
COLLABORATIVE AND CORROBORATIVE SEMANTIC
WEB SERVICE MONITORING

Mokone Ishmael Makitla

Submitted in accordance with the requirements for the degree of
DOCTOR OF PHILOSOPHY

in the subject

COMPUTER SCIENCE

Supervisor: DR. J.S. MTSWENI

University of South Africa

October 2022

Abstract

Service Oriented Computing has emerged as a promising computing paradigm
for Internet-scale distributed applications built around services as primary
building blocks. Such Internet-scale computing relies heavily on the connec-
tivity infrastructure because existing business functionalities could be made
accessible through this infrastructure. Furthermore, the services, as building
blocks of these Internet-scale applications, may be developed and managed
autonomously by enterprises. Different organizations may provide similar
functionalities and it therefore becomes a matter of differentiation to sup-
port negotiable quality of service characteristics such as response time, cost,
throughput, among others. Service consumers consider these non-functional
characteristics of the published services when selecting which service to use;
so there is an economic aspect to quality of service (QoS). The negotiated
QoS characteristics often involve penalties, making it absolutely critical for
the service provider to detect and correct any deviations from the agreed-
upon service behaviour.

The need to detect potential failures has resulted in several research ac-
tivities dedicated to service monitoring, specifically, Semantic Web Service
Monitoring. Monitoring entails detecting and signaling whether the par-
ticipating services behave consistently with the expected functionality and
non-functional service properties. Monitoring may further entail enacting
corrective mechanisms when there are failures or breaches to agreements
by contracted services. Many approaches for both the service-consumer-side
and service-provider-side monitoring have been proposed, including the use of
dedicated monitoring infrastructure. Contemporary monitoring approaches
rely on the service performance data being collected separately by the ser-
vice provider for service-side monitoring and the consumer for client-side
monitoring.

As of this writing and according to our knowledge, no monitoring ap-
proach had been developed that facilitates the collaborative and corrobora-
tive exchange of monitoring information by both the service consumer and
the service provider. The exchange of monitoring information is significant
because: (1) the service consumer and the service provider may have different
perspectives of the same QoS parameter and collaboration can help develop
consensus, (2) enables the support for a flexible quality-based pricing model,
which is a potential competitive advantage for service providers, (3) it has
a built-in self-checking mechanism so that there is no need for costly incen-

i

tive schemes to encourage honest reporting, (4) there is no need for costly
dedicated infrastructure for monitoring by surveillance because service con-
sumer and service provider exchange their context-dependent monitoring in-
formation directly. Having made a case for a collaborative and corroborative
monitoring approach, this study hypothesizes that collaborative and corrob-
orative monitoring of semantic web services is a viable alternative approach
to client-side, service-side and 3rd-party/dedicated monitoring infrastruc-
ture. Therefore, the main objective of this study is to investigate, design,
develop, and evaluate a collaborative and corroborative monitoring technique
for Semantic Web Services. Design Science Research (DSR) methodology is
adopted as it is particularly suitable for research studies that, like this study,
aim to design an artefact. The significance of this work is underpinned by
the critical importance of effective monitoring for the practical application
of Service Oriented Computing technologies, specifically the Semantic Web
Services. This study is critical because it purports to introduce a novel and
practical approach to Semantic Web Service monitoring that is corroborative
and collaborative between a service consumer and a service provider.

In pursuance of the collaborative and corroborative monitoring, the study
developed a Generalized Response Time Metric (GRTM), a consensus-based
generalized metric for response time QoS parameter. The study further devel-
oped a technology-agnostic Monitoring Information eXchange (MIX) pro-
tocol to facilitate the exchange of performance data which is described in
terms of the GRTM. The study also found, and demonstrated, that the sup-
port for, and implementation of collaborative and corroborative monitoring
for Semantic Web Services is technically feasible. This is made possible by
implementing a monitoring information exchange mechanism based on the
MIX protocol.

The proposed solution has been evaluated in terms of its technical feasi-
bility. There were no other implementations of collaborative or corroborative
monitoring of Semantic Web Services at the time of the execution of the re-
search and consequently, there was no need for comparative analysis. The
study demonstrated the technical feasibility of the proposed collaborative
and corroborative monitoring technique for Semantic Web Service. This was
achieved through a reference implementation of the MIX protocol.

Finally, the study makes three recommendations for consideration as fu-
ture research work and these are based on the identified limitations of the
study. Firstly, developing the correct syntax for the semantic description of
the mathematical expressions of all the parameters that characterize the per-

ii

formance of a Semantic Web Service such as latency, response time, through-
put, and error-rate. An expressive ontology model for Semantic Web Service
performance needs to include the logical expressions of these performance
parameters; the study focused only on response time. Secondly, a Semantic
Web Service Monitoring tool based on the MIX protocol should be developed
further to provide extensible interfaces that software engineers can implement
to support MIX functionality. The third recommendation is for software en-
gineers and researchers to explore possible Service Level Agreement (SLA)
negotiation strategies and implement these as part of the post-execution pro-
cesses of the MIX protocol.

Keywords: Semantic Web Services Monitoring, Service Oriented Com-
puting, Ontologies, Quality of Service, Monitoring Information Exchange,
Collaborative Monitoring

iii

Dedication

To my children Serote RebaOne and Ntsoe OakangOne, and their mother
Moshidi Phora for their enduring love. They are the best of all things I have
in Life.
To family and friends...I hope this also brings honor to your names!
In memory of my two loving grandmothers Mrs Mothulwa Makitla and Mrs
Maletsebe Ruth Mathebe forever dear to my heart even in death. Your loving
grace has sustained me even years after both your passing.

iv

Declaration

I Mokone Ishmael Makitla declare that the thesis titled COLLABO-
RATIVE AND CORROBORATIVE SEMANTIC WEB SERVICE
MONITORING is my own work, and that all sources used or quoted in the
study have been indicated by way of citations and acknowledged by means
of complete references in the bibliographical entries.

v

Acknowledgements

I want to thank the Council for Scientific and Industrial Research (CSIR) who
supported me from the time I started my Masters degree and the first 3 years
of my PhD journey. I also want to thank UNISA for granting me a bursary
for over 2 years of my PhD journey. Finally I would like to acknowledge
and appreciate the support from Rand Merchant Bank (RMB) for financing
the last stages of my studies. Without the backing and support of these
respected South African institutions, my PhD journey would not have been
possible.

A special mention to my advisor and friend Dr. Jabu Mtsweni for guiding
me throughout my PhD studies, always providing helpful and timely feedback
on my drafts and for the many meaningful engagement we have had both
during his own PhD and mine.

vi

Contents

1 Introduction 1
1.1 Research Problem . 2
1.2 Thesis Statement and Delineation 3
1.3 The Proposed Solution . 4
1.4 Research Contributions . 5
1.5 Research Methodology . 5
1.6 Limitations of the Research 12
1.7 Thesis Outline . 13
1.8 Summary . 14

2 Service Oriented Computing 15
2.1 Introduction . 16
2.2 Web Services . 19
2.3 Semantic Web Services . 20
2.4 Ontology Engineering Tools: Technologies Enabling Semantic

Web Services . 28
2.4.1 Resource Description Framework (RDF) 28
2.4.2 Ontology Editors . 31

2.5 Semantic Web Service Delivery Lifecycle Framework 33
2.5.1 Planning Sub-cycle . 35
2.5.2 Binding Sub-cycle . 37
2.5.3 Enactment Sub-cycle 38

2.6 Semantic Representation of Cloud Computing Services 40
2.7 Summary . 42

3 Semantic Web Service Monitoring 43
3.1 Conceptual Principles of Semantic Web Service Monitoring . . 43
3.2 Semantic Web Service Monitoring Mechanisms 46

vii

3.3 Quality of Service (QoS) Fundamentals 50
3.4 Semantic Description of Quality of Services 53

3.4.1 Ontologies . 54
3.4.2 QoS Ontology Language 55
3.4.3 QoSOnt: Basic QoS Ontology 56
3.4.4 QoS Metrics and the Semantic Descriptions of Arith-

metic Expressions . 58
3.4.5 WS-QoSOnto: Web Service QoS Ontology 59
3.4.6 OWL-Q: QoS-based Web Service Description 61
3.4.7 WSMO-QoS . 62
3.4.8 SMOnt: Service Monitoring Ontology 63

3.5 Related Works . 64
3.6 Summary . 77

4 A Monitoring Information Exchange (MIX) Protocol 78
4.1 Introduction . 78
4.2 Case for Collaborative and Corroborative Monitoring Using

Semantic Web Technology . 79
4.3 Generalized Response Time Metric 80
4.4 Semantic Web Service Performance Ontology for Monitoring . 85

4.4.1 Semantic Description of Generalized Response Time
Metric . 88

4.5 Monitoring Information eXchange (MIX) Protocol 91
4.5.1 High-Level Architecture of MIX Protocol 91
4.5.2 Functional Principles of MIX Protocol 93

4.6 Summary . 101

5 Proof of Concept Implementation of MIX Protocol 102
5.1 Introduction . 102
5.2 Proof of Concept Use Case for MIX 103
5.3 Collaborative and Corroborative Monitoring Architecture . . . 105

5.3.1 Java Agent DEvelopment (JADE) 106
5.3.2 Apache JENA . 106
5.3.3 FUSEKI - SPARQL Server 107

5.4 Monitoring Information eXchange (MIX) Protocol 107
5.5 Experimental Execution of the MIX Protocol 110
5.6 Summary . 119

viii

6 Evaluation and Results 120
6.1 Introduction . 121

6.1.1 Consensus on Observable QoS Parameters 121
6.1.2 Mechanism for Monitoring Information Exchange . . . 123
6.1.3 Technology-neutral Negotiation Protocol 126

6.2 Evaluation . 127
6.2.1 Comparative Analysis vs. Technical Feasibility 127
6.2.2 Technical Feasibility of Collaborative and Corrobora-

tive Monitoring . 131
6.3 Results and Their Implications for SWS Monitoring 132
6.4 Methodological Aspects . 133
6.5 Summary . 135

7 Summary, Conclusions and Recommendations 136
7.1 Introduction . 136
7.2 Conclusions . 137

7.2.1 Transparency of the monitoring process 137
7.2.2 Eliminating the need to incentivise honest reporting by

service consumers . 137
7.2.3 Potential savings on infrastructural costs 138
7.2.4 Support for flexible pricing model 139

7.3 Summary of Contributions . 139
7.4 Recommendations . 140

7.4.1 Semantic Descriptions of Performance Metrics in QoS
Ontology . 140

7.4.2 MIX-Based Semantic Web Service Monitoring Tool . . 140
7.4.3 MIX Agent Negotiation Protocol 141

Appendices 142

A 143

B 144

ix

List of Figures

1.1 Alignment with Seven Guidelines of Design Science Research . 7
1.2 Design Science Research Process Model (adapted from Peffers

et al. (2007, p. 54)) . 10
1.3 Service Delivery Lifecycle (adapted from Kuropka et al. (2008)) 12

2.1 Service Oriented Architecture Components (Alshinina and Ellei-
thy, 2017) . 18

2.2 Semantic Web Service Approaches Taxonomy (adapted from
Slimani, 2013) . 22

2.3 Approaches to RESTful Semantic Web Services (adapted from
Slimani, 2013) . 22

2.4 WS-* Approaches Taxonomy (adapted from Slimani, 2013) . . 24
2.5 Semantic Web Service Cartography (adapted from Nacer and

Aissani, 2014, p. 136) . 27
2.6 RDF/XML Sample Ontology Description 29
2.7 Book Doctor Appointment Service Scenario 33
2.8 Service Delivery Lifecycle (adopted from Kuropka et al., 2008) 34

3.1 Hierarchy of quality concepts (adapted from Oriol, Marco, and
Franch (2014)) . 51

3.2 Base QoS Ontology (adapted from Dobson, Lock, and Som-
merville (2005)) . 57

3.3 Sample Event Instance (adapted from Vaculín (2009, p. 128)) 66
3.4 TraceAnalyzer Core Architecture (Singh and Liu (2016, p. 57)) 68
3.5 Simplified Framework for End-to-End Monitoring and Man-

agement (Keeney et al. (2011, p. 659)) 69
3.6 Architecture of a Collaboration Framework (adapted from Amir

(2018, p. 11)) . 72

x

4.1 Performance Ontology for Monitoring Information Exchange . 86
4.2 Generalized Response Time Metric in graphical RDF syntax . 90
4.3 High-Level MIX Protocol Architecture 92
4.4 MIX-enabled Book Doctor Appointment Service Scenario . . . 94
4.5 The MIX protocol phases . 95
4.6 The MIX protocol initialization phase 96
4.7 The MIX protocol monitoring phase 98
4.8 Monitoring Information eXchange Sequence Diagram. 100

5.1 Book Doctor Appointment with MIX plane 104
5.2 Collaborative and Corroborative Monitoring Enabled Archi-

tecture . 105
5.3 MIX Protocol in Collaborative and Corroborative Monitoring

Enabled Architecture . 108
5.4 Sample Monitoring Data in Monitoring Info Triple Store . . . 109
5.5 MIX Agent Interactions During MIX Protocol Phases 111
5.6 MIX Protocol Sequence Diagram. 112
5.7 Agent Communication during Service Discovery 113
5.8 Dynamic Invocation of the Discovered Service 114
5.9 Service-side execution and monitoring 114
5.10 Start JADE MIX Agent . 115
5.11 Set JADE MIX Agent Parameters 115
5.12 Select JADE MIX Agent Implementation 116
5.13 JADE MIX Agent Running 117
5.14 Send ACK MIX Protocol Message in JSON 118
5.15 Receive MIX Protocol Message in JSON 118

6.1 Graphical RDF Syntax for GRTM 123
6.2 Four Main Phases of the MIX Protocol 124
6.3 Nominal Interactions Sequence for MIX Protocol. 125
6.4 MIX Protocol Baseline Data Negotiation 126

xi

List of Tables

3.1 Summary of Related Works 76

4.1 Response-time pairs per request 82

6.1 Comparison Against Related Works 130

xii

List of Abbreviations

ACK Acknowledgement
API Application Programmer Interface
AUP Acceptable Use Policies
ASC Autonomous Service Composition
CA Customer Agreements
CNP Contract Net Protocol
CSA Cloud Service Agreements
CSCC Cloud Standards Customer Council
CSV Comma Separated Values
DL Description Logic
DSR Design Science Research
FLOWS First Order Logic Ontology for Web Services
FIPA Foundation for Intelligent Physical Agents
FOL First Order Logic
GRTM Generalized Response Time Metric
HTTP Hyper Text Transfer Protocol
ICNP Iterated Contract Net Protocol
IEW Information Entropy Weight
IgS-wBSRM Information gain and Sliding window-based weighted naive

BayeSian Runtime Monitoring
JADE Java Agent DEvelopment
JAMon Java-based Monitor
JSON Javascript Simple Object Notation
MIX Monitoring Information eXchange
MMEL Message Encoding Layer
NACK Negative Acknowledgement
NLP Natural Language Processing

xiii

OWL Ontology Web Language
OWL-Q QoS-based Web Service Description based on Web Ontology

Language
OWL-S Web Ontology Language with Semantics
PAYU Pay-As-You-Use
QoS Quality of Service
QoSOnt QoS Ontology
RDF Resource Description Framework
REST REpresentation State Transfer Protocol
ROWS Rules Ontology for Web Services
SaaS Software as a Service
SARA Semantic Attribute Reconciliation Architecture
SAWSDL Semantic Annotation of Web Service Description Language
SEREDASj SEmantic REstful DAta SErvices using JSON
SIML Session Initialization and Management Layer
SLA Service Level Agreement
SMOnt Service Monitoring Ontology
SMW Semantic Media Wiki
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SOC Service Oriented Computing
SOS Service Oriented System
SPARQL Spark Query Language
SSE Service Selection Effort
SWS Semantic Web Service
SWSF Semantic Web Service Framework
SWSL Semantic Web Service Language
SWSL-FOL Semantic Web Service Language based on First Order Logic
SWSM Semantic Web Service Monitoring
SWSO Semantic Web Service Ontology
TCP/IP Transmission Control Protocol/ Internet Protocol
TDB Triples Database
TLS Transport Layer Security
UDDI Universal Description, Discovery and Integration
URI Universal Resource Identification
URL Universal Resource Locator

xiv

W3C World Wide Web Consortium
WoT Web of Things
WS-
Agreement

Web Service Agreement

WS-
QoSOnto

Web Service QoS Ontology

WSC Web Service Composition
WSDL Web Service Description Language
WSDL-S Web Service Description Language with Semantics
WSLA Web Service Level Agreement
WSML Web Service Modeling Language
WSMO Web Service Modeling Ontology
WSMO-QoS QoS extension to the Web Service Modeling Ontology
XHTML Extensible Hyper Text Transfer Protocol
XML Extensible Modeling Language

xv

List of Publications

List of Peer-Reviewed Publications

• Makitla, I., & Mtsweni, J. (2014). Towards a collaborative approach to
Web Service monitoring: In appreciation of connectivity challenges in
Africa. In 2014 IST-Africa Conference Proceedings (pp. 1–9). IEEE.
doi:10.1109/ISTAFRICA.2014.6880660

• Makitla, I., & Mtsweni, J. (2015). A generalized web service response
time metric to support collaborative and corroborative web service
monitoring.In: 2015 10th International Conference for Internet Tech-
nology and Secured Transactions (ICITST) (pp. 373–377). IEEE.
ISBN: 978-1-9083-2052-0. doi:10.1109/ICITST.2015.
URL: http://ieeexplore.ieee.org/document/7412124/.

List of Other Publications and Presentations

• Makitla, I., & Mtsweni, J. (2016). Experimental Architecture for Col-
laborative and Corroborative Monitoring of Semantic Web: Technical
Report on PhD Work. CSIR.

xvi

Chapter 1

Introduction

A service is a computer program that is self-describing and provides a well-
defined set of functionality and is accessible through the connectivity infras-
tructure such as computer networks and the Internet (Papazoglou, Traverso,
Dustdar, and Leymann, 2008). Several such services can be combined loosely
to create highly complex and distributed applications. Service Oriented Com-
puting (SOC) or service orientation (Papazoglou, Traverso, Dustdar, and
Leymann, 2008) is a paradigm that uses these services as building blocks for
developing distributed applications at Internet-scale (Sedayao, 2008). Fur-
thermore, the services, as building blocks of these Internet-scale applications,
may be developed and managed autonomously by enterprises. Since differ-
ent organizations may provide similar functionalities, it becomes a matter of
differentiation to support negotiable quality of service characteristics such as
response time, cost, throughput, and so forth. Service consumers consider
these non-functional characteristics of the published services when selecting
which service to use; hence, there is an economic aspect to quality of service
(QoS). The negotiated QoS characteristics often involve penalties, making it
absolutely critical for the service provider to detect and correct deviations
from the agreed-upon service behaviour.

The need for ability to detect potential failures necessitates service moni-
toring. Service monitoring entails detecting and signaling whether the partic-
ipating services behave consistently with the expected functionality and non-
functional service properties. Monitoring may further entail the enactment of
corrective mechanisms when there are failures or breaches to agreements by
contracted services. A number of approaches for service-consumer-side and
service-provider-side monitoring have been proposed, including the use of

1

dedicated monitoring infrastructure. Contemporary monitoring approaches
rely on the service performance data being collected separately by the ser-
vice provider for service-side monitoring and the consumer for client-side
monitoring.

1.1 Research Problem
This study tackles the challenge of achieving the collaborative and corrob-
orative monitoring of Semantic Web Service Monitoring within the Service
Oriented Computing domain. Semantic Web Service Monitoring entails de-
tecting and signalling whether the participating services behave consistently
with the expected functionality and that it exhibits the guaranteed non-
functional service properties. Semantic Web Service Monitoring may further
entail enacting corrective mechanisms when there are failures or breaches of
agreements by contracted services.

However, the problem is that current monitoring approaches do not fa-
cilitate collaborative and corroborative exchange of monitoring information
between the service consumer and the service provider. Collaborative means
that both service consumer and service provider are aware of each other’s
monitoring activities and also that the interaction between them is based on
sending to and receiving monitoring information from each other. Corrobo-
rative means that each claim pertaining to an individual QoS parameter is
checked by the receiving party; as a result, there is generally a comparison
of notes by service consumers and service providers; The exchange of moni-
toring information is vital because of the following reasons:

• Since both the service consumer and the service provider may have
different perspectives of the same QoS parameter there is no consensus
on the meaning of individual QoS parameters and therefore a great
potential for misunderstanding in case of SLA breach.

• Enables the support for a flexible pricing model, which is a potential
competitive advantage for service providers; consumers feel empowered
to ensure that they receive the appropriate quality of service for the
money they pay. This is a desirable alternative to paying penalties;
the service provider may negotiate with the consumer to rather pay an

2

amount appropriate for the quality of service experienced. This Pay-
As-You-Use (PAYU) scenario is only possible where both the consumer
and the service provider can corroborate their monitoring data and
collaboratively renegotiate conditions of service.

• When both the service consumer and service provider exchange and
corroborate each other’s monitoring information, there is no need for
incentive schemes, such as what Artaiam and Senivongse (2008) pro-
posed, aimed at encouraging honest reporting.

• There is no need for dedicated infrastructure for monitoring by surveil-
lance because service consumer and service provider exchange their
environment-dependent monitoring information directly.

In view of the research problem as stated in the preceding paragraphs,
this study advances the thesis statement as described next in Section 1.2.

1.2 Thesis Statement and Delineation
Collaborative and corroborative monitoring of Semantic Web Services is a vi-
able alternative approach to client-side, service-side and 3rd-party/dedicated
monitoring infrastructure.
A thesis statement, by its nature, is an assertion, a hypothetical proposi-
tion made without any proof (Hofstee, 2006), in which case the object of
the research is to present such proof. Therefore, it is crucial to set out the
conditions under which the thesis statement holds. This is necessary as it
sets out exactly what the researcher means to investigate (Hofstee, 2006, .p
26). What follows next is the delineation of the thesis statement:

• Viability – the assertion that a collaborative and corroborative ap-
proach to Semantic Web Service monitoring is a viable alternative is
only in terms of (1) transparency of the monitoring process, (2) po-
tential savings on infrastructural costs, (3) support for flexible pricing
model, and (4) eliminating the need to incentivise honest reporting by
service consumers.

3

1.3 The Proposed Solution
In order to understand the proposed solution, it is essential first to establish
what key requirements are imposed by the need to support the exchange of
monitoring information. The requirements are explained below:

• Consensus on the meaning of monitoring values – that is, the consensus
on observable QoS parameters;

• Mechanism by which monitoring information can be exchanged – that
is, an event-based exchange of monitoring information between parties
(service consumer and service provider) during service execution;

• Mechanism by which parties can negotiate resolutions in case of vio-
lation or conflict – that is, some technology-independent negotiation
protocol;

To satisfactorily support the assertion made in the thesis statement re-
garding viability, this study sought to investigate, design, develop and eval-
uate a Collaborative and Corroborative Semantic Web Service Monitoring
approach. In order to achieve this objective and address the key require-
ments imposed by the support for exchanging monitoring information, it is
necessary to achieve the following research objectives (RO’s):

• Develop generalized metrics for specific QoS parameters so that service
consumers and service providers can reach a consensus on the meaning
of each QoS parameter (RO-1);

• Develop a Monitoring Information eXchange (MIX) protocol - a technology-
independent protocol for service consumers and service providers to
exchange monitoring information (RO-2);

The above research objectives directly and completely attend to the key
requirements discussed earlier in this section. In addition, however, there
are other objectives that pertain specifically to demonstrating the technical
feasibility of the proposed Collaborative and Corroborative Semantic Web
Service Monitoring approach. The emphasis of this study is not on the tech-
nology solution and as such the technology demonstrations are not expected
to be exhaustive and are meant only to demonstrate the possibility of im-
plementing the proposed solution using existing technological tools. The
following objectives pertain to the technical feasibility of Collaborative and
Corroborative Semantic Web Service Monitoring:

4

• Develop a Semantic Web Service Monitoring tool as a prototype to
demonstrate the value of collaborative and corroborative utility in Se-
mantic Web Service Monitoring (RO-3);

• Evaluate the technical feasibility of the Semantic Web Service Moni-
toring prototype (RO-4);

By completing the above tasks, the study will be making conceptual as
well as technical contributions.The conceptual and technical contributions
made by the study are outlined in Section 1.4 next.

1.4 Research Contributions
Based on the proposed solution, the study makes the following conceptual
and technical contributions:

• Conceptual Contribution 1: Generalized Response Time Metric
(GRTM) - collaborative measurement of response time values measured
at both client and service sides.

• Conceptual Contribution 2: Monitoring Information eXchange (MIX)
Protocol - a mechanism for exchanging monitoring information between
participating monitoring agents.

• Technical Contribution 1: A technology-agnostic architecture for a
Collaborative and Corroborative Semantic Web Service Monitoring.

• Technical Contribution 2: Semantic Web Service Monitoring pro-
totype which illustrates how to implement aspects of the Monitoring
Information eXchange (MIX) protocol.

1.5 Research Methodology
This section presents the research methodology adopted for this study.

According to Welman and Kruger (2004, p. 2), research involves applying
various techniques and methods to create scientifically obtained knowledge.
Research methodology specifies how the research is carried out in terms of
research design, how research effort is measured and what constitutes success.

5

Research design ensures that the evidence obtained through the research
process enables the researcher to present compelling evidence supporting the
hypothesis advanced by his or her research.

Olivier (2004, p. 12) advises that research studies with technical objec-
tives, such as this study, ought to apply creative or constructive research
methods intended to devise new mechanisms for use in computing. The qual-
ity of such creative or constructive research methods is measured in terms of
the utility of what is created (March and Smith, 1995; Olivier, 2004).

Given the above, the most suitable research methodology for this genre of
study is the Design Science Research method (Hevner et al., 2004; March and
Storey, 2008). The Design Science Research (DSR) methodology, according
to Peffers et al. (2007), comprises three key elements:

• Conceptual principles that define what constitutes DSR,

• Practice rules of how to carry out acceptable DSR, and

• Process for carrying out and presenting DSR.

The above elements informed the manner in which this study was conducted.
In terms of the conceptual principles, DSR is understood by March and

Smith (1995, p. 253) as being about developing artefacts to attain specific
goals such as, in the case of this study, the monitoring of Semantic Web Ser-
vices. In keeping with this view, and through literature synthesis, as well as
Carlsson et al. (2010, p. 126) note that the definition of DSR encapsulates any
designed object that embeds a solution to an understood research problem.
According to Reeves (2006, p. 52) DSR seeks to investigate the development
of solutions that target practical problems, culminating in the identification
of design patterns or re-usable design principles. In the case of this study,
the solution should culminate in the design principles for a collaborative and
corroborative monitoring mechanism for Semantic Web Services.

For the practice rules, Hevner et al. (2004) offer seven guidelines for con-
ducting DSR. Venable (2010) provides a detailed review of the level of con-
sensus within the research community on these guidelines and which indicates
a broader acceptance by the community.

Literature on DSR (Hevner et al., 2004; Ellis and Levy, 2010; OATES,
2006) warns specifically regarding research contributions that there must be
a clear differentiation between a routine system development and DSR. Ac-
cording to Hevner et al. (2004, p. 81), the key difference between routine

6

system development and design research is the clear articulation of a contri-
bution to the body of knowledge. In the case of this study, the contributions
are listed in Section 1.4 and are discussed further in the subsequent chapters
of this thesis.

Finally, the process of conducting DSR is presented by Peffers et al.
(2007) by way of a DSR research process model. As will be shown later in
this section, this study followed the research process model with adaptions
where appropriate. In view of this adaptation of the Design Science Research
paradigm, the subsequent sections describe how Design Science Research was
executed in this study in terms of practice rules of how to carry out accept-
able Design Science Research, and the acceptable process for carrying out
and presenting Design Science Research.

Figure 1.1 depicts how the study aligned its research activities according
to the seven guidelines for conducting Design Science Research outlined by
Hevner et al. (2004, p. 81).

Figure 1.1: Alignment with Seven Guidelines of Design Science Research

The research activities that satisfactorily addressed the problem relevance
guideline included reading the literature and critical analysis of related work.
The related work explicitly focused on those research projects and studies

7

that sought to address the problem of Semantic Web Service Monitoring,
including the review of frameworks and approaches that other researchers
proposed.
The critical analysis of the existing body of research is necessary to satisfy
the research rigor guideline. Another important consideration for research
rigor is for the study to contribute to the scientific body of knowledge. In
view of this, the contributions of the study in terms of conference papers and
journals as well as the design artefact(s) mentioned in Section 1.4 do satisfy
the research rigor requirement.

According to the guideline regarding design as an artefact, it is necessary
that a Design Science Research study produces an artefact, which according
to Hevner et al. (2004), may take the form of a construct, model, a process
or an instantiation. The nature of the artefacts developed in this study take
the following forms:

• Construct – this nature of contribution takes a more conceptual form
and is about introducing key concepts that are critical for solving an
identified problem. In the case of this study, the artefact takes the
form of a generalized metric for computing QoS parameter values col-
laboratively and corroboratively between service consumer and service
provider.

• Process - a collaborative and corroborative monitoring approach for
Semantic Web Services. The process of collaborative and corrobora-
tive monitoring is captured in a form of the Monitoring Information
eXchange (MIX) protocol, which outlines the structure and sequence
of messages to be exchanges between service consumer and service
provider.

• Instantiation – this contribution will take the form of a proof-of-
concept Semantic Web Service monitoring software tool that imple-
ments the Monitoring Information eXchange (MIX) protocol.

Since this study adopted a thesis-proving approach to research, it is nec-
essary to spell out how the outcomes of this research can be evaluated. March
and Smith (1995) warn that the lack of evaluation metrics that define pre-
cisely what the research is trying to accomplish makes it impossible to judge
the research efforts effectively. A key evaluation criterion for this study is en-
abling the exchange of monitoring information between the service consumer

8

and the service provider. This proves, for instance, that the Monitoring
Information eXchange (MIX) protocol is sound and technically feasible.

In order to satisfy the design evaluation guideline, the study applies two
main criteria:

• Peer-reviews – the blind review, by international experts, of confer-
ence papers and journals covering key concepts of the study including
the design and its rationale.

• Proof of concept implementation – to demonstrate the technical
feasibility and the utility of the proposed artefact, a prototype imple-
mentation is developed. The black-box testing technique (Krichen and
Tripakis, 2004) is adopted for the functional evaluation of the proto-
type.

The fifth guideline is to consider design as a search process. This is some-
what an instrumentalist idea of using whatever means available within the
confines of the problem domain in the best possible way to solve the identi-
fied problem. In this study, such a search process included a critical analysis
of existing literature and critiquing related works to identify important char-
acteristics of a desirable Semantic Web Service Monitoring approach. The
results of this search process culminated in what is ultimately the research
contributions of this study.

The penultimate guideline pertains to research contributions, this study
makes three key contributions, which are necessary to address the research
problem:

• Generalized Metric for QoS parameters

• Monitoring Information eXchange (MIX) Protocol that supports dy-
namic QoS and SLA re-negotiation

• Monitoring Information eXchange (MIX) based Semantic Web Service
Monitoring prototype

Finally, the research process, findings and lessons learned during the it-
erative design cycle must be communicated effectively to various interested
audiences; including the scientific, technical as well as non-technical stake-
holders. In the case of this study, the research was communicated in the form
of a written thesis supported by several peer-reviewed conference papers and
journal articles. These are listed in an Appedix (“List of Contributions”).

9

Whereas the seven guidelines provide the necessary checklist that allows
the researcher to determine, as objectively as possible, if what was done is
“good” design science research, there is still a need to follow a proper research
process that adheres to the above guidelines. Peffers et al. (2007, p. 54)
provide a process model for conducting design science research. Figure 1.2
demonstrates this study’s adaptation of the design science research process
model.

Figure 1.2: Design Science Research Process Model (adapted from Peffers
et al. (2007, p. 54))

The following paragraphs outline how the study implemented each step
in the nominal process sequence which makes up the Design Science Research
Process Model.

In the Identify and Motivate activity, the researcher identifies a problem
within the domain and motivates the significance of the problem and thus
the value of its solution. This study identified a problem and made a case for
a collaborative and corroborative monitoring mechanism for Semantic Web
Services and inferred the requirements of a viable solution to the identified
problem. The identification of the problem is informed by the literature
review conducted as part of this study - including the realization that no

10

existing research has satisfactorily addressed the identified problem.
In terms of defining the objectives of the solution the researcher artic-

ulates a clear and finite set of objectives or requirements that a desirable
artifact to be developed must satisfy. For this study, this meant defining
the requirements imposed by the collaborative and corroborative monitor-
ing of Semantic Web Services. The clear articulation of the requirements
of a solution is important in that it already provides the researcher with
the evaluation metrics to use in evaluating the design artifact in terms of
whether it meets these requirements and refine it iteratively during design
and development activities of the design cycle.

During the Design and Development activities the researcher creates the
artifact according to the requirements of the solution to purposefully ad-
dress the identified problem. Even in the case of theoretical or conceptual
contributions, this is the process of continuous refinement of the ideas and
concepts. For the purpose of this study, this activity entails defining the
Generalized Response Time Metric (GRTM), conceptualizing the Monitor-
ing Information eXchange (MIX) protocol and finally instantiating the MIX
protocol. See Chapter 4 and Chapter 5 respectively.

In the Demonstration phase the technical viability of the proposed solu-
tion is demonstrated by doing a proof of concept implementation. In this
study, this activity entails demonstrating the technical viability of the MIX
protocol (see Chapter 5).

During the Evaluation phase the solution is evaluated against a finite set
of objectives or requirements. This phase further entails conducting lab trials
of the prototype solution (proof of concept) as well as evaluating the thesis
statement based on the experimental results.

Finally, in the Communication phase, the outcomes of the research are
communicated. This can take the form of presentations at research symposia,
conference papers, journal articles and the actual PhD thesis document.

The preceding section presented the description of the methodological as-
pects of this study. The following section outlines the limitations of the
research.

11

1.6 Limitations of the Research
The scope of the proposed research study is focused on the Enactment Sub-
cycle of the Service Delivery Lifecycle framework (Kuropka et al., 2008):
The framework itself will be discussed in greater detail as part of literature
review in Chapter 2. The Service Delivery Lifecycle framework provides a
simplified view of the key steps involved in processing a service request in a
service-oriented computing scenario. According to this view, the processing
of a service request is done in three key phases or sub-cycles of the service
delivery lifecycle namely (1) Planning, (2) Binding and (3) Enactment.

