

 

This cycle serves as a continuation to answer our last research question which is 

formulated as follows: 

- How can we prove and evaluate the efficacy of the Teaching and Learning 

Programming with Animation Programs (TLPAP) framework? 

The framework is now referred to as TLPAP, instead of Teaching and Learning 

Programming with Manipulatives (TLPM). This chapter begins with an explanation of 

the designed animation programs for teaching and learning the use of assignment 

(section 6.2), decisions/nested decisions (section 6.3) and loops (section 6.4). Section 

6.5 presents applicable pedagogical guidelines that will be used along the animation 

programs. Details of experimental results and analysis are given in section 6.6. 

Section 6.7 contains reflections on this cycle. And section 6.8 presents the planning 

of cycle 3. Section 6.9 concludes the chapter. 
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6.2 Concept 1 (Assignment) 

This section demonstrates the design of animation programs that help SIPS with the 

concept of assignment.  The concept of assignment is emphasised by focusing on 

value storage, copying and overwriting.  

6.2.1 Pre-teaching exercises on the use of assignment  

The following questions (in Figure 6.1) were formulated and given to students to 

answer: 

a. What will be the value of x after the following algorithm has executed? 

int x; 

x = 3; 

x = x + 1; 

 

b. What will be the values of p and y after the following algorithm is executed? 

int p, y; 

p = 5; 

y = 8; 

p = y; 

 

c. What will be the values of k and t after the following algorithm has been 

executed? 

int k, t; 

k = 1; 

t = 2; 

k = t; 

 

d. What will be the values of x and y after the following algorithm has executed? 

int x, y; 

x = 5; 

y = 6; 

 

x=y; 

y=x; 

 

Figure 6.1: Pre-teaching exercises 

The animation program for specification in Figure 6.1 as designed and demonstrated 

to SIPS as pre-teaching exercises. The following section demonstrates the designed 
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animation programs and discusses how they are used. The animation programs 

animate according to the exercises in Figure 6.1 in sequential order.   

 

6.2.2 Animation program 1 

In Figure 6.2, the algorithm is in a white box and the appropriate animation initiates 

below the blue line upon button click. In Figure 6.3, a run button has been pressed, 

the blue highlight in the white box is in line number 1, and the animated container is 

subsequently generated. The container resembles the variable just like in the physical 

manipulative (cups).  

 

Figure 6.2: Program 1 (Demo 1) 

 

Figure 6.3: Program 1 (Demo 2) 

 

In Figure 6.4, the blue highlight in the program code box moves automatically into line 

number 2 and value 3 appears in the container to resemble storing of a value. In Figure 

6.5, x = x + 1 is demonstrated through a floating number (+1) which indicates that the 

value of x is being incremented. The number (+1) appears just below the blue line, 

and then floats from top to bottom in the direction of the container.  
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Figure 6.4: Program 1 (Demo 3) 

 

Figure 6.5: Program 1 (Demo 4) 

 

When the floating number (+1) reaches variable x container, the new value replaces 

the old value (a number 4 replaces a number 3). Figure 6.6 shows a complete 

executed program and the final state of the animation process.  

   

Figure 6.6: Program 2 (Demo 5) 

 

6.2.3 Animation program 2 

Figure 6.7 contains the program code in the white box. When the blue highlight is at 

the first line, the two containers appear. The first container represents variable p and 
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the second container resembles variable y (see Figure 6.8). When p = 5 is highlighted, 

the value 5 appears in cup p and the same applies when the blue highlight reaches y 

= 8. 

 

Figure 6.7: Program 2 (Demo 1) 

 

Figure 6.8: Program 2 (Demo 2) 

 

In Figure 6.9, the value is duplicated from variable y, thereby making an illusion of a 

copied value. Under the animation section, the text (number 8 as a graphic) moves 

from 8 towards the variable p container. The arrow in Figure 6.10 is not part of the 

animation; it indicates that the value 8 emerged from the container y and its floating 

direction. 

 

Figure 6.9: Program 2 (Demo 3) 

 

Figure 6.10: Program 2 (Demo 4) 

      

The arrow in Figure 6.11 indicates that the value 8 was copied from variable y into 

variable p. The state of Figure 6.12 is a result of the execution of the last line of the 

program code and the end of the animation. 
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Figure 6.11: Program 2 (Demo 5) 

 

Figure 6.12: Program 2 (Demo 6) 

 

6.2.4 Animation program 3 

The animation program demonstrated in section 6.2.3 (Animation program 2) and the 

animation program to be demonstrated in this section are similar, so I have given two 

figures (Figure 6.13 and Figure 6.14) for sample output. The similarity of the questions 

was deliberately formulated to give SIPS further understanding of the same concept 

but different variables, patterns and values. The appearance of Figure 6.13 is the initial 

state of the animation program and Figure 6.14 indicates the final state of the 

animation program.  

 

 
Figure 6.13: Program 3 (Demo 1)  

Figure 6.14: Program 3 (Demo 2) 

 

The animation process between Figure 6.12 and Figure 6.13 is the same as 

demonstrated in section 6.2.3. 
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6.2.5 Animation program 4 

The first appearance of the program is depicted in Figure 6.15. The animation progress 

animates accordingly as was previously indicated as the blue highlight automatically 

moves line by line. When the program reaches line number 4 (as depicted in Figure 

6.16), the value 6 appears inside the variable y container. 

 

 

Figure 6.15: Program 4 (Demo 1) 

 

Figure 6.16: Program 4 (Demo 2) 

 

In Figure 6.17, the value 6 animates from variable y to reach and overwrite the content 

of variable x. The arrow (not part of the animation) in Figure 6.17 demonstrates the 

floating direction of the number 6. Figure 6.18 is a version without an arrow.  

 

Figure 6.17: Program 4 (Demo 3) 
 

Figure 6.18: Program 4 (Demo 4) 
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On the last line of the program code, the value of x floats until it reaches and overwrites 

the content of variable y (Figure 6.19). The arrow in Figure 6.19 indicates the floating 

direction of the number 6. Figure 6.20 is a version without an arrow. 

 

Figure 6.19: Program 4 (Demo 5) 

 

 

Figure 6.20: Program 4 (Demo 6) 

 

The state of Figure 6.21 is a result of a complete program execution and animation 

process. 

 

 

Figure 6.21: Program 4 (Demo 7) 

 

6.3 Concept 2 (Decisions/nested decisions) 

6.3.1 Problem specification for nested-decider 

This section demonstrates an animation program called nested-decider.  One of the 

reflection points in cycle 1 was to formulate a real-world problem specification that can 
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work with nested-decider which can boost SIPS’ comprehension on the concept of 

decisions/nested decisions. The problem specification is described in Figure 6.22. 

 

You are requested to write an algorithm that shows the process for an employee to get access to 

the office. An employee must go through a gate authentication, then finally go through office door 

authentication. At the gate, you need to use a gate access card or Identity document to get in. If 

you get access, then in the next stage you need to use both the office access card and office 

door pin code for the office door to open.  

To demonstrate how the authentication from the gate to the office will work, follow the instructions 

below to complete the algorithm. 

Prompt the user to enter the letter: 

-  Y or N for a gate access card. (Y means "Yes" and N means "No").  
- Y or N for an identity document. (Y means "Yes" and N means "No").  

If the gate access card or identity document contains the value Y, then proceed by prompting the 

user to enter the letter (Y or N), otherwise, show a message "Access into the company not granted". 

- Y or N for the office access card. (Y means "Yes" and N means "No").  
- Y or N for door pin. (Y means “Yes” and N means “No”).  

Check if both office access card and office door pin code contain Y, if so, show the message "Access 
into the office granted", otherwise show the message "Access into the office not granted". 

Figure 6.22: Problem specification (decisions/nested decisions) 

 

6.3.2 Nested-decider animation program 

The program code for problem specification stated in Figure 6.22 is demonstrated in 

the nested-decider animation program. The nested-decider has two sides: the left side 

for a program code and the second side reserved for the unfolding of the animation. 

The code on the right side gets executed after the user presses a start button (see 

Figure 6.23). The program code and the relevant animation execute synchronously to 

give SIPS a clearer mental model of a program code and how decisions/nested 

decisions work. 
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Figure 6.23: Nested-decider (Demo 1) 

 

The graphics on the left side start the animation process when the start button is 

clicked. Figure 6.24 shows the prompting stage of the program (prompts for gate card). 

The blue highlight on the program code side moves gradually and automatically from 

one line to another, and the right side animates accordingly based on the currently 

highlighted line. 

 

 

Figure 6.24: Nested-decider (Demo 2) 

 

 

In Figure 6.25, the prompt is for the ID card. 
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Figure 6.25: Nested-decider (Demo 3) 

 

In Figure 6.26, additional text shows, Have gate card? = false. Have an ID document? 

= false. false or false = false. The appearance of text is important as SIPS may not 

rely only on the educator's narration but can comprehend independently. The orange 

square flickers a few seconds and then turns greyish, indicating that the condition has 

completed the evaluation. The flickering stage, which also serves as a pause, allows 

the student to read the condition if necessary, then anticipate the direction of the 

greyish movement before it finally moves. The movement of a greyish bar will either 

take the bottom direction (false evaluation) or the right direction (true evaluation). 

 

 

Figure 6.26: Nested-decider (Demo 4) 

 

The state of Figure 6.27 is a result of false or false because both values of the gate 

card and identity card were “N” for No. The critical point SIPS should catch is the 
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process of understanding the || (or short circuit operator) and how a chunk of code is 

jumped and the last line is executed as a result of an else clause. SIPS would have 

seen that the animating bars on the left remain green which mean that the path was 

jumped (not executed). Furthermore, when the grey bar completely replaced the 

green, a message in red font is displayed ("Access into the company not granted") 

which also corresponds with the currently highlighted line of code.  

 

 

Figure 6.27: Nested-decider (Demo 5) 

 

The state of Figure 6.28 is a result of the gate card and identity document as false || 

true or true || false which results in true for any of them. The prompting for the office 

card and checking if the office pin was correct is done before the greyish animation 

reaches the yellow box for another condition evaluation. 
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Figure 6.28: Nested-decider (Demo 6) 

 

The state of Figure 6.29 represents a complete executed program where the office 

card and office pin is true && false or false && true which gives the results of false. At 

this stage, SIPS would understand that the true side (green bar) is not greyish.  

 

 

Figure 6.29: Nested-decider (Demo 7) 

 

Finally, Figure 6.30 is a result of an office card and office pin as true && true which 

gives the results of true. The corresponding text on the animation is shown as Have 

office card? = true. Have office pin? = true. true and true = true. SIPS would understand 

that the true direction is executed only when the condition is true and true. 

 



122 
 

 

Figure 6.30: Nested-decider (Demo 8) 

 

The Nested-decider animation program was published in a Springer journal3. 

 

6.4 Concept 3 (Loops/nested loops) 

This section demonstrates the animation programs developed for teaching and 

learning of loops. 

6.4.1 Problem specification for loops and nested loops 

The following figure (Figure 6.31) shows the problem specification designed for 

loops.  

Write a program that asks a user to enter an integer between 1 and 10. Continue to prompt the 

user while the value entered does not fall within this range. When the user is successful, display 

a congratulatory message as many times as the value of the successful number the user 

entered.               

Figure 6.31: Problem specifications – loops 

 

 

3  Ramabu, T., Sanders, I., & Schoeman, M. (2022, July). Nested-Decider: An Animation 

Program for Aiding Teaching and Learning of Decisions/Nested Decisions. In Annual 

Conference of the Southern African Computer Lecturers' Association. Cham: Springer 

International Publishing, 129 – 148. 
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6.4.2 Animation program for loop 

The problem specification in section 6.4.1 (Figure 6.31) has the program code solution 

and the corresponding animation program as seen in Figure 6.32. The state of Figure 

6.32 is before the button pressed. 

 

Figure 6.32: Loops (Demo 1) 

 

The prompt to enter a number occurs when the blue highlight reaches cin>>number 

as seen in Figure 6.33.  

 

 

 Figure 6.33: Loops (Demo 2) 
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The first green bar gradually turns greyish from top to bottom after the number has 

been entered (see Figure 6.34). This resembles a value being stored inside a variable 

number which further reinforces the understanding of assignment and storage.  

 

 

Figure 6.34: Loops (Demo 3) 

 

The blue highlight on the program then moves into the line of (while number < 1 || 

number > 10). If a number entered is less than 1 or greater than 10, it means is a true 

evaluation; then the blue highlight moves inside the loop and re-prompts for a number 

when cin>>number is highlighted (see Figure 6.35). The point in this case is for SIPS 

to note that a code is repeated by the instruction of the loop condition and what 

happens when the code is repeated. Once again, when the code is repeated, the 

concept of overwriting through assignment is demonstrated.  
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Figure 6.35: Loops (Demo 4) 

 

If the number is between 1 and 10, the blue highlight will still move into the line of a 

while loop evaluation (while number < 1 || number > 10) but will not execute the content 

of the while loop; rather, it will jump into the subsequent for-loop to print congratulatory 

messages (Figure 6.36). This is because the condition is now true and the true 

condition does not allow the content of the while-loop to be executed.  

 

 

Figure 6.36: Loops (Demo 5) 

 

The key moment in the last loop (for loop) is when the blue highlight moves up and 

down between the for-clause and cout<<”Congratulations”<<endl; as the 
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congratulations text is printed at every round of the loop. The same experience is 

realised when the user repeatedly keys in an out-of-range value in the while loop. 

6.5 Formulated pedagogical guidelines   

Animation programs for teaching and learning should not be used in isolation because 

these programs are only one important piece of the puzzle that must fit into teaching 

pedagogy. The demonstration of the animation must form part of a bigger picture in 

the pedagogical sphere. Therefore, these formulated pedagogical guidelines serve as 

a manual to ensure the effective use and benefits of animation programs for teaching 

introductory programming with TLPAP. The following guidelines (see Figure 6.37) 

were followed when demonstrating all animation programs. 

 

 

Figure 6.37: Pedagogical guidelines 

 

The above pedagogical guidelines are substantiated as follows (note that these 

guidelines will be adapted based on the cycle outcomes):  

 

Stage 1: Introduce a concept by giving background and examples. 

- Giving thorough background information can help students grasp the overall 

basic idea about the concept and can also initiate a high-level understanding 

Introduce a concept by giving a background and examplesStage 1

Give a one pre-written problem specificationStage 2

Prepare a multicast for multiple display or a big projector image; 
then explain the role of animation in the animation program Stage 3 

Use an animation program for given scenarioStage 4

Repeat stage 4Stage 5
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before explaining fine details in the form of programming code and animations. 

This is helpful for avoiding conceptual bugs (Pea, 1986). 

- Give an example or metaphor about the concept. The use of examples ignites 

excitement, confidence, enthusiasm in playing a vital role in learning 

programming (Malan & Halland, 2004). The use of metaphors or analogies in 

introductory programming can enhance understanding (Moape, Ojo & van Wyk, 

2017). 

- Examples should not be too complex or too abstract as this can do more harm 

than good (Malan & Halland, 2004). According to Malan and Halland (2004), 

examples like "foo" and "bar" are meaningless to students. Real-world 

examples help students to link context to a programming concept for better 

understanding (Konecki, Lovrenčić & Kaniški, 2016). So, in this framework the 

real-world examples are recommended as they are common and familiar.  

- Having given students a background in this stage, that knowledge becomes 

important for the next stage to link the given example into context. Discussion 

and interaction should take place throughout as students’ reconstruction 

processes continues.  

Stage 2: Read and explain the problem specification to the students. 

- A program specification refers to the description of what the student should 

program for solving the problem. The problem specification requires a program 

code or algorithm as a solution. The problem specification should be in a written 

or typed format rather than verbal instruction as the students will benefit from 

reference. 

- Do not use difficult terminology when writing a problem specification as these 

terms could be misinterpreted and subsequently drive students to develop 

incorrect code. Simplify the language with basic common terminology (Craig, 

Smith & Petersen, 2017).  

- Make sure that students understand this part very well to reduce 

misconceptions on problem specification, as this is one of a critical barrier to 

designing a good program code. 

- Ask students to identify the inputs and outputs as this will serve as continuous, 

active learning and engagement throughout the teaching and learning session. 
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Stage 3: Run the computer multicast or a big projector image, display the actual first 

appearance of the animation and then explain the role of animation in the animation 

program. 

- A multicast can be prepared during a contact session where the controller 

computer displays the same content on all computers. Alternatively, multicast 

can be prepared in a standalone platform like Microsoft Teams, Google Meet 

or Zoom. Another option is a big projector screen visible to all students in the 

room. 

- Explain that the purpose of the animation program is to enhance the 

programming understanding to ensure that students do not regard the 

animation program as an independent entity. This will help students to regard 

the animation programs as a way of learning a program code.  

 

Stage 4: Use an animation program for a given scenario. 

 

- At this stage, students should have linked the examples to the introduced 

concept, grasped the problem specification, noted the inputs and outputs and 

understand the role of the animation program. 

- Let an animation program designed for that specific concept play. The lecturer 

narrates the programming code in conjunction with the animation unfolding 

during the process (Végh & Stoffová, 2017).  

Stage 5: Repeat stage 4. 

- The repetition of stage 4 strives to further sharpen program understanding. 

 

6.6 Experimentation results 

6.6.1 Summary of results (Animation programs on assignment) 

The total number of students who participated was 24, with 12 students in the control 

group and 12 students in the experimental group.  This summary is based on the pre-

teaching and post-teaching exercises (see Figure 6.38) under the concept of 

assignment.  
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a. What will be the value of t, p and k after the following algorithm has 

executed? 

int t, p, k; 

t = 5; 

p = 6; 

k = 2; 

 

t=p; 

p=k; 

k=t; 

 

b. What will be the value of t, p and k after the following algorithm has 

executed? 

int t, p, k; 

t = 2; 

p = 4; 

k = 7; 

 

t=p; 

k=t; 

t=k; 

Figure 6.38: Post-teaching exercises (Assignment) 

 

Both pre-teaching and post-teaching exercises were graded. Table 6.1 reports on the 

control and experimental results for both pre-teaching and post-teaching exercises. 

Note that the pre-teaching exercises are in section 6.2.1. Table 6.1 contains the 

statistics of the number of students, the percentage of students who answered certain 

questions correct, and the grade average. For example, in the first column (control 

group) under pre-teaching exercise 1 there is x (8) – 66.6%.  In x (8) – 66.6%, the 

number 8 in the brackets means the number of students who got the value of x correct. 

The number of students who got the value of x correct is in the form of a percentage. 

These calculations apply to all other columns, including the experimental group. The 

average percentage is recorded at the end of each column.  
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Table 6.1: Results (Assignment) 

Pre-teaching exercises Post-teaching exercises 

Control group Experimental group Control group Experimental group 

Pre-teaching exercise 1 
x (8) - 66.6% 
 
Pre-teaching exercise 2 
p (8) - 66.6% 
y (7) – 58.3% 
 
Pre-teaching exercise 3 
k (7) - 66.6% 
t (6) - 50% 
 

Pre-teaching exercise 4 
x (7) - 58.3% 
y (7) – 58.3% 
 
Average percentage 
60.7% 

Pre-teaching exercise 1 
x (9) - 75% 
 
Pre-teaching exercise 2 
p (8) - 66.6% 
y (8) – 66.6% 
 
Pre-teaching exercise 3 
k (8) - 66.6% 
t (7) - 58.3% 
 

Pre-teaching exercise 4 
x (6) - 58.3% 
y (4) – 33.3% 

 
Average percentage 60.6% 

Post-teaching exercise 
1 
t (7) – 58.3% 
p (6) – 50% 
k (5) – 41.6% 
 
Post-teaching exercise 
2 
t (6) – 50% 
p (6) – 50% 
k (5) – 41.6% 
 
Average percentage 
48.6% 
 

Post-teaching exercise 1 
t (9) – 75% 
p (8) – 66.6% 
k (8) – 66.6% 
 
Post-teaching exercise 2 
t (10) – 83.3% 
p (9) – 75% 
k (10) – 83.3% 
 
Average percentage 
75% 

 

The control group has an average percentage of 60.7% in the pre-teaching exercise 

and a grade average of 48.6% in the post-teaching exercise. Surprisingly, the grade 

average dropped instead of increasing in the post-teaching exercise. This means that 

the teaching method in the control group did not have a good impact on SIPS. The 

experimental group had 60.6% in the pre-teaching exercise and 75% in the post-

teaching exercise. This increase in the post-teaching exercises is an early indication 

of the impact of TLPAP on SIPS in the experimental group. 

The other notable results is the variation of answers of students who got the value of 

k correct in the first exercise of the post-teaching exercise in both groups. This was 

caused by the fact that the k=t; was supposed to be updated with the overwritten value 

of t, not the initialised value of t. The key line of code SIPS were supposed to trace 

and keep in mind is t=p; which changes the value of t. However, 6 students from the 

control group claimed that the value of k is 5 instead of 2 in the first pre-teaching 

exercise. The problem is that the students in the control group did not properly trace 

the value k, as the teaching method was not animation-based and considering that 

these students are SIPS. 

To realise the impact of the adopted teaching methods of both groups, a similar 

question was given as a post-teaching exercise 2. In the case of post-teaching 

exercise 2, the tricky part was the value of t. What made it tricky was that the value of 
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k was updated with a value of t, while the value of t was also updated with the value 

of k and the value of t was initially updated with the value of p. In the experimental 

group more students (83%) got the value of t correct than in the control group (50%). 

Generally, the outcome of experimenting with the TLPAP was positive and I will be 

experimenting again in the next cycle with adapted TLPAP for even more 

improvement. 

6.6.2 Summary of misconceptions found in the algorithms for 

decisions/nested decisions and loops. 

SIPS were able to write both pre-teaching and post-teaching algorithms related to 

decisions/nested decisions and loops. The pre-teaching exercise was based on the 

problem specification stated earlier in Figure 6.21 section 6.3.1. The post-teaching 

exercise was based on the following problem specification (see Figure 6.39). 

 

Write a C++ program that determines a final mark, then check if the student has passed or failed.  

Prompt for a year mark and exam mark. The final mark is the average of the year mark and exam 

mark. Show a message "You passed" if: 

-  the final mark is 50 or higher and 

-  the exam mark is at least 40.  

Otherwise, show the message "You failed". 

Figure 6.39: Post-teaching exercise (decisions/nested decisions) 

 

A total of 31 students participated in the experiments (15 in the control group and 16 

in the experimental group). The test was conducted online through Microsoft Teams. 

The algorithms were also written and submitted online. Table 6.2 contains the 

summary of errors found within the algorithms that need decisions/nested decision 

statements. Note that the number in the brackets means the total number of students 

who committed such error. 
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       Table 6.2: Summary of errors with the algorithms (decisions/nested decisions) 

Pre-teaching algorithm Post-teaching algorithm  

Control group Experimental group Control group Experimental group 

-Incorrect use of || 
(3) 
-Incorrect use of 
&& (3) 
-Incorrect use of 
else (0) 
-Swapped && and 
|| (0) 
-Not used || (2) 
-Not used && (2) 
-Not used else (1) 
-No if (1) 
-Disjointed / non-
nesting decision (5) 

-Incorrect use of || (5) 
-Incorrect use of && 
(4) 
-Incorrect use of else 
(3) 
-Swapped && and || 
(1) 
-Not used || (2) 
-Not used && (1) 
-Not used else (2) 
-Disjointed / non-
nesting decision (6) 
 

-Incorrect use of 
&& (6) 
- 
-Incorrect use of 
else or no else (4) 
Used || 

unnecessarily (3) 

-Incorrect use of && 
(3) 

-Incorrect use of else 
or no else (3) 

 

 

 

The pre-teaching algorithm for loops was based on the problem specification in Figure 

6.30 (section 6.4.1). The post-teaching algorithm was based on the following problem 

specification (see Figure 6.40). 

 

Write a program that displays the sum of integers from 1 to n value. 

The n value is entered by the user. 

Figure 6.40: Post-teaching exercise (loops) 

 

The errors found in the algorithms that needed loops were also summarised. Table 

6.3 contains the summary of errors. Note that the number in the brackets means the 

number of students who committed that error. 

      Table 6.3: Summary of errors with the algorithms (loops) 

Pre-teaching algorithm Post-teaching algorithm  

Control group Experimental group Control group Experimental group 

-Incorrect first loop 
(2) 
-Incorrect second 
for loop (6) 
-Not displayed the 
right content in the 
last loop (2) 
-Incorrectly used 
nested loop (5) 
 

-Incorrect first loop 
(2) 
-Incorrect second for-
loop (8) 
-Not displayed the 
right content in the 
last loop (3) 
-Incorrectly used 
nested loop (5) 
 
 

-Incorrect for loop 
(4) 
-Incorrect 
accumulation of sum 
in the loop (3) 
-No Display sum 
outside the loop (3) 
-Incorrectly used 
nested loop (4) 
 

-Incorrect for loop (2) 
-Incorrect 
accumulation sum in 
the loop (2) 
-Not displayed sum 
outside the loop (2) 
- Incorrectly used 
nested loop (3) 
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6.6.3 SOLO-adapted algorithms evaluation - Decisions 

The evaluation of pre-teaching and post-teaching algorithms for the concept of 

decisions / nested decisions are SOLO-adapted as discussed in the methodology 

chapter (Chapter 4, section 4.5). The teaching and learning method used in the control 

group is traditional-based infused with verbal or narrative teaching. The second 

teaching and learning method, for the experimental group, is based entirely on TLPAP. 

The SOLO-adapted evaluation sheet for the control group is depicted in Table 6.4. 

Table 6.4: Evaluation sheet (control group on decisions/nested decisions) 

            s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre          ×      

Post                

U Pre   ×   ×     ×   ×  

Post          ×      

M Pre  ×  × ×  × ×    × ×  × 

Post  × × × × × × ×   ×  × × × 

R Pre ×        ×       

Post ×        ×   ×    

 

The evaluation sheet in Table 6.4, s1 means student 1. As there were 15 students in 

the control group, this is indicated as s1 to s15. In terms of the abbreviations on the 

first column of the sheet, the P stands for prestructural, U for unistructural, M for 

multistructural and R for relational. The coordinates form a transition from one stage 

to another. The SOLO-adapted evaluation sheet for the experimental group is shown 

in Table 6.5 (based on the concept of decisions / nested decisions).  
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Table 6.5: Evaluation sheet (experimental group on decisions/nested decisions) 

        s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 

P Pre    ×             

Post                 

U Pre ×    ×  × × × ×    × × × 

Post                 

M Pre  × ×   ×     × × ×    

Post ×   × ×   ×  ×  ×  ×  × 

R Pre                 

Post  × ×   × ×  ×  ×  ×  ×  

 

The content of Table 6.6 is the evaluation matrix for the control and experimental 

group. The M→M (stagnant-at-intermediate-level) transition has a higher percentage 

in the control group than the experimental group, which means no impact on the 

teaching and learning method or simply stagnant at intermediate level. This is the first 

indicator that the traditional teaching methods only impact to a certain extent, 

especially on SIPS. The improvements from the lower level (P→U) were found in one 

algorithm and the improvements from the higher level (M→R) were also found in one 

algorithm. There were two evaluations that transitioned to R→R (already-know) which 

means the teaching methods were not necessary and the success of such transition 

cannot be linked to a particular teaching intervention. This is because the knowledge 

was acquired prior to our teaching intervention. 

The U→R (Improved+) transition had 0 matches in the control group but had 18.7% 

matches in the experimental group. Even though the U→R recorded a small number, 

this signals the positive impact of TLPAP over SIPS and is referred to as improved+.  

This is because U→R means that the struggling students were initially far from the 

relational stage; therefore, it took significant teaching and learning methods to bring 

them into the relational stage.  

The closest the student can reach from the unistructural stage is the multistructural 

stage which is defined as U→M (intermediate-improvement). The performance of 

U→M (in Figure 6.35) has a marginal difference (26.6% for the control group and 

37.5% for the experimental group). This means that both the control and experimental 
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groups had intermediate-improvement status, with the experimental group recording 

a higher percentage. 

Table 6.6: Evaluation matrix 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

6.6% 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 6.25% 26.7% 37.5% 46.7% 6.3% 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 18.75% 6.6% 31.3% 13.3% 0 

 P U M R 

 

6.6.4 SOLO-adapted algorithms evaluation - Loops 

The SOLO-adapted evaluation sheet for the concept of loops for the control group is 

depicted in Table 6.7.  

Table 6.7: Evaluation sheet (control group on loops) 

  n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n1
4 

P Pre    ×        ×   

Post            ×   

U Pre  × ×  × ×       × × 

Post  ×  ×  ×        × 

M Pre ×      × × × × ×    

Post ×  ×  ×  × ×  ×   ×  

R Pre               

Post         ×  ×    

 

The SOLO-adapted evaluation sheet for the concept of loops for the experimental 

group is depicted in Table 6.8. 
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Table 6.8: Evaluation sheet (experimental group on loops) 

  n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 

P Pre            ×  

Post            ×  

U Pre    ×   ×  ×  ×  × 

Post    ×          

M Pre × × ×  × ×  ×  ×    

Post ×  ×   × × × × × ×  × 

R Pre              

Post  ×   ×         

 

The M→R transition in the control group recorded numbers similar to the experimental 

group (see Figure 6.9). The M→R indicates improvement; however, it affected very 

few students in either the control and experimental group. The improvement in the 

middle level (U→M) affected 30.7% of the experimental students which is a bit more 

than the U→M impact (21.4%) in the control group. The U→M means intermediate-

improvement. A small improvement (7.1%) is noticed again under P→U (lower-level-

improvement) in the control group while the experimental group had 0 algorithms in 

that transition. The M→M transition (28.6% in the control group and 38.5% in the 

experimental group) means there were no improvements for struggling students in the 

middle level. The U→U transition (21.4% in the control group and 7.69% in the 

experimental group) means there were no improvements for struggling students in the 

lower level. 
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Table 6 9: Evaluation matrix 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

7.1% 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-lower-

level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

7.1% 0 21.4% 7.7% 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 21.4% 30.8% 28.6% 38.5% 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 14.3% 15.4% 0 0 

 P U M R 

 

Generally, the performance of the teaching method in the experimental group 

improved but was not satisfactory, prompting reflection and improvements on both the 

animations and pedagogical guidelines on loops.  

