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Abstract

The importance of robust variable selection and regularization as solutions to the collinearity influ-
ential high leverage points’ adverse effects in a quantile regression (QR) setting cannot be overem-
phasized, just as the diagnostic tools that identify these high leverage points. In the literature,
researchers have dealt with variable selection and regularization quite extensively for penalized
QR that generalizes the well-known least absolute deviation (LAD) procedure to all quantile levels.
Unlike the least squares (LS) procedures, which are unreliable when deviations from the Gaus-
sian assumptions (outliers) exist, the QR procedure is robust to Y -space outliers. Although QR is
robust to response variable outliers, it is vulnerable to predictor space data aberrations (high lever-
age points and collinearity adverse effects), which may alter the eigen-structure of the predictor
matrix. Therefore, in the literature, it is recommended that the problems of collinearity and high
leverage points be dealt with simultaneously. In this thesis, we propose applying the ridge regres-
sion procedure (RIDGE), LASSO, elastic net (E-NET ), adaptive LASSO, and adaptive elastic net
(AE-NET ) penalties to weighted QR (WQR) to mitigate the effects of collinearity and collinear-
ity influential points in the QR setting. The new procedures are the penalized WQR procedures
i.e., the RIDGE penalized WQR (WQR-RIDGE), the LASSO penalized WQR (WQR-LASSO), the
E-NET penalized WQR (WQR-E-NET ) and the adaptive penalized QR procedures (the adaptive
LASSO penalized QR (QR-ALASSO) and adaptive E-NET penalized QR (QR-AE-NET procedures
and their weighted versions). The penalized WQR procedures are based on the computationally
intensive high-breakdown minimum covariance determinant (MCD) determined weights and the
adaptive penalized QR procedures are based on the RIDGE penalized WQR (WQR-RIDGE) es-
timator based adaptive weights. Under regularity conditions, the adaptive penalized procedures
satisfy oracle properties. Although adaptive weights are commonly based on the RIDGE regres-
sion (RR) estimator in the LS setting when regressors are collinear, this estimator may be plausible
for the symmetrical distributions at the ℓ1-estimator (RQ at τ = 0.50) rather than at extreme quan-
tile levels. We carried out simulations and applications to well-known data sets from the literature
to assess the finite sample performance of these procedures in variable selection and regularization
due to the robust weighting formulation and adaptive weighting construction. In the collinearity-
enhancing point scenario under the t-distribution, the WQR penalized versions outperformed the
unweighted procedures with respect to average shrunken zero coefficients and correctly fitted mod-
els. Under the Gaussian and t-distributions, at predictor matrices with collinearity-reducing points,
the weighted regularized procedures dominate the prediction performance (WQR-LASSO forms
best). In the collinearity-inducing and collinearity-reducing points scenarios under the Gaussian
distribution, the adaptive penalized procedures outperformed the non-adaptive versions in predic-
tion. Under the t-distribution, a similar performance pattern is depicted as in the Gaussian scenario,
although the performance of all models is adversely affected by outliers. Under the t-distribution,
the QR-ALASSO and WQR-ALASSO procedures performed better in their respective categories.
Keywords:
weighted quantile regression; adaptive LASSO penalty; penalty; adaptive E-NET penalty; regular-
ization; Penalization; collinearity inducing point; collinearity hiding point; collinearity influential
points
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Chapter 1

Introduction

Variable selection and regularization procedures in multiple regression analysis have been dealt

with extensively in the literature. However, predictor space data aberrations (X-space outliers and

collinearity) and response (Y -space) outliers continue to pose almost insurmountable challenges to

these procedures. As a consequent, variable selection and regularization are topical in recent years.

In the literature, the least squares (LS) regression is susceptible to all these data aberrations, with

some solutions proffered by alternative robust procedures. In the presence of Y -space outliers, ro-

bust procedures, such as quantile regression (QR) (Koenker & Basset 1978), have been suggested.

QR has the advantage of providing more information about the conditional distribution of the re-

sponse variable Y given the predictors X at each quantile level and models the conditional quantiles

(QY/X(τ)) over the entire range of quantiles τ ∈ (0,1). Although QR and other least absolute de-

viation (LAD) based procedures are robust in the presence of Y -space outliers, they are susceptible

to high leverage points and collinearity influential points (high leverage points which are collinear-

ity inducing and/or reducing points). The weighted LAD-LASSO (WLAD-LASSO) (Arslan 2012)

mitigates against high leverage point influences, while the adaptive RIDGE (ARIDGE) (Frommlet
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& Nuel 2016), adaptive E-NET (AE-NET ) (Zou & Zhang 2009), etc, mitigate against the effects

of collinearity. In the QR scenario, weighted QR (WQR) (Salibián-Barrera & Wei 2008), adaptive

QR LASSO (QR-ALASSO) (Wu & Liu 2009), etc, are fairly robust in the presence of high leverage

(collinearity influential) points and collinearity, respectively. The adaptive and weighted QR pro-

cedures inherit good properties from their non-adaptive and unweighted counterparts, respectively

(see Chapters 2 and 3 for detailed discussions), in addition to enhancing robustness.

Many variable selection and/or regularization procedures are suggested in the literature, in-

cluding subset selection. According to Breiman (1995), subset selection procedures are unstable

for variable selection, especially in high dimensional scenarios. Penalization procedures have been

suggested as alternatives to proffer solutions to subset selection procedures’ shortcomings in the LS

and QR scenarios. Regularization techniques include the ridge regression (RIDGE) (Hoerl & Ken-

nard 1970), the least absolute shrinkage and selection operator (LASSO) (Tibshirani 1996), elastic

net (Zou & Hastie 2005) and the extended versions of these three procedures, amongst others.

The broken adaptive ridge (BAR) method has been suggested in the literature (see Dai et al.

2018, 2020). The reweighted ℓ2-penalization based BAR, which estimates regression coefficient

patterns and yields estimates that have oracle properties. An Oracle property is the ability of a

method to select true non-zero coefficients and estimate their values accurately. Oracle property

states that a regression estimator converges to the true underlying coefficient values with probabil-

ity approaching one as sample size approaches infinity (see Wang et al. 2007). According to Dai

et al. (2018), its asymptotic consistency has yet to be thoroughly investigated. Dicker et al. (2013)

proposed the seamless-L0 (SELO) penalty, which closely resembles the L0 penalty. The SELO

penalized LS approach, which performs better than other widely used penalized LS procedures, is

asymptotically normal and always chooses the right model. By merging the non-concave penalized
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likelihood and the pseudo-score methods, Lin & Lv (2013) presented a regularization method that

simultaneously performs variable selection and estimation. This procedure by Lin & Lv (2013)

performs better in high-dimensional situations and is based on the smooth integration of counting

and absolute deviation (SICA) penalty.

The existence of outlying points poses a threat to the stability of parameter estimation and ulti-

mately to the reliability of resultant estimation/prediction and inference. Outlying points comprise

Y -space outliers (outliers) and X-space outliers (high leverage points). When high leverage points

influence the collinearity structure of the design matrix, they are called collinearity influential

points. High leverage points that mask or create collinearity are collinearity hiding or collinearity

inducing, respectively. In this thesis, we answer three research questions: (i) How many variables

do we select or how do we penalize them? (ii) How do we discard the unimportant variables? (iii)

How do we mitigate against collinearity and high leverage points in them (see Kendall cited in

Farrar & Glauber 1967)?

1.1 Penalization in Quantile Regression

Consider the linear regression model

yi = xxx′iβββ + ei, i ∈ [1 : n] (1.1)

with intercept term β0 = 0, where yi is the ith response observation, xxx′i is the ith row of the design

matrix XXX , βββ is a p× 1 vector of unknown parameters to be estimated from the data, and ei is a

random error term, with cumulative distribution function F (ei ∼ F).
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The LS limits its inquiry only to the conditional mean (E(Y |X)), hence the need for another

method that proffers diversity. QR offers an alternative to the conditional mean among stochastic

response variables and their predictors. Conditional QR involves minimizing the asymmetric ver-

sion of absolute errors by reformulation of the optimization problem as a parametric linear program

(see Koenker & Basset 1978). Violations of normality assumptions are very common in real-life

data situations, such as thick-tailed distributions in the error terms. QR is one of many procedures

that is robust to Y -space outliers, therefore suitable for thick tailed distributions scenarios, as well

as asymmetric ones.

The Koenker & Basset (1978) QR is based on an optimization problem solved by linear pro-

gramming techniques by assuming the error term follows a cumulative distribution (εi ∼ F). We

write the QR minimization problem as:

β̂ββ (τ) = argminβββ∈RpΣ
n
i=1ρτ |yi − xxx′iβββ (τ)|, i ∈ [1 : n], (1.2)

where

ρτ(u) =


τ.u, i f u ≥ 0

(τ −1).u, i f u < 0

denotes the check function, u = yi − xxx′iβββ (τ) denotes residuals at τ ∈ (0,1) RQ levels, and βββ (τ) is

the coefficient. If we let Y1,Y2, ...,Yn (Yis are ordered) be iid with continuous and strictly increasing

distribution function F , then F−1(τ) = in f{y|F(y) ≥ τ}. The conditional quantile function of Y

given the covariate X , is then given by QY |X(τ) = β0 +F−1(τ)+ xxx′βββ , where βββ (τ) is estimated by

β̂ββ (τ) =

 β̂0 +F−1(τ)

β̂ββ

 with β̂0 +F−1(τ) corresponding to the intercept and β̂ββ corresponds to

(β1,β2, ...,βp)
′.
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Consider variable selection and regularization procedures in QR. The minimization problem

gives the penalized QR problem

β̂ββ (τ) = argminβββ∈RpΣ
n
i=1ρτ |yi − xxx′iβββ (τ)|+λΣ

p
j=1|θ |, f or i ∈ [1 : n], j ∈ [1 : p], (1.3)

where λ is the tuning parameter, the second term is the penalty term. We have a LASSO penalty

when θ = β j and RIDGE penalty when θ = β 2
j (see Chapter 3 for more details).

In the regression problem, we face a dilemma of choosing the best subset of predictor variables.

Some predictors might also be redundant due to data aberrations, such as high leverage points and

collinearity, etc.

1.1.1 Motivation for Regularization

In the literature, the least squares (LS) methods are known to be sensitive to violations of the

Gaussian assumptions, and data aberrations in the design space. Data aberrations in the predictor

space (X-space outliers) are referred to as high leverage points and in the response space (Y -space

outliers) are outliers. High leverage points can either induce or hide collinearity and are called

collinearity influential points (see simulations Chapter 5 for more details). However, not all high

leverage points are collinearity influential points.

The collinearity phenomenon occurs when at least two predictor variables are nearly depen-

dent, thus, they contain almost the same information (redundancy). In the literature, collinearity

is known to have adverse effects in multiple regression analysis. While sources of collinearity are

numerous, it is well-known that some high leverage points alter the eigen-structure of the design

matrix, thereby masking or inducing collinearity. These adverse effects include wrong signs of
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parameter estimates, erroneous interpretation of parameter estimates, and estimates with dispro-

portionate large variances, amongst others (Hoerl & Kennard 1970).

We summarize some procedures and their limitations in the presence of these data aberrations:

• Most Statisticians prefer the LS estimator because of its good prediction performance and

interpretable results under Gaussian assumptions. However, the following challenges have

been identified: (i) collinearity in predictor variables is difficult to detect due to the masking

effect of collinearity influential points and (ii) LS estimator works well when the number of

observations is greater than the number of predictors (n > p). When n < p, the LS estimator

fails.

• Non-penalized QR is generally inconsistent in high-dimensional data scenarios, especially

when p ≥ n, which is addressed by introducing penalties to the QR procedure (Belloni &

Chernozhukov 2011). Jiang et al. (2012) extended the Zou & Yuan (2008) composite quan-

tile regression (CQR), which lacked optimality, to a weighted CQR (WCQR) version based

on data-driven efficient weights. Although WCQR is suitable for heavy tailed distributions,

its weighting strategy does not down-weigh high leverage points.

1.1.2 Rationale of Variable Selection and Regularization in Robust Quantile

Regression

Many scholars have suggested some remedies for ill-conditioned design matrix data challenges. In

the LS setting, the inverse of the scatter matrix (XXX ′XXX)−1 is critical in finding a regression solution.

If (XXX ′XXX)−1 does not exist, then a regression solution is infeasible. In heavy tailed distributions and

asymmetric ones scenarios, robust alternatives to the LS were proposed in the regression literature,

6



such as elemental regression (ER) (Ranganai 2007) and quantile regression (RQ). The ER is based

on the elemental sets (ESs) (see Chapter 2). Regression Quantiles (RQs) are optimal solutions

to a Linear Programming (LP) problem (Koenker & Basset 1978), and these optimal solutions

correspond to specific ERs (Ranganai et al. 2014). Although QR is reasonably robust to outliers

(response outliers), it is susceptible to high leverage points (predictor space outliers). At the opti-

mal solution, a RQ is given by XXX−1
J YYY J , where J denotes a p+ 1 dimensional ES. Hence, if XXX−1

J

does not exist, the QR solution is infeasible. The harmful effects of collinearity can be worse at

the RQ levels, since RQs function influences are bounded in the response variable but unbounded

in the predictor space. So, unlike the LS which are both susceptible to outliers and high leverage

points, the QR procedure is robust to outliers but very amenable to high leverage points, hence

collinearity influential points.

In regression, four scenarios can be considered: (i) the number of observations exceed that

of predictor variables (n > p), but too many variables (need for variable reduction and variable

selection), (ii) the number of predictor variables exceed that of observations (p > n), (iii) collinear-

ity and (iv) collinearity influential points (collinearity hiding and collinearity inducing points).

Collinearity influential observations, X-space outliers (high leverage points) that hide or induce

collinearity (Mason & Gunst 1985). The last challenge (iii) is our focus of attention, and we deal

with it extensively in this thesis using robust regularization techniques. Outliers in the response

variable (heavy-tailed distributed error terms) are catered by QR, since RQs’ influence functions

are bounded in the Y -space.

In summary, the following are some motivations for regularization in QR:

• In the LS case, the inquiry is only limited to the conditional mean (E(Y/X)), whereas in QR,
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it is extended to the conditional quantiles QY/X(τ) to all τ ∈ (0,1) quantile levels.

• In addition to mathematical tractability, the LS performs well under normality assumptions.

However, in real life data, very often normality assumptions are violated due to error term

distributions thicker than the normal distribution, hence the need for robust techniques such

as QR.

• We take advantage of the robustness of QR in the Y -space and some penalized procedures,

which are also robust in the X-space to suggest QR regularization procedures, with superior

performance in variable selection and prediction in addition to interpretability of the QR

model.

• Regularization procedures have been extended to the QR scenario with their accrued proper-

ties from the LAD penalized procedures in Chapter 4.

1.2 Overview of the Thesis

In this section, we give an overview of this thesis as well as present our contributions to variable

selection and regularization procedures in a QR setting which are robust to both X-space and Y -

space data aberrations. We first explore the literature on variable selection and regularization and

then suggest more robust ones.

The approach to this thesis is two pronged namely; (1) variable selection and regularization

in the weighted QR scenario via MCD based weights in pursuit mitigating against collinearity in-

fluential points’ adverse effects in variable selection and regularization, i.e., we propose penalized
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weighted QR procedures, and (2) use QR based adaptive weights instead of LS-RIDGE-based

adaptive weights in the literature in suggesting weighted and unweighted penalized QR. The pro-

posed procedures are attractive because of their robustness in the presence of outlying points (both

in X-space and heavy-tailed distributions).