Figure 1.3: Service Delivery Lifecycle (adapted from Kuropka et al. (2008))

As depicted in the Service Delivery Lifecycle framework (Figure 1.3), this
study assumes that all the preceding sub-cycles have already been completed.
Most importantly, the study takes it for granted that the target services as
published by service providers are already semantically enriched. In the
proof-of-concept implementation, SAWSDL was used as a standard for se-

12

mantic annotation of Web services, the evaluation of possible approaches to
semantic annotation is out of scope of this research.

In terms of QoS ontology development, this study does not claim to have
included an exhaustive list of QoS parameters – the main focus as been
on measurable QoS parameters as these make a good case for collaborative
monitoring.

1.7 Thesis Outline
Chapter 1: Introduction - This chapter will be a revised version of the
proposal and will cover only key aspects of the research process – the prob-
lem statement, research objectives and the hypothesis. The main objective
of this chapter will be to present the rationale for this study and to support
its case.

Chapter 2: Service Oriented Computing - This chapter follows the
nominal structure of a literature survey on Semantic Web Service and intro-
duces an illustrative framework to capture the overview of Service Oriented
Computing (SOC).

Chapter 3: Semantic Web Service Monitoring - This chapter discusses
the conceptual principles and the monitoring mechanisms for Semantic Web
Services. The chapter also discusses the fundamentals of Quality of Service
(QoS) and the approaches to semantically describing QoS of Web Services.
The chapter further reviews the related works and highlights their short-
comings to make a case for collaborative and corroborative monitoring of
Semantic Web Services.

Chapter 4: Collaborative and Corroborative Semantic Web Service
Monitoring - This chapter presents the conceptual aspects of the model for
Collaborative and Corroborative Monitoring of Semantic Web Services. In
this chapter the proposed solution is outlined, along with its conceptual un-
derpinnings and design specification for the proposed Monitoring Information
eXchange (MIX) protocol.

Chapter 5: Proof of Concept Implementation of MIX - This chap-
ter draws from the conceptual design presented in Chapter 4 and develops a

13

technology-specific demonstrator. It will present results from experimental
prototype of a Semantic Web Service monitoring tool developed based on
the findings of this study. This will be a proof of concept and not necessar-
ily a production-ready Semantic Web Service monitoring tool. This chapter
focuses on the technical infrastructure and the reference implementation of
the Monitoring Information eXchange (MIX) protocol.

Chapter 6: Evaluation and Results - In this chapter, the proof of concept
tool developed in Chapter 5 is systematically evaluated and its performance
is analysed. This is meant to ascertain that it achieves the expected func-
tionality of a collaborative and corroborative monitoring of a Semantic Web
Service. The evaluation process will also seek to establish whether the mon-
itoring approach has any noticeable performance implications. The chapter
thus discusses the results of the evaluation of the collaborative and corrobo-
rative monitoring technique for Semantic Web Services as proposed by this
study.

Chapter 7: Summary, Conclusion and Recommendations - This
chapter draws conclusion of the study and hints at any future research work
in the context of the current study. This chapter also serves to reflect on the
research process in its entirety and also identifying key contributions of the
study and their implications. This chapter presents the conclusions that the
study deduces from the work accomplished by the entire research project.

1.8 Summary
This chapter essentially made a case for the study and discussed the key
aspects of the scientific research process; it discussed the research problem,
the thesis statement, as well as the objectives of the proposed solution. The
chapter outlined both the conceptual and the technical contributions that
the study sought to make. The chapter also discussed the methodological
aspects of the study as well as acknowledged the limitations of the study.
Finally, the chapter presented the outline of the thesis document in terms of
the synopsis of each chapter and the sequence of chapters.

The next chapter discusses the Service Oriented Computing (SOC) liter-
ature.

14

Chapter 2

Service Oriented Computing

This chapter provides the theoretical grounding for the study by giving a
focused overview of Service Oriented Computing (SOC).

A nominal structure of a literature survey on Semantic Web Service starts
off with the discussion of the classical Web services accomplished mainly
through Web Service Description Language (WSDL) and Simple Object Ac-
cess Protocol (SOAP) technologies. The discussion then moves on to high-
light the limitations of the classical Web services such as requiring significant
human intervention and not being readily machine-understandable. In so do-
ing, a case is made for Semantic Web Services. Discussion on Semantic Web
Service in turn necessitates discussing ontologies – basically, it is these on-
tologies which augment the existing Web Service standards to provide the
semantic layer necessary to enable machine processing (locating, selecting,
composing and executing) of the Web services. Once this background is
laid, the topical issues of Semantic Web Services which include standards,
approaches and challenges to combining the Semantic Web and Web ser-
vices are then discussed for instance by Nacer and Aissani (2014), Mohebbi,
Ibrahim, and Idris (2012); as well as Bruijn et al. (2008). Therefore without
being too exhaustive, this nominal structure covers a big-enough research
area of Semantic Web Services (Fensel et al., 2011).

This chapter adopts the nominal structure above and introduces an illus-
trative framework to capture the overview of Service Oriented Computing
(SOC). This allows the reader to appreciate the practical implications of
some of the outstanding research challenges in SOC without tussling with
the more abstract theoretical aspects of SOC research. Using an illustra-
tive framework is helpful in presenting literature review because it already

15

provides the reader with a perspective from which to look at the referenced
materials such as Web Service standards. In this chapter the Service Delivery
Lifecycle by Kuropka et al. (2008, p. 16) is used as an illustrative framework
for presenting the literature review, which is relevant to position the solution
proposed by this study. Additionally, the sub-cycles of the Service Delivery
Lifecycle are used to aid in the understanding and identification of key areas
of research focus within both the classical Web Service as well as Semantic
Web Service. The chapter ends by positioning this study within the Ser-
vice Delivery Lifecycle and hinting at the subsequent discussion in the next
chapter (Chapter 3) which focuses on Semantic Web Service Monitoring.

2.1 Introduction
Service Oriented Computing (SOC) is a computing paradigm for addressing
the complexities of distributed applications and uses a Service as the building
block for heterogeneous, distributed applications (Huhns, 2005; Michlmayr
et al., 2009; Papazoglou, Traverso, Dustdar, Leymann, and Krämer, 2006).
As a paradigm, SOC is an approach for building distributed, loosely-coupled
applications. The 2017 Service Computing Manifesto (Bouguettaya et al.,
2017) describes SOC or Service Computing as a paradigm that enables the
support of business services by offering cross-disciplinary computational ab-
stractions, architectures and technologies.

However, and critically, SOC may also be viewed as an approach to
exposing computational resources as services. In this sense, Cloud Com-
puting may be considered a variant of SOC. The computational resources
offered by Cloud Computing are dynamically scalable,low cost and location-
independent (Bokhari and Azam, 2015). According to Shaukat Dar et al.
(2016), what is core to the service-orientation in Cloud Computing is its
support for developing rapid, low-cost, interoperable, and flexible applica-
tions. Baraldo, Zuccato, and Vardanega (2015) stated that, arising from this
service orientation model, are the concepts of Quality of Service (discussed
later in Chapter 3) and Software as a Service paradigm. Software as a Service
(SaaS) is a delivery model used to provide software-based solutions over the
Internet by making them accessible on rental or subscription basis (Baraldo,
Zuccato, and Vardanega, 2015). One of the benefits of the SOC paradigm
is that the on-demand basis on which computational resources are provided
can actually contribute towards addressing the hardware and software acqui-

16

sition challenges faced by the resource-constrained enterprises such as small
businesses.

Service-orientation as an approach is shared in common by both Cloud
Computing as discussed above, and Service Oriented Architecture (SOA).
SOC views whole business functions (booking a doctor’s appointment, for
example) as modular, standards-based software services (Luthria and Rabhi,
2009). Given that, from the perspective of SOC, services are building blocks
for distributed applications (Stollberg and Fensel, 2010), the expectation is
that such services may be autonomous and span multiple organizations. SOC
does not make any mention of the architectural style for building these service
oriented applications. SOA is the architectural style that promotes interoper-
ability and reusability of software components and is best suited for building
complex and distributed service-oriented computing applications (Fensel et
al., 2011). The fundamental idea of SOA is about loose coupling and en-
capsulation, whereby each software component provides individual service
(Bokhari and Azam, 2015). SOA is an architectural approach that provides
a flexible set of design principles used during model-driven engineering of
distributed enterprise software systems (Boukaye Boubacar et al., 2018). Ac-
cording to Rojas, Arias, and Renteria (2021), SOA enables interoperability
and integration of cross-platform applications in support of distributed in-
formation systems.

The three most basic components of Service Oriented Architecture (SOA)
are service consumer, service broker or registry and service provider (Alshin-
ina and Elleithy, 2017). Figure 2.1 depicts the three basic components of
SOA:

17

Figure 2.1: Service Oriented Architecture Components (Alshinina and Ellei-
thy, 2017)

SOA as an architectural style describes how complex software systems can
be built by exposing existing functionalities as services and putting these ser-
vices together. SOA is a business-focused architectural pattern for achieving
the integration of services (Calderón-Gómez et al., 2021). Web Services which
have brought about the most practical implications of SOC concepts are con-
sidered the most common technology based on SOA (Mohebbi, Ibrahim, and
Idris, 2012). One key principle of SOA insists that services be self-contained
units of computation and as such should not maintain state across invocations
(Bruijn et al., 2008, pp. 14–15). This principle promotes the heterogeneity
and autonomy of services.

18

2.2 Web Services
Medjahed and Atif (2007) describe a Web service as a set of related func-
tionalities, which is accessible through the Web. Concurring with this view,
Filho and Ferreira (2009) describe the primary goal of Web Services as facil-
itating Web-accessibility of business functionalities. Vaculín (2009, pp. 18–
19) provides a detailed analysis of the key aspects of Web Service definition
as provided by the World Wide Web Consortium (W3C). These key aspects
are:

• Description of Web service’s public interfaces and bindings which cap-
tures the functional and non-functional aspects of the described service,
using standards such as Web Service Description Language (WSDL)
(Chinnici et al., 2007);

• Identification of Web services by means of Universal Resource Identifi-
cation (URI);

• Discoverability which allows the descriptions of individual Web ser-
vices to be discovered using standards such as Universal Description,
Discovery and Integration (UDDI);

• Network-orientation which allows the Web service interaction by ex-
changing of messages using Internet protocol over a network such as
Simple Object Access Protocol (SOAP).

Conventional Web Services are considered to be more syntactic and less
dynamic thus making automated Web Service discovery and composition
difficult (Dimitrov et al., 2007). This necessitates augmenting these syntactic
Web Services with some semantic layer Vaculín (2009, p. 22). Berners-Lee
(2003) expresses the vision to move from a human-only understandable and
static Web where machines (e.g. computers) merely display the data (e.g.
on Web browsers) to the kind of Web in which machines can understand and
automatically process the data. Achieving this vision has been impeded by
the lack of semantic descriptions within the traditionally static Web.

The semantic description of Web Services is the machine-understandable
metadata necessary to support automatic Web Service discovery, composi-
tion and invocation (Siddiqui and Seth, 2017; Chifu, 2010). Ontologies may
be viewed as connective structures that express the relationships between in-
formation resources on the Web as well as connecting these resources to their

19

formal terminologies (Fensel, 2003). Furthermore, ontologies represent the
conceptualizations or understanding of the meaning of things within a par-
ticular domain (Acuna and Marcos, 2006). Since ontologies make imparting
semantic data to Web resources possible, they are essential for enabling au-
tomatic service discovery, composition, and execution (Mtsweni, Biermann,
and Pretorius, 2014).

With the additional semantic descriptions supported by ontologies as
common conceptualization of domain knowledge (Mohebbi, Ibrahim, and
Idris, 2012), the Web service descriptions are amenable to machine under-
standing. This annotation of Web Services by semantic descriptions (Stoll-
berg and Fensel, 2010) leads to the concept of Semantic Web Services.

2.3 Semantic Web Services
The guiding principles and direction of Semantic Web Services are captured
by the World Wide Web Consortium (W3C) in the Semantic Web Service
Framework Overview (Battle et al., 2005). The key components of the Se-
mantic Web Service Framework (SWSF) are the Semantic Web Service Lan-
guage (SWSL) as well as the Semantic Web Service Ontology (SWSO).

The Semantic Web Service Language (SWSL), as explained by Konstanti-
nou et al. (2010), specifies the formal characterizations of Web Service con-
cepts as well as the descriptions of web Services themselves (Battle et al.,
2005). SWSL comprises two sub-languages; one based on First Order Logic
(FOL) which is aptly named SWSL-FOL and is used to express the ontology
of Web Service concepts. The second sub-language (SWSL-Rule) is based on
the Rules or Logic-Programming paradigm and is used to support reasoning
over Web Service ontologies.

The Semantic Web Service Ontology, on the other hand, presents a con-
ceptual model and the ontology for describing Web Services. To this end,
SWSO defines two types of ontologies; one based on First Order Logic re-
ferred to as the First Order Logic Ontology for Web Services (FLOWS) and
the other based on Rules/Logic Programming named the Rules Ontology for
Web Services (ROWS). Battle et al. (2005) provides a cursory discussion of
both SWSL and SWSO in the context of the Semantic Web Service Frame-
work (SWSF) and links to W3C submission documents on each of these
components.

The remainder of this section draws from Battle et al. (2005) together with

20

other resources and discusses the theoretical grounding of research efforts
such as OWL, OWL-S, WSMO and WSML among others.

Semantic Web is a paradigm shift purported to address the lack of se-
mantic descriptions in the current Web. According to Mohebbi, Ibrahim,
and Idris (2012, p. 65) the goal has been to extend current Web by intro-
ducing machine-understandable semantics to Web resources. In the case of
Semantic Web Services this extension is done by annotating Web Services
with ontology-based descriptions to enable reasoning over these descriptions
by ontology reasoning tools including software agents (Mohebbi, Ibrahim,
and Idris, 2012, p. 66). According to Souza Neto, Moreira, and Musicante
(2018), a Semantic Web Service is basically a Web Service with a description
that defines its semantics in a computer-interpretable language (de Souza
Neto, Moreira, and Musicante, 2018).

Semantic Web Service may be construed as the combination of Seman-
tic Web and Web Service technologies (Bruijn et al., 2008). There are two
broad directions in the technology development of Semantic Web Services for
Internet-scale distributed computing which Slimani (2013) discusses; namely
the formal specification driven WS-* direction and the REpresentation State
Transfer Protocol (REST) architectural direction of the World Wide Web.
According to Slimani (2013), the WS-* set of specifications follows the mes-
saging paradigm and specialized service interfaces, defining standardized in-
frastructure protocols for security and transaction management among oth-
ers. On the other hand, the REST direction exploits the architectural style of
the World Wide Web and considers Web services as sets of network-accessible
resources which can be retrieved and consumed on the back of HTTP Internet
infrastructure.

In discussing the classification of approaches to the semantic description
of Web Services, Slimani (2013) depicted and contrasted the bottom-up and
top-down approaches to semantic enrichment of Web Services in what he
calls a Web Service description approaches taxonomy. Figure 2.2 depicts the
taxonomy in terms of the two broad categories of approaches to semantic
enrichment of Web Service descriptions.

21

Figure 2.2: Semantic Web Service Approaches Taxonomy (adapted from Sli-
mani, 2013)

Figure 2.3 shows the break-down of the top-down and bottom-up cate-
gories in the RESTful approaches taxonomy:

Figure 2.3: Approaches to RESTful Semantic Web Services (adapted from
Slimani, 2013)

Following the REST architectural principles to the description of Seman-
tic Web Services, a new breed of Semantic Web Services emerged and is
called the RESTful Semantic Web Services (Hernández and Moreno García,

22

2010). Figure 2.3 above locates the two main approaches to achieving these
RESTful Semantic Web Services. According to Lanthaler and Guetl (2011),
the emergence of these RESTful Semantic Web Services has been chiefly
motivated by the fact that the traditional RESTful Web Services closely re-
semble the document-based Web, and are thus perceived as less complex and
less disruptive. Furthermore, the traditional RESTful Web Services provide
read-write interfaces to the underlying data through the use of Application
Programmer Interfaces (the REST APIs).

As far back as 2011, Lanthaler and Guetl (2011) noticed that many data
publishers, and Web developers, chose to publish their data in the form of
Web Services. The reasons given for this preference of Web Services over
Semantic Web Services for publishing data were given as follows (Lanthaler
and Guetl, 2011):

• No clear incentives for developers to use the Semantic Web Service
technology stack;

• Developers feel overwhelmed by the complexities of the Semantic Web
technology stack - the phenomenon that authors referred to as "Sema-
phobia";

• Enterprises perceive the Semantic Web as a disruptive technology, feel-
ing that it will not be possible to build upon existing infrastructure
investments to evolve their current business systems;

• Contemporary Semantic Web approaches usually provide just the read-
only interfaces to the underlying data, thus inhibiting the networking
effect and participation of the crowd.

In yet another study, Mtsweni, Biermann, and Pretorius (2014) discussed
what they considered the main challenges that are contributing to the lack
of real-world implementation and adoption of SWS:

• Lack of effective developer tools,

• Disruptive nature of SWS due to non-integration of SWS technologies
into existing technologies,

• High costs associated with adopting the service-oriented architectures,

23

• The high complexity of prominent heavy-weight semantic models, re-
sulting in a steep learning curve

• Concerns over contradictions and lack of consensus in semantic model-
ing standards.

This trend persists to this day (2020) and is responsible for the sluggish
adoption of Semantic Web Services as mainstream enablers for Web of Data.

In highlighting the challenges impeding the adoption of SWS, Mtsweni,
Biermann, and Pretorius (2014) proposed a model-driven approach for de-
signing and developing SWS using semantic description languages and ser-
vice description languages that a developer may prefer. The adoption of this
promising approach by the developer community has not been reported.

For their contributions, Lanthaler and Guetl (2011), as well as Lan-
thaler (2012), focused on an approach to integrate RESTful Web Services
into the Web of Data in which the underlying semantic graph data can be
consumed through RESTful-API styled interfaces. For example, Lanthaler
and Guetl (2011) introduced an algorithm to translate SPARQL queries to
HTTP requests based on a semantic description language for RESTful data
services called SEREDASj. According to Lanthaler (2012), SEREDASj spec-
ifies the syntactic structure of a specific JSON representation. Additionally,
SEREDASj allows referencing JSON elements to concepts in an ontology and
further describe these elements by semantic annotations.

In terms of the formal WS-* specification direction, and as depicted in
the approaches taxonomy in Figure 2.4, the approaches to realizing Semantic
Web Services can be classified into bottom-up and top-down (Bruijn et al.,
2008). Figure 2.4 shows the break-down of the top-down and bottom-up
categories in the WS-* approaches taxonomy:

Figure 2.4: WS-* Approaches Taxonomy (adapted from Slimani, 2013)

24

The bottom-up approaches add semantic annotations to existing Web ser-
vices standards such as WSDL with semantic descriptions (Mohebbi, Ibrahim,
and Idris, 2012, p. 66) and thus leading to frameworks such as WSDL-S
(Akkiraju et al., 2005), SAWSDL (Kopecký, Vitvar, et al., 2007), METEOR-
S (Patil et al., 2004) and WSMO-Lite (Kopecký and Vitvar, 2008).

Whereas bottom-up approaches extend the existing technologies by in-
troducing semantic descriptions, the top-down approaches introduce new in-
dependent semantic description frameworks that use ontology as a concep-
tualization formalism for describing Web services and then grounding these
semantic-enriched descriptions to current Web services standards. Bruijn et
al. (2008, pp. 1–3) describe two common top-down approaches, which are:

• OWL-S - the use of the Description Logic (DL) based Web Ontology
Language (OWL) as a framework for describing services and which is
aptly named OWL-S;

• WSMO - the use of a language-agnostic conceptual model for de-
scribing Web Service which is named Web Service Modeling Ontology
(WSMO)

The research efforts that looked at comparative analysis of Semantic Web
service frameworks include (Mohebbi, Ibrahim, and Idris, 2012; Ayadi and
Ben Ahmed, 2011; Akkiraju, 2007). Slimani (2013) further looked at the
classification of semantic description of Web Services, contrasting the top-
down and bottom-up approaches to realizing the Semantic Web Services.

OWL-S presents an upper ontology that describes the properties and
capabilities of Web services using OWL (Martin et al., 2004). According to
this ontology a service is described in three main aspects (Mohebbi, Ibrahim,
and Idris, 2012, p. 67). Firstly a service model captures how the service works
and how it may be invoked. Secondly, the service also presents a service
profile which describes what the service does in terms of its capabilities and
thus supporting automated match-making and discovery. Service profiles
include both functional and non-functional aspects of a Web service. Thirdly,
and lastly the service grounding describes how a service can be accessed.

In terms of the three aspects of the upper ontology, the service model
is of interest to this study because it enables, among other tasks, service
enactment activities which include invocation and monitoring.

The second most common top-down approach to Semantic Web Service,
also treated by Mohebbi, Ibrahim, and Idris (2012, pp. 68–69), is the Web

25

Service Modeling Ontology (WSMO). WSMO provides a conceptual model
for semantically describing a Web service without prescribing any specific
language but rather imposing that any language implementation of WSMO
adhere to the conceptual model (Mohebbi, Ibrahim, and Idris, 2012, p. 68;
Bruijn et al., 2008, p. 2).

Web Service Modeling Language (WSML) is a language implementation
of WSMO (Bruijn et al., 2008; Slimani, 2013). The Web Service Modeling
Language has to provide means for describing three key aspects of a service
namely (1) functional aspects which captures the functionality of a service,
(2) the behavioural aspects which describes messages (content) to be sent by
or received by a service, and finally (3) the non-functional aspects (e.g. price,
availability) which inform the selection of a particular service (Bruijn et al.,
2008, pp. 20–21). In this sense, and according to Slimani (2013), WSML
serves as a language for describing domain-specific semantic models. WSML
provides a language for describing the four top-level elements of the WSMO
conceptual model, namely Ontologies, Goals, Web Services and Mediators.
Specifically, WSML provides sub-languages for the following three functions
(Bruijn et al., 2008, p. 2):

• Sub-language for describing ontologies which provide the terminology
and domain knowledge for service descriptions;

• Sub-language for describing functional aspects of a service which cap-
ture functionality required to satisfy consumer goals or the functionality
provided by a service;

• Sub-language for describing the behavioural aspects of a service and
service interfaces;

Bruijn et al. (2008, pp. 36–61) describe and thoroughly treat the five
WSML sub-languages or variants as well as their surface syntaxes.

Mohebbi, Ibrahim, and Idris (2012) present a review and comparative
analysis of the four Semantic Web Service approaches (OWL-S, WSMO,
WSDL-S and SAWSDL). The results of their comparative analysis show that
in terms of the criteria set out in Mohebbi, Ibrahim, and Idris (2012, pp. 71–
73) both OWL-S and WSMO (top-down approaches) are superior to WSDL-
S and SAWSDL (bottom-up approaches). Based on these results Mohebbi,
Ibrahim, and Idris (2012, p. 75) concluded that WSMO and OWL-S repre-
sent semantically richer frameworks for describing Semantic Web Services.

26

In view of what Mohebbi, Ibrahim, and Idris (2012) had found in terms
of the semantic richness of WSMO and OWL-S, Chapter 3 explores these
frameworks as viable options to support Semantic Web Services Monitoring.

To summarize the preceding discussion on Semantic Web Services a mod-
ified Semantic Web services cartography (Nacer and Aissani, 2014, p. 136) is
presented in Figure 2.5 and captures the relationships between technologies
and standards that enable Semantic Web services.

Figure 2.5: Semantic Web Service Cartography (adapted from Nacer and
Aissani, 2014, p. 136)

The cartography in Figure 2.5 conveys the idea that the evolution of the
traditional document Web into Web Services and the data Semantic Web,
and finally the Semantic Web Services followed two trajectories (Nacer and
Aissani, 2014, p. 136): (1) the addition of dynamic elements (specifically
XML) to the Web leading to technologies such as XHTML, SOAP, WSDL,
and UDDI, and (2) the enhancement of the syntactic descriptions of Web
resources by adding formal characterizations (ontologies) and semantic an-
notations.

27

By way of concluding the discussion on the theoretical principles of Se-
mantic Web Services and as a way of describing the state of art in Semantic
Web Services research, the next section looks at the technologies that enable
Semantic Web Services. Specifically, the section presents some of the on-
tology editing tools, reasoners and execution engines as well as technologies
used to store the semantically enriched web of data.

2.4 Ontology Engineering Tools: Technologies
Enabling Semantic Web Services

There is a focused discussion on ontologies at a more conceptual and theoret-
ical level which covers the formalisms and languages used in the development
of ontologies in Chapter 3 (see Section 3.4.1), the focus in the current section,
however, is on the tools that enable the Semantic Web Services, including
the capabilities to edit or create ontologies.

Slimani (2015) discuss several tools created for developing ontologies us-
ing languages or formats such as XML,RDF, RDFS (RDF Schema). Much
earlier, Duineveld et al. (2000) referred to these tools as Ontology Engineer-
ing Tools. A relatively recent study was conducted by Malik (2017) and
performed a usability evaluation of several such ontology engineering tools.

2.4.1 Resource Description Framework (RDF)

The Resource Description Framework (RDF) is recommended by the World
Wide Web Consortium (W3C) as the standard for publishing descriptions
of data resources on the Web. RDF is a unified data model for describing
resources over the Web of data, reflecting how these resources are stored and
interlinked (Lanthaler and Guetl, 2011). Essentially, RDF is a data model
for representing information about resources on the Web (Ma, Capretz, and
Yan, 2016).

RDF defines the triples consisting of resources, properties and values
where a resource is an entity accessible by a URI, and a property defines a
binary relation between resources or literals, and a value represents a literal
or even a resource (Liu et al., 2019).

The RDF Schema (RDFS), according to McBride (2004), is the vocabu-
lary description language for RDF. Liu et al. (2019) see RFDS as providing a
data modeling vocabulary and syntax to RDF descriptions and enforces the

28

structural constraints to support the proper expression of semantics. The
code listing in Figure 2.6 below shows an example of RDF in XML format
usually denoted as RDF/XML:

Figure 2.6: RDF/XML Sample Ontology Description

The RDF data model forms the foundation for RDF-based technologies
such as the SPARQL query language and the RDF-based data exchange
formats such as RDF in XML syntax (RDF/XML). For instance, Liu et
al. (2019) sought to exploit RDF to achieve the representation of machine-
processable biomedical data as a possible application of this technology.

SPARQL is the standardized query language and protocol for accessing
RDF and defines how to retrieve graph-based RDF data (Prud’hommeaux
and Seaborne, 2008). SPARQL is developed by the W3C RDF Data Access
Working Group 1.

Chooralil and Gopinathan (2015) conceded that recognizing the second
or higher order associations between the resources on the Web of data has
remained challenging. Their contribution was to develop Semantic Resource
Description with Compound Protocol (SRD-CP) as an architectural frame-
work for processing the expanded user queries and identifying the associ-
ations between the Web resources and user-fetched queries (Chooralil and
Gopinathan, 2015, p. 725). The SRD-CP is based on RDF patterns and uses
the RDF query language (i.e. SPARQL).

1 http://www.w3.org/2001/sw/DataAccess/

29

The need to exchange large datasets, especially in the document-centric
and human-readable Web, has exposed the drawbacks of traditional RDF
representations. The key problems with these datasets are the high levels of
verbosity/redundancy and the weak machine-processable capabilities in their
descriptions. According to Fernández et al. (2013), addressing these problems
requires efficient formats for publication and exchange of large datasets.

Fernández et al. (2013) developed an RDF representation that modu-
larly partitions and efficiently represents three components of RDF datasets
namely (1) Header information, (2) a Dictionary, and (3) the actual Triples
structure and called it HDT.

Another study that also looked at the challenge of processing larger RDF
dataset is that of Huang, Abadi, and Ren (2011). They dealt with RDF
datasets that needed to be partitioned across multiple machines to achieve
reasonable query performance. To achieve this, Huang, Abadi, and Ren
(2011) developed a scalable RDF data management system which consisted
of three main tasks: (1) leveraging single node RDF-store technology (2)
partitioning the data across multiple nodes and (3) decomposing SPARQL
queries into high-performance query fragments.

Zeng, Yang, et al. (2013) introduced a distributed, memory-based graph
engine for web-scale RDF data storage and processing called Trinity RDF. In
their approach, the RDF data is stored in its native graph form as opposed
to using the triple stores or bitmap matrices. According to Zeng, Yang,
et al. (2013), storing RDF data in its native graph form like this achieves
comparatively better SPARQL query performance.

Abdelaziz et al. (2017) suspected that the distributed SPARQL engines,
such as those discussed above, exhibit trade-offs that are not well-understood
because no comprehensive quantitative and qualitative evaluations had been
conducted on them. In their study, Abdelaziz et al. (2017) surveyed 22 state-
of-the-art distributed RDF processing systems or engines. A representative
sample of these systems was evaluated based on preprocessing cost, query
performance, scalability and workload adaptability. Based on this work, Ab-
delaziz et al. (2017) formulated a framework for the evaluation of distributed
RDF processing engines.

In Semantic Web, and especially ontology engineering, the main usage
of RDF is as a standardized format for the representation of an ontology.
Ontology development/engineering requires careful considerations concern-
ing the Formalisms, Tools and Languages to be used in the development.
Slimani (2015, pp. 1–2) lists the following as some of the key considerations

30

for building ontologies from scratch:

• Specify the tool(s) for ontology development;

• Identify the ontology storage type and tool;

• Indicate if the required tool has an inference engine;

• Indicate if chosen tools have translators/adaptors for different ontology
languages (OWL, OWL-S, WSMO, etc) or formats (XML,RDF,Turtle,
etc);

• Specify which language(s) to use, including the preferred expressiveness
of such language(s);

• Verify that the chosen tool supports the preferred language, and that
the language is appropriate to support information exchange between
different applications;

• Decide whether the envisaged ontology-driven application requires in-
tegrating with other ontologies implemented in different languages;

2.4.2 Ontology Editors

One category of ontology engineering tools is the ontology editors. The ontol-
ogy editors are tools that allow users to visually manipulate, inspect, browse
and modify ontologies. Apache Jena2 is a free and open source Java frame-
work for building Semantic Web and Linked Data applications. Linked Data
applications use RDF data model to describe statements that link arbitrary
data resources on the Internet and use these RDF links to infer new facts
about the concepts in the ontology model (Hsu and Lyu, 2019). Another
usage of Apache Jena is reported by Shafi et al. (2018) in which Apache
Jena is used to parse the RDF ontology model file in order to extract Object
Oriented Model. Apache Jena provides the facilities for authoring ontology
models (RDF, RDFS and OWL, SPARQL) as well as rule-based inference
engine for reasoning over these ontology models. Apache Jena framework
also includes a query engine that supports SPARQL RDF query language.
SPARQL is the query language developed by the W3C RDF Data Access
Working Group. Apache Jena Fuseki is a SPARQL server.

2https://jena.apache.org/

31

A study conducted by Ranpara, Yusufzai, and Kumbharana (2019) com-
pares ontology building tools for contextual information retrieval . The on-
tology building tools being compared are: Protégé 3, Swoop 4, Apollo5, and
IsaViz6. These are the same tools that Kapoor and Sharma (2010) also looked
at earlier. These are the most popular open source tools in the category of
ontology editors.

• Protégé - a knowledge-based ontology editor providing graphical user
interface. It provides better flexibility for meta-modeling, and enables
the construction of domain ontologies. It allows for the definition of
classes, class hierarchies, variables, variable-value restrictions, and the
relationships between classes and the properties of these relationships;

• IsaViz - is a visual environment for browsing and authoring RDF mod-
els as graphs. IsaViz supports the ability to import RDF/XML and
N-Triples formats, and to export in the RDF/XML, N-Triples, Portable
Network Graphics (PNG) and Scalable Vector Graphics (SVG) formats.

• Apollo is a user-friendly knowledge modelling application. The mod-
elling is based around the basic primitives, such as classes, instances,
functions, relations and so forth. The Apollo knowledge base consists
of a hierarchy of ontologies.

• SWOOP is a Web-based OWL ontology editor and browser. It sup-
ports capabilities such as editing, comparing and merging ontologies.
SWOOP contains OWL validation and offers various OWL presenta-
tion syntax views. It has reasoning support and provides a multiple
ontology environment.

The list of ontology editing tools is not exhaustive and it is not the pur-
pose of this study to discover and describe all existing tools. It suffices to
show some of these tools as an indication of consistent attention to the task
of ontology engineering. Studies such as Kapoor and Sharma (2010) and
Slimani (2015) provide some coverage of other ontology engineering tools.

3http://protege.stanford.edu
4https://www.w3.org/2001/sw/wiki/SWOOP/
5http://apollo.open.ac.uk/index.html
6http://www.w3.org/2001/11/IsaViz/Overview.html

32

The next section illustrates the practical implications of Semantic Web
Service technology by use of a Service Delivery Lifecycle as an illustrative
framework.

2.5 Semantic Web Service Delivery Lifecycle
Framework

The practical implications of Semantic Web Service technology can be un-
derstood better when illustrated by way of a Semantic Web Service Delivery
Lifecycle (Kuropka et al., 2008) which captures the steps involved in the
processing of a service request in a service-oriented computing scenario.

There are researchers who have done SOC related research within the
health domain, for instance Calderón-Gómez et al. (2021) conducted per-
formance evaluation of common SOC architectural patterns for developing
eHealth applications. This study is not about eHealth applications at all and
the health-related scenario in Figure 2.7 is chosen arbitrarily to illustrate the
points around complex service composition. Similarly to our study, Zela Ruiz
and Rubira (2016, p. 119) developed an experimental "Delivering Clinical
Test Results System" around the clinical laboratory domain to demonstrate
the case of conflict between performance and accuracy QoS attributes of a
fictitious Web Service based application. Likewise a fictitious Semantic Web
Service called “Book Doctor Appointment" is used for illustrative purposes
only in our study.

The functionality of the “Book Doctor Appointment” service is such that,
given the medical condition, preferred date and location, it locates a doctor
and schedules an appointment with that doctor on behalf of the user. Figure
2.7 shows a simplified schematic of the service use case:

Figure 2.7: Book Doctor Appointment Service Scenario

33

In the illustrative scenario in Figure 2.7), the user/client interacts with a
logical "service" which hides the complexities of handling the location of the
available doctors and scheduling an appointment with one of the said doc-
tors. These hidden complexities are what the Semantic Web Service Delivery
Lifecycle will discuss in the following subsections.