 

6.7 Reflections 

Based on this cycle, the reflections are as follows: 

- There are persistent errors in the post-teaching algorithms in what is supposed to 

be basic knowledge. These problems were encountered in the use of decisions 

and even more so in the loop conditions.  

- Students are not able to identify when to have two or more separate if-statements 

and when to have a nested if-statement. This was noted in the pre-teaching and 

post-teaching algorithms of both groups. 

- Students are not able to identify when to have two or more separate loops and 

when to have a nested loop. This was noted in the pre-teaching and post-teaching 

algorithms of both groups. 

- The animation program for the loops requires further design improvements 

because the results are not good enough compared to the success obtained after 

using animation programs for teaching and learning assignment and 
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decisions/nested decisions. The animation program for loops does not clearly 

depict two separate loops. 

- When animation program for decisions/nested decisions was demonstrated, after 

stage 5 of pedagogical guidelines (which requires a repeat of stage 4), some 

students requested a repeat of the demonstration again. This was a lesson since 

the demonstration for the loop animation was repeated three times.  

- The need to unify the components in animation program design is identified. 

- The animation programs in this cycle were experimented with on Microsoft Teams. 

Through the Microsoft Teams platform, I was able to note that the animation 

programs are compatible for online presentation, and I can easily record the 

session for later access by students. One shortcoming I have experienced was 

networks disruptions. Another option can be a pre-recorded session which can be 

placed in the LMS, in this way, students can be directed to a recorded version of 

the same session in the case of network disruptions, noisy channels or unmuted 

microphones. 

 

6.8 Planning for cycle 3 

I am using the reflections of cycle 2 discussed in the previous section (section 6.7) to 

plan cycle 3. To alleviate the misconceptions about the basics of programming in each 

concept, the main idea is to develop another set of animation programs specifically for 

introduction of the new concept. These introductory animation programs are 

demonstrated before the demonstration of the main animation programs. The 

introductory animation programs do not need a predefined problem specification as 

the plan is to give students the conceptual, technical view and basic knowledge before 

they can solve any problem. Besides identifying the need for animation programs that 

specialise in concept introduction, a gap has been noted in the literature on the same 

issue.  

Methodologically, the plan is to continue with the same SOLO-based evaluation 

approach, however in cycle 3 the evaluation will be on various sections of the 

algorithm, instead of one algorithm as whole. The evaluation of various sections of the 

algorithm can deepen insight into the analysis of an algorithm. This will help us note 

the patterns of improvement even in the algorithms which are not 100% correct.  The 
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approach will also help us reflect or plan specifically on a certain section of an 

algorithm if there are problems.  

Having used the animations presented in this cycle in an online platform (MS Teams) 

and having experienced no incompatibility issues, the demonstration in cycle 3 will be 

through multicasting in a face-to-face contact session.  

Chapter 7 will focus on the new addition of animation programs in the TLPAP 

(animation for concept introduction and other new concepts to be covered). The 

chapter will only repeat the demonstration of the animation programs that are affected 

by the improvements (animation for loops). 

 

6.9 Conclusion 

 In this study, I have initiated the TLPAP framework for SIPS. This chapter focused on 

presenting the second cycle of action research where various TLPAP animation 

programs were outlined and demonstrated. This approach is coupled with guidelines 

for productive use of animation programs. The process of experimenting, revising and 

reflecting on the action research methodology allows us to advance toward the final 

version of the TLPAP framework.   

This chapter started with animation programs for the uses of assignment, followed by 

animation programs for the concept of decisions/nested decisions and the concept of 

loops. Through pre-teaching and post-teaching exercises in the control and 

experimental groups, I measured the impact of the TLPAP framework. The 

experiments were conducted with university students within an introductory 

programming module. In the experimental group, the overall improvements were 

positive in the concept of assignment and decisions/nested decisions, but more 

experiments and improvements may be added. The results for the animation for 

teaching and learning loops were not positive as there was only little improvements or 

intermediate improvement. As emphasised in the reflection and planning sections 

(sections 6.7 and 6.8), the plan is to improve the design of the animation for loops and 

develop separate animation programs for use in the introduction of new concepts. This 

took place after noting what can be regarded as simple but challenging for SIPS. The 

full details of cycle 3 are presented in the next chapter (Chapter 7). 
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Chapter 7: Adapted framework - Cycle 3 
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7.1 Introduction   

As this study is action research, in this chapter I continue to present relevant adapted 

teaching methods. The action research methodology consists of several action cycles. 

The previous chapter (Chapter 6) presented the activities and the outcomes of cycle 

2 which were based on the animation programs for teaching and learning IPC 

(assignment and decisions/nested decisions). One main idea to be demonstrated in 

this cycle (cycle 3) is the use of a separate set of animation programs specifically for 

concept introduction. This implies that the animation programs for concept introduction 

are used first, and thereafter the animation programs with problem specifications.  The 

content of cycle 3 will include animation programs for concepts like nested loops, 

arrays and functions. The process of developing, testing various animation programs 

and the adoption of pedagogical guidelines is a way to advance and validate the 

Teaching and Learning Programming with the Animation Programs (TLPAP) 

framework.  

  

This cycle serves as a continuation to answer our last research question which is 

formulated as follows: 

- How can we prove and evaluate the efficacy of the teaching and learning 

programming with the animation programs framework? 

The chapter opens by explaining the designed animation programs for introducing a 

concept (section 7.2), followed by the animation programs with problem specifications 

(section 7.3), then discussing adapted pedagogical guidelines (section 7.4) and 

experimental results (section 7.5). Section 7.6 presents the summary of the reflections, 

with the planning of cycle 4 in section 7.7, while section 7.8 concludes the chapter. 

7.2 Animation programs for introducing new concepts 

This section demonstrates the design of animation programs to be used when 

introducing a new concept to SIPS. The introductory animation programs are not 

accompanied by problem specifications as they are short, basic and precise. The 

students are required to gain the basic knowledge of a certain concept before they can 

be taught how to solve a problem through a program code. The introductory animation 

programs focus on the structural aspects of the concept. The design pattern of 
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introductory animation programs is similar to the animation programs for problem 

specification which can further reduce animation complexity and ease the transition 

into the animations for problem specifications. Since the introductory animation 

programs are short and precise, I found no need to include line indicators (line 

numbers) on the left side of the program code. The line indicators are included with 

the animation programs for problem specification because they are likely to be a bit 

long, so they are helpful in tracing a specific line of code. The uses of these 

introductory animation programs are incorporated into the pedagogical guidelines 

used and revised in this cycle (presented in section 7.4). Pedagogical guidelines are 

followed in efforts to increase the effectiveness of the TLPAP. 

 

7.2.1 Decisions/nested decisions 

The introductory animation programs in this section focus on decisions (if-statements). 

The intended learning outcomes (ILOs) for this concept are for SIPS to construct a 

proper simple if-statement, if-else statement and nested if-statement.  These ILOs are 

achieved with the introductory animation programs presented in this section and 

animation programs with problem specification presented in section 7.5.2.  

To introduce SIPS to the flow in decision statements, the introductory animation 

programs start with a simple if-statement, followed by an if-else statement and a 

nested if-statement. 

7.2.1.1 Simple if-statement  

The state of Figure 7.1 is the first appearance of the animation program before the 

button click. On the left of the animation program is a program code and on the right 

are relevant graphics to animate accordingly. Note that cout << "Number is less than 10" 

line is grey because it is the statement that must execute in the case of true condition; 

therefore, it catches the attention of SIPS during execution.  
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Figure 7.1: Simple if-statement (Demo 1) 

 

An input box pops up after the user presses a process button (Figure 7.2). Initially, the 

arrow on the far left of the program code pointed to first line in Figure 7.1, and then 

when the arrow progresses to the second line (cin>>…) (Figure 7.2), an input box 

appears. 

 

 

Figure 7 2: Simple if-statement (Demo 2) 

 

Upon value input, the green vertical bar in the graphic is gradually replaced by the 

grey bar as a sign of moving to the next line of code. When the move has been 
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completed and the grey bar has shaded the entire bar, the arrow moves to the next 

line (see Figure 7.3) which is if (number < 10). While the arrow is being pointed at the 

if-condition, as shown in Figure 7.3, the yellow square flickers, indicating the process 

of evaluating a condition.  

 

 

Figure 7.3: Simple if-statement (Demo 3) 

 

In Figure 7.4, an arrow is now pointing at the line of code being executed as a result 

of a true evaluation from the if-condition. That line is shaded with a sky-blue colour to 

draw SIPS’ attention, but it reverts to the original colour when the arrow moves to the 

next line of code. The output is also printed, as seen at the bottom of Figure 7.4. 
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Figure 7.4: Simple if-statement (Demo 4) 

 

Figure 7.5 shows the arrow pointing at the last line of code; the output is printed at the 

bottom of the program. At this stage, SIPS should understand that the first output was 

processed as a result of a true evaluation from the if-condition and the last output gets 

printed without any conditions.  

 

 

Figure 7.5: Simple if-statement (Demo 5) 

 

To further extend the demonstration and improve understanding, it is important to 

restart the program and make use of input that will make the if-condition evaluate to 



146 
 

false. In Figure 7.6, the program has been restarted and the value 13 is entered as an 

input.  

 

 

Figure 7.6: Simple if-statement (Demo 6) 

 

The execution of the program is complete and the output is only "Complete".  Upon 

the flickering of the yellow square, the green horizontal bar remains green which 

means that the condition is false and the relevant line of code is not executed. The 

arrow will then jump from the if-clause to the cout<<”Complete” line of code. 

 

7.2.1.2 An if-else statement  

The following section explains the program that assists in teaching an if-else 

statement. Figure 7.7 shows the first appearance of the animation program before the 

process button is clicked. 

 



147 
 

 

Figure 7.7: An if-else statement (Demo 1) 

 

Figure 7.8 shows a result of a complete animation program when the value 3 is 

entered. The process of animating and entering a value is the same as explained in 

the previous section (section 7.2.1.1). 

 

 

Figure 7.8: An if-else statement (Demo 2) 

 

A completed program (see Figure 7.9) shows that an else part of the program was 

executed and SIPS would have seen that the content of the if-condition was jumped 

due to false evaluation. SIPS would also note the arrow jump from the if-clause to the 

content of the else section, and further note that the bar leading to execute the content 

of the if-condition remained green. 
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Figure 7.9: An if-else statement (Demo 3) 

 

7.2.1.3 Nested-if statement  

This section demonstrates the nested if-statement. The logic and concept remain the 

same as the previous two sections, but the demonstration in two figures (Figures 7.10 

and 7.11) indicates a significant addition that is part of the nested if-statement. In 

Figure 7.10, we see another yellow square which represents an additional condition. 

 

 

Figure 7.10: Nested-if statement (Demo 1) 

 

Figure 7.11 shows the program has completed execution. The content of an else 

clause was executed because 23 is not less than 10 and also not less than 21. The 
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significant learning aspect here is that SIPS would understand that when the condition 

evaluates to false, the content of that if-condition is jumped (by an arrow) and the 

horizontal bars would not have changed to grey. 

 

 

Figure 7.11: Nested-if statement (Demo 2) 

 

7.2.2 Repetitions  

This section demonstrates animation programs that help SIPS with repetitions/loops. 

The ILO for this concept is for SIPS to construct looping statements which allow a 

certain portion of a program code to repeat accordingly. The types of loops covered 

include for-loop, while/do-while loop and nested loop. These ILOs are achieved with 

the introductory animation programs presented in this section and animation programs 

with problem specification presented in section 7.5.3. 

In the animation programs, the important aspects to note for SIPS are the movement 

of an arrow and what happens to the repeated code. The following section starts with 

the for-loop. 

7.2.2.1 For-loop 

A sample for-loop code is given in Figure 7.12. The code within a loop gets repeated 

three times.   
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Figure 7.12: For-loop (Demo 1) 

 

When the arrow moves to the first line, a container that represents a variable appears. 

When the arrow moves to the for-clause, corresponding blue text appears to indicate 

the current value of x and whether x < 3; is true or false. When the arrow moves to the 

next line (p = p + 1), the green bar gradually turns grey, then executes p = p + 1 (see 

Figure 7.13). 

 

 

Figure 7.13: For-loop (Demo 2) 

 

In Figure 7.14, the number +1 appears and then gradually moves down until it reaches 

the location of the value 0. When +1 reaches where 0 is, it then changes the value to 

1. The arrow moves back to the for-clause, and then the blue text (x = 1 and x<3? = 

true) is updated accordingly (Figure 7.14).  
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Figure 7.14: For-loop (Demo 3) 

 

In Figure 7.15, the +1 graphic moves again to increment the value of p. When the 

animating +1 text reaches where the value is, it changes to 2. The arrow will move 

back to the for-clause again, change x to 2 and x < 3 remains true because the value 

of x is 2.  

 

Figure 7.15: For-loop (Demo 4) 

 

In Figure 7.16, the +1 graphic moves to where the value 2 is, then it changes to 3. This 

indicates the third round of the loop. 
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Figure 7.16: For-loop (Demo 5) 

 

On the last round of the loop, an arrow moves back to the for-clause and updates the 

text accordingly. In this case it still updates x = 3 with blue font and x < 3? false with 

red font to further draw SIPS’ attention. The arrow will not go back to point at p = p + 

1 but jump to the first cout<< and print the output, then move to the last cout<< and 

print the last output (Figure 7.17). The animation authoring has only been created to 

accommodate p = p + 1. Therefore, the emphasis with this demonstration should also 

be about the similarity of x++ which is part of a loop counter and p = p + 1 which 

increment 1 inside the loop. 

 

 

Figure 7.17: For-loop (Demo 6) 
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7.2.2.2 While-loop and Do-while loop 

The following animation program (Figures 7.18 and 7.19) does exactly what the 

previous section did but under a while-loop. Therefore, to avoid repetition, I only show 

an executed program in the figures. By Figure 7.18, SIPS should be able to contrast 

differences between for-loop and while-loop which are both types of pre-test loops. 

This must be emphasised by the educator.  

 

 

Figure 7.18: While-loop (Demo 1) 

 

By Figure 7.19, SIPS should further comprehend the difference between pre-test and 

post-test loops, since a do-while is a type of post-test loop (the condition is evaluated 

at the end of the first round of the loop). This should also be emphasised by the 

educator as the animation shows how a condition is tested first in the case of a pre-

test loop and later in the case of a post-test loop. 

 

Figure 7.19:  Do while-loop (Demo 2) 
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7.2.2.3 Nested loop 

In Figure 7.20, the introductory animation program for nested loop consists of two 

rectangular shapes. This is designed in a way to encourage SIPS’ understanding of 

the nature of a nested loop and how it happens. The right-side rectangular shape 

denotes that the code within that shape will be repeated (looped) if necessary. The left 

side of the shape is reserved for relevant animation and the second half of the shape 

is the program code. The track bars at the top of each square, part of the animation, 

are used to trace the state of the loop during a looping process. Likewise, this should 

reinforce SIPS’ understanding of the execution of the inner loop in relation to the outer 

loop. The nature of the graphics and what they will do are explained by the educator 

beforehand, as noted in the TLPAP pedagogical guidelines. This introductory 

animation program differs from other loop animation because the graphics clearly 

separate the inner loop and outer loop, demonstrating the activities and effects of each 

loop over the other. 

 

 

Figure 7.20: Nested-loop (Demo 1) 

 

The trackbars have small spaces between the beginning and the end. For each round 

of a loop, the blue arrow (pointing down) on the track bar moves step by step (it will 

have to move five steps before it can reach the end of the bar). Both inner and outer 

loops are to loop five times, and hence the track bar steps five times. The arrow 

pointing at the line of a program code indicates the currently executing line of code. 

The stars (*), printed gradually during code execution, are printed within the inner 
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rectangle because that happens through the inner loop. Figure 7.21 reveals the 

animation program execution which currently is in the third round of the outer loop and 

fourth round of the inner loop.  

 

 

Figure 7.21: Nested-loop (Demo 2) 

 

The additional text at the top of the outer loop indicates the value of x, the condition 

and if that condition has been evaluated to true or false. If the condition evaluates to 

true, the font of the text is green. If the condition evaluates to false, the font of the text 

turns red. In the case of Figure 7.22, the text at the top of the inner loop is red because 

y = 5 and y is not less than 5; therefore, it evaluates to false. Subsequently, the arrow 

pointed at the cout<<endl; indicating the end of the line and the next star to be printed 

in the new line. 
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Figure 7.22: Nested-loop (Demo 3) 

 

Figure 7.23 indicates the complete execution of the animation program. In that state, 

we can see that all stars have been printed (5 x 5) and the conditions of each loop are 

false (with red font).  

 

 

Figure 7.23: Nested-loop (Demo 4) 

 

7.2.3 Arrays  

The ILOs for the concept of one-dimensional arrays are for SIPS to write algorithms 

for storing and accessing values in a one-dimensional array. The ILO for parallel 

arrays is for SIPS to write a one-dimensional array algorithm that can be made parallel 

or relate to another one-dimensional array. 
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7.2.3.1 One-dimensional array – storing and access 

The program in Figure 7.24 consists of a code and corresponding graphics. Graphics 

are tray-like and will help in storing values. 

 

 

Figure 7.24: Arrays (Demo 1) 

 

When the arrow reaches the cin object, as usual it prompts the user to enter the value. 

However, in this case, each value is stored in the array as entered (see Figure 7.25).  

 

 

Figure 7.25: Arrays (Demo 2) 

 

When the first loop is complete, the second loop takes over and prints the content of 

the array. SIPS should be able to see, as the loop's pace is reduced to a point where 

they can see how the values are printed during the looping process (see Figure 7.26). 

More importantly, the top of the array graphic contains an animating track bar that 

points to the currently accessed element in the array. SIPS are also able to see the 
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index of that currently accessed element at the bottom of the array tray and within the 

square brackets of arrNumbers[4]. The narrator/educator should emphasise this. 

 

 

Figure 7.26: Arrays (Demo 3) 

 

The second loop not only prints the content of an array but further determines the sum 

of array elements. SIPS should be able to see how to retrieve a value from an array 

(See Figure 7.27).  

 

 

Figure 7.27: Arrays (Demo 4) 

 

 

7.2.4 Functions  

This section discusses introductory animation programs for teaching and learning 

functions. The ILOs for the concept of functions are for SIPS to construct a line of code 
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that calls a function that returns a value; that does not return a value; pass parameters 

(values and references) in the function calls; and construct proper function headers, 

parameters and function content in a way that maps other entities together.  These 

ILOs are achieved with the introductory animation programs presented in this section 

and animation programs with problem specification presented in section 7.5.5. 

 

7.2.4.1 Value returning function 

Figure 7.28 shows the animation program for a function that returns a value to the 

calling environment.  

 

Figure 7.28: Value-returning function (Demo 1) 

 

Upon a start button click, the arrow reaches cout<<mynumber() then the green bar gets 

shaded by the grey colour towards mynumber() rectangle. The mynumber() function 

block gets shaded in a sky-blue colour then reverts to its original colour to catch the 

attention of the SIPS. This helps SIPS understand that there is a function call and the 

actual function gets executed when the function is called. Furthermore, if the function 

returns a value, that value is displayed through the cout object. To further emphasise 

that the function returns a value, a returned value gets animated as it floats from the 

bottom of the function (See Figure 7.29). 
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Figure 7.29: Value-returning function (Demo 2) 

 

In Figure 7.30, the program has completed the execution and SIPS would have 

understood how the function is called, when is the function executed and how the 

value-returning function gets displayed.  

 

 

Figure 7.30: Value-returning function (Demo 3) 

 

7.2.4.2 Non-value returning function 

The design of the animation program in this section is similar to the previous programs, 

except for changes in the function return type and the way the function is called. SIPS 

are expected to contrast between the two ways of calling a function. This will further 

solve the problem of confusion in calling functions as discussed in the literature review. 

The following two figures (See Figures 7.31 & 7.32) are snippets of the program.  
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Figure 7.31: Non-value-returning function (Demo 1) 

 

Figure 7.32 shows a completed execution of the animation program. Note that the bar 

has gradually turned from green to grey when the arrow was pointing at a line 

(display()) that calls a function. 

 

 

Figure 7.32: Non-value-returning function (Demo 2) 

 

7.2.4.3 Value parameters 

In this section, I demonstrate animation programs for introducing functions but with a 

special focus on value parameters. In Figure 7.33, I show the main function and two 

functions. One function has parameters and the other is without parameters. SIPS will 

be able to see what happens when a function with parameters is called. 
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Figure 7.33: Value parameters (Demo 1) 

 

As usual, the arrow points line by line in the main function. When it points at mysum = 

calcsum(number1, number2) the grey of the bar moves from right to left towards a 

rectangle containing function code. SIPS also benefit from experiencing the alternative 

way of calling a function that returns a value, which is by storing a returned value in a 

variable. In section 7.2.4.1, the function was called in an output statement and in this 

case, a variable was declared to store a value returned by the function. The copies of 

number1 and number2 which are 20 and 3 appear at the top of the calcsum function 

(appear as numbers), then gradually move down, creating an animation that indicates 

values being received/copied into the function. When the graphics (20 and 3) reach 

the variables n1 and n2 they disappear, thereby making a demonstration that the 

values were copied into those variables (See Figure 7.34). The colour of the rectangle 

temporarily changes to blue to catch the attention of SIPS. 
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Figure 7.34: Value parameters (Demo 2) 

 

Figure 7.35 is like Figure 7.34. In this case, a value calculated by the calcsum function 

is copied or received by the display function. The red font text (copy of mysum) further 

emphasises the value being copied to the sm variable. 

 

 

Figure 7.35: Value parameters (Demo 3) 

 

When the animation program execution has been completed (as seen in Figure 7.36), 

SIPS would understand that the value parameters are copied and sent to be displayed 

in that function. The green font comments at the top of the function call serve as a 

notice to function calls. 
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Figure 7.36: Value parameters (Demo 4) 

 

7.2.4.4 Reference parameters 

This section demonstrates how reference parameters work. Figure 7.37 shows the 

main function and a non-value returning function. The function has two value 

parameters and one reference parameter. 

 

 

Figure 7.37: Reference parameters (Demo 1) 

 

When the function executes, just like with the previous section, value parameters as 

graphics move down to be copied into n1 and n2. However, with a reference 

parameter, the text reference indicates that the reference instead of a value is passed 

(see Figure 7.38).  
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Figure 7.38: Reference parameters (Demo 2) 

 

More importantly, SIPS see that when the sum changes in a function, the mysum value 

from the main function changes as well. The sum calculated by the calcsum function 

floats upwards as a number (15) towards mysum (Figure 7.39). When the number (15) 

reaches mysum, the pointing arrow moves to the next line (cout<<”Sum is ”<<mysum) 

and the output will be displayed on the output window. 

 

 

Figure 7.39: Reference parameters (Demo 3) 
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7.3 Animation programs with problem specifications 

7.3.1 Repetitions 

The demonstration of the animation program in this section is based on the problem 

specification in Figure 7.40. 

Write a program that asks a user to enter an integer between 1 and 10. Continue to prompt the user 

while the value entered does not fall within this range. When the user is successful, display a 

congratulatory message as many times as the value of the successful number the user entered. 

Figure 7.40: Problem specification – loops 

 

Figure 7.41 shows the first appearance of the animation program. The borderline 

rectangle on the left side indicates a piece of code that is executed inside the loop. 

 

Figure 7.41: Loops (Demo 1) 

 

The first prompt is outside the loop; hence, the animated container is outside the 

rectangular borders. The prompt to enter a number happens at line 4 and in this case, 

the number 14 was entered (see Figure 7.42).  

 



167 
 

 

Figure 7.42: Loops (Demo 2) 

 

In Figure 7.43, the blue highlight is in the loop and prompting for the second time is in 

line 9. This is because 14 is greater than 10 and therefore triggers a re-prompt as the 

condition evaluates to true (false or true = true). The green text at the top of the 

rectangle further indicates the true evaluation of the while-loop to the student.  

 

 

Figure 7.43: Loops (Demo 3) 

 

In Figure 7.44, the number 3 is entered which is expected to evaluate to false because 

3 is not less than 1 or greater than 10. 
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Figure 7.44: Loops (Demo 4) 

 

Figure 7.45 indicates a completed execution of the animation program.  

 

 

Figure 7.45: Loops (Demo 5) 

 

7.3.2 Nested loop 

This demonstrates the nested loop animation program aligned to problem 

specifications. The following figure (See Figure 7.46) is the problem specification for 

the animation program to be demonstrated.  
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Write a program code to produce the following output (note: Make use of a nested loop: any type of 

loop): 

 

* 

*   * 

*   *   * 

*   *   *   * 

*   *   *   *   * 

*   *   *   *   *   * 

*   *   *   *   *   *   * 

*   *   *   *   *   *   *   * 

*   *   *   *   *   *   *   *   * 

*   *   *   *   *   *   *   *   *   * 

Figure 7.46: Nested loop problem specifications 

 

The animation programs demonstrated through subsequent figures in this section 

helps SIPS understand that the inner loop reiterates based on the number of times the 

outer loop reiterates.  The program code in Figure 7.47 has a borderline rectangular 

shape that contains the inner loop code and the big rectangle that covers the outer 

loop. This layout of the rectangles with borders denotes that a code will be repeated, 

and its uses should be explained before the animation program demonstration 

(pedagogical guidelines require the animation to be explained as well before 

demonstration). This is important to allow SIPS to comprehend the execution of the 

inner and outer loops as the navigating arrow moves up and down across the program 

code. The trackbars at the top of each rectangular shape show the status of the loop 

towards the final repeat. The blue arrow in the trackbar will take a step to the right 

direction until it reaches the tenth final step during animation program execution.  
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Figure 7.47: Nested-loop (Demo 1) 

 

Upon button click, the pointing arrow starts from the first line which is the for-clause of 

the outer loop. While the arrow is pointing at the for-clause of the outer loop, the value 

of x gets updated with the current value and the condition gets evaluated and the 

results are printed at the top.  In Figure 7.48 the inner loop had just completed looping 

four times and printed four asterisks on the last line. When the condition of the inner 

loop evaluates to false, the text at the top of the inner loop changes to a red font and 

is further updated as a comment at the top of the loop (see red font comment as   y < 

x? = false in Figure 7.48).  

 

 

Figure 7.48: Nested-loop (Demo 2) 
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Figure 7.49 shows an executed animation program. At this stage, SIPS would have a 

basic understanding of the concept of a nested loop. 

 

 

Figure 7.49: Nested-loop (Demo 3) 

 

7.3.3 Arrays 

7.3.3.1 One-dimensional array 

The program animations in this section are based on the problem specification in 

Figure 7.50. 

Declare an array named arrNumbers and initialise it with 4, 10, 72, 5, 90, 3. Count the number of 
elements in the array that are higher than 49. 

 
Sample output: 
Total numbers more than 49 is 2 

Figure 7.50: Problem specifications – arrays 

 

The following set of figures will demonstrate the animation programs for arrays. Figure 

7.51 is the state of the first appearance of the animation program and contains a 

program code and a display window for the program. 
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Figure 7.51: Arrays (Demo 1) 

 

Figure 7.52 shows the initialised array and relevant graphics on the left. The 

progress bar at the top indicates the currently accessed element in the array in 

relation to the currently executed line in the program code. The text above the array 

animation changes font accordingly: if the condition evaluates to false the font is 

red, and if the condition evaluates to true the font is green.  

 

 

Figure 7.52: Arrays (Demo 2) 

 

In Figure 7.53, the condition is true at the pointed element and index. 

Subsequently, the font changes to green.  
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Figure 7.53: Arrays (Demo 3) 

 

Figure 7.54 indicates a complete animation program execution.  

 

 

Figure 7.54: Arrays (Demo 4) 

 

7.3.3.2 Parallel array 

The content of Figure 7.55 is a problem specification for parallel arrays. 

 

Initialise an array named arrNames with these names: John, Dias, Linda, Obed, Jack and Ouma. 

Declare another array named arrAges that contains ages of the names in arrNames (parallel array). 

Initialise arrAges with 22,36,25,20,27,33. Prompt the user to enter the name of a person. If that name 

exists in the array, then display the age of that person. If that name does not exist in the array, show 

the message "Name does not exist". 

Figure 7.55: Parallel array problem specification 
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Figure 7.56 shows the program code and reserved space for the animation 

visualisation. The purpose is to demonstrate how parallel arrays work.  

 

 

Figure 7.56: Parallel arrays (Demo 1) 

 

Figure 7.57 indicates that a program is prompting for a name (a non-existing name is 

entered). 

 

Figure 7.57: Parallel arrays (Demo 2) 

 

Just like the previous section on a one-directional array, the searching happens with 

the assistance of the track bar (See Figure 7.58).  
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Figure 7.58: Parallel arrays (Demo 3) 

 

The name "Joe" does not exist in the array; this means that the condition evaluation 

of the elements were all false. Figure 7.59 shows that the search has completed and 

the name does not exist.  