The objectives of the thesis are to:

(i) suggest robust variable selection and regularization techniques and (ii) compare the perfor-

mance of the suggested procedures through simulation studies, as well as well-known data from

the literature.

1.2.1 Contributions

In this thesis, we suggest regularized QR procedures with LASSO, adaptive LASSO (ALASSO),

E-NET and adaptive E-NET (AE-NET ) penalties. We first propose the weighted penalized QR

(WQR) procedures. These penalized WQR procedures are based on the robust weights ωi. The

weights ωi are based on the minimum covariance determinant (MCD). Secondly, we suggest

adaptive penalized QR procedures (both weighted and unweighted). The adaptive penalty is based

on the proposed WQR-RIDGE regression parameter estimates. The variable selection approaches

are robust in the Y and X-spaces. We carry out simulation studies to test the applicability and

performance of these procedures. In summary:

• We extend the WLAD-LASSO (see Arslan 2012, Norouzirad et al. 2018) to our proposed reg-

ularized weighted QR (WQR) procedures. The penalized WQR procedures are based on the

RIDGE, E-NET , ALASSO and AE-NET penalties. These regularized WQR/QR procedures

are local estimators, unlike the LS estimator one, which is global.
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• We propose weighted QR-RIDGE (WQR-RIDGE) based adaptive weights instead of the

ridge regression (RR) ones, suggested in the literature. The WQR-RIDGE based weights

have the advantage of having different adaptive weights at each RQ level. The weights

based on the QR based estimator are preferred to the RR based ones since they are locally

based and not global like the RR one. The penalized procedures QR-LASSO and QR-E-

NET are then extended to the QR-ALASSO and QR-AE-NET methods, respectively. In turn,

adaptive procedures QR-ALASSO and QR-AE-NET are further extended to WQR-ALASSO

and WQR-AE-NET procedures by the same criterion.

• We take advantage of the robust weights based on the computationally intensive MCD due

to increase in computer power to formulate our proposed penalized WQRs.

• We carry out a comprehensive simulation studies on penalized WQRs, adaptive penalized

WQRs and adaptive penalized QRs in the presence of collinearity, high leverage points,

collinearity influential points and heavy-tailed error term distributions as well as apply these

procedures to well-known data sets from the literature with these inherent data aberrations

and established the efficacy of these procedures.

The rest of the thesis is organized as presented next. In Chapter 2, we review the literature on

model selection, variable selection, regularization and robust QR procedures. Chapter 3 discusses

regularization procedures and variable selection in the LS scenario. Chapter 4 discusses variable

selection in QR and suggests WQR-RIDGE based adaptive weights and new variable selection and

regularization procedures (both weighted and adaptive) in a QR setting. We carry out simulation

studies and give results of the simulations in Chapter 5. We conclude the thesis by a discussion

and make recommendations in Chapter 6.
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1.3 Notation

The notation used throughout this thesis is introduced in this section for the reader’s reference.

Bold faced letters are vectors and matrices.
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Table 1.1: Notation: Penalized Quantile Regression

Symbol Description
n sample size
p number of predictors
YYY the n×1 response vector
yi the ith observation of the response vector YYY ,

i ∈ [1 : n].
XXX the n× p predictor design matrix, excluding

the constant term column.
xxx′i the ith row of the design matrix XXX , i ∈ [1 : n].
β0 the LS intercept term
βββ the p×1 slope vector of parameters (excludes β0)
ei ith random error term, i ∈ [1 : n]

ρτ(u) the check function given by
{

τ.u, i f u ≥ 0
(τ −1).u, i f u < 0

εi ith residual, i ∈ [1 : n]
τ quantile level
βββ (τ) QR coefficient.
F the distribution function of ordered iid Yis
F−1(τ) the inverse function of F given by in f{y|F(y)≥ τ}.
QY |X(τ) the conditional quantile function of Y given the covariate X

given by β0 +F−1(τ)+ xxx′βββ

β̂ββ (τ) estimate of βββ (τ) estimated by

(
β̂0 +F−1(τ)

β̂ββ

)
with

β̂0 +F−1(τ) corresponding to the intercept and
β̂ββ corresponds to (β1,β2, ...,βp)

′.
λ the tuning parameter
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Symbol Description
µ̂µµ
∗ the sample mean vector

ŜSS the a p× p sample covariance matrix
tttn the center of MV E covering at least half of

the observations
ĈCC a p× p matrix representing shape of the

ellipsoid
µ̂µµ the sample mean of smallest ellipsoid containing

half of observations
Σ̂ΣΣ the p× p sample covariance matrix
RD(x j) MCD robust distance
χ2

η Chi-square distribution with η degrees of
freedom

ωi robust weight based on the MCD robust
distance for i ∈ [1 : n]

β̂ββ
W
(τ) WQR coefficient

α mixing parameter
ω j jth RR based adaptive weight 1/|β |γ ,

j ∈ [1 : p]
λ j jth adaptive weight ω jλ , j ∈ [1 : p]
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Symbol Description

β̂ββ
R
(τ) QR-RIDGE coefficient

β̂ββ
WR

(τ) WQR-RIDGE coefficient

β̂ββ
L
(τ) QR-LASSO coefficient

β̂ββ
WL

(τ) WQR-LASSO coefficient

β̂ββ
EN

(τ) QR-E-NET coefficient

β̂ββ
WEN

(τ) WQR-E-NET coefficient

β̂ββ
WR

WRR coefficient

β̂WR
j jth entry of β̂ββ

WR
, for j ∈ [1 : p]

ω̃ j β̂WR
j based adaptive weight , for j ∈ [1 : p]

β̂WR
j (τ) jth entry of β̂ββ

WR
(τ), for j ∈ [1 : p]

ω̌ j β̂WR
j (τ) based adaptive weight, for j ∈ [1 : p].
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Symbol Description

β̂ββ
AL
(τ) QR-ALASSO coefficient

β̂ββ
WAL

(τ) WQR-ALASSO coefficient

β̂ββ
AE

(τ) QR-AE-NET coefficient

β̂ββ
WAE

(τ) WQR-AE-NET coefficient⊗
Kronecker product

ΩΩΩ diagonal matrix diag(ω1,ω2, ...,ωn)

Ψni(t)
∫ t

0
√

n(Fi(s/
√

n)−Fi(0))ds is a convex
function for each n and i, for i ∈ [1 : n]

Fi(t) P(εi ≤ t), is the distribution function of εi,
for j ∈ [1 : p] and time t

rτ(ZZZ) denotes the approximate
error function QY |Z(τ)−XXX ′

βββ (τ)

DDD a diagonal matrix whose entries are
eigenvalues
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Table 1.2: Notation: Regularization

Symbol Description

β̂ββ
R

RIDGE coefficient
β̂ββ LS LS coefficient

β̂ββ
L

LASSO coefficient

β̂ββ
EN

E-NET coefficient

β̂ββ
AL

ALASSO coefficient
ω∗

j adaptive weight |β̂ EN
j |−γ , j ∈ [1 : p]

β̂ββ
AEN

AE-NET coefficient

β̂ββ
FL

Fused LASSO coefficient
β j−1 ( j−1)th parameter, j ∈ [2 : p]

β̂ββ
GL

Grouped LASSO coefficient
κ j denotes the jth elliptical norm of βββ , j ∈ [1 : p]

β̂ββ
CAP

composite absolute penalties slope
y(ti) denotes a time dependent response variable,

where ti ∈ [t1, ..., tn], i ∈ [1 : n]
ε(ti) time-dependent error term, where i ∈ [1 : n]
β j(ti) time-dependent parameter estimate, i ∈ [1 : n]
w(ts, ti) time-dependent weight, where i ∈ [1 : n], s ∈ [1 : n]

β̂ββ
SL

smoothed LASSO criterion coefficient
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Table 1.3: General Notation

Symbol Description
St train set
Sv validation set
HHH is the the hat matrix XXX(XXX ′XXX)−1XXX ′

hii the ith diagonal element of the hat matrix
HHH, given by xxx′i(XXX

′XXX)−1xxxi, i ∈ [1 : n]
HHH(i) is the hat matrix with ithobservation deleted,

given by XXX(XXX ′
(i)XXX (i))

−1XXX ′, i ∈ [1 : n]
XXXc relative to the clean subset
HHHc hat matrix XXX(XXX ′

cXXXc)
−1XXX ′ relative to the clean subset

hci the ith leverage value relative to the clean
subset XXXc, given by xxxi(XXX ′

cXXXc)
−1xxx′i, i ∈ [1 : n]

(XXX without high leverage points)
v j the weight based on hci , i ∈ [1 : n]
X̃XX n× p design matrix XXX standardized to

correlation form
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RRR correlation matrix X̃XX ′X̃XX , where X̃XX is a
normalized matrix

ri j (i j)th element of the correlation matrix RRR,
i ∈ [1 : n], j ∈ [1 : p]

R2
j jth coefficient of determination (COD), j ∈ [1 : p]

Tol j jth tolerance ratio given by 1−R2
j , where j ∈ [1 : p]

III identity matrix
β j jth parameter
θ parameter value, either β j or β 2

j
X̌ = (1,X) an n× (p+1) predictor matrix including a

column of 1s
1n column of 1s
β̌ββ = (β0,βββ

′)′ (p+1)×1 parameter vector
(p is the number of predictors)

e ∼ Nn(0n,σ
2In) an n×1 vector of errors

0n vector of zeros
X̌J a (p+1)× (p+1) submatrix of X̌
YJ a (p+1)×1 subvector of Y
J denotes the p+1 dimensional ES
ˆ̌
βββ J (X̌′

JX̌J)
−1X̌′

JYJ = X̌−1
J YJ , estimated vector

of coefficients
X̌−1

J the inverse of the matrix X̌J

ŷiJ the ith elemental predicted value, x̌′i
ˆ̌
βββ J

εiJ the ith elemental predicted residual (EPR)

yiJ − x̌′i
ˆ̌
βββ J , for, i /∈ J

κ j λ j/λp is a singular value or eigenvalue based
condition index, where λp is the minimum
singular value and λp is the maximum singular
value, for j ∈ [1 : p]
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Chapter 2

Literature Review

In this chapter we review and discuss the literature on variable selection and regularization for

non-robust and robust scenarios. We further review the use of robust criteria in variable selection

and regularization, the idea of robustness, some computational aspects of QR, collinearity and

influential point diagnosis. We justify the extension of the robust idea of the LAD to the proposed

QR regularization procedures. Extensions of existing robust methods have made the robust field

rich in diversity in variable selection and parameter estimation. Also, a review of robust distances

is given as a precursor to the construction of robust weights and finally, a brief review of elemental

sets method is given, since a RQ corresponds to an ES.

2.1 Review of Variable Selection and Regularization Procedures

The variable selection procedures include the significance criterion, the change-in-estimate cri-

terion, the forward stagewise procedure, stepwise forward selection procedure, stepwise back-

ward selection procedure, as well as their hybrid versions and the regularization (penalization and
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shrinkage) methods. Remedies of collinearity’s adverse effects have been extensively researched in

some of these variable selection procedures. The significance criterion, information criterion and

the stepwise backward procedures are examples of criteria preferred when collinearity is present

(see Mantel 1970, cited in Heinze et al. (2018)), and have become integrated in standard statistical

software. We briefly explain some of these procedures in subsequent paragraphs.

Significance criterion is the most popular practical variable selection procedure that uses hy-

pothesis testing methods to choose variables. Different linear regression models are fit and com-

pared using the likelihood ratio test. In logistic regression and survival analysis (Cox regression

model), the step-up (score test) or step-down (Wald test) tests select variables (Heinze et al. 2018).

The second variable selection method is the information criterion, which selects a model from

a set of plausible models. This criterion penalizes a model for complexity. Examples of infor-

mation criterion include the Akaike information criterion (AIC) (Akaike 1974) and the Bayesian

information criterion (BIC) (Schwarz 1978). The penalty factor of BIC is usually larger than the

AIC, and BIC chooses more parsimonious models (Heinze et al. 2018).

In epidemiology, the change-in-estimate criterion (see Hosmer Jr et al. 2013) has been pre-

ferred. In the change-in-estimate criterion, eliminating a significant predictor from the model

results in significant change-in-estimate, and the converse is true for a nonsignificant predictor.

The method includes the augmented backward elimination (ABE) procedure as an example. This

method selects more variables and less biased coefficients than the backward elimination (BE)

procedure.

Forward stepwise regression selects the first predictor variable with the best fit, i.e. the variable

with the least sum of squared errors (SSE) (Hesterberg et al. 2008). Subsequently, a predictor

that provides the best combination fit with the first one is chosen, and the process continues in
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that fashion. The forward stepwise regression procedure is susceptible to small changes in data,

leading to choosing one variable instead of another, hence unstable.

Backward stepwise regression procedure starts with a larger model, sequentially removing vari-

ables that have the least contribution to the fit. It is prudent to note the use of the combination of

forward and backward selection procedures, as in Efroymson’s procedure (Efroymson 1960).

The forward stagewise procedure, just like its forward stepwise counterpart, selects the first

predictor variable with the least SSE (best fitting variable). In the next step, the forward stagewise

regression selects the variable with the highest correlation with the current residuals, and the proce-

dure continues that way. In comparison, the stagewise procedure produces more stable coefficients

compared to its stepwise counterpart. The stagewise procedure is closely related to the boosting

algorithm in machine learning (Hesterberg et al. 2008).

Variable selection can be determined by regularization methods. These shrinkage procedures

include the RIDGE (see Hoerl & Kennard 1970, Hoerl et al. 1975), LASSO (Tibshirani 1996) and

the least angle regression (LARS) (Efron et al. 2004) penalty based procedures as examples. How-

ever, the RIDGE procedure does not select predictors, as it does not shrink coefficients to zero.

The optimum tuning parameter (λ ) in LASSO and other shrinkage procedures control the penaliza-

tion strength through cross validation or information criteria (Yu & Feng 2014). The regularization

methods are suitable for the low dimensional case (n > p), as well as the high dimensional case

(p > n). These penalization methodologies, as extended to the QR scenario, are the focus of this

thesis, and we discuss these methods in Chapter 3.
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2.1.1 Criteria for Model Performance in Variable Selection

Our interest in this thesis is to determine models with better prediction accuracy that can give

precise estimates of coefficients of interest and enhance interpretability of models. The application

of error statistics is very popular, and we summarize some of them. Some measures of model

performance include (i) mean squared error (MSE), (ii) root mean squared error (RMSE), (iii)

mean absolute error (MAE) and (iv) median absolute deviation (MAD), etc. The RMSE is a

frequently used statistic influenced by extreme points and, MAD, though less popular like other

robust metrics, is robust in the presence of outlier observations.

We start by presenting the MSE as

MSE = (1/n)Σn
i=1ε

2
i f or i ∈ [1 : n], (2.1)

where εi = yi − xxx′iβββ is the ith residual value. The extreme point, when squared, unduly increases

the MSE value. Finding the square root results in the root mean squared error (RMSE =
√

MSE).

The MSE and RMSE are amenable to outliers. Instead of MSE and RMSE, the mean absolute

error (MAE = (1/n)Σn
i=1|εi|) is more appropriate. The MAE is robust in the presence of outliers

(Rousseeuw & Croux 1993). Another measure used to show model bias (under and over prediction

of a model) is mean bias error (MBE = (1/n)Σn
i=1εi) (see Willmott & Matsuura 2005). We depict

the relationship between the three measures by MBE ≤ MAE ≤ RMSE (Willmott & Matsuura

2005).