The sub-cycles of the Semantic Web Service Delivery Lifecycle can be
understood as web service usage tasks as described by Bruijn et al. (2008,
pp. 17–18). The only difference is that in the delivery lifecycle framework,
the publishing of the service description is not visible because publishing
is not part of the provisioning of a service but rather the advertising of a
service.

Figure 2.8: Service Delivery Lifecycle (adopted from Kuropka et al., 2008)

The individual sub-cycles of the Semantic Web Service Delivery Lifecycle
are discussed in dedicated subsections that follow.

34

2.5.1 Planning Sub-cycle

The first step of service provisioning is to discover a service that matches the
functionality required by the consumer (Bruijn, 2008, p. 17). Upon receiving
a service request (e.g. Book a doctor’s appointment), the service delivery
platform searches the service space (e.g. Internet) for a service that matches
the service request as best as possible; this is matchmaking also referred to
as service selection. In the simplest case, such a service is found. However, if
a matching service could not be located, then the service delivery platform
searches the service space successively to discover those services that can
satisfy some aspects of the request until the entire service request has been
satisfied. This process is known as composition and also determines the order
in which these multiple services should be invoked (Bruijn, 2008, p. 17).

Web Service Composition (WSC) is the dynamic integration of multiple
Web Services to fulfill the requirements of the task at hand and is one of
the most important areas in the Web Services research. In fact, the service
composition plane of the Service Research Roadmap pertains to the roles
and functionality that are needed for the aggregation of multiple services
to form a composite service (Papazoglou, Traverso, Dustdar, and Leymann,
2008). Furthermore, Papazoglou, Traverso, Dustdar, and Leymann (2008)
discuss some of the significant challenges to be overcome if Web Service
Compositions and Service-Oriented approach to distributed applications are
to be widely adopted by the industry. Some of these challenges are: the lack
of technologies, methods and tools that support an effective, flexible, reliable,
easy-to-use, low-cost, dynamic and time-efficient composition of services.

Papazoglou, Traverso, Dustdar, and Leymann (2008) further mention the
autonomic composition of services as one of the key research challenges in
Web Service Composition (WSC). When arranging atomic services, the cor-
rect order of executing these services are important and must be maintained
to achieve the overall goal of the user request. To address this, Raj et al.
(2015), proposed an architecture that exploits the abductive event calculus
by using the abductive theorem prover to generate a plan for the correct
order of execution of the atomic services.

Lara Calache and De Farias (2020) noticed that contemporary tools for
semantic annotations using SAWSDL only support the annotation process
at a low levels of abstraction, and as such expect the users to have extensive
technical knowledge of both XML and WSDL technologies. In addressing
this limitation, Lara Calache and De Farias (2020) developed a graphical

35

annotation tool to support collaborative composition of Semantic Web Ser-
vices based off the SAWSDL. The work of Lara Calache and De Farias (2020)
contributes towards addressing the challenge of developing easy-to-use tools
for Semantic Web Service composition.

Autonomic Service Composition (ASC) is based on the tenet of SOC that
services are the basic building block of distributed applications and that such
distributed applications are developed by combining existing services. Ac-
cording to Agarwal et al. (2008), the automatic composition of Semantic Web
Services can be accomplished in a four-stage nominal process: planning, lo-
cating or finding a candidate services, selecting the best candidate services
and executing the selected service. In their proposal of a formal specification
of adaptable Semantic Web Services Composition, Ben Lamine, Jemaa, and
Amous (2018) use an ontology-based context model for extending Web ser-
vices descriptions with metadata about the most suitable context for using
the Web service being described. In their work on composition context-
based Web Service similarity measure, Zhang, Zeng, et al. (2019) proposed
the use of PersonalRank and SimRank++ algorithms to measure similari-
ties between two Web Services to construct what they termed "composition
context network".

A solution such as that proposed by Ben Lamine, Jemaa, and Amous
(2018) with the usage context included in the description helps locate the
most suitable candidate services. Louge et al. (2018) developed an automatic
Semantic Web Service composition approach for the astrophysics domain
which, as part of the composition, also includes non-Web Services. In terms
of the selection criteria, Louge et al. (2018) apply both the non-functional
requirements and the user’s previous experience feedback to select the most
suitable candidates for composition.

Siddiqui and Seth (2017) recognised the task of service selection as a case
of solving the Service Selection Effort (SSE) estimation problem in service-
based applications. In order to estimate the SSE, Siddiqui and Seth (2017)
applied an algorithm based on the Information Entropy Weight (IEW), the
fuzzy comprehensive evaluation model, in which case the synthesis perfor-
mance of each candidate service is evaluated to select the most preferred
service (Siddiqui and Seth, 2017). Using this model, the candidate service
with the highest synthesis performance has a better chance of being selected.

In terms of publishing, discovering and composing services, Bruijn et al.
(2008, p. 20) states that there needs to be functional descriptions of services;
the means by which the functionality of service can be described.

36

Some of the research activities in this sub-cycle include a systematic re-
view conducted by Huf and Siqueira (2019), the research on topics such
as Quality of Services (QoS) aware service composition (Hayyolalam and
Pourhaji Kazem, 2018), automatic service composition (Paik, Chen, and
Huhns, 2014), service selection (Louge et al., 2018; Siddiqui and Seth, 2017;
Akingbesote et al., 2013; Reiff-Marganiec, Yu, and Marcel, 2009), and Web
Service similarity measure (Zhang, Zeng, et al., 2019), and match-making
(Paulraj, Swamynathan, and Madhaiyan, 2011; Cimpian et al., 2008; Med-
jahed and Atif, 2007; Zeng and Ying, 2008).

2.5.2 Binding Sub-cycle

The most important aspect of service composition is the concept of late
binding; the composite service is effectively an abstract service composed of
standardized descriptions of atomic services which are subsequently bound to
concrete executable instances of such services. This happens in the binding
sub-cycle which involves negotiation of any negotiable non-functional prop-
erties of a service (e.g. response time) and then signing the digital contracts
or agreements to guarantee the negotiated service properties. Bruijn et al.
(2008, p. 21) indicate that to enable service binding the non-functional de-
scription of a service is necessary to capture properties such as Quality of
Services (QoS) parameters like response time, price, and availability.

Liu (2011) explains Service Level Agreement (SLA) as an instrument, a
digital contract that defines the relationship between the service provider
and consumers (Kowalkiewicz, Ludwig, et al., 2008). These digital con-
tracts are mainly realized through frameworks such as the Web Service Level
Agreement (WSLA) (Keller and Ludwig, 2003) as well as the Web Service
Agreement (WS-Agreement) (Andrieux et al., 2007). More recently, Telang,
Kalia, and Singh (2014) presented a form of digital contract that employs
Service Engagements and Commitments. Telang, Kalia, and Singh (2014)
argue that such an approach more accurately captures the business relation-
ships between the service participants. This is because a service engagement
involves the interaction between two or more autonomous parties as they
pursue their business relationships. Through a commitment, a service par-
ticipant commits to the other participant to bring about some consequence if
the prerequisite condition (antecedent) holds true (Telang, Kalia, and Singh,
2014, p. 47).

The agreements are usually established around a set of quality of service

37

(QoS) parameters. In this regard, Michlmayr et al. (2009) present the QoS
model which classifies QoS parameters in terms of performance, dependabil-
ity, security and trust, as well as cost and payment. Another work with a
similar focus was that of Artaiam and Senivongse (2008), which is prompted
by the observation that monitoring tools tend to focus on a limited number
of QoS parameters and therefore unable to address requirements in practice.
Artaiam and Senivongse (2008) proposed an enhanced QoS metric for avail-
ability, accessibility, performance, reliability, security, and regulatory aspects
of a service. Their proposed solution aims to enhance service-side monitoring
of Web Services; the QoS metrics are computed on the service-side.

Service binding can be done in two ways according to Kowalkiewicz, Lud-
wig, et al. (2008):

• Binding by selection – this is about selecting and integrating the
most suitable atomic services into the end-to-end service composition.

• Binding by Agent-Based Negotiation – this approach uses soft-
ware agents to negotiate terms of agreement. Software agents are au-
tonomous computer systems that are capable of independent actions
on behalf of the user. The negotiation follows certain set of rules that
define the circumstances under which interaction between agents takes
place – such rules form what is commonly known as the negotiation
protocols. The most common of such protocols are Contract Net Pro-
tocol (CNP) and Iterated Contract Net Protocol (ICNP), developed by
the Foundation for Intelligent Physical Agents (FIPA).

2.5.3 Enactment Sub-cycle

Once the binding has occurred, the functionality provided by the service
or service composition can be invoked and the execution results are sent to
the service consumer; this is done in the enactment sub-cycle. The task of
invoking a service requires behavioural and interface descriptions of a service
which capture the description of message content to be exchanged as well as
the interactions (Bruijn et al., 2008, p. 21).

In terms of enactment of services or service compositions, Kowalkiewicz,
Momotko, and Saar (2008) identified five main enactment strategies:

• First-contract-all-then-enact strategy – which requires that service se-
lection and contracting of all atomic services is done before execution

38

so that functional and non-functional properties can be guaranteed
(Babaee and Babamir, 2013). Some of the conditional branches might
not get invoked, thus rendering the contracting and negotiation ineffi-
cient.

• Step-by-step-contract-and-enact strategy – instead of contracting all
atomic services first, this strategy starts with the first atomic service
in the service composition flow; contracting, execution and monitoring
are done for each subsequent atomic service. This way, the contracting
and negotiation can be done more accurately and efficiently because
only invoked atomic services are contracted.

• Late-contracting-then-enact strategy – this strategy contracts and en-
acts only those atomic services that will undoubtedly be executed
within a given composition. Thus, rather than contracting conditional
branches that may never get invoked, it delays the contracting (hence
late-contracting) until such a branch is known to being taken, in which
case it contracts all atomic services on the satisfied branch.

• First-contract-plausible-then-enact strategy – this strategy relies on his-
torical data of previous executions to select and contract all those
atomic services that belong to one composition path which is most
likely to be executed.

• First-contract-critical-then-enact strategy – this strategy selects and
contracts first those atomic services for which there is small number of
service candidates than for other atomic services in the service compo-
sition. Such services are critical in the sense that they are “hard” to be
contracted dynamically, given the small number of candidates.

Kowalkiewicz, Momotko, and Saar (2008, p. 149) provide a set of simple
rules that inform the decision to use each of the enactment strategies above.
However, even with the aforementioned composition enactment and contract-
ing strategies, there is still a need for a mechanism to perform continuous
supervision of the ongoing service enactments Kowalkiewicz, Momotko, and
Saar (2008, p. 149). This supervision is achieved through service monitoring
and profiling.

Monitoring entails the collecting performance and operational data for
services during execution time and thus represents the source data for service

39

profiling. Service profiling involves using the performance and operational
data from the monitoring function to derive a condensed description of the
service in terms of its non-functional properties. The conceptual principles as
well as the monitoring mechanisms for Semantic Web Services are discussed
in detail in Chapter 3.

In the enactment sub-cycle there are two possible exit points when a
failure is detected, namely re-binding (see binding sub-cycle in Figure 2.8)
and re-planning (see planning sub-cycle in Figure 2.8). Should any errors
or failure be detected, the service delivery platform will attempt to redo
the binding, which may involve re-negotiation and contracting possibly with
the adjusted service properties (for example a longer response time). The
earlier work done by Comuzzi and Pernici (2005), for instance, is about
employing different negotiation strategies to negotiate the Quality of Service
(QoS) parameters. In instances where the re-binding of a service is not
possible or desirable, re-planning is done; this is the complete re-assembling of
service components. In terms of the service provision lifecycle, a re-planning
is performed as a strategy whereby a new service is found to replace the
failing service and the entire process is repeated from planning through to
enactment.

Some of research activities in the enactment sub-cycle and specifically on
approaches to service monitoring will be looked at more critically in the next
chapter dedicated to Semantic Web Service Monitoring. The most neglected
area in developing the Semantic Web Service based applications is the area of
testing to ensure a certain level of quality of the software itself. Souza Neto,
Moreira, and Musicante (2018) conducted a Systematic Mapping to identify
and characterize the existing initiatives for SWS testing.

2.6 Semantic Representation of Cloud Comput-
ing Services

Semantic representation of Cloud Computing services is an emerging area of
research in the application of Semantic Web technology. Di Martino et al.
(2014) contend that the application of Semantic Web technology and meta-
data can be applied to Cloud Computing and can yield benefits within and
across the Cloud platforms. One such benefit, according to Di Martino et
al. (2014, p. 647), is being able to provide machine-processable descriptions

40

of Cloud-based resources and cloud services. This capability will in turn
enable the automatic evaluation, navigation and consumption of Cloud-based
resources and services.

The work of Di Martino et al. (2014) focused on adding semantic and
platform-agnostic description to functional as well as the non-functional as-
pects of Cloud service and enriching the API with meta-data to overcome
syntactic differences and reconcile similar semantics between APIs from dif-
ferent providers. They used Microsoft Windows Azure APIs as their use case
and created the semantic representation of these APIs to describe the func-
tional and non-functional properties of the Cloud-based services. As reported
by Di Martino et al. (2014), the OWL-based ontology was used to describe
the Cloud-provider agnostic concepts and the OWL-S was used to describe
the real Windows Azure Cloud Services. The work of Şimşek, Kärle, and
Fensel (2018) is very similar to that of Di Martino et al. (2014) in that they
focus on semantic annotation of Web APIs.

Noting that the focus of most research efforts into the semantic annotation
was limited annotating the data, Şimşek, Kärle, and Fensel (2018) proposed
the semantic annotation of Web APIs based on the Schema.org 7 in order to
support automated service consumption.

Another area of application of Semantic Web technology in Cloud Com-
puting is around the non-functional aspects of Cloud-based services. Green-
well, Liu, and Chalmers (2015) proposed a Description Logic (DL) driven
approach to specifying cloud service agreements and modeling these Cloud
service agreements as ontology. In responding to the problem of lack of stan-
dard nomenclature for Cloud Service Agreements (CSA) terms as outlined
by the Cloud Standards Customer Council (CSCC), Greenwell, Liu, and
Chalmers (2015) defined and developed an ontology for the Customer Agree-
ments (CA), Acceptable Use Policies (AUP) both of which are the artifacts
of CSA.

Also focusing on the semantic description of Cloud SLAs, Mittal et al.
(2016) propose an automated process of extracting, managing and monitor-
ing Cloud SLAs using Natural Language Processing (NLP) techniques and
Semantic Web technologies. According to Mittal et al. (2016), the key lim-
itations of ordinary Cloud SLAs is that these contractual documents are in
plain text format suitable only for human readability. Their approach was to
develop NLP-based techniques for extracting SLA details from the contrac-

7 https://schema.org/

41

tual documents, describing the extracted SLA information using an ontology
that they had developed to support reasoning over the Cloud SLAs. Mittal
et al. (2016, p. 140) contend that a critical step in automating Cloud Service
Management is to make the Cloud SLAs machine-readable so that software
agents can be used for service monitoring, ensuring that the service performs
as expected in terms of service contracts. This ability to reason over the SLA
also means that the software agents can be used to interpret and enforce the
policy rules such as the Acceptable Use Policies (AUP).

Likewise, this study proposes and develops a Monitoring Information eX-
change (MIX) protocol for exchanging monitoring information which is based
on the idea of making the monitoring information machine-processable by
having this information enriched with semantic annotations. Using the Cloud
SLA as an example, the MIX protocol could provide a mechanism for soft-
ware agents to enforce the contracted SLA by monitoring the Cloud service
based on the published SLA.

2.7 Summary
This chapter followed the nominal structure of a literature survey on Se-
mantic Web Service. It discussed the classical Web services and its related
standards and technologies. The discussion then moved to highlight the limi-
tations of the classical Web services and thus making a case for Semantic Web
Services. Discussion on Semantic Web Service then followed and presented
the more theoretical principles of Semantic Web Services. The chapter then
used the Semantic Web Service Delivery Lifecycle as an illustrative frame-
work to capture the overview of the Service Oriented Computing (SOC)
domain and to capture the practical implications of Semantic Web Service
technology. In keeping with the Semantic Web Service Delivery Lifecycle,
the chapter discussed each sub-cycle in detail, from the Planning Sub-cycle,
and the Binding Sub-cycle, and finally the Enactment Sub-cycle.

The next chapter presents a focused literature on Semantic Web Service
Monitoring concepts and approaches.

42

Chapter 3

Semantic Web Service Monitoring

This chapter discusses the conceptual principles of Semantic Web Service
Monitoring (Section 3.1) and the actual monitoring mechanisms in Section
3.2. The fundamentals of Quality of Service (QoS) are discussed in Section
3.3 to develop a working definition of QoS, which is itself a key subject of
monitoring. This is followed by a discussion, in Section 3.4, on the approaches
to semantically describing QoS of Web Services. The review of related works
is presented in Section 3.5. Having reviewed existing approaches to Seman-
tic Web Service Monitoring and highlighted shortcomings of related works,
this study makes a case, in Section 4.2, for collaborative and corroborative
monitoring of Semantic Web Services.

3.1 Conceptual Principles of Semantic Web Ser-
vice Monitoring

Monitoring involves the collection of performance and operational data for
services during execution time. It will be seen in the conceptual principles
of Semantic Web Service Monitoring in Section 3.1 that Semantic Web Ser-
vice Monitoring is essentially about reasoning over the semantically enriched
performance and operational data of a service. This section spells out what
is meant by Semantic Web Service Monitoring.

Semantic Web Service Monitoring may be understood as simply the use
of existing monitoring techniques to monitor the execution of Semantic Web
Services. This view of Semantic Web Service Monitoring de-emphasizes the
introduction of “semantic” as if the change in the nature of services being

43

monitored (Semantic Web Services instead of simply Web Services) has no
bearing on the nature of monitoring and the techniques thereof. It is argued
in this study that the monitoring of Semantic Web Services has serious im-
plications on the nature of monitoring itself. In view of this, Semantic Web
Service Monitoring (SWSM) is understood as the use of Semantic Web con-
cepts and technologies in the monitoring of services. Using this definition,
the approaches to Semantic Web Service Monitoring tend to take following
forms:

• Using ontologies to formally describe the quality of service (QoS) at-
tributes of services - this is useful to enable automatic service selection
since the software agents will be able to interpret the non-functional
aspects of the service. An example of this is the QoSOnt as well as the
OWL-Q discussed in Section 3.4.3 and Section 3.4.6 respectively;

• Using ontologies as a formal conceptualization framework for describing
service performance - using ontologies this way addresses the termino-
logical confusion that may arise during post-execution analyses. The
Performance Ontology (Gonsalves and Itoh, 2008) represents one ex-
ample of this approach;

• Enriching the service execution event logs with semantic annotations
- these are particularly useful in enabling software agents to reason
over historical service execution logs to determine whether the service
performed as expected or not. A good application of this is proposed
by Vaculín (2009).

The following section draws from contemporary literature on Semantic
Web Service Monitoring in terms of the three forms discussed above. Neces-
sarily, the discussion will cover monitoring aspects of both traditional Web
Services and Semantic Web Services.

Regardless of which perspective of Semantic Web Monitoring is adopted,
any monitoring system has to accomplish three critical functions (Vaculin,
2012, p. 3):

• Measuring of run-time metrics and key performance indicators;

• Measuring and evaluation of Quality of Services (QoS) metrics such as
response time;

44

• Enforcement of Service Level Agreements (SLA);

Therefore, monitoring entails collecting performance and operational data
for services during execution time (Wang et al., 2009). Due to the fact that
monitoring collects performance and operational data for a service during ex-
ecution, it provides the source data for both negotiation and service profiling.
This is because during service selection and match-making when functionally
equivalent services are found, their non-functional properties are considered
for negotiation – especially the historical performance data.

Monitoring also provide the source data for service profiling. Service
profiling entails the use of the performance and operational data from the
monitoring function in order to derive a condensed and data-driven descrip-
tion of the service in terms of its non-functional properties. In view of this,
a service profile is considered an up-to-date description of a service at any
given time (Kowalkiewicz, Momotko, and Saar, 2008, p. 153). By deriving
an up-to-date description of a service based on its historical performance
and operational data, service profiling enables the qualitative comparison of
candidate services during service discovery. The ability to perform this qual-
itative comparison of candidate services is a critical requirement for dynamic
service selection.

The dynamic selection of Web Services based on their historical perfor-
mance and other operational data is significantly improved by using ontolo-
gies to describe these data. With specific reference to monitoring, Vaculín
(2009, p. 122) lists the following as advantages of Semantic Web Service
Monitoring:

• Semantically enriched monitoring data can be shared and processed by
software agents;

• Semantic reasoning can be used to support more flexible service execu-
tion events detection;

• Semantically enriched execution traces or logs can be reasoned over
during post-execution analyses.

The health of the services is monitored for the lifetime of these services
in order to detect any deterioration in service quality which may lead to
breaching of the SLA.

Quality of a Service (QoS) as defined according to the Quality Model
for Web Services is what is being monitored. Kowalkiewicz, Momotko, and

45

Saar (2008, p. 149) warn that it is not practical to formulate the ultimate
set of monitoring attributes because of the domain-dependent nature of QoS.
Deriving such an ultimate set of monitoring attributes is a unique challenge
for generic service monitoring and profiling frameworks.

The classification of monitoring values (run-time metrics) that have a
bearing on the QoS is provided by Kowalkiewicz, Momotko, and Saar (2008,
p. 149) in terms four quadrants:

• Quality of Results – this captures the characteristics of the result con-
tent in terms of correctness or accuracy.

• Quality of Operation – this captures the quality of result delivery in
terms of the service delivery infrastructure. Most common QoS values
are related to this class of values as all services share this class of
properties.

• Resource-Level – this captures the characteristics of the execution en-
vironment itself.

• Implementation-Level – this captures the characteristics of the service
implementation.

This study confines its focus to performance-related quality attributes of
Semantic Web Services in which the performance and operational data being
collected are semantically enriched using ontologies. In this sense, the study
focuses on monitoring values in the Quality of Operation quadrant.

Having explored the conceptual aspects of Semantic Web Service Mon-
itoring in the preceding discussion, the next subsection looks at the actual
mechanism for performing monitoring.

3.2 Semantic Web Service Monitoring Mecha-
nisms

Service monitoring approaches are generally based on two common service
level agreement standards, specifically the WSLA (Keller and Ludwig, 2003)
and the WS-Agreement (Andrieux et al., 2007). Both WSLA and WS-
Agreement provide the ability to define monitoring parameter types.

46

Web Service monitoring approaches can be categorized into three main
groupings based on which component of the computing infrastructure carries
the responsibility of monitoring execution:

• Service-side monitoring – in this case, the monitoring is done by the
service provider, and all QoS parameters are understood from the per-
spective of the service provider;

• Client-side monitoring – in this case, the monitoring is done by the
service consumer or client, and QoS parameters are understood from
the client’s perspective;

• Off-site monitoring – in this case, the monitoring is outsourced, usually
by the service provider, to an impartial component (a separate process
and infrastructure) that is neither the client-side nor the service-side.

Although there is no formal framework, as of this writing, for charac-
terizing approaches to Web Service Monitoring, the current approaches to
monitoring can be readily categorized according to the above groupings. Zela
Ruiz and Rubira (2016, p. 116) discussed monitoring configurations which
are based on where the "monitor" component is running relative to the Ser-
vice Consumer and Web Service (producer). These configurations mirror
very closely the monitoring approaches as discussed above.

Literature analysis led to the identification of the following classes of
service monitoring:

• Monitoring by proxy - suggested by Jurca, Faltings, and Binder (2007),
here the proxy or broker runs the monitoring process/code - this is
easier to manage as the monitoring process is centralized. However, it
is costly because the proxy (being a go-between) increases overhead.
This can be considered as off-site monitoring and as such a dedicated
monitoring infrastructure is required.

• Monitoring using sampling - this is a variant of monitoring by proxy
whereby the monitor takes a sample (mainly historical performance/pro-
filing information) and deduces the quality of service - this reduces
overhead; however, the problem with this is that it is imprecise and re-
lies solely on historical performance information (Jurca, Faltings, and
Binder, 2007). This is also an off-site monitoring approach.

47

• Provider-Self-Monitoring (internal to the service provider, as part of
a service) - here, the service provider runs the monitoring process or
code. The mechanics of monitoring a service are built into the service,
eliminating any noticeable overhead. The client is at the mercy of the
service provider who is the sole source of performance information; this
is likely to be biased or untrustworthy (especially where penalties may
be incurred for violating performance agreements such as QoS). This
is a service-side monitoring approach.

• Monitoring by Client Feedback - as explicated by Jurca, Faltings, and
Binder (2007), in this client-side monitoring approach, the client runs
the monitoring code. The client-side monitoring code embeds preferred
performance metrics to check the services against. The benefit of this,
as opposed to service-side monitoring, is that it is independent of the
service provider who now cannot temper with the monitoring process.
There is no overhead and in terms of precision/accuracy - it may be
precise, but there is no reason not to believe that clients can deliber-
ately report incorrect information in an attempt to claim violation and
receive compensation through penalties - which may then make the
service significantly cheaper for them (they get some money back with
each penalty). This necessitates incentivising correct reporting so that
clients stand to gain nothing by lying about their service experiences
(in this instance, they will get a certain amount of money back with
each "honest report").

• Monitoring by surveillance ("Monitoring-as-Service") - in this case,
there is a dedicated monitoring service infrastructure that performs
surveillance, closely monitoring interactions between the service con-
sumer and provider, checking this behaviour against the agreed-upon
QoS/SLA. This is similar to passive monitoring strategy as discussed
by Zela Ruiz and Rubira (2016). In this approach neither the client
nor the service provider is burdened with monitoring concerns; it is
less intrusive. However, this is very expensive as it requires duplica-
tion of service provisioning infrastructure for a diagnostic/monitoring
function. We refer to this approach to monitoring as an off-site or
outsourced monitoring; it is outsourced by either the consumer or the
service provider – but usually the latter. Monitoring tools in this cate-
gory apply two monitoring strategies according to Cabrera and Franch

48

(2012), namely passive monitoring by sniffing the interactions between
service consumers and providers, and active monitoring by actively
requesting performance data from the service being monitored.

In addition to the three main classes discussed above, there is a specialised
technique for QoS monitoring which expresses the measurable QoS attributes
in terms of probability quality property in a way discussed by Grunske (2008).
The technique is aptly named probabilistic monitoring and is concerned with
monitoring the probabilistic properties of QoS (Grunske and Zhang, 2009).
Using this technique, the probabilistic property of the QoS parameter, such as
the response time, can be expressed as the probability that the response time of
a particular Web Service is within certain duration (example, 5 seconds). In
their experiment Zhang, Jin, et al. (2018) applied this technique to consider
the probabilistic characteristics of QoS.

Monitoring tools for Semantic Web Services, or Web Services more gen-
erally may fall into each of the categories or classes discussed above. Ac-
cording to Zela Ruiz and Rubira (2016), for instance, some monitoring tools
adopt either a passive monitoring strategy which is essentially a monitoring
by surveillance, or an active monitoring strategy which is a combination of
client-side and service-side monitoring approaches.

The monitoring tools were developed to perform a continuous and accu-
rate assessment of Semantic Web Services to ensure that the agreed SLA is
being honored (Cabrera and Franch, 2012). In their work on the use of qual-
ity model for analysis of Web Service monitoring tools, Cabrera and Franch
(2012) discussed several of these monitoring tools. Zela Ruiz and Rubira
(2016) also discussed monitoring tools but from the perspective of potential
risks and problems that can be introduced by intrusive monitoring tools. For
the purpose of this research, it is worth mentioning that none of the mon-
itoring tools discussed supported collaborative approach to monitoring or
the exchange of semantically enriched monitoring information between the
service consumer and service provider.

The preceding discussion made reference to Quality of Service (QoS) as
the basis of quality models for Web Services and thereat a key subject of
Semantic Web Service Monitoring. The next section (Section 3.3) discusses
the fundamentals of QoS.

49

3.3 Quality of Service (QoS) Fundamentals
Quality management and quality assurance vocabulary defines Quality of
Service (QoS) as a set of all the features and characteristics of a service
that have a bearing on the service’s ability to satisfy user/consumer needs
(ISO IEC 8402, 1994). Kritikos and Plexousakis (2007) aligned closely to
this definition, in that they view QoS as a set of non-functional properties
encompassing performance and network-related characteristics of resources.
Sabata et al. (1997) contend that an effective definition for QoS must rec-
oncile the intrinsic “subjectivity” of quality definition and the “objectivity”
required whenever two or more different perspectives of quality have to be
compared. Oriol, Marco, and Franch (2014) conducted a systematic review of
existing perspectives and proposals on quality models for Web Services pur-
porting to facilitate the reconciliation of existing definitions of quality factors
applicable to Web Service usage. Oskooei and Mohd Daud (2014) explored
the use of technical and non-technical QoS attributes for the evaluation of
Web Services.

A hierarchy of quality concepts (Figure 3.1) captures the relationship
between QoS, quality characteristics, quality attributes and the metric to
measure these quality attributes.

50

Figure 3.1: Hierarchy of quality concepts (adapted from Oriol, Marco, and
Franch (2014))

The relationship between the quality concepts depicted in the hierarchy is
such that QoS expresses the overarching quality features and characteristics
of a service. The quality characteristics of a service encompass all classes of
those features of a service that have a bearing on the objective service quality.
Quality attributes are those features of a service that have a bearing on the
quality of a service. In this regard, a key contribution of Michlmayr et al.
(2009) is a QoS model which classifies quality characteristics of a service in
terms of performance, dependability, security and trust, as well as cost and
payment. Quality metrics are the quantitative or qualitative measurements
of service quality attributes. The work of Artaiam and Senivongse (2008)
proposes enhanced QoS metrics for availability, accessibility, performance,
reliability, security, and regulatory aspects of a service.

Although the hierarchy of quality concepts (Figure 3.1) makes the rela-
tionship between these concepts explicit, terminological confusion still occurs
whereby researchers use the concepts such as quality attributes and quality
characteristics interchangeably. Oriol, Marco, and Franch (2014, p. 1169)
generalize the concepts of quality attribute and quality characteristic into

51

what they refer to as a quality factor.
QoS is comprised of a multitude of attributes as described above, this

study focuses specifically on those quality attributes pertaining to the per-
formance of a service. In this regard the service’s response time is considered
an important QoS attribute that characterizes the performance of a service.

Response time is a good candidate for collaborative and corroborative
monitoring because it is understood from two very different perspectives by
service providers and service consumers.This means that service providers
measure response time in a very different way from service consumers. From
the perspective of a service provider, the response time of a service is mea-
sured as the time between receiving service request to the time that the
response is sent out; in other words, service providers view response time
as an execution time. However, from the perspective of service consumers,
the response time of a service is measured as the time between sending the
request and receiving the response.

As shown in Makitla and Mtsweni (2015), these two perspectives on re-
sponse time lead to two different values when the same execution is observed.
The problem, in this instance, is that the same QoS parameter is understood
differently by both the service provider and the consumer (e.g. response time
vs execution time). This problem arises due to the fact that there is no gen-
eralized metric for calculating the response time. Such a generalized metric
would help to develop consensus on contracted QoS parameters. Makitla
and Mtsweni (2015) applied the descriptive statistical technique of linear re-
gression to develop a generalized metric for response time in the context of
Semantic Web Services. The generalized metric is given by Equation (3.1) :

Response− Time(generalized) = srt+ (az).ẋ (3.1)

The generalized response time in Equation (3.1) is arrived at by adding the
server-side response time (srt) and the product of the historical mean-error
(ẋ) and the historical average deviation of each error value from the mean-
error (az). As suggested in Makitla and Mtsweni (2015, p. 376), the adver-
tised QoS parameter for response time should be based on this generalized
metric.

The following section (Section 3.5) explains the relationship between ser-
vice description and service monitoring. This is important specifically be-
cause the OLW-S and WSMO semantic frameworks are actually considered
in terms of their semantic richness in describing Semantic Web Services and

52

their non-functional properties. An important feature that ought to be part
of any service description is the Quality of Service (QoS) because it is a major
factor for consideration during service discovery and selection. Information
contained in the QoS may relate to performance (e.g. response time, latency,
and throughput), availability, accessibility, and aspects of trust and security
among others. In Semantic Web Services, the idea is for the semantic an-
notations to be extended to the non-functional (QoS) aspects of the service
description as well.

3.4 Semantic Description of Quality of Services
This section discusses the rationale and the approaches to enriching non-
functional descriptions of Semantic Web Services using ontologies. With the
proliferation of Web Services came the problem that prompted the need to
enrich non-functional descriptions of Web Service with semantic annotations.
The problem was that service discovery was not sufficiently accurate and Web
Service registries will return many functionally-equivalent Web Services as
matches for the user request, or as candidates for Web Service composition.

Kritikos and Plexousakis (2007) proposed a possible solution to this by
way of an ontological specification that enables the semantic description of
QoS for Web Services. Such a semantic QoS-based Web Service description
complements a semantic framework like OWL-S which provides the seman-
tics for describing functional aspects of a Web Service. Although introducing
QoS as part of the service description may improve service discovery by facil-
itating the quantitative comparison of functionally equivalent Web Services,
there may still be lingering issues of semantic interoperability. These inter-
operability issues arise due to the fact that, according to Zhang and Yang
(2013), different service providers and consumers may use different QoS con-
cepts and models for describing service quality information (Tran, Tsuji, and
Masuda, 2009).

The application of semantic technology, specifically the ontology, is seen
as an enabler for semantic interoperability across various languages, concepts
and models that are used to describe QoS information (Tran, Tsuji, and
Masuda, 2009, p. 1379).

In order to make sense of both the case for semantically enriching non-
functional aspects of Semantic Web Service as well as the approaches to
doing so, it is necessary to discuss ontologies as they apply in Semantic Web

53

technology.

3.4.1 Ontologies

According to Vaculín (2009), an ontology is a formal explicit specification of
terms in the domain of interest and relations among them. In this sense, an
ontology serves as a common conceptualization of domain knowledge (Mo-
hebbi, Ibrahim, and Idris, 2012). Put differently, ontologies represent the
conceptualizations or understanding of the meaning of things or concepts
within a particular domain (Acuna and Marcos, 2006). Ontologies are also
often conceived as a set of entities, relations, axioms and instances within
some domain (Lera, Juiz, and Puigjaner, 2006, p. 28). Furthermore, and
as used in Semantic Web technology, ontologies represent the connective
structures that express the relationships between information resources on
the Web as well as connecting these resources to their formal terminologies
(Fensel, 2003).