 

 

Figure 7.59: Parallel arrays (Demo 4) 

 

In the case of Figure 7.60, a name that exists is entered. 
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Figure 7.60: Parallel arrays (Demo 4) 

 

The search continues until it reaches the position of "Obed". Subsequently, the text at 

the top of a track bar changes to name == arrNames[3]  = true and also changes the 

font colour to green (see Figure 7.61). The program prints the output and exits the loop 

due to the break keyword.  

 

 

Figure 7.61: Parallel arrays (Demo 5) 

 

7.3.4 Functions 

The animation program presented in this section is based on the program 

specifications in Figure 7.62.  
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Maxwell Fitness Centre is a non-membership fitness centre where anyone can exercise and pay a 
certain amount per hour. Read and implement the following functions and the main function according 
to the specifications below. 
Main function 

Prompt the user to enter the name of a person, facility code, and the number of hours to 
use a certain facility. Note that a facility code is a type of an exercise.  
Call the necessary functions in the correct order and with relevant parameters where 
necessary. 

Functions  
➢ Create a function called amountdue that receives facility code and hours worked as 

parameters then calculates and returns the amount due. Refer to the table below for the 
calculation of the amount due. 
 

Facility Facility code Rates 

Squash court squa R13.00/hour 

Swimming pool swim R12.00/hour 

Gymnasium gym R11.00/hour 

Weights wei R8.00/hour 

 
➢ Create a function called finalamountdue of a type void. The function receives an amount 

due calculated and returned by the amountdue function, then determines the final amount 
due by adding 14% vat. The final amount due must be accessible to the main function.  

➢ Create a function called display to display the name of the person entered earlier and the 
final amount due. 

Figure 7.62: Problem specification – functions 

 

Figure 7.63 shows four functions, the main function and three other functions. The 

functions cover value parameters, reference parameters, value-returning function and 

non-value-returning functions.  

 

 

Figure 7.63: Functions (Demo 1) 
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In Figure 7.64, the program prompts the user to enter a name, as per the currently 

highlighted line of code. Subsequently, the facility code (wei) and the number of hours 

(3) are entered. 

 

 

Figure 7.64: Functions (Demo 2) 

 

On the animation side, the grey-coloured rectangle symbolises a function. In Figure 

7.65, the blue highlight is on the function call, the background colour of the function 

being called changing to sky blue. The actual values sent as parameters appear at the 

top of the amountdue function as graphic text, then gradually move down as a sample 

of copied parameters. When the values ("wei" and "3") reach the parameters ("fcode" 

and "hrs"), they disappear with an illusion of being copied into those variables. 

 

 

Figure 7.65: Functions (Demo 3) 
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In Figure 7.66, the value being returned comes out at the bottom of the function 

between the two bars. 

 

 

Figure 7.66: Functions (Demo 4) 

 

In Figure 7.67, another function call is executed and the program highlighted it in sky 

blue as well. The finalamountdue function has two parameters: the value parameter and 

the reference parameter. The value (24) floats into the amt variable just like with the 

previous function.  

 

 

Figure 7.67: Functions (Demo 5) 
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Figure 7.68 shows the calculated value from the finalamountdue function move up and 

vanish after reaching the finalamount variable. 

 

Figure 7.68: Functions (Demo 6) 

 

In Figure 7.69, the last function named display receives the values and displays 

accordingly.  

 

 

Figure 7.69: Functions (Demo 7) 

 

Figure 7.70 is the state of a completed execution of the animation program.  
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Figure 7.70: Functions (Demo 8) 

 

 

7.4 Adapted pedagogical guidelines   

The following guidelines (see Figure 7.71) were revised from cycle 2 (Chapter 6, 

section 6.5), adapted and followed when all animation programs were demonstrated 

in this cycle. 

 

Figure 7.71: Adapted pedagogical guidelines 

 

The TLPAP animation programs are designed in way that enable the narrator to 

emphasise certain elements of the concept. The assumption is that these guidelines 

Introduce a concept by giving a background and examples.Stage 1

Prepare a computer multicast or a big projecting image then explain 
the role of animation and its components. Stage 2

Use an animation program for concept introduction.Stage 3 

Repeat stage 3, then move to stage 5. Stage 4

Ready the problem specification and its animation program.Stage 5

Use an animation program with problem specification.Stage 6

Repeat stage 6 and ask if there are questionsStage 7
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should be followed after the narrator (educator) has familiarised himself or herself with 

how the animation programs work, as discussed in sections 7.2 and 7.3. This will assist 

in transitioning TLPAP to the SIPS. The pedagogical guidelines in Figure 7.71 are 

substantiated as follows. 

 

Stage 1: Introduce a concept by providing background information and examples. 

- Giving a good background helps students grasp the overall basic idea about 

the concept, it initiates a high-level understanding before the educator can 

explain fine details of the program code and it is further helpful to avoid 

conceptual bugs (Pea, 1986). 

- Give example or metaphor about the concept. The use of examples ignites 

excitement, confidence and enthusiasm and plays a vital role in learning 

programming (Malan & Halland, 2004). The use of metaphors or analogies in 

introductory programming enhances understanding (Moape, Ojo & van Wyk, 

2017). 

- Examples should not be too complex or too abstract as they can do more harm 

than good (Malan & Halland, 2004). According to Malan and Halland (2004) 

examples like "foo" and "bar" are meaningless to students; therefore, in this 

framework, we recommend real-world examples which are commonly familiar. 

Real-world examples help students link the context to a programming concept 

for better understanding (Konecki, Lovrenčić & Kaniški, 2016). 

- Having given students some background in this stage, that knowledge becomes 

important in the next stages to link the example into context. Discussion and 

interaction should carry on throughout as students’ reconstruction processes 

continues.  

 

Stage 2: Prepare the computer multicast or a big projecting image; explain the role of 

animation and its components. 

- A multicast can be prepared in a contact session where the controller computer 

displays the same content on all computers. Alternatively, multicast can be 

prepared in an online platform like Microsoft Teams, Google Meet or Zoom. 

Another option is a large projector screen visible to all students in the room. 
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- Explain that the purpose of the animation programs is to enhance programming 

understanding to ensure that students do not regard the animation program as 

an independent entity. This will help students regard animation programs as 

one way of learning and understanding how program code works. Highlight the 

components of the animation where possible. 

 

Stage 3: Use an animation program for concept introduction. 

- The first appearance of all our animation programs shows a program code with 

no animation or graphics at this point. Before the educator can press the start 

button, a verbal narration of how that program works should be prepared. This 

is done so that when the narration is presented with animation later, the 

students can construct their knowledge by linking it with previous knowledge or 

triggering aspects that were not clear in the program code.  

- Secondly, play the animation program and narrate synchronously. Mayer and 

Anderson (1991), refers to this approach as the ‘words-with-pictures’ approach, 

found it to be more effective than the ‘words-before-pictures’ approach. With 

words-with-pictures, the narration and the animation occur synchronously. With 

words-before-pictures, the narration happens first without the involvement of 

pictures (animation), and later the animation plays without a supporting 

narration.  

 

Stage 4: Repeat stage 3, then move to stage 5.  

- The repeat is necessary for SIPS to further grasp the fundamental aspects of 

the concept introduced. If the program allows different values, a repeat with 

different values is recommended. If the program gives a varied flow of a 

program, it is recommended that the number of repeats be made accordingly. 

 

Stage 5: Ready the problem specification and its animation programs. 

- A program specification refers to the description of what the student should 

program to solve the problem.  The solution to the problem requires a program 

code or algorithm. This should be in written format rather than verbal instruction 

as the students will benefit from reference. 
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- Do not use difficult terminology when writing a problem specification as terms 

may be misinterpreted and mislead students to develop incorrect program 

code. Simplify the language with basic, common terminology (Craig, Smith & 

Petersen, 2017).  

- Make sure students understand this part very well as it can reduce 

misconceptions on problem specification and reduce barriers to designing a 

good program code. 

- Ask the students to identify inputs and outputs as this will serve as continuous 

active learning and engagement throughout the teaching and learning session.  

- Open the animation program for the explained problem specification as the 

preparation to carry out stage 6. 

 

Stage 6: Use an animation program with problem specification. 

- At this stage, students should have grasped the problem specification, noted 

the inputs and outputs and understand the role of that animation program as 

already introduced through animation programs for concept introduction. 

- Let an animation program designed for that specific concept/problem play. The 

lecturer narrates the program code in conjunction with the animation unfolding 

during the process (Végh & Stoffová, 2017). 

 

Stage 7: Repeat stage 6 two times and then call for questions. 

- The three times repeat serves as a minimum; otherwise one can repeat several 

times accordingly as required. In the case where values are entered, it is 

recommended that alternative values be used in each repeat. 

- The repetition of the stage serves to further sharpen program understanding. 

 

7.5 Experimentation results and analysis 

This section reports on the experimental results in cycle 3 in 2021 semester 2. The 

results in section 7.5.1 use the animation programs for assignment discussed in cycle 

2 (Chapter 6, section 6.2). The results in section 7.5.2 are based on the animation 

program for problem specification discussed in cycle 2 (Chapter 6, section 6.3). 

However, in this cycle, the animation program for problem specification is coupled with 
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the animation program for introducing a concept. The results in section 7.5.3 and 7.5.4 

are based on the same problem specification as in cycle 2 (Chapter 6, section 6.4.1), 

but the animation program for loops/nested loops has been updated. The animation 

programs experimented and reported for the first time are for nested loops (section 

7.5.4), one-dimensional and parallel arrays (section 7.5.5) and functions (section 

7.5.6). Therefore, the problem specifications will be explained in those sections. 

7.5.1 Results (assignment) 

The table (Table 7.1) reports on the control and experimental group results for both 

pre-teaching and post-teaching exercises on the uses of assignment. A total of 28 

students were in attendance. The students were equally but randomly divided between 

the groups. The control group had 13 students and the experimental group had 15. In 

the first column (control group) under pre-teaching exercise 1 the x (7) – 66.6%, the 

number 7 in the brackets means the number of students who got the value of x correct 

and the subsequent number represents the same number as a percentage. All other 

columns have been calculated the same way.     

Table 7.1: Results (Assignment) 

Control group Experimental group 

Pre-teaching 
exercises 

Post-teaching 
exercise 

Pre-teaching 
exercises 

Post-teaching 
exercises 

Pre-teaching 
exercise 1 
x (7) – 53.8% 
 
Pre-teaching 
exercise 2 
p (9) – 69.2% 
y (8) – 61.5% 
 
Pre-teaching 
exercise 3 
k (6) - 46.2% 
t (7) – 53.8% 
 
Pre-teaching 
exercise 4 
x (8) – 61.5% 
y (6) – 46.2% 

Post-teaching 
exercise 1 
t (8) – 61.5% 
p (7) – 53.8% 
k (7) – 53.8% 
 
Post-teaching 
exercise 2 
t (8) – 61.5% 
p (7) – 53.8% 
k (6) – 46.2% 
 
 

Pre-teaching 
exercise 1 
x (8) – 53.3% 
 
Pre-teaching 
exercise 2 
p (8) – 53.3% 
y (9) – 60% 
 
Pre-teaching 
exercise 3 
k (8) – 53.3% 
t (7) – 46.7% 
 
Pre-teaching 
exercise 4 
x (7) – 46.7% 
y (8) – 53.3% 

Post-teaching 
exercise 1 
t (13) – 86.7% 
p (11) – 73.3% 
k (12) – 80% 
 
Post-teaching 
exercise 2 
t (12) – 80% 
p (13) – 86.7% 
k (11) – 73.3% 
 

 

The pre-teaching and post-teaching exercises emphasised the declaration of a 

variable, initialisation and overwriting (copying a value from one variable to another) 

through animation programs. If SIPS get the values correct, the assumption is that 
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they would have understood initialisation and overwriting which happens using an 

assignment operator.  

 

The experimental group shows a high number of students who got the answers correct 

in the post-teaching exercise (see the percentage on the value of t, p and k in table 

7.1). Based on the post-teaching exercises, the values of t, p and k are initialised and 

changed accordingly through an assignment operator. The results of the post-teaching 

exercise in the experimental group are higher as compared to the pre-teaching 

exercise and as compared to the post-teaching exercise in the control group. The main 

aspects of this experiment were to instil proper understanding of how assignment 

works in programming, as this is a significant challenge of learning to program. 

 

7.5.2 Results (decisions/nested decisions) 

The nested-decider experiment was repeated during the second semester of 2021. 

For more accurate analysis and comparison, both pre-teaching and post-teaching 

algorithms were dissected into comparative sections for SOLO-adapted evaluation 

purposes. The description of the transitions in the matrix applies as defined in the 

methodology section (Chapter 4, section 4.5). This SOLO-adapted evaluation also 

applies to all other experiments in this cycle. There were 21 SIPS participating, 10 

SIPS were in the control group and 11 in the experimental group. The following section 

presents necessary information on the algorithm sections/pairs for decisions/nested 

decisions to ready the SOLO-adapted evaluations. 

7.5.2.1 Algorithm sections 

The problem specification and its algorithm for the pre-teaching exercise were 

explained in Chapter 6, section 6.3.1 in Figure 6.21. The problem specification and its 

algorithm for the post-teaching exercise were also explained in Chapter 6, section 

6.6.2 in Figure 6.38. Each dissected section is given a suitable descriptive name for 

later references and evaluations (see Figures 7.72 & 7.73). 



187 
 

 

Figure 7.72: Pre-teaching algorithm sections on decisions 

 

 

Figure 7.73: Post-teaching algorithm sections on decisions 

 

The content of Table 7.2 consists of paired algorithm sections to be used for SOLO-

adapted evaluation. 
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Table 7.2: Paired algorithm section (decisions/nested decisions) 

Pair                 Section name  

Pair 1 Pre_nested_if  Represents the correct structure of the if-statement or 
nested if-statement 

Post_if_else 

Pair 2 Pre_inner_if_AND Refers to the use the correct structure of the if-clause that 
has the “&&” operator or uses alternative method 

Post_if_AND  

Pair 3 Pre_outer_if_content  Refers to the correct content in the block following the if-
statement condition when it evaluates to true 

Post_if_content  

Pair 4 Pre_inner_if_content  Refers to the correct content in the block following the if-
statement condition when it evaluates to true 

Post_if_content  

Pair 5 Pre_outer_else_content  Refers to the correct content in the else part of the if-
statement (the code between the blocks) 

Post_else_content  

Pair 6 Pre_inner_else_content  Refers to the correct content of the else part of the if-
statement (the code between the blocks) 

Post_else_content  

 

Since the algorithm has been dissected accordingly, the following section presents the 

SOLO-adapted evaluation results for the concept.  

 

7.5.2.2 Concept and pairs performance 

This concept consists of six pairs, that is, pair 1 to pair 6. The references and what 

each pair means were described in the previous section (section 7.5.1, Table 7.2). 

Each pair is evaluated through SOLO-adapted evaluation to locate its state before and 

after a teaching intervention. Just like in cycle 2, the evaluation sheets are used for 

each pair on both the control and experimental group. The evaluation sheets per pair 

are presented in Appendix B. Table 7.3 presents the average percentage of transitions 

across pair 1 to pair 6 which are the algorithm sections on decisions / nested decisions. 

The average percentage across pairs gives an overall performance of a concept 

(decisions / nested decisions). 
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Table 7.3: Average transitions performance on decisions/nested decisions over all pairs 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-lower-

level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 3.3% 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 6.7% 7.3
% 

26.7% 7.6% 17% 7.6% 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 3.3% 4.6
% 

26.7% 48.5
% 

13.3% 30.3% 

 P U M R 

 

As described in the methodology (section 4.5), the most desired transitions are M→R 

(improved), U→R (improved+) and P→R (improved++) because such transitions 

represent an ultimate improvement.  The overall comparison across pair 1 to pair 6 in 

relation to decisions/nested decisions shows more of the experimental group under 

the improved transition (M→R) than the control group.  

 

The average percentage for M→R transition in this concept for the control group is 

26.7% and for the experimental group is 48.5%. The recorded percentage of 48.5% in 

the experimental group is almost double the average percentage in the control group. 

This means that the TLPAP in the experimental group has been two times more 

effective for the concept of decisions/nested decisions than the normal teaching 

method in the control group. However, I hope for the same or even more improvements 

in the experimental group under the M→R transition in the next cycle of the action 

research.  

 

The performance of the M→R transition could have been higher if the M→M (stagnant-

at-intermediate-level) transition did not record 26.7% in the control group.  

Furthermore, the M→M transition outcome means that the teaching method in the 

control group may be not enough to push more students into the M→R transition. The 
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average percentage of the M→M transition recorded 7.6% in the experimental group 

which is less as compared to the control group. There have been instances in both the 

control and experimental groups that resulted in the R→M transition, which means 

deteriorated learning; however, both have small average percentages (17% in the 

control group which is bit higher than the 7.6% in the experimental group). This 

transition means students are confused and signals additional adjustment of a 

teaching method. Since the experimental group has a 7.6% average percentage, the 

effect does not outdo the positives achieved from other transitions and cannot be the 

indicator of significant adjustments on the adopted teaching approach or tool. The rest 

of the transitions recorded less than 10% outcome: their difference cannot have major 

impact on the method of teaching. 

In the case of R→R transition which means already-know, I am not able to control how 

students are taught or gain knowledge outside the experimental setup of this study. 

As a result, the R→R transition outcome cannot be linked to the teaching intervention 

neither in the control nor experimental group. This applies to all R→R transition 

outcomes across the action research cycles in this study. The other possibility that can 

cause R→R transition is that the student is not struggling with that pair or concept. As 

a result of these implications, there is no further analysis on the R→R transition 

outcomes unless deemed necessary. 

In the experimental group, there were pairs that recorded 100% M→R (improved) 

transition, meaning that all sections of the algorithm which were in the multistructural 

category of a pre-test have transitioned into a relational category of the post-test. If 

there is no 100% M→R transition, it means the transitions have split into one or more 

of the undesirable transitions which are M→M (Stagnant-at-intermediate-level), M→U 

(Intermediate-deterioration) or M→P (Intermediate-deterioration+). Such pairs with 

100% M→R transition include pair 1 (Pre_nested_if and Post_if_else) in Appendix B 

Table B.3; pair 3 (Pre_outer_if_content and Post_if_content) in Appendix B Table B.9; 

pair 4 (Pre_inner_if_content and Post_if_content) in Appendix B Table B.12; pair 5 

(Pre_outer_else_content and Post_else_content) in Appendix B Table B.15; and pair 

6 (Pre_inner_else_content and Post_else_content) in Appendix B Table B.18. The 

only pair that has a split transition in the experimental group is pair 2 

(Pre_inner_if_AND and Post_if_AND) in Appendix B Table B.6. However, pair 2 has 

a small percentage (9.1%) in the M→M transition of the experimental group as 
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compared to the higher percentage M→M transition (40%) in the control group. This 

means that pair 2 is close to 100% M→R transition.  

A 100% transition can also occur under the U→R transition or P→R transition. Just 

like 100% M→R transition, a 100% U→R transition occurs when all sections of the 

algorithm are at the unistructural stage in the pre-test have resulted into relational 

stage in the post-test. If there is no 100% U→R transition, it means that the transitions 

spilt into one or more undesirable transitions which are U→U (Stagnant-at-lower-level), 

U→M (Intermediate-improvement) or U→P (Lower-level-deterioration) transitions. 

Similarly, in the case of a 100% P→R transition, split transition will be P→P (Stagnant-

no-learning), P→U (Lower-level-improvement) or P→M (Intermediate-improvement+). 

The P→R transition has no records because it is unlikely; hence, it means knowing 

nothing (prestructural) to knowing everything (relational). In this concept, only pair 6 in 

Appendix B Table B.16 has recorded 100% U→R transition in both the control and 

experimental groups. It is also worth noting that the U→R transition is denoted by 

Improved+ because the improving process jumps one stage up (which is 

multistructural) to reach relational stage. This means that a relevant teaching method 

would have been more effective to record the U→R transition.  

In this concept, the U→M (intermediate-improvement) transition has recorded a similar 

small percentage (6.7% in the control group and 7.3% in the experimental group). This 

transition is not desirable; however, it is a progress towards the ultimate transition 

(U→R). The implication of this U→M transition is that the teaching methods are good 

but not enough. In the case of experimental group, as the percentage is small, the 

effects do not outdo the overall performance of the TLPAP. There are also records of 

R→M (deteriorated) transition with small average percentage across pair 1 to pair 6. 

There is a notable record of R→M transition in pair 5 and pair 6 where the control 

group recorded 30%. The R→M transition in the experimental group recorded 0% in 

pair 5 and 18.5% in pair 6. The R→M transition implies that the teaching method may 

be doing more harm than good.  

7.5.3 Results (Loops) 

7.5.3.1 Algorithm sections 

There were 30 SIPS for this experiment,15 in the control group and 15 in the 

experimental group. The problem specification for loops on pre-teaching algorithms 
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was described in Chapter 6, section 6.4.1 in Figure 6.30. The problem specification 

for loops on post-teaching algorithms was described in Chapter 6, section 6.6.2 in 

Figure 6.39. The only change in this cycle is the design of the animation and dissected 

sections for SOLO-adapted evaluations. The following figure (Figure 7.74) indicates 

the dissected algorithm sections on loops for the pre-teaching algorithm. 

 

 

Figure 7.74: Pre-teaching algorithm sections on loops 

 

Figure 7.75 shows the dissected algorithm sections on loops for the post-teaching 

algorithm. 

 

 

Figure 7.75: Post-teaching algorithm sections on loop 
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The content of Table 7.4 consists of a paired section for loops. 

Table 7.4: Paired algorithm sections - loop 

Pair                      Section name 
 

Pair 1 Pre_prompt Refers to the capability to prompt the values outside 
the loop 

Post_prompt 

Pair 2 Pre_firstloop_structure Means the correct structure of the first loop (including 
the condition). 

Post_loop_structure 

Pair 3 Pre_firstloop_content Is about the correct content first loop in the pre-
teaching algorithm in relation to the loop in the post-
teaching algorithm Post_loop_content 

Pair 4 Pre_secondloop_strucuture and 
Pre_secondloop_content 

Means that the output of the program is in the correct 
place (note that the pre-teaching algorithm display is 
conditioned by the loop and is part of the display 
requirement) (see Figure 7.74) 
 

Post_display 

 

7.5.3.2 Concept and pairs performance 

The content of Table 7.5 is the average percentage of transitions across pair 1 to pair 

4. The evaluation sheets per pair are presented in Appendix C. 

   

 Table 7.5: Average transitions performance on loops over all pairs 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-lower-

level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 1.7% 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 18.4% 31.6% 25% 6.7% 1.7% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 1.7% 0 23.3% 41.7% 30% 23.4% 

 P U M R 
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The M→R (improved) transition recorded 41.7% in the experimental and 23.3% in the 

control group. This M→R transition (for loops) is similar to the same transition for the 

concept of decisions/nested decisions (discussed in section 7.5.2.3). This means that 

the TLPAP in the experimental group has once again been two times more effective 

than the teaching method in the control group. The other key results which indicate 

the performance of the teaching method is the M→M (Stagnant-at-intermediate-level) 

transition. The M→M transition resulted in 25% in the control group and 6.7% in the 

experimental group, providing evidence that teaching methods in the control group 

need to be improved more than in the experimental group in this concept of loops. The 

U→M (Intermediate-improvement) transition resulted in 18.4% in the control group and 

31.6% in the experimental group. The transition means that although progress is 

apparent, teaching methods may be not enough to result in the U→R transition instead 

of U→M.  

The 100% M→R transition is only found in the experimental group with 60% for pair 4 

(Pre_secondloop_strucuture/Pre_secondloop_content and Post_display) as depicted 

in Appendix C Table C.12. Pair 2 (Pre_firstloop_structure and Post_loop_structure) in 

the control group has an M→M transition of 46.7% and the experimental group has 

6.7% (see Appendix C, Table C.6). This is the highest recorded result across all pairs 

in this concept (loops) and previous concept (decisions/nested decisions). This 

suggests that the normal teaching method in the control group did not do enough (in 

pair 2) for teaching the structure of loop as compared to the TLPAP in the experimental 

group.  

7.5.4 Results (nested loops) 

7.5.4.1 Algorithm sections 

Figure 7.76 indicates the dissected algorithm sections on the nested loop for the pre-

teaching algorithm. 
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Figure 7.76: Pre-teaching algorithm sections on nested loops 

 

Figure 7.77 shows the problem specification for the one-dimensional array. 

Write a program to produce the following output: (Use nested loop: Any type of loop) 

 

9    8    7    6    5    4    3    2    1   

8    7    6    5    4    3    2    1   

7    6    5    4    3    2    1   

6    5    4    3    2    1   

5    4    3    2    1   

4    3    2    1   

3    2    1   

2   1   

1   

Figure 7.77: Problem specification for post-teaching algorithm on nested loops 

 

The following figure (Figure 7.78) indicates the dissected algorithm sections on the 

nested loop for the post-teaching algorithm. 

 

Figure 7.78: Post-teaching algorithm sections on nested loops 

 

The content of Table 7.6 consists of a paired section of the nested loop. 
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Table 7.6: Pairs algorithm sections – nested loops 

 

Pair                      Section name 

 

Pair 1 Pre_outer_loop_structure  Refers to the correct structure of the outer loop of the 
nested loop 

Post_outer_loop_structure  

Pair 2 Pre_inner_loop_structure  Requires another loop inside the outer loop with the 
condition based on the variable of the outer loop or 
through using an alternative method 

Post_inner_loop_structure  

Pair 3 Pre_inner_loop_content  Refers to the correct content of the inner loop (the 
code between the blocks) 

Post_inner_loop_content  

Pair 4  Pre_outer_loop_content  Means the correct content of the outer loop (the code 
between the blocks) 

Post_outer_loop_content  

 

7.5.4.2 Concept and pairs performance 

The content of Table 7.7 presents the average percentage of transitions across pair 1 

to pair 4. The evaluation sheets per pair are presented in Appendix D. 

 Table 7.7: Average transitions performance on nested loops across pairs 

P P→P  
(Stagnant-no-learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-lower-

level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 15% 25% 43.3% 5% 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 20% 43.3% 21.7% 23.4% 

 P U M R 
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The overall outcome in this concept (nested loops) is similar to the concept of loops in 

all aspects (discussed in section 7.5.3.2) due to the similarity of the concepts in loops 

and nested loops. 

As discussed in section 7.5.2, the 100% M→R transition means that all students who 

were in the multistructural category (in the pre-teaching exercises) have transition into 

relational category (in the post-teaching exercise). There is no 100% M→R transition 

if some students who were in the multistructural category of the pre-teaching exercise 

transition into other categories like unistructural, prestructural or remain in the 

multistructural category of the post-teaching exercise. In this concept of nested loops, 

the 100% M→R transition is under the pair 2 in the experimental group 

(Pre_outer_loop_content and Post_ outer_loop_content) with 40% (see Appendix D, 

Table D.6 for pair 2). The M→M transition has risen higher (53.3%) in the same pair 

under the control group. The M→M transition resulted in even higher outcome of 73% 

in pair 4 (Pre_outer_loop_content and Post_ outer_loop_content) in the control group 

while the experimental group has 13.3% (see Appendix D, Table D.12 for pair 4). This 

suggests that nested loop is one of the challenging concepts, difficult for students to 

construct an accurate nesting loop. In pair 4, the TLPAP has displayed positive effects 

in the experimental group as the M→R transition resulted at 60% compared to 13.3% 

for the control group. 

7.5.5 Results (one-dimensional array) 

There were 20 SIPS participating in the experiments, that is 10 in the control group 

and 10 in the experimental group.   

 

7.5.5.1 Algorithm sections (one dimensional array) 

The following figure (Figure 7.79) indicates the dissected algorithm sections on one-

dimensional array for the post-teaching algorithm.  
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Figure 7.79: Pre-teaching algorithm sections on arrays 

 

 Figure 7.80 shows the problem specification for the one-dimensional array. 

Declare a one-dimensional array and name it arrNumbers. Initialise the arrNumbers array with 

these numbers: 26, 25, 4, 52, 14, 60, 78, 4. Count the numbers which are odd within an array. 

 

Sample output: 

The odd number: 1 

Figure 7.80: Problem specification for post-teaching algorithm on one-dimensional array 

 

The following figure (Figure 7.81) indicates the dissected algorithm sections on one-

dimensional array for the post-teaching algorithm. 

 

Figure 7.81: Post-teaching algorithm sections on one-dimensional array 

 

The content of Table 7.8 consists of paired sections for the one-dimensional array. 
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Table 7.8: Paired algorithm sections – one-dimensional array 

Pair                      Section name 
 

Pair 1 Pre_array_initialised Is about the capability to initialise an array 

Post_array_initialised 

Pair 2 Pre_loop_structure Refers to the structure of the loop which is controlled by the 
length of the array. 

Post_loop_structure 

Pair 3 Pre_if_condition Refers to the condition of the if-statement within the loop, which 
uses an array 

Post_if_condition 

Pair 4 Pre_if_content Refers to the correct content of the if-statement (the code 
between the blocks) 

 Post_if_content 

Pair 5 Pre_display Refers to the correct display at the correct place 

Post_display 

 

7.5.5.2 Concept and pairs performance 

Table 7.9 presents the average percentage of transitions across pair 1 to pair 5. The 

evaluation sheets per pair are presented in Appendix E.  