Consider a very robust scale estimator MAD given by

MAD = 1.4826(Median{εi}−Median{εi}) , i ∈ [1 : n], (2.2)
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where Median{εi} is the median of test errors, which is basically the middle order statistic for odd

n and average of (n/2)th and (n/2+1)th of ordered values for even n. The median is bounded and

has the highest breakdown point of 50% (breakdown point measures the least amount of contam-

ination required for a procedure to disintegrate (see Section 2.3)). The median influence function

is also bounded (Rousseeuw & Croux 1993). The robustness of this measure makes it suitable for

screening data for outliers by the statistic |xi −Median{εi}|/MADn. The MAD statistic, with a

cutoff 2.5 or 3.0, flag spurious data points.

2.1.2 Cross Validation in Regularization Procedures

In the variable selection and regularization techniques, we use some criteria with cross-validation

(CV ) criteria to select variables. The CV technique selects the optimal tuning parameter or penalty

parameter (λ ), resulting in selecting the best procedure with the most accurate overall prediction.

Consider a learning method f and data setD = {⟨xxx j,y j⟩}, ∈ [1 : N]. Then for predictor vec-

tor xxx j and response y, the predictive model M(x) is such that f (D) = M and output prediction

given by f (x,D). The K-fold CV algorithm CV ( f ,D = F1, ...,FK) (Tsamardinos et al. 2018) in the

regularization procedures is given by

AAAlllgggooorrriiittthhhmmm : KKK-FFFooolllddd CCCrrrooossssss-VVV aaallliiidddaaatttiiiooonnn
IIInnnpppuuuttt: training method f , Data matrix DDD = {⟨x j,y j⟩}, ∈ [1 : N] partitioned into equal folds Fi.
OOOuuuttt pppuuuttt: Model M, Performance estimation CV , on all folds
(i) Define DDD(i) = DDD, for FFF i /∈ DDD # Data set DDD is partitioned into K folds F .
DDD(i) and FFF i are referred to as the training set (St) and validation set (Sv), respectively.
(ii) Iis are the indexes of FFF i # Obtain the indexes of each fold
(iii) M = f (D) # Final Model trained by f on all available data
(iv) LCV = 1

K ΣK
i l(y(Ii), f (Fi,D(i))), i ∈ [1 : K] # Performance estimation: learn from DDD(i) , estimate on Fi

# train set DDD(i) is used to fit models, and we test the performance of the model using the validation set Fi
(v) Collect out-of-sample predictions Π = [ f (FFF1,DDD(1)); ...; f (FFFK,DDD(K))] # Out-of-sample predictions are
used by bias-correction methods
(vi) RRReeetttuuurrrnnn ⟨M,LCV ,Π⟩
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In this thesis we use hqreg R software program (Yi 2017) which has an inbuilt K-fold cross-

validation algorithm for application regularization and regularized QR scenarios (see Section 5.1).

2.2 Least Squares and Least Absolute Deviation Variable Se-

lection and Regularization Procedures

In this section, we focus on non-robust (LS) and robust (LAD) variable selection and regularization

procedures. Robust penalized procedures have the advantage of resisting the influence of extreme

observations in variable selection and parameter estimation (Jiang et al. 2021). We start by elabo-

rating on the LS and LAD penalized procedures in the next section.

2.2.1 Least Squares Variable Selection and Regularization Procedures

Regularization techniques exist in the literature, including the James–Stein estimator (James &

Stein 1961), ridge regression referred in this thesis as least squares ridge regression (LS-RIDGE)

(Hoerl & Kennard 1970), non-negative garotte (Breiman 1995), least absolute shrinkage and se-

lection operator (LS-LASSO) (Tibshirani 1996), smoothly clipped absolute deviation (SCAD) (Fan

& Li 2001), LS elastic net (LS-E-NET ) (Zou & Hastie 2005), adaptive LASSO (Zou 2006) and

the least squares post-LASSO (LS-post-LASSO) (Belloni & Chernozhukov 2013). The regulariza-

tion techniques have sparse solutions, except for the LS-RIDGE procedure. The literature shows

that the LS-post-LASSO technique reduced the bias of the LASSO estimator. The requirement of

p < n in LS and James–Stein shrinkage is unimportant for the LASSO case. Procedures such as the

LAD-LASSO (Wang et al. 2007), ALASSO proposed by Zou (2006), fused LASSO (Tibshirani et al.
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2005), group LASSO (Yuan & Lin 2006), LS-E-NET (Zou & Hastie 2005) and AE-NET (Zou &

Zhang 2009) are extensions of LASSO. The LASSO procedure has merits of stable model selection

and produces a sparse solution (Wu & Liu 2009). The E-NET procedure has similar sparsity of

representation to the LASSO but often outperform the LASSO procedure (Zou & Hastie 2005). The

E-NET has a competitive advantage over the LASSO in that it encourages a grouping effect, where

strongly correlated predictors tend to be in or out of the model together. Extreme observations,

including high leverage points, more-so collinearity influential points, adversely influence the reg-

ularization procedures highly. These penalties have drawbacks of not being robust in the presence

of high leverage points (and collinearity influential points). Therefore, in the literature, they have

been improved via their adaptive counterparts which we elaborate on further in Subsection 2.2.2

and Chapter 3.

2.2.2 Least Absolute Deviation Variable Selection and Regularization

Regularization procedures based on absolute deviations are robust in the presence of Y -space out-

liers. Thus, the LAD regression is robust to outliers in the response space (heavy-tailed distributions

scenarios), unlike the LS procedure. The LAD-LASSO exploit the robustness of LAD in the esti-

mation of parameters and the shrinkage and estimation characteristics, since both the LAD-LASSO

and the LAD are based on absolute deviations, unlike LS-LASSO as proposed by Wang et al. (2007).

The LAD-LASSO estimator also enjoys asymptotic efficiency (oracle property) just like the LAD

estimator. In LS, omitting an important predictor variable will cause a bias in parameter estimates

and prediction results. LAD-LASSO is a consistent model selection criterion under heavy-tailed

distributions, as compared to LS-LASSO and other variable selection procedures, such as AIC,
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BIC, etc that fall short.

Regularization procedures that are robust in the presence of X-space outliers (high leverage

points) exist in the literature. Arslan (2012) proposed the WLAD-LASSO procedure for robust

parameter estimation and variable selection. The WLAD-LASSO procedure is superior to the LAD-

LASSO because it is robust to both the outliers in the predictor space, as well as outliers in the

response variable (heavy-tailed distributions). WLAD-LASSO inherits robustness in the Y -space

from its LAD-LASSO counterpart, while its high sensitivity to high leverage point influences is

mitigated by the weights applied to the predictor matrix.

In the literature, suggested adaptive regularization methods are robust in the presence of collinear-

ity. One such regularization procedure is the adaptive LASSO (ALASSO), which was proposed by

Zou (2006) to deal with certain situations where LASSO is inconsistent for variable selection.

ALASSO is based on adaptive weights and enjoys oracle properties. Fan et al. (2014) suggested

the adaptive robust LASSO (AR-LASSO) to reduce bias in the procedures by Belloni & Cher-

nozhukov (2011) and Wang et al. (2012). In the AR-LASSO scenario, a weight vector of the

weighted ℓ1 penalty is computed. Fan et al. (2014) formally established its asymptotic normal-

ity property. We extend these procedures in Chapter 3 to the adaptive procedures namely, adap-

tive RIDGE (ARIDGE), ALASSO, AE-NET , weighted ALASSO (WALASSO), weighted AE-NET

(WAE-NET ), weighted LAD ALASSO (WLAD-ALASSO) and weighted LAD AE-NET (WLAD-

AE-NET ) and in Chapter 4 namely, QR-ALASSO, QR-AE-NET , weighted QR-ALASSO (WQR-

ALASSO) and weighted QR-AE-NET (WQR-AE-NET ).
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2.3 Robustness and Quantile Regression Variable Selection and

Regularization

In this section, we give a review of robustness, as well as variable selection and regularization in

QR.

2.3.1 The Breakdown Point and Quantile Estimation

The robustness of QR in the Y -space emanates from the LAD estimator, as it is a generalization of

LAD to all regression quantile (RQ) levels. According to Koenker et al. (2018), we can reduce the

residual mean problem of Boscovich to finding the weighted median regression. The QR case is

an immediate generalization to the median regression case, resulting in the τ th quantile influence

function. The conditional mean achieves optimality under the Gaussian law of errors, and the

median has a superior performance than the mean when large errors exist. Small contamination of

the distribution in the mean scenario at point y contrasts the median scenario, which is bounded by

the sparsity at the median. The boundedness property of the median scenario extends to the QR

case for a finite sparsity.

Koenker (2005) acknowledges Donoho and Huber’s sample breakdown point as the most suc-

cessful notion of global robustness of estimators, since it measures the least amount of contamina-

tion required for a procedure to disintegrate (see also Bickel et al. 1982). These high breakdown

methods, like the least median squares estimator by Rousseeuw (1984), have become the focus of

recent research and achieve asymptotic breakdown point half (1
2 ). However, because of its non-

probabilistic formulation, the breakdown point of estimators is still an elusive concept.
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Rousseeuw and Hubert in 1999 suggested the use of regression depth in QR. They found the

approach to be highly robust. The regression depth fits into recent linear programming methods

when supported by more explicit rules of choosing edges at each vertex. The dual plot strategy

chooses the most favorable direction by finding directional derivatives until the objective function

is minimal.

2.3.2 Review of Robust Variable Selection and Regularization in Quantile

Regression

Some LASSO-penalty (ℓ1) based QRs include the mixed-effect for longitudinal data in estimating

random effects by shrinkage approaches (Koenker 2005), the solution path of ℓ1-penalized QR (Li

& Zhu 2008) and, LAD regression (Wang et al. 2007). The QR loss function is not continuous at

the origin, which poses challenges on the applicability of oracle properties for the non-concave

likelihood (Fan & Li 2001). QR variable selection and regularization procedures, such as SCAD

penalized QR and adaptive LASSO penalized QR proposed by Wu & Liu (2009) have the advan-

tages of oracle properties. The oracle properties of the SCAD penalized QR and adaptive LASSO

penalized QR procedures are very important in our proposed procedures whose properties we either

adopt or extend in this thesis.

Composite quantile regression LASSO (CQR-LASSO) procedure (Zou & Yuan 2008) is robust

just like CQR and assumes equal weights for different RQs. The equal weight property of this

procedure lacked optimality overall and hence Jiang et al. (2012) proposed the weighted CQR

(WCQR), a procedure that let the data decide efficient weights. Belloni & Chernozhukov (2011)

proposed the ℓ1-penalized QR in high dimensional sparse regression models whose estimates are
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nearly oracle consistent. Wang et al. (2012) considered the non-convex penalized QRs in high

dimensional settings, which under mild error conditions satisfy oracle properties at a local minima.

2.3.3 Overview of Quantile Regression Computational Aspects

We briefly discuss some QR computational aspects in this section. The interior and exterior point

procedures are used to search for a distinct QR solution set of β js. As alluded to in Koenker &

D’Orey (1987), exterior point procedures and classical parametric linear programming methods

are used to find distinct sets of solutions of β js. The simplex programming method, together with

the exterior point procedure, move on the exterior of the constraint set along the edges, searching

for this QR solution set. Some similar parametric programming methods in the literature are used

to determine the LASSO-type penalized estimators as well. The number of distinct solutions in

exterior point procedures is overwhelming hence the adoption of interior point methods.

The interior point procedures search solution sets from the center of the constraint set towards

the edges (Koenker et al. 2018). The development of interior point procedures spans back to 1956,

with Frisch’s contribution to the logarithmic barrier procedure. Wu & Liu (2009) applied the

difference convex algorithm (DCA) to solve the non-convex smoothly clipped absolute deviation

(SCAD) optimization problem because the penalty function can be decomposed into a difference

of two convex functions. The optimization DCA for QR at every iteration is a more efficient linear

programming problem. The local linear approximation algorithm (LLA) proposed by Zou & Li

(2008) solves the SCAD optimization problem just like the DCA. The LLA and DCA approaches

differ in that the LLA enforces symmetry in approximating the SCAD penalty, hence the DCA

approach is more attractive than its LLA counterpart.
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2.4 Review of Collinearity and Collinearity Influential Point

Diagnostics

In this section, we explore collinearity and collinearity influential point diagnostics. Consider

the design matrix XXX and normalize it by sample size and standard deviation to unit length by

x̃i j = (xi j − x̄ j)/S j, where S j = Σn
i=1(xi j − x̄ j)

2, i ∈ [1 : n] and j ∈ [1 : p] (Midi & Bagheri 2013).

The resultant matrix product X̃XX ′X̃XX is a correlation matrix denoted by RRR. As collinearity increase,

the correlation matrix RRR approaches singularity, causing some explosive increase in the elements

of the inverse matrix (X̃XX ′X̃XX)−1 = RRR−1 (Farrar & Glauber 1967). Consider the partitioned matrix

X̃XX =

(
X̃XX1 X̃XX2

)
, where X̃XX1 consists of predictor variables xk and x j k ̸= j and X̃XX2 consists of the

remaining predictors. The correlation matrix is then partitioned such that X̃XX ′X̃XX =

RRR11 RRR12

RRR21 RRR22

,

where RRR11 and RRR22 are 2×2 and (p−2)× (p−2) sub-matrices of the correlation matrix, respec-

tively. The inverse of the first term in the partition is given by RRR−1
11 = (RRR11−RRR12RRR−1

22 RRR21)
−1, where

the inversion, the single off-diagonal element of RRR11 −RRR12RRR−1
22 RRR21 is the partial covariance of xk

and x j, holding X̃XX2 constant.

Some collinearity diagnostics include the correlation matrix of predictors, variance inflation

factor (V IFj), the eigen-system analysis of correlation matrix (EAOCM) and the condition number

(CN). Schaefer et al. (2006) considered the criteria for diagnosing collinearity using coefficient of

determination (COD = R2
j) by regressing x j (the jth predictor) on the other remaining predictors,

with a corresponding correlation coefficient R j = Σ(x ji − x̄ j)(xki − x̄k)/
√

Σ(x ji − x̄ j)2Σ(xki − x̄k)2,

where j and k ( j ̸= k) are columns of the design matrix X̃XX . Collinearity exists if the COD (and

correlation coefficient), R2
j → 1(R j →±1) and sum of squared residuals, SSE → ∞. This criterion
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is equivalent to considering CN > 10 as evidence of collinearity. If we consider the variance of

β j (Var(β j) = σ2.V IFj/Σ(x ji − x̄ j)
2), where V IFj = (1−R2

j)
−1 is the variance inflation factor

of the jth coefficient show that collinearity inflates variance of the β s. Note that 1−R j is the

tolerance ratio (Tol j). A large value of the collinearity diagnostic measure V IFj (V IFj > 10) shows

collinearity exists (O’brien 2007). A Tol j ≤ 0.20 point to a potential problem and Tol j ≤ 0.10

indicates serious collinearity problems.