Ontologies are important because they enable the communities of interest
(i.e. people or software agents) to perform the following key functions (Lera,
Juiz, and Puigjaner, 2006;Kritikos and Plexousakis, 2007):

• Sharing of common understanding,

• Reuse of domain knowledge - building ontologies based on other well-
defined ontologies,

• Making domain assumptions explicit,

• Separating domain knowledge from the operational knowledge, and

• Reasoning about concepts within a domain by performing logical infer-
ence.

In order to support intelligent analysis of and reasoning about Seman-
tic Web Service performance, it is necessary to develop performance domain
ontologies. As mentioned in Section 3.3, QoS represents a set of all the fea-
tures and characteristics of a Semantic Web Service, enabling it to satisfy
user requests and preferences. In view of this, the QoS expresses the over-
arching quality features and characteristics of a Semantic Web Service chief
among which are the performance-related characteristics. Verily the seman-
tic specification of QoS is invariably achieved through the development of

54

performance ontologies. Consequently, the QoS ontologies being discussed in
the following subsections represent the basis for the semantic description of
performance characteristics of Semantic Web Services.

For the semantic description of QoS aspects of Semantic Web Services
to be possible, a high-level service ontology is required which will serve to
promote consensus around quality aspects of Semantic Web Services. It is
important to note that such an ontological specification for QoS has to serve
three key roles:

• Express a set of constraints on a certain subset of QoS metrics as part
of a user-defined preference during service request - this is then used
to filter candidate Web Services returned by Web Service registries;

• Express a set of commitments by the service providers to guarantee
certain non-functional properties of the advertised Web Service as a
differentiator from functionally-equivalent Web Services;

• Characterize actual or derived performance of a Web Service which can
be checked against the published QoS specifications of a Web Service
to determine whether the service actually performed as advertised;

The subsections that follow explore a number of such QoS specification
ontologies.

3.4.2 QoS Ontology Language

The QoS Ontology language is concerned with the development of QoS on-
tology and vocabulary for semantic specification of QoS information for Web
Services. This work has been motivated by the need to efficiently represent
the variety of information on QoS parameters in such a way as to support
machine processability and the ability to reason over this QoS information
(Papaioannou et al., 2006). Verily the QoS ontology language (Lilien et al.,
2011) provides a standard ontological model to formally describe arbitrary
QoS parameters including the relationships between QoS parameters as well
as the methods of measuring these parameters (Papaioannou et al., 2006,
p. 102).

The main classes of the QoS ontology language are QoSParameter, Met-
ric, QoSImpact, Type, Nature, Aggregated, Node, and Relationship. Papaioan-
nou et al. (2006, pp. 103–104) provide full descriptions of all these classes.

55

As will be seen in subsequent sections, different ontological models refer to
similar concepts by different names. The two key concepts in the QoS ontol-
ogy language are (1) the QoS parameter (QoSParameter) which represents a
non-functional property of a Web Service which may be measurable or static,
and (2) the metric (Metric), which specifies how a specific QoS parameter
gets assigned a value (i.e measured). The hasMetric property is assigned to
those QoS parameters that are measurable and its value is expressed in cer-
tain units of measure. The QoSImpact class is used in the model to describe
the impact of a particular QoS parameter on the overall service quality. Us-
ing this technique it is possible, for instance, to express the impact of high
throughput on response time.

One of the earliest efforts with regard to QoS specification ontologies
is the development, by Dobson, Lock, and Sommerville (2005), of a base
ontology for QoS aptly named QoSOnt. The key aspects of QoSOnt which
are relevant to this study are discussed next in Section 3.4.3.

3.4.3 QoSOnt: Basic QoS Ontology

According to Dobson, Lock, and Sommerville (2005), QoSOnt was developed
to promote consensus on QoS concepts amongst service consumers and ser-
vice providers. Although the work of Dobson, Lock, and Sommerville (2005)
on QoS ontology (QoSOnt) predates the conceptualisation of the hierarchy
of quality concepts in Figure 3.1 by Oriol, Marco, and Franch (2014), the
QoSOnt does codify the relationships between quality concepts using ontolo-
gies as a formal conceptualisation. QoSOnt provides a base set of useful
concepts which cover common use cases for QoS and specifically for moni-
toring. The base QoS ontology is depicted in Figure 3.2.

56

Figure 3.2: Base QoS Ontology (adapted from Dobson, Lock, and Som-
merville (2005))

As can be seen from the base ontology (Figure 3.2), QoSAttribute is
the base class of all QoSOnt concepts and can represent either a Measur-
able Attribute or an Unmeasurable Attribute. The significant difference be-
tween these sub-classes of QoSAttribute (i.e. Measured and Unmeasured
attributes) is that by definition a measurable attribute must have a Metric.
A metric is essentially a specification of a measurement method and includes
such details as value ranges and units (Kritikos and Plexousakis, 2007). In
this sense, a metric has a value which is a physical quantity. A Physical
Quantity is distinguishable from any other quantity such as a number (e.g.
’3’). This number does not convey any meaning in and of itself; however,
by adding a unit of measure to this number (e.g minutes), then suddenly
the number represents time. As such a Physical Quantity must have a Unit.
This also means that a metric represents a way of measuring some QoS at-

57

tribute using some unit of measure. The Unit may be converted to and from
other units using a ConversionRate - for example from minutes to seconds
with a ConversionRate of 60 (number of seconds in a minute). This con-
version becomes very helpful when two collaborating systems use different
units. Finally, and as depicted in Figure 3.2 an Unmeasurable Attribute
has a Physical Quantity but does not specify any method of measure (i.e. a
metric) because it is not being measured.

In Semantic Web Service monitoring, the main focus is on the measur-
able performance parameters. In order for the measurements of performance
parameters to be amenable to logical inference and reasoning it is necessary
to describe these parameters semantically. Since the standard of measure for
these parameters is expressed as a QoS metric, by the same token it is nec-
essary to be able to describe these QoS metrics semantically. Furthermore,
because QoS metrics are essentially formulae describing how the values of
these performance parameters are derived, then the requirement is to de-
scribe these formulae semantically. This aspect of QoS is largely ignored
in most of the literature on QoS and is mainly described generally as non-
functional properties of Semantic Web Service. Section 3.4.4 presents related
literature that pertains to the semantic description of arithmetic or mathe-
matical formula expressions as would be used in QoS metric description.

3.4.4 QoS Metrics and the Semantic Descriptions of
Arithmetic Expressions

According to Papaioannou et al. (2006), the key function of a QoS ontology
language is to provide a facility in the form of a standard ontological model
to formally describe, among other things, the methods of measuring the QoS
parameters. To describe these QoS parameters is essentially to describe their
mathematical formulae. For example, to formally describe the metric for
"throughput" would be to describe the mathematical expression in Equation
(3.2) below:

Qthroughput = 1− (QRequestsNotCompletedSuccessfully/QTotalRequestsProcessed) (3.2)

Ferre (2012) looked at techniques to enable the representation of complex
mathematical and logical expressions in RDF so that these rich expressions
can be explored through semantic search. The advantage of this, as sug-
gested by Ferre (2012), is that it becomes possible to search for these formal

58

expressions by their contents and thus to support the mathematical search.
Ferre (2012) proposes (1) an RDF vocabulary for mathematical expressions
to support expressive structured search, (2) syntactic extension of Turtle
and SPARQL syntaxes to enable notation of descriptions and queries, and
(3) generating labels for the expressions that are close to their mathematical
symbols.

Although not directly related to semantic representation of performance
metrics of a service, the work of Benvenuti et al. (2017) provides a good
example of how computational semantics can be made more explicit. Using
the formula concept of the KPIOnto 1 ontology, which is an ontology for
semantically describing Key Performance Indicators (KPI), Benvenuti et al.
(2017) demonstrated how formally express one KPI as a function of other
KPIs. Their framework uses PRolog Equation Solving System (PRESS)
to support reasoning over the mathematical expressions (Benvenuti et al.,
2017).

As seen in the preceding discussion, QoSOnt provides a base set of very
useful concepts for describing QoS and was built specifically for this purpose.
Furthermore, it is possible to see how a service parameter in the OWL-
S framework can make use of QoSOnt whereby the service parameter of a
service is linked to a concept (ServiceParameter) in the QoSOnt model. This
study adopts QoSOnt as a base ontology for describing quality attributes
of a Semantic Web Service during service publishing as well as annotating
service performance data during post-execution and monitoring. QoSOnt is
preferred because of its generic nature and simplicity.

The next section describes another QoS ontology which bears some sim-
ilarities to QoSOnt but also has some important concepts not found in the
QoSOnt model.

3.4.5 WS-QoSOnto: Web Service QoS Ontology

WS-QoSOnto is used to describe detailed QoS information and allows service
producers to express their QoS offers and the service consumers to express
their QoS demands at different levels of expectation (Tran, Tsuji, and Ma-
suda, 2009).

QoS Property is the key concept in the WS-QoSOnto model much as
the QoS Attribute is the central concept in QoSOnt model. According to

1 https://kdmg.dii.univpm.it/kpionto/specification/

59

Tran, Tsuji, and Masuda (2009, p. 1379) the QoS property describes the
non-functional aspects of a Web Service. Tran, Tsuji, and Masuda (2009)
distinguish between two types of QoS properties that represent quality as-
pects of a Semantic Web Service, namely the technical QoS properties and
managerial QoS properties. According to this categorization, the technical
QoS properties encompass those properties that are related to operational
aspects of Semantic Web Services such as usability, efficiency, reliability,
availability, accessibility and performance. The managerial QoS properties
on the other hand relate to those descriptive properties that capture the
service management information such as ownership, provider, contractual de-
tails, and methods of payment. For the purpose of this study, the focus is on
the technical QoS properties and, more specifically, on performance-related
QoS properties.

According to the WS-QoSOnto model, Performance is one of the di-
rect subclasses of QoS property (QoSProperty). Ontologically, this means
that Performance is-a QoS property. Furthermore, Performance has Latency,
Throughput, and Response Time as its direct sub-classes and therefore sug-
gests the existence of an is-a relationship between these and Performance.
This relationship can be read as stating that Latency, Throughput, and Re-
sponse Time together characterize the performance of a Semantic Web Ser-
vice. Characterizing the performance in this manner also suggests that these
subclasses (Latency, Throughput, and Response Time) are the measures of
performance. In other words, they represent the metrics of Semantic Web
Service performance.

WS-QoSOnto has the concept of metric (QoSMetric) which is used in
evaluating specific QoS properties. The metric may have units of measure
or it may be unitless. In the WS-QoSOnto model each metric has a mea-
surement directive (MeasurementDirective) as well as the QoS formulation
(QoSFormulation) both of which provide the necessary information regard-
ing how to measure specific QoS value (QoSValue). This conceptualization
differs slightly from the QoSOnt model where a metric has a value repre-
senting a physical quality (PhysicalQuantity) which by definition has a unit
(Unit).

Whereas the measurement mechanisms (i.e. formulae) are not fully de-
scribed in the QoSOnt model, the QoSFormulation of WS-QoSOnto describes
the formula used to calculate a specific metric. Similarly to QoSOnt, the
units in WS-QoSOnto can be converted to other units (e.g. from minutes to
seconds).

60

Based on the similarities and significant differences between WS-QoSOnto
and QoSOnt models, the most reasonable approach would be to merge these
two models through subclassing and equivalence axioms where applicable in
order to derive benefits from both these models.

Although both WS-QoSOnto and QoSOnt models represent QoS aspects
of a Semantic Web Service the extension points for either WSMO or OWL-S
are not sufficiently emphasised. The next subsection describes an OWL-S
extension that provides a QoS-based description of Web Services.

3.4.6 OWL-Q: QoS-based Web Service Description

OWL-S provides a semantically rich framework for describing the functional
aspects of Semantic Web Services but this semantic richness did not extend
to the QoS information. The OWL-Q is an OWL-S extension that provides a
QoS description model for Semantic Web Services (Kritikos and Plexousakis,
2007).

In OWL-Q, a number of sub-ontologies called facets are defined and can
be extended independently and thus providing for syntactical separation and
refinement of QoS specifications (Kritikos and Plexousakis, 2007, p. 126).
Each aspect of the QoS description has a dedicated facet. According to Kri-
tikos and Plexousakis (2007) OWL-Q is essentially an upper ontology made
up of a total of eleven (11) facets: OWL-Q(main facet), Measurement Direc-
tive, Time, Goal, Function, Measurement, Metric, Scale, QoSSpec, Unit and
ValueType. The description of each of these facets is given by Kritikos and
Plexousakis (2007, pp. 126–130). In this subsection, only the Measurement
Directive, Metric, Scale and QoSSpec facets are discussed in relation to the
other ontological models of QoS described in preceding subsections.

The Metric Facet describes the QoS metric model, capturing all the
classes and properties that are necessary to provide formal definition of QoS
metric (Kritikos and Plexousakis, 2007, p. 128). In the OWL-Q ontology
the QoSMetric class represents a QoS metric and its value is provided by an
Actor. QoS metric measures QoS attributes (QoSAttribute) that are measur-
able (MeasurableAttribute) on a specific ServiceElement (Kritikos and Plex-
ousakis, 2007, p. 129). Axiomatically this means that a QoSAttribute that
has a QoSMetric is by definition a MeasurableAttribute. The same axiom is
expressed in QoSOnt.

QoSSpec is the facet that enables the standardised way for Semantic Web
Service providers and consumers to define their QoS constraints (Kritikos and

61

Plexousakis, 2007, p. 127). The two sub-classes in this facet are QoSOffer
and QoSDemand. Through the QoSOffer the Semantic Web Service providers
can define their QoS guarantees. On the other hand, Semantic Web Service
consumers can specify their QoS preferences or constraints by way of QoS-
Demand. Furthermore, whereas QoSOffer is used during the publishing of
the Semantic Web Services, QoSDemand is used during discovery whereby
multiple functionally equivalent Semantic Web Services are filtered based
on how well their particular QoSOffers satisfy the current QoSDemand. In
terms of monitoring, the Semantic Web Service consumer agent will observe
the execution of the service to ascertain that it behaves and performs in a
manner that is consistent with the published QoSOffer.

The Measurement Directive facet specifies how QoS metrics are measured.
This is equivalent to measurement directive (MeasurementDirective) and QoS
formulation (QoSFormulation) that provide information on how to measure
specific QoS values in the WS-QoSOnto. However, in the OWL-Q model the
Measurement Directive facet further specifies the mode of getting the QoS
value from the managed resources (Kritikos and Plexousakis, 2007, p. 128).
In the pull mode, the party responsible for measurement will ask for the
value and in the push mode the QoS value is made available by the managed
resource (Actor) itself.

For each metric of a QoS attribute the Scale facet controls the value
type as well as the set of operations that are permissible (Kritikos and Plex-
ousakis, 2007, p. 129). Examples of such scales are nominal, ordinal, interval,
ratio and absolute. The Scale facet thus specifies how value expressions on a
particular scale can be transformed to the value expression of a compatible
scale. The value expressions in any scale (for instance interval) represent a
particular unit of measure (time). In this sense, and according to Kritikos
and Plexousakis (2007, p. 129), Scale is a general notion of Unit.

3.4.7 WSMO-QoS

WSMO-QoS is a framework extension to the Web Service Modeling Ontology
(WSMO) and describes the non-functional aspects of Semantic Web Services
based on WSMO. According to Li and Zhou (2009, p. 70), their work on
WSMO-QoS is motivated by the acknowledgement that whereas WSMO and
OWL-S frameworks sufficiently describe the functional aspects of Semantic
Web Services, they both fall short of providing accurate service discovery
mechanism that selects candidate Semantic Web Services with consideration

62

of their respective QoS values. In view of this, WSMO-QoS augments the
WSMO framework with an ontology-based meta-model of QoS (Li and Zhou,
2009, p. 70).

The central concept in the WSMO-QoS meta-model is QoS Metric which
is defined by four main elements; namely its Name, Unit, ValueType and
URI (Li and Zhou, 2009, p. 72). Similarly to WS-QoSOnto and QoSOnt
models where QoS metric represents a standard of measurement for some
QoS attributes, here a QoS attribute is also measured by one or more such
QoS metrics. Unlike WS-Onto, the WSMO-QoS meta-model does not ex-
plicitly distinguish between QoS offers and QoS demands but instead uses
the concept of role (Role) to indicate the origin of the QoS information. Pos-
sible values of Role are Service Provider, Service Requestor and Third Party.
Therefore, implicitly, if Role is indicated as Service Provider then the QoS
information expresses an offer. If Role is indicated as Service Requestor, then
the QoS information is interpreted as a QoS demand or requirement. Third
parties also issue QoS information as offers - these third parties are usually
partners to service providers.

The concept of QoS Relation is introduced to express the relationships
between QoS parameters (Li and Zhou, 2009, p. 71). It is possible for two
QoS parameters to be inversely proportional, such as in the case of response
time and the throughput; the higher the throughput, the lower the response
time or vice versa.

The WSMO-QoS model further defines two broad categories of QoS at-
tributes; static and dynamic attributes. The static QoS attributes are speci-
fied during the designing/publishing of the service and do not change between
executions. Dynamic QoS attributes on the other hand may vary during ser-
vice execution. An example of dynamic QoS attribute which is also relevant
in our study is performance. The performance sub-ontology of the WSMO-
QoS framework is composed of four QoS parameters; latency, response time,
throughput, and error-rate (Li and Zhou, 2009, p. 71). These will be revis-
ited during the development of our performance ontology for collaborative
monitoring in Chapter 4.

3.4.8 SMOnt: Service Monitoring Ontology

Masood, Cherifi, and Moalla (2016) developed what they call a performance
monitoring framework for service-oriented system lifecycle. They argue in
their work that in order to accurately monitor the performance of a service-

63

oriented system (SOS), it is necessary to monitor performance at different
levels of the SOS lifecycle; service level, business process level, server level and
the binding or network messaging level. They designed a Service Monitoring
Ontology (SMOnt) which defines performance ontologies for the technical
performance indicators at the different levels of the SOS lifecycle to derive
what they call a service performance profile (Masood, Cherifi, and Moalla,
2016, pp. 803–805).

The main shortcoming of the ontologies that Masood, Cherifi, and Moalla
(2016) developed is that they are not explicitly linked to the main QoS con-
cepts using the subclassing rule (see sub-sections 3.4.2 and 3.4.3). The inabil-
ity to conceptually link SMOnt to the fundamental concepts in QoS makes
it difficult to reuse it.

Having discussed the ontological foundations of QoS in the preceding
subsections, it is worth emphasizing that QoS was being discussed because it
is actually the monitoring of QoS that is the subject of Semantic Web Service
Monitoring. So whereas QoS in the service description represents the service
provider’s promise to potential service consumers, this advertised QoS is also
used during service monitoring to ascertain if the service performs consistent
with its supposed QoS.

3.5 Related Works
This section describes some of the research efforts that are closely related
to this research. These works tackle the challenge of Semantic Web Service
Monitoring using the perspectives as described in Section 3.1. The selection
criteria for these related works are as follows:

• The work has to be about monitoring of Web Services or more strictly
Semantic Web Services;

• The work has to demonstrate appropriate application of Semantic Web
technology for monitoring;

• There is a clear focus on developing (even if only conceptually) some
mechanism for monitoring Semantic Web Services;

• The work focuses on mechanisms by which service providers collect,
aggregate and analyze the service performance data;

64

• The researcher(s) developed (even if only conceptually) mechanism for
publishing or exchanging of monitoring data (i.e. service performance
data);

The selection criteria is helpful in filtering out most of the research works
which, even though they discussed QoS ontologies (see Subsections 3.4.2 -
3.4.7), did so only for the purposes of supporting the discovery of Semantic
Web Services. This study is mainly interested in the monitoring of Semantic
Web Service executions. The research works that met at least one of the
selection criteria above are discussed in the following subsections.

Zhang, Jin, et al. (2018) responded to the problem of how to monitor QoS
parameters of Web Service timely and accurately in dynamic environments
by developing Information gain and Sliding window based weighted naive
BayeSian Runtime Monitoring (IgS-wBSRM) - a weighted naive Bayesian
runtime monitoring approach which incorporates the sliding window mech-
anism combined with information gain theory. This combination of sliding
window mechanism and information gain theory, according to Zhang, Jin, et
al. (2018, p. 15), provides an improved algorithm for dynamically updating
the weights of QoS impact factors (such as service location versus client lo-
cation) as more and more performance data is collected. The sliding window
mechanism introduces the time-awareness whereby historic and out-of-date
sampled performance data is discarded. In this manner the technique enables
the monitoring results to always consider the latest performance data.

Pradhan et al. (2016), in their literature study, gave a summary of re-
search developments and challenges in the Web Service Based Systems (WSBS)
monitoring domain, including the research work of Baresi and Guinea (2013).

The work of Baresi and Guinea (2013) is motivated by the need for cross-
layer monitoring, which is a paradigm shift from the traditional approach
to software monitoring, which always monitored the service-oriented systems
at the application layer and treating lower layers (i.e. hardware layer) as
constants. Baresi and Guinea (2013) proposes a cross-layer monitoring of
service-based systems. The key aspect from their work is the customizable
and extensible approach to collecting, aggregating and analysing data from
across the layers in order to identify the root causes of unexpected behaviours.
To achieve this, Baresi and Guinea (2013, p. 84) developed an extensible
declarative language that allows designers to define the various data they
want to collect from all the layers, how to aggregate the data sets and analyse
them to discover undesirable behaviour. The collection of performance data

65

is an essential part of monitoring and this is why the proposal of Baresi and
Guinea (2013) is important. Whereas our study focuses on the exchange of
this monitoring information between the consumer and the service provider,
the work of Baresi and Guinea (2013) focuses on how the service provider
collects, aggregates and analyzes the service performance data.

In his work, Vaculín (2009) observed that contemporary event monitoring
and filtering systems rely on instances of primitive events that are described
at the syntactic level. A major drawback of such systems is that the detec-
tion mechanisms of primitive events are restricted only to exact event types
detection via syntactic match (Vaculin, 2012 ; Vaculín, 2009, pp. 121–122).
One of the key contributions made in this regard is the development of a se-
mantic monitoring framework based on OLW-S (Vaculín, 2009, pp. 121–144).
The approach developed by Vaculín (2009) entails applying the semantic an-
notations to descriptions of event types and event instances emitted during
interactions with Semantic Web services. The event types are organized into
a taxonomy and this taxonomy of events, along with event parameters and
associated data are defined in an ontology. This has been achieved by devel-
oping an ontology of event types where each event type is represented by one
OWL class. The events types are specific to the execution of OWL-S based
Web Services.

A sample event definition is shown in Figure 3.3 :

Figure 3.3: Sample Event Instance (adapted from Vaculín (2009, p. 128))

The benefits of using ontologies this way, as suggested by Vaculín (2009,

66

p. 122), are that:

• Events and their content can be easily processed and shared by software
agents;

• Semantic reasoning can support more flexible even detection which is
better than pure syntactic matching;

• Semantically enriched interaction traces/logs can be reasoned over as
part of post-execution analyses;

The emphasis of the semantic monitoring in Vaculín (2009) is on event
detection and the author adopted an event detection algebra as the formalism
for the definition and detection of complex event patterns (Vaculín, 2009,
p. 128). Event detection algebra entails using a number of operators and
the primitive events to formulate event expressions that describe an event
pattern to be used to detect event occurrences.

Whereas Vaculín (2009), as further expanded in Vaculin (2012), proposes
annotating the execution trace with ontology concepts, he does not specify
how this monitoring data (i.e. execution trace) generated by service provider
can be shared with service consumers. This study proposes a Monitoring
Information eXchange (MIX) protocol whereby the service provider would
include, as part of the service response, a URL of the ontology document
that contains the semantically enriched service performance data. This ser-
vice performance data is described using the Resource Description Frame-
work (RDF). The URL is sent instead of the actual document to avoid in-
creasing the payload size of the service response. A Semantic Web Service
consumer agent can retrieve the semantically enriched document and reason
over the service performance data. Chapter 4 presents full discussion on the
proposed Monitoring Information eXchange (MIX) protocol as well as the
technical infrastructure necessary to enable the storage and exchange of the
semantically-annotated monitoring information.

Singh and Liu (2016) developed a cloud service architecture for analyzing
big monitoring data. The architecture, called TraceAnalyzer, exposes REST
APIs that enables the monitoring data to be accessed by different analysis
modules.

The TraceAnalyzer does not provide real-time monitoring but instead
offers a powerful collection of tools for performing post-monitoring analyses.
In terms of the category of monitoring approaches (see Section 3.2), the work

67

of Singh and Liu (2016) follows an Off-site monitoring approach in which case
the analyses of monitoring data are done after execution and whereby the
process that collects the monitoring data and exposing it through REST APIs
for analysis is separate from the actual process that is running and generating
the monitoring data. In terms of the semantic enrichment of the monitoring
data, the TraceAnalyzer uses the Semantic Media Wiki (SMW). The SMW
adds additional markup into the wiki-text to enable semantic annotations of
the text that allow a wiki to function like a collaborative database (Singh
and Liu, 2016, p. 56). The added semantic annotations allows for the wiki
documents to become machine-processables so that the user can query the
monitoring data wikis to make sense of the analysis results coming from the
architecture. This is done on the top layer of the TraceAnalyzer architecture
as depicted in Figure 3.4:

Figure 3.4: TraceAnalyzer Core Architecture (Singh and Liu (2016, p. 57))

The work of Keeney et al. (2011) is motivated by the lack of a structured

68

approach to monitoring diverse heterogeneous systems as though they were
one homogeneous end-to-end system. Specifically Keeney et al. (2011, p. 658)
identify and aim to address three challenges of managing diverse heteroge-
neous systems namely (1) cost-effectively harmonizing monitoring data from
diverse devices, systems and services, (2) inability to express and fuse end-
to-end service, system and network information in an interoperable manner,
and (3) inability to facilitate meaningful participation of service consumers
in the quality of experience control loop. This last point relates most closely
to this study that proposes active participation of service consumers in the
collaborative and corroborative monitoring of Semantic Web Services.

In terms of the harmonizing of monitoring data, Keeney et al. (2011,
p. 658) suggest that mechanisms are required to semantically enrich the
large data produced by the monitoring systems. The meaningful participa-
tion of service consumers in monitoring the quality of experience is enabled
through personalized visualization of harmonized monitoring data (Keeney
et al., 2011, p. 659).

As part of their research, Keeney et al. (2011) developed a testbed mon-
itoring and management framework which is composed of several functional
components. The adapted and simplified diagram of their testbed framework
is depicted in Figure 3.5

Figure 3.5: Simplified Framework for End-to-End Monitoring and Manage-
ment (Keeney et al. (2011, p. 659))

The three components that are of interest to this study are (1) INFLEC-
TIONS, (2) Semantic Attribute Reconciliation Architecture(SARA), and (3)

69

Semantic-based Service Control Engine.
The Semantic Attribute Reconciliation Architecture (SARA) provides mech-

anisms for monitoring data harmonization by semantically lifting, reconciling
and mapping information from heterogeneous sources into a common seman-
tic structure (Keeney et al., 2011, p. 660).

The INFLECTIONS component on the other hand supports the explo-
ration of semantically enhanced information (from SARA) and enables do-
main experts to define reusable views of harmonized information.

According to Keeney et al. (2011, p. 660), the Semantic-based Service
Control Engine enables the efficient management of semantically encoded
monitoring information and events. The semantically encoded information
is taken from SARA, while the events represent triggers that cause the en-
actment of configuration actions by service components so that their per-
formance is consistent with the agreed quality of experience (Keeney et al.,
2011, p. 660).

Semantically enriching monitoring information, as proposed by Keeney
et al. (2011), is a critical step in facilitating semantic monitoring, but with-
out the support for the exchanging of this information between participating
service-oriented systems, it falls short of enabling collaborative and corrobo-
rative monitoring as proposed by this study.

Al-Hazmi and Magedanz (2015) developed a Monitoring Ontology for
Federated Infrastructures (MOFI) ontology to enable the exchange of sensory
monitoring data across the federated infrastructures. The work of Al-Hazmi
and Magedanz (2015) involved creating an ontology-based information model
to semantically describe the federated infrastructures and their underlying
resources in order to facilitate, among other life-cycle events, the discov-
ery, selection, reservations, provisioning and monitoring of the resources (i.e.
sensors or devices).

The work of Al-Hazmi and Magedanz (2015), as well as more recent
experimental work of Nejkovic et al. (2020), are all based in the Internet
of Things (IoT) domain and their use of semantic annotation is mostly to
enrich the high-level descriptions of sensor data. There is no evidence of IoT
devices themselves monitoring each other or exchanging their monitoring
sensory data. Instead, the IoT platform itself is responsible for collecting the
sensory data from the devices or sensors connected to the platform.

Benvenuti et al. (2017) noted that the Public Transport Systems (PTS)
are finding it difficult to maintain high quality of public transport services to
improve citizens mobility in their respective regions of operation. In response

70

to the difficulties experienced by PTS, Benvenuti et al. (2017) developed an
ontology-based framework aimed at supporting performance monitoring in
public transport systems. KPIOnto is the ontological representation of per-
formance indicators and their formulas (Benvenuti et al., 2017). According to
Benvenuti et al. (2017), KPIOnto is an ontoloty that provides main concepts
and properties for semantic descriptions of the KPIs. A specialized reason-
ing framework then developed to process and reason over the semantically
enriched KPI data of the PTS. The formula in the KPIOnto model enables a
formal representation of a KPI as a function of one or more KPIs and by so
doing it makes the computational semantics of the referenced indicator more
explicit.

The work of Benvenuti et al. (2017) does not explicitly refer to QoS but
rather considers the Key Performance Indicators (KPI) which are mainly
used for diagnosis purposes. Specifically, their work focused on monitoring
the physical transport services, as opposed to Semantic Web Services. Fur-
thermore, reasoning over the semantically enriched KPI data is done within
the system (PTS) in order to report how the transportation system actually
performs in relation to the KPIs.

Letia and Marginean (2011) proposed a client-side monitoring framework
for the non-intrusive monitoring of service behavior. This approach requires
that the service provider introduces a SOAP message handler which captures
these SOAP messages in a request-response pairs and makes them available
for analysis. The SOAP messages, according to Letia and Marginean (2011),
are to be interpreted based on the consumer’s current context using the
DOLCE 2 ontology situations, descriptions, and expectations.

The monitoring in the context of the work of Letia and Marginean (2011)
focuses on observing client-service interactions in terms of functional require-
ments and service expectations of the client. This means that performance
and other QoS related metrics are not being monitored, but rather the SOAP
messages which carry the functional aspects of the service are enriched with
the ontology-based information model. This client-side monitoring relies the
client’s perception of what the service does and therefore focuses solely on
service functionality. Furthermore, the use of ontology is for enriching the
request-response SOAP message pairs that are generated by client (requests)
and the service (responses). The monitoring is collaborative in the sense that
both the client and the service provider contribute to the logging of request

2 https://triplydb.com/vocabulary/dolce

71

and response SOAP messages respectively.
Although not specifically focusing on monitoring, the works of Amir

(2018) and Sigwele et al. (2018) provide a good conceptual model for under-
standing how semantic annotation can facilitate the exchange of information
between participating systems, whether humans or machine agents. The pur-
pose of their study was instead to develop a generic collaboration framework
which can support any type of sensor and any type of Web of Things (WoT)
application. Amir (2018) conceptualize a collaboration framework in the
context of the Web of Things (WoT) as being made up of three phases: (1)
Capture and represent data, (2) Generate knowledge, and (3) Collaboration;
share and exchange information and knowledge.

The top-level conceptual architecture of a collaboration framework is de-
picted in Figure 3.6

Figure 3.6: Architecture of a Collaboration Framework (adapted from Amir
(2018, p. 11))

In the Capture and Represent Data phase, the sensor data is captured
from local sensor networks and from repositories that expose their data
through APIs. This phase is comprises two components, namely (1) Identity
and Access Management, and (2) Asset Model. The Identity and Access
Management component handles the authentication and authorization of in-
ternal and external actors who want to access and interact with the data
stored in the asset model. On the other hand, the Asset Model handles the
modeling and representation of the sensing devices and data (or readings) in
a platform-specific manner. The purpose of the Asset Model is to make the
sensing devices’ readings or data available to the other components of the
collaboration framework for further processing and semantic enrichment.

The second phase of the collaboration framework is the Data Process-
ing and Knowledge Generation phase. The phase is comprised of five (5)
components which represent the (1) Query Agents, (2) Annotation Agents,

72

(3) Processing Agents, (4) Reporting Agents and (5) Collaboration Facili-
ties. During this phase, the data read from local sensor network or imported
from other repositories is contextualized to represent some meaningful in-
formation. The process of transforming raw data into useful information is
done through a variety of methods, including semantic annotation and en-
richments. An example of this might be assigning meaning to a numerical
sensory value based on the sensing device, so that value of 35 coming from
the temperature sensor is converted into 35 degrees (35°.) which carries more
meaning once the units (degree) is augmented. See the section discussing the
ontological model called QoSOnt in Section 3.4.3.

The third and final phase of the collaboration framework is the Collab-
oration phase and as shown in Figure 3.6 comprises two components; the
(1) APIs and (2) Adapters. The process of collaboration and information
exchange is enabled by developing an API and/or legacy adapters. The API
exposes the semantically enriched information whilst the legacy or platform-
specific adapters are used to collaborate with systems which may be using
some proprietary schemata.

Lara Calache and De Farias (2020) noted that contemporary semantic an-
notation tools focus mainly on the lower levels of abstraction which requires
the users to have technical knowledge of XML and WSDL. Noticing this
gap, Lara Calache and De Farias (2020) proposed a graphical collaborative
semantic annotation support tool which is aimed at facilitating the semantic
annotation of WSDL-based Semantic Web Services. Their proposed tool en-
ables different people to make their individual contributions to the semantic
annotation. Although the work of Lara Calache and De Farias (2020) focuses
on collaboration within Semantic Web Service domain, its focal area is in the
description of the Semantic Web Service. Our study, by contrast focuses on
the collaborative collection and corroboration of semantically enriched mon-
itoring information.

Sigwele et al. (2018) drew extensively from the work of Amir (2018) to pro-
pose an intelligent semantic gateway which is used by collaborating health-
care systems to expose semantically enriched healthcare information through
a RESTful API. The relevance of this work to our study is that it highlights
the importance of semantic annotation in facilitating collaboration across
heterogeneous systems. The gap, however, is that the information being ex-
changed in the framework proposed by Sigwele et al. (2018) is healthcare
information and not semantically enriched monitoring information.

Table 3.1 summarizes the related works by indicating, for each work, the

73

manner in which ontologies are being used in monitoring, the monitoring
approach used, and whether the monitoring approach is collaborative and
corroborative.