Table 7.9: Average transitions performance on one-dimensional arrays for all pairs 

P P→P  
(Stagnant-no-learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-lower-

level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 12% 10% 12% 2% 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 36% 66% 40% 20% 

 P U M R 

 

In the concept of arrays, the M→R (improved) transition resulted in 36% for the control 

group and 66% for the experimental group. The M→R performance in the 
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experimental group is two-thirds outcome as compared to almost one-third results in 

the control group. The M→M (Stagnant-at-intermediate-level) transition has 12% in 

the control group and 2% in the experimental group. The difference between the two 

groups on M→M transition is minimal, as with the U→M transition. The M→R transition 

is the only major indicator of the TLPAP performance for this concept of one-

dimensional arrays. 

The R→R (Already-know) transition has 40% in the control group and 20% in the 

experimental group. As emphasised in the earlier section, the R→R transition has no 

direct implications on the intervention (teaching method) in the control or experimental 

group. This means there will be little commentary or analysis on the R→R transition 

result.   

In the concept of arrays, the pairs that resulted in 100% M→R transition are pair 1 

(Pre_array_initialised and Post_array_initialised) in Appendix E Table E.3; pair 2 

(Pre_loop_structure and Post_loop_structure) in Appendix E Table E.6; pair 3 

(Pre_if_condition and Post_ if_condition) in Appendix E Table E.9; and pair 5 

(Pre_display and Post_display) in Appendix E Table E.15. The only transition that did 

not result in 100% M→R transition in the experimental group is pair 4 (Pre_if_content 

and Post_ if_ content) in Appendix E Table E.12. In pair 4, the control group resulted 

in 100% M→R transition (with 30%) while the experimental group resulted in 70%, 

which is higher. The TLPAP in the experimental group is once again credited due its 

capacity to produce more 100% M→R transitions than the control group. 

7.5.6 Results (parallel arrays) 

7.5.6.1 Algorithm sections (parallel dimensional array) 

Figure 7.82 presents the dissected algorithm sections on parallel arrays for the pre-

teaching algorithm. 
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Figure 7.82: Pre-teaching algorithm sections on parallel arrays 

 

Figure 7.83 displays the problem specifications for the post-teaching algorithm. 

Declare an array named arrProducts and that will contain product names. Initialise arrProducts with 

the product names Apple, Pear, Guava, Banana, Mango and Peach.  Declare another array called 

arrPrices(parallel array to arrProducts), that will contain the prices of arrProducts. Intialise arrPrices 

with these prices R5, R6, R7, R4, R8, R15.   

- Determine the average price  

- Determine and display the name of the most expensive product 

Figure 7.83: Problem specification for post-teaching algorithm on parallel arrays 

 

The following figure (Figure 7.84) displays the problem specifications for the post-

teaching algorithm on parallel arrays. 

 

Figure 7.84: Post-teaching algorithm sections on parallel arrays 
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Note that the algorithm sections for arrays are the same as for parallel arrays (Table 

7.8); however, the interpretation for parallel arrays applies.   

 

7.5.6.2 Concept and pairs performance 

Table 7.10 presents the average percentage of transitions across pair 1 to pair 5. The 

evaluation sheets per pair are presented in Appendix F.  

 

 Table 7.10: Transitions performance on parallel arrays 

P P→P  
(Stagnant-no-learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-lower-

level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 10% 12% 16% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 8% 36% 62% 38% 18% 

 P U M R 

 

The performance of the M→R (Improved) and M→M (Stagnant-at-intermediate-level) 

transitions in the concept of parallel arrays is similar to the performance of the arrays 

(presented in the previous section in Table 7.9). The M→R transition continues to 

double the impact in the experimental group which further credits the capacity of 

TLPAP in the over-the-normal teaching method. 

 

One of the key performance outcomes in the concept of parallel arrays in the 

experimental group is its records of 100% M→R transition in all pairs: pair 1 

(Pre_array_initialised and Post_array_initialised) in Appendix F Table F.3; pair 2 

(Pre_loop_structure and Post_loop_structure) in Appendix F Table F.6; pair 3 

(Pre_if_condition and Post_ if_condition) in Appendix F Table F.9; pair 4 

(Pre_if_content and Post_ if_ content) in Appendix F Table F.12; and pair 5 

(Pre_display and Post_display) in Appendix F Table F.15. The TLPAP in the 



203 
 

experiment continues to show its capacity through 100% transition outcome in all given 

pre-teaching sections from the multistructural stage into a relational stage.  

7.5.7 Results (functions) 

There were 32 SIPS participating in this concept, that is 17 in the control group and 

15 in the experimental group. 

7.5.7.1 Algorithm sections  

The following figure (Figure 7.85) indicates the dissected algorithm sections on 

functions for the pre-teaching algorithm.  

 

Figure 7.85: Pre-teaching algorithm sections on functions 

 

Figure 7.86 shows the problem specifications for the post-teaching algorithm. 
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[No global variables must be declared for this program] 

People who want to hire a machine to wash their carpets usually go to the WishyWhishy company. 

The company has the three types of machines – type A, B or C for heavy duty, ordinary and light 

washes respectively. The prices for using the machines are as follows: 

 

Type of machine Initial cost Additional cost per hour 

A R50.00 R30.00 

B R62.50 R36.25 

C R74.87 R40.50 

 

The amount must be calculated and returned in a function called calcAmount by adding the initial 
cost to the calculated cost for the time used.  
 
Create another function called calcTotalAmount of a type void that receives an amount calculated 
by calcAmount as parameter, then calculate vat (14%) and final total amount due. Note that both 
vat and amount due calculated by calcTotalAmount must be accessible to the calling environment. 
 
On the main function, prompt the user to enter the type of machine and time machine used (in 
munities). Call all necessary functions implemented to display an amount before tax, a tax amount 
and an amount after tax.  
 
For more clarity see sample output below. 

 
 

Figure 7.86: Problem specification for post-teaching algorithm on functions 

 

Figure 7.87 displays the dissected algorithm sections on functions for the post-

teaching algorithm.  
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Figure 7.87: Post-teaching algorithm sections on functions 

 

The content of Table 7.11 consists of paired sections for functions. 
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Table 7.11: Pairs sections/columns names for functions 

Pair      Sections/columns name 
  
Description 

Pair 1 Pre_func_call_return Refers to the capability to call a function that returns a 
value 

 Post_func_call_return 

Pair 2 Pre_func_call_void  Refers to the capability to call a function that does not 
return a value (function of a type void) 

Post_func_call_void  

Pair 3 Pre_func_header_return Refers to the capability to construct a function header 
that returns a value with a relevant return type 

Post_func_header_return 

Pair 4 Pre_func_return_content Refers to the capability to construct the correct content 
in a function that returns a value 

Post_func_return_content 

Pair 5 Pre_func_header_void Refers to the capability to construct a function header 
of a type void that does not return a value 

Post_func_header_void 

Pair 6 Pre_func_void_content  Refers to the capability to provide the correct content in 
a function that does not return a value 

Post_func_void_content  

 

7.5.7.2 Concept and pairs performance 

Table 7.12 presents the average percentage of transitions across pair 1 to pair 6 for 

functions. The evaluation sheets per pair are presented in Appendix G.  
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 Table 7.12: Average transitions performance on functions for all pairs 

P P→P  
(Stagnant-no-learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-lower-

level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 3 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 18.8% 27.3% 29.4% 4.5% 4% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 4.5% 26.5% 62.2% 12.8% 0 

 P U M R 

 

In the concept of functions, the M→R (improved) transition resulted in 26.5% in the 

control group and 62.2% in the experimental group. The average percentage of M→R 

transition in the experimental group is almost a triple what the control group has 

achieved.  Such achievement is once again credited to the capacity of TLPAP. The 

teaching method in the experimental group (the TLPAP group) has been positively 

consistent from the first concept to this concept of the experiments. The consistency 

was primarily indicated by M→R and M→M transitions in both the control and 

experimental groups. 

 

The M→M (stagnant-at-intermediate-level) has continued to be higher in the control 

group than in the experimental group. As emphasised in the previous sections, the 

average percentage in the M→M transition in the control group could have been added 

in the M→R group. This shows that the normal teaching method in the control group 

is not sufficient to achieve such results. In the experimental group, the M→M transition 

average percentage has been less than 10% while the M→R transition recorded 

higher percentages.  

 

The 100% M→R transition in the concept of functions are pair 1 (Pre_func_call_return 

and Post_func_call_return) in Appendix G Table G.3; pair 3 (Pre_func_header_return 

and Post_func_header_return) in Appendix G Table G.9; and pair 6 
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(Pre_func_void_content and Post_func_void_content) in Appendix G Table G.18. Pair 

2 (Pre_func_call_void and Post_func_call_void) in Appendix G Table G.6 and pair 4 

(Pre_func_return_content and Post_func_return_content) in Appendix G Table G.12 

did not result in 100% the M→R transition in the experimental group. However, the 

M→R transition resulted in 73.3% in the experimental group while the control group 

had 11.8%. In pair 1, there is a notable 23.5% R→M (deteriorated) transition in the 

control group with 0% in comparison to the experimental group. The R→M transition 

means learning is not improving nor stagnant, but rather in reverse mode from 

relational to multiscriptual. Pedagogically, this suggests the teaching method requires 

improvement in the control group due to deteriorating learning.  

 

7.6 Cycle 4 reflections 

The following reflection emanates from this cycle: 

Uses of assignment 

- Generally, students in the experimental group performed better than the control 

group. The emphasis on initialisation, copying of values from one variable to 

another and overwriting are fundamental skills which must not be overlooked, 

especially by SIPS. In this cycle, the TLPAP proved to be impactful on SIPS, 

which is similar to the results reported in cycle 2 (Chapter 6, section 6.6.1).  

 

Decisions/nested decisions  

- In the pre-test evaluations of pair 1 to pair 6, there is a notable high number of 

algorithm sections under the multistructural category in both control and 

experimental groups. When the algorithm sections are under multistructural 

category in the pre-test stage, that further confirms that the students are SIPS. 

- In the previous cycle when nested-decider was demonstrated, after the 

demonstration I received a request from students to repeat the animation 

process again. However, in this cycle when I demonstrated the same nested-

decider, I did not receive any request to repeat the animation program. The 

animation program was repeated based on the number of times stated in the 

pedagogical guidelines (section 7.4). It is possible that the SIPS are already 

familiar with the concepts being taught due to the impact of the introductory 



209 
 

animation programs which are demonstrated before the animation program for 

problem specifications. 

- The post-teaching exercise of a nested-decider may be less challenging than 

the pre-teaching exercise. Changes to the post-teaching exercise could be part 

of cycle 4 planning. 

Loops/nested loops 

- Overall, the TLPAP had a greater effect on SIPS in the experimental group as 

compared to the control group on both the loop and nested-loop.  

- I received a suggestion from two students during the question-and-answer 

session that the rendering of the animation in the program may be too quick for 

them. I should consider slowing the programs a bit, especially the animation for 

nested-loop. The plan to slow the pace of the animation rendering was noted 

and implemented as part of cycle 4 plans. However, I was able to make 

adjustments on program code to lower the animation rendering on the 

remaining concepts (arrays and functions) for this current cycle. 

- I have also learned from the algorithm exercises that some few SIPS could not 

understand when to have a program that requires only a loop or only a decision 

statement or a combination of both. This could be because our animation 

program did not present a sample combination of a loop and decisions. Even 

though I received positive results on TLPAP in relation to loops and decisions, 

a plan to design a new animation program that properly requires both loops and 

decisions statements within one algorithm is noted and may be part of cycle 4 

planning. 

One-dimensional and parallel arrays 

- One aspect of one-dimensional arrays that was found missing is an animation 

that updates elements in the array. The missing aspect is noted and may be 

incorporated into animation programs for introducing a new concept or 

animation program with problem specification within the next cycle of this action 

research.  

- As prior knowledge of decisions and loops play a critical role in the 

understanding of arrays and subsequently parallel arrays, if some SIPS still 

struggle with those concepts, it is unlikely they will succeed with the use of 

arrays simply because arrays need a loop to populate it with values and further 
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need the knowledge of decisions to filter on conditions or access relevant 

values in the array. A plan for an additional animation program that requires 

both loops and decisions statements as stated previously is noted. 

- Generally, the TLPAP has resulted in more improvements for parallel arrays in 

the experimental group than in the control group, as is evident in the M→R 

transition outcome. The concept of parallel arrays resulted in 100% M→R 

transition for all pairs in the experimental group, signifying the impact of TLPAP 

as compared to normal, traditional teaching methods.  

 

Functions 

- The overall picture behind teaching and learning functions seems more 

challenging than other concepts. The algorithm sections, where the proper use 

of reference parameters and passing of arguments were required, have had 

poor results in the control group compared to the experimental group. Once 

again, the TLPAP shows consistent improvement, especially in teaching and 

learning challenging concepts like passing values by references. SIPS in the 

experimental group were able to clearly see what exactly happens when a 

reference is passed through these animations.  

- The decreased pace of rendering of animation program and narration as per 

pedagogical guidelines added value toward the success of teaching and 

learning of this concept.  The decreased pace also allowed a more relaxed 

narration during the rendering of the animation program. 

 

General view on the cycle 

- The improved (M→R) pairs in the sections of the algorithm were found mostly 

in the experimental group and stagnant-at-lower-level (M→M) were more in the 

control group. These two transitions were the main difference between the 

interventions in the control and experimental groups. 

- The deteriorated (R→M) pairs in the sections of the algorithm were found 

mostly in the control group were minimal. 

- The improved+ (U→R) pairs in the sections of the algorithm were found mostly 

in the experimental group but were minimal. 
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- Based on the pre-teaching algorithm exercises from both the control and 

experimental group, most misconceptions are found within the concepts of 

nested decisions, nested loops, reference parameters and parallel arrays.   

Pedagogical guidelines as part of TLPAP were followed when demonstrating 

the animation programs with no foreseeable revision at this stage. 

 

7.7 Planning for cycle 4 

The intention was to plan for cycle 4 for further confirmation of the reliability and 

efficacy of the TLPAP. The following pointers are planned as part of experimenting 

with cycle 4 with an improved approach. 

- Verify that all animation programs comply with the 12 principles of multimedia 

learning by Mayer, as stated in the methodology section (Chapter 4, section 

4.4.1). Apply Mayer’s principles of multimedia learning in all areas of the 

animation programs where required. One change that was done during this 

cycle was to edit a program code to reduce the speed of the animation program 

which already complies to one of the recommended principles of multimedia 

learning. However, the overall solution to be applied in all animation programs 

is to have a radio button where the educator can set the pace of the animation 

rendering as normal, slow and very slow. 

- In the case of a nested-decider, the post-teaching exercise is planned to be 

adjusted to have a complexity similar to the pre-teaching exercise. Even though 

this is not a big problem since the pre-teaching exercise is used for teaching, a 

new problem for the post-teaching exercise is planned. This can further work in 

our favour to show that the SIPS who have undergone learning through TLPAP 

can solve any other type of problem thereafter. 

- An additional animation program that should be capable of combining a 

decision-statement and a loop is planned. This is to give students an additional 

perspective during teaching and learning on how decision statements work with 

loops. 

- Incorporating an animation program for introducing a concept (arrays) that 

emphasises the update of existing array elements.  
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- Pedagogical guidelines revised in this cycle (cycle 3) serve as the latest version 

and are intended to be used as they are in cycle 4. However, I may take a 

flexible route to adjust the guidelines if deemed necessary at that moment in 

time. 

- The chapter for cycle 4 will only report on the demonstration of the animation 

programs that were affected by the improvements. 

7.8 Conclusion 

 In this chapter, I presented the adapted TLPAP framework where various animation 

programs for IPC were designed and tested. In addition to the animation programs 

designed and experimented with previously in cycle 2, there are added animation 

programs developed and experimented in this cycle (cycle 3). Such animation 

programs were designed for the concept of loops, nested loops, arrays and functions. 

The pedagogical guidelines used in cycle 2 were revised and used along with the 

animation programs as part of TLPAP.  

The pre-teaching and post-teaching algorithms were dissected into sections for further 

evaluation and analysis. The analysis of students’ algorithms was undertaken through 

SOLO-adapted evaluations. The evaluation outcome indicated that students in the 

experimental group outperformed students in the control group. This shows the 

positive impact of TLPAP, which was used in the experimental group, on teaching and 

learning IPC.  

State of the framework thus far 

At this stage in our action research, the state of the TLPAP framework can be referred 

to as adapted TLPAP framework version 3 pending the outcome of cycle 4 results 

that could suggest more adaptation for the final framework. The specific items that 

form part of this adapted TLPAP framework consist of the following: 

- Animation programs focusing on assignment (presented in cycle 2, Chapter 6) 

as opposed to the manipulatives version (presented in cycle 1, Chapter 5). 

Even though the use of physical manipulatives yielded positive results, 

emphasising the uses of assignment, the rationale behind this choice is the 

animation’s flexibility to accommodate large classes in a contact teaching 
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session and its compatibility in an online session. Furthermore, in cycle 3, I 

repeated the animation program on assignment and still had positive findings.  

- Another item that is incorporated into this adapted framework is nested-decider 

animation program presented in cycle 2. The experiments in cycle 2 are positive 

and the repeat experiments with the same animation program presented in this 

cycle (cycle 3) are even more positive. However, the experiments in cycle 3 

were coupled with an animation program for introducing a concept; therefore, 

such animations are part of the final framework. The inclusion of animation 

programs for introducing a concept into the final framework apply to the 

remaining concepts which are loops, arrays and functions. 

- The animation programs for loops presented in cycle 2 are not part of the 

tentative final framework because there were persistent errors like incorrect 

sentinel, misplaced loop content, incorrect overall looping structure which were 

found in the experimental group upon presenting the animation programs. The 

revised animation program for loops presented in this cycle forms part of the 

final framework.  

- The animation programs for arrays and functions presented in this cycle (cycle 

3) are also incorporated into the adapted framework.  

- Finally, the adapted pedagogical guidelines revised in this cycle (cycle 3) are 

also part of the adapted TLPAP framework pending the outcome of cycle 4.  

The subsequent chapter presents the outcome of cycles 4 and 5. 
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Chapter 8: Adapted framework - Cycles 4 and 5 
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8.1 Introduction 

The idea behind this study, the plan, is to investigate, test and adapt appropriate 

teaching learning methods relevant for Struggling Introductory Programming Students 

(SIPS). The aim is to use the adopted method to improve SIPS understanding of IPC 

and further develop a relevant framework. By this stage, I have already established 

that the use of animations programs carries the opportunity to advance teaching and 

learning of SIPS. As a result, the thesis statement has been posed as, “A Teaching 

and Learning Programming with Animation Programs (TLPAP) framework, can 

improve Struggling Introductory Programming Students (SIPS) comprehension of 

Introductory Programming Concepts (IPC)”. 

 

To reach the final conclusion on the TLPAP, I embarked on focused action research 

to be done in several action cycles. The previous chapter (Chapter 7) presented the 

activities and the outcomes of cycle 3. The activities in cycle 3 were based on the 

animation programs for teaching and learning IPC (assignment, decisions/nested 

decisions, loops, nested loops, one-dimensional arrays, parallel arrays and functions). 

The content of cycle 4 includes an additional animation program which is a 

combination of loops and decisions. The other changes implemented in cycle 4 are 

based on the reflections of cycle 3. Since cycle 5 has minimal adjustment, I am 

presenting its brief conclusive outcome at the end of this chapter and the actual graphs 

with exact data are presented in Appendix M. The process of developing and testing 

various animation programs and the adaption of the pedagogical guidelines are ways 

to continually advance and validate the teaching and learning programming with the 

animation programs (TLPAP) framework.  

  

This cycle serves as a continuation to answer our last research question, formulated 

as follows: 

- How can we prove and evaluate the efficacy of teaching and learning 

programming with the animation programs framework? 

The layout of the chapter starts by presenting the additional animation programs in 

section 8.2 and the experimental results in section 8.3. Section 8.4 is the summary of 

the reflections on cycle 4 and section 8.5 is the summary of reflections on cycle 5. 



216 
 

Section 8.6 discuss transitions across cycle 3 to cycle 5 and section 8.7 concludes the 

chapter. 

 

8.2 Additional animation programs 

8.2.1 Combination of decisions and loops 

The need for an additional animation program that includes a program code with loops 

and decision statements was identified in cycle 3. The design of this additional 

animation program adhered to all other recommendations stated in cycle 3 and cycle 

4, such as compliance with Mayer’s principles of multimedia learning. This additional 

animation program is based on the problem specification in Figure 8.1. 

You are requested to develop a program that counts the number of males and females from a group 
of people (there are 6 people). For each person prompt for gender (input in the form of a letter). Letter 
“M” for male or “F” for female. The inputs are not case sensitive, meaning that a small letter m for 
male or a small letter f for female should work as well. If the user enters any other letter, show this 
message “Invalid character, please re-enter the gender”.  
 
The program should display the number of males and females in this format (sample output): 
Total males 2 
Total females 4 

                                 Figure 8.1: Problem specification – decisions and loops 

 

Figure 8.2 shows the appearance of the animation program which combines decisions 

and loops. The borderline rectangle indicates a piece of code executed inside the loop. 

The steps of execution are the same as previously explained for similar animation 

programs (nested-decider) in cycle 2. The animation speed can be adjusted to normal, 

slow or very slow.  
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Figure 8.2: Decisions and loops (Demo 1) 

 

Note that when the blue highlight indicating that a statement is executed in the program 

code side passed line 1 and line 2, the zeros appeared in the two containers on the 

animation side for the variable males and females (See Figure 8.3). The prompt to 

enter a gender happens at line 8, and in this case, an “x” was entered. 

 

 

Figure 8.3: Decisions and loops (Demo 2) 

 

Since the value “x” falls under invalid characters, the second else part of the program 

is executed. However, the key moment is when SIPS have to see the process of 

advancing towards the last else part on the animation side when all the conditions are 

evaluated first (See Figure 8.4). 
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Figure 8.4: Decisions and loops (Demo 3) 

 

Figure 8.5 shows when the correct gender (“M") has been entered, the variable males 

is incremented by 1. The graphic “+1” floats from top to bottom. When it reaches where 

“0” is (container labelled variable: males), the 0 is replaced by 1 which indicates that it 

has been added. 

 

 

Figure 8.5: Decisions and loops (Demo 4) 

 

Figure 8.6 shows when the correct gender (“F") has been entered and the variable 

females is incremented by 1. As explained in the previous paragraph, the graphic “+1” 

floats from top to bottom as a sign of incrementing.  
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                                                Figure 8.6: Decisions and loops (Demo 5) 

 

Figure 8.7 displays the result of the completed animation process. This means that at 

this stage the character “M” or “m” was entered twice and the character “F” or “f” was 

entered four times. 

 

                                                Figure 8.7: Decisions and loops (Demo 6) 

 

8.2.2 Additional animation on concept introduction for arrays 

The initial ILOs for the concept of one-dimensional arrays (as stated in Chapter 7, 

section 7.2.3) are for SIPS to write an algorithm that store and access values in a one-

dimensional array. Based on the reflection of cycle 3, I have noted that the introductory 

animation or animation with program specification does not depict to SIPS how the 

array can be updated. The following animation program will be an add-on (with 
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emphasis on updating an element in the array) to the introductory animation programs 

for introducing arrays.  

 

The program in Figure 8.8 consists of a code and corresponding graphics. The blue 

graphics (tray-like) on the left side represent an array. 

 

Figure 8.8: Arrays (Demo 1) 

 

When the arrow reaches the cin object, as usual it prompts the user to enter the value. 

In this case, each value is stored in the array as entered (see Figure 8.9).  

 

 

Figure 8.9: Arrays (Demo 2) 

 

When the first loop is complete, the second loop takes over. There is an animating 

track bar that points to the currently accessed element in the array. SIPS are able to 
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see the index of that currently accessed element. In the case of Figure 8.10, each 

element is accessed to check if is greater than 25. 

 

Figure 8.10: Arrays (Demo 3) 

 

The last element in the array is greater than 25, so it gets incremented by 10. The 

number 10 will float from the top into the last container of the last tray (See Figure 

8.11). 

 

 

Figure 8.11: Arrays (Demo 4) 

 

The state of Figure 8.12 is a complete executed animation program; we can see that 

the last element is now updated.  
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Figure 8.12: Arrays (Demo 5) 

 

 

8.3 Experimentation results and analysis 

This section reports on the experimental results in cycle 4 in 2022 semester 1.  

8.3.1 Results (assignment) 

The animation programs for assignment discussed in cycle 2 (Chapter 6, section 6.2) 

produced the results in Table 8.1. The table (Table 8.1) reports on the control and 

experimental group results for both pre-teaching and post-teaching exercises on the 

uses of assignment. There were 23 students in attendance. The students were divided 

randomly and as equally as possible between two groups. The control group had 11 

students and the experimental group had 12. In the first column (control group) under 

pre-teaching exercise 1 there is x (8) – 72.7%.  In an x (8) – 72.7%, the number 8 in 

the brackets means the number of SIPS who got the value of x correct; the subsequent 

number represents the same number as a percentage. All other columns have been 

calculated in the same manner. 
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Table 8.1: Results (Assignment) 

Control group Experimental group 

Pre-teaching 
exercises 

Post-teaching 
exercise 

Pre-teaching 
exercises 

Post-teaching 
exercises 

Pre-teaching exercise 1 
x (8) – 72.7% 
 
Pre-teaching exercise 2 
p (6) – 54.5% 
y (7) – 72.7% 
 
Pre-teaching exercise 3 
k (6) – 54.5% 
t (8) – 72.7% 
 

Pre-teaching exercise 4 
x (7) – 63.6% 
y (4) – 36.4% 

Post-teaching exercise 1 
t (6) – 54.5% 
p (5) – 45.5% 
k (5) – 45.5% 
 
Post-teaching exercise 2 
t (6) – 54.5% 
p (8) – 72.7% 
k (6) – 54.5% 
 
 

Pre-teaching exercise 1 
x (7) – 58.3% 
 
Pre-teaching exercise 2 
p (7) – 58.3% 
y (8) – 66.7% 
 
Pre-teaching exercise 3 
k (6) – 50.0% 
t (8) – 66.7% 
 

Pre-teaching exercise 4 
x (6) – 50.0% 
y (7) – 58.3% 

Post-teaching exercise 1 
t (10) – 83.3% 
p (9) – 75.0% 
k (9) – 75.0% 
 
Post-teaching exercise 2 
t (11) – 91.7% 
p (12) – 100% 
k (10) – 83.3% 
 
 

 

The experimental group shows a significant number of students who got the answers 

correct in the post-teaching exercise (see percentage on the value of t, p and k in 

Table 8.1). When SIPS get the values of t, p and k in the post-exercise correct, the 

assumption is that the students now know the uses of assignment in initialisation and 

copying (overwriting). This is because the correct answer includes steps which build 

on comprehension of initialisation and overwriting. The results of the post-teaching 

exercise in the experimental group are higher than the pre-teaching exercise in the 

same experimental group and as compared to the post-teaching exercise in the control 

group. The main aspects of this experiment were to instil a proper understanding of 

how assignment works in programming. 

 

8.3.2 Results (decisions/nested decisions)  

There were 25 students participating in this study for this concept, that is 12 students 

in the control group and 13 students in the experimental group. The experimental 

group has an extra student because the total number of students is odd. 

8.3.2.1 Algorithm sections  

The problem specification and its algorithm for the pre-teaching exercise are the same, 

as explained in Chapter 6, section 6.3, Figure 6.21. The algorithm section for the pre-

teaching exercise remains the same as in Chapter 7, section 7.5.2.1, Figure 7.72. The 

post-teaching algorithm has been changed for cycle 4. In cycle 3 reflections, it was 
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noted that the post-teaching algorithm missed an additional pair that can be related to 

the pre-teaching exercise. The problem specification for the new post-teaching 

exercise is in Figure 8.13.  

Write an algorithm that determines a final mark, then check if the student has passed, has a 
condoned pass, has qualified for a supplementary exam or has failed.  Prompt for a year mark and 
exam mark. Calculate the final mark as the average of the year mark and exam mark.  

 
Condition for a pass: 
If the final mark is 50 or higher, then show the message "Pass". 

 
Condition for a condoned pass: 
If the final mark is either 48 or 49, then reset the final mark to 50 and show the message "Condoned 
pass". 

 
Condition to qualify for the supplementary exam: 
If the final mark is between 44 and 47, then show the message "You qualify for supplementary exam”. 

 
If any of the above conditions are not true, show the message "Failed". 
Figure 8.13: Problem specification for post-teaching algorithm on decisions/nested decisions 

 

The content of Figure 8.14 is the algorithm sections for the post-teaching exercise. 

 
Figure 8 14: Post-teaching algorithm sections on decisions/nested decisions 

 

The content of Table 8.2 consists of paired algorithm sections that are to be used for 

SOLO-adapted evaluation.  
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Table 8.2: Paired algorithm section (decisions/nested decisions) 

Pair                 Section name  

Pair 1 Pre_nested_if  Represents the correct structure of the nested if-
statement 

Post_nested_if  

Pair 2 Pre_inner_if_AND Refer to using the correct structure of the if-clause that 
has the “&&” operator or uses alternative method 

Post_if_AND  

Pair 3 Pre_outer_if_OR  Refer to using the correct structure of the if-clause that 
has the “||” operator or uses alternative method 

Post_if_OR  

Pair 4 Pre_inner_if_content  Refers to the correct content in the block following the if-
statement when it evaluates to true 

Post_if_OR_content  

Pair 5 Pre_outer_else_content  Is about the correct content in the else part of the if-
statement 

Post_else_content  

Pair 6 Pre_inner_else_content  Pair 6 refers to the correct content of the else part of the 
if-statement 

Post_else_content  

 

8.3.2.2 Concept and pairs performance 

The content of Table 8.3 is the average percentage of transitions across pair 1 to pair 

6. The content of Table 8.3 presents the overall performance of decisions/nested 

decisions.  The evaluation sheets per pair are presented in Appendix H. In the previous 

action cycles, the main indicators of TLPAP’s effect on SIPS were mainly revealed in 

two transitions, that is, the M→R (improved) and M→M (Stagnant-at-intermediate-

level).  
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Table 8.3: Average transitions performance on decisions/nested decisions for all pairs 

P P→P  
(Stagnant-no-learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0    0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-lower-

level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 8.3% 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 18.1% 21.8% 23.6% 9% 2.8% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 1.4% 2.6% 30.6% 62.8% 15.3% 5.1% 

 P U M R 

 

Most of the time, in the previous cycle, the M→R transition was higher in the 

experimental group while the M→M transition was lower in the control group. In this 

concept of decisions/nested decision, the transition outcomes look consistent to cycle 

3. For example, in cycle 3 (Chapter 7, section 7.5.2) under the concept of 

decisions/nested decisions, the M→R transition in the control group resulted in an 

average percentage (26.7%) which is half the average percentage (48.5%) in the 

experimental group. In this cycle, the same concept results in the M→R transition of 

30.6% in the control group and 62.8% in the experimental group. This means that the 

effect of TLPAP was two times greater than what the normal teaching method 

achieved.  