Collinearity is related to the conditioning of the design matrix X̃XX and the smallest eigenvalue

of X̃XX ′X̃XX (see Farrar & Glauber 1967, Silvey 1969). The determinant of the normalized matrix

|X̃XX ′X̃XX | (correlation matrix) yields some insights into the degree of collinearity within a predictor

variable set on a scale 0 ≤ |RRR| ≤ 1. We note that |RRR| → 0 means X̃XX approach singularity and the

converse |RRR| → 1 imply near orthogonal independent variable set (Farrar & Glauber 1967). Let

X̃XX ′
( j)X̃XX ( j) denote the correlation matrix excluding the jth variable. We then have r j = |RRR( j)|/|RRR| →

∞ indicating the existance of collinearity, hence, the location of singularity within the predictor

variable set. The determinant |RRR|, shows existence of collinearity, where r j gives insight into the

location. For the predictor variables X js, j ∈ [1 : p], the COD of the jth predictor variable when

it is regressed on the remaining of the predictors is given by R2
j = 1−∆/∆ j, where ∆ = |RRR| is the

determinant of the correlation matrix of all predictor variables and ∆ j = |RRR j| is the determinant of

the correlation matrix of all predictor variables but the jth predictor is left out. We can then use

rk = R2
(k)/(1−R2

(k)) for individual point influence on collinearity, where 0 ≤ rk < ∞.

The generalized variance inflation factor is given by GV IF1 = det(RRR11)/det(RRR11−RRR12RRR−1
22 RRR21)

which can be expressed as GV IF1 = det(RRR11)×det(RRR22)/det(RRR), for all predictors and det(RRR) =

det(RRR22)× det(RRR11 − RRR12RRR−1
22 RRR21) (see Fox & Monette 1992). We note that det(RRR) = 1 and

det(RRR) = 0 for orthogonal and perfectly collinear data, respectively.
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In the eigen-system analysis of X̃XX ′X̃XX , at least one small (near-zero) eigenvalue implies near lin-

ear dependency between the columns of X̃XX . In Montgomery et al. (2012), collinearity is examined

using a CN. Consider the singular values of X̃XX to be d1,d2, ...,dp and the eigenvalues of X̃XX ′X̃XX to

be λ1,λ2, ...,λp. If we consider the singular value of X̃XX and the eigenvalues of X̃XX ′X̃XX such that that

d1 ≥ d2, ...,≥ dp and λ1 ≥ λ2, ...,≥ λp, then, the CN of X̃XX is given by κ = d1/dp =
√

λ1/
√

λp

(Chatterjee & Hadi 1988b). The minimum bound of κ = 1 is attained when the columns of X̃XX are

orthogonal. Generally, the diagnostic criterion uses the SV D, which is related to the eigenvalue

decomposition (EV D) introduced by Strang (2006). The n× p design matrix X̃XX , is decomposed

into X̃XX =UUUDDDVVV ′, where VVV and UUU are the p× p matrix of eigenvalues and n× p matrix of columns

associated with p non-zero eigenvalues of X̃XX ′X̃XX , respectively. The matrix DDD, is a diagonal matrix

of eigenvalues of X̃XX , where VVV ′VVV = III and UUU ′UUU = III. SV D is intimately related to the theory of

diagonalizing a symmetric matrix X̃XX . The diagonal entries of DDD, are eigenvalues of X̃XX . The SV D

is found by considering an arbitrary real n× p matrix X̃XX . This arbitrary real n× p matrix is such

that columns of UUU and VVV are called left and right singular vectors of X̃XX , respectively and the di-

agonal matrix ΩΩΩ : X̃XXn×p =UUUn×rΩΩΩr×rVVV ′
r×p, where r = rank(X̃XX)≤ p. The positive values from the

diagonal matrix ΩΩΩ are called singular values of X̃XX . Although using eigenvaues and singular values

in diagnostics is equivalent, computationally dealing with the latter is preferable even when X̃XX is

ill-conditioned.

Sengupta & Bhimasankaram (1997) suggested the collinearity influential measure (CIM), which

can identify both collinearity enhancing and reducing points (see also Imon 2002, for the exten-

sion to group deletion tools). The leverage collinearity influential point diagnosis tools are based

on generalized potentials and are called the diagnostic robust generalized potentials (DRGP) (see

Habshah et al. 2009, Bagheri et al. 2012).
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2.5 Robust Distances

In this section, we discuss the robust distances. Mahalanobis distance (MD) is the distance between

points from the center (centroid) of a data set onto an ellipse (ellipsoid) (Mahalanobis 1936). The

MD is superior to its Euclidean distance counterpart, which measures the shortest distance between

two points in various ways. Whereas the Euclidean distance is prone to highly correlated variables,

the MD is robust in the presence of collinearity. The contribution of each variable scales the MD

value according to its variability.

Let xxx′j ∈ Rp be the jth predictor vector produced by an n× p design matrix XXX and the sam-

ple mean vector X̄XX = µ̂µµ
∗. To investigate aberrant points in the data set, we use the MD. If we

denote ŜSS = E(XXX − µ̂µµ
∗)′(XXX − µ̂µµ

∗) as the covariance matrix, then Mahalanobis distance is given by

MD(xxxi) =

√
(xxxi − µ̂µµ

∗)
′ ŜSS

−1
(xxxi − µ̂µµ

∗), f or i ∈ [1 : n]. If ŜSS = III, the MD reduces to Euclidean dis-

tance. The MD accounts for the covariance (or correlation) structure of the data (Ghorbani 2019).

The sample mean vector and covariance matrices are known to be heavily influenced by outliers

in a multivariate scenario, and real outliers might cause small MDs. In this case, outliers remain

undetected by a phenomenon called the masking effect. The normality assumptions are often vi-

olated, and a solution is proffered by considering robust alternative estimators, such as the robust

MD.

A high breakdown robust estimator of multivariate location and scatter called the minimum

volume ellipsoid (MV E) estimator was proposed by Rousseeuw (1984) (see also Rousseeuw 1985).

The MV E is based on the ellipsoid, with the least volume that covers h of the n cases. The MV E,

because of its low bias, is suitable for outlier detection in multivariate data scenarios with the aid of

robust distances. The MV E is a reliable procedure for outlier diagnosis, since it is highly resistant
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to outliers and has an easily accessible computational algorithm.

The MV E estimator is the center and covariance structure of the ellipsoid, with a minimal

volume that covers at least h points of the design matrix. The h points are chosen between [n/2]+

1 and n, where [x] denotes the integer part of x. If we choose h = [(n+ p+ 1)/2], a maximal

breakdown value results.

Based on MV E (Rousseeuw 1985) estimates of location and scatter, a robust distance is given

by RD(xi) =

√
(xxxi − tttn)

′ ĈCC
−1
n (xxxi − tttn), i ∈ [1 : n], where tttn is the center of MV E covering at least

half of the observations, and ĈCCn is a p× p matrix representing shape of the ellipsoid. The main

merit of the MV E is its high breakdown point close to 1/2 and conceptually one of the simplest

high breakdown point estimators (Rousseeuw & Leroy 1987).

Another high breakdown robust estimator of center and scatter called the minimum covariance

determinant (MCD) estimator was proposed by Rousseeuw (1985). The MCD estimator is affine

equivariant, highly robust estimator of multivariate center and scatter and is very useful in outlier

detection. Using the MCD estimator was limited until recently due to computer power and less

computationally efficient algorithms (see Rousseeuw & Driessen 1999). We have seen the MCD

method being used in a variety of areas including medicine, finance and chemistry (Rousseeuw

& Driessen 1999). The MCD estimator has in recent years gained traction in robust multivariate

techniques, such as factor analysis and robust principal components analysis (RPCA).

Let XXX = (xxxi1,xxxi2, ...,xxxi j, ...,xxxip)
′ be a data matrix, where xxxi j is the jth predictor vector in a

multivariate location and scatter setting. The MCD location estimate µ̂µµ is the sample mean vector

of the smallest ellipsoid containing half (or h(n/2 ≤ h ≤ n) observations as defined by the user)

of the observations of the design matrix XXX , whereas the MCD scatter estimate Σ̂ΣΣ is the covariance

matrix multiplied by a consistent factor (Rousseeuw & Hubert 2018).
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Based on MCD estimator (Rousseeuw 1984) of location and scatter, the robust distance is given

by

RD(xi) =

√(
xxxi − µ̂µµ

)′
Σ̂ΣΣ
−1 (

xxxi − µ̂µµ
)
, i ∈ [1 : n], (2.3)

where RD(xi) is the MCD based robust distance, a modification of the classical Mahalanobis dis-

tance. RD(xi)
2 follow a χ2-distribution with η degrees of freedom. The robust MCD based estima-

tor is used to diagnose outliers in multivariate data. The robust distances based on MCD are useful

in flagging outliers because they are not sensitive to masking effects (Rousseeuw & van Zomeren

1990). The MCD based distance is superior to the classical estimator (MD), as it is not strongly

affected by contamination.

A data set well known in the literature to contain both high leverage points and outliers is the

Brainlog data (Rousseeuw & Leroy 1987). We illustrate these inherent data aberrations in Figure

(2.1). As depicted in Figure (2.1), the extreme leverage points pull the QR fit towards themselves,

resulting in crossing RQ lines. On the other hand, QR excludes outliers. There is evidence of

the effectiveness of the robust distance measure compared to the classical MD in detecting both

outliers and high leverage points. While the classical ellipsoid is inflated towards the X-outliers 6,

16 and 26, which are dinosaurs with low brain weight and high body weight, the MCD one totally

excludes them. The boundary ones, 14 and 17, are human and rhesus monkey, respectively. Also,

the distance-distance plot shows that the robust distance exposes more X and Y -space outliers.
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2.6 Elemental Sets and Elemental Regression

An elemental set (ES) is a subset of the data containing the minimum number of observations

(p+ 1), such that the parameters can be estimated in the model (Smyth & Hawkins 2000). The
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use of ES methods has been proposed in the literature. These include the elemental set algorithms,

such as regression depth and the repeated median (Siegel 1982), where some estimators are found

by searching all C(n, p+1) =

 n

p+1

 ESs. The number of ESs tends to be very large in practice.

The other applications include detection multiple case data aberrations and the coefficient of deter-

mination (COD) and Studentized residuals in the QR scenario (see Ranganai et al. 2014, Ranganai

2016b,a). The accuracy of ES approximations for regression were investigated (see Rousseeuw

1984, Hawkins et al. 1984, Hawkins & Olive 2002, 1999, Hawkins 1993) and showed excellent

approximations to the least median squares (LMS), the least trimmed squares (LT S) and LS cri-

teria. The method has become computationally feasible due to the advent of modern increases in

computing power, hence the renewed interest by researchers in ES-based methods.

Consider the intercept β0 ̸= 0 and express Equation (1.1) as the linear regression Y = X̌′β̌ββ +e,

where Y is an n× 1 response vector, X̌ = (1,X) is an n× (p+ 1) predictor matrix including a

column of 1s, 1n is a column of 1s, β̌ββ = (β0,βββ
′)′ is a (p+1)×1 parameter vector (p is the number

of predictors and βββ is a parameter vector excluding β0), e ∼ Nn(0n,σ
2In) is an n× 1 vector of

errors, 0n is a vector of zeros and In is an identity matrix. We let X̌J be a (p + 1)× (p + 1)

submatrix of X̌ and YJ be a (p+ 1)× 1 subvector of Y, then (X̌J,YJ) is Jth ES (J denotes the

p+1 dimensional ES). The optimal solution to the linear programming problem (LP) in Equation

1.2 is a regression quantile (RQ) that corresponds to a specific ES of size (p+1) (see Koenker &

Basset 1978, Koenker 2005). The result of applying the LS to the ES results in the Jth elemental

regression (ER) coefficient estimator ˆ̌
βββ J = (X̌′

JX̌J)
−1X̌′

JYJ = X̌−1
J YJ , where X̌−1

J is the inverse

of the matrix X̌J (X̌J is non-singular). For the ith elemental predicted value, ŷiJ = x̌′i
ˆ̌
βββ J , the ith

elemental predicted residual (EPR) is given by εiJ = yi − x̌′i
ˆ̌
βββ J, f or, i /∈ J, where ˆ̌

βββ J is estimated
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vector of coefficient. According to Ranganai (2016b), the EPRs and their corresponding sum of

squares are related to the LS residuals εi = yi−x′iβ̂ββ , for 1 ≤ i ≤ n, and the LS SSE via an elemental

regression weight (ERW ) (see Rousseeuw 1984).

2.7 Concluding Remarks

In Section 2.1, we reviewed the literature on variable selection procedures, such as the significance

criterion, the change-in-estimate criterion, the forward stagewise procedure, stepwise forward se-

lection procedure, the stepwise backward selection procedure and regularization techniques. We

also discussed the criteria for model performance, such as MAE, MAD and MBE in Subsection

2.1.1. Cross validation was reviewed in Subsection 2.1.2. We further reviewed the literature on

the LS and LAD variable selection and regularization procedures in section 2.2. We discussed

penalized LS variable selection procedures in Subsection 2.2.1 and the LAD and related robust

procedures in Subsection 2.2.2. Regularization techniques include the James–Stein estimator, LS-

RIDGE, non-negative garotte, LS-LASSO, SCAD, LS-E-NET , ALASSO and the LS-post-LASSO,

just to name a few. We further reviewed the literature on robustness and QR variable selection in

Section 2.3, where in Subsection 2.3.1, the breakdown point and QR were reviewed, with robust

criteria (QR) reviewed in Subsection 2.3.2, and lastly, the overview of QR computational aspects in

Subsection 2.3.3. QR variable selection procedures include the SCAD penalized QR, the adaptive

LASSO penalized QR, ALASSO penalized QR and CQR-LASSO procedures, just to mention a few.

We reviewed collinearity and collinearity influential point diagnostics in Section 2.4. We further

reviewed robust distances as the basis for our suggested weights in Section 2.5. These distances

include the MD, the MV E based distance and the MCD based distance. We concluded this chapter
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by reviewing ES and ER showing their relationship with QR and diagnostics in Section 2.6.

39



Chapter 3

Variable Selection and Regularization

Procedures

Although subset selection has been a topical issue in the 19th century, it tends to be unstable and

unsuitable in a high-dimensional data setting (Breiman 1995). Therefore, variable selection and

regularization procedures have gained more traction in recent years. Extensive literature on vari-

able selection and regularization proliferated towards the 20th century. In this chapter, we discuss

and review some of these variable selection and penalized procedures. The penalized procedures

discussed and explored in this chapter serve as the foundation for our proposed regularized and

adaptive-regularized QR procedures (see Chapter 4).

The rest of the chapter is organized as presented next. Section 3.1 discusses LS regulariza-

tion procedures, with Subsection 3.1.1 reviewing ridge regression (LS-RIDGE), Subsection 3.1.2

discussing the LS-LASSO procedure and Subsection 3.1.3 discussing the elastic net (LS-E-NET ).

Section 3.2 reviews the adaptive regularization techniques in the LS scenario namely, the adap-

tive LASSO (LS-ALASSO) and adaptive LS-E-NET (LS-AE-NET ). Sections 3.3 and 3.4 discuss
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the LARS and other regularization procedures, respectively. Lastly, Section 3.5 gives concluding

remarks.

3.1 Regularization Procedures in the Least Squares Scenario

Regularization procedures, such as LS-RIDGE (see Hoerl & Kennard 1970, Hoerl et al. 1975), LS-

LASSO (Tibshirani 1996) and LS-E-NET (Zou & Hastie 2005) tend to be fairly stable and produce

lower prediction errors than subset selection techniques. In the literature, these regularization pro-

cedures proffer solutions to the limitations of subset selection procedures. The variable selection

and regularization procedures in this section play an important role in our proposed regularized

QR procedures (see Chapter 4).

3.1.1 The Ridge Regression

The intention of Hoerl’s ridge regression (LS-RIDGE) was to overcome collinearity challenges

(see Hoerl & Kennard 1970, Hoerl et al. 1975). In the presence of collinearity, the assumption

of independence in linear regression is normally violated (Kibria 2003). The LS suffers from

collinearity challenges, especially in prediction accuracy and interpretation. Although LS has low

bias and large variance, the prediction accuracy can be improved by some penalized techniques,

with LS-RIDGE regression suggested in the literature as one of the solutions to the problem of

collinearity (collinearity adverse effects). This shrinkage technique introduces a trade-off between

bias increase and variance reduction. Ridge regression, though more stable than subset selection,

does not set any coefficients to 0 hence does not give easily interpretable results.