74

Research Work Ontology Usage Monitoring Approach Collaborative
and
Corroborative

Keeney et al.
(2011)

Semantic annotations to en-
rich monitoring information

Service-side monitoring No.

Letia and
Marginean (2011)

Ontology-enriched request-
response SOAP message
pairs

Client-side monitoring Partially.

Vaculín (2009) Semantic annotations to de-
scriptions of event types and
event instances emitted dur-
ing services execution

Service-side monitoring Partially.

Singh and Liu
(2016)

Semantic annotations to en-
rich monitoring data analy-
sis results

Off-site monitoring No.

Zhang, Jin, et al.
(2018)

Relies on underlying on-
tological models of QoS
and introduces probabilistic
characteristics of QoS

Service-side monitoring No.

Al-Hazmi and
Magedanz (2015)

Ontology-based information
model for monitoring feder-
ated infrastructures in IoT

Off-site monitoring (IoT plat-
form service)

No.

75

Benvenuti et al.
(2017)

Ontology used to formally
describe key performance
indicators (KPIs) and their
formulae

Off-site monitoring (PTS plat-
form service)

No.

Amir (2018) No reference to QoS but
deals with generic collabo-
ration framework in Web of
Things (WoT)

N/A Partially.

Sigwele et al.
(2018)

No reference to QoS but
provides potential applica-
tions of semantic annota-
tion of healthcare informa-
tion to facilitate collabo-
ration across heterogeneous
healthcare systems

N/A Partially.

Lara Calache and
De Farias (2020)

Semantic annotations to
Web Service description
using a graphical collabo-
rative semantic annotation
support tool

N/A Partially.

Table 3.1: Summary of Related Works

76

Although it is not mentioned explicitly in the research, the monitoring ap-
proach developed by Vaculín (2009) could potentially support collaborative
monitoring since the data can be shared as part of the post-execution anal-
ysis. The practical difficulty with this approach is that the service execution
logs will include traces from multiple executions from multiple consumers.
This study proposes the exchange of monitoring data during service execu-
tion so that the post-execution analyses can be done separately by both the
service providers and the service consumers.

3.6 Summary
This chapter has looked at the conceptual principles of Semantic Web Ser-
vice Monitoring and also discussed monitoring mechanisms that adhere to
some of these principles. The fundamentals of Quality of Service (QoS) were
discussed in view of it being a key subject of Semantic Web Service Moni-
toring. The approaches to semantically enriching the QoS information in the
descriptions of Semantic Web Services were discussed. The discussion on se-
mantically enabled QoS models was followed by a review of related research
works that focused on the monitoring functions of Semantic Web Services.
Having reviewed existing approaches to Semantic Web Service Monitoring
and highlighted shortcomings of related works, a case is made in the next
chapter for collaborative and corroborative monitoring of Semantic Web Ser-
vices.

The next chapter discusses the proposed solution to achieving Collabora-
tive and Corroborative Semantic Web Services Monitoring.

77

Chapter 4

A Monitoring Information
Exchange (MIX) Protocol

This chapter firstly addresses the research objective (RO-1) which pertains
to the development of a generalized metrics for specific QoS parameters (such
as Response Time) to enable both the service consumers and service providers
to reach consensus on the meaning of each of these QoS parameters. Secondly,
the chapter also addresses research objective (RO-2) which is about devel-
oping a Monitoring Information eXchange (MIX) protocol as a technology-
agnostic protocol for service consumers and service providers to exchange
their respective monitoring information. The chapter specifically presents
the conceptual aspects of the approach for Collaborative and Corroborative
Monitoring of Semantic Web Services as the solution proposed by this study.

4.1 Introduction
The key enabler for the proposed Collaborative and Corroborative Monitor-
ing approach is the exchange of monitoring information between participating
systems. This exchange of monitoring information imposes three key require-
ments as discussed in Section 1.3:

• Developing a mechanism by which participating monitoring systems
can develop consensus on observable QoS parameters and attributes;

• Mechanism by which monitoring information can be exchanged ;

78

• Technology-neutral negotiation protocol for conflict resolution in case
of Service Level Agreement (SLA) breach or inconsistencies in the mon-
itoring data;

The remainder of this chapter is structured as follows: Section 4.2 re-
emphasizes the case for Collaborative and Corroborative Monitoring based
on Semantic Web technology in order to address the monitoring information
exchange requirements. Section 4.3 describes the development of a gener-
alized metric for computing the response time of a Web Service which is a
key feature for collaborative and corroborative monitoring. Section 4.4 then
presents performance ontology as the basis for semantic description for the
performance characteristics of a Semantic Web Service. The use of ontologies
in this way is purported to promote consensus on observable QoS parameters
and attributes among participating monitoring systems. Indeed the general-
ized metric for response time will be described semantically as part of this
performance ontology. Finally, Section 4.5 presents the mechanism by which
the semantically enriched monitoring information can be exchanged between
the service consumer and service provider during, or after service execution.

4.2 Case for Collaborative and Corroborative
Monitoring Using Semantic Web Technol-
ogy

The utility of being able to reason over the semantically enriched service
performance data has long been recognized (Vaculín, 2009; Kritikos and
Plexousakis, 2007; Dobson, Lock, and Sommerville, 2005). Contemporary
researchers do not seem to have considered an even greater advantage of be-
ing able to exchange or share this semantically enriched monitoring data with
other participating components or systems in a service-oriented computing
environment. Specifically, the exchange of semantically enriched monitoring
data between service providers and service consumers has not been consid-
ered at all. As already mentioned in Section 1.1, the benefits of being able
to exchange the monitoring data are as follows:

• It eliminates the potential for conceptual confusion resulting from the
fact that both the service consumer and the service provider may have

79

different perspectives of the same QoS parameter (Zela Ruiz and Ru-
bira, 2016, p. 118) and thus having no consensus on the meaning of
individual QoS parameters.

• Enables the support for a flexible pricing model, which is a potential
competitive advantage for service providers; consumers feel empowered
to ensure that they receive the appropriate quality of service for the
money they pay. This is a desirable alternative to paying penalties;
the service provider may negotiate with the consumer to rather pay an
amount appropriate for the quality of service experienced.

• It eliminates the need for incentive schemes aimed at encouraging hon-
est reporting by service consumers. Both the service consumer and ser-
vice provider exchange and corroborate each other’s monitoring data
which, due to semantic annotations, they can both reason over the
monitoring data.

• There is no need for a dedicated infrastructure for monitoring by surveil-
lance because the service consumer and service provider exchange their
environment-dependent monitoring information directly.

The following section discusses the generalized metric for response time
of a Web Service. The generalized metric is necessitated by the need to
develop consensus on what constitutes the response time since both the ser-
vice provider and service consumer have a different perspective of this QoS
parameter.

4.3 Generalized Response Time Metric
This section draws from the work, originally published in (Makitla and
Mtsweni, 2015), describing the development of a generalized metric for com-
puting response time of a Web Service. This generalized metric is useful in
developing consensus around the meaning of contracted QoS parameters. In
doing this, the generalized metric helps to avoid the confusion that may arise
when the same QoS parameter is understood differently by both the service
provider and the consumer (e.g. response time versus execution time). In
the absence of this generalized metric for response time, contemporary mon-
itoring approaches resort to incentivising the service consumers to honestly
report their perception of service quality.

80

The main objective of the Makitla and Mtsweni (2015, pp. 375–376) ex-
periment was to develop a generalized metric which characterizes the perfor-
mance (in terms of response time) of a Web Service under specific resource
conditions.

The response time values were measured on both Web Service provider
and consumer ends. A lightweight monitoring library based on the Java
programming language called JAMon 1 was used. The JAMon library allows
the developer to provide a label for each monitor. The monitors are named
using the developer-specified labels. The JAMon API also exposes start and
stop methods used for starting and stopping monitors, respectively. When
called, the “stop” method marks the end of monitoring and the performance
statistics are available through the API. These performance statistics include
the average response time per monitor (i.e. label) which is the main focus
of this study. Since the experiment involved a unique monitor per request,
the average response time per monitor is the same as just the response time
(dividing by “1” has no effect).

In the data-driven experiment a total of ten thousand (10,000) uniquely
labelled requests were made to the same Web Service resource. Response
times were recorded for both client (Web Service consumer) and the server
(Web Service provider). For each request a unique monitor label was derived
by combining the method name “getDoctors” and the request number (1 to
10000), for example, getDoctors1, getDoctors2, up to getDoctors10000. Using
this technique, we specified a unique label for each web service request at the
client-side and noted the monitoring values per request.

To ensure that both the client and service response times are recorded
for the same request – the client passes its monitor label along with the
request (as a parameter) – the web service then adopts this very label for
its own monitor for this request. With this technique, it was possible to
collect 10000 pairs of client-side response times and server-side response times
independently. Due to the fact that tabulating the entire set of 10000 pairs
would take up too much space in this thesis, Table 4.1 only lists a few pairs
for illustration purposes. The response times are all in milliseconds.

1 http://jamonapi.sourceforge.net/

81

Label Client-side
(ms)
Response
Time (ms)

Service-side
Response
Time

getDoctors1 105.0 100.0
getDoctors2 105.0 100.0
...
getDoctors9998 102.0 100.0
getDoctors9999 102.0 100.0
getDoctors10000 103.0 100.0

Table 4.1: Response-time pairs per request

Statistical analyses were performed to characterize the variance of client-
side and server-side monitoring values for the same request across all 10000
requests. As can be seen in Table 4.1 there are differences between the
client-side response time (crt) and the server-side response time (srt) values.
We refer to this difference as “error” and is given by crt˘srt. This is an
“error” because the Web Service provider claims a different response time
(e.g. 100.0ms) from what the consumer is experiencing (e.g. 105.0 ms). By
using the statistical variability of these “error” values it is possible to get to a
server-side response time value which will have the smallest “error” possible.

First we compute the “mean error” (ẋ) as the average of differences be-
tween crt and srt for all requests (N). The mean error is given by Equation
(4.1):

ẋ = [
N∑
i=1

(crti˘srti)]÷N (4.1)

Applying Equation (4.1) to the experimental data in Table 4.1 for all the
10000 pairs of data points given by (crt˘srt), the value of "mean error" (for
N = 10000) is:

ẋ = [
10000∑
i=1

(crti˘srti)]÷ 10000 = 2.2616 (4.2)

Having calculated the "mean error" in Equation (4.2) we now compute
the deviation (dev) of each of the “error” values (ev) from the “mean error”

82

above. For this we used absolute values (ignored negative signs):

dev = [
10000∑
i=1

(evi˘ẋ)]÷ 10000 = 1.7384(evi = [crti˘srti]) (4.3)

In order to understand the spread of the monitoring values, we computed
the average squared deviation (i.e. variance):

variance = [
10000∑
i=1

(evi˘ẋ)
2]÷ 10000 = 1.1693 (4.4)

The standard deviation (σ) then works out to be:
√
variance = 1.0813.

Finally, each error value (crt – srt) is examined to see how many standard
deviations each of these values are from the population mean (of all 10000
values). For this we calculate the z-score for each error-value for all 10000
entries:

z = (evi − ẋ)/σ (4.5)

However because the purpose of the experiment was to characterize the
response time value over a number of Web Service interactions (i.e. 10,000)
it is not meaningful to look at the individual z values instead we compute
the average z-value (az) using absolute values:

az = [
10000∑
i=1

|Zi|]÷ 10000 = 2.5323 (4.6)

The value of az from Equation (4.6) indicates the “more or less” value
that the Web Service client should expect given the response time from the
server-side. Based on this, a generalized metric for response time, or the
Generalized Response Time Metric (GRTM) can be formulated as:

GRTM = srt+ (az).ẋ (4.7)

In Equation (4.7), both az and ẋ are “historical” values known from pre-
vious executions or, in the case of this study, from our experiment of 10000
identical requests.

These descriptive statistical values characterize the performance of the
getDoctors Web Service method under certain resource conditions. The char-
acterization suggests a linear regression model, where the variability (beta

83

value) or the average-z value (az) is taken from memory (historical or pre-
vious executions) to predict the most likely client-side response time value.
However, it must be noted that in this experiment, we were not interested in
what independent variables had an effect on the response time. As such, we
did not attempt to attribute the observed response time on the client-side
to any variable; we mainly wanted to develop a generalized metric which
characterizes the performance of a system under specific conditions of our
experiment. In fact, Zhang, Jin, et al. (2018, p. 15) caution that the influ-
ence of environmental factors may lead to incorrect monitoring results and
thus a misleading performance characterization of the Web Service being
monitored. QoS values such as response time are affected by multitudes of
factors. For this reason, Zhang, Jin, et al. (2018) proposed a weighted naive
Bayesian run-time monitoring approach which combines information gain
and the sliding window mechanism to dynamically re-adjust the weights of
different environmental factors impacting on the response time.

The point of developing this generalized metric is that the QoS parameter
for response time advertised by the Web Service providers should be based
on this generalized metric. Furthermore, the generalized metric describes,
mathematically, a formulation of how to compute response time through
collaborative monitoring. The performance ontology (Section 4.4) then de-
scribes this formulation semantically so that software agents may understand
how to compute response time when they receive the performance data dur-
ing monitoring information exchange (see Section 4.5).

In Section 3.4.1, it was explained why the discussion on QoS ontologies
invariably focuses on the semantic description of performance characteristics
of Semantic Web Services. Actually, the semantic specification of QoS is
achieved through the description of those concepts which are the basis for
performance characteristics. Section 4.4 brings together the concepts dis-
cussed in Sections (3.4.2 - 3.4.7) to develop a performance ontology. The
performance ontology will, in turn, describe the semantically enriched per-
formance information to be exchanged by participating systems as part of
collaborative and corroborative monitoring.

84

4.4 Semantic Web Service Performance Ontol-
ogy for Monitoring

The performance ontology provides the basis for the semantic description of
the performance characteristics of a Semantic Web Service. In terms of the
WSMO-QoS model (Li and Zhou, 2009), such a performance ontology is com-
prised of four QoS parameters namely the latency, response time, throughput,
and error-rate. To provide a comprehensive ontology for performance it is
necessary to locate this performance ontology as a sub-ontology in the larger
QoS ontology. To do this, QoSOnt is considered as the basis for QoS ontol-
ogy and is expanded to include those concepts found in ontological models
discussed in Sections (3.4.2 - 3.4.7).

For collaborative and corroborative monitoring purposes, we consider
only those performance-related QoS parameters that are measurable, and
for which the service provider and service consumer may have different per-
spectives. Only the response time parameter meets this criteria. In Service
Oriented Computing (SOC), response time is an important aspect for char-
acterizing performance.

Figure 4.1 below depicts a basic ontology for Performance.

85

Figure 4.1: Performance Ontology for Monitoring Information Exchange

The simplified performance ontology in Figure 4.1 conveys the idea that
Response Time is a measurable parameter of performance which in itself
is a measurable QoS attribute. This is inferred from the fact that the Re-
sponse Time has a metric (i.e ResponseTimeMetric). The value assigned by
this response time metric, ResponseTimeValue, is measured in Time units.
Ontologically, Generalized Response Time Metric is a specialization, or a
subclass, of the ResponseTimeMetric which is a metric of Response Time.
This can be seen in the "isa" relationship between ResponseTimeMetric and
GeneralizedResponseTimeMetric concepts.

The performance ontology in Figure 4.1 also illustrates how the response
time, as a performance parameter, relates to the performance characteristics
of a service. Importantly, the depicted performance ontology positions the
Generalized Response Time Metric in relation to the four other performance
parameters which are latency, response time, throughput, and error-rate.

Sachan, Kumar Dixit, and Kumar (2014, p. 89) accurately describe per-
formance as a composite attribute comprising the weighted sum of latency,

86

throughput, and response time. Defined this way, and with the inclusion of
error-rate, the logical expression of performance is :

Qperformance =
4∑

i=1

Wi ∗Qi (4.8)

Where Qi =Qlatency, Qthroughput, Qresponse−time, Qerror−rate.
The Latency, denoted as Qlatency above, refers to the delay before a trans-

fer of data begins following an instruction for its transfer. In the context of
this study latency refers specifically to a network latency which signifies a
delay in the transfer of data along the connectivity network. Latency affects
both the request arrival time (at the service side) and the response arrival
time (at the client/consumer side). In this sense, Latency is defined as:

Qlatency = Qresponsetime − ExecutionT ime (4.9)

Throughput is defined as the total number of requests/transactions that a
Web Service completes over a period of time and has values such as 2000/sec
to denote 2000 requests/transactions completed per second. In their work of
formalizing the QoS parameters, Sachan, Kumar Dixit, and Kumar (2014,
p. 91) defined Throughput as:

Qthroughput = 1− (Qincomplete/Qexperience) (4.10)

Where Qincomplete represents the number of requests/transactions that the
Web Service did not complete successfully, and Qexperience denotes the number
of times that the Web Service was selected to handle a request. In fact, the
quotient (Qincomplete/Qexperience) can be understood as the error rate of a Web
Service as it shows the percentage of failed Web Service executions. In this
sense, the metric for Error-Rate is given by:

Qerror−rate = Qincomplete/Qexperience (4.11)

Finally, the response time (Qresponse−time), which is the focus of this study,
refers to the total delay from when the request is sent and when the response
is received. In this sense, Equation ((4.9)) can be restated as follows:

Qresponsetime = Qlatency + ExecutionT ime (4.12)

87

Practically Qlatency+ExecutionT ime is what the service provider would have
submitted as its response time. To generalize this response time metric (as
discussed in 4.3) it is necessary to take the consumer-side response time values
into account and then compute the average of their differences across multiple
executions. Having done that we can restate the Generalized Response Time
Metric (GRTM) as :

QGRTM = (Qlatency + ExecutionT ime) + (az).ẋ (4.13)

Where Qlatency + ExecutionT ime refers to the service-side response time in
collaborative monitoring, and as such, it can be denoted as srt. Then the
Generalized Response Time Metric (GRTM) is finally stated as:

QGRTM = srt+ (az).ẋ (4.14)

The graphical representation in Figure 4.1 is humanly easy to under-
stand; however, for a real application scenario where software agents must
be able to understand the ontological model, it is necessary to semantically
describe the performance ontology using appropriate syntaxes. Describing
the performance ontology further necessitates encoding the logical expres-
sions for each metric of the four performance parameters; Qlatency, Qthroughput,
Qresponse−time, and Qerror−rate. The semantic description of these logical ex-
pressions or formulae is necessary to support the corroboration of perfor-
mance data among the monitoring agents. These logical expressions, being
semantically described, can be understood by the monitoring agents. The
monitoring agents are then able to execute these logical expressions (arith-
metic formulae) to reproduce the same performance values as those produced
by other participating monitoring agents. This is how corroboration of per-
formance data among the monitoring agents is achieved.

This study focuses on the Response Time parameter of performance, and
as such, Sub-section (4.4.1) discusses and presents the semantic description
of the Generalized Response Time Metric (QGRTM). This is what the moni-
toring agents will reason over in order to corroborate the response time values
reported by the other participating monitoring agent.

4.4.1 Semantic Description of Generalized Response Time
Metric

Whereas Section 4.3 describes the mathematical formulation of how the Gen-
eralized Response Time is computed collaboratively, Section 4.4.1 provides

88

the semantic description of the logical expression or formula of Generalized
Response Time Metric (i.e. srt+(az).ẋ) using the Turtle as well as the RDF
syntaxes.

The work of Ferre (2012) forms the basis of this aspect of the study.
Whereas the main thrust of Ferre (2012), as discussed in Section 3.4.4, was
to solve the difficulties relating to mathematical search, the interest of our
study is in the ability of monitoring agents to understand the mathemat-
ical expressions. The monitoring agents will then be able to parse these
mathematical expressions into their associated mathematical operations and
subsequently perform those operations. For instance, given an expression
total = 3 + 2, the monitoring agent should be able to interpret this expres-
sion to mean that total is the sum of 3 and 2 and then compute the answer
correctly as 5. Specifically for this study, the monitoring agents should be
able to interpret the expression for Generalized Response Time Metric and
compute the answer correctly based on the supplied values. The "answer"
of such computation informs the conclusion as to whether the SLA has been
breached or not, and whether it is necessary to enact a conflict resolution
protocol because the values arrived at by the participating monitoring agents
differ.

The Generalized Response Time Metric is given by Equation (4.14) as :
QGRTM = srt+ (az).ẋ

The above mathematical expression or formula for computing the gener-
alized metric for response time can be represented semantically in the Turtle
as:

[a math : Plus ;
rd f :_1 _: x1 ;
rd f :_2

[a math : Mu l t i p l i c a t i o n ;
[r d f :_1 _: x2 ;
rd f :_2 _: x3] ;

]
] .
_: x1 r d f s : l a b e l " s r t "
_: x2 r d f s : l a b e l "az"

89

_: x3 r d f s : l a b e l "\dot{x}"
Listing 4.1: Generalized Response Time metric in Turtle

It should be noted that in the context of this study, the labels are actually
ontological concepts and so the Turtle syntax can be rewritten to incorporate
these concepts with their associated meanings. Specifically srt refers to the
server-side response, az refers to the historical average-z scores based on all
historical request a server has handled, and finally ẋ refers to the “mean er-
ror” which is the difference between client-side response-time and server-side
response-time for each historical client-server interaction. These concepts are
kept as labels here for brevity.
The graphical RDF syntax for the Generalized Response Time Metric is de-
picted in Figure 4.2:

Figure 4.2: Generalized Response Time Metric in graphical RDF syntax

For the performance ontology to be usable in collaborative and corrob-
orative monitoring, it must provide explicit descriptions of how values are
computed. Specifically, the method or formula of measuring response time

90

(i.e. srt + (az).ẋ) should be semantically described so that the participat-
ing monitoring agents can understand how to derive the performance values
(response time) conveyed in the monitoring information. Corroboration is
facilitated by the ability of monitoring agents to derive performance values.
In this sense, the service provider provides both the performance data as well
as the metadata explaining how the values in the performance data were ar-
rived at so that this might be corroborated by the receiving monitoring agent
(i.e. service consumer’s monitoring agent).

The mechanism by which the service provider’s monitoring agents provide
both the performance and metadata is the Monitoring Information eXchange
protocol discussed in Section 4.5.

4.5 Monitoring Information eXchange (MIX)
Protocol

In view of the related works discussed in Chapter 3, the motivation for this
study is that current approaches to Semantic Web Service Monitoring do not
facilitate collaborative and corroborative exchange of monitoring information
between the service consumer and the service provider. Collaborative means
that both the service consumer and service provider are aware of each other’s
monitoring activities and also that the interaction between them is based
on sending to and receiving monitoring information from each other. This
section discusses Monitoring Information eXchange (MIX) protocol as a
mechanism to facilitate the exchange of semantically enriched monitoring
information between the service consumer and the service provider.

The high-level architecture of the MIX protocols is described next in
Subsection 4.5.1 followed by the discussion on the functional principles of
the protocol in Subsection 4.5.2.

4.5.1 High-Level Architecture of MIX Protocol

The MIX protocol is an open standard specification protocol. It specifies the
minimal set of messages, the flow of these messages and what content they
convey. Similarly, the high-level architecture of the MIX protocol describes
the main layers of the protocol stack without being prescriptive on how each
protocol layer should be implemented.

91

The four-layer architectural stack of the MIX protocol consists of the
Transport Layer, Session Initialization and Management Layer (SIML), the
MIX Message Encoding Layer (MMEL), and finally, the MIX Application
Layer. The high-level architecture of the MIX protocol is depicted in Figure
4.3:

Figure 4.3: High-Level MIX Protocol Architecture

The Transport Layer is responsible for managing the network connectivity
between the participating MIX agent systems. The network protocols at
this level are not specific to the MIX protocol per se, but are universal IP-
based protocols such as the TCP/IP. Furthermore, for secure communication
between the MIX agent systems, Transport Layer Security (TLS) can be used.
A MIX agent in the context of this study is a software program that runs
the implementation of the MIX protocol.

The Session Initialization and Management Layer (SIML) is responsible
for handling the establishment of the interaction sessions between the MIX
agent system. At this level, there are MIX protocol specific functions such
as specification for the MIX protocol version, the creation and termination
of sessions and agent capability negotiations between the two participating

92

MIX agent systems. For example during session initialization the two MIX
agents have to agree on the version of the protocol to be used.

The MIX Message Encoding Layer (MMEL) is responsible for packag-
ing the protocol messages in the agreed format. Furthermore, the semantic
enrichment of MIX protocol messages takes place at this level. Example of
message encoding standards include JSON, XML, and Turtle among others.
Even though multiple standards may be supported by a particular imple-
mentation of MIX protocol, a single format is agreed upon during the session
initialization in the SIML layer.

The Application Layer of the MIX protocol is where the actual features
and functionalities of the specific MIX agent implementations reside. Mes-
sages coming from the lower layers of the protocol stack are received and
processed by the MIX agent. The collaborative and corroborative monitor-
ing is achieved by the logic that is built into the application. The application
reacts to different protocol events such as when a session is initiated (con-
necting with another MIX agent), when the monitoring data is received,
when there is an alert for SLA breach, receiving ACK and NACK messages
and when the participating MIX agent terminates the session. The protocol
events represent the phases of the MIX protocol (see Figure 4.5).

Although the lower layers of the architecture may remain unchanged,
different features can be added at the Application Layer and thereby provide
a much richer set of capabilities that cater for more complex use cases of the
MIX protocol.

The functional principles of the MIX protocol are discussed in sub-section
4.5.2 to capture the inner workings of the protocol.

4.5.2 Functional Principles of MIX Protocol

One of the key functional principles of the MIX protocol is that the perfor-
mance description data is populated by both the service provider and service
consumer. For each request, the arrival time of the request and the response
dispatch time (time that the response is sent) are recorded at the service
provider. The service consumer records the request dispatch time and the
response arrival time. These recorded "times" use the ontological concept
of Time, or more formally, Duration to represent the unit of measure. The
recorded values are then used to calculate response time based on the equa-
tion: srt+ (az).ẋ .

Another principle is that the descriptions of the Semantic Web Services

93

are modified to include the MIX endpoint as well as the version of the protocol
supported by the service. The MIX endpoint 2 specifies a Universal Resource
Locator(URL) to which monitoring data should be sent. The presence of
MIX endpoint in the description of the service indicates that the service has
capabilities for MIX.

Upon discovering a service and binding to it, the client also establishes
a connection to the service’s monitoring agent via the MIX endpoint (see
Figure 4.4).

Figure 4.4: MIX-enabled Book Doctor Appointment Service Scenario

Once a MIX connection is established, the protocol gets initiated and con-
trol messages are being exchanged between the monitoring and negotiation
agents (MIX agents) of both the service and the consumer or client. This
happens over the "monitoring plane" which is represented by the dotted line
in Figure 4.4. The diagram depicts the fact that the service execution hap-
pens on one plane while the monitoring and potential negotiations happen
on a different plane which is where the MIX protocol resides.

MIX protocol is divided into four main phases, namely the Initialization
phase, Monitoring phase, Tear-Down phase and finally the Post-Execution
phase as depicted by Figure 4.5 below:

2 mix://agent-ip-address:mix-port/

94

Figure 4.5: The MIX protocol phases

During the Initialization phase, the monitoring agents (MIX agents) of
both the service and the consumer establish a session over which they will
later exchange their monitoring information. It is during the initialization
phase that the Service Level Agreement (SLA) negotiations take place. Once
the session is established, monitoring begins and the service MIX agent and
client MIX agents start exchanging monitoring information from their re-
spective processes. This happens during the Monitoring phase. When the
Semantic Web Service’s consumer or client process receives a response from
the Semantic Web Service, it notifies its MIX agent and the MIX agent ter-
minates its MIX session with the service MIX agent. The Tear-Down phase
is necessary to demarcate the point at which the collection of monitoring
data is concluded, and the service response has been received by the client
process. Finally, the Post-Execution is where the monitoring agents start
evaluating their collected performance data and corroborating each other’s
findings and enacting conflict resolution processes if necessary.

During the initialization phase the client sends its baseline data through
the Initialize() call - this is essentially the timestamp of its service request
and includes the time the request was sent, the expected response-time (as
per advertisement), and the interval (in seconds) at which the client’s MIX
agent will be sending/receiving monitoring data. The interval should always
be less than the quoted response-time; monitoring data is only exchanged
during service execution. The sequence of interactions during initialization
phase is shown in Figure 4.6 below:

95

Figure 4.6: The MIX protocol initialization phase

An example of baseline data carried in the Initialize() call is shown in
Listing 4.2 using the Java Simple Object Notation (JSON) format:

{
requestTimeStamp : ’1564584478745 ’ ,
r eque s t Id : ’39 d0b90c ’
advert isedResponseTime : ’ 10 ’ ,
update Inte rva l : ’ 2 ’

}
Listing 4.2: Sample baseline data in JSON format

In Listing 4.2, the client’s MIX agent sends its baseline data indicating
that it expects the advertised response time of 10 seconds and that it will
be sending its monitoring data every 2 seconds. Messages such as this one
shown in Listing 4.2 are carried in what is depicted as "control messages"
over the monitoring plane in Figure 4.4.

The first corroboration occurs when the service provider’s MIX agent
acknowledges the response-time value quoted by the client’s MIX agent by
sending an ACK message. It is possible that the service might have im-
proved or degraded in performance. In this case the service MIX agent will,
after sending the ACK message to acknowledge receipt of the baseline data,
send another protocol message (NACK) to indicate that it wishes to com-
municate contradictory information back to the client’s MIX agent. In the
NACK message the service provider’s MIX agent indicates the client’s quoted
response-time and the service’s actual response-time (what it commits to).
It also supplies an indicator as to whether the actual service response time
is better ("B") or worse ("W") than the client’s MIX agent’s expectations
as reflected in its baseline data.

96

A sample NACK message is shown in Listing 4.3 below:

{
r eque s t Id : ’39 d0b90c ’ ,
r e sponse Id : ’39 d00000 ’ ,
r e sponse : ’NACK’ ,
data : { expectedResponseTime : ’ 10 ’ ,

currentResponseTime : ’ 12 ’ ,
i n d i c a t o r : ’W’

} ,
n o t i f i c a t i o n s : {

contactPerson : ’ Support Contact Centre ’ ,
emai l : ’ support@serv ice−name . domain ’

}
}
Listing 4.3: NACK response data with ’worse’ current response time

In Listing 4.3 above, the service provider’s MIX agent indicates that it has
contradictory information regarding the client MIX agent’s baseline data (see
requestId) in terms of its expected response time (expectedResponseTime). It
indicates that its current response time (currentResponseTime) is 12 seconds
which it classifies as being worse than the expected response time of 10
seconds quoted by the client MIX agent.

If the actual service response time is the same as the value quoted by the
client, then the NACK message would not have been sent. The ACK and
NACK messages also include contact information to be used when sending
notifications of SLA breaches. The MIX protocol does not specify how the
sending of notifications is done. Ideally, the MIX agent should be able to
automatically send an email to the email address specified in the ACK or
NACK messages.

A sample ACK message is shown in Listing 4.4 below:

{
r eque s t Id : ’39 d0b90c ’ ,
r e sponse Id : ’39 d00000 ’ ,
r e sponse : ’ACK’ ,
n o t i f i c a t i o n s : {

contactPerson : ’ Support Contact Centre ’ ,
emai l : ’ support@serv ice−name . domain ’

97

}
}

Listing 4.4: ACK response data

This initial exchange of messages (ACKs and NACKs) simply ensures
that the client’s expectations are aligned with what the current situation is
at the service side in terms of the response time it is able to commit to. This
also gives the client the opportunity to refresh its baseline data. The client
can now evaluate the current execution based on the service response time
specified in the NACK message.

During the monitoring phase and after receiving the first ACK or NACK
message from the service provider’s MIX agent, the client MIX agent iter-
atively gathers monitoring data from the Web Service Client’s process and
sends the updates to the MIX agent on the service side at the intervals spec-
ified in the baseline data. This real-time exchange of monitoring information
happens through the MIX-UPDATE calls and is depicted in the sequence
diagram in Figure 4.7:

Figure 4.7: The MIX protocol monitoring phase

When the Web Service Client’s process receives a response from the Se-
mantic Web Service, it notifies the client’s MIX agent via StatusUpdate call.
The client’s MIX agent then computes the response-time. The computation
is based on the time that the response is received and the time that the re-
quest is sent. This computation uses the Generalized Response Time Metric
(GRTM) - see Equation (4.14).

98

The result of the above computation should match what the service MIX
agent had indicated in its ACK or NACK message. In case of any deviation
or violations, the conflict resolution protocol is activated and notifications
are sent to the email address specified in the ACK/NACK message from the
service’s MIX agent (see Listing 4.3). This is done during the final phase of
the MIX protocol before the MIX session is terminated or torn down.

Figure 4.8 below depicts an interaction diagram for the MIX protocol to
show the interactions between the MIX agents throughout the phases of the
MIX protocol:

99

:WebServiceClient :ClientMIXAgent :ServiceMIXAgent :WebService

ServiceRequest()

200-OK
StartMIXAgent()

Initialize()

ACK

checkStatus()
MIX-UPDATE()

checkStatus()
StatusUpdate

processStatus()

MIX-UPDATE()

ACK
ACK

StatusUpdate
ServiceResponse()

TearDown()

Figure 4.8: Monitoring Information eXchange Sequence Diagram.

The post-execution is the final phase of the four MIX protocol phases
(see Figure 4.7). This phase takes place "outside" of the monitoring function
and is meant to be mostly administrative. This is because it follows after
the MIX session is already torn down (see TearDown call). During this time,
the MIX client and MIX service agents can start performing post-execution
tasks, including conflict resolution if necessary in the event of SLA breaching
or discrepancies in the collected performance data. The MIX protocol does
not specify the functionality within this phase. The developer can decide

100

how this is handled.

4.6 Summary
This chapter presented the development of a Generalized Response Time
Metric (GRTM) which is a major conceptual contribution by itself and then
demonstrated how this metric is formalized using semantic annotations. A
case was made as to why it is necessary to describe the logical/mathemat-
ical expression of performance parameters using the appropriate syntaxes
for semantic annotation (e.g. RDF and Turtle). The chapter also discussed
the exchange of the semantically enriched monitoring data through the MIX
protocol. The functional principles, and the sequence of interactions, as well
as the nature and contents of the monitoring data being exchanged, were
discussed.

The next chapter presents a reference implementation of the MIX protocol
as part of a collaborative and corroborative monitoring of Semantic Web
Services. This reference implementation will also serve to verify the technical
feasibility of collaborative and corroborative monitoring as a technique.