In the concept of decisions/nested decision, the M→M transition continues to be higher 

in the control group, while the experimental group resulted in 0% or less than 10% 

within the same transition. As emphasised previously, the M→M transition result 

should have been in the M→R transition. This means that the higher percentage in the 

M→M transition is evidence that a relevant teaching method needs further 

improvements.  

There are a few pairs that stand out or have a major influence on the overall 

performance in understanding a concept. Such pairs include transition outcomes that 

are much higher than the others or pairs that resulted in 100% transitions.  The 100% 
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M→R transition is found in the experimental group under pair 2 (Pre_inner_if_AND 

and Post_if_AND) and in the control group under pair 3 (Pre_outer_if_OR and 

Post_if_OR). Pair 2 is in Appendix H Table H.6, and Pair 3 is in Appendix H Table H.9. 

However, in pair 3, the 100% M→R transition in the control group has 25% while the 

non-100% M→R transition in the experimental group has 69.2%. There is a notable 

30.8% in the experimental group under the U→M transition (intermediate-

improvement) in pair 4 (Pre_inner_if_content and Post _if_OR_content) and pair 5 

(Pre_outer_else_content and Post_else_content). Pair 4 is in Appendix H Table H.12 

and Pair 5 in Appendix H Table H.15. The U→M transition is acceptable since it falls 

within the category of improving transitions, but as emphasised in the previous cycle, 

the more desirable transition instead of U→M is U→R (Improved+).  

The overall comparison across pair 1 to pair 6 in relation to decisions/nested decisions 

shows more of the experimental group under the improved category than the control 

group. The improvements in the experimental group are positive compared to the 

control group, but also compared to the previous cycles under the concept of 

decisions/nested decisions.  

 

8.3.3 Results (loops/decisions)  

There were 28 SIPS in participation and they were randomly divided into 14 per group. 

 

8.3.3.1 Algorithm sections  

The problem specification in Figure 8.15 is the problem specification for the post-

teaching exercise. 

You are requested to develop a program that computes students' marks. Prompt the user to enter 
the exam mark of each student one by one (there are four students in total). If the user enters an 
exam mark lower than 0 or higher than 100, re-prompt the user to enter the exam mark again. 
 
Calculate and display the average exam mark of all four students. 
Determine and display the number of students who got an exam mark of 75 or higher. 

 

Figure 8.15: Problem specification for post-teaching algorithm on loops/decisions 

 

The following figure (Figure 8.16) indicates the dissected algorithm sections on 

loops/decisions for the pre-teaching algorithm. 
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Figure 8.16: Pre-teaching algorithm sections on loops/decisions 

 

Figure 8.17 displays the dissected algorithm sections on loops/decisions for the post-

teaching algorithm. 

 
Figure 8.17: Post-teaching algorithm sections on loops/decisions 

 

The content of Table 8.4 consists of a paired section of the nested loop. 
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Table 8.4: Pairs algorithm sections – nested loops 

Pair                 Section name  

Pair 1 Pre_loop Refers to the correct structure of the loop 

Post_loop 

Pair 2 Pre_loop_content Means the general content of the first loop 

Post_loop_content 

Pair 3 Pre_if_OR Means the correct format of the condition in an if-statement 
using the || operator 

Post_if_OR  

Pair 4 Pre_if_OR_content  Refers to the correct content of the if-statement 

Post_if_OR_content  

Pair 5 Pre_if_OR_2 Means the correct format of the condition in the second if 
statement using the || operator 

Post_if_OR 

Pair 6 Pre_if_OR_2_content Refers to the correct content of the if-statement 

Post_if_OR_content  

Pair 7 Pre_else Means the correct content of the else part of the if-
statement 

Post_else 

Pair 8 Pre_display Means correct display at the right place 

Post_display 

 

8.3.3.2 Concept and pairs performance 

The content of Table 8.5 is the average percentage of transitions across pair 1 to pair 

8. The table shows the overall performance of the loops/decisions. The problem 

specification required a solution that needed both a looping statement and decision 

statement. The evaluation sheets per pair are presented in Appendix I. 
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 Table 8.5: Average transitions performance on decisions/loops for all pairs 

P P→P  
(Stagnant-no-learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-lower-

level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 3.6% 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 20.5% 20.5% 20.5% 2.7% 8% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 2.7% 4.5% 33.2% 64.9% 10.1% 7.1% 

 P U M R 

 

An algorithm that requires a combination of loop and decisions was experimented for 

the first time in this cycle. The overall transition performance is similar to the previous 

concept (decisions/nested decisions) and also to the previous cycles. This further 

affirms the consistency of TLPAP which performs in a similar pattern regardless of 

new problem specifications or repeat experiments. For example, the M→R transition 

still revolves around 30% in the control group and around 60% in the experimental 

group, just as in previous experiments. Furthermore, the M→M transition continues to 

retain higher percentages in the control group than the experimental group. 

The interesting results are in pair 1 (Pre_loop and Post_loop) and pair 2 

(Pre_loop_content and Post_loop_content). Pair 1 is in Appendix H Table H.3 and Pair 

2 is in Appendix H Table H.6. In pair 1, the M→R transition in the control was close 

(42.9%) to the experimental group which resulted in 57.1%. Pair 1 refers to the correct 

structure of the loops. This means almost half of both the control and experimental 

groups were able to get the overall structure of the loop correct.  

In pair 2, which refers to the correct content of the loop (the code between the blocks), 

the U→M transition resulted in 42.9% in the control group and 14.2% in the 

experimental group.  This means that the method of teaching for the control group was 

good for intermediate improvement (U→M transition) specifically for pair 2, but not 

good enough for U→R (Improved+) transition. 
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The pairs that resulted in 100% M→R transition are pair 1 (Pre_loop and Post_loop), 

pair 2 (Pre_loop_content and Post_loop_content), pair 4 (Pre_if_OR_content and 

Post_if_OR_content) in Appendix H Table H.12; pair 6 (Pre_if_OR_2_content and 

Post_if_OR_content) in Appendix H Table H.18; and pair 8 (Pre_display and 

Post_display) in Appendix H Table H.24. Overall, the 100% M→R transition continues 

to compleent the effect of the adopted teaching method experimental group.   

 

8.3.4 Results (parallel arrays) 

The total number of students is odd (23), that is 11 students were in the control group 

and 12 in the experimental group. 

8.3.4.1 Algorithm sections  

The problem specification for parallel arrays remains the same as indicated in Chapter 

7, section 7.3.3.2 in Figure 7.55 (pre-teaching exercise) and section 7.5.6.1 in Figure 

7.83 (post-teaching exercise). The algorithm pairs remain the same as in Chapter 7, 

section 7.5.5.1 in Table 7.8. The algorithm section also remains the same for the pre-

teaching exercise (Chapter 7, section 7.5.6.1 in Figure 7.82) and the post-teaching 

exercise (Chapter 7, section 7.5.6.1 in Figure 7.84).  

 

8.3.4.2 Concept and pairs performance 

The content of Table 8.6 is the average percentage of transitions across pair 1 to pair 

6. The content of Table 8.6 presents the overall performance of the parallel arrays. 

The problem specification required a solution that needed both looping statements 

and a decision statement. Evaluation sheets per pair are presented in Appendix J. 
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 Table 8.6: Transitions performance on parallel arrays 

P P→P  
(Stagnant-no-learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-lower-

level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 5.5% 11.7% 34.6% 1.7% 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 8.3% 16.4% 43.3% 38.2% 36.7% 

 P U M R 

 

The average percentage outlook for parallel arrays for M→R (Improved) transition 

remains higher in the experimental group and the M→M (Stagnant-at-intermediate-

level) transition also results in higher average percentage in the control group.  

 

The pairs that resulted in 100% transition are pair 1 (Pre_array_initialised and 

Post_array_initialised) in Appendix J Table J.3; pair 2 (Pre_loop_structure and 

Post_loop_structure) in Appendix J Table J.6; pair 3 (Pre_if_condition and Post_ 

if_condition) in Appendix J Table J.9; and pair 5 (Pre_display and Post_display) in 

Appendix J Table J.15. In cycle 3, this concept of parallel arrays resulted in all pairs 

into 100% M→R transition. In this cycle in the same concept, only one pair out of five 

pairs did not result in 100% transition. This is a sign of performance consistency of 

TLPAP on SIPS. 

  

The R→R (already-know) transition resulted to higher percentages in pair 1 for both 

the control (63.6%) and experimental (66.7%) groups. This affected the number of 

algorithm sections in the M→R transition as it recorded lower percentages (0% in the 

control group, 16.7% in the experimental group). The percentages in the R→R 

transition do not have direct pedagogical implication on either the control or 

experimental group as I was unable to control what or how students learn outside the 

parameter of the action research study. 
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In this concept of parallel arrays, one of the notable results is in pair 3 where the M→M 

transition resulted in 54.5% in the control group and 0% in the experimental group. 

Based on the previous M→M (Stagnant-at-intermediate-level) transitions across all 

concepts, this percentage is the highest – setting a record. Perhaps this is caused by 

the pair requirements which need the correct structure of condition in the if-statement 

which must make use of parallel array. Irrespective, this is further evidence that the 

normal teaching method in the control group can only, to a certain extent, help SIPS. 

In pair 5, the U→R (Improved+) transition resulted in 0% in the control group and 25% 

in the experimental group. The U→R transition is part of improving categories and 

adds on to the success of th4e M→R transition generated by TLPAP in the 

experimental group. 

 

8.3.5 Results (functions) 

There were 22 SIPS participants here, that is 10 students in the control group and 12 

students in the experimental group. 

8.3.5.1 Algorithm sections 

The problem specification for functions (pre-teaching exercise) remains the same as 

indicated in Chapter 7, section 7.3.4 in Figure 7.62. The problem specification for 

functions (post-teaching exercise) remains the same as indicated in Chapter 7, section 

7.5.7.1 in Figure 7.86. The algorithm section remains the same for the pre-teaching 

exercise (section 7.5.7.1 in Figure 7.85) and post-teaching exercise (section 7.5.7.1 in 

Figure 7.87).  The algorithm pairs remain the same as in Chapter 7, section 7.5.7.1, 

Table 7.11.  

8.3.5.2 Concept and pair performance 

The content of Table 8.7 shows the average percentage of transitions across pair 1 to 

pair 6, presenting the overall performance of the functions. The evaluation sheets per 

pair are presented in Appendix K. 

 



234 
 

  Table 8.7: Average transitions performance on functions for all pairs 

P P→P  
(Stagnant-no-learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-lower-

level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 23.3% 8.3% 31.7% 2.8% 10% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 7% 26.7% 72.2% 8.3% 9.7% 

 P U M R 

 

The performance of the M→R (Improved) transition has served as the main indicator 

of success of TLPAP in the experimental groups in the precious concepts and cycle.  

In the concept of functions, the M→R transition has 72.2% in the experimental group 

while the control group has 26.7%. This conceptual performance of functions in the 

M→R transition is not just higher than the previous cycle (cycle 3) which recorded 

62.2%, but has set a record, higher than all previous M→R transitions. The 

pedagogical implication of these results is that TLPAP has continued to heighten its 

impact in the experimental group as compared to the control group. 

The pairs that resulted in 100% M→R transition in the concept of functions are pair 1 

(Pre_func_call_return and Post_func_call_return) in Appendix K Table K.3; pair 2 

(Pre_func_call_void and Post_func_call_void) in Appendix K Table K.6; pair 3 

(Pre_func_header_return and Post_func_header_return) in Appendix K Table K.9; 

pair 4 (Pre_func_return_content and Post_func_return_content) in Appendix K Table 

K.12; and pair 5 (Pre_func_header_void and Post_func_header_void) in Appendix K 

Table K.15. The TLPAP is further proving its capability on 100% M→R transition in the 

experimental group as compared to the control group.  

The M→M (Stagnant-at-lower-level) transition in the control group has also resulted in 

higher percentages in pair 2, pair 5 and pair 6. In pair 2, M→M transition has 50% in 

the control group and the experimental group has 8.3%. In pair 5, M→M transition has 

40% in the control group and the experimental group has 0%. In pair 6, M→M transition 
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has 40% in the control group and 8.3% in the experimental group. This M→M transition 

outcome has been consistently higher in past concepts and cycles within the control 

group compared to the experimental group. This is a continuing indication that the 

teaching method in the control group is less effective, especially on more challenging 

concept like functions. The last notable result is pair 1 which has a 40% U→M 

(Intermediate-improvement) transition in the control group and 8.3% in the 

experimental group. As emphasised in the earlier concepts, this transition is decent or 

can be referred as ‘work in progress’ but is not quite enough – the desired transition 

is U→R instead of U→M. 

 

8.4 Summary of reflections on cycle 4 

The following reflections emanate from this cycle. 

- The uses of assignment put emphasis on initialisation, copying of values from 

one variable to another or overwriting. The performance of the experimental 

group has been consistently positive from the previous cycles as reported in 

cycle 2 (Chapter 6, section 6.6.1) and cycle 3 (Chapter 7, section 7.5.1).  This 

serves as a confirmation of the validation of TLPAP as this is a repeat 

experiment. No changes are foreseen in the next cycle in this experiment.  

- Generally, the post-teaching algorithm exercises in the experimental group 

recorded higher improved (M→R) results than the control group.   

- The post-teaching algorithm exercises in the experimental group recorded 

higher intermediate-improvement (U→M) than the control group. However, the 

control group has a reasonable share in the U→M transition. This means that 

a normal teaching method does help students, but at a slower pace, which 

resulted in intermediate achievements. 

- The deteriorated (R→M) pairs in the sections of the algorithm were found 

mostly in the control group, but they were minimal. This suggests that the 

normal teaching method does not cause more harm, but it is still not enough to 

reach the ultimate stage of learning. 

- The improved+ (U→R) pairs in the sections of the algorithm were found mostly 

in the experimental group, but they were minimal. This means the TLPAP in the 
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experimental group was good enough to enforce learning for a few students 

who were really struggling to the ultimate stage of learning. 

- Pedagogical guidelines as part of TLPAP were followed (using the adapted 

version in chapter 7) when demonstrating the animation programs. There are 

no revisions at this stage. 

- The animation speed adjustment on the animation programs had an impactful 

effect on myself as an educator. This is because my narration was relaxed and 

not rushed when the animation speed was on slow or very slow. This means 

the speed adjustment is not only good for the student but for the educators as 

well.   

 

8.5 Summary of reflections on cycle 5 

The outcome of cycle 5 is similar to that of cycle 4, with no substantial differences 

between those cycles. As a result, I only point out reflections of cycle 5 in this section 

and briefly compare significant differences across cycle 3 to cycle 5 in section 8.6. The 

intention of proceeding to cycle 5 experimentation was to further confirm the reliability 

and efficacy of the TLPAP in the experimental group as compared to the control group.  

In cycle 5, the animation programs adapted into Java programming language include 

animation for decisions and the combination of decisions and loops (sample programs 

in Appendix L). While the animations for the uses of assignment were also part of the 

Java experiments, there was no adaption since they are language-independent. The 

tutors oversaw the control and experimental groups. The tutors in the experimental 

group were properly briefed about TLPAP use. The improvements within the post-

teaching algorithm sections remained consistent even when tutors were in charge. 

One suggestion from the tutors included embedding the summary of pedagogical 

guidelines into the animation programs where they can be accessed with a button 

click. Other concepts, like loops, nested loops, arrays and functions were presented 

to C++ introductory programming students. 

The outcome of teaching and learning the concept of assignment produced similar 

outcomes to the previous cycles. The rest of the concepts presented in cycle 5 also 

produced similar experimental outcomes. For a thorough overview across cycles, the 

following section compares the most common transitions across cycle 3 to cycle 5. 
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8.6 Discussions on transitions across cycle 3 to cycle 5 

The SOLO-adapted evaluations on cycle 3 to cycle 5 were based on the algorithm 

pairs/sections while in cycle 2 these were based on the overall algorithm. For a fair 

comparative view across cycles, the discussion in this section will focus on cycle 3 to 

cycle 5. 

The most common frequently occurring SOLO-adapted transitions between cycle 3 

and cycle 5 in both the control and experimental groups were M→R (improved), U→M 

(intermediate-improvement), M→M (stagnant-at-intermediate-level) and R→R 

(already-know). In the previous sections, the discussion indicated that the M→R and 

M→M transition had a major implication on the difference between the control group 

and experimental group. Each concept from cycle 3 to cycle 5 resulted in higher 

average percentages under the M→R transition and lower under the M→M transition. 

In the control group, the opposite occurred, that is, a higher M→M transition and lower 

M→R transition rate. The results of those transitions further confirm the pedagogical 

implications between the two groups where the TLPAP in the experimental group 

outperformed the normal teaching method in the control group. 

The average percentage for U→M transition in various concepts across cycle 3 to 

cycle 5 has been lower than 32% in both the control and experimental groups. The 

highest average percentage under the U→M transition is found in the experimental 

group with 31.6% for the concept of loops (cycle 3). The second highest average 

percentage is also in the experimental group with 27.5% for the concept of functions 

(cycle 3). The U→M transition is an improving category; however, the outcome can be 

regarded as semi-improvement since the transition resulted into U→M instead of U→R 

(improved+). The implications of the U→M results in relation to the intervention in both 

groups is that the teaching method has made a good attempt but not enough for 

ultimate success. 

The transition which occurred most frequently in the control group in a few algorithm 

sections is the R→M (deteriorated) transition. The average percentages for R→M 

transition in the control group have been 10% or less across cycle 3 to cycle 5, except 

in the concept of decisions/nested decisions in cycle 4 which resulted in 17%. The 

average percentages for R→M transition in the experimental group have been either 

0 or less than 5%. This means that even though the average R→M transitions in the 
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control group are higher than the experimental group, the teaching methods in both 

did not lead to severe learning deterioration. 

The U→U (stagnant-at-lower-level) transition has the majority of 0% in both groups 

across cycle 3 to cycle 5, meaning that there is nothing to comment about the 

transition. The average percentage in the R→R (Already-know) transition across cycle 

3 to cycle 4 has no direct implication on the intervention in either the control or 

experimental group. This is because the intervention occurred while such pairs were 

already in the relational stage. Consequently, I was unable to evaluate how they 

acquired such knowledge or control how they show learning outside the experimental 

setup of this study. However, the R→R transition serves an important methodological 

aspect that helps discard the number of algorithm sections that are correct before the 

intervention. This further assures that the performance of TLPAP is not linked to the 

R→R transition in anyway.   

There are instances where the M→R had a 100% transition. The 100% transition in 

the M→R category means that all pairs that were categorised in the multistructural 

stage in the pre-test evaluation of a certain pair have transitioned into the relational 

stage. If the transition split in the post-test evaluation into 2 or more categories, it is no 

longer a 100% M→R transition.  

The following sections are pairs that resulted in a 100% transition in the 

experimental and control groups 

In the concept of decisions/nested decisions, the 100% M→R transitions in the group 

are:  

Pair 1 (Pre_nested_if and Post_nested_if) in cycle 3 and cycle 5 

Pair 2 (Pre_inner_if_AND and Post_if_AND) in cycle 4 and cycle 5 

Pair 3 (Pre_outer_if_OR and Post_if_OR) in cycle 3  

Pair 4 (Pre_inner_if_content and Post_if_OR_content) in cycle 3 

Pair 5 (Pre_outer_else_content and Post_else_content) in cycle 3 

Pair 6 (Pre_inner_else_content and Post_else_content) in cycle 3 and cycle 5 
 

In the concept of a combination of loops and decisions/nested decisions, the 100% 

M→R transitions include: 

Pair 1 (Pre_loop and Post_loop) in cycle 4 
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Pair 2 (Pre_loop_content and Post_loop_content) in cycle 4 and cycle 5 

Pair 3 (Pre_if_OR and Post_if_OR) in cycle 5 

Pair 4 (Pre_if_OR_content and Post_if_OR_content) in cycle 4 and cycle 5 

Pair 5 (Pre_if_OR_2 and Post_if_OR) in cycle 5 

Pair 6 (Pre_if_OR_2_content and Post_if_OR_content) in cycle 4 

Pair 7 (Pre_else and Post_else) in cycle 5 

Pair 8 (Pre_display and Post_display) in cycle 4 
 
 
In the concept of a combination of a loops the 100% M→R transitions include: 

Pair 2 (Pre_firstloop_structure and Post_loop_strucutre) in cycle 5 

Pair 4 (Pre_secondloop_structure / Pre_secondloop_content and Post_display) in 

cycle 3 

 

In the concept of a combination of nested-loop, the 100% M→R transitions include: 

Pair 1 (Pre_outer_loop_structure and Post_outer_loop_structure) in cycle 5 

Pair 2 (Pre_inner_loop_structure and Post_inner_loop_structure) in cycle 3 and cycle 

5 

Pair 3 (Pre_inner_loop_content and Post_inner_loop_content) in cycle 5 

Pair 4 (Pre_outer_loop_content and Post_ outer_loop_content) in cycle 5 

 

In the concept of one-dimensional arrays, the 100% M→R transitions include: 

Pair 1 (Pre_array_initialised and Post_array_initialised) in cycle 3 and cycle 5 

Pair 2 (Pre_loop_structure and Post_loop_structure) in cycle 3 

Pair 3 (Pre_if_condition and Post_ if_condition) in cycle 3 and cycle 5 

Pair 4 (Pre_if_content and Post_ if_ content) in cycle 5 

Pair 5 (Pre_display and Post_display) in cycle 3 and cycle 5 

 

In the concept of parallel arrays, the 100% M→R transitions include: 

Pair 1 (Pre_array_initialised and Post_array_initialised) in cycle 3 and cycle 4 

Pair 2 (Pre_loop_structure and Post_loop_structure) in cycle 3 and cycle 4 

Pair 3 (Pre_if_condition and Post_ if_condition) in cycle 3 and cycle 4 

Pair 4 (Pre_if_content and Post_ if_ content) in cycle 3  
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Pair 5 (Pre_display and Post_display) in cycle 3 and cycle 4 

 

In the concept of functions, the 100% M→R transitions include: 

Pair 1 (Pre_func_call_return and Post_func_call_return) in cycle 3, cycle 4 and cycle 

5 

Pair 2 (Pre_func_call_void and Post_func_call_void) in cycle 5 

Pair 3 (Pre_func_header_return and Post_func_header_return) in cycle 3, cycle 4 

and cycle 5 

Pair 4 (Pre_func_return_content and Post_func_return_content) in cycle 4 and cycle 

5 

Pair 5 (Pre_func_header_void and Post_func_header_void) in cycle 4 and cycle 5 

Pair 6 (Pre_func_void_content and Post_func_void_content) in cycle 3 

 

The following sections are pairs that resulted in a 100% M→R transition in the 

control group 

The control group had three instances where the 100% M→R transition occurred. Pair 

3 under decisions/nested decisions in cycle 4, pair 1 under the concept of a parallel 

array in cycle 3 and pair 4 in a one-dimensional array in cycle 3.  The description of 

the pairs is as follows: 

Pair 3 (Pre_outer_if_OR and Post_if_OR) in cycle 3 

Pair 1 (Pre_array_initialised and Post_array_initialised) in cycle 3 

Pair 4 (Pre_if_content and Post_ if_ content) in cycle 3 

 

Concluding remarks 

In this concept of decisions/nested decisions, the M→R 100% transition occurred 

once in the control group and nine times in the experimental group. In the concept of 

loops and nested-loops, the 100% transition occurred two times in the experimental 

group (for loops) and five times (for nested loops). The control group had no M→R 

100% transitions on either loops or nested loops. There were 10 occurrences of 100% 

M->R transition in the experimental group under the concept of the combination of 

decisions and loops and nothing in the control group. The concept of one-dimensional 

arrays recorded in eight instances of 100% M→R transitions and parallel arrays has 
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nine 100% M→R transitions in the experimental group. In the control group, the 100% 

M→R transition occurred once for both one-dimensional array and parallel array. In 

total, there have been 36 instances of 100% M→R transition in the experimental group 

across cycle 3 to cycle 5. The control group has three instances of 100% M→R 

transition across cycle 3 to cycle 5.  

 

In the case where the experimental group did not record 100% M→R transition, the 

advantage is still in the experimental group due to higher numbers in the M→M 

transition of the control group. The 100% M→R transition occurrences are an 

important indicator of TLPAP success within algorithm pairs. Its importance is due to 

the fact that the transition outcomes all result to improvements. A case where there is 

no 100% M→R transition is when other transitions like M→M (stagnant-at-

intermediate-level), M→U (intermediate-deterioration) and M→P (intermediate-

deterioration+) occur in the same algorithm pair.  

8.7 State of the framework 

At the end of cycle 4 of our action research, the state of the TLPAP framework was 

referred to as adapted TLPAP framework version 4 pending the outcome of cycle 5 

results that could suggest further adaptation towards a final framework. At the end of 

cycle 5 of the action research, the state of the TLPAP framework was referred to as 

the final TLPAP framework. 

 

The specific items that form part of this final TLPAP framework consist of the following: 

- The animation programs focusing on assignment (presented in cycle 2, chapter 

6) as opposed to the manipulatives version (presented in cycle 1, chapter 5). 

Even though the use of physical manipulatives yielded positive results in 

emphasising the uses of assignment, the rationale behind this choice is the 

animation's flexibility to accommodate large classes in a contact teaching 

session and its compatibility with an online session.  

- All the animation programs for introducing a concept as presented in Chapter 

7, section 7.2, as well as an additional introductory animation program 

presented in Chapter 8, section 8.2.2. 

- The nested-decider animation program presented in cycle 2. 
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- The animation programs for loops, arrays and functions presented in cycle 4.  

- The animation program on the combination of decisions and loops as presented 

in cycle 4.  

- The adapted pedagogical guidelines revised in cycle 4. 

The lessons learned in each cycle of action research has provided insight to further 

derive a high-level, generic framework for teaching and learning with animation 

programs. This framework is deemed generic because it is not limited to introductory 

programming only but can be adapted to develop relevant animation programs for 

other similar modules or non-programming subjects. See Figure 8.18 for a depicted 

generic framework. 

 

Figure 8.18: Generic framework 

 

The generic framework in Figure 8.18 contains the critical high-level components of 

the TLPAP framework; that is the animation program design and pedagogical 

guidelines. In the part of animation program design, the initial step is the application 

of the principles of multimedia learning by Mayer (2005). These principles must be 

followed when designing animation programs for educational purposes. Secondly, 
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animation programs for concept introduction are recommended. This is to instil basic 

knowledge about the concept before introducing the main aspects of the concept. 

Thirdly, the main animation programs must focus on the core of subject matter and 

make use of real-world examples or problems for animating. Teaching and learning 

through the main animation programs should be less challenging after using the 

introductory animation programs and further reduce any cognitive overload in the case 

of complex concepts. The inclusion of introductory animation is crucial as struggling 

students may not focus on the basics during the main animation programs 

demonstration but are expected to focus on the main ideas presented at that stage.  

The last part of the generic framework is pedagogical guidelines. Pedagogical 

guidelines are a crucial component of the framework because they prescribe the best 

practices for teaching and learning with animation programs in that subject or module. 

Pedagogical guidelines should be adapted based on the nature of the subject as was 

done for the TLPAP framework.  

8.8 Conclusion 

In this chapter, I presented the adapted TLPAP framework where various animation 

programs for IPC were designed and tested. In addition to the animation programs 

designed and experimented in previous cycles, added animation programs were 

developed and experimented within cycle 4. Such animation programs were designed 

under the concept of loops and decisions (a combination of both) and additional 

animation for introducing an array. The pedagogical guidelines adapted in cycle 3 were 

used in cycle 4 and cycle 5 along with the animation programs as part of TLPAP. 

Generally, the experiments in these cycles showed consistent improvements in the 

experimental group across the concepts and previous cycles.  

At the end of cycle 5, a final TLPAP framework was concluded and prescribed. The 

components that form part of TLPAP were all identified and referenced across cycles. 

Moreover, based on the experience of developing TLPAP, a generic or high-level 

framework was derived and presented. A generic framework can be adapted and used 

in other subject areas beyond introductory programming. The next chapter presents 

the discussions and conclusion of this study. 
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Chapter 9: Conclusion 
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9.1 Introduction   

The initial aim of this study was to make use of manipulatives for teaching and learning 

Introductory Programming Concepts (IPC). Through rigorous action research, the 

study evolved into using animation programs for teaching and learning IPC as each 

action cycle was reviewed, reflected on and planned accordingly. The core problem 

as stated in Chapter 1 is that some students find programming too challenging to 

comprehend. The problem deteriorates into reduced programming performance, a 

higher dropout rate and academic exclusion in the field of computing.  