The procedure is determined by appending a positive ridge parameter (λ ) in the range of 0 <
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λ < 1 to the design matrix’s diagonal entries. Many ridge parameter estimators of λ have been

suggested in the literature. This λ minimizes the variance (MSE and prediction sum of square

(PRESS)). The ridge trace is a graphical method used to estimate λ , although McDonald (1980)

argues that the procedure is primarily subjective. Hoerl & Kennard (1970) suggested λ = σ̂2/

β̂ββ
∗2
max while Hoerl et al. (1975) suggested λ = pσ̂2/Σ

p
i=1β̂ ∗2

i = pσ̂2/β̂ββ
∗′

β̂ββ
∗
. There are other ridge

parameter estimators (see Lawless & Wang 1976, Hocking et al. 1976, Kibria 2003, Khalaf &

Shukur 2005, Alkhamisi et al. 2006, Muniz & Kibria 2009).

LS-RIDGE regression offers the solution to LS challenges when the predictor variables are

non-orthogonal (Conniffe & Stone 1973). If the matrix XXX ′′′XXX is ill conditioned, then the squared

distance E(β̂ββ − βββ )′(β̂ββ − βββ ) is large for small eigenvalues. The resultant unstable and inflated

coefficients may have incorrect signs.

The linear regression Equation (1.1), with a normally distributed random error term (εi ∼

N(0,1)), is considered. We consider the penalized LS regression with ℓ2-penalty called LS-RIDGE

(see Hoerl & Kennard 1970) regression given by the minimization problem

β̂ββ
R
= argminβββ∈RpΣ

n
i=1(yi − xxx′iβββ )

2 +λΣ
p
j=1β

2
j , j ∈ [1 : p], i ∈ [1 : n], (3.1)

where λ is a positive ridge parameter in the range 0 < λ < 1, β j is the jth parameter, the second

term is the penalty term and other symbols are as defined in Equation (1.1). The optimal ridge

parameter is found using the ridge trace.

The LS-RIDGE regression estimator is the earliest remedy suggested to deal with collinearity.

However, bias and instability are drawbacks that stem from its dependence on λ (Muniz & Kibria

2009). As λ → ∞, βββ
R → 000 achieving stability, but the βββ

R estimator becomes biased. On the other

42



hand, as λ → 0, βββ
R → βββ LS, this results in unstable but unbiased LS parameter estimates. The

question to be answered in the LS-RIDGE regression is: which value of λ produces the optimal

estimator. The optimal value of λ (ridge parameter or bias parameter) is when the system sta-

bilizes with orthogonal characteristics, and the problem of incorrect signs and inflated estimated

coefficients variances is solved.

3.1.2 Least Absolute Shrinkage and Selection Operator

Tibshirani, in 1996, proposed the LS-LASSO, which retained the good characteristics of subset

selection and LS-RIDGE. In recent years, LS-LASSO has become more popular because its ability

to achieve a trade-off between variance and bias. The LS estimate obtained by minimizing the

residual sum of squared errors (SSE) often has a large variance, hence unsatisfactory (Tibshirani

1996). He argued that the fewer variables exhibiting the strongest effects are determined by the

shrinkage method (LASSO) than by the LS-RIDGE that selects almost all predictors. Models by

subset selection are interpretable but extremely variable, resulting in different models from small

changes in the data (Tibshirani 1996).

The non-negative garrote (Breiman 1995) directly influenced the development of LS-LASSO.

Breiman’s idea was the minimization of Σn
i=1(yi −Σ jc jxxx′i jβββ )

2 with respect to ccc = {c j}, subject

to c j ≥ 0 and Σ
p
j=1c j ≤ λ , where βββ is the usual parameter vector. When βββ = (β0,β1, ...,βp)

′ in

Equation (3.1) with standardized xxxis, the following conditions are satisfied:

(i) Σxxxiii/n = 0 and

(ii) Σxxx2
iii /n = 1.
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The LS-LASSO estimator of βββ is given by

β̂ββ
L
= argminβββ∈RpΣ

n
i=1(yi − xxx′iβββ )

2 +nλΣ
p
j=1|β j|, j ∈ [1 : p], i ∈ [1 : n], (3.2)

where λ ≥ 0 denotes the tuning parameter, which controls the amount of shrinkage, and other

terms are defined in previous sections. This regularization procedure has the advantage that the

full rank property in the design matrix XXX is not a requirement.

3.1.3 Elastic Net Regression

In the literature, the elastic net (LS-E-NET ) procedure has been suggested as a compromise be-

tween the LS-RIDGE and the LS-LASSO procedures with accrued properties. The LS-E-NET

procedure exploits the advantages of LS-RIDGE and LS-LASSO regression properties. Accord-

ing to Zou & Hastie (2005), LS-E-NET outperforms the LS-LASSO in some situations although

both have the same oracle properties. The LS-E-NET has an advantage of grouping effect on

strongly correlated predictors over the LS-LASSO, especially when p is much greater than n. The

LS-E-NET procedure has both the ℓ1 and ℓ2 penalties (Zou & Hastie 2005) and is given by the

minimization problem

β̂ββ
EN

= argminβββ∈RpΣ
n
i=1(yi − xxx′iβββ )

2 +αλnΣ
p
j=1|β j|+(1−α)λnΣ

p
j=1β

2
j , j ∈ [1 : p], i ∈ [1 : n],

(3.3)

where 0 < α < 1 is a mixing parameter and other terms are as defined in the previous sections.

The LS-E-NET procedure translates into the LS-RIDGE and LS-LASSO procedures when α = 0

and α = 1, respectively. The LS-LASSO (ℓ1)-penalty term encourages the coefficient profiles β j
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to locally level. The application of the LS-E-NET -penalty, a strictly convex penalty for λn > 0,

yields sparse solutions. The LS-E-NET regression’s edge over the LS-LASSO is better prediction,

and the procedure also adequately selects predictors in high-dimensional data (p > n).

3.2 Adaptive Regularization Procedures in the Least Squares

Scenario

Non-adaptive penalized procedures can perform poorly in the presence of highly correlated vari-

ables in the predictor space (collinearity) (Zou & Zhang 2009). This collinearity problem is often

encountered in high-dimensional data, though in this thesis, we focus on high leverage induced

or hidden collinearity. Due to the shortcomings of these non-adaptive penalized procedures (LS-

RIDGE, LS-LASSO and LS-E-NET ), adaptive regularization procedures were suggested in the lit-

erature. Adaptive regularization procedures were proffered as solutions to these shotcomings, and

the suggested procedures are namely, adaptive LASSO (ALASSO) (Zou 2006), adaptive RIDGE

(ARIDGE) (Frommlet & Nuel 2016) and adaptive E-NET (AE-NET ) (Zou & Zhang 2009). The

ALASSO is superior to the LASSO, since the latter penalizes coefficient estimates equally. The

ALASSO also enjoys oracle properties. Just like the LS-RIDGE, LS-LASSO and LS-E-NET pro-

cedures, adaptive procedures perform poorly in the presence of collinearity influential points (high

leverage points that either induce or reduce collinearity). SCAD (Fan & Li 2001) and MPC (Zhang

et al. 2010) are suggested as solutions for the LS case in the literature.
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3.2.1 Adaptive LASSO Regression

Another version of LASSO called adaptive LASSO (ALASSO) proposed by Zou (2006) deal with

certain situations where LASSO is inconsistent for variable selection. ALASSO uses adaptive

weights for penalizing different parameter estimates in the ℓ1-penalty. ALASSO enjoys the ora-

cle properties and is near minimax optimal. To understand adaptive LASSO, one needs to explore

the oracle properties, as explained by Fan & Li (2001).

We start by presenting the penalty term for bridge regression, Σ j=1|β̂ j|q, where q≥ 1 (Fu 1998).

The adaptive bridge penalty becomes Σ j=1ω j|β̂ j|q, where ω j = 1/|β̂ |γ is the adaptive weight. The

ALASSO and adaptive RIDGE (ARIDGE) penalties are special cases of the bridge penalty when

q = 1 and q = 2, respectively (see Zou 2006). In the presence of collinearity and constructing the

weights ω j, Zou (2006) suggested the use of RIDGE β̂ββ (β̂ββ
R
) as a suitable replacement because it

is superior in stability than its LS counterpart. Since collinearity severely degrade the performance

of the LASSO procedure and results in unstable solution paths, Zou & Zhang (2009) proposed

an adaptive E-NET (AE-NET ), which is superior to LASSO, to deal with the instability due to

high-dimensional data (see also Zou & Hastie 2005).

Fan & Li (2001) argue that since LS-LASSO uses the same tuning parameter for all parameter

estimation, the resultant solution suffers from appreciable bias. Zou (2006) further proposed the

modification of this LS-LASSO procedure to the LS adaptive LASSO version LS-LASSO given by

β̂ββ
AL

= argminβββ∈RpΣ
n
i=1(yi − xxx′iβββ )

2 +nΣ
p
j=1λ j|β j|, j ∈ [1 : p], i ∈ [1 : n], (3.4)

where λ j = ω jλ is the adaptive weight. Here, the tuning parameter is different for each regres-

sion coefficient, as a result β̂ββ
AL

effectively determines sparse solutions than β̂ββ . A very important
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characteristic of the LS-LASSO and LS-ALASSO estimators is that they can do variable selection

and shrinkage simultaneously. They improve prediction accuracy through variance-bias trade-offs.

These shrinkage methods, with varying degrees of compliance with oracle properties, are oracle

procedures. The oracle properties include identification of the right subset model and optimal

estimation rate.

3.2.2 Adaptive Elastic Net Regression

Some shortcomings of the LS-E-NET procedure were addressed by its extension to its adaptive

version. This variable selection and regularization procedure is known as the adaptive E-NET

(AE-NET ) procedure, and it uses ω∗
j = |β̂ EN

j |−γ as penalty weights, where β̂ EN
j is the jth E-NET

estimator (Zou & Zhang 2009). The AE-NET penalty function has characteristics inherited from

the ALASSO and ARIDGE penalized procedures. The AE-NET estimator of βββ is then defined by

β̂ββ
AEN

= argminβββ∈RpΣ
n
i=1(yi−xxx′iβββ )

2+αΣ
p
j=1λω

∗
j |β j|+(1−α)Σp

j=1λω
∗
j β

2
j , j ∈ [1 : p], i ∈ [1 : n],

(3.5)

where the terms are defined as in previous sections. If α = 1 in Equation (3.6), then the AE-NET

reduces to the ALASSO and likewise, if α = 0, it reduces to the ARIDGE. According to Zou &

Hastie (2005), the AE-NET in the orthogonal design scenario reduces to ALASSO regardless, a

desirable situation to achieve optimal minimax. The ℓ2-penalty ensures that the procedure deals

with collinearity. However, the AE-NET procedure is not robust in the presence of outliers and

high leverage points.
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3.3 Other Variable Selection and Regularization Procedures

In this section, we summarize a few other variable selection and regularization procedures, and the

list is inexhaustive. We aim to expose the reader to many regularization procedures.

Contrasting these procedures is the all-exhaustive procedure called all subsets regression, which

considers the size of all variable subsets (Furnival & Wilson 1974). However, this procedure has

huge inferential biases. LASSO has an affinity for choosing only one predictor from a group of

strongly correlated predictors. One might prefer to select the whole group instead, and LASSO

falls short. In pursuit of small differences in successive coefficients, Tibshirani et al. (2005) pro-

posed a procedure for a sequence of predictors, namely fused LASSO. Fused LASSO procedure

makes use of a mixture of an ℓ1-penalty on both the coefficients and the difference between adja-

cent coefficients as follows

β̂ββ
FL

= argminβββ∈RpΣ
n
i=1(yi − xxx′iβββ )

2 +λ2Σ
p
j=2|β j −β j−1|, j ∈ [1 : p], i ∈ [1 : n], (3.6)

where β j−1 is the ( j−1)th parameter and other terms are as defined in previous sections.

In grouped LASSO (Yuan & Lin 2006), a multi-level factor represented by a set of dummy

variables is selected or dropped. Let β j for groups j ∈ [1 : J] be a sub-vector of the global βββ (βββ

from ungrouped variables). We present the grouped LASSO as a minimization problem given by

β̂ββ
GL

= argminβββ∈RpΣ
n
i=1(yi − xxx′iβββ )

2 +λΣ
p
j=1|β j|κ j , j ∈ [1 : p], i ∈ [1 : n], (3.7)

where κ j denotes the jth elliptical norm of βββ . The group LASSO deals with known predictor

groups, whereas E-NET deals with unknown predictor groups. This is possible after letting β j
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for groups j ∈ [1 : J] be a sub-vector of the global βββ . The minimization problem reduces to a

LASSO procedure if j = 1. The group LASSO-penalty promotes sparsity in the groups, as compared

to the variables involved. According to Lin & Zhang (2006), predictor groups resemble sets of

basis functions for smoothing splines, resulting in the component selection and smoothing operator

(COSSO).

The least angle regression (LARS) algorithm (see Efron et al. 2004) and the coordinate descent

algorithms for LASSO (see Wu & Lange 2008) provided efficient ways of solving the LS-LASSO,

as compared to the original quadratic program solver. The advantages of the coordinate descent

algorithms are that they are simple, fast and can exploit the assumed sparsity of the model.

LARS is a model selection algorithm for a data set with many predictor variables (Efron et al.

2004). Procedures such as all subsets (AS), forward selection (FS) and backward elimination

(BE) are some of the procedures in the same family as LARS. A modification of LARS and its ap-

plications to various variable selection methods bring attractive properties, such as computational

efficiency. These methods include LASSO and forward stagewise linear regression, etc. LARS

selects predictors with largest absolute correlation with response variable y (Weisberg 2014).

Group LARS counter the shortcomings of group-LASSO, which could not handle piecewise

linear solution paths (Yuan & Lin 2006). The Group LARS procedure uses the average squared

correlation between the variable group and the current residual in place of the correlation criterion.

Other extensions to group LARS procedure include the modified group LARS, where the average

absolute correlation replaces the average squared correlation (Park & Hastie 2006), composite ab-

solute penalties (CAP) approach, a group LASSO alike procedure with penalty ℓγ j-norm replacing
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ℓ2-norm (Zhao et al. 2009) with a minimization problem given by

β̂ββ
CAP

= argminβββ∈RpΣ
n
i=1(yi − xxx′iβββ )

2 +λΣ
J
j=1(βγ j)

γ0, j ∈ [1 : p], i ∈ [1 : n], (3.8)

where γ j is the CAP penalty, γ j > 1 for group variable selection.

Time series data are sequential data that vary over time. In contrast to fused-LASSO, which

deals with sequentially ordered predictor random variables, other procedures deal with naturally

ordered response variables (time-ordered data). To show the shortcomings of fused LASSO in time

ordered data, we deliberate on linear regression with multiple responses as

y(ti) = xxx′iβββ (ti)+ ε(ti),∀ i ∈ [1 : n], (3.9)

where xxx′i ∈ Rn is the ith row of the design matrix XXX , t1, ..., tn are time points, y(ti) ∈ Rn is a time

dependent response variable, ε(ti) ∈ Rn is a time-dependent error term, and β (ti) ∈ Rp is a time-

dependent parameter. The application of the |β j(ti)−β j(ti−1)|-penalty on fused LASSO has chal-

lenges of concurrently fitting a model with too many parameters (np, say) for a large sample.