101

Chapter 5

Proof of Concept Implementation
of MIX Protocol

This chapter addresses the research objective (RO-3) which entails develop-
ing a Semantic Web Service Monitoring tool as a prototype to demonstrate
the technical feasibility of collaborative and corroborative utility in Seman-
tic Web Service monitoring. In terms of the chosen research methodology
of Design Science Research (DSR), this chapter represents the instantiation
of the design artifact. Hevner et al. (2004, p. 79) make a case for the refer-
ence implementations, arguing that these reference implementations serve to
demonstrate the feasibility of the artifacts of design science.

The reference implementation as discussed in this chapter is achieved us-
ing the already-available Java technologies. It is worth noting that although
the MIX protocol is technology-agnostic, Java was only chosen for conve-
nience based on the researcher’s proficiency in using the Java programming
language.

5.1 Introduction
As part of our study, we propose the appropriate semantic annotations
for Web Service performance data (which constitute monitoring informa-
tion),and a technical infrastructure that enables the exchange of this se-
mantically enriched performance data. The focus of this chapter is on the
technical infrastructure and the reference implementation of the Monitoring
Information eXchange (MIX) protocol.

102

The technical infrastructure for collaborative and corroborative moni-
toring provides for the mechanism by which the service consumer and the
service provider can perform their local monitoring tasks and share the data.
This implies that as far as the service consumer is concerned, it is imple-
menting client-side monitoring (for example see Jurca, Faltings, and Binder
(2007)) and similarly, the service provider feels as though it is performing
service-side monitoring (for example see Jurca, Faltings, and Binder (2007)).
This is the essential aspect of collaborative and corroborative monitoring;
all the monitoring is done locally by each party (consumer/provider), and
then the collected monitoring data is shared (post-execution) or exchanged
(real-time). Furthermore, the technical infrastructure enables the storage
and exchange of the already-semantically-annotated monitoring information.

It is expected that the service consumer and the service provider may be
implemented using totally different technology solutions, and therefore use
different software tools to perform monitoring. In view of this, the actual
data generated by these monitoring tools should be annotated with some
sort of metadata to facilitate interoperability. This is the justification for
the semantic annotation of Web Service monitoring data. This semantic
annotation can be achieved by using performance ontology suggested in this
study (for Semantic Web Service performance data). There are Quality of
Service (QoS) related ontologies, as discussed in Chapter 3 and Chapter
4, which can be used to describe and annotate the performance data of a
Semantic Web Service to enable collaborative and corroborative monitoring.

The remainder of this Chapter is structured as follows: Section 5.2 presents
a scenario for the use case of collaborative and corroborative monitoring of
Semantic Web Services, and later Section 5.3 presents a technically viable
architecture for collaborative and corroborative monitoring of Semantic Web
Services. Section 5.4 then discusses the reference implementation of the Mon-
itoring Information eXchange (MIX) protocol. Finally, Section 5.5 describes
the experimental execution of the MIX protocol implementation.

5.2 Proof of Concept Use Case for MIX
The doctor booking use case described earlier in this thesis is used in this
chapter to illustrate how the MIX protocol can be implemented in real-life
applications.

There are two levels of interactions that take place when the end user

103

of a service (consumer or client) invokes the services ("Book Doctor Ap-
pointment"): firstly there is the high-level or front-end interaction where the
service client and service provider applications interact following the request-
response interaction style, and secondly there is the low-level or back-end
interaction between the MIX agents on both sides; the client MIX agent
interacting with the service MIX agent using the MIX protocol.

The use case scenario depicted in Figure 5.1 shows the high-level interac-
tions between the service client and the Book Doctor Appointment service.
Under the hood, however, there are interactions between the client’s MIX
agent and the service’s MIX agent and these happen in the monitoring plane
which is depicted in the diagram as "Monitoring Information Exchange".

Figure 5.1: Book Doctor Appointment with MIX plane

The end user, looking for a service for booking an appointment with a
doctor, will invoke the Book Doctor service. Upon discovering and binding
with the "book doctor" service, the MIX client running on the end-user device
will establish a connection with the service’s MIX agent. To establish this
connection, the client’s MIX agent sends the "initialize" protocol message in
which it indicates its last known response time of the service. Upon receiving
the initialize message, the service MIX agent will respond by sending its
baseline message which indicates its current or actual response time. The
simulation of this exchange is presented later in Section 5.4.

The architecture in Figure 5.2 indicates which components are required to
support collaborative and corroborative monitoring. It does not represent the
architecture of the MIX protocol - the MIX agents that implement the MIX

104

protocol reside in the Semantic Web Service components (see ServiceA and
ServiceZ instances). The exchanges of monitoring information between the
MIX agents are facilitated by the technical components of this architecture.

5.3 Collaborative and Corroborative Monitor-
ing Architecture

Figure 5.2 below shows the high-level view of the architecture as realized
using the Java technologies; Apache JENA 1 , and Java-based agent platform
(JADE 2). The components are described hereafter.

Figure 5.2: Collaborative and Corroborative Monitoring Enabled Architec-
ture

It must be noted that the purpose of this chapter is not to assess how well
1https://jena.apache.org/
2 http://jade.tilab.com/

105

the chosen technologies, such as the components in the above architectural
diagram, are able to implement the MIX protocol. Instead, the objective
is to illustrate that the MIX protocol can be implemented and that it is
technically feasible. Readers and researcher are encouraged to explore other
technologies for implementing the same MIX protocol. This chapter uses
JADE technology which is freely available and provides an agent execution
environment which closely mimics the behaviour required for MIX agents.
The choice of JADE, however, is not a prescription, any other technology
that provides similar capabilities as JADE can be used. Balaji B, N K,
and R S (2018) chose JADE for their experiment because of its support of
peer-to-peer communication capability.

The following subsections describe the key components of the experi-
mental technical architecture for facilitating collaborative and corroborative
monitoring of Semantic Web Services.

5.3.1 Java Agent DEvelopment (JADE)

In the experimental set-up, the Consumer Agent and Provider Agent are
hosted on the Java Agent DEvelopment (JADE) framework and use the plat-
form’s message transport system to exchange messages. These messages are
used during the discovery and session initiation phase. The Consumer Agent
uses the Directory Facilitator of JADE to locate an interoperable Provider
Agent. Once located, the Provider Agent sends a message to the discovering
Consumer Agent – this message is a URL to a Web Service Description Lan-
guage (WSDL) file. The Consumer Agent uses the URL it received and then
automatically invokes the instance of a Web Service that is described by the
WSDL file. The Consumer Agent then activates its client-side monitoring
to observe how the remote peer (the service) is performing while handling
its request. The Consumer Agent then annotates and stores this perfor-
mance data. The facility for doing this annotation in the Java programming
language is provided by the Apache JENA’s Ontology API.

5.3.2 Apache JENA

Apache Jena is a free and open source Java framework for building Semantic
Web and Linked Data applications. It provides the facilities for authoring
ontology models (RDF, RDFS and OWL, SPARQL) as well as a rule-based
inference engine for reasoning over these ontology models. Through these

106

reasoners it is possible to derive additional truths about the concepts in the
ontology model. The code that uses the Apache Jena facilities, specifically
the Jena Ontology API, is shown in Figure 5.8 and Figure 5.9.

5.3.3 FUSEKI - SPARQL Server

SPARQL 3 is the query language developed by the W3C RDF Data Access
Working Group 4. Apache Jena framework also includes a query engine that
supports SPARQL RDF query language.

For storing semantically enriched performance data, the proposed techni-
cal architecture uses the Apache JENA Fuseki 5 which is a SPARQL server.
Specifically, the monitoring information is stored using Resource Description
Framework (RDF) 6 format which is a standard model for data interchange
on the Web. JENA Fuseki server includes a native Triples Database (TDB)
and this is where the monitoring information gets stored. The query engine
provided by Apache Jena is then used to interrogate the performance data
stored by the monitoring agents.

Although in the design we have included the Monitoring Info Triple store
(see Fuseki TDB) as a dedicated component, it is not necessarily required. An
agent (especially a consumer) can store its own performance information on
a log file or even in memory – as long as the content is semantically enriched
and is amenable to machine processing, it can still work. The advantage
of using a storage facility like TDB (triple store) is that there are available
tools that can be used to query the store during post-execution analysis. For
instance, JENA has a dedicated API to support querying of the triple store
using RDF Query Language called SPARQL 7.

5.4 Monitoring Information eXchange (MIX)
Protocol

As shown in Figure 5.2, the Provider Agent is not involved after service
execution – instead, the instance of the service being invoked (e.g. ServiceA)

3 http://www.w3.org/TR/sparql11-query/
4 http://www.w3.org/2001/sw/DataAccess/
5 https://jena.apache.org/documentation/fuseki2/index.html
6 https://www.w3.org/RDF/
7 http://www.ibm.com/developerworks/xml/library/j-sparql/

107

generates its own service-side monitoring data and publishes/stores the data
into the Monitoring Info Triple store. Figure 5.3 shows the MIX-protocol
plane as part of the technical architecture.

Figure 5.3: MIX Protocol in Collaborative and Corroborative Monitoring
Enabled Architecture

The MIX agents interact with the Triple Store to save and retrieve moni-
toring information as part of the monitoring information exchange protocol.
The diagram illustrates that the interaction between the MIX agents is sepa-
rate from the client-service interaction. This is significant as it indicates that
the MIX protocol is not intrusive to the pre-existing Semantic Web Service
based applications.

In the collaborative and corroborative monitoring architecture, a Moni-
toring Info Triple store is included as a component on both the Consumer and
Provider sides. Furthermore an optional, central, and presumably Internet-
hosted, Monitoring Info Triple store is also included.

The Monitoring Info Triple stores are used to store historical service per-
formance information and can be queried by any of the participating agents

108

(Consumer or Provider). Each request for a service is uniquely identified and
the service execution information generated during the processing of this re-
quest is linked to the unique identifier which the consumer (who made the
request) can query the service provider for its performance information iden-
tified by the same identifier as the request. Likewise, the service provider can,
upon handling the request from a consumer, query the consumer-generated
monitoring information pertaining to its handling of the request. This way,
the two parties can collaborate and exchange their monitoring information.
This is the essence of the Monitoring Information eXchange (MIX) protocol.

Furthermore, by querying each other’s monitoring information which is
already semantically annotated, both parties can corroborate each other’s
monitoring information. Figure 5.4 below shows sample contents of Moni-
toring Info Triple store after some executions had taken place:

Figure 5.4: Sample Monitoring Data in Monitoring Info Triple Store

The “monitoringDataUri” is what uniquely identifies the service per-
formance record and is used to query for performance information during
corroboration to enable the service consumer and the service provider to
perform the "comparing of notes".

The "publisher" is the URL to the actual Semantic Web Service. In this
case, it points to the experimental "Book a Doctor Appointment" service.

The "transactionId" uniquely identifies the set of interaction actions
between the service and the client. This represents a service request identifier
on the service side and is used to tie the specific performance data to an
interaction between service and client.

109

The "responseTime" represents the response time as reported by the
service for all the requests/transactions it has executed. In the collaborative
and corroborative scenario, we expect the client to have similar information
for all the requests it would have made.

The "Units" shows the unit of measure for the reported response time
(responseTime). This means, looking at the first row, the responseTime is
312 milliseconds (ms).

The next section discusses the experimental execution that demonstrates
further technical details of how the most basic collaborative and corroborative
monitoring mechanism can be accomplished using JADE, JENA and Java
application monitoring library called JAMon 8.

5.5 Experimental Execution of the MIX Proto-
col

In order to illustrate the experimental execution of the MIX protocol, it is
necessary to connect this experiment to the theoretical foundations of the
MIX protocol. Specifically, the mapping between the phases of the MIX
protocol and the actual protocol messages and the events that get emitted
as part of the interactions between participating MIX agents is necessary.

Figure 5.7 below depicts the four phases of the MIX protocol and overlays
the interactions between the client MIX agent and the service MIX agent by
indicating the series of events emitted and processed by the respective MIX
agents (see dotted lines).

8 http://jamonapi.sourceforge.net/

110

Figure 5.5: MIX Agent Interactions During MIX Protocol Phases

The illustration in Figure 5.7 depicts the relationship between the phases
of the MIX protocol and the protocol messages that get sent or received by
the participating MIX agents. This also shows the MIX protocol’s state-
machine; some events are only emitted at specific phases in the protocol
life-cycle. For instance a MIX-UPDATE event is only permissible during the
Monitoring phase of the protocol.

The order in which the events are emitted within each of the MIX protocol
phases is best represented in a sequence or activity diagram. Figure 5.6 below
depicts the sequence diagram of a typical MIX protocol interaction:

111

:WebServiceClient :ClientMIXAgent :ServiceMIXAgent :WebService

ServiceRequest()

200-OK
StartMIXAgent()

Initialize()

ACK

checkStatus()
MIX-UPDATE()

checkStatus()
StatusUpdate

processStatus()

MIX-UPDATE()

ACK
ACK

StatusUpdate
ServiceResponse()

TearDown()

Figure 5.6: MIX Protocol Sequence Diagram.

In addition to showing the order of events during the interactions be-
tween the client MIX agent and the service MIX agent, the sequence diagram
further shows the interactions between the MIX agents and the underlying
Semantic Web Service process. For instance, during the monitoring phase,
if the Semantic Web Service’s client process receives results, it notifies the
client MIX agent and then invokes the tear-down call to terminate the MIX
session.

The first activity in Service-Oriented Computing is service discovery; Fig-

112

ure 5.7 shows agent communication which simulates the initial hand-shake
that constitutes service discovery.

Figure 5.7: Agent Communication during Service Discovery

In Figure 5.7 above, "mix_client_agent" is the Service Consumer Agent
and first sends the “Find Service” Agent Action REQUEST. The Service
Provider Agent is represented by "mix_server" and responds to client re-
quest with an INFORM message. Upon receiving “Find Service” request,
"mix_server" responds with a URI to the WSDL file of a service to han-
dle customer request. The sample payload of the INFORM message sent by
Service Provider Agent ("mix_server") is below:

http :// l o c a l h o s t :8080/ cc2masw/ expe r imenta ldoc to rbook ing s e rv i c e ?wsdl

The receipt of the INFORM message by the Consumer Agent concludes
the agent-communication portion which represents “service discovery”. The
Consumer Agent dynamically invokes the service pointed to by the URI
received from the Provider Agent during “service discovery”. See Figure 5.8
for the code listing:

113

Figure 5.8: Dynamic Invocation of the Discovered Service

For our experiment, all that the discovered remote service does is to
return a list of doctors, and then it saves/publishes its performance/execution
monitoring data into its own Monitoring Info Triple store. The code-listing
in Figure 5.9 shows the lines of code responsible for this:

Figure 5.9: Service-side execution and monitoring

The above code-listing illustrates how the monitoring information gets

114

collected by the service MIX agent. However this monitoring information
needs to be exchanged with the client MIX agent and this is done through
the MIX protocol. The communication between this service MIX agent and
the client MIX agent is done by sending and receiving specific MIX protocol
messages. For the purpose of our experimentation, this exchange was simu-
lated using the JADE platform where we implemented the logic for receiving
and processing the protocol messages.

The next series of screenshots describe how a MIX agent is instantiated in
the JADE platform, how a MIX protocol message is authored using the JSON
format in terms of the Message Encoding Layer and how such a message is
received by a participating MIX agent.

Figure 5.10 shows the simulation of the start of an agent on the JADE
platform:

Figure 5.10: Start JADE MIX Agent

The JADE platform prompts you to indicate the parameters of the agent
you intend to start; the parameters include the name of the agent and the
class that implements the agent-specific logic. Figure 5.11 shows the agent-
creation dialog screen:

Figure 5.11: Set JADE MIX Agent Parameters

115

On the JADE platform, once you create an Agent, you need to select the
implementation of the Agent from a list of hosted JADE agent. In the case
of this simulation, we select the MIX agent class from the list (see Figure
5.12); this is the implementation of the MIX agent.

Figure 5.12: Select JADE MIX Agent Implementation

Once the parameters of the intended agent are set, JADE starts the agent
in the selected container. Figure 5.13 shows a running JADE agent for MIX
simulator:

116

Figure 5.13: JADE MIX Agent Running

With the MIX agent now running, we are able to author protocol messages
and send these to the running agent. On the JADE user interface, one can
use the "Send Message" feature of the platform. Figure 5.14 illustrates how
a protocol message can be authored - notice that the message content is in
JSON format:

117

Figure 5.14: Send ACK MIX Protocol Message in JSON

In the case of this simulation, JSON would have been the selected message
format in the MIX Message Encoding Layer (MMEL) in terms of the MIX
architecture presented in Chapter 4 (see Figure 4.3).

When sending a message from the JADE user interface as shown in Fig-
ure 5.14, the message gets delivered onto the running JADE platform and
the registered agent receives the message. To illustrate how this works, we
implemented the message handler that receives the message and then prints
out the contents of the received message. See Figure 5.15 :

Figure 5.15: Receive MIX Protocol Message in JSON

118

Upon receiving a protocol message such as above, the participating MIX
agent would respond according to the MIX protocol state machine. For
example, in the above scenario, the MIX agent receiving the ACK message
would proceed with its processes such as sending a correlated ACK message,
or interpreting the ACK message to mean that it should confirm its previous
state proposal. For instance, if the MIX agent had sent a MIX-UPDATE
message, it would have received an ACK message to indicate its MIX-Update
message was received and processed successfully.

5.6 Summary
This chapter focused on the technical infrastructure and the reference im-
plementation of the Monitoring Information eXchange (MIX) protocol. The
chapter has drawn from the conceptual design presented in Chapter 4 and
developed a technology-specific demonstrator using the Java programming
language as well as the Apache Jena framework which is specifically built for
developing Semantic Web and Linked Data applications. JADE was used to
illustrate the MIX protocol interaction between participating MIX agents.
As can be expected for a chapter such as this, there are many references
to technology tools; these are the tools that were chosen solely for the pur-
pose of demonstrating the technical feasibility of the proposed solution to
the research problem. It was not the intent of this chapter to prescribe
any technologies. There are many alternative technologies that are function-
ally equivalent and those can be explored by other researchers. Finally, this
chapter presented results from an experimental prototype of a Semantic Web
Service monitoring tool developed as a proof-of-concept implementation of
the Monitoring Information eXchange (MIX) protocol.

The next chapter presents the findings of the study and discusses the
results from the evaluation of the collaborative and corroborative monitoring
technique for Semantic Web Services as proposed by this study.

119

Chapter 6

Evaluation and Results

This chapter reports on the technical feasibility demonstrations presented in
the previous chapter (Chapter 5). For the proposed solution of a collaborative
and corroborative monitoring of Semantic Web Services, the demonstrations
focused on three main aspects; firstly is the basic collection of the service
performance data by the monitoring library or tool, secondly is the storage
of the collected monitoring data, and finally, is the exchanging of the moni-
toring data by the participating monitoring agents. This chapter addresses
the fourth research objective (RO-4) which involves evaluating technical fea-
sibility demonstrator or prototype. In terms of the chosen research method-
ology of Design Science Research (DSR), this chapter represents the Design
Evaluation research activity.

Hevner et al. (2004, p. 78) state, with regards to the evaluation of Design
Science artifacts, that since these artifacts are built to address hitherto un-
solved problems, they are to be evaluated on the basis of the utility that they
provide in solving those problems. In view of this, the reference implemen-
tation of MIX, as presented in Chapter 5, should likewise be evaluated on
the basis of its technical feasibility and its utility in supporting collaborative
and corroborative monitoring.

This chapter discusses the results of the evaluation of the collaborative
and corroborative monitoring technique for Semantic Web Services as pro-
posed by this study. Finally the chapter discusses the methodological aspects
of the study as a way of appraising the technical validity and academic rigor
of the work.

120

6.1 Introduction
This study has proposed a collaborative and corroborative monitoring ap-
proach for Semantic Web Services. Underpinning this approach is the ability
of the participating monitoring agents or systems to exchange their monitor-
ing information. This exchanging of monitoring information necessitated ad-
dressing the three critical requirements, and these were introduced in Chapter
1 (Section 1.3) and discussed in detail in Chapter 4. The three requirements
are:

• Developing a mechanism by which participating monitoring systems
can develop consensus on observable QoS parameters and attributes;

• Mechanism by which participating monitoring systems can exchange
their monitoring information;

• Technology-neutral negotiation protocol for conflict resolution in case
of SLA breaches or inconsistencies in the monitoring data;

The following subsections discuss each of the three requirements above,
explaining how each requirement was met and what the implications, if any,
are for both theory and practice.

6.1.1 Consensus on Observable QoS Parameters

The need for consensus emanates from the fact that, especially for measur-
able performance-related QoS parameters, the service provider and service
consumer may have different perspectives; for example, response time ver-
sus execution time and which value should be reported for QoS monitoring
purposes. This requirement pertains to the need to reconcile the differences
in perspectives relating to measurable QoS parameters which are measured
independently by both the service consumers and the service providers.

The performance ontology provides the basis for semantic description
of performance characteristics of a Semantic Web Service. In view of this,
the use of ontological models to describe QoS parameters provides the most
appropriate facility for developing the required consensus on observable QoS
parameters.

For this study, the consensus on observable QoS parameters has been
achieved by using ontology, specifically the performance ontology. The per-
formance ontology comprises four QoS parameters; the latency, response

121

time, throughput, and error-rate. A comprehensive ontology for performance
was developed and integrated as a sub-ontology in the larger QoS ontology.
Existing QoS ontologies were extended using the sub-classing mechanism in
order to integrate the new concept of Generalized Response Time Metric
(GRTM). As shown in Section 4.3, the GRTM was developed through a
data-driven collaborative and corroborative technique so that it represents
the best view of the response time for both the consumer (Semantic Web Ser-
vice client) and the producer (Semantic Web Service provider). The GRTM is
the outcome of a consensus-seeking process to address the issue whereby the
service consumer and service provider have different perspectives on the same
response time QoS parameter. Furthermore, to make the GRTM amenable to
semantic reasoning and unlock the power of existing reasoners and inference
engines, a semantic description of the mathematical expression that repre-
sents this generalized form of response time metric was developed. In this
way, both service consumers and service providers will be able to reason over
the performance data. The corroborative aspect of the proposed monitoring
technique, as will be seen in Section 6.1.2, is accomplished by re-computing
the result of the generalized form of response time metric (the GRTM) and
ascertaining that both the service consumer and the service provider arrive
at the same value within some error threshold. The GRTM, which was de-
veloped through the consensus-seeking process in Chapter 4, is given by:

QGRTM = srt+ (az).ẋ

The graphical RDF syntax for GRTM is represented as:

122

Figure 6.1: Graphical RDF Syntax for GRTM

The GRTM represents the conceptual contribution made by this study
and, as of this writing, is the first such concept in the domain of Service
Oriented Computing.

6.1.2 Mechanism for Monitoring Information Exchange

This requirement pertains to the mechanism that would enable the monitor-
ing systems on the Semantic Web Service client-side and the Semantic Web
Service server-side to share their monitoring data.

Section 4.5 introduced and discussed the Monitoring Information eXchange
(MIX) protocol as a mechanism to facilitate the exchange of semantically en-
riched monitoring information between the service consumer and the service
provider. One of the fundamental principles of this protocol is that the per-
formance data is collected independently by both the monitoring agent of
the service consumer and the monitoring agent of the service provider. Each

123

monitoring agent then semantically enriches the performance data and sends
it to another. For the purposes of this study, the service provider’s monitor-
ing agent would provide both the performance data as well as the metadata
explaining how the values in the performance data were arrived at. The
metadata is essentially the semantic descriptions of the metrics of each of
the measurable QoS parameters. Most importantly, the metadata is the se-
mantic description of the Generalized Response Time Metric (GRTM). The
performance values can then be re-computed, based on the supplied meta-
data, and be corroborated by the receiving monitoring agent (i.e. service
consumer’s monitoring agent) to determine whether it too will arrive at the
same value, for the same metric, as what the service provider had reported.

The implication of this corroborative feature is what necessitated the use
of metadata in that the structure of the monitoring data being exchanged
needed to be semantically annotated to enable the participating agents to
process and reason over the data. The mechanism for the exchange of mon-
itoring data, on the other hand, needed to define the exchange protocol in
terms of the sequence and content of data being exchanged.

MIX protocol is divided into four main phases, namely the Initialization
phase, Monitoring phase, Tear-Down phase and finally the Post-Execution
phase:

Figure 6.2: Four Main Phases of the MIX Protocol

The MIX protocol is made to be very lightweight and extensible. As a
consequence, it specifies a limited set of interactions so that there is sufficient
scope for customization by engineers who may want to introduce a number
of interactions within one or more phases of the MIX protocol. Most im-
portantly, the protocol is technology-agnostic, and does not prescribe any
specific technology for implementing any of its components, including the

124

message formats and encoding schemes. The protocol only specifies the or-
der of interactions and what the payload of each interaction ought to be.

The nominal sequence of interactions according to the MIX protocol is
depicted in Figure 6.3 below:

:WebServiceClient :ClientMIXAgent :ServiceMIXAgent :WebService

ServiceRequest()

200-OK
StartMIXAgent()

Initialize()

ACK

checkStatus()
MIX-UPDATE()

checkStatus()
StatusUpdate

processStatus()

MIX-UPDATE()

ACK
ACK

StatusUpdate
ServiceResponse()

Figure 6.3: Nominal Interactions Sequence for MIX Protocol.

The MIX protocol is a significant conceptual contribution made by this
study and, as of this writing, is the first such protocol in the general domain
of Web Service monitoring, and the more specific Semantic Web Service
monitoring.

125

6.1.3 Technology-neutral Negotiation Protocol

This requirement pertains to the capability that enables the Semantic Web
Service client’s and the Semantic Web Service server’s monitoring systems
to participate in a negotiated conflict resolution in the event of inconsis-
tencies between their respective performance characterization or execution
monitoring data.

The initial exchange of the baseline data (see Figure 6.4) represents nego-
tiation. It can result in the MIX agents deciding to abort the entire process,
or continuing based on the agreed-upon performance expectations and com-
mitments. The sequence of interactions during the negotiation of the baseline
data is shown in Figure 6.4 below:

Figure 6.4: MIX Protocol Baseline Data Negotiation

This study developed a very light-weight negotiation protocol with greater
scope for expansion to handle more complex use cases. The current design
of the protocol is deliberately abstract. For instance, decision-making by
the MIX agents is not specified or dictated. This means, for example, that
upon receiving the baseline data feedback NACK message, the client MIX
agent can be implemented such that it negotiates pricing if the new baseline
data is worse than expected (service quality degraded). The pricing can be
based on percentages - for instance the client MIX agent could use the per-
centage degradation in quality as a percentage price reduction. For example
a Response Time that changed from 10ms to 13ms (i.e. 30% degradation)
for a service that charges R2.00 will now cost R1.40. Likewise the service
MIX agent can also re-negotiate pricing due to improvements in its baseline
data (for instance, Response Time improving from 10ms to 7ms). These
behaviors are not dictated by the protocol design, hence the protocol is open

126

to more specialized implementations as long as both the participating MIX
agents are compatible.

As a design principle for MIX protocol, the post-execution processing is
taking place "offline" - otherwise it is felt that it introduces a lot of overhead
for a real-time monitoring process. These "contractual" negotiations are
best handled "offline" - the tear-down phase of the MIX protocol is meant to
demarcate this "offline" part of the process where post-execution negotiations
can take place, even between people instead of MIX agents.

6.2 Evaluation
In terms of evaluation, the chapter makes a case for the method of evalua-
tion adopted for this study, namely technical feasibility demonstration. The
difference between comparative analysis and technical feasibility is discussed
next, and a case is made for why technical feasibility was adopted for this
study.

6.2.1 Comparative Analysis vs. Technical Feasibility

In the case where the proposed solution is an improvement on existing so-
lutions, perhaps because it implements superior techniques and methods, it
becomes necessary for the researcher to demonstrate that his or her pro-
posed solution is indeed superior to any other existing solution. This is done
through comparative analysis whereby the researcher compares his or her
solution to existing solutions on a number of metrics. For example, compar-
ison could be done based on accuracy, speed, scalability, performance and
reliability among others.

However in other cases where there are no other solutions similar to the
one the researcher is proposing, then the researcher is obligated to demon-
strate that his or her proposed solution is actually workable; that it can
be implemented with technologies or tool that are readily available. This
is done through proofing the technical feasibility of the solution by doing a
reference implementation, or through a proof of concept. Failure to do so,
the researcher would not have given his or her solution any credibility.

Since there is no other implementation of collaborative or corroborative
monitoring of Semantic Web Services to compare with, it is futile to report
on comparative analysis. Instead, Table 6.1 contrasts how the related works

127

dealt with issues relating to the use of ontologies in monitoring and whether
the approaches supported collaborative and corroborative monitoring.

Table 6.1 reproduces the tabulation of related works presented initially
in Chapter 3 (see Table 3.1) and compares these related works against the
current study by indicating, for each work, the manner in which ontologies
are being used in monitoring, the monitoring approach used, and whether
the monitoring approach is collaborative and corroborative.

128

Research Work Ontology Usage Monitoring Approach Collaborative Corroborative
Keeney et al. (2011) Semantic annotations to en-

rich monitoring information
Service-side monitoring No. No.

Letia and Marginean
(2011)

Ontology-enriched request-
response SOAP message
pairs

Client-side monitoring Yes. No.

Vaculín (2009) Semantic annotations to de-
scriptions of event types and
event instances emitted dur-
ing services execution

Service-side monitoring Yes. No.

Singh and Liu (2016) Semantic annotations to en-
rich monitoring data analy-
sis results

Off-site monitoring No. No.

Zhang, Jin, et al.
(2018)

Relies on underlying on-
tological models of QoS
and introduces probabilistic
characteristics of QoS

Service-side monitoring No. No.

Amir (2018) No reference to QoS but
deals with generic collabo-
ration framework in Web of
Things (WoT)

N/A Yes. No.

Al-Hazmi and
Magedanz (2015)

Ontology-based information
model for monitoring feder-
ated infrastructures in IoT

Off-site monitoring (IoT plat-
form service)

No. No.

129

Benvenuti et al.
(2017)

Ontology used to formally
describe key performance
indicators (KPIs) and their
formulae

Off-site monitoring (PTS plat-
form service)

No. No.

Sigwele et al. (2018) No reference to QoS but
provides potential applica-
tions of semantic annota-
tion of healthcare informa-
tion to facilitate collabo-
ration across heterogeneous
healthcare systems

N/A Yes. No.

Lara Calache and De
Farias (2020)

Semantic annotations to
Web Service description
using a graphical collabo-
rative semantic annotation
support tool

N/A Yes. No.

MIX Semantic annotations to the
descriptions of QoS param-
eters and their metrics (e.g.
Response Time) and seman-
tic annotations to enrich the
service’s performance data

Both Client-side and Service-
side monitoring

Yes. Yes.

Table 6.1: Comparison Against Related Works

130

Table 6.1 shows that the most closely related works have either not sup-
ported collaborative and corroborative monitoring or did so partially. It
also indicates that only the current study (i.e. MIX) provides for a fully
collaborative and corroborative monitoring mechanism as well as the seman-
tic annotations of QoS parameter descriptions to enrich the Semantic Web
Service performance data.

Comparative analysis against existing implementations of collaborative or
corroborative monitoring of Semantic Web Services could not be conducted
because, as stated earlier and as at the time of this writing, there were no ex-
isting implementations to compare with. This study sought to demonstrate
the technical feasibility of the proposed collaborative and corroborative mon-
itoring technique for Semantic Web Service. This was achieved through a ref-
erence implementation of the MIX protocol using only the technologies that
are readily available and in active use by the Internet engineering commu-
nities. A Java-based monitoring library (JAMon) was used to demonstrate
how to technically collect the monitoring data. A Semantic enrichment li-
brary, called Apache JENA, was used to annotate the monitoring data to
enable reasoning over the same data as part of collaborative and corrobora-
tive monitoring. Finally, the exchange of the monitoring data was enabled
by the use of yet another Java-based agent communication platform called
JADE. The JADE platform provides the technical capability to implement
MIX agent functionality and provide the communication infrastructure that
allows the exchange of messages between agents.

In addition to the three key requirements imposed by the need to facilitate
monitoring information exchange (Sections 6.1.1,6.1.2 and 6.1.3), a more
utilitarian requirement is that of technical feasibility and is necessary for the
validity of this study as discussed in Section 6.2.1 above. The next subsection
explains how the technical feasibility requirement was satisfied.

6.2.2 Technical Feasibility of Collaborative and Corrob-
orative Monitoring

With regards to the technical feasibility of collaborative and corroborative
monitoring, the following have been achieved:

• It was demonstrated that with the least intrusion to the current Seman-
tic Web Services frameworks, the Semantic Web Service descriptions or

131

their QoS properties can be extended to include connectivity directives
for MIX protocol by way of the MIX endpoint URL;

• The ability to collect the performance or monitoring data was demon-
strated using JAMon library which recorded how long a service took
to process a request (for booking a doctor’s appointment);

• The ability to semantically enrich the monitoring data was demon-
strated with the use of Apache JENA which provides the ontology
authoring capability;

• The exchanging of monitoring information between MIX agents was
demonstrated using the JADE platform which allows communication
between agents by sending and receiving protocol messages; these were
in the JSON format in the demonstration;

• The design decision of keeping the MIX protocol technology-agnostic
meant that the implementation of the MIX protocol is open to whichever
technology the prospective SWS provider has access to, and the exper-
tise within their organization. The proof of concept (see Chapter 5)
demonstrated that MIX can be implemented using open source tech-
nology (or Java in this case).

6.3 Results and Their Implications for SWS
Monitoring

This section discusses the results and their implications for the future of
Semantic Web Service monitoring.

A generalized metric for response time, named the Generalized Response
Time Metric (GRTM), represents a consensus on the meaning of the response
time QoS parameter as seen from both the Semantic Web Service provider
and the Semantic Web Service consumer. This generalized metric was found
to be given by the following equation: Qgrtm = srt+ (az).ẋ.

It was found, and demonstrated, that it is technically feasible to support
and implement collaborative and corroborative monitoring for Semantic Web
Services. The collaborative and corroborative monitoring is made possible
by implementing a monitoring information exchange mechanism based on
the technology-agnostic Monitoring Information eXchange (MIX) protocol.

132

The following are the implications of this technical feasibility as demon-
strated in this study:

• The conceptualization of the Generalized Response Time Metric (GRTM)
implies that a "response time", as is currently used in the non-functional
characteristic of Semantic Web Services, is not sufficiently accurate. A
more accurate response time should be very dynamic in nature. It fur-
ther implies that in most descriptions of response time, there is confu-
sion between execution time (which is how long the service takes before
rendering results to the consumer) and the response arrival time (which
is the time it takes before the consumer receives the results). A more
accurate response time should account for the time difference between
execution time and response arrival time; this is what the consumer
considers to be the real response time of a service).