 

In the spectrum of pedagogical approaches in teaching and learning programming 

(discussed in Chapter 2), the use of multimedia tools/animation programs is found to 

be informative, explanatory, explicit, interactive, effective and clear. The gap within the 

existing animation programs for teaching and learning IPC is a lack of simplicity which 

can be key factor to SIPS. Some animation programs contain overloaded graphics 

which can deviate SIPS’ focus or distract from the actual learning. Animation programs 

for teaching and learning should not be an end to themselves, but rather a way to learn 

IPC. Existing animation programs do not have a set of pedagogical guidelines 

compatible with the developed animation programs but rely on the assumption that 

users can figure out how to properly use the animation programs. Furthermore, the 

existing animation programs focus more on the K12 stream and block-based 

programming while there is a dearth of intentional research on struggling text-based 

programming students at university. 

 

In Chapter 3, theoretical framework for this study was discussed, including 

constructivism, the conversational framework, teaching philosophy, cognitive theory 

on multimedia learning and the structure of observed learning outcomes (SOLO). In 

Chapter 4 the methodology followed in this study was discussed. The discussion in 

the methodology chapter included the research paradigms and multimedia design 

guidelines by Mayer (2005). The overall methodology followed is action research in 

the educational setting. The results of five action research cycles have been recorded 

and analysed in Chapter 5, Chapter 6, Chapter 7 and Chapter 8. 
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In cycle 1 (presented in Chapter 5), the teaching and learning activities were based on 

physical manipulatives as this was the initial plan. In that cycle, the framework was 

referred to as teaching and learning programming with manipulatives (TLPM). The 

planned manipulatives were based on teaching and learning the uses of assignment 

and decisions/nested decisions. The experimentation was undertaken through pre-

test and post-test of algorithms in the control and experimental groups.  

 

The outcome of teaching and learning on the uses of assignment was successful, but 

the outcome of teaching and learning decisions/nested decisions was not successful. 

The main problem encountered in an attempt to use the manipulatives for teaching 

and learning decisions/nested decisions was that the details of the manipulatives were 

not clearly visible to students. Additionally, the problem was worsened by the Covid-

19 pandemic as I had to comply with government regulations on social distancing and 

higher education opted for online teaching and learning. In cycle 2, the physical 

manipulatives approach was changed to virtual manipulatives. The virtual 

manipulatives were referred to as multimedia teaching and learning tools and 

ultimately referred to as animation programs. Pedagogical guidelines were initiated 

and followed from this cycle. The framework was referred to as Teaching and Learning 

Programming with Animation Programs (TLPAP) from cycle 2 onwards.  

 

The development of the animation programs for assignment was a direct translation 

from physical manipulatives to animation programs. The animation programs for 

decisions/nested decisions were also designed based on problem specifications and 

experimented with in cycle 2. In the case of the animation programs that emphasise 

the use of assignment, experimentation was successful, similar to the outcome of 

physical manipulatives experimentation in cycle 1. In the case of animation programs 

for decisions/nested decisions, the experimentation was also successful; however, a 

need to improve the evaluation method was noted and planned for cycle 3.  

 

One challenge encountered by SIPS in cycle 2 (in the concept of decision/nested 

decisions) was persistent error in the basics and simple structural aspects of the 

concept. The small misalignment between pre-teaching and post-teaching exercises 

in the concept of decision/nested decisions was noted for adjustment in the next cycle. 
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A plan to improve and design more animation programs for various IPC was noted for 

cycle 3. 

 

In cycle 3, the introductory animation programs were introduced to focus on the basics 

and simple structure of the concept before SIPS can be taught with the animation 

programs which are tied to a problem specification. The experimented animation 

programs were based on the concept of assignment, decisions/nested decisions, 

loops/nested loops, one-dimensional arrays/parallel arrays and functions. The 

pedagogical guidelines formulated in cycle 2 were adapted and followed in cycle 3. As 

part of the action research methodology which allows continual improvements per 

cycle, two additional animation programs were planned for cycle 4.  

 

In cycle 4, the first additional animation program based on a problem specification 

included the combination of decisions and loops. The other animation program was 

an addition to the introductory animation program on the concept of arrays. The 

framework was then referred to as TLPAP adapted framework version 4. In cycle 5, 

the animation programs were repeated as they were in cycle 4. In the previous cycles, 

the animation programs were presented along with a C++ program code, but 

adjustments in cycle 5 included a radio button switch from a C++ code to a Java code. 

Some of the animations were presented to Java SIPS by tutors and some were still 

presented to C++ SIPS. At the end of cycle 5, the framework was then referred to as 

TLPAP final framework. The subsequent section discusses the nature of the actual 

TLPAP. 

 

9.2 Structure of the TLPAP framework 

The TLPAP framework has been designed specifically for SIPS in a text-based 

programming environment; however; it can be adopted as a general teaching and 

learning framework for all introductory programming students. The TLPAP consists of 

animation programs based on imperative programming concepts (objects-later 

approach) and the applicable pedagogical guidelines. The pedagogical guidelines are 

the stages to be followed for proper use of animation programs and effective learning 

benefits. The pedagogical guidelines can also be seen as a mapping model between 

TLPAP and other teaching and learning strategies. The animation programs are in two 
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phases: animation programs for introducing a new concept and animation programs 

for use after the introduction of a concept. The introductory animation programs 

consist of simple animations that give SIPS a structural basis about the concept being 

taught. The animation programs to be used after introductory animation programs are 

coupled with problem specifications. The idea of these two phases of animation 

programs is that SIPS should not be struggling with the basics while attempting to 

solve a problem. For example, if the concept of decisions/nested decisions is taught, 

introductory animation programs based on decisions/nested decisions are used. The 

animation programs with problem specifications should also be based on 

decisions/nested decisions. 

The design of the animation programs complied with the 12 principles of multimedia 

learning by Mayer (2005) to ensure that the animation programs are within the 

parameters of the tested theoretical basis in teaching and learning. The animation 

programs’ design was simplified for easy comprehension by SIPS. The interface of the 

animation programs is divided into two: the left side for animation rendering and the 

right side for program code. The rendering of animations occurs synchronously with 

program code. When the animation program executes, the program code is 

highlighted line by line from top to bottom and the corresponding animation occurs as 

per the currently highlighted line of code. It is recommended that the users of the 

animation programs familiarise themselves with pedagogical guidelines as this 

process forms part of TLPAP. 

9.3 How the research questions were answered 

The research questions and objectives formulated in this study emanated from the 

following thesis statement:  

A Teaching and Learning Programming with Animation Programs (TLPAP) framework 

can improve Struggling Introductory Programming Students (SIPS) comprehension of 

Introductory Programming Concepts (IPC). 

 

The research questions and objectives were developed according to the formulated 

thesis statement. The following section explains how each research question was 

answered. 
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Research question 1:  

What are the leading issues in teaching and learning IPC? 

 
To answer the above research question, the objective was formulated as: To conduct 

a literature review on the challenges of teaching and learning IPC. The literature 

review on the challenges of teaching and learning to program was conducted and 

discussed in Chapter 2, section 2.4. In the literature review, I found that there are many 

issues for teaching and learning to program. The attempt to solve these challenges 

was addressed in another section of literature review (Chapter 2, section 2.6) which is 

addressed through the subsequent research question. 

 

Research question 2: 

What are the approaches used in teaching IPC? 
 

To answer the above research question, the objective was formulated as: To 

investigate the approaches used in teaching IPC. The literature review on approaches 

used in teaching and learning programming concepts was conducted and discussed 

in Chapter 2, section 2.6. This section discussed various approaches of teaching and 

learning to program like the use of physical manipulatives and animation programs. 

The conclusion of this section suggested and substantiated the incorporation of 

animation programs in the programming education. 

 

Research question 3: 

What are the limitations of existing animation programs used for teaching and learning 

IPC?  

 

To answer the above research question, the objective was formulated as: To 

investigate animation programs for teaching and learning IPC. The literature review 

on animation programs for teaching and learning IPC was conducted and discussed 

in Chapter 2, section 2.7. Various animation programs and their limitations were 

discussed in this section. The main findings include lack of rigorous reference 

framework that can be followed to develop and design the animation programs and 

animation programs that are not accompanied by relevant pedagogical guidelines, 
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Research question 4: 

How can we develop a TLPAP framework for teaching and learning IPC? 
 

To answer the above research question, the objective was formulated as: To develop 

a TLPAP framework for teaching and learning IPC based on gaps identified in the 

literature review and by continually improving the framework based on the outcome of 

the action research cycles. The objective was carried out by initially outlining a 

theoretical framework relevant to TLPAP in Chapter 3 and subsequently a research 

plan (methodology) as discussed in Chapter 4. The overall research process followed 

an action research methodology. The study went through five action research cycles 

from 2019 to 2022 (discussed in Chapters 5, 6, 7 and 8). The development, refinement 

and finalisation of the solution (TLPAP) was done through reflection, observation and 

planning within every action cycle.  

 

Research question 5: 

How can we prove and realise the efficacy of the TLPAP framework? 
 

To answer the above research question, the objective was formulated as: To evaluate 

the efficacy of the TLPAP framework through teaching the actual SIPS by following 

the TLPAP framework. This objective was carried out by using the methodology in 

Chapter 4. The reports on the experiments are in Chapter 5 (action cycle 1), Chapter 

6 (action cycle 2), Chapter 7 (action cycle 3), Chapter 8 (action cycles 4 and 5). A 

SOLO-adapted evaluation was formulated in cycle 2 in order to have meaningful 

evaluation of the pre-teaching and post-teaching algorithms in both the control and 

experimental groups. Through the application of a SOLO-adapted evaluation in each 

cycle, I was able to continually improve the TLPAP.  The TLPAP framework was 

concluded and finalised in cycle 5 of the action research. 

 

9.4 Contributions 

This research has resulted in the following contributions.  

Contribution 1: Physical manipulatives 

The first contribution of this study is the use of physical manipulatives to emphasise 

the uses of assignment in programming. The IPC that can be taught with physical 
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manipulatives are limited to basic concepts like the uses of assignment which 

emphasise value storage/initialisation and copying of values from one variable to 

another (overwriting). Through pre-test and post-test methodology, the experimental 

group (using manipulatives to teach) performed better than the control group (no 

manipulatives used to teach). The full details of teaching and learning programming 

with manipulatives is presented in cycle 1 (Chapter 5). 

Contribution 2: Animation programs 

The second contribution of this study is the development of animation programs that 

are in two parts, namely introductory animation programs and animation programs 

with problem specifications. The introductory animation programs, as stressed earlier, 

are used to introduce a new concept. The animation programs with problem 

specifications are used after the presentation of introductory animation programs. The 

animation programs with problem specifications are problem-solving oriented. The 

design guidelines of all animation programs are based on principles of multimedia 

learning by Mayer (2005). 

 

We found that the learning gains of the physical manipulatives on assignment are 

similar to the learning gains of using animation programs. However, the advantages 

of animation programs are their online compatibility and accommodation for a large 

class for either contact or online presentation modes. The experiments with animation 

programs were initiated in cycle 2, then proceeded until the last cycle (cycle 5). Cycle 

2 (Chapter 6) experiments were performed in an online mode and cycle 3 (Chapter 7) 

to cycle 5 (Chapter 8) in contact mode.  

 

Contribution 3: Pedagogical guidelines  

The third contribution is the use of pedagogical guidelines in the TLPAP. One of the 

gaps identified in the literature (Chapter 2) is that existing animation programs or other 

multimedia-related teaching and learning tools were not coupled with relevant 

pedagogical guidelines. If the animation program for teaching and learning is without 

compatible guidelines, the assumption is that the users (mostly educators and 

students) will have to independently determine how to use them properly. This can 

cause animation programs to do more harm than the good purposes they are designed 
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for. In this study, the pedagogical guidelines were developed, substantiated and used 

along with the animation programs during action research cycles. The question of 

what, when or how to use animation programs for effective use in teaching and 

learning IPC have been addressed through prepared pedagogical guidelines. The 

pedagogical guidelines, in Chapter 7 section 7.4, form part of the final TLPAP along 

with the animation programs. 

 

Contribution 4: TLPAP framework and generic framework 

The fourth contribution of this study is the TLPAP framework and generic framework. 

Through SOLO-adapted evaluations, we were able to determine that the use of TLPAP 

has a positive effect on teaching and learning IPC for SIPS. The TLPAP framework is 

specifically intended to assist SIPS but can be used as a blanket teaching and learning 

approach for all students. The actual components that form the final TLPAP are 

referenced in Chapter 8, section 8.7. 

 

The second part of this contribution is a generic framework. The generic framework 

has been derived from the completed TLPAP framework and can also be referred to 

as a high-level view of the TLPAP. The main idea behind the generic framework was 

to make it adaptable on the development of animation programs for non-programming 

subjects. The generic framework contains two main recommendations, namely 

animation programs and pedagogical guidelines. There are four main guidelines for a 

generic framework. Firstly, the design of the animation programs must follow principles 

of multimedia learning by Mayer (2005). Secondly, the introductory animation 

programs must be designed for introducing a specific concept. Thirdly, the main 

animation programs must be designed to show the core or main aspects of the 

concepts and must contain real-world examples. Lastly, the informed pedagogical 

guidelines must be developed in accordance with the nature of the subject, animations 

and other relevant teaching and learning strategies.  

 

Contribution 5: Methodological contribution 

The fifth contribution of this study is methodological. The adaptation of SOLO to form 

a SOLO-adapted evaluation was instrumental in validating the efficacy of TLPAP. The 

learning transitions in the SOLO-adapted evaluation were given a suitable, brief 
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description for easier cross-referencing between algorithms and meaningful feedback 

that informed pedagogical adjustments. 

In summary, the SOLO-adapted evaluation is able to do the following: 

- To qualitatively assess the pre-teaching and post-teaching sections of the 

algorithm in the control and experimental group. As a result, it was possible to 

detect the effects of TLPAP in the experimental group compared to the control 

group. The SOLO-adapted evaluation can also be used by programming 

educators to monitor learning from one written algorithm to another. 

- To detect algorithm sections that have already been mastered through the 

R→R transition. This transition means already-improved, i.e., mastered before 

the teaching commenced. This can be a benefit for programming teachers to 

have informed and meaningful feedback on certain areas of the algorithm as it 

could further prompt some early interventions. 

- To detect algorithm sections that broadened the knowledge from one aspect to 

several aspects and if the students still fell short of mastering the relational 

stage. Such sections of the algorithms were detected through the U→M 

transitions which means Intermediate-improvement, P→U transition (lower-

level-improvement) and P→M transition (Intermediate-improvement+). 

- To note whether the algorithm section moved from bad to worse or showed 

patterns of deteriorating learning. This can be detected through the R→M, R→U 

or R→P transitions.  

- To detect whether the teaching intervention has resulted in the ultimate 

improvements was traced through the M→R, U→R or P→R transitions.  

- To note whether the teaching intervention had no effect at all before and after 

the teaching intervention. This was detected through the P→P, U→U or M→M 

transitions. Programming educators can use these transitions to note sections 

of the algorithm that are stagnant, meaning that they were neither improving 

nor deteriorating. 

 

Contribution 6: Theoretical contribution 

 A theoretical contribution in this study revolves around guidelines recommended for 

forming a teaching philosophy within the field of CS education, programming education 
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or when adopting TLPAP. I recommend that a relevant teaching philosophy be 

associated with the nature of programming (coding) or programming education. Since 

a teaching philosophy is a personal teaching and learning statement which differs from 

educator to educator, I am not prescribing a specific teaching philosophy but provide 

guidelines that can channel the formation of a teaching philosophy with the nature of 

programming education. There are two main aspects that can help to develop a 

teaching philosophy relevant for programming education. Firstly, a programming 

educator must view programming from computation as interaction, as supported by 

Stein (1998), rather than computation as calculations, and the teaching approach must 

promote relational understanding, as borrowed from Skemp’s (1976) theory on 

mathematics education. As emphasised in Chapter 3, section 3.6.3, the knowledge of 

those two theories can help programming educators formulate a fruitful teaching 

philosophy for the promotion of teaching and learning in the TLPAP or programming 

education in general. 

9.5 Validity, generalisation and critical reflection on the 

findings 

The animation programs in education can be a short-lived achievement, however 

incorporation of active learning and engagement can have a great impact on its 

effectiveness (Sorva, Karavirta & Malmi, 2013). In order to incorporate this, this study 

has relied on active related activities along with the use of animation programs. These 

active activities were drawn from the ideas of constructivism, conversational 

framework and principles of multimedia learning.  

This study has paved a way to revolutionise the use of animation programs for 

teaching and learning purposes. This has also demonstrated the best way possible to 

integrate pedagogical guidelines with animation programs for teaching and learning to 

program. At the end, the TLPAP was developed and validated through various cycles 

of an action research methodology. 

The validity of the findings in this can be attributed to its rigorous methodological 

approach which is SOLO-adapted evaluation. Through this methodology, it was 

possible to qualitatively filter the algorithm sections that were improving, deteriorating, 

not improving and already improved. The traditional assessment methods are based 
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on grading an isolated assessment where the results are only quantitative and do not 

possess meaningful interpretation. The major difference or advantage of SOLO-

adapted evaluation is its ability to provide meaningful transitional feedback between 

two assessments. The SOLO-adapted evaluation can also be adapted to evaluate 

three or more assessments. I personally recommend this SOLO-adapted evaluation 

to be applied or used in any study field to qualitatively assess or evaluate students’ 

answers. The SOLO-adapted evaluation can be reliably applied to any relevant field 

hence the conclusion of this study has made it possible to generalise or derive a 

generic framework based on the final TLPAP. The generic framework allows subjects 

like Mathematics, Science and Engineering to apply or reuse the SOLO-adapted 

evaluation to achieve similar outcomes as in programming education.  

The development of animation programs for teaching and learning purposes cannot 

be based on nothing or on random design. It is recommended to follow the principles 

of multimedia learning by Mayer (2005) to develop animation programs. The final 

TLPAP or generic framework recommend that the animation programs must be in two 

phases, that is the introductory animation programs and main animation programs. 

The idea behind the separation of the animation programs was realised at the end of 

the second cycle of our action research. The introductory animation programs 

demonstrate the basic principles of programming and the main animation programs 

demonstrate real world problem solving through programming. Similarly, when 

applying the generic framework in a non-programming environment like Mathematics 

literacy, the introductory animation can be the basic rules of the mathematical 

equations while the main animation program contains the real-life experimental 

problems. 

In the process of TLPAP development, there have been challenges and lessons 

learned. Firstly, the research was supposed to advocate the use physical 

manipulatives for teaching and learning the IPC. The nature of the action research 

methodology allowed me to reflect and plan into a different dimension (animation 

programs) of the research in the subsequent cycles.  In other words, the “vehicle” 

changed to a more convenient “vehicle”, but the trip and mission remained the same. 

In the second cycle of an action research, Covid19 restrictions made things difficult to 

have face to face experiments. As a result, cycle 2 was conducted online through 

Microsoft Teams. The Microsoft Teams experiments made me realised that the 



256 
 

animation programs are compatible with online presentation. The development of 

animation programs was the biggest challenge as I had to code an advanced program 

to depict the dynamics of introductory programming code. However, through 

dedication I was able to code and complete all the planned animation programs. The 

main agenda for future work remains the development of artificial intelligence methods 

to automatically generate a problem specification, program code and the applicable 

animation programs.  

Reflection is one of the main aspects of an action research methodology. As a result, 

reflections were done at the end of each action cycle and planning for the next cycles 

was also done based on the reflections. The main point behind the multiple reflections 

is a way to improve the teaching methods. At the end of cycle 1, then main reflection 

was a transition from physical manipulatives to virtual manipulatives. The reflections 

at the end of cycle 2 included the need for additional animation programs and SOLO-

adapted evaluation that need to be applied on the sections of the algorithms. In cycle 

5, the main reflection was to do more experiments to improve validity, the inclusion of 

Java code and animation pace button. The reflections at the end on cycle 4 minimal, 

as a result additional experiments were carried for the confirmation of the effectiveness 

of the TLPAP. Furthermore, the additional Java code on the animation program was 

included in some animation programs. This means such animation programs has an 

option to display the animation programs in C++ code or Java code. 

The overall reflections of this study can be summarised in two main printers, which is 

the uses of pedagogical guidelines and sample exercises in the animation programs. 

The uses of compatible pedagogical guidelines have been identified as a gap in this 

study and deemed as the crucial element of teaching and learning with animation 

programs in general. The pedagogical guidelines must be used along with the 

animation programs developed in this study, in order to realise the full benefits of 

TLPAP. These guidelines outline best practices for teaching and learning from body 

of knowledge that can be used along with the animation programs. In the case where 

the generic framework is adapted into a different field of study, pedagogical guidelines 

can be adapted accordingly to fit the nature of the study.  

The sample exercises incorporated in the main animation programs are important, 

therefore a selection of such examples is also important. Programming is used to solve 
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real-life problem, as a result the TLPAP used a compatible real-world problem 

specification that can be solved through an algorithm as a solution. The solution 

(algorithm) to the problem specification covered the overall aspects of the concept 

within the main animation programs. I recommend the practice of incorporating real-

life examples into the development of animation programs when adapting the generic 

framework proposed in this study into a different field. In this study, I developed one 

main animation program per concept, however two or more animation programs per 

concept can even be more effective as students are exposed to different problem 

specifications.  

9.6 Limitations 

The design of the animation programs was limited to the concepts offered in the 

introductory programming module at the university where the experiments took place. 

The TLPAP covers a computing education approach that advocates for objects later 

rather than objects early; therefore, there were no OOP (object-oriented programming) 

concepts. The number of students who participated per cycle was fewer than 

expected; hence the reliance on qualitative evaluation and multiple cycles. In the R→R 

(already-know) transition, we were not able to trace the transition back to the success 

of TLPAP because we were not in full control of the students outside TLPAP 

experimentation. 

9.7 Future work 

The TLPAP framework is a teaching and learning solution for SIPS. The framework is 

dynamic and animation-based, rendering it comparable with various teaching and 

learning platforms or LMS. The TLPAP framework was experimented through a 

multicast broadcast on multiple computers and presented on the online platforms (MS 

Teams). Therefore, the assumption is it would work in a contact session using a 

projector screen or any other online platform like Google Meet or Zoom. An additional 

platform for future use can include a compatible mobile application. 

The TLPAP framework has been experimented with in a higher education setup with 

the actual programming students on computing courses. Since there are schools that 

introduce and teach introductory programming from high school level, the framework 

can also be adopted and applied in such environments. 
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The pedagogical guidelines incorporated within TLPAP framework can be applied and 

tested with other animation programs for teaching and learning. Pedagogical 

guidelines for TLPAP are animation-based; as a result, they could be compatible with 

non-programming animation programs for teaching and learning.  

The framework has proven effective in the objects-later programming paradigm. As 

part of future work, the TLPAP can be adapted into all or challenging aspects of an 

OOP paradigm. Some of the potential OOP concepts include classes, inheritance, 

encapsulation and polymorphism. This will broaden the TLPAP for both programming 

students in the objects-early and objects-later paradigms. Furthermore, the framework 

can be adapted to other educational settings (non-programming environments like 

engineering, mathematical courses or any other science-related disciplines). 

Artificial intelligence tools like ChatGPT have the potential to impact in an academic 

sector (Lund & Wang, 2023).  As part of future work, the possibility of auto-generating 

a problem specification that requires a programming solution for teaching and learning 

purposes can be investigated. Furthermore, such auto-generated problem 

specifications can auto-generate a short program code and animation programs for 

teaching and learning purposes. This will expand the animation program by providing 

various problem specifications and other animations. 

 

9.8 Conclusion 

In this study, we developed a teaching and learning framework named TLPAP. The 

TLPAP framework could, however, potentially be suitable to assist struggling students 

in other topics/ fields as well. The TLPAP consists of animation programs and 

pedagogical guidelines. The animation programs cover IPC within the imperative 

programming paradigm (objects-later approach). The concepts include assignment, 

decisions, nested decisions, loops, nested loops, one-dimensional arrays, parallel 

arrays and functions. 

Through rigorous and repeated experiments, the TLPAP was thoroughly evaluated in 

an action research methodology (cycle 2 to cycle 5). The efficacy of the TLPAP was 

proven through a qualitative SOLO-adapted evaluation method which offered in-depth 

insight into dissected sections of the algorithms. The pre-test and post-test algorithms 

were written by both control and experimental groups. The control group was taught 
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through the traditional verbal teaching method (without TLPAP) and the experimental 

group was taught by following the TLPAP framework.  

Struggling students were recruited to test the efficacy of TLPAP. This was purposeful 

to validate the TLPAP framework with actual SIPS rather than non-struggling students. 

Through the pre-test and post-test with SOLO-adapted evaluation, it was possible to 

detect non-struggling students through patterns of algorithm sections that were correct 

before and after the intervention (through R→R transition). This further confirms the 

quality and validity of the SOLO-adapted evaluation method to the study. 

The SOLO-adapted evaluations showed that the use of TLPAP can enhance 

comprehension of SIPS as compared to traditional methods and other existing related 

solutions discussed in Chapter 2. The SOLO-adapted evaluations outcomes like M→R 

(improved), U→M (intermediate-improvement), U→R (improved+), R→M 

(deteriorated), M→M (stagnant-at-intermediate-level), U→U (stagnant-at-lower-level) 

and R→R (already-know) were major indicators in validating the efficacy of TLPAP. 

The animation programs with problem specifications use specific problems and 

animations which are designed for teaching and learning purposes.  The assumption 

is that SIPS should perform better or improve when given a different problem 

specification from the ones used in teaching and learning. To test this, the pre-teaching 

consisted of animation programs with certain problem specifications, then the post-

test consisting of different problem specifications, while the concept being taught 

between the pre-test and post-test remains the same. It was proven that SIPS can 

perform better in different, but similar problem specifications to solve a programming 

problem, as noted in the experimental group. 

A critical element in the TLPAP is the set of pedagogical guidelines. The pedagogical 

guidelines are compatible stages that have been substantiated and followed when 

using the designed animation programs. Animation programs are not isolated tools 

that can be used randomly or rely on an assumption of proper function; hence, the 

inclusion of these pedagogical guidelines.  

 

In the final stages of the study, a generic framework for teaching and learning was 

developed based on the final TLPAP. The generic framework (can referred to as high-

level view of the TLPAP framework) can be used to develop animation programs for 
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teaching and learning in subjects related to programming or other non-programming 

subjects. The main aspects of the generic framework are the design guidelines of the 

animations and the formation of relevant pedagogical guidelines. The belief is that the 

generic framework should be adaptable and convenient to adjust in different subject 

areas. Personally, I hope to see this framework evolve beyond the introductory 

programming education. 
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Appendix B: Evaluation sheets for decisions/nested 

decisions – Cycle 3 
 

Pair 1 (Pre_nested_if and Post_if_else) 

The evaluation outcome for the control group is in Table B.1 and for the experimental 

group in Table B.2. The content of Table B.3 is the evaluation matrix outcome of the 

control and the experimental group based on pair 1. Pair 1 represents the correct 

structure of the if-statement or nested if-statement. 

                                 Table B.1: Evaluation sheet - control group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre      ×     

Post      ×     

M Pre × × ×  ×  × ×  × 

Post   × ×    ×   

R Pre    ×     ×  

Post × ×   ×  ×  × × 

 
                              Table B.2: Evaluation sheet - experimental group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

P Pre            

Post            

U Pre           × 

Post            

M Pre ×  × ×  × ×  ×   

Post           × 

R Pre  ×   ×   ×  ×  

Post × × × × × × × × × ×  

  
Table B.3: Pair 1 matrix (Pre_nested_if and Post_if_else) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 10% 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 9.1% 20% 0 10% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 50% 54.5% 10% 36.4% 

 P U M R 
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Pair 2 (Pre_inner_if_AND and Post_if_AND) 

The evaluation outcome for the control group is in Table B.4 and for the experimental 

group in Table B.5. The content of Table B.6 is the evaluation matrix outcome of the 

control and the experimental group based on pair 2. Pair 2 refers to using the correct 

structure of the if-clause that has the “&&” operator or uses alternative method. 

Table B.4: Evaluation sheet - control group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre  ×   ×      

Post           

M Pre   × ×  × ×   × 

Post × × × ×   ×  × × 

R Pre ×       × ×  

Post     × ×  ×   

 

Table B.5: Evaluation sheet - experimental group- pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

P Pre            

Post            

U Pre            

Post            

M Pre  × ×  × ×   ×  × 

Post  ×      ×    

R Pre ×   ×   × ×  ×  

Post ×  × × × × ×  × × × 

 

            Table B.6: Pair 2 matrix (Pre_inner_if_AND and Post_if_AND) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 10% 0 40% 9.1% 20% 9.1% 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 10% 0 10% 45.5% 10% 36.4% 

 P U M R 
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Pair 3 (Pre_outer_if_content and Post_if_content) 

The evaluation outcome for the control group is in Table B.7 and for the experimental 

group in Table B.8. The content of Table B.9 is the evaluation matrix outcome of the 

control and the experimental group based on pair 3. Pair 3 means the students' 

capabilities of placing the right content in the block for when the if-statement evaluates 

to true. 