Meier & Bühlmann (2008) claim that consecutive time points are more correlated than distant time

points. Meier & Bühlmann (2008) then proposed smoothed LASSO as a solution to the challenge.

Information from different time points is integrated by weight w(ts, ti), and the smoothed LASSO

criterion is then given by

β̂ββ
SL

= argminβββ∈RpΣ
n
s=1w(ts, ti)(y(ts)−xxxβββ (ti))2+λΣ

p
j=1|β j(ti)|, f or j ∈ [1 : p], i ∈ [1 : n], (3.10)

where Σn
s=1w(ts, ti) = 1 is a necessary condition, and the weight w(ts, ti) has higher values and
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guarantees more information on estimates in the neighborhood of time points (ti). The Turlach

et al. (2005) procedure chooses common subsets for the predictor variables for estimating multiple

response variables. The smoothed LASSO procedure, an extension of LASSO is given by

β̂ββ = argminβββ∈RpΣ
n
s=1(y(ts)−xxxiβββ (ti))2+λΣ

p
j=1maxi∈[1;n]|β j(ti)|, f or j ∈ [1 : p], i∈ [1 : n], (3.11)

where |β j(ti)| is a penalty parameter at the time point ti.

3.4 Concluding Remarks

This chapter exposed the reader to different variable selection and regularization procedures. These

penalized procedures include LS-RIDGE, LS-LASSO, LS-E-NET , ALASSO, AE-NET , LARS and

a summary of a few other procedures. The RIDGE, LASSO, E-NET penalties and their adaptive

variants discussed in this chapter are used to formulate our proposed penalized WQR, adaptive

penalized QR and adaptive penalized WQR variable selection and regularization procedures (see

Chapter 4).

In Section 3.1, we gave an overview of regularization procedures in the LS scenario. The

regularization procedures discussed in detail are the LS-RIDGE in Subsection 3.1.1, the LS-LASSO

in Subsection 3.1.2 and the LS-E-NET in Subsection 3.1.3. In Section 3.2, we briefly elaborated on

the adaptive penalized procedures namely, the ALASSO and AE-NET , which we further discussed

in Subsections 3.2.1 and 3.2.2, respectively. Finally, we further reviewed the LARS method in

Section 3.3, summarizing other variable selection and penalized procedures in Section 3.4.

The extensions of LS-LASSO have huge advantages over their traditional stepwise deletion and
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subset selection counterparts. The LS-LASSO procedure outperforms its LS-RIDGE counterpart,

as it sets some coefficients to zero, as compared to LS-RIDGE, where almost all coefficients are

not zeros. If the predictor variables are too many, the choice of significant predictors is a challenge

that remains in the LS-RIDGE procedure. The LS-LASSO shows predictors with moderate-to-large

effects are more visible than in the LS-RIDGE procedure. The LS-E-NET is a hybrid procedure

that inherits the good properties of the LS-LASSO and the LS-RIDGE procedures. LARS improves

the calculation of the LS-LASSO estimates. The original quadratic program solution method was

computationally intensive until its modification by the LARS algorithm in calculating all possible

LS-LASSO estimates. Adaptive procedures are better at dealing with collinearity than the LS-

LASSO and LS-E-NET procedures. Adaptive penalized procedures perform better in the presence

of highly correlated variables in the predictor space (collinearity) than the non-adaptive ones.
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Chapter 4

Variable Selection and Regularization in

Quantile Regression

4.1 Introduction

Variable selection and regularization are very important in data analysis in the LS and QR scenar-

ios. QR estimates the conditional median QY/X(0.5) (the LAD estimator) among other conditional

quantiles (Koenker & Bassett 1978). In this chapter, we discuss existing variable selection and

regularization procedures in a QR setting. We present our proposed unweighted, weighted and

adaptive regularization QR procedures. Regularization methods discussed in Chapter 3 are ex-

tended to their penalized weighted QR (WQR), adaptive penalized QR and adaptive penalized

WQR counterparts to achieve robustness and desirable variable selection properties.

In the literature, the LASSO penalty fails to perform adequately in the presence of high leverage

points, and thus collinearity influential points, leading to the suggestion of the smoothly clipped

absolute deviation (SCAD) (Fan & Li 2001) and minimax concave penalty (MCP) (Zhang et al.
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2010) as better options. Furthermore, weight-based procedures were suggested in the literature as

remedies for high leverage points and outlier influences in regression. The doubly adaptive pe-

nalized procedure, which satisfies both sparseness and robustness properties (Karunamuni et al.

2019) and the WQR procedure, which is robust in the presence of high leverage points (Salibián-

Barrera & Wei 2008), are suggested in the literature for the LS and QR scenarios, respectively.

In this thesis, we build upon the latter idea to suggest our WQR variable selection and regular-

ization procedure, which is robust to data aberrations in both the predictor and response spaces.

In this thesis, we suggest penalized WQR procedures based on MCD based-weights with RIDGE

(Hoerl & Kennard 1970), LASSO (Tibshirani 1996) and E-NET (Zou & Hastie 2005) penalties

namely, WQR-RIDGE, WQR-LASSO and WQR-E-NET procedures. The MCD based weights

down-weigh extreme leverage points (see Chapter 2 and Subsection 4.2.1 for more details).

In the literature, ALASSO procedures have been suggested as alternatives to the LASSO proce-

dure, and these ALASSO procedures enjoy the oracle properties that guarantee optimal performance

in large samples and high dimensional data (Fan & Peng 2004), not withstanding the computational

advantage of the LASSO owing to the efficient path algorithm (Zou 2006). In the LS scenario,

Frommlet & Nuel (2016) suggested the ARIDGE procedure for variable selection with interesting

formulations of the adaptive weights, and Wu & Liu (2009) suggested an ALASSO penalized QR

(QR-ALASSO) procedure for variable selection. Zou and Zhang’s AE-NET procedure proposed

in 2009 (Zou & Zhang 2009), adaptively inherits some good properties from both the ALASSO

and ARIDGE penalty-based procedures. In this thesis, we further extend our suggested penal-

ized WQR procedures (MCD based ones) to their adaptive versions namely, the WQR-ALASSO

and WQR-AE-NET procedures. The ALASSO and AE-NET penalties are based on our proposed

adaptive weights (WQR-RIDGE based adaptive weights) (see Subsection 4.2.1). Just as in the

54



WLAD scenario (Arslan 2012), the penalized WQR procedures are robust in the X-space (predic-

tor space). LS βββ estimator used in determining adaptive weights is unsuitable in the presence of

collinearity, prompting Zou (2006) to suggest the use of the RIDGE βββ as an alternative due to its

superiority in the presence of collinearity. Although the use of these βββ estimators and correspond-

ing adaptive weights for the symmetrical distribution may be applicable to the ℓ1-estimator (RQ at

τ = 0.50), it may not be applicable at extreme quantile levels in the presence of high leverage (and

collinearity influential) points due to the presence of these atypical observations, resulting in RQ

planes frequently crossing (unequal slope parameter estimates) (see Zhao 2000, Ranganai 2007).

Therefore, we use the WQR-RIDGE estimator-based adaptive weights. To our knowledge, the

WQR-RIDGE based adaptive weights have not been applied in a QR variable selection scenario.

These suggested adaptive weights have the advantage of being robust in the presence of extreme

points and adjustable to particular distribution levels, i.e., t1, t2 distributions, etc and are applicable

at all τ RQ levels. The suggested adaptive procedures are, thus, the QR-ALASSO, QR-AE-NET ,

WQR-ALASSO and WQR-AE-NET procedures.

The rest of this chapter is summarized as presented next. Section 4.2 discusses penalized WQR

with Subsections 4.2.1, 4.2.2, 4.2.3 and 4.2.4 details the choice of MCD based weights, RIDGE

penalized WQR, LASSO penalized WQR and E-NET penalized WQR, respectively. Section 4.3 in-

troduces the adaptive regularized QR, with Subsections 4.3.1, 4.3.2 and 4.3.3 discussing adaptive

weights choice, adaptive LASSO penalized WQR and adaptive E-NET penalized WQR, respec-

tively. In Section 4.4 and Subsection 4.4.1, we discuss asymptotics for QR and asymptotics for

regularized QR, respectively. We conclude the chapter with a summary and concluding remarks in

Section 4.6.
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4.2 Penalized Weighted Quantile Regression

In this section, we discuss existing variable selection and regularization procedures (unweighted

ones) and suggest new weighted ones in a QR setting. The new regularized WQR methods are

robust in the presence of high leverage points and collinearity influential points. We discuss penal-

ized QR and suggest penalized WQR procedures with RIDGE (Hoerl & Kennard 1970), LASSO

(Tibshirani 1996) and E-NET (Zou & Hastie 2005) penalties. The robustness in the X-space is

inherited from properties of WLAD (Arslan 2012).

The proposed regularized WQR procedures are based on the MCD robust weights, ωi described

in Subsection 4.2.1. Although the unweighted penalized QR procedures are robust in the Y -space,

they are not robust in the predictor space. In this section, we extend these unweighted penalized

QR procedures to penalized WQR counterparts, which are robust in the presence of high leverage

points and collinearity influential points (high leverage points that induce or reduce collinearity).

In the LS case, robustness in the X-space is achieved by appropriately chosen weights (see also

Hubert & Rousseeuw 1997, Giloni et al. 2006). Robustness in the QR setting is achieved in a

similar fashion via WQR. Thus, the proposed regularization procedures in the WQR scenario are

namely, WQR with ridge penalty (WQR-RIDGE), WQR with LASSO penalty (WQR-LASSO) and

WQR with E-NET penalty (WQR-E-NET ).

4.2.1 Choice of Robust Weights for Weighted Quantile Regression

The hat matrix hii = xxx′′′i(((XXX
′′′XXX)))−1xxxi is a measure of leverage (see Chatterjee & Hadi 1988a). In the

literature, hii has been used as a standard tool for generating weights in weighted LS (WLS) estima-

tion. The weighting strategy is both mathematically and practically tractable. Since the estimator
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has a 1/n breakdown point, a single high leverage point has the potential to completely dominate

the resulting estimates. In addition, such weights may suffer from the masking and swamping

effects associated with the LS. Contamination in both the predictor and response variables results

in a breakdown point of the LAD estimator (hence QR) of 1/n (see Rousseeuw & Leroy 1987), as

in the LS scenario. Hubert & Rousseeuw (1997) proposed the WLAD estimator to circumvent the

undesirable effects of both outliers and high leverage points. The weights are given by

ωi = min
(

1,
p

RD(xi)2

)
, i ∈ [1 : n], (4.1)

where the estimator ωi is based on the computationally intensive high breakdown MCD method

(Rousseeuw 1985). To avoid the huge computational load associated with the MCD based weights

Giloni et al. (2006) proposed v j =
√

min j(h j/hci), where hci = xxxi(XXX ′
cXXXc)

−1xxx′i is the ith leverage

point relative to the clean subset XXXc (XXX without high leverage points). This thesis uses the robust

MCD distance RD(x j) because of an improvement in computer power (efficient algorithms) and

its robustness in generalizing the Arslan (2012) WLAD concept to all regression quantiles (RQs).

Based on the MCD based weighting construction in Equation 4.1, we suggest a WQR estimator.

The WQR estimator is given the minimization problem

β̂ββ
W
(τ) = argminβββ∈RpΣ

n
i=1ωiρτ |yi − xxx′iβββ (τ)|, i ∈ [1 : n], (4.2)

where the terms are defined as in Equation (1.2) and Equation (4.1). The MCD based weights

down-weigh high leverage points, hence collinearity influential points, thereby reducing their in-

fluence on parameter estimates and achieving robustness. By using these robust weights, we pro-
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pose regularized WQR procedures based on the RIDGE, LASSO and E-NET penalties namely, the

WQR-RIDGE, WQR-LASSO and WQR-E-NET . More details are given in the next few subsec-

tions.

4.2.2 Weighted Quantile Regression with a Ridge Penalty

An extensive review of variable selection and regularization in the presence of collinearity has

been discussed in Chapter 3. In the presence of outliers (heavy tailed distributions), LS procedures

fall short due to large sample variances, and QR was suggested as an alternative. To mitigate the

negative effects of collinearity influential points, Suhail et al. (2019) proposed robust quantile-

based RIDGE and RIDGE M-estimators. They further suggested a new ridge-based QR estimator

that chooses an appropriate quantile level to deal with severe collinearity and high error variances

(see Suhail et al. 2020) .

Consider the extension of the QR procedure in Equation (1.2) (Koenker & Basset 1978) by

adding the penalty term of the RIDGE regression Equation (3.1) (Hoerl & Kennard 1970). We

have a RIDGE penalized QR denoted by QR-RIDGE. The QR-RIDGE procedure is given by the

minimization problem

β̂ββ
R
(τ) = argminβββ∈RpΣ

n
i=1ρτ |yi − xxx′iβββ (τ)|+λΣ

p
j=1β

2
j , j ∈ [1 : p], i ∈ [1 : n], (4.3)

where λ is a positive ridge tuning parameter in the range λ ∈ (0,1), and other terms are as defined

in Section 3.2. Many variations of λ have been proposed in the literature (see Hoerl & Kennard

1970, Hoerl et al. 1975, Lawless & Wang 1976, Hocking et al. 1976, Kibria 2003, Khalaf & Shukur

2005).
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Based on the weights ωi in Equation (4.1), we propose a WQR variable selection and regu-

larization procedure with a RIDGE-penalty. The predictor space robustness property is achieved

by the incorporated MCD weights. The RIDGE penalized WQR (WQR-RIDGE) estimator of βββ is

given by the minimization problem

β̂ββ
WR

(τ) = argminβββ∈RpΣ
n
i=1ωiρτ |yi − xxx′iβββ (τ)|+λΣ

p
j=1β

2
j , j ∈ [1 : p], i ∈ [1 : n], (4.4)

where the terms are already defined. The tuning parameter shrinks coefficients of predictor vari-

ables but not entirely to zero. The procedure is robust in the presence of collinearity influential

points, high leverage points and thick tailed distributions.

4.2.3 Weighted Quantile Regression with LASSO Penalty

Consider the QR procedure with an ℓ1-penalty (LASSO-penalty (Tibshirani 1996)). The LASSO

penalized QR (QR-LASSO) procedure is given by the minimization problem

β̂ββ
L
(τ) = argminβββ∈RpΣ

n
i=1ρτ |yi − xxx′iβββ (τ)|+nλΣ

p
j=1|β j|, j ∈ [1 : p], i ∈ [1 : n], (4.5)

where λ is the tuning parameter that shrinks some coefficients towards zero; the second term is the

penalty term, and other terms are as defined in Equations (1.1), (3.2) and (4.1). The QR-LASSO

procedure may be superior to the QR-RIDGE procedure, since coefficients are not entirely shrunk

to zero in the latter procedure.

In the literature, weights have been used in a QR scenario by Jiang et al. (2012) in a procedure

called the weighted composite QR (WCQR), with LASSO-penalty (WCQR-LASSO) for nonlinear
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regression models with many parameters. Because the Jiang et al. (2012) weighting strategy does

not down-weigh high leverage points, we suggest the MCD-based weights instead (see the appli-

cation in Arslan 2012). In this section, we suggest a LASSO-regularized WQR (WQR-LASSO)

procedure based on the weights ωi (see Equation (4.1)). The WQR-LASSO procedure is given by

the minimization problem

β̂ββ
WL

(τ) = argmin
β̃∈RpΣ

n
i=1ωiρτ |yi − xxx′iβββ (τ)|+nλΣ

p
j=1|β j|, j ∈ [1 : p], i ∈ [1 : n], (4.6)

where the tuning parameter λ is as defined in Equation 4.5. In addition to being robust in the

response space, i.e., heavy-tailed distribution (like WCQR-LASSO), WQR-LASSO is robust in the

predictor space (high leverage points and collinearity influential points).