• The functionality of sharing service performance data, which was demon-
strated as technically doable, can be made a regulatory requirement for
a Semantic Web Service based interactions, entitling the service con-
sumer to such information as it pertains to their specific interactions.
This is very important as functionally equivalent services put a pre-
mium on their non-functional properties such as performance.

• The ability to exchange monitoring information means that there is no
need for incentive schemes aimed at encouraging honest reporting of
service experience especially from consumers.

• Due to the functionality provided by the MIX protocol, monitoring
and exchanging of the monitoring data become part of the service pro-
vision and consumption infrastructure. Therefore, there is no need for
dedicated infrastructure for monitoring by surveillance because service
consumer and service provider exchange their environment-dependent
monitoring information directly.

6.4 Methodological Aspects
This section reflects on the methodological aspects of the study and makes
a case for the academic rigor and the appropriateness and soundness of the
research approach adopted by this study. Section 1.5 gave a full discussion
of the research methodology.

133

The stated purpose of this study is to address the evident lack of a mech-
anism to support or facilitate collaborative and corroborative monitoring of
Semantic Web Services by prescribing a Monitoring Information eXchange
(MIX) protocol. The prescriptive nature of this study precludes a similarly
prescriptive research approach. Consequently this study adopts a design
science research paradigm which, as Gregor and Hevner (2010) argued, is
particularly suited to research projects that entail the development, design
and building of artifacts as outputs of the research while adhering to sound
theoretical and scientific principles.

March and Smith (1995) noted in categorizing research approaches that
there are basically two main categories, namely natural science and design
science. The fundamental difference between these two categories is in the
objective of each research approach. Whereas natural science, or behavioral
science research, attempts to understand the natural environment (reality),
the design science research is concerned with the building and evaluating
of Information Technology artifacts that serve real-world human purposes
(March and Storey, 2008, p. 725). The differences between these research
approaches also have a bearing on how outputs or contributions are to be
evaluated or appraised. Natural science related research is evaluated mainly
in terms of the explanatory power of the theories the research develops. De-
sign science, on the other hand, is evaluated in terms of the utility of the
design artifacts that the researcher creates. This also means that such design
artifacts have to be technically viable to be implemented in real life (March
and Storey, 2008, p. 726).

Design science, for the purpose of this study, is understood as a scien-
tifically rigorous engineering-inclined research approach which involves the
use of existing scientific and engineering knowledge base as a foundation for
creating useful design artifacts that serve real human needs. In view of this,
and epistemologically, the study also adopted pragmatism as its philosophical
orientation which is compatible with design science research (Iivari, 2007).
This philosophical stance advances an argument that knowledge and a better
understanding of design problems and the solutions to these problems can
be established through building, applying and evaluating purposeful artifacts
(Hevner et al., 2004). The development of the MIX protocol, and the theo-
retical foundations it is based on are valid contributions in terms of practical
utility and extending the body of knowledge. Collaborative and corrobora-
tive monitoring for Semantic Web Service is a new concept and represents
a conceptual departure from the traditional approaches to Semantic Web

134

Service monitoring which were discussed in the literature.

6.5 Summary
This chapter addressed the fourth research objective (RO-4) involving the
evaluation of the technical feasibility demonstrator or prototype. This chap-
ter reported on the technical feasibility demonstration of the basic collection
of the service performance data by the monitoring library or tool, the storage
of the semantically enriched monitoring data, and finally on the exchanging
of the monitoring data by the participating monitoring agents. This chapter
represented the thesis statement, the objectives that emerged from the thesis
statement and subsequently discussed how these objectives were met. The
chapter also discussed the evaluation of the collaborative and corroborative
monitoring technique for Semantic Web Services as a solution proposed by
this study. The chapter finally discussed the methodological aspects of the
study as a way of appraising the technical validity and academic rigor of the
work. Specifically, the methodological aspects of the study made the case
that the development of the MIX protocol and the theoretical foundations it
is based on, such as the generalized response time metric, are valid contribu-
tions in terms of practical utility and extending the body of knowledge.

The next and final chapter of this thesis presents the conclusions of the
study.

135

Chapter 7

Summary, Conclusions and
Recommendations

Based on the evaluation and research results discussed in the previous chapter
(Chapter 6), this chapter presents the conclusions that the study deduces
from the work accomplished by the entire research project. Specifically, this
chapter links the thesis statement and the conclusions that can be drawn
based on the findings of this study. For this purpose, the chapter recaps the
thesis statement, the objectives that emerged out of the thesis statement and
then discusses how these objectives were met. This chapter also presents a
summary of findings of the study.

7.1 Introduction
This study made a case for collaborative and corroborative monitoring of
Semantic Web Services. This need for monitoring was discussed as emanating
from the desire by Semantic Web Service providers to be able to detect and
correct any deviations from the contracted QoS parameters. Monitoring
also allows the service providers to differentiate themselves based on non-
functional properties such as response time.

The study also contended that the problem with current approaches to
monitoring Semantic Web Services is their inability to facilitate the collab-
orative and corroborative exchange of monitoring information between the
service provider and the service consumer.

The study made a hypothetical proposition that collaborative and corrob-

136

orative monitoring of Semantic Web Services is a viable alternative approach
to contemporary monitoring approaches such as client-side, service-side and
3rd-party/dedicated monitoring. The thesis statement was further delineated
by clarifying what is meant by viable alternative such as (1) transparency of
the monitoring process, (2) potential savings on infrastructural costs, (3) sup-
port for flexible pricing model, and (4) eliminating the need to incentivise
honest reporting by service consumers.

The conclusions of the study are presented in Section 7.2 on the basis of
the above thesis statement and what the study has been able to achieve in
terms of the evidence to support the hypothetical proposition.

7.2 Conclusions
Since the assertions in the thesis statement pertain to viability, this section
discusses the four (4) aspects of viability as used to delineate the thesis state-
ment. Each subsection, in the following sequence of subsections, is dedicated
to each aspect of viability as a way of drawing conclusion on each.

7.2.1 Transparency of the monitoring process

Transparency is achieved through the MIX protocol in two important ways.
Firstly by supporting the exchange of monitoring information between the
MIX agents of the service consumer and the service provider. Secondly,
by the semantic enrichment of the monitoring information being exchanged
which solves the potential conceptual confusion which arises when the same
QoS parameter is understood differently by the service consumer and the
service provider. The semantically annotated monitoring information, along
with the metadata, enables the participating MIX agents to see how the
performance values were arrived at; the metadata specifies the semantic de-
scription of the QoS metric for measurable QoS parameters. In the case of
this study, this is the Generalized Response Time Metric (GRTM).

7.2.2 Eliminating the need to incentivise honest report-
ing by service consumers

A point was made in Chapter 1, Section 1.1, that since both the service con-
sumer and service provider exchange and corroborate each other’s monitoring

137

information, there is no need for incentive schemes such as those proposed
by Artaiam and Senivongse (2008), which are aimed at encouraging honest
reporting.

The design feature of the MIX protocol, supporting the direct exchange of
monitoring information between the monitoring agents on the client-side (the
service consumer) and on the server side (the service provider) eliminates the
need to incentivize the service consumer to report their experience of service
quality honestly. The protocol requires that the client MIX agent should
send its monitoring information to the service MIX agent, which can then
corroborate this information with the data from its own monitoring processes.
There is also a post-execution process within the protocol (see phases of
the MIX protocol in Figure 6.4), which empowers both the Semantic Web
Service client and the Semantic Web Service server monitoring systems to
participate in a negotiated conflict resolution in the event of inconsistencies
in their respective performance monitoring data.

Hofstee (2006, .p 157) stated that academic work is judged on the reliabil-
ity of its conclusions and not on what the work concludes. This being the case
because the hypothetical propositions represented by the thesis statement are
presented without evidence and that the research is conducted expressly to
find evidence to either support the assertions or dispute them. The following
two assertions (Subsections 7.2.3 and 7.2.4) were not directly supported by
the evidence and are presented here as potential avenues for further research.

7.2.3 Potential savings on infrastructural costs

This aspect of the viability of the collaborative and corroborative monitor-
ing approach suggests that there is no need for dedicated infrastructure for
monitoring by surveillance because service consumer and service provider
exchange their environment-dependent monitoring information directly.

There is no direct evidence to support this assertion - also, practical
limitations necessitate the need for a triple-store for the staging of seman-
tically enriched monitoring information which introduces some costs. Al-
though there might be potential savings, scaling these might offset those
gains. Furthermore, since the study could not provide a full implementation
of the collaborative and corroborative monitoring (MIX) solution to an ex-
isting service provider and then compare the costs, there is no evidence to
support this assertion and should be considered only as a "potential" until
such time that a study is conducted with the express intention of doing a

138

comparative evaluation of implementation costs between this solution and
existing solutions.

7.2.4 Support for flexible pricing model

Again, no direct evidence from the technical feasibility standpoint. The
ability for service providers to support flexible pricing, based on the actual
service quality experienced by the consumer, and which the service provider
could corroborate during the MIX interactions, is a natural extension of this
work; see Section 6.1.3 on possible extensions in terms of price negotiation
capabilities. However, since this avenue was not explored in the reference
implementation, it is unreasonable to support this claim directly from the
available evidence. Therefore, the conclusion is that it is impossible, on the
strength of evidence, to state categorically that collaborative and corrobora-
tive monitoring supports a flexible pricing model for Semantic Web Services.
Owing to the open nature of the MIX protocol the implementation of this
price-negotiation feature can be taken up as part of future research works.

7.3 Summary of Contributions
In order to achieve the objectives of the solution proposed by this study
(see Section 1.3), as well as addressing the key requirements imposed by the
need to support the exchanging of monitoring information, this study made
both conceptual and technical contributions. In terms of the conceptual or
theoretical contributions, this study has made two key contributions:

• Generalized Response Time Metric: the method of measuring response
time of a Semantic Web Service which takes into account the response
time values measured at both the service and the client side. This
makes the generalized response time metric a collaborative effort.

• Monitoring Information eXchange (MIX) - the protocol for exchanging
monitoring information between participating Semantic Web Services’
monitoring agents.

In terms of the technical or practical contributions, this study has made
two contributions in its endeavor to illustrate technical feasibility of the con-
ceptual contributions in relation to the Monitoring Information eXchange
(MIX) protocol discussed above.

139

• A technology-agnostic architecture for a Collaborative and Corrobora-
tive Semantic Web Service Monitoring.

• Semantic Web Service Monitoring Tool (software tool) which imple-
ments the Monitoring Information Exchange (MIX) protocol.

The next and final section presents the recommendations that emanate
from this study in terms of their implications for both theory and practice
and what further research still needs to be done in the area of collaborative
and corroborative monitoring of Semantic Web Services.

7.4 Recommendations
Recommendations for further research and application are provided here as
natural extensions to the contributions made by this study.

7.4.1 Semantic Descriptions of Performance Metrics in
QoS Ontology

This study focused mainly on Generalized Response Time Metric (GRTM)
as one of the parameters that characterize the performance of a Semantic
Web Service. The recommendation is to include the semantic descriptions of
the metrics in terms of their mathematical or arithmetical expressions. This
means developing the correct syntax for expressing the mathematical formu-
lae for the performance metrics namely latency, response time, throughput,
and error-rate. For example: Qlatency = Qresponsetime − ExecutionT ime is a
mathematical difference (result from subtraction), but in this case it repre-
sents latency as a concept. A fully expressive ontology model for performance
needs to include the logical expressions of these performance parameters.

7.4.2 MIX-Based Semantic Web Service Monitoring Tool

The implementation of the MIX protocol as part of this study was done
mainly for proof of concept and technical validation. For a real-life usage,
the Semantic Web Service Monitoring Tool based on the MIX protocol would
need to provide extensible interfaces which software engineers can implement
to support MIX functionality. For instance, the message format for the proto-
col is not defined, but for a real-life application, this needs to be either XML

140

or JSON format and the software engineer would write either the client MIX
agent or the service MIX agent to support these message formats. The rec-
ommendation is for using JSON as this is lightweight and will not introduce
unnecessary overhead to the monitoring process.

7.4.3 MIX Agent Negotiation Protocol

Another area for further development is regarding to the negotiation protocol
as specified. This study developed a very light-weight negotiation protocol.
The current design of the protocol is deliberately abstract and leaves more
scope for expansion to handle more complex use cases. Software engineers
and researchers are encouraged to explore possible negotiation strategies and
implement these as part of the post-execution processes of the MIX protocol,
but also during the initial exchange of the baseline data when the MIX ses-
sion is initialized between the client MIX agent and the service MIX agent.
Currently, the decision-making by the MIX agents is not specified or dic-
tated. The MIX protocol does not specify what the MIX agent should do
when it receives the baseline data. In practice, the behavior needs to be fully
specified even if the MIX agent has to apply some artificial intelligence logic
to decide on best course of action.

141

Appendices

142

Appendix A

The 10th International Conference for Internet Technology and Secured Trans-
actions (ICITST -2015), London, UK, December 14-16, 2015

A Generalized Web Service Response Time
Metric to Support Collaborative and

Corroborative Web Service Monitoring
Makitla, I
Mtsweni, J

Abstract
In this paper, we describe the development of a generalized metric for

computing response time of a web service. Such a generalized metric would
help to develop consensus with regards to the meanings of contracted Quality
of Service (QoS) parameters; this also avoids the confusion that may arise
when the same QoS parameter is understood differently by both the ser-
vice provider and the consumer (e.g. response time versus execution time).
Without a generalized metric for response time, contemporary monitoring
approaches employ measures such as incentivizing the service consumers to
honestly report their perceived service quality. Other measures involve using
a dedicated monitoring service to observe the service execution and enforce
the contracted QoS. This is a costly duplication of infrastructure. Having a
generalized metric for each QoS parameter eliminates the need for incentive
schemes or costly dedicated monitoring infrastructure.

143

Appendix B

Proceedings of the 2014 IST-Africa Conference , May 2014.

Towards a Collaborative Approach to Web
Service Monitoring: In appreciation of

connectivity challenges in Africa
Makitla, I
Mtsweni, J

Abstract
Current approaches to Quality of Service (QoS) monitoring using Service

Level Agreements (SLAs) fall short of appreciating the many possible causes
of breaching these digital contracts. These approaches are mainly concerned
with the enforcement of these contracts without paying attention to what
aspects of the service oriented environment the service provider has no con-
trol over and which have direct impact on his ability to meet the contracted
QoS. Paying attention to these aspects is very crucial in the African context
with intermittent connectivity issues, including limited Internet speed and
electricity outages among others. It is very likely therefore that most of the
advertised QoS parameter, especially those with obvious dependency on con-
nectivity, will be breached. Current approaches to Web Service monitoring
do not consider this at all. This paper proposes a collaborative QoS monitor-
ing approach that allows for mid-way renegotiation of contracted QoS/SLAs
based on consumer’s initial service experience.

144

Bibliography

Abdelaziz, I. et al. (Sept. 2017). “A survey and experimental comparison of
distributed SPARQL engines for very large RDF data”. In: Proceedings
of the VLDB Endowment 10, pp. 2049–2060. doi: 10.14778/3151106.
3151109.

Acuna, C. J. and E. Marcos (2006). “Modeling semantic Web services: a case
study”. In: 6th international conference on Web engineering (ICWE’06).
Palo Alto, California, USA.

Agarwal, V. et al. (Jan. 2008). “Understanding approaches for web service
composition and execution”. In: Proceedings of the 1st Bangalore annual
Compute conference on - Compute ’08. New York, New York, USA: ACM
Press, p. 1. isbn: 9781595939500. doi: 10.1145/1341771.1341773. url:
http://dl.acm.org/citation.cfm?id=1341771.1341773.

Akingbesote, A. et al. (Nov. 2013). “A quality of service aware multi-level
strategy for selection of optimal web service”. In: 2013 International Con-
ference on Adaptive Science and Technology. IEEE, pp. 1–5. isbn: 978-
1-4799-3067-8. doi: 10.1109/ICASTech.2013.6707518. url: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
6707518.

Akkiraju, R. (2007). “Semantic Web Services”. In: Semantic Web Services:
Theory, Tools, and Applications. Ed. by J. Cardoso and N. Hershey,
pp. 191–216.

Akkiraju, R. et al. (2005). “Web Service Semantics - WSDL-S”. In.
Alshinina, R. and K. Elleithy (Apr. 2017). “Performance and Challenges of

Service-Oriented Architecture for Wireless Sensor Networks”. In: Sensors
2017, pp. 536–575. doi: 10.3390/s17030536.

Amir, M. (2018). “Semantically-enriched and semi-Autonomous collaboration
framework for the Web of Things. Design, implementation and evaluation
of a multi-party collaboration framework with semantic annotation and

145

https://doi.org/10.14778/3151106.3151109
https://doi.org/10.14778/3151106.3151109
https://doi.org/10.1145/1341771.1341773
http://dl.acm.org/citation.cfm?id=1341771.1341773
https://doi.org/10.1109/ICASTech.2013.6707518
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6707518
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6707518
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6707518
https://doi.org/10.3390/s17030536

representation of sensors in the Web of Things and a case study on disaster
management”. PhD. University of Bradford. url: http://hdl.handle.
net/10454/14363.

Andrieux, A. et al. (2007). “Web Services Agreement Specification (WS-
Agreement)”.

Artaiam, N. and T. Senivongse (2008). “Enhancing Service-Side QoS Moni-
toring for Web Services”. In: 2008 Ninth ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking, and Paral-
lel/Distributed Computing. IEEE, pp. 765–770. isbn: 978-0-7695-3263-9.
doi: 10.1109/SNPD.2008.157. url: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=4617464.

Ayadi, N. and M. Ben Ahmed (Feb. 2011). “An Enhanced Framework for
Semantic Web Service Discovery”. In: vol. 82, pp. 53–67. doi: 10.1007/
978-3-642-21547-6_5.

Babaee, R. and S. M. Babamir (Aug. 2013). “Runtime Verification of Service-
Oriented Systems: A Well-Rounded Survey”. In: Int. J. Web Grid Serv.
9.3, pp. 213–267. issn: 1741-1106. doi: 10.1504/IJWGS.2013.055699.
url: https://doi.org/10.1504/IJWGS.2013.055699.

Balaji B, S., K. N K, and R. K. R S (2018). “Fuzzy service conceptual
ontology system for cloud service recommendation”. In: Computers &
Electrical Engineering 69, pp. 435–446. issn: 0045-7906. doi: https :
//doi.org/10.1016/j.compeleceng.2016.09.013. url: https://
www.sciencedirect.com/science/article/pii/S0045790616302804.

Baraldo, V., A. Zuccato, and T. Vardanega (Mar. 2015). “Reconciling Service
Orientation with the Cloud”. In: pp. 195–202. doi: 10.1109/SOSE.2015.
26.

Baresi, L. and S. Guinea (June 2013). “Event-Based Multi-level Service Mon-
itoring”. In: 2013 IEEE 20th International Conference on Web Services.
IEEE, pp. 83–90. isbn: 978-0-7695-5025-1. doi: 10.1109/ICWS.2013.21.
url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=6649565.

Battle, S. et al. (2005). Semantic Web Services Framework (SWSF) Overview.
url: http://www.w3.org/Submission/SWSF/ (visited on 08/30/2014).

Ben Lamine, R., R. Jemaa, and I. Amous (Oct. 2018). “Formal Specifica-
tion of Adaptable Semantic Web Services Composition”. In: International
Journal of Information Technology and Web Engineering 13, pp. 14–34.
doi: 10.4018/IJITWE.2018100102.

146

http://hdl.handle.net/10454/14363
http://hdl.handle.net/10454/14363
https://doi.org/10.1109/SNPD.2008.157
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4617464
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4617464
https://doi.org/10.1007/978-3-642-21547-6_5
https://doi.org/10.1007/978-3-642-21547-6_5
https://doi.org/10.1504/IJWGS.2013.055699
https://doi.org/10.1504/IJWGS.2013.055699
https://doi.org/https://doi.org/10.1016/j.compeleceng.2016.09.013
https://doi.org/https://doi.org/10.1016/j.compeleceng.2016.09.013
https://www.sciencedirect.com/science/article/pii/S0045790616302804
https://www.sciencedirect.com/science/article/pii/S0045790616302804
https://doi.org/10.1109/SOSE.2015.26
https://doi.org/10.1109/SOSE.2015.26
https://doi.org/10.1109/ICWS.2013.21
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6649565
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6649565
http://www.w3.org/Submission/SWSF/
https://doi.org/10.4018/IJITWE.2018100102

Benvenuti, F. et al. (2017). “An ontology-based framework to support per-
formance monitoring in public transport systems”. In: Transportation Re-
search Part C: Emerging Technologies 81, pp. 188–208. issn: 0968-090X.
doi: https://doi.org/10.1016/j.trc.2017.06.001. url: https://
www.sciencedirect.com/science/article/pii/S0968090X17301547.

Berners-Lee, T. (2003). The Semantic Web and Challenges. url: http://
www.w3.org/2003/Talks/01-sweb-tbl/Overview.html.

Bokhari, S. and F. Azam (Apr. 2015). “Limitations of Service Oriented Archi-
tecture and its Combination with Cloud Computing”. In: Bahria Univer-
sity Journal of Information and Communication Technologies (BUJICT)
8.

Bouguettaya, A. et al. (Mar. 2017). “A service computing manifesto: The
next 10 years”. In: Communications of the ACM 60, pp. 64–72. doi:
10.1145/2983528.

Boukaye Boubacar, T. et al. (July 2018). “Service-Oriented Computing for
intelligent train maintenance”. In: Enterprise Information Systems 13,
pp. 1–24. doi: 10.1080/17517575.2018.1501818.

Bruijn, J. de et al. (2008). Modeling Semantic Web Services. Berlin, Heidel-
berg: Springer Berlin Heidelberg. isbn: 978-3-540-68169-4. doi: 10.1007/
978-3-540-68172-4. url: http://link.springer.com/10.1007/978-
3-540-68172-4.

Bruijn, J. de. (2008). Modeling Semantic Web services : the web service mod-
eling language. Springer, p. 192. isbn: 9783540681724.

Cabrera, O. and X. Franch (May 2012). “A quality model for analysing
web service monitoring tools”. In: 2012 Sixth International Conference
on Research Challenges in Information Science (RCIS), pp. 1–12. doi:
10.1109/RCIS.2012.6240444.

Calderón-Gómez, H. et al. (May 2021). “Evaluating Service-Oriented and
Microservice Architecture Patterns to Deploy eHealth Applications in
Cloud Computing Environment”. In: Applied Sciences 11, p. 4350. doi:
10.3390/app11104350.

Carlsson, S. A. et al. (Oct. 2010). “Socio-technical IS design science research:
developing design theory for IS integration management”. In: Information
Systems and e-Business Management 9.1, pp. 109–131. issn: 1617-9846.
doi: 10.1007/s10257-010-0140-6. url: http://link.springer.com/
10.1007/s10257-010-0140-6.

Chifu, V. (2010). “Automatic Web Service Composition”. PhD. Technical
University of Cluj-Napoca.

147

https://doi.org/https://doi.org/10.1016/j.trc.2017.06.001
https://www.sciencedirect.com/science/article/pii/S0968090X17301547
https://www.sciencedirect.com/science/article/pii/S0968090X17301547
http://www.w3.org/2003/Talks/01-sweb-tbl/Overview.html
http://www.w3.org/2003/Talks/01-sweb-tbl/Overview.html
https://doi.org/10.1145/2983528
https://doi.org/10.1080/17517575.2018.1501818
https://doi.org/10.1007/978-3-540-68172-4
https://doi.org/10.1007/978-3-540-68172-4
http://link.springer.com/10.1007/978-3-540-68172-4
http://link.springer.com/10.1007/978-3-540-68172-4
https://doi.org/10.1109/RCIS.2012.6240444
https://doi.org/10.3390/app11104350
https://doi.org/10.1007/s10257-010-0140-6
http://link.springer.com/10.1007/s10257-010-0140-6
http://link.springer.com/10.1007/s10257-010-0140-6

Chinnici, R. et al. (June 2007). “Web Services Description Language (WSDL)”.
In.

Chooralil, V. S. and E. Gopinathan (2015). “A Semantic Web Query Op-
timization Using Resource Description Framework”. In: Procedia Com-
puter Science 70. Proceedings of the 4th International Conference on
Eco-friendly Computing and Communication Systems, pp. 723–732. issn:
1877-0509. doi: https://doi.org/10.1016/j.procs.2015.10.110.
url: https : / / www . sciencedirect . com / science / article / pii /
S1877050915032743.

Cimpian, E. et al. (2008). “Ontologies and Matchmaking.” In: Semantic Ser-
vice Provisioning. Ed. by D. Kuropka et al. Berlin Heidelberg: Springer,
pp. 19–54.

Comuzzi, M. and B. Pernici (2005). “An Architecture for Flexible Web Ser-
vice QoS Negotiation”. In: Ninth IEEE International EDOC Enterprise
Computing Conference (EDOC’05). IEEE, pp. 70–82. isbn: 0-7695-2441-
9. doi: 10.1109/EDOC.2005.4. url: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=1540669.

de Souza Neto, J. B., A. M. Moreira, and M. A. Musicante (2018). “Semantic
Web Services testing: A Systematic Mapping study”. In: Computer Sci-
ence Review 28, pp. 140–156. issn: 1574-0137. doi: https://doi.org/
10.1016/j.cosrev.2018.03.002. url: https://www.sciencedirect.
com/science/article/pii/S1574013717301648.

Di Martino, B. et al. (2014). “Semantic Representation of Cloud Services: A
Case Study for Microsoft Windows Azure”. In: 2014 International Confer-
ence on Intelligent Networking and Collaborative Systems, pp. 647–652.
doi: 10.1109/INCoS.2014.76.

Dimitrov, M. et al. (2007). “WSMO Studio - a semantic web services mod-
elling environment for WSMO.” In: 4th European Semantic Web Confer-
ence, ESWC 2007, Innsbruck, Austria, June 3-7, 2007. Innsbruck, Aus-
tria.

Dobson, G., R. Lock, and I. Sommerville (2005). “QoSOnt: a QoS Ontol-
ogy for Service-Centric Systems”. In: 31st EUROMICRO Conference on
Software Engineering and Advanced Applications. IEEE, pp. 80–87. isbn:
0-7695-2431-1. doi: 10 . 1109 / EUROMICRO . 2005 . 49. url: http : / /
ieeexplore . ieee . org / lpdocs / epic03 / wrapper . htm ? arnumber =
1517730.

148

https://doi.org/https://doi.org/10.1016/j.procs.2015.10.110
https://www.sciencedirect.com/science/article/pii/S1877050915032743
https://www.sciencedirect.com/science/article/pii/S1877050915032743
https://doi.org/10.1109/EDOC.2005.4
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1540669
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1540669
https://doi.org/https://doi.org/10.1016/j.cosrev.2018.03.002
https://doi.org/https://doi.org/10.1016/j.cosrev.2018.03.002
https://www.sciencedirect.com/science/article/pii/S1574013717301648
https://www.sciencedirect.com/science/article/pii/S1574013717301648
https://doi.org/10.1109/INCoS.2014.76
https://doi.org/10.1109/EUROMICRO.2005.49
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1517730
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1517730
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1517730

Duineveld, A. et al. (June 2000). “WonderTools? A comparative study of on-
tological engineering tools”. In: International Journal of Human-Computer
Studies 52, pp. 1111–1133. doi: 10.1006/ijhc.1999.0366.

Ellis, T. and Y. Levy (2010). “A Guide for Novice Researchers: Design and
Development Research Methods”. In: Informing Science & IT Education
Conference (InSITE). Cassino, Italy, pp. 107–118.

Fensel, D. (2003). Ontologies: A Silver Bullet for Knowledge Management and
Electronic Commerce. Springer-Verlag New York, Inc. isbn: 3540003029.

Fensel, D. et al. (Apr. 2011). Semantic Web Services. Springer-Verlag New
York, Inc. isbn: 978-3-642-19192-3. doi: 10.1007/978-3-642-19193-0.

Fernández, J. D. et al. (2013). “Binary RDF representation for publication
and exchange (HDT)”. In: Journal of Web Semantics 19, pp. 22–41. issn:
1570-8268. doi: https://doi.org/10.1016/j.websem.2013.01.
002. url: https://www.sciencedirect.com/science/article/pii/
S1570826813000036.

Ferre, S. (Jan. 2012). “An RDF Vocabulary for the Prepresentation and Ex-
ploration of Expressions with an Illustration on Mathematical Search”.
In.

Filho, O. F. F. and M. A. G. V. Ferreira (2009). “Semantic Web Services: a
RESTful approach”. In: IADIS International Conference WWW/Internet
2009. Rome, Italy.

Gonsalves, T. and K. Itoh (2008). “Performance Simulation And Design Of
Petri Net Systems”. In: Journal of Integrated Design & Process Science
12.4, pp. 27–37. issn: 1092-0617.

Greenwell, R., X. Liu, and K. Chalmers (2015). “Semantic description of
cloud service agreements”. In: 2015 Science and Information Conference
(SAI), pp. 823–831. doi: 10.1109/SAI.2015.7237239.

Gregor, S. and A. R. Hevner (Nov. 2010). “Introduction to the special issue
on design science”. In: Information Systems and e-Business Management
9.1, pp. 1–9. issn: 1617-9846. doi: 10.1007/s10257-010-0159-8. url:
http://link.springer.com/10.1007/s10257-010-0159-8.

Grunske, L. (2008). “Specification patterns for probabilitic quality proper-
ties”. In: International Conference on Software Engineering, pp. 31–40.

Grunske, L. and P. Zhang (Aug. 2009). “Monitoring probabilistic proper-
ties”. In: Joint Meeting of the European Software Engineering Conference
and th ACM Sigsoft International Symposium on Foundations of Software
Engineering, Amsterdam, 2009. ACM, pp. 183–192.

149

https://doi.org/10.1006/ijhc.1999.0366
https://doi.org/10.1007/978-3-642-19193-0
https://doi.org/https://doi.org/10.1016/j.websem.2013.01.002
https://doi.org/https://doi.org/10.1016/j.websem.2013.01.002
https://www.sciencedirect.com/science/article/pii/S1570826813000036
https://www.sciencedirect.com/science/article/pii/S1570826813000036
https://doi.org/10.1109/SAI.2015.7237239
https://doi.org/10.1007/s10257-010-0159-8
http://link.springer.com/10.1007/s10257-010-0159-8

Hayyolalam, V. and A. A. Pourhaji Kazem (2018). “A systematic literature
review on QoS-aware service composition and selection in cloud environ-
ment”. In: Journal of Network and Computer Applications 110, pp. 52–74.
issn: 1084-8045. doi: https://doi.org/10.1016/j.jnca.2018.03.
003. url: https://www.sciencedirect.com/science/article/pii/
S1084804518300845.

Al-Hazmi, Y. and T. Magedanz (2015). “MOFI: Monitoring ontology for fed-
erated infrastructures”. In: 2015 IEEE International Workshop on Mea-
surements & Networking (M&N), pp. 1–6. doi: 10.1109/IWMN.2015.
7322988.

Hernández, A. and M. Moreno García (Jan. 2010). “A formal definition of
RESTful semantic web services”. In: pp. 39–45. doi: 10.1145/1798354.
1798384.

Hevner, A. R. et al. (2004). “Design Science in Information Systems Re-
search”. In: MIS Quarterly 28.1, pp. 75–105.

Hofstee, E. (2006). Constructing a Good Dissertation. A Practical Guide to
Finishing a Masters, MBA or PhD on Schedule. Exactica.

Hsu, I.-C. and S.-F. Lyu (2019). “A Lightweight Linked Data Reasoner Using
Jena and Axis2”. In: IEA/AIE.

Huang, J., D. J. Abadi, and K. Ren (Aug. 2011). “Scalable SPARQL Querying
of Large RDF Graphs”. In: Proc. VLDB Endow. 4.11, pp. 1123–1134. issn:
2150-8097. doi: 10.14778/3402707.3402747. url: https://doi.org/
10.14778/3402707.3402747.

Huf, A. and F. Siqueira (2019). “Composition of heterogeneous web services:
A systematic review”. In: Journal of Network and Computer Applications
143, pp. 89–110. issn: 1084-8045. doi: https://doi.org/10.1016/j.
jnca.2019.06.008. url: https://www.sciencedirect.com/science/
article/pii/S108480451930205X.

Huhns, M. N. (2005). “Service-Oriented Computing : Key Concepts and Prin-
ciples”. In: 9.1, pp. 75–81.

Iivari, J. (2007). “A Paradigmatic Analysis of Information Systems as a
Design Science”. In: Scandinavian Journal of Information Systems 19.2,
pp. 39–64.

Jurca, R., B. Faltings, and W. Binder (2007). “Reliable QoS monitoring based
on client feedback”. In: Proceedings of the 16th international conference
on World Wide Web. WWW ’07, pp. 1003–1012. url: http://doi.acm.
org/10.1145/1242572.1242708.

150

https://doi.org/https://doi.org/10.1016/j.jnca.2018.03.003
https://doi.org/https://doi.org/10.1016/j.jnca.2018.03.003
https://www.sciencedirect.com/science/article/pii/S1084804518300845
https://www.sciencedirect.com/science/article/pii/S1084804518300845
https://doi.org/10.1109/IWMN.2015.7322988
https://doi.org/10.1109/IWMN.2015.7322988
https://doi.org/10.1145/1798354.1798384
https://doi.org/10.1145/1798354.1798384
https://doi.org/10.14778/3402707.3402747
https://doi.org/10.14778/3402707.3402747
https://doi.org/10.14778/3402707.3402747
https://doi.org/https://doi.org/10.1016/j.jnca.2019.06.008
https://doi.org/https://doi.org/10.1016/j.jnca.2019.06.008
https://www.sciencedirect.com/science/article/pii/S108480451930205X
https://www.sciencedirect.com/science/article/pii/S108480451930205X
http://doi.acm.org/10.1145/1242572.1242708
http://doi.acm.org/10.1145/1242572.1242708

Kapoor, B. and S. Sharma (2010). “A Comparative Study of Ontology build-
ing Tools in Semantic Web Applications”. In: International Journal of
Webz ’&’ Semantic Technology 1, pp. 1–13.