Table B.7: Evaluation sheet - control group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre     ×     × 

Post           

M Pre ×  × ×  ×  × ×  

Post ×   × × ×    × 

R Pre  ×     ×    

Post  × ×    × × ×  

 

Table B.8: Evaluation sheet - experimental group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

P Pre            

Post            

U Pre    ×    ×    

Post            

M Pre × ×   ×  ×   ×  

Post    ×       × 

R Pre   ×   ×   ×  × 

Post × × ×  × × × × × ×  

 

           Table B.9: Pair 3 matrix (Pre_outer_if_content and Post_if_content) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 20% 9% 30% 0% 0 9% 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 9% 30% 45.5% 20% 27.3% 

 P U M R 
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Pair 4 (Pre_inner_if_content and Post_if_content) 

The evaluation outcome for the control group is in Table B.10 and for the experimental 

group in Table B.11. The content of Table B.12 is the evaluation matrix outcome of the 

control and the experimental group based on pair 4. Pair 4 refers to the correct content 

in the block following the if-statement when it evaluates to true. 

Table B.10: Evaluation sheet - control group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre           

Post           

M Pre  ×  × × ×  × × × 

Post × ×    × ×  ×  

R Pre ×  ×    ×    

Post   × × ×   ×  × 

 

Table B.11: Evaluation sheet - experimental group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

P Pre            

Post            

U Pre       ×     

Post            

M Pre ×  × ×  ×  ×  × × 

Post     ×  ×     

R Pre  ×   ×    ×   

Post × × × ×  ×  × × × × 

 

           Table B.12: Pair 4 matrix (Pre_inner_if_content and Post_if_content) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 9% 30% 0 20% 9% 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 40% 63.6% 10% 18.2% 

 P U M R 
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Pair 5 (Pre_outer_else_content and Post_else_content) 

The evaluation outcome for the control group is in Table B.13 and for the experimental 

group in Table B.14. The content of Table B.15 is the evaluation matrix outcome of the 

control and the experimental group based on pair 5. Pair 5 is about the correct content 

in the else part of the if-statement. 

Table B.13: Evaluation sheet - control group - pair 5 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre ×    ×      

Post ×          

M Pre   × ×    ×   

Post  × ×  ×  ×   × 

R Pre  ×    × ×  × × 

Post    ×  ×  × ×  

 

Table B.14: Evaluation sheet - experimental group - pair 5 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

P Pre            

Post            

U Pre  ×      ×    

Post            

M Pre ×   ×  ×   ×  × 

Post  ×      ×    

R Pre   ×  ×  ×   ×  

Post ×  × × × × ×  × × × 

 

            Table B.15: Pair 5 matrix (Pre_outer_else_content and Post_else_content) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 10% 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 10% 18.2% 10% 0 30% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 20% 45.5% 20% 36.4% 

 P U M R 
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Pair 6 (Pre_inner_else_content and Post_else_content) 

The evaluation outcome for the control group is in Table B.16 and for the experimental 

group in Table B.17. The content of Table B.18 is the evaluation matrix outcome of the 

control and the experimental group based on pair 6. Pair 6 refers to the correct content 

of the else part of the if-statement (in this case an inner else part of the pre-teaching 

exercise). 

Table B.16: Evaluation sheet - control group - pair 6 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre  ×         

Post           

M Pre ×  ×   ×  × ×  

Post ×    × × × ×  × 

R Pre    × ×  ×   × 

Post  × × ×     ×  

 

Table B.17: Evaluation sheet - experimental group - pair 6 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

P Pre            

Post            

U Pre    ×       × 

Post            

M Pre  ×   ×   ×  ×  

Post      ×   ×   

R Pre ×  ×   × ×  ×   

Post × × × × ×  × ×  × × 

 

            Table B.18: Pair 6 matrix (Pre_inner_else_content and Post_else_content) 

        
P 

P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 30% 0 30% 18.2% 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 10% 18.2% 20% 36.4% 10% 27.3% 

 P U M R 
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Appendix C: Evaluation sheets for loops – Cycle 3 
 

Pair 1 (Pre_prompt and Post_prompt) 

The evaluation outcome for the control group is in Table C.1 and for the experimental 

group in Table C.2. The content of Table C.3 is the evaluation matrix outcome of the 

control and the experimental group based on pair 1. Pair 1 refers to the capability to 

prompt the values outside the loop. 

            Table C.1: Evaluation sheet - control group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre       ×   ×  ×    

Post       ×         

M Pre   × ×            

Post   ×       ×      

R Pre × ×   × ×  × ×  ×  × × × 

Post × ×  × × ×  × ×  × × × × × 

           Table C.2: Evaluation sheet - experimental group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre  ×     ×    ×     

Post                

M Pre     ×           

Post  ×   ×  ×    ×     

R Pre ×  × ×  ×  × × ×  × × × × 

Post ×  × ×  ×  × × ×  × × × × 

            

Table C.3: Pair 1 matrix (Pre_prompt and Post_prompt) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 6.7% 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 6.7% 20% 6.7% 6.7% 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 6..7% 0 6.7% 0 73.3% 80% 

 P U M R 
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Pair 2 (Pre_firstloop_structure and Post_loop_strucutre) 

The evaluation outcome for the control group is in Table C.4 and for the experimental 

group in Table C.5. The content of Table C.6 is the evaluation matrix outcome of the 

control and the experimental group based on pair 2. Pair 2 means the correct structure 

of the first loop (including the condition).  

           Table C.4: Evaluation sheet - control group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre  ×      ×  ×      

Post                

M Pre ×  × ×  × ×  ×  ×  × × × 

Post × × ×  × ×  × × × ×  × ×  

R Pre     ×       ×    

Post    ×   ×     ×   × 

 

           Table C.5: Evaluation sheet - experimental group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre ×   ×   × × ×   ×  ×  

Post                

M Pre  × ×  × ×    × ×  ×  × 

Post ×  × ×   × × ×  × ×  ×  

R Pre                

Post  ×   × ×    ×   ×  × 

           

  Table C.6: Pair 2 matrix (Pre_firstloop_structure and Post_loop_strucutre) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 20% 53.3% 46.7% 6.7% 6.7% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 20% 40% 6.7% 6.7% 

 P U M R 
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Pair 3 (Pre_firstloop_content and Post_loop_content) 

The evaluation outcome for the control group is in Table C.7 and for the experimental 

group in Table C.8. The content of Table C.9 is the evaluation matrix outcome of the 

control and the experimental group based on pair 3. Pair 3 means the first loop in the 

pre-teaching algorithm in relation to the loop in the post-teaching algorithm has the 

correct content. 

 

            Table C.7: Evaluation sheet - control group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre ×   ×        ×    

Post                

M Pre  ×   ×  × × × ×   × ×  

Post ×   × ×  ×  ×   ×    

R Pre   ×   ×     ×    × 

Post  × ×   ×  ×  × ×  × × × 

           

         Table C.8: Evaluation sheet - experimental group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre  ×  ×        ×    

Post                

M Pre ×  ×  × × × × × × ×  × × × 

Post  ×  ×   ×   ×  ×    

R Pre                

Post ×  ×  × ×  × ×  ×  × × × 

  

             Table C.9: Pair 3 matrix (Pre_firstloop_content and Post_loop_content) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 20% 20% 20% 13.3% 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 33.3% 66.7% 26.7% 0 

 P U M R 
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Pair 4 (Pre_secondloop_strucuture /Pre_secondloop_content and Post_display) 

The evaluation outcome for the control group is in Table C.10 and for the experimental 

group in Table C.11. The content of Table C.12 is the evaluation matrix outcome of 

the control and the experimental group based on pair 4. Pair 4 means that the output 

of the program is in the correct place. 

           Table C.10: Evaluation sheet - control group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre  × ×    ×      ×   

Post                

M Pre ×   × × ×  ×  ×  ×  × × 

Post × × × ×   × ×     × ×  

R Pre         ×  ×     

Post     × ×   × × × ×   × 

 

           Table C.11: Evaluation sheet - experimental group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre   ×  ×   ×  ×   ×   

Post                

M Pre  ×  ×  × ×  ×  × ×  × × 

Post   ×  ×   ×  ×   ×   

R Pre ×               

Post × ×  ×  × ×  ×  × ×  × × 

 

Table C.12: Pair 4 matrix (Pre_secondloop_strucuture / Pre_secondloop_content and 

Post_display) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 26.7% 33.3% 26.7% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 33.3% 60% 13.3% 6.7% 

 P U M R 
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Appendix D: Evaluation sheets for nested loops – Cycle 3 
 

Pair 1 (Pre_outer_loop_structure and Post_outer_loop_structure) 

The evaluation outcome for the control group is in Table D.1 and for the experimental 

group in Table D.2. The content of Table D.3 is the evaluation matrix outcome of the 

control and the experimental group based on pair 1. Pair 1 refers to the correct 

structure of the outer loop of the nested loop. 

           Table D.1: Evaluation sheet - control group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre                

Post                

M Pre  ×     ×  ×    ×   

Post  ×       ×    ×   

R Pre ×  × × × ×  ×  × × ×  × × 

Post ×  × × × × × ×  × × ×  × × 

 

           Table D.2: Evaluation sheet - experimental group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre    ×         ×   

Post                

M Pre                

Post    ×         ×   

R Pre × × ×  × × × × × × × ×  × × 

Post × × ×  × × × × × × × ×  × × 

             

Table D.3: Pair 1 matrix (Pre_outer_loop_structure and Post_outer_loop_structure) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 13.3% 20% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 6.5% 0 73.3% 86.7% 

 P U M R 
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Pair 2 (Pre_inner_loop_structure and Post_inner_loop_structure) 

The evaluation outcome for the control group is in Table D.4 and for the experimental 

group in Table D.5. The content of Table D.6 is the evaluation matrix outcome of the 

control and the experimental group based on pair 2. Pair 2 requires another loop 

inside the outer loop with the condition based on the variable of the outer loop or by 

using an alternative method.  

           Table D.4: Evaluation sheet - control group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre ×  ×  ×      ×     

Post                

M Pre  ×  ×  × × × × ×  × × × × 

Post × × × × ×  × ×  × × ×  × × 

R Pre                

Post      ×   ×    ×   

 

           Table D.5: Evaluation sheet - experimental group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre  × × × ×   × × ×   × ×  

Post                

M Pre ×     × ×    × ×   × 

Post  × × × ×   × × ×   × ×  

R Pre                

Post ×     × ×    × ×   × 

 

           Table D.6: Pair 2 matrix (Pre_inner_loop_structure and Post_inner_loop_structure) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 26.7% 60% 53.3% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 20% 40% 0 0 

 P U M R 
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Pair 3 (Pre_inner_loop_content and Post_inner_loop_content) 

The evaluation outcome for the control group is in Table D.7 and for the experimental 

group in Table D.8. The content of Table D.9 is the evaluation matrix outcome of the 

control and the experimental group based on pair 3. Pair 3 refers to the correct content 

of the inner loop. 

            Table D.7: Evaluation sheet - control group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre ×   ×    ×     ×   

Post                

M Pre  × ×  × × ×   × × ×  × × 

Post ×   ×  × × ×  ×   × ×  

R Pre         ×       

Post  × ×  ×    ×  × ×   × 

 

           Table D.8: Evaluation sheet - experimental group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre    ×  ×   ×    ×   

Post                

M Pre × × ×  ×  × ×  × ×   × × 

Post    ×  ×   ×    ×   

R Pre            ×    

Post × × ×  ×  × ×  × × ×  × × 

 

            Table D.9: Pair 3 matrix (Pre_inner_loop_content and Post_inner_loop_content) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 26.7% 13.3% 26.7% 6.5% 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 40% 66.7% 6.5% 0 

 P U M R 
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Pair 4 (Pre_outer_loop_content and Post_ outer_loop_content) 

The evaluation outcome for the control group is in Table D.10 and for the experimental 

group in Table D.11. The content of Table D.12 is the evaluation matrix outcome of 

the control and the experimental group based on pair 4. Pair 4 means the correct 

content of the outer loop (the code between the blocks). 

            Table D.10: Evaluation sheet - control group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre                

Post                

M Pre × × × × ×  × × × ×  × × ×  

Post ×  × × × × × × × ×  × × × × 

R Pre      ×     ×    × 

Post  ×         ×     

             
           Table D.11: Evaluation sheet - experimental group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre    ×   ×        × 

Post                

M Pre × × ×  × ×   × × × × × ×  

Post    ×   ×   ×  ×   × 

R Pre        ×        

Post × × ×  × ×  × ×  ×  × ×  

 

Table D.12: Pair 4 matrix (Pre_outer_loop_content and Post_ outer_loop_content) 

      
 

P 

P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 6.5% 20% 73% 13.3% 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 13.3% 60% 6.5% 6.5% 

 P U M R 
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Appendix E: Evaluation sheets for one-dimensional array – 

Cycle 3 
 

Pair 1 (Pre_array_initialised and Post_array_initialised) 

The evaluation outcome for the control group is in Table E.1 and for the experimental 

group in Table E.2. The content of Table E.3 is the evaluation matrix outcome of the 

control and the experimental group based on pair 1. Pair 1 is about the capability to 

initialise an array. 

Table E.1: Evaluation sheet - control group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre       ×    

Post           

M Pre ×       ×   

Post ×      ×    

R Pre  × × × × ×   × × 

Post  × × × × ×  × × × 
 

 

Table E.2: Evaluation sheet - experimental group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre           

Post           

M Pre  ×    ×     

Post           

R Pre ×  × × ×  × × × × 

Post × × × × × × × × × × 
 

 

            Table E.3: Pair 1 matrix (Pre_array_initialised and Post_array_initialised) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 10% 0 10% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 10% 20% 70% 80% 

 P U M R 
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Pair 2 (Pre_loop_structure and Post_loop_structure) 

The evaluation outcome for the control group is in Table E.4 and for the experimental 

group in Table E.5. The content of Table E.6 is the evaluation matrix outcome of the 

control and the experimental group based on pair 2. Pair 2 refers to the structure of 

the loop which is controlled by the length of the array. 

Table E.4: Evaluation sheet - control group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre           

Post           

M Pre  ×  ×   × ×  × 

Post       ×    

R Pre ×  ×  × ×   ×  

Post × × × × × ×  × × × 

 

Table E.5: Evaluation sheet - experimental group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre    ×  ×     

Post           

M Pre × × ×  ×  × × ×  

Post    ×  ×     

R Pre          × 

Post × × ×  ×  × × × × 

 

            Table E.6: Pair 2 matrix (Pre_loop_structure and Post_loop_structure) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 20% 10% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 40% 70% 50% 10% 

 P U M R 
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Pair 3 (Pre_if_condition and Post_ if_condition) 

The evaluation outcome for the control group is in Table E.7 and for the experimental 

group in Table E.8. The content of Table E.9 is the evaluation matrix outcome of the 

control and the experimental group based on pair 3. Pair 3 refers to the condition of 

the if-statement within the loop, which uses an array. 

Table E.7: Evaluation sheet - control group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre      ×  ×   

Post           

M Pre ×  × × ×  ×  × × 

Post      ×  × × × 

R Pre  ×         

Post × × × × ×  ×    

 

Table E.8: Evaluation sheet - experimental group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre       ×    

Post           

M Pre × × × ×  ×  × × × 

Post       ×    

R Pre     ×      

Post × × × × × ×  × × × 

 

            Table E.9: Pair 3 matrix (Pre_if_condition and Post_ if_condition) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 20% 10% (20%) 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 50% 80% 10% 10% 

 P U M R 
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Pair 4 (Pre_if_content and Post_ if_ content) 

The evaluation outcome for the control group is in Table E.10 and for the experimental 

group in Table E.11. The content of Table E.12 is the evaluation matrix outcome of the 

control and the experimental group based on pair 4. Pair 4 refers to the correct content 

of the if-statement. 

Table E.10: Evaluation sheet - control group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre        ×  × 

Post           

M Pre   ×  ×  ×    

Post           

R Pre × ×  ×  ×   ×  

Post × × × × × × × × × × 

 

Table E.11: Evaluation sheet - experimental group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre     ×   ×   

Post           

M Pre × × × ×  × ×  × × 

Post     ×   × ×  

R Pre           

Post × × × ×  × ×   × 

 

            Table E.12: Pair 4 matrix (Pre_if_content and Post_ if_ content) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 20% 20% 0 10% 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 30% 70% 50% 0 

 P U M R 
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Pair 5 (Pre_display and Post_display) 

The evaluation outcome for the control group is in Table E.13 and for the experimental 

group in Table E.14. The content of Table E.15 is the evaluation matrix outcome of the 

control and the experimental group based on pair 5. Pair 5 refers to the correct display 

at the correct place. 

Table E.13: Evaluation sheet - control group - pair 5 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre ×          

Post           

M Pre  × × × × × × × ×  

Post ×   ×  × ×    

R Pre          × 

Post  × ×  ×   × × × 

 

Table E.14: Evaluation sheet - experimental group - pair 5 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre           

Post           

M Pre × ×  × × × × × × × 

Post           

R Pre   ×        

Post × × × × × × × × × × 

 

            Table E.15: Pair 5 matrix (Pre_display and Post_display) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 10% 0 30% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 50% 90% 20% 0 

 P U M R 
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Appendix F: Evaluation sheets for parallel arrays – Cycle 3 
 

Pair 1 (Pre_array_initialised and Post_array_initialised) 

The evaluation outcome for the control group is in Table F.1 and for the experimental 

group in Table F.2. The content of Table F.3 is the evaluation matrix outcome of the 

control and the experimental group based on pair 1. Pair 1 is about the capability to 

initialise an array. 

Table F.1: Evaluation sheet - control group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre           

Post           

M Pre   ×        

Post           

R Pre × ×  × × × × × × × 

Post × × × × × × × × × × 

 

Table F.2: Evaluation sheet - experimental group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre     ×      

Post           

M Pre         ×  

Post     ×      

R Pre × × × ×  × × ×  × 

Post × × × ×  × × × × × 

 

            Table F.3: Pair 1 matrix (Pre_array_initialised and Post_array_initialised) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 10% 0 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 10% 10% 90% 80% 

 P U M R 
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Pair 2 (Pre_loop_structure and Post_loop_structure) 

The evaluation outcome for the control group is in Table F.4 and for the experimental 

group in Table F.5. The content of Table F.6 is the evaluation matrix outcome of the 

control and the experimental group based on pair 2. Pair 2 refers to the structure of 

the loop which is controlled by the length of the array. 

Table F.3: Evaluation sheet - control group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre      ×     

Post           

M Pre ×  ×  ×   × × × 

Post      ×    × 

R Pre  ×  ×   ×    

Post × × × × ×  × × ×  

 

Table F.4: Evaluation sheet - experimental group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre    ×  ×  ×   

Post           

M Pre × × ×  ×  ×  × × 

Post    ×    ×   

R Pre           

Post × × ×  × × ×  × × 

 

            Table F.6: Pair 2 matrix (Pre_loop_structure and Post_loop_structure) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 10% 20% 10% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 10% 50% 70% 30% 0 

 P U M R 
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Pair 3 (Pre_if_condition and Post_ if_condition) 

The evaluation outcome for the control group is in Table F.7 and for the experimental 

group in Table F.8. The content of Table F.9 is the evaluation matrix outcome of the 

control and the experimental group based on pair 3. Pair 3 refers to the condition of 

the if-statement within the loop, which uses an array. 

Table F.7: Evaluation sheet - control group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre ×  ×        

Post           

M Pre  ×  ×  ×  × × × 

Post × × ×     ×  × 

R Pre     ×  ×    

Post    × × × ×  ×  

 

Table F.8: Evaluation sheet - experimental group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre  ×     ×    

Post           

M Pre ×  ×  × ×  × × × 

Post           

R Pre    ×       

Post × × × × × × × × × × 

 

           Table F.9: Pair 3 matrix (Pre_if_condition and Post_ if_condition) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 20% 0 30% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 20% 30% 70% 20% 10% 

 P U M R 
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Pair 4 (Pre_if_content and Post_ if_ content) 

The evaluation outcome for the control group is in Table F.10 and for the experimental 

group in Table F.11. The content of Table F.12 is the evaluation matrix outcome of the 

control and the experimental group based on pair 4. Pair 4 refers to the correct content 

of the if-statement. 

Table F.10: Evaluation sheet - control group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre   ×       × 

Post           

M Pre × ×   ×  ×  ×  

Post   ×       × 

R Pre    ×  ×  ×   

Post × ×  × × × × × ×  

 

Table F.11: Evaluation sheet - experimental group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre  ×   × ×     

Post           

M Pre ×  × ×   × × × × 

Post  ×    ×     

R Pre           

Post ×  × × ×  × × × × 

 

            Table F.12: Pair 4 matrix (Pre_if_content and Post_ if_ content) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 10% 20% 10% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 10% 50% 70% 30% 0 

 P U M R 
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Pair 5 (Pre_display and Post_display) 

The evaluation outcome for the control group is in Table F.13 and for the experimental 

group in Table F.14. The content of Table F.15 is the evaluation matrix outcome of the 

control and the experimental group based on pair 5. Pair 5 refers to the correct display 

at the correct place. 

Table F.13: Evaluation sheet - control group - pair 5 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre ×          

Post           

M Pre  × ×  × × ×  × × 

Post × ×        × 

R Pre    ×    ×   

Post   × × × × × × ×  

 

Table F.14: Evaluation sheet - experimental group - pair 5 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre       ×    

Post           

M Pre × × × × × ×  × × × 

Post       ×    

R Pre           

Post × × × × × ×  × × × 

 

            Table F.15: Pair 5 matrix (Pre_display and Post_display) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 10% 10% 20% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 50% 90% 20 0 

 P U M R 
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Appendix G: Evaluation sheets for functions – Cycle 3 
 

Pair 1 (Pre_func_call_return and Post_func_call_return) 

The evaluation outcome for the control group is in Table G.1 and for the experimental 

group in Table G.2. The content of Table G.3 is the evaluation matrix outcome of the 

control and the experimental group based on pair 1. Pair 1 refers to the capability to 

call a function that returns a value. 

   Table G.1: Evaluation sheet - control group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 

P Pre                  

Post                  

U Pre ×                 

Post                  

M Pre  ×  × × × ×   × ×  ×  ×  × 

Post ×   ×  ×  ×  ×  ×  ×  × × 

R Pre   ×     × ×   ×  ×  ×  

Post  × ×  ×  ×  ×  ×  ×  ×   

 

            Table G.2: Evaluation sheet - experimental group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre ×  ×  ×    ×   ×   × 

Post                

M Pre  ×  ×  × × ×  × ×  × ×  

Post   ×  ×       ×   × 

R Pre                

Post × ×  ×  × × × × × ×  × ×  

 

           Table G.3: Pair 1 matrix (Pre_func_call_return and Post_func_call_return) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 6.7% (3.5% 23.5% 0 23.5% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 13.3% 35.3% 60% 11.8% 0 

 P U M R 
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Pair 2 (Pre_func_call_void and Post_func_call_void) 

The evaluation outcome for the control group is in Table G.4 and for the experimental 

group in Table G.5. The content of Table G.6 is the evaluation matrix outcome of the 

control and the experimental group based on pair 2. Pair 2 refers to the capability to 

call a function that does not return a value (function of a type void). 

   Table G.4: Evaluation sheet - control group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 

P Pre                  

Post                  

U Pre  ×  ×      ×     ×   

Post                  

M Pre ×  ×  × × × ×    ×  ×  × × 

Post × × × ×  × × ×  ×  ×  × × ×  

R Pre           ×  ×     

Post     ×      ×  ×    × 

 

            Table G.5: Evaluation sheet - experimental group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre ×       ×        

Post                

M Pre  × × × × × ×  × × × × × × × 

Post ×    ×   ×    ×    

R Pre                

Post  × × ×  × ×  × × ×  × × × 

 

            Table G.6: Pair 2 matrix (Pre_func_call_void and Post_func_call_void) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 (5.9%) 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 23.3% 13.3% 47.1% 13.3% 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 11.8% 73.3% 11.8% 0 

 P U M R 
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Pair 3 (Pre_func_header_return and Post_func_header_return) 

The evaluation outcome for the control group is in Table G.7 and for the experimental 

group in Table G.8. The content of Table G.9 is the evaluation matrix outcome of the 

control and the experimental group based on pair 3. Pair 3 refers to the capability to 

construct a function header that returns a value with a relevant return type. 

    Table G.7: Evaluation sheet - control group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 

P Pre                  

Post                  

U Pre   ×    ×    ×      × 

Post                  

M Pre × ×   × ×   × ×   ×  ×   

Post   ×  ×  ×  ×  ×      × 

R Pre    ×    ×    ×  ×  ×  

Post × ×  ×  ×  ×  ×  × × × × ×  

 

             Table G.8: Evaluation sheet - experimental group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre  ×    ×  × ×   ×  ×  

Post                

M Pre ×  × × ×  ×   × ×  ×  × 

Post  ×    ×  × ×   ×  ×  

R Pre                

Post ×  × × ×  ×   × ×  ×  × 

 

Table G.9: Pair 3 matrix (Pre_func_header_return and Post_func_header_return) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 23.5% 40% 11.8% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 35.3% 60% 29.4% 0 

 P U M R 
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Pair 4 (Pre_func_return_content and Post_func_return_content) 

The evaluation outcome for the control group is in Table G.10 and for the experimental 

group in Table G.11. The content of Table G.12 is the evaluation matrix outcome of 

the control and the experimental group based on pair 4.  Pair 4 refers to the capability 

to construct the correct content in a function that returns a value. 

   Table G.10: Evaluation sheet - control group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 

P Pre                  

Post                  

U Pre     × ×     ×     ×  

Post                  

M Pre × × ×    × × ×   × × × ×  × 

Post  × ×  × × ×  ×  ×  × ×  ×  

R Pre    ×      ×        

Post ×   ×    ×  ×  ×   ×  × 

 

              Table G.11: Evaluation sheet - experimental group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre    ×  ×    ×     × 

Post                

M Pre × × ×  ×  × × ×  × × × ×  

Post    ×      ×   ×  × 

R Pre                

Post × × ×  × × × × ×  × ×  ×  

 

Table G.12: Pair 4 matrix (Pre_func_return_content and Post_func_return_content) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 23.5% 20% 35.3% 6.7% 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 6.7% 29.4% 66.7% 0 0 

 P U M R 
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Pair 5 (Pre_func_header_void and Post_func_header_void) 

The evaluation outcome for the control group is in Table G.13 and for the experimental 

group in Table G.14. The content of Table G.15 is the evaluation matrix outcome of 

the control and the experimental group based on pair 5. Pair 5 refers to the capability 

to construct a function header of a type void that does not return a value. 

   Table G.13: Evaluation sheet - control group - pair 5 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 

P Pre                  

Post                  

U Pre   ×  ×      × ×  ×   × 

Post   ×        ×       

M Pre × ×    × ×  ×      × ×  

Post  ×   ×  ×  ×   ×  × ×  × 

R Pre    ×    ×  ×   ×     

Post ×   ×  ×  ×  ×   ×   ×  

 

            Table G.14: Evaluation sheet - experimental group - pair 5 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre  × × ×   ×   ×  ×   × 

Post     ×           

M Pre ×     ×  × ×  ×  × ×  

Post  × × ×   ×  × ×  ×   × 

R Pre                

Post ×    × ×  ×   ×  × ×  

 

Table G.15: Pair 5 matrix (Pre_func_header_void and Post_func_header_void) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 11.8% 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 23.5% 40% 23.5% 6.7% 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 6.7% 11.8% 40% 23.5% 0 

 P U M R 
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Pair 6 (Pre_func_void_content and Post_func_void_content) 

The evaluation outcome for the control group is in Table G.16 and for the experimental 

group in Table G.17. The content of Table G.18 is the evaluation matrix outcome of 

the control and the experimental group based on pair 6. Pair 6 refers to the capability 

to provide the correct content in a function that does not return a value. 

   Table G.16: Evaluation sheet - control group - pair 6 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 

P Pre                  

Post                  

U Pre ×          ×       

Post                  

M Pre  × × ×  ×  ×  ×  × × × × × × 

Post × ×  ×  ×    × ×   ×  ×  

R Pre     ×  ×  ×         

Post   ×  ×  × × ×   × ×  ×  × 

 

            Table G.17: Evaluation sheet - experimental group - pair 6 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 

P Pre                

Post                

U Pre ×   ×  ×     ×     

Post                

M Pre  × ×  ×  × × × ×  × × × × 

Post ×   ×  ×     ×     

R Pre                

Post  × ×  ×  × × × ×  × × × × 

 

Table G.18: Pair 6 matrix (Pre_func_void_content and Post_func_void_content) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 11.8% 26.7% 35.3% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 35.3% 73.3% 0 0 

 P U M R 
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Appendix H: Evaluation sheets for decisions/nested 

decisions – Cycle 4 
 

Pair 1 (Pre_nested_if and Post_nested_if) 

The evaluation outcome for the control group is in Table H.1 and for the experimental 

group in Table H.2. The content of Table H.3 is the evaluation matrix outcome of the 

control and the experimental group based on pair 1. Pair 1 refers to the correct 

structure of the nested if-statement. 

                          Table H.1: Evaluation sheet - control group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

P Pre             

Post             

U Pre        ×    × 

Post             

M Pre × ×  × ×    × ×   

Post  ×     × × ×   × 

R Pre   ×   × ×    ×  

Post ×  × × × ×    × ×  

                      

         Table H.2: Evaluation sheet - experimental group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 

P Pre              

Post              

U Pre ×   ×  ×   ×     

Post              

M Pre  × ×  ×  × ×  × × × × 

Post ×   ×  ×  × ×   ×  

R Pre              

Post  × ×  ×  ×   × ×  × 

 

            Table H.3: Pair 1 matrix (Pre_nested_if and Post_nested_if) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 16.7% 30.8% 16.7% 15.4% 8.3% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 33.3% 53.8% 25% 0 

 P U M R 
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Pair 2 (Pre_inner_if_AND and Post_if_AND) 

The evaluation outcome for the control group is in Table H.4 and for the experimental 

group in Table H.5. The content of Table H.6 is the evaluation matrix outcome of the 

control and the experimental group based on pair 2. Pair 2 refers to the correct 

structure of the if-clause using the "&&" operator or using an alternative method. 