4.2.4 Weighted Quantile Regression with Elastic Net Penalty

In this section, we present the E-NET penalized QR procedure (QR-E-NET ), a QR version of the

Zou & Hastie (2005) E-NET procedure and our suggested unregularized and regularized versions

of it. The QR-E-NET is best suitable for applications with unidentified groups of predictors (see

Zou & Hastie 2005, Su & Wang 2021). The E-NET penalized QR (QR-E-NET ) procedure given

is by

β̂ββ
EN

(τ) = argminβββ∈RpΣ
n
i=1ρτ |yi−xxx′iβββ (τ)|+αλΣ

p
j=1|β j|+(1−α)λΣ

p
j=1β

2
j , j ∈ [1 : p], i∈ [1 : n],

(4.7)

where 0 ≤ α ≤ 1 is the tuning parameter, and the other terms are as defined in previous sections.

Special cases of QR-E-NET are QR-RIDGE (α = 0) and QR-LASSO (α = 1). Ordinarily, the

60



E-NET procedure performs better than its RIDGE and LASSO procedures in some situations (see

also Zou & Hastie 2005, for the LS scenario). The procedure is adversely influenced by high

leverage points hence collinearity influential points.

We propose WQR variable selection and regularization procedure denoted by WQR-E-NET

as a remedy to collinearity influential points (see also Salibián-Barrera & Wei 2008). We apply

the weighting scheme ωi discussed in Section 4.1 to our new proposed method. This procedure

is a generalization of the WLAD (Arslan 2012) procedure to the QR scenario. The WQR-E-NET

procedure has both the LASSO and RIDGE penalties. The suggested WQR-E-NET estimator is a

solution to the minimization problem

β̂ββ
WEN

(τ)= argmin
β̃∈RpΣ

n
i=1ωiρτ |yi−xxx′iβββ (τ)|+αλΣ

p
j=1|β j|+(1−α)λ Σ

p
j=1β

2
j , j ∈ [1 : p], i∈ [1 : n],

(4.8)

where α is the mixing parameter. Other terms are defined in previous sections. WQR-RIDGE and

WQR-LASSO are special cases when α = 0 and α = 1, respectively.

4.3 Adaptive Regularized Quantile Regression

In this section, we discuss existing and suggested adaptive regularized QR procedures. We pro-

pose penalized QR procedures with ALASSO and AE-NET penalties. The ALASSO and AE-NET

penalties are based on the proposed adaptive weights (WQR-RIDGE based weights) (see Section

4.3.1). The penalized weighted QR procedures inherit X-space robustness property from the use

of the WLAD procedure in the generalization to the QR scenario.

We suggest adaptive weights ω̌ j, based on the WQR-RIDGE (denoted by WQRR in adap-
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tive weights formula) parameter estimates (see Section 4.2). The WQR-RIDGE parameter based

weights have the advantage of being specific to a particular RQ in contrast to the global LS-

RIDGE one. We use these suggested robust adaptive weights ω̌ j to propose new adaptive variable

selection and regularization procedures in the QR and WQR scenarios. The adaptive penalized

QR procedures are adaptive QR with LASSO penalty (QR-ALASSO), adaptive QR with E-NET

penalty (QR-AE-NET ), adaptive WQR with LASSO penalty (WQR-ALASSO) and adaptive WQR,

with an E-NET penalty (WQR-AE-NET ). The collinearity adverse effects are remedied through

the adaptive QR procedures, a property inherited from the LS counterparts. The adverse effects of

collinearity influential points and high leverage points are also remedied by the proposed proce-

dures.

4.3.1 Choice of Adaptive Weights for Regularized Quantile regression

The bridge penalty Σ
p
j=1|β̂ j|q (Fu 1998) is a generalized penalty for most penalized procedures. For

adaptive weights, ω js, the adaptive penalty is given by Σ
p
j=1ω j|β̂ j|q. Special cases of the adaptive

bridge penalty are the ALASSO (q = 1) and ARIDGE (q = 2) penalties. In the literature, RIDGE

βββ (solution to Equation 3.1) is used instead of the LS βββ in the presence of collinearity (Zou 2006).

Consider the MCD based weights, ωis and construct a robust weighted RIDGE regression

(WRR) estimator

β̂ββ
WR

= argminβββ∈RpΣ
n
i=1ωi(yi − xxx′iβββ )

2 +λΣ
p
j=1β

2
j , j ∈ [1 : p], i ∈ [1 : n], (4.9)

where λ (λ > 0) is a ridge parameter in the range λ ∈ (0,1) and other terms are explained in

Equation (3.1). The WRR procedure inherits its ability to deal with collinearity from the Hoerl
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& Kennard (1970) LS-RIDGE regression. Although this procedure is robust in the presence of

collinearity, it fails to optimally shrink coefficient estimates, which might not be feasible. We

suggest β̂WR
j based adaptive weights taking advantage of its robustness in the predictor space. The

adaptive weights have the same construction as that of the Zou & Zhang (2009) E-NET adaptive

weights. We present the β̂WR
j based adaptive weights as

ω̃ j =
(∣∣∣β̂WR

j

∣∣∣+1/n
)−1

, (4.10)

where β̂WRR j (see Equation (4.9)) is jth element of parameter vector estimate β̂WR
j and 1/n is

added to avoid dividing by a near zero value. These adaptive weights can be seen as a special

case of Frommlet & Nuel (2016)’s adaptive weight
(∣∣∣β̂WR

j

∣∣∣γ +δ γ

)(ϑ−2)/γ

when ϑ = 1, δ = 1/n

and γ = 1. The adaptive weights are data-dependent and have the advantage of being robust in the

presence of high leverage points. Equation (4.10) reduces to ω j =
(∣∣∣β̂ R

j

∣∣∣+1/n
)−1

when ωi = 1

(the unweighted RR scenario).

The robust weight, ω̃ j may be suitable for the symmetric distribution rather than asymmetric

ones at extreme quantile levels in the presence of collinearity influential points (high leverage

points). Rather than using the β̂WR
j based adaptive weights, we propose a β̂WR

j (τ) (see Equation

(4.4)) based one (WQR-RIDGE estimator of βββ ). The weights have the same construction as that

of Zou & Zhang (2009)’s E-NET adaptive weights. Consider the new QR based adaptive weights

ω̌ j (see a similar construction in Frommlet & Nuel 2016) as

ω̌ j =
(∣∣∣β̂WR

j (τ)
∣∣∣+1/n

)−γ

, (4.11)
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where β̂WR
j (τ) is jth parameter estimate of a WQR-RIDGE estimator at τ quantile level (see

Equation (4.4)). The advantage of these adaptive weights, ω̌ j is that they are different at each

τ quantile level. The weights, ω̌ j are robust, and we use them in the proposed adaptive QR proce-

dures in Subsections 4.3.2 and 4.3.3.

4.3.2 Weighted Quantile Regression with an Adaptive LASSO Penalty

We suggest adaptive LASSO penalized QR and WQR procedures denoted by QR-ALASSO and

WQR-ALASSO, respectively, as a remedy to data aberrations in the X-space (see also Zou 2006, for

the LS adaptive version). The QR-ALASSO procedure penalizes predictor variable coefficients at

different quantile levels using the β̂WR
j (τ) based adaptive weights, ω̌ j. The QR-ALASSO procedure

is an extension of LASSO penalty based one that performs better. The QR-ALASSO procedure is

given by the minimization problem

β̂ββ
AL
(τ) = argminβββ∈RpΣ

n
i=1ρτ |yi − xxx′iβββ (τ)|+λnΣ

p
j=1ω̌ j|β j|, f or j ∈ [1 : p], i ∈ [1 : n], (4.12)

where ω̌ j is the adaptive weight and the tuning parameter λ j = λω̌ j (instead of ω̃ j = 1/|β̃ j|γ ,

for γ > 0). Other terms are as defined in previous sections. This procedure shrinks predictor

coefficients to zero differently, as the tuning parameter is no-longer constant (λ ) but varying (λ j)

for j ∈ [1 : p]. The asymptotic properties and conditions of the QR-ALASSO are the same as those

of the QR-LASSO. The QR-ALASSO procedure is
√

n-consistent.

The robust MCD weights, ωi and adaptive weights, ω̌ j are used to formulate the WQR-ALASSO

variable selection procedure, which is an extension of QR-LASSO. The procedure inherits some

properties of WLAD-LASSO, such as robustness in the presence of high leverage points (and
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collinearity influential points) due to robustly chosen MCD based weights, as in WQR (Giloni et al.

2006, Ranganai 2007). The WQR-ALASSO estimator is a solution to the minimization problem

β̂ββ
WAL

(τ) = argminβββ∈RpΣ
n
i=1ωiρτ |yi − xxx′iβββ (τ)|+Σ

p
j=1λ jω̌ j|β j|, f or j ∈ [1 : p], i ∈ [1 : n], (4.13)

where terms are as defined in previous sections. The WQR-ALASSO procedure is robust in

the predictor and response spaces. Its robustness in the presence of high leverage points and

collinearity influential points is a property inherited from the ALASSO case and the the robust

MCD based weights.

4.3.3 Weighted Quantile Regression with an Adaptive Elastic Net Penalty

Zou & Zhang (2009) suggested the adaptive E-NET (AE-NET ) procedure that inherits some good

properties from both ALASSO and ARIDGE penalty based procedures. Based on the adaptive

weights, ω̌ j we propose the adaptive E-NET QR (QR-AE-NET ) procedure. The QR-AE-NET

estimator of βββ is a solution to the minimization problem

β̂ββ
AE

(τ)= argminβββ∈RpΣ
n
i=1ρτ |yi−xxx′iβββ (τ)|+αλΣ

p
j=1ω̌ j|β j|+(1−α)λΣ

p
j=1ω̌ jβ

2
j , j ∈ [1 : p], i∈ [1 : n],

(4.14)

where the double penalty function αΣ
p
j=2λ jω̃ j|β j|+(1−α)Σp

j=1λ jω̃ jβ
2
j is free to swing from the

α = 0 (ARIDGE penalty) to the other extreme when α = 1 (ALASSO penalty) controlled by the

mixing parameter α ∈ [0,1]. In this thesis, we use α = 0.50 for the QR-AE-NET scenario.

Lastly, using the adaptive weights ω̌ j and the MCD based weights, ωi, we propose a weighted

version of QR-AE-NET (WQR-AE-NET ). The WQR-AE-NET procedure is given by the mini-
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mization problem

β̂ββ
WAE

(τ)= argminβββ∈RpΣ
n
i=1ωiρτ |yi−xxx′iβββ (τ)|+αλΣ

p
j=1ω̌ j|β j|+(1−α)λΣ

p
j=1ω̌ jβ

2
j , j ∈ [1 : p], i∈ [1 : n],

(4.15)

where the terms are as defined in previous sections. The mixing parameter α ∈ [0,1] results in

WQR-ARIDGE(α = 0) and WQR-ALASSO(α = 1) as special cases of the WQR-E-NET construc-

tion. Just like its unweighted penalized QR counterpart, WQR-AE-NET inherits desired optimal

minimax bound from ALASSO (Zou 2006). The WQR-AE-NET variable selection and regulariza-

tion procedure is robust in the presence of outliers, collinearity and collinearity influential points

(high leverage points).

4.4 Asymptotics for Quantile Regression

The behavior of the model estimates and inferences in large samples can be understood using the

asymptotic theory (large sample theory) of QR analysis. Koenker & Bassett (1978), in one of their

seminal papers on the asymptotic theory of QR, showed the consistency and asymptotic normality

of the QR estimator under mild conditions. Other authors have since considered asymptotics,

namely Kato et al. (2012) in panel quantile regression models and Galvao et al. (2020) on the

asymptotic normality of quantile regression with fixed effects, just to mention a few.

Although RQs can be represented clearly in a finite sample distribution, there are challenges

computationally and assumptions considerations hence the need for asymptotic distributions in QR.

In the literature, local linearization and central limit theorem approximation methods are important

statistical inference tools, although they are said to be necessary compromises. In the asymptotic
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scenario, the adequacy of asymptotic approximations is evaluated by higher expansions and resam-

pling methods aided by Monte Carlo simulations. This asymptotic theory imposes the necessary

discipline and consistency in the formulation of statistical procedures. Heteroscedasticity and other

non-location shift covariate properties in regression cause inconsistencies in which conditional

quantile functions proffer a straight-forwardly interpretable objective for statistical analysis.

Consistency is a minimal prerequisite for QR to work, therefore, we briefly discuss it. Given

X = x, the τ th conditional quantile function of Y takes the form QY |X(τ) = g(x,β (τ)) for the non-

linear QR case and QY |X(τ) = xxx′βββ (τ) for the linear QR case (Koenker et al. 2018).

If we start from a random sample (y1,y2, ...,yn), which is F distributed, the necessary condi-

tions for the univariate sample quantile β̂n(τ) = arg minβ∈RΣn
i=1ρτ(yi −β ) imply that β̂n(τ) →

β (τ) as n→∞. This works when we have a unique τ th quantile, β (τ)=F−1(τ) and that
√

n(β̂n(τ)−

β (τ))→ N(0;ω2), where ω2 = τ(1−τ)
f 2(F−1(τ))

and F has density f (F−1(τ)) bounded away from 0 and

∞ near τ .

In addition to the consistency of estimators, we consider convergence. It is prudent to consider

how rapidly convergence occurs. Let us say Y1,Y2, ...,Yn are iid random variables such that Y1 ∼

F1,Y2 ∼ F2, ...,Yn ∼ Fn, where F is a distribution function. In the linear QR scenario, the τ th

conditional quantile function of Yis given Xis is given by QYi|Xi(τ) = F−1
Yi|Xi

(τ) ≡ xxx′iβββ (τ) where

P(Yi < y|xi) = FYi|Xi(y) = Fi(y). We discuss the asymptotic behavior of the estimator, β̂ββ n(τ) =

arg minβ∈RpΣρτ(yi − xxx′iβββ ) using regularity conditions (1) and (2):

(1) {Fi} is absolutely continuous. Also, the continuous density, fi(β ), is uniformly bounded away

from zero and ∞ at the points βββ i(τ), i = 1,2, ...
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(2) There exists positive definite matrices DDD0 and DDD1(τ):

(a) limn→∞

Σxix′i
n

= DDD0

(b) limn→∞

Σ fi(βββ i(τ))xxxixxx′i
n

= DDD1(τ)

(c) maxi=1,2,...,n
||xxxi||√

n
→ 0

We let matrix DDD =

DDD2 DDD1

DDD1 DDD0

= limn→∞Σn
i=1

 f 2
i fi

fi 1

⊗xxxixxx′i, where
⊗

is the Kronecker prod-

uct. Since DDD2 is positive definite, ∃ orthogonal matrix PPP : PPP′DDDPPP=

DDD2 000

000 DDD2 −DDD′
1DDD−1

2 DDD1

 so that

we have DDD2 −DDD′
1DDD−1

2 DDD1 and DDD−1
1 DDD2DDD−1

1 −DDD−1
2 being non-negative. Koenker (2005) concludes

that if conditions 1 and 2 are met, then
√

n(β̂ββ n(τ)− βββ (τ)) converges asymptotically in limit to

N(000;τ(1−τ)DDD−1
1 DDD0DDD−1

1 ). In the iid noise model with fi(xxx′iβββ (τ)) = f (βββ (τ)),
√

n(β̂ββ n(τ)−βββ (τ))

converges asymptotically in limit to N(000;ω2DDD−1
0 ), where ω2 = τ(1−τ)

f 2(βββ (τ))
, DDD1 = limn→∞Σn

i=1 fixxxixxx′i and DDD0 =

limn→∞Σn
i=1xxxixxx′i.