Keeney, J. et al. (May 2011). “A semantic monitoring and management frame-
work for end-to-end services”. In: 12th IFIP/IEEE International Sym-
posium on Integrated Network Management (IM 2011) and Workshops.
IEEE, pp. 658–661. isbn: 978-1-4244-9219-0. doi: 10.1109/INM.2011.
5990649. url: http://ieeexplore.ieee.org/document/5990649/.

Keller, A. and H. Ludwig (2003). “The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services”. In: Journal of
Network and Systems Management 11.1, pp. 57–81.

Konstantinou, N. et al. (Jan. 2010). “Technically approaching the seman-
tic web bottleneck”. In: International Journal of Web Engineering and
Technology 6, pp. 83–111. doi: 10.1504/IJWET.2010.034761.

Kopecký, J. and T. Vitvar (Aug. 2008). “WSMO-Lite: Lowering the Seman-
tic Web Services Barrier with Modular and Light-Weight Annotations”.
In: 2008 IEEE International Conference on Semantic Computing. IEEE,
pp. 238–244. doi: 10.1109/ICSC.2008.54. url: http://dx.doi.
org/doi:10.1109/ICSC.2008.54%20http://ieeexplore.ieee.org/
document/4597197/.

Kopecký, J., T. Vitvar, et al. (Dec. 2007). “SAWSDL: semantic annotations
for WSDL and XML schema”. In: Internet Computing, IEEE 11, pp. 60–
67. doi: 10.1109/MIC.2007.134.

Kowalkiewicz, M., A. Ludwig, et al. (2008). “Service Composition and Bind-
ing”. In: Semantic Service Provisioning. Ed. by D. Kuropka et al. Berlin
Heidelberg: Springer, pp. 73–143.

Kowalkiewicz, M., M. Momotko, and A. Saar (2008). “Service Composition
Enactment”. In: Semantic Service Provisioning. Ed. by D. Kuropka et al.
Berlin, Heidelberg: Springer, pp. 144–162.

Krichen, M. and S. Tripakis (2004). Model Checking Software. Ed. by S.
Graf and L. Mounier. Vol. 2989. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 109–126. isbn: 978-3-
540-21314-7. doi: 10.1007/b96721. url: http://www.springerlink.
com/index/10.1007/b96721.

Kritikos, K. and D. Plexousakis (2007). “OWL-Q for semantic QoS-based
Web Service description and discovery”. In: CEUR Workshop Proceedings.
Vol. 243, pp. 123–137. url: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.93.9067.

151

https://doi.org/10.1109/INM.2011.5990649
https://doi.org/10.1109/INM.2011.5990649
http://ieeexplore.ieee.org/document/5990649/
https://doi.org/10.1504/IJWET.2010.034761
https://doi.org/10.1109/ICSC.2008.54
http://dx.doi.org/doi:10.1109/ICSC.2008.54%20http://ieeexplore.ieee.org/document/4597197/
http://dx.doi.org/doi:10.1109/ICSC.2008.54%20http://ieeexplore.ieee.org/document/4597197/
http://dx.doi.org/doi:10.1109/ICSC.2008.54%20http://ieeexplore.ieee.org/document/4597197/
https://doi.org/10.1109/MIC.2007.134
https://doi.org/10.1007/b96721
http://www.springerlink.com/index/10.1007/b96721
http://www.springerlink.com/index/10.1007/b96721
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.9067
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.9067

Kuropka, D. et al., eds. (2008). Semantic Service Provisioning. Berlin, Hei-
delberg: Springer Berlin Heidelberg. isbn: 978-3-540-78616-0. doi: 10.
1007/978-3-540-78617-7. url: http://www.springerlink.com/
index/10.1007/978-3-540-78617-7.

Lanthaler, M. (Feb. 2012). “Seamless Integration of RESTful Services into
the Web of Data”. In: Advances in Multimedia 2012. doi: 10.1155/2012/
586542.

Lanthaler, M. and C. Guetl (Sept. 2011). “Aligning Web Services with the
Semantic Web to Create a Global Read-Write Graph of Data”. In: pp. 15–
22. doi: 10.1109/ECOWS.2011.17.

Lara Calache, M. de and C. De Farias (Mar. 2020). “Graphical and Collabo-
rative Annotation Support for Semantic Web Services”. In: pp. 210–217.
doi: 10.1109/ICSA-C50368.2020.00044.

Lera, I., C. Juiz, and R. Puigjaner (June 2006). “Performance-related ontolo-
gies and semantic web applications for on-line performance assessment of
intelligent systems”. In: Science of Computer Programming 61.1, pp. 27–
37. issn: 01676423. doi: 10.1016/j.scico.2005.11.003. url: http:
//linkinghub.elsevier.com/retrieve/pii/S016764230600013X.

Letia, I. A. and A. N. Marginean (2011). “Service monitoring with ontol-
ogy based expectations”. In: 2011 IEEE 7th International Conference on
Intelligent Computer Communication and Processing, pp. 111–114. doi:
10.1109/ICCP.2011.6047851.

Li, S. and J. Zhou (Dec. 2009). “The WSMO-QoS Semantic Web Service Dis-
covery Framework”. In: 2009 International Conference on Computational
Intelligence and Software Engineering. IEEE, pp. 1–5. isbn: 978-1-4244-
4507-3. doi: 10.1109/CISE.2009.5366383. url: http://ieeexplore.
ieee.org/document/5366383/.

Lilien, L. et al. (May 2011). “Quality of Service in an Opportunistic Ca-
pability Utilization Network”. In: Mobile Opportunistic Networks: Archi-
tectures, Protocols and Applications. isbn: 978-1-4200-8812-0. doi: 10.
1201/b10904-8.

Liu, J. et al. (Jan. 2019). “An effective biomedical data migration tool from
resource description framework to JSON”. In: Database : the journal of
biological databases and curation 2019. doi: 10.1093/database/baz088.

Liu, L. (2011). “Organic service-level management in service-oriented envi-
ronments”. In: KIT Scientific Publishing.

152

https://doi.org/10.1007/978-3-540-78617-7
https://doi.org/10.1007/978-3-540-78617-7
http://www.springerlink.com/index/10.1007/978-3-540-78617-7
http://www.springerlink.com/index/10.1007/978-3-540-78617-7
https://doi.org/10.1155/2012/586542
https://doi.org/10.1155/2012/586542
https://doi.org/10.1109/ECOWS.2011.17
https://doi.org/10.1109/ICSA-C50368.2020.00044
https://doi.org/10.1016/j.scico.2005.11.003
http://linkinghub.elsevier.com/retrieve/pii/S016764230600013X
http://linkinghub.elsevier.com/retrieve/pii/S016764230600013X
https://doi.org/10.1109/ICCP.2011.6047851
https://doi.org/10.1109/CISE.2009.5366383
http://ieeexplore.ieee.org/document/5366383/
http://ieeexplore.ieee.org/document/5366383/
https://doi.org/10.1201/b10904-8
https://doi.org/10.1201/b10904-8
https://doi.org/10.1093/database/baz088

Louge, T. et al. (Aug. 2018). “Semantic Web Services Composition in the as-
trophysics domain: Issues and solutions”. In: Future Generation Computer
Systems 90, pp. 185–197. doi: 10.1016/j.future.2018.07.063..

Luthria, H. and F. Rabhi (Apr. 2009). “Service Oriented Computing in Prac-
tice: An Agenda for Research into the Factors Influencing the Organiza-
tional Adoption of Service Oriented Architectures”. In: Journal of the-
oretical and applied electronic commerce research 4.1, pp. 39–56. issn:
0718-1876. doi: 10.4067/S0718- 18762009000100005. url: http://
www.scielo.cl/scielo.php?script=sci%7B%5C_%7Darttext%7B%5C&
%7Dpid=S0718-18762009000100005%7B%5C&%7Dlng=en%7B%5C&%7Dnrm=
iso%7B%5C&%7Dtlng=en.

Ma, Z., M. A. M. Capretz, and L. Yan (2016). “Storing massive Resource
Description Framework (RDF) data: a survey”. In: The Knowledge Engi-
neering Review 31.4, pp. 391–413. doi: 10.1017/S0269888916000217.

Makitla, I. and J. Mtsweni (Dec. 2015). “A generalized web service response
time metric to support collaborative and corroborative web service mon-
itoring”. In: 2015 10th International Conference for Internet Technology
and Secured Transactions (ICITST). IEEE, pp. 373–377. isbn: 978-1-
9083-2052-0. doi: 10 . 1109 / ICITST . 2015 . 7412124. url: http : / /
ieeexplore.ieee.org/document/7412124/.

Malik, Z. (July 2017). “Usability evaluation of ontology engineering tools”.
In: pp. 576–584. doi: 10.1109/SAI.2017.8252154.

March, S. and G. Smith (1995). “Design and natural science research on
information technology”. In: Decision Support Systems 15.4, pp. 251–266.

March, S. and V. Storey (2008). “Design science in the information systems
discipline: an introduction to the special issue on design science research.”
In: MIS Quarterly 32.4, pp. 725–730.

Martin, D. et al. (2004). “OWL-S: Semantic Mrkup for Web Services”. In:
W3C Member Submission 22.4.

Masood, T., C. Cherifi, and N. Moalla (Feb. 2016). “Performance monitoring
framework for service oriented system lifecycle”. In: 2016 4th Interna-
tional Conference on Model-Driven Engineering and Software Develop-
ment (MODELSWARD), pp. 800–806.

McBride, B. (2004). Handbook on ontologies.
Medjahed, B. and Y. Atif (2007). “Context-based matching for Web service

composition”. In: Distrib Parallel Databases 21.1, pp. 5–37. url: http:
//download.springer.com/static/pdf/615/art%7B%5C%%7D3A10.

153

https://doi.org/10.1016/j.future.2018.07.063.
https://doi.org/10.4067/S0718-18762009000100005
http://www.scielo.cl/scielo.php?script=sci%7B%5C_%7Darttext%7B%5C&%7Dpid=S0718-18762009000100005%7B%5C&%7Dlng=en%7B%5C&%7Dnrm=iso%7B%5C&%7Dtlng=en
http://www.scielo.cl/scielo.php?script=sci%7B%5C_%7Darttext%7B%5C&%7Dpid=S0718-18762009000100005%7B%5C&%7Dlng=en%7B%5C&%7Dnrm=iso%7B%5C&%7Dtlng=en
http://www.scielo.cl/scielo.php?script=sci%7B%5C_%7Darttext%7B%5C&%7Dpid=S0718-18762009000100005%7B%5C&%7Dlng=en%7B%5C&%7Dnrm=iso%7B%5C&%7Dtlng=en
http://www.scielo.cl/scielo.php?script=sci%7B%5C_%7Darttext%7B%5C&%7Dpid=S0718-18762009000100005%7B%5C&%7Dlng=en%7B%5C&%7Dnrm=iso%7B%5C&%7Dtlng=en
https://doi.org/10.1017/S0269888916000217
https://doi.org/10.1109/ICITST.2015.7412124
http://ieeexplore.ieee.org/document/7412124/
http://ieeexplore.ieee.org/document/7412124/
https://doi.org/10.1109/SAI.2017.8252154
http://download.springer.com/static/pdf/615/art%7B%5C%%7D3A10.1007%7B%5C%%7D2Fs10619-006-7003-7.pdf?auth66=1409667468%7B%5C_%7Deea04805cb286d7fb69dc2352ad534c0%7B%5C&%7Dext=.pdf
http://download.springer.com/static/pdf/615/art%7B%5C%%7D3A10.1007%7B%5C%%7D2Fs10619-006-7003-7.pdf?auth66=1409667468%7B%5C_%7Deea04805cb286d7fb69dc2352ad534c0%7B%5C&%7Dext=.pdf
http://download.springer.com/static/pdf/615/art%7B%5C%%7D3A10.1007%7B%5C%%7D2Fs10619-006-7003-7.pdf?auth66=1409667468%7B%5C_%7Deea04805cb286d7fb69dc2352ad534c0%7B%5C&%7Dext=.pdf

1007%7B%5C%%7D2Fs10619-006-7003-7.pdf?auth66=1409667468%7B%
5C_%7Deea04805cb286d7fb69dc2352ad534c0%7B%5C&%7Dext=.pdf.

Michlmayr, A. et al. (2009). “Comprehensive QoS monitoring of Web ser-
vices and event-based SLA violation detection”. In: Proceedings of the 4th
International Workshop on Middleware for Service Oriented Computing
MWSOC 09, pp. 1–6. url: http://portal.acm.org/citation.cfm?
doid=1657755.1657756.

Mittal, S. et al. (Apr. 2016). “Automatic Extraction of Metrics from SLAs
for Cloud Service Management”. In: pp. 139–142. doi: 10.1109/IC2E.
2016.14.

Mohebbi, K., S. Ibrahim, and N. B. Idris (Oct. 2012). “Contemporary Seman-
tic Web Service Frameworks: An Overview and Comparisons”. In: p. 12.
arXiv: 1210.3320. url: http://arxiv.org/abs/1210.3320.

Mtsweni, J., E. Biermann, and L. Pretorius (June 2014). “iSemServ: A model-
driven approach for developing semantic web services”. In: South African
Computer Journal 52. doi: 10.18489/sacj.v52i0.185.

Nacer, H. and D. Aissani (2014). “Semantic web services: Standards, appli-
cations, challenges and solutions”. In: Journal of Network and Computer
Applications 44, pp. 134–151. issn: 1084-8045. doi: https://doi.org/
10.1016/j.jnca.2014.04.015. url: http://www.sciencedirect.
com/science/article/pii/S1084804514001143.

Nejkovic, V. et al. (2020). “Semantic approach to RIoT autonomous robots
mission coordination”. In: Robotics and Autonomous Systems 126, p. 103438.
issn: 0921-8890. doi: https://doi.org/10.1016/j.robot.2020.
103438. url: https://www.sciencedirect.com/science/article/
pii/S0921889019306414.

OATES, B. (2006). Researching information systems and computing. Sage
Publications Ltd.

Olivier, M. (2004). Information technology research: A practical guide for
computer science and informatics. 2nd ed. Pretoria, South Africa: Van
Schaik.

Oriol, M., J. Marco, and X. Franch (Oct. 2014). “Quality models for web
services: A systematic mapping”. In: Information and Software Technology
56.10, pp. 1167–1182. issn: 09505849. doi: 10.1016/j.infsof.2014.
03.012. url: http://linkinghub.elsevier.com/retrieve/pii/
S0950584914000822.

Oskooei, M. and S. Mohd Daud (Sept. 2014). “Quality of service (QoS) model
for web service selection”. In: 2014 International Conference on Com-

154

http://download.springer.com/static/pdf/615/art%7B%5C%%7D3A10.1007%7B%5C%%7D2Fs10619-006-7003-7.pdf?auth66=1409667468%7B%5C_%7Deea04805cb286d7fb69dc2352ad534c0%7B%5C&%7Dext=.pdf
http://download.springer.com/static/pdf/615/art%7B%5C%%7D3A10.1007%7B%5C%%7D2Fs10619-006-7003-7.pdf?auth66=1409667468%7B%5C_%7Deea04805cb286d7fb69dc2352ad534c0%7B%5C&%7Dext=.pdf
http://download.springer.com/static/pdf/615/art%7B%5C%%7D3A10.1007%7B%5C%%7D2Fs10619-006-7003-7.pdf?auth66=1409667468%7B%5C_%7Deea04805cb286d7fb69dc2352ad534c0%7B%5C&%7Dext=.pdf
http://download.springer.com/static/pdf/615/art%7B%5C%%7D3A10.1007%7B%5C%%7D2Fs10619-006-7003-7.pdf?auth66=1409667468%7B%5C_%7Deea04805cb286d7fb69dc2352ad534c0%7B%5C&%7Dext=.pdf
http://portal.acm.org/citation.cfm?doid=1657755.1657756
http://portal.acm.org/citation.cfm?doid=1657755.1657756
https://doi.org/10.1109/IC2E.2016.14
https://doi.org/10.1109/IC2E.2016.14
https://arxiv.org/abs/1210.3320
http://arxiv.org/abs/1210.3320
https://doi.org/10.18489/sacj.v52i0.185
https://doi.org/https://doi.org/10.1016/j.jnca.2014.04.015
https://doi.org/https://doi.org/10.1016/j.jnca.2014.04.015
http://www.sciencedirect.com/science/article/pii/S1084804514001143
http://www.sciencedirect.com/science/article/pii/S1084804514001143
https://doi.org/https://doi.org/10.1016/j.robot.2020.103438
https://doi.org/https://doi.org/10.1016/j.robot.2020.103438
https://www.sciencedirect.com/science/article/pii/S0921889019306414
https://www.sciencedirect.com/science/article/pii/S0921889019306414
https://doi.org/10.1016/j.infsof.2014.03.012
https://doi.org/10.1016/j.infsof.2014.03.012
http://linkinghub.elsevier.com/retrieve/pii/S0950584914000822
http://linkinghub.elsevier.com/retrieve/pii/S0950584914000822

puter, Communications, and Control Technology (I4CT), pp. 266–270.
doi: 10.1109/I4CT.2014.6914187.

Paik, I., W. Chen, and M. N. Huhns (Jan. 2014). “A Scalable Architecture
for Automatic Service Composition”. In: IEEE Transactions on Services
Computing 7.1, pp. 82–95. issn: 1939-1374. doi: 10.1109/TSC.2012.33.
url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=6357179.

Papaioannou, I. et al. (2006). “A QoS ontology language for Web-services”.
In: 20th International Conference on Advanced Information Networking
and Applications - Volume 1 (AINA’06). IEEE, pp. 101–106. isbn: 0-
7695-2466-4. doi: 10.1109/AINA.2006.51. url: http://ieeexplore.
ieee.org/document/1620177/.

Papazoglou, M. P., P. Traverso, S. Dustdar, F. Leymann, and B. J. Krämer
(2006). “Service-Oriented Computing : A Research Roadmap”. In: Dagstuhl
Seminar Proceedings 05462 Service Service Oriented Computing (SOC).
April, pp. 1–29. url: http://drops.dagstuhl.de/opus/volltexte/
2006/524.

Papazoglou, M. P., P. Traverso, S. Dustdar, and F. Leymann (June 2008).
“SERVICE-ORIENTED COMPUTING: A RESEARCH ROADMAP”.
en. In: International Journal of Cooperative Information Systems 17.02,
pp. 223–255. issn: 0218-8430. doi: 10.1142/S0218843008001816. url:
http://www.worldscientific.com/doi/abs/10.1142/S0218843008001816.

Patil, A. et al. (May 2004). “METEOR-S Web Service Annotation Frame-
work”. In: pp. 553–562. doi: 10.1145/988672.988747.

Paulraj, D., S. Swamynathan, and M. Madhaiyan (2011). “PROCESS MODEL
ONTOLOGY-BASED MATCHMAKING OF SEMANTIC WEB SER-
VICES”. In: International Journal of Cooperative Information Systems
20.04, pp. 357–370. doi: 10.1142/S0218843011002262. url: https:
//doi.org/10.1142/S0218843011002262.

Peffers, K. et al. (2007). “A design science research methodology for informa-
tion systems research”. In: Journal of Management Information Systems
24.3, pp. 45–77.

Pradhan, S. et al. (Jan. 2016). “Research Issues on WSBS Performance Eval-
uation”. In: pp. 123–129. doi: 10.1109/CINE.2016.29.

Prud’hommeaux, E. and A. Seaborne (Jan. 2008). “SPARQL Query Lan-
guage for RDF”. In: url: http://www.w3.org/TR/2008/REC-rdf-
sparql-query-20080115/.

155

https://doi.org/10.1109/I4CT.2014.6914187
https://doi.org/10.1109/TSC.2012.33
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6357179
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6357179
https://doi.org/10.1109/AINA.2006.51
http://ieeexplore.ieee.org/document/1620177/
http://ieeexplore.ieee.org/document/1620177/
http://drops.dagstuhl.de/opus/volltexte/2006/524
http://drops.dagstuhl.de/opus/volltexte/2006/524
https://doi.org/10.1142/S0218843008001816
http://www.worldscientific.com/doi/abs/10.1142/S0218843008001816
https://doi.org/10.1145/988672.988747
https://doi.org/10.1142/S0218843011002262
https://doi.org/10.1142/S0218843011002262
https://doi.org/10.1142/S0218843011002262
https://doi.org/10.1109/CINE.2016.29
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

Raj, P. et al. (Jan. 2015). “Service Composition and Execution Plan Gen-
eration of Composite Semantic WEB Services Using Abductive Event
Calculus”. In: Computational Intelligence 32, n/a–n/a. doi: 10.1111/
coin.12080.

Ranpara, R., A. Yusufzai, and C. Kumbharana (2019). “A Comparative
Study of Ontology Building Tools for Contextual Information Retrieval”.
In.

Reeves, T. (2006). “Design research from a technology perspective”. In: Ed-
ucational Design Research. Ed. by J. Van Den Akker et al. London, UK:
Routledge, pp. 52–66.

Reiff-Marganiec, S., H. Yu, and T. Marcel (2009). “Service selection based
on non-functional properties”. In: ICSOC 2007 Workshops, LNCS 4907.
Ed. by E. DI NITTO and M. RIPEANU. Vol. 4907, pp. 128–138.

Rojas, H., K. A. Arias, and R. Renteria (2021). “Service-oriented architecture
design for small and medium enterprises with infrastructure and cost opti-
mization.” In: Procedia Computer Science 179. 5th International Confer-
ence on Computer Science and Computational Intelligence 2020, pp. 488–
497. issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2021.
01.032. url: https://www.sciencedirect.com/science/article/
pii/S1877050921000375.

Sabata, B. et al. (1997). “Taxomomy of QoS Specifications”. In: Proceedings
of the 3rd Workshop on Object-Oriented Real-Time Dependable Systems
- (WORDS ’97). WORDS ’97. Washington, DC, USA: IEEE Computer
Society. isbn: 0-8186-8046-6. url: http://dl.acm.org/citation.cfm?
id=523512.837716.

Sachan, D., S. Kumar Dixit, and S. Kumar (Oct. 2014). “QOS Aware Formal-
ized Model for Semantic Web Service Selection”. In: International journal
of Web & Semantic Technology 5.4, pp. 83–100. issn: 09762280. doi:
10.5121/ijwest.2014.5406. url: http://airccse.org/journal/
ijwest/papers/5414ijwest06.pdf.

Sedayao, J. (Nov. 2008). “Implementing and operating an internet scale dis-
tributed application using service oriented architecture principles and
cloud computing infrastructure”. In: iiWAS’2008 - The Tenth Interna-
tional Conference on Information Integration and Web-based Applications
Services, pp. 417–421. doi: 10.1145/1497308.1497384.

Shafi, U. et al. (2018). “Parsing RDFs to Extract Object Oriented Model
Using Apache Jena”. In.

156

https://doi.org/10.1111/coin.12080
https://doi.org/10.1111/coin.12080
https://doi.org/https://doi.org/10.1016/j.procs.2021.01.032
https://doi.org/https://doi.org/10.1016/j.procs.2021.01.032
https://www.sciencedirect.com/science/article/pii/S1877050921000375
https://www.sciencedirect.com/science/article/pii/S1877050921000375
http://dl.acm.org/citation.cfm?id=523512.837716
http://dl.acm.org/citation.cfm?id=523512.837716
https://doi.org/10.5121/ijwest.2014.5406
http://airccse.org/journal/ijwest/papers/5414ijwest06.pdf
http://airccse.org/journal/ijwest/papers/5414ijwest06.pdf
https://doi.org/10.1145/1497308.1497384

Shaukat Dar, K. et al. (July 2016). “An overview of Service Oriented Archi-
tecture, Cloud Computing and Azure Platform”. In: International Journal
of Computer Science and Information Security 14, pp. 891–896.

Siddiqui, Z. and K. Seth (June 2017). “Study on service selection effort es-
timation in service oriented architecture-based applications powered by
information entropy weight fuzzy comprehensive evaluation model”. In:
IET Software 12. doi: 10.1049/iet-sen.2016.0141.

Sigwele, T. et al. (Aug. 2018). “An Intelligent Edge Computing Based Seman-
tic Gateway for Healthcare Systems Interoperability and Collaboration”.
In: doi: 10.1109/FiCloud.2018.00060.

Şimşek, U., E. Kärle, and D. Fensel (2018). “Machine Readable Web APIs
with Schema.org Action Annotations”. In: Procedia Computer Science
137. Proceedings of the 14th International Conference on Semantic Sys-
tems 10th – 13th of September 2018 Vienna, Austria, pp. 255–261. issn:
1877-0509. doi: https://doi.org/10.1016/j.procs.2018.09.025.
url: https : / / www . sciencedirect . com / science / article / pii /
S1877050918316302.

Singh, S. and X. Liu (Feb. 2016). “A cloud service architecture for analyzing
big monitoring data”. In: Tsinghua Science and Technology 21, pp. 55–70.
doi: 10.1109/TST.2016.7399283.

Slimani, T. (Jan. 2013). “Semantic Description of Web Services”. In: Inter-
national Journal of Computer Science Issues 10, pp. 368–377.

— (Feb. 2015). “Ontology Development: A Comparing Study on Tools, Lan-
guages and Formalisms”. In: Indian Journal of Science and Technology 8,
pp. 1–12. doi: 10.17485/ijst/2015/v8i1/54249.

Souza Neto, J., A. Moreira, and M. Musicante (May 2018). “Semantic Web
Services testing: A Systematic Mapping study”. In: Computer Science
Review 28, pp. 140–156. doi: 10.1016/j.cosrev.2018.03.002.

Stollberg, M. and D. Fensel (2010). “Semantics for Service-Oriented Architec-
tures”. In: Agent-Based Service-Oriented Computing. Ed. by N. Griffiths
and K.-M. Chao. London: Springer London, pp. 113–139. isbn: 978-1-
84996-041-0. doi: 10 . 1007 / 978 - 1 - 84996 - 041 - 0 _ 5. url: https :
//doi.org/10.1007/978-1-84996-041-0_5.

Telang, P. R., A. K. Kalia, and M. P. Singh (May 2014). “Engineering Ser-
vice Engagements via Commitments”. In: IEEE Internet Computing 18.3,
pp. 46–54. issn: 1089-7801. doi: 10.1109/MIC.2013.86. url: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
6579598.

157

https://doi.org/10.1049/iet-sen.2016.0141
https://doi.org/10.1109/FiCloud.2018.00060
https://doi.org/https://doi.org/10.1016/j.procs.2018.09.025
https://www.sciencedirect.com/science/article/pii/S1877050918316302
https://www.sciencedirect.com/science/article/pii/S1877050918316302
https://doi.org/10.1109/TST.2016.7399283
https://doi.org/10.17485/ijst/2015/v8i1/54249
https://doi.org/10.1016/j.cosrev.2018.03.002
https://doi.org/10.1007/978-1-84996-041-0_5
https://doi.org/10.1007/978-1-84996-041-0_5
https://doi.org/10.1007/978-1-84996-041-0_5
https://doi.org/10.1109/MIC.2013.86
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6579598
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6579598
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6579598

Tran, V. X., H. Tsuji, and R. Masuda (Sept. 2009). “A new QoS ontology
and its QoS-based ranking algorithm for Web services”. In: Simulation
Modelling Practice and Theory 17.8, pp. 1378–1398. issn: 1569190X. doi:
10.1016/j.simpat.2009.06.010. url: http://linkinghub.elsevier.
com/retrieve/pii/S1569190X09000859.

Vaculin, R. (Jan. 2012). “Semantic Monitoring of Service-Oriented Business
Processes”. In: pp. 467–494. doi: 10.4018/978-1-4666-0146-8.ch022.

Vaculín, R. (2009). “Process Mediation Framework for Semantic Web Ser-
vices”. PhD. Charles University.

Venable, J. (2010). “Design science research post hevner et al.: criteria, stan-
dards, guidelines, and expectations”. In: the 5th International Conference
on Global Perspectives on Design Science Research (DESRIST ‘10). St.
Gallen, Switzerland: Springer- Verlag, Berlin / Heidelberg, pp. 109–123.

Wang, Q. et al. (2009). “An Online Monitoring Approach for Web Service Re-
quirements”. In: IEEE Transactions on Services Computing 2.4, pp. 338–
351. doi: 10.1109/TSC.2009.22.

Welman, J. and S. Kruger (2004). Research Methodology. Oxford University
Press.

Zela Ruiz, J. and C. M. Rubira (2016). “Quality of Service Conflict During
Web Service Monitoring: A Case Study”. In: Electronic Notes in Theoreti-
cal Computer Science 321. CLEI 2015, the XLI Latin American Comput-
ing Conference, pp. 113–127. issn: 1571-0661. doi: https://doi.org/
10.1016/j.entcs.2016.02.007. url: https://www.sciencedirect.
com/science/article/pii/S1571066116300081.

Zeng, K., J. Yang, et al. (Feb. 2013). “A Distributed Graph Engine for Web
Scale RDF Data”. In: Proc. VLDB Endow. 6.4, pp. 265–276. issn: 2150-
8097. doi: 10.14778/2535570.2488333. url: https://doi.org/10.
14778/2535570.2488333.

Zeng, Z. and S. Ying (2008). “The Usage of Semantic Condition Expression
for Semantic Web Service Matchmaking”. In: International Symposium
on Intelligent Information Technology Application Workshops.

Zhang, F., Q. Zeng, et al. (2019). “Composition Context-Based Web Services
Similarity Measure”. In: IEEE Access 7, pp. 65195–65206. doi: 10.1109/
ACCESS.2019.2915371.

Zhang, L. and Y. Yang (2013). “Dynamic web service selection group decision-
making method based on hybrid QoS”. In: International Journal of High
Performance Computing and Networking 7.3, pp. 215–226. doi: 10.1504/

158

https://doi.org/10.1016/j.simpat.2009.06.010
http://linkinghub.elsevier.com/retrieve/pii/S1569190X09000859
http://linkinghub.elsevier.com/retrieve/pii/S1569190X09000859
https://doi.org/10.4018/978-1-4666-0146-8.ch022
https://doi.org/10.1109/TSC.2009.22
https://doi.org/https://doi.org/10.1016/j.entcs.2016.02.007
https://doi.org/https://doi.org/10.1016/j.entcs.2016.02.007
https://www.sciencedirect.com/science/article/pii/S1571066116300081
https://www.sciencedirect.com/science/article/pii/S1571066116300081
https://doi.org/10.14778/2535570.2488333
https://doi.org/10.14778/2535570.2488333
https://doi.org/10.14778/2535570.2488333
https://doi.org/10.1109/ACCESS.2019.2915371
https://doi.org/10.1109/ACCESS.2019.2915371
https://doi.org/10.1504/IJHPCN.2013.056517
https://doi.org/10.1504/IJHPCN.2013.056517

IJHPCN.2013.056517. url: https://www.inderscienceonline.com/
doi/abs/10.1504/IJHPCN.2013.056517.

Zhang, P., H. Jin, et al. (2018). “IgS-wBSRM: A time-aware Web Service
QoS monitoring approach in dynamic environments”. In: Information
and Software Technology 96, pp. 14–26. issn: 0950-5849. doi: https:
//doi.org/10.1016/j.infsof.2017.11.003. url: http://www.
sciencedirect.com/science/article/pii/S0950584917301817.

159

https://doi.org/10.1504/IJHPCN.2013.056517
https://doi.org/10.1504/IJHPCN.2013.056517
https://doi.org/10.1504/IJHPCN.2013.056517
https://www.inderscienceonline.com/doi/abs/10.1504/IJHPCN.2013.056517
https://www.inderscienceonline.com/doi/abs/10.1504/IJHPCN.2013.056517
https://doi.org/https://doi.org/10.1016/j.infsof.2017.11.003
https://doi.org/https://doi.org/10.1016/j.infsof.2017.11.003
http://www.sciencedirect.com/science/article/pii/S0950584917301817
http://www.sciencedirect.com/science/article/pii/S0950584917301817

	Introduction
	Research Problem
	Thesis Statement and Delineation
	The Proposed Solution
	Research Contributions
	Research Methodology
	Limitations of the Research
	Thesis Outline
	Summary

	Service Oriented Computing
	Introduction
	Web Services
	Semantic Web Services
	Ontology Engineering Tools: Technologies Enabling Semantic Web Services
	Resource Description Framework (RDF)
	Ontology Editors

	Semantic Web Service Delivery Lifecycle Framework
	Planning Sub-cycle
	Binding Sub-cycle
	Enactment Sub-cycle

	Semantic Representation of Cloud Computing Services
	Summary

	Semantic Web Service Monitoring
	Conceptual Principles of Semantic Web Service Monitoring
	Semantic Web Service Monitoring Mechanisms
	Quality of Service (QoS) Fundamentals
	Semantic Description of Quality of Services
	Ontologies
	QoS Ontology Language
	QoSOnt: Basic QoS Ontology
	QoS Metrics and the Semantic Descriptions of Arithmetic Expressions
	WS-QoSOnto: Web Service QoS Ontology
	OWL-Q: QoS-based Web Service Description
	WSMO-QoS
	SMOnt: Service Monitoring Ontology

	Related Works
	Summary

	A Monitoring Information Exchange (MIX) Protocol
	Introduction
	Case for Collaborative and Corroborative Monitoring Using Semantic Web Technology
	Generalized Response Time Metric
	Semantic Web Service Performance Ontology for Monitoring
	Semantic Description of Generalized Response Time Metric

	Monitoring Information eXchange (MIX) Protocol
	High-Level Architecture of MIX Protocol
	Functional Principles of MIX Protocol

	Summary

	Proof of Concept Implementation of MIX Protocol
	Introduction
	Proof of Concept Use Case for MIX
	Collaborative and Corroborative Monitoring Architecture
	Java Agent DEvelopment (JADE)
	Apache JENA
	FUSEKI - SPARQL Server

	Monitoring Information eXchange (MIX) Protocol
	Experimental Execution of the MIX Protocol
	Summary

	Evaluation and Results
	Introduction
	Consensus on Observable QoS Parameters
	Mechanism for Monitoring Information Exchange
	Technology-neutral Negotiation Protocol

	Evaluation
	Comparative Analysis vs. Technical Feasibility
	Technical Feasibility of Collaborative and Corroborative Monitoring

	Results and Their Implications for SWS Monitoring
	Methodological Aspects
	Summary

	Summary, Conclusions and Recommendations
	Introduction
	Conclusions
	Transparency of the monitoring process
	Eliminating the need to incentivise honest reporting by service consumers
	Potential savings on infrastructural costs
	Support for flexible pricing model

	Summary of Contributions
	Recommendations
	Semantic Descriptions of Performance Metrics in QoS Ontology
	MIX-Based Semantic Web Service Monitoring Tool
	MIX Agent Negotiation Protocol

	Appendices
	
	