                          Table H.4: Evaluation sheet - control group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

P Pre             

Post             

U Pre ×          ×  

Post             

M Pre  ×  ×  × ×  × ×  × 

Post × ×     ×   × × × 

R Pre   ×  ×   ×     

Post   × × × ×  × ×    

 

                      Table H.5: Evaluation sheet - experimental group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 

P Pre              

Post              

U Pre   ×    ×      × 

Post              

M Pre × ×  × × ×   ×  × ×  

Post   ×    ×      × 

R Pre        ×  ×    

Post × ×  × × ×  × × × × ×  

 

            Table H.6: Pair 2 matrix (Pre_inner_if_AND and Post_if_AND) 

        
P 

P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 16.7% 23.1% 33.3% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 25% 61.5% 25% 15.4% 

 P U M R 
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Pair 3 (Pre_outer_if_OR and Post_if_OR) 

The evaluation outcome for the control group is in Table H.7 and for the experimental 

group in Table H.8. The content of Table H.9 is the evaluation matrix outcome of the 

control and the experimental group based on pair 3. Pair 3 means the students' ability 

to use the correct format of comparison in the if-statement with the || operator.  

                          Table H.7: Evaluation sheet - control group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

P Pre             

Post             

U Pre × ×   × ×   ×  ×  

Post ×     ×       

M Pre    ×    ×    × 

Post  ×   ×    ×  ×  

R Pre   ×    ×   ×   

Post   × ×   × ×  ×  × 

 

                     Table H.8: Evaluation sheet - experimental group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 

P Pre              

Post              

U Pre    ×          

Post              

M Pre ×  ×  × × × × × × × × × 

Post    ×     ×   ×  

R Pre  ×            

Post × × ×  × × × ×  × ×  × 

 

            Table H.9: Pair 3 matrix (Pre_outer_if_OR and Post_if_OR) 

         
P 

P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 16.7% 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 33.3% 7.7% 0 15.4% 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 25% 69.2% 25% 7.7% 

 P U M R 
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Pair 4 (Pre_inner_if_content and Post _if_OR_content) 

The evaluation outcome for the control group is in Table H.10 and for the experimental 

group in Table H.11. The content of Table H.12 is the evaluation matrix outcome of 

the control and the experimental group based on pair 4. Pair 4 refers to the correct 

content in the if-statement (the code between the blocks). 

                          Table H.10: Evaluation sheet - control group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

P Pre             

Post             

U Pre × ×  × × ×   ×  ×  

Post × ×    ×   ×    

M Pre   ×    × ×  ×  × 

Post    ×       ×  

R Pre             

Post   ×  ×  × ×  ×  × 

 

                     Table H.11: Evaluation sheet - experimental group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 

P Pre              

Post              

U Pre  ×    ×    ×  ×  

Post              

M Pre ×  × × ×  × × ×  ×  × 

Post  × ×   ×    ×  ×  

R Pre              

Post ×   × ×  × × ×  ×  × 

 

            Table H.12: Pair 4 matrix (Pre_inner_if_content and Post _if_OR_content) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 16.7% 30.8% 33.3% 7.7% 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 8.3% 0 41.7% 61.5% 0 0 

 P U M R 
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Pair 5 (Pre_outer_else_content and Post_else_content) 

The evaluation outcome for the control group is in Table H.13 and for the experimental 

group in Table H.14. The content of Table H.15 is the evaluation matrix outcome of 

the control and the experimental group based on pair 5. Pair 5 is about comparing 

whether the content of the outer else part of the if-statement is correct.  

                           Table H.13: Evaluation sheet - control group - pair 5 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

P Pre             

Post             

U Pre ×    ×     × ×  

Post             

M Pre   × ×   × × ×   × 

Post ×  ×  ×  ×  × × ×  

R Pre  ×    ×       

Post  ×  ×  ×  ×    × 

 

                       Table H.14: Evaluation sheet - experimental group - pair 5 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 

P Pre              

Post              

U Pre  ×  ×     ×    × 

Post              

M Pre ×  ×  × × × ×  × × ×  

Post  ×  × ×    ×    × 

R Pre              

Post ×  ×   × × ×  × × ×  

 
 

             Table H.15: Pair 5 matrix (Pre_outer_else_content and Post_else_content) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 33.3% 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 30.8% 25% 7.7% 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 25% 61.5% 16.7% 0 

 P U M R 
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Pair 6 (Pre_inner_else_content and Post_else_content) 

The evaluation outcome for the control group is in Table H.16 and for the experimental 

group in Table H.17. The content of Table H.18 is the evaluation matrix outcome of 

the control and the experimental group based on pair 6. Pair 6 is about comparing 

whether the content of the inner else part of the if-statement is correct or not.  

                           Table H.16: Evaluation sheet - control group - pair 6 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

P Pre             

Post             

U Pre    ×     ×  ×  

Post              

M Pre ×  ×  × × × ×  ×  × 

Post × ×  ×  ×   × × × × 

R Pre  ×           

Post   ×  ×  × ×     

 

                        Table H.17: Evaluation sheet - experimental group - pair 6 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 

P Pre              

Post              

U Pre ×  ×       ×    

Post              

M Pre  ×  × × × × × ×  × × × 

Post   ×    ×       

R Pre              

Post × ×  × × ×  × × × × × × 

 

            Table H.18: Pair 6 matrix (Pre_inner_else_content and Post_else_content) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0   0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 25% 7.7%  33.3% 7.7% 8.3% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 15.4% 33.3% 69.2% 0 7.7% 

 P U M R 
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Appendix I: Evaluation sheets for decisions / loops – Cycle 

4 
 

Pair 1 matrix (Pre_loop and Post_loop) 

The evaluation outcome for the control group is in Table I.1 and for the experimental 

group in Table I.2. The content of Table I.3 is the evaluation matrix outcome of the 

control and the experimental group based on pair 1. Pair 1 refers to the correct 

structure of the loop.  

                  Table I.1: Evaluation sheet - control group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 

P Pre               

Post               

U Pre ×           ×   

Post               

M Pre   × ×  ×  ×   ×  × × 

Post ×   ×   ×  ×   ×   

R Pre  ×   ×  ×  × ×     

Post  × ×  × ×  ×  × ×  × × 

 
                  Table I.2: Evaluation sheet - experimental group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 

P Pre               

Post               

U Pre   ×          × × 

Post               

M Pre × ×  ×  × × ×  ×  ×   

Post   ×          × × 

R Pre     ×    ×  ×    

Post × ×  × × × × × × × × ×   

 

    Table I.3: Pair 1 matrix (Pre_loop and Post_loop) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 14.3% 21.4% 7.1% 0 14.3% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 42.9% 57.1% 21.4% 21.4% 

 P U M R 
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Pair 2 (Pre_loop_content and Post_loop_content) 

The evaluation outcome for the control group is in Table I.4 and for the experimental 

group in Table I.5. The content of Table I.6 is the evaluation matrix outcome of the 

control and the experimental group based on pair 2. Pair 2 means the general content 

of the first loop (the code between the blocks). 

                  Table I.4: Evaluation sheet - control group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 

P Pre               

Post               

U Pre  ×  ×   ×   ×  × ×  

Post               

M Pre ×  ×  × ×  × ×  ×    

Post × ×  × ×  ×  × ×  × ×  

R Pre              × 

Post   ×   ×  ×   ×   × 

 

                  Table I.5: Evaluation sheet - experimental group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 

P Pre               

Post               

U Pre     ×   × ×      

Post               

M Pre × × × ×  × ×   × × ×  × 

Post     ×   ×       

R Pre             ×  

Post × × × ×  × ×  × × × × × × 

 

             Table I.6: Pair 2 matrix (Pre_loop_content and Post_loop_content) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 42.9% 14.3% 21.4% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 7.1% 28.6% 71.4% 7.1% 7.1% 

 P U M R 
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Pair 3 (Pre_if_OR and Post_if_OR) 

The evaluation outcome for the control group is in Table I.7 and for the experimental 

group in Table I.8. The content of Table I.9 is the evaluation matrix outcome of the 

control and the experimental group based on pair 3. Pair 3 refers to the correct format 

of the condition in an if-statement using the || operator. 

                  Table I.7: Evaluation sheet - control group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 

P Pre               

Post               

U Pre   ×     ×       

Post               

M Pre ×    × × ×  × ×   × × 

Post × × × ×  × × × ×   × × × 

R Pre  ×  ×       × ×   

Post     ×     × ×    

 

                  Table I.8: Evaluation sheet - experimental group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 

P Pre               

Post               

U Pre  ×  × ×      ×   × 

Post               

M Pre   ×   × × × × ×  × ×  

Post  ×  × × ×     ×   × 

R Pre ×              

Post ×  ×    × × × ×  × ×  

 

             Table I.9: Pair 3 matrix (Pre_if_OR and Post_if_OR) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 14.3% 35.7% 42.9% 7.1% 21.4% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 14.3% 50% 7.1% 7.1% 

 P U M R 
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Pair 4 (Pre_if_OR_content and Post_if_OR_content) 

The evaluation outcome for the control group is in Table I.10 and for the experimental 

group in Table I.11. The content of Table I.12 is the evaluation matrix outcome of the 

control and the experimental group based on pair 4. Pair 4 refers to the correct content 

of the if-statement. 

                  Table I.10: Evaluation sheet - control group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 

P Pre               

Post               

U Pre          ×     

Post               

M Pre × × × × × × × × ×    ×  

Post   ×    ×   ×    × 

R Pre           × ×  × 

Post × ×  × × ×  × ×  × × ×  

 

                   Table I.11: Evaluation sheet - experimental group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 

P Pre               

Post               

U Pre      ×         

Post               

M Pre × × × × ×  × × × ×  × × × 

Post      ×         

R Pre           ×    

Post × × × × ×  × × × × × × × × 

 

             Table I.12: Pair 4 matrix (Pre_if_OR_content and Post_if_OR_content) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 7.1% 7.1% 14.3% 0 7.1% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 57.1% 85.7% 14.3% 7.1% 

 P U M R 
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Pair 5 (Pre_if_OR_2 and Post_if_OR) 

The evaluation outcome for the control group is in Table I.13 and for the experimental 

group in Table I.14. The content of Table I.15 is the evaluation matrix outcome of the 

control and the experimental group based on pair 5. Pair 5 means the correct format 

of the condition in the second if-statement using the || operator. 

                  Table I.13: Evaluation sheet - control group - pair 5 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 

P Pre               

Post               

U Pre      ×    × ×  ×  

Post            ×   

M Pre ×  × × ×  ×  ×   ×  × 

Post  × × ×  × ×  × × ×  ×  

R Pre  ×      ×       

Post ×    ×   ×      × 

 

                  Table I.14: Evaluation sheet - experimental group - pair 5 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 

P Pre               

Post               

U Pre  × ×   ×   ×     × 

Post               

M Pre ×   × ×  × ×  × × × ×  

Post  × × ×  ×   ×     × 

R Pre               

Post ×    ×  × ×  × × × ×  

 

             Table I.15: Pair 5 matrix (Pre_if_OR_2 and Post_if_OR) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 7.1% 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0  28.6% 35.7% 28.6% 7.1% 7.1% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 21.4% 57.1% 7.1% 0 

 P U M R 
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Pair 6 (Pre_if_OR_2_content and Post_if_OR_content) 

The evaluation outcome for the control group is in Table I.16 and for the experimental 

group in Table I.17. The content of Table I.18 is the evaluation matrix outcome of the 

control and the experimental group based on pair 6. Pair 6 refers to the correct content 

of the if-statement. 

 

                   Table I.16: Evaluation sheet - control group - pair 6 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 

P Pre               

Post               

U Pre × ×  ×    ×    ×  × 

Post               

M Pre   ×  × × ×  × × ×  ×  

Post × ×    ×  ×       

R Pre               

Post   × × ×  ×  × × × × × × 

 

                   Table I.17: Evaluation sheet - experimental group - pair 6 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 

P Pre               

Post               

U Pre     ×       ×   

Post               

M Pre × × × ×  × × × × × ×  × × 

Post            ×   

R Pre               

Post × × × × × × × × × × ×  × × 

 

Table I.18: Pair 6 matrix (Pre_if_OR_2_content and Post_if_OR_content) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 21.4% 7.1% 7.1% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 21.4% 7.1% 50% 85.7% 0 0 

 P U M R 
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Pair 7 (Pre_else and Post_else) 

The evaluation outcome for the control group is in Table I.19 and for the experimental 

group in Table I.20. The content of Table I.21 is the evaluation matrix outcome of the 

control and the experimental group based on pair 7. Pair 7 means the correct content 

of the else part of the if-statement.  

                    Table I.19: Evaluation sheet - control group - pair 7 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 

P Pre               

Post               

U Pre    ×   ×  × × ×  ×  

Post    ×     ×  ×    

M Pre ×  ×  ×   ×    ×   

Post × × ×   × ×   ×  × ×  

R Pre  ×    ×        × 

Post     ×   ×      × 

 

                   Table I.20: Evaluation sheet - experimental group - pair 7 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 

P Pre               

Post               

U Pre   ×  × ×  ×   ×   × 

Post               

M Pre × ×  ×   ×  × ×  × ×  

Post   ×   ×  ×  ×    × 

R Pre               

Post × ×  × ×  ×  ×  × × ×  

 

             Table I.21: Pair 7 matrix (Pre_else and Post_else) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 21.4% 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 21.4% 28.6% 21.4% 7.1% 14.3% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 14.3% 14.3% 50% 7.1% 0 

 P U M R 
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Pair 8 (Pre_display and Post_display) 

The evaluation outcome for the control group is in Table I.22 and for the experimental 

group in Table I.23. The content of Table I.24 is the evaluation matrix outcome of the 

control and the experimental group based on pair 8. Pair 8 means students 

demonstrate the ability to display the correct output at the right place in the code. 

 

                  Table I.22: Evaluation sheet - control group - pair 8 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 

P Pre               

Post               

U Pre  ×   ×      ×    

Post     ×          

M Pre   ×   × × × × ×  ×  × 

Post  ×     ×  ×  × ×   

R Pre ×   ×         ×  

Post ×  × ×  ×  ×  ×   × × 

 

                  Table I.23: Evaluation sheet - experimental group - pair 8 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 

P Pre               

Post               

U Pre   ×     ×    ×   

Post               

M Pre × ×  ×  × ×  × × ×  ×  

Post        ×    ×   

R Pre     ×         × 

Post × × × × × × ×  × × ×  × × 

 

             Table I.24: Pair 8 matrix (Pre_display and Post_display) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0  7.1% 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 14.3% 14.3% 21.4% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 7.1% 35.7% 62.3% 21.4% 14.3% 

 P U M R 
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Appendix J: Evaluation sheets for parallel arrays – Cycle 4 
  

Pair 1 (Pre_array_initialised and Post_array_initialised) 

The evaluation outcome for the control group is in Table J.1 and for the experimental 

group in Table J.2. The content of Table J.3 is the evaluation matrix outcome of the 

control and the experimental group based on pair 1. Pair 1 refers to the capability to 

initialise parallel arrays.  

                                Table J.1: Evaluation sheet - control group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

P Pre            

Post            

U Pre        ×    

Post            

M Pre ×    ×  ×     

Post ×    ×  × ×    

R Pre  × × ×  ×   × × × 

Post  × × ×  ×   × × × 

 
Table J.2: Evaluation sheet - experimental group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

P Pre             

Post             

U Pre     ×  ×      

Post             

M Pre   ×         × 

Post             

R Pre × ×  ×  ×  × × × ×  

Post × × × × × × × × × × × × 

 

             Table J.3: Pair 1 matrix (Pre_array_initialised and Post_array_initialised) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 9.1% 0 27.3% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 16.7% 0 16.7% 63.6% 66.7% 

 P U M R 
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Pair 2 (Pre_loop_structure and Post_loop_structure) 

The evaluation outcome for the control group is in Table J.4 and for the experimental 

group in Table J.5. The content of Table J.6 is the evaluation matrix outcome of the 

control and the experimental group based on pair 2. Pair 2 refers to the structure of 

the loop which is controlled by the length of the array as a delimiter.  

Table J.4: Evaluation sheet - control group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

P Pre            

Post            

U Pre            

Post            

M Pre ×  × ×    ×  ×  

Post ×   ×    ×    

R Pre  ×   × × ×  ×  × 

Post  × ×  × × ×  × × × 

 

Table J.5: Evaluation sheet - experimental group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

P Pre             

Post             

U Pre      ×   ×    

Post             

M Pre ×  × ×      × × × 

Post      ×   ×    

R Pre  ×   ×  × ×     

Post × × × × ×  × ×  × × × 

 

Table J.6: Pair 2 matrix (Pre_loop_structure and Post_loop_structure) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 16.7% 27.3% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 18.2% 50% 63.6% 33.3% 

 P U M R 
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Pair 3 matrix (Pre_if_condition and Post_ if_condition) 

The evaluation outcome for the control group is in Table J.7 and for the experimental 

group in Table J.8. The content of Table J.9 is the evaluation matrix outcome of the 

control and the experimental group based on pair 3. Pair 3 refers to the structure of 

condition in the if-statement which must make use of the parallel arrays.  

Table J.7: Evaluation sheet - control group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

P Pre            

Post            

U Pre  ×   ×       

Post            

M Pre ×  ×    × × × ×  

Post × × ×  ×  × × × ×  

R Pre    ×  ×     × 

Post    ×  ×     × 

 

Table J.8: Evaluation sheet - experimental group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

P Pre             

Post             

U Pre      ×       

Post             

M Pre ×   ×   ×    ×  

Post      ×       

R Pre  × ×  ×   × × ×  × 

Post × × × × ×  × × × × × × 

 

            Table J.9: Pair 3 matrix (Pre_if_condition and Post_ if_condition) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 16.7% 54.5% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 18.2% 33.3% 27.3% 58.3% 

 P U M R 

 

 



327 
 

Pair 4 (Pre_if_content and Post_ if_ content) 

The evaluation outcome for the control group is in Table J.10 and for the experimental 

group in Table J.11. The content of Table J.12 is the evaluation matrix outcome of the 

control and the experimental group based on pair 4. Pair 4 refers to the content of the 

if-statement, i.e., the block of code to be executed should the condition in the if-

statement evaluate to true.   

Table J.10: Evaluation sheet - control group - pair 4 

   s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

P Pre            

Post            

U Pre ×           

Post            

M Pre  ×  × ×  × ×  × × 

Post  ×  ×   ×    × 

R Pre   ×      ×   

Post ×  ×  ×   × × ×  

 

Table J.11: Evaluation sheet - experimental group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

P Pre             

Post             

U Pre        ×    × 

Post             

M Pre × × × ×  ×   × × ×  

Post   ×     ×    × 

R Pre     ×  ×      

Post × ×  × × × ×  × × ×  

 

              Table J.12: Pair 4 matrix (Pre_if_content and Post_ if_ content) 

 P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 9.1% 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 9.1% 16.7% 36.4% 8.3% 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 27.3% 58.3% 18.2% 16.7% 

 P U M R 
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Pair 5 (Pre_display and Post_display) 

The evaluation outcome for the control group is in Table J.13 and for the experimental 

group in Table J.14. The content of Table J.15 is the evaluation matrix outcome of the 

control and the experimental group based on pair 5.  Pair 5 refers to the capability to 

display output at the right position in the code.  

Table J.13: Evaluation sheet - control group - pair 5 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 

P Pre            

Post            

U Pre ×  ×     ×   × 

Post   ×   ×  ×  × × 

M Pre    × × ×   × ×  

Post ×   ×        

R Pre  ×     ×     

Post  ×   ×  ×  ×   

 

Table J.14: Evaluation sheet - experimental group - pair 5 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

P Pre             

Post             

U Pre  ×  ×  ×  ×     

Post             

M Pre ×  ×  ×    × × × × 

Post    ×         

R Pre       ×      

Post × × ×  × × × × × × × × 

 

             Table J.15: Pair 5 matrix (Pre_display and Post_display) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 27.3% 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 9.1% 8.3% 27.3% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 25% 18.2% 58.3% 18.2% 8.3% 

 P U M R 
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Appendix K: Evaluation sheets for functions – Cycle 4 
 

Pair 1 (Pre_func_call_return and Post_func_call_return) 

The evaluation outcome for the control group is in TableK.1 and for the experimental 

group in Table K.2. The content of Table K.3 is the evaluation matrix outcome of the 

control and the experimental group based on pair 1.  Pair 1 refers to the capability to 

call a function that returns a value.  

Table K.1: Evaluation sheet - control group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre   ×  ×  ×   × 

Post           

M Pre × ×    ×   ×  

Post  × ×  ×  × × × × 

R Pre    ×    ×   

Post ×   ×  ×     

 
Table K.2: Evaluation sheet - experimental group - pair 1 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

P Pre             

Post             

U Pre ×            

Post             

M Pre  × × × × ×  × ×  × × 

Post ×            

R Pre       ×   ×   

Post  × × × × × × × × × × × 

 

Table K.3: Pair 1 matrix (Pre_func_call_return and Post_func_call_return) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 40% 8.3% 20% 0 10% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 20% 75% 10% 16.7% 

 P U M R 
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Pair 2 (Pre_func_call_void and Post_func_call_void) 

The evaluation outcome for the control group is in TableK.4 and for the experimental 

group in Table K.5. The content of Table K.6 is the evaluation matrix outcome of the 

control and the experimental group based on pair 2.  Pair 2 refers to the capability to 

call a function that does not return a value.  

Table K.4: Evaluation sheet - control group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre   ×        

Post           

M Pre × ×   × × × × × × 

Post × × × ×  ×  ×  × 

R Pre    ×       

Post     ×  ×  ×  

 

Table K.5: Evaluation sheet - experimental group - pair 2 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

P Pre             

Post             

U Pre             

Post             

M Pre  × × × × × × × × × × × 

Post     ×        

R Pre ×            

Post × × × ×  × × × × × × × 

 

Table K.6: Pair 2 matrix (Pre_func_call_void and Post_func_call_void) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 10% 0 50% 8.3% 10% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 30% 83.3% 0 8.3% 

 P U M R 
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Pair 3 (Pre_func_header_return and Post_func_header_return) 

The evaluation outcome for the control group is in Table K.7 and for the experimental 

group in Table K.8. The content of Table K.9 is the evaluation matrix outcome of the 

control and the experimental group based on pair 3.  Pair 3 refers to the capability to 

construct a function header for a function that returns a value with a relevant return 

type. 

Table K.7: Evaluation sheet - control group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre  ×   ×    ×  

Post           

M Pre ×  × ×  × × ×   

Post  × ×  × ×   ×  

R Pre          × 

Post ×   ×   × ×  × 

 

Table K.8: Evaluation sheet - experimental group - pair 3 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

P Pre             

Post             

U Pre        ×  ×   

Post             

M Pre × × × ×  × ×  ×  × × 

Post          ×   

R Pre     ×        

Post × × × × × × × × ×  × × 

 

            Table K.9: Pair 3 matrix (Pre_func_header_return and Post_func_header_return) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 30% 8.3% 20% 0 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 8.3% 40% 75% 10% 8.3% 

 P U M R 
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Pair 4 (Pre_func_return_content and Post_func_return_content) 

The evaluation outcome for the control group is in Table K.10 and for the experimental 

group in Table K.11. The content of Table K.12 is the evaluation matrix outcome of the 

control and the experimental group based on pair 4.  Pair 4 refers to the capability to 

code the correct content for the body of a function that returns a value. 

Table K.10: Evaluation sheet - control group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre ×       ×   

Post           

M Pre   × × ×  ×  ×  

Post × × ×  ×   ×  × 

R Pre  ×    ×    × 

Post    ×  × ×  ×  

 

Table K.11: Evaluation sheet - experimental group - pair 4 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

P Pre             

Post             

U Pre   ×  ×     ×   

Post             

M Pre × ×  ×   × × ×  × × 

Post   ×          

R Pre      ×       

Post × ×  × × × × × × × × × 

 

Table K.12: Pair 4 matrix (Pre_func_return_content and Post_func_return_content) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 20% 8.3% 20% 0 20% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 16.7% 30% 66.7% 10% 8.3% 

 P U M R 
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Pair 5 (Pre_func_header_void and Post_func_header_void) 

The evaluation outcome for the control group is in Table K.13 and for the experimental 

group in Table K.14. The content of Table K.15 is the evaluation matrix outcome of the 

control and the experimental group based on pair 5.  Pair 5 refers to the capability to 

construct a function header for a function of a type void that does not return a value.  

Table K.13: Evaluation sheet - control group - pair 5 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre    ×       

Post           

M Pre × × ×   ×  ×  × 

Post ×  × × × ×   × × 

R Pre     ×  ×  ×  

Post  ×     × ×   

 

Table K.14: Evaluation sheet - experimental group - pair 5 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

P Pre             

Post             

U Pre ×       ×  ×   

Post             

M Pre  ×  × × × ×  ×   × 

Post        ×     

R Pre   ×        ×  

Post × × × × × × ×  × × × × 

 

Table K.15: Pair 5 matrix (Pre_func_header_void and Post_func_header_void) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 10% 8.3% 40% 0 20% 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 16.7% 20% 58.3% 10% 16.7% 

 P U M R 
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Pair 6 matrix (Pre_func_header_void and Post_func_header_void) 

The evaluation outcome for the control group is in Table K.16 and for the experimental 

group in Table K.17. The content of Table K.18 is the evaluation matrix outcome of the 

control and the experimental group based on pair 6.  Pair 6 refers to the capability to 

code the correct content for the body of a function that does not return a value. 

Table K.16: Evaluation sheet - control group - pair 6 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 

P Pre           

Post           

U Pre  ×  ×     ×  

Post           

M Pre ×  ×  × × × ×   

Post × ×  × × ×  × ×  

R Pre          × 

Post   ×    ×   × 

 

Table K.17: Evaluation sheet - experimental group - pair 6 

  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 

P Pre             

Post             

U Pre   ×       ×   

Post             

M Pre × ×  × × × × × ×  × × 

Post   ×   ×    ×   

R Pre             

Post × ×  × ×  × × ×  × × 

 

Table K.18: Pair 6 matrix (Pre_func_header_void and Post_func_header_void) 

P P→P  
(Stagnant-no-

learning) 

U→P 
(Lower-level-
deterioration) 

M→P 
(Intermediate-
deterioration+) 

R→P 
(deteriorated++) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

U P→U 
(Lower-level-
improvement) 

U→U  
(Stagnant-at-
lower-level) 

M→U 
(Intermediate-
deterioration) 

R→U 
(deteriorated+) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 0 0 0 0 

M P→M 
(Intermediate-
improvement+) 

U→M 
(Intermediate-
improvement) 

M→M  
(Stagnant-at-

intermediate-level) 

R→M 
(deteriorated) 

Con Exp Con Exp Con Exp Con Exp 

0 0 30% 16.7% 40% 8.3% 0 0 

R P→R 
(Improved++) 

U→R 
(Improved+) 

M→R 
(Improved) 

 

R→R  
(Already-improved) 

Con Exp Con Exp Con Exp Con Exp 

0 0 0 0 20% 75% 10% 0 

 P U M R 
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Appendix L: A switch button to Java code – Cycle 5 
   

In this cycle, the animation programs for uses of assignment, nested-decider and the 

animation program on the combination of decisions and loops have been incorporated 

with the Java code. These animation programs have the option to switch to a Java 

code.  

 

Figure K.1: Switching nested-decider to a Java code 

 

 

Figure K.2: Switching decisions/loops to a Java code 

.  
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Appendix M: Transition results– Cycle 5 
 

Table M.1 displays the average percentages for the improving transitions in cycle 5. 

                Table M.1: Improving transition results 

 U→M 
(Intermediate-
improvement) 

M→R 
(Improved) 

U→R 
(Improved+) 

Group Con Exp Con Exp Con Exp 

Decisions/ 
nested 
decisions 

21.7% 10.5% 46% 72.2% 0 5.5% 

Decisions/ 
loops 

16.4% 13.3% 42.2% 70.8% 0 6.7% 

Loops 7.5% 2.3% 32.5% 50% 0 2.3% 

Nested loops 15% 9.1% 32.5% 72.5% 0 2.3% 

One 
dimensional 
array 

18% 10.9% 18% 45.5% 2% 9.1% 

Functions 14% 6.1% 32.9% 72.5% 0 6.7% 

  

Table M.2 displays the average percentages for the non-improving transitions and 

already improved transitions in cycle 5. 

 

        Table L.2: Non-improving and already-improved transitions results 

 U→U 
(Stagnant-
at-lower-

level) 

M→M 
(Stagnant-at-
intermediate

-level) 

R→M 
(Deteriorated) 

R→R 
(Already-
improved) 

Group Con Exp Con Exp Con Exp Con Exp 

Decisions/ 
nested 
decisions 

0 0 26.7% 4.8% 1.7% 0 14.2% 11.1% 

Decisions/ 
loops 

1.6% 0 24.2% 2.5% 3.9% 0 13.4% 6.7% 

Loops 0 0 30% 4.6% 0 0 27.5% 41.1% 

Nested loops 0 0 27.5% 0 2.5% 0 22.5% 15.9% 

One 
dimensional 
array 

0 0 32% 1.8% 0 0 22% 32.7% 

Functions 3.9% 0 32.3% 1.4% 1.3% 0 15.8% 11.7% 

 