The efficiency of heterogeneous conditional densities of the response variable can be improved

by considering the WQR. The parameter estimator is given by β̌ββ n(τ)= argminβββ∈RpΣn
i=1 fi(xxx′iβββ )ρτ(yi−

xxx′iβββ ). In this scenario under conditions 1 and 2,
√

n(β̌ββ n(τ)−βββ (τ)) converges asymptotically in

limit to N(000;τ(1− τ)DDD−1
2 (τ)), where DDD2(τ) = limn→∞

Σ f 2(βββ (τ))xxxixxx′i
n (Koenker 2005).

Given that the conditional quantile model QYi|Xi(τ) = g(xi,β0(τ)), that is non-linear in param-

eters, the non-linear QR estimator is then given by β̂ββ n(τ) = arg minβββ∈RpΣn
i=1ρτ(yi −g(xxx′i,βββ )) for

βββ ∈ Rp. Here we state the regularity conditions for the non-linear case as follows:
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(1) There exists constants k0,k1, n0 and parameters βββ 1,βββ 2 ∈ βββ and n > n0 we have k0||βββ 1−βββ 2|| ≤(
Σn

i=1(g(xi−β1)−g(xi,β2))
2

n

) 1
2 ≤ k1||βββ 1 −βββ 2||.

(2) There exists positive definite matrices DDD0 and DDD1(τ) : ġi =
∂g(xxxi,βββ )

∂βββ |βββ=βββ 0
where ġi is the derivative

of gi.

(a) limn→∞

Σġggiġgg
′
i

n
= DDD0

(b) limn→∞

Σ fi(βββ i(τ))ġggiġgg
′
i

n
= DDD1(τ)

(c) maxi=1,2,...,n
||ġggi||√

n
→ 0

Condition (1) guarantees a unique minimum of the objective function at β0, as in Jureckova &

Procházka (1994). Condition (2) is important in determining the behavior of the conditional den-

sity of the response variable around the conditional quantile model. Similarly, under conditions (1)

and (2),
√

n(β̂ββ n(τ)−βββ 0(τ)) converges asymptotically in limit to N(000;τ(1−τ)DDD−1
1 DDD0DDD−1

1 ), where

DDD1(τ) = limn→∞

Σ f (βββ (τ))xxxixxx′i
n , DDD0(τ) = limn→∞

Σxxxixxx′i
n ,

√
n(β̂ββ n(τ)− βββ 0(τ)) =

DDD−1
1 (τ)Σn

i=1ġiψτ (ui(τ))
n +

op(1) and ui(τ) = yi −g(xxxi,βββ 0(τ)).

4.4.1 Asymptotics for Regularized Quantile Regression

For the penalized QR scenario, we consider P(εi)< 0 for the linear model and βββ = (βββ s,βββ p−s)
′ for

a regression equation with a partitioned design matrix, where βββ s ̸= 0 and βββ p−s = 0.

We assume the following theoretical results to be true for asymptotic normality for a suitable

choice of λn, as stated in Wu & Liu (2009). The two conditions are, thus:

(i) The regression errors εis, are i.i.d., τ th quantile Qτ = 0 and a continuous, positive density

f (.) in a neighborhood of origin zero and F distributed (Pollard 1991). NOTE: F(0) = τ and
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| f (y)− f (0)| ≤ c|y|1/2, ∀y in the neighborhood of 0 and real quantile τ ∈ (0,1).

(ii) Let ΩΩΩ = diag(ω1,ω2, ...,ωn), where ωi for i ∈ [1 : n] are known positive values that satisfy

max{ωi}= O(1).

(iii) Consider the partitioned design matrix XXX = (XXX s,XXX p−s)
′, such that there exists a positive def-

inite covariance matrix ∑∑∑, where ∑∑∑ = limn→∞XXX∗′XXX∗/n. We can write the covariance sub-matrix

ΣΣΣ11 =
1
nXXX ′

sXXX s and the other covariance sub-matrix ΣΣΣ22 =
1
nXXX ′

p−sXXX p−s for Rs and Rp−s, respectively.

Let the solution to a regularization procedure (RP) be βββ
RP. For i.i.d. random error terms, we

state a theorem for asymptotic oracle property in Theorem 4.4.1 (see Wu & Liu 2009, Ranganai &

Mudhombo 2021, Mudhombo & Ranganai 2022).

Theorem 4.4.1. Consider a sample {(xxxi,yi), i= 1, ...,n} from a regularization procedure satisfying

conditions (i), (iii) and ΩΩΩ = IIIn (constant weight of 1). If
√

nλn → 0 and n(γ+1)/2λn → ∞, then

1. We have sparsity when β̂ββ
RP
p−s = 000, where RP denotes the regularization procedure;

2.
√

n(β̂ββ
RP
s −βββ

RP
s ) approximates a N

(
000, τ(1−τ)∑∑∑

−1
11

f (0)2

)
.

To extend the oracle results to a non i.i.d. random error scenario, we consider the following

assumptions.

(iv) As n → ∞, maxi<i<n{xxx′ixxxi/n}→ 0.

(v) The random errors εis are independent with Fi(t) = P(εi ≤ t) the distribution function of εi.

We assume that each fi(.) is locally linear near zero (with a positive slope), and Fi(0) = τ . Define

Ψni(t) =
∫ t

0
√

n(Fi(s/
√

n)−Fi(0))ds. which is a convex function for each n and i.

(vi) For each uuu, we assume that (1/n)∑
n
i=1 Ψni(uuu′xxx)→ ς(uuu), where ς(...) is a strictly convex func-

tion taking values in [0,∞).
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Corollary 4.4.1.1. Under Conditions (ii), (iii) and (iv), Theorem 4.4.1 holds provided the non

i.i.d. random errors satisfy (v) and (vi) (see also Knight 1999).

Remarks.

• The QR model, a non i.i.d. random error model is catered for by (v) (Koenker 2005). See proofs

on-line (Wu & Liu 2009).

Some asymptotics are not considered in this study. These include asymptotics under dependent

conditions, such as autoregression, ARMA models, ARCH-like models and extremal QR.

4.5 Concluding Remarks

This chapter explored and proposed different types of penalized QR and WQR variable selection

procedures. In Section 4.2, we proposed penalized WQR procedures. We first discussed the choice

of robust weights ωi based on the computationally intensive high breakdown MCD method in Sub-

section 4.2.1. In Subsections 4.2.2, 4.2.3 and 4.2.4, we suggested the ωi based WQR procedures

namely, WQR-RIDGE, WQR-LASSO and WQR-E-NET procedures, respectively. The new pe-

nalized WQR procedures are robust in the X and Y -spaces (an inherited property from WLAD).

We further suggested adaptive penalized QR procedures in Section 4.3 by first suggesting adaptive

weights ω̌ j based on β̂WR
j (τ) in Subsection 4.3.1. Using the adaptive weights suggested in Sub-

section 4.3.1, we further suggested weighted and unweighted adaptive penalized QR procedures

namely, QR-ALASSO and WQR-ALASSO in Subsection 4.3.2 and QR-AE-NET and WQR-AE-

NET in Subsection 4.3.3. Because of the carefully chosen adaptive weights ω̌ j, the proposed
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adaptive penalized WQR procedures are robust in the presence of collinearity and high leverage

points. In Section 4.4, we discussed asymptotics for penalized QR procedures.
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Chapter 5

Simulation Studies and Application to

Well-known Data from the Literature

In this chapter, we perform simulation studies to investigate the finite sample performance of reg-

ularized QR and WQR procedures. The simulation studies are divided into four categories:

(i) a comparison of regularized QR procedures QR-LASSO, QR-RIDGE and QR-E-NET against

their respective weighted versions WQR-LASSO, WQR-RIDGE and WQR-E-NET .

(ii) a comparison of non-adaptive penalized QR procedures QR-LASSO and QR-E-NET against

their respective adaptive versions QR-ALASSO and QR-AE-NET .

(iii) a comparison of unweighted adaptive penalized QR procedures QR-ALASSO and QR-AE-

NET against their respective weighted adaptive versions WQR-ALASSO and WQR-AE-NET ,

and

(iv) an "omnibus" comparison of all penalized procedures.

The robust weights for WQR procedures are based on MCD based robust distances, and the adap-

tive weights for adaptive penalized QR procedures are based on the β̂WR
j (τ) estimates.
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5.1 Simulation Studies Design

The results of the simulation studies are summarized in terms of the average number of cor-

rectly/incorrectly fitted zero coefficients {β j : j = 3,4,6,7,8} (From βββ = (3,1.5,0,0,2,0,0,0)′

used in this thesis as the true βββ , zeros in positions 3,4,6,7,8 are referred to as correctly fitted

zeros if estimated as zero and incorrectly as otherwise.), percentage of correctly fitted models and

the MAD of test errors (a measure of dispersion). When we consider the median of test errors

Median{εi}, the MAD of test errors is given by MAD = 1.4826(Median{εi}−Median{εi}) , i ∈

[1 : n]. All simulations are applied at τ ∈ (0.25;0.50) RQ levels and n ∈ (50;100) sample sizes.

For brevity, the results for n = 100 are left out.

We consider the predictor design matrices with six X-space data aberrations comprising high

leverage points, collinearity influential points and collinearity coupled with different error term

distributions (D1-D6). The error term distributions comprise the normal distribution with varying

tail thickness determined by the error variance and the t-distribution with different tail thickness

determined by the different degrees of freedom. We consider six design matrix scenarios and con-

structed the first five as in Ranganai et al. (2014) while the sixth one as in Arslan (2012) namely:

• D1: From N(0,1), generate and orthogonalize an n× p design matrix XXX . The orthogonal design

matrix XXX satisfies the condition, XXX ′XXX = nIII. We first generate the n× p data, WWW , where wi j ∼N(0,1)

with i ∈ [1 : n] and j ∈ [1 : p]. The singular value decomposition (SV D) of this design matrix WWW is

given by WWW =UUUDDDVVV , where UUU and VVV are orthogonal with the diagonal entries of DDD corresponding

to the eigenvalues of WWW so that XXX =
√

nUUU . Then XXX ′XXX = nIII, since UUU is orthogonal.

• D2-has collinearity inducing point, i.e., D1, with observation having the largest Euclidean dis-

tance from the center of the design space moved 10 units in the predictor space.
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• D3-has collinearity hiding point, i.e., D1, with observations having the largest and second largest

Euclidean distance from the center of the design space moved 10 units in the predictor space.

• D4-has collinearity inducing point, i.e., D1, with observation having the largest Euclidean dis-

tance from the center of the design space moved 100 units in the predictor space.

• D5-the collinearity hiding point scenario, i.e, D1, with observations having the largest and sec-

ond largest Euclidean distance from the center of the design space moved 100 units in the predictor

space.

• D6-the heavy tailed distribution scenario (contaminated t-distribution design scenario), with

10% contaminated cases. The design matrix is the partitioned matrix XXX = (XXX ′
1,XXX

′
2)

′, where

XXX1 ∼ N(µµµ1,VVV ), XXX1 ∈ R(n−m)×p, XXX2 ∼ N(µµµ2, III) and XXX2 ∈ Rm×p for n = (50;100) and m = (5;10).

XXX1 and XXX2 are the uncontaminated and contaminated parts of XXX , respectively. The (i j)th entry of

the covariance matrix VVV (vi j) is determined by the exponential decay 0.5| j−i|, where i ∈ [1 : 8] and

j ∈ [1 : 8] are rows and columns of VVV , respectively. The covariance matrix III, is a diagonal matrix

of ones, and the mean vectors are given by µµµ111 = (0,0,0,0,0,0,0,0)′ and µµµ222 = (1,1,1,1,1,1,1,1)′

(see Arslan 2012, for similar construction). The collinearity in D6 is due to the covariance struc-

ture, VVV , and the mean shift in XXX2 introduces high leverage points to the design matrix.

The error term distributions considered are e ∼ N(µ,σ2), for (µ,σ)∈ ((0;1),(0;3)) and e ∼ td

for d ∈ (1;6). The response vector YYY = (YYY ′
1,YYY

′
2)

′ is generated as in Arslan (2012), i.e.,

• YYY 1 = XXX ′
1βββ 1 +σeee, eee ∼ N(0,σ2), σ ∈ (1;3) and YYY 2 = XXX ′

2βββ 2 for D1-D5.

• YYY 1 = XXX ′
1βββ 1 +σeee, eee ∼ td , d ∈ (1;6), σ ∈ (0.5;1) and YYY 2 = XXX ′

2βββ 2 for D6.

In all the cases, βββ 1 = (3,1.5,0,0,2,0,0,0)′ and βββ 2 = (2,1,0,3,1.5,0,1,0)′.

Remarks. The design matrix, D1, is used as baseline for comparisons with D2-D6 scenarios.
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Figure 5.1 depicts a schematic representation of collinearity influential points for design sce-

narios D2-D5. The row panels 1 and 3 show the collinearity inducing cases in D2 and D4, and row

panels 2 and 4 show the collinearity reducing cases in D3 and D5. One extreme leverage point in

the collinearity inducing scenario has an undue influence on the rest of the data. However, adding

another high leverage point (scenarios D3 and D5) reduces the influence of the first extreme lever-

age point. As points move further away from rest of data (e.g., predictor value (observation) 10xxx′i

to predictor value (observation) 100xxx′i), the collinearity-inducing and hiding effects increase.

A schematic representation of collinearity in the D1-D5 design scenarios induced or reduced

by high leverage points is shown in Table 5.1. The baseline scenario, D1, shows no collinearity

among explanatory variables (ri j → 0). Collinearity (correlations in predictor variables) increase as

the leverage point moves away from the baseline scenario (D1 to any of D2 to D5). We also notice

a shift in signs from the baseline D1 to the D3/D5 scenarios. The introduction of a high leverage

point (collinearity inducing point) in D2 saw collinearity increasing among predictor variables, as

in Mason & Gunst (1985).

Remarks. D2 and D4 have high leverage points that induce collinearity. D3 and D5 have high

leverage points that hide collinearity. D6 contains collinearity as well as high leverage points.

Collinearity increases as the leverage points move further away from the rest of the data (D1 to

any of D2- D5). Collinearity can be hidden by another extreme leverage point (D3 and D5).
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Figure 5.1: Collinearity inducing points (D2, D4) and Collinearity hiding points (D3, D5) with ith

and/or jth high leverage value(s)
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Table 5.1: Collinearity depicted by correlation matrices of predictor variables. D1-Orthogonal
(baseline), D2/D4-with collinearity inducing points and D3/D5-with collinearity hiding points.

D1 D2 D4
X1 X2 X3 X4 X5 X6 X7 X8 X1 X2 X3 X4 X5 X6 X7 X8 X1 X2 X3 X4 X5 X6 X7 X8

X1 1.00 0.00 0.01 0.00 0.02 -0.03 0.00 0.01 1.00 0.80 0.59 0.55 0.48 0.73 -0.67 0.71 1.00 1.00 0.99 0.99 0.99 1.00 -1.00 1.00
X2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.70 0.66 0.55 0.87 -0.79 0.84 1.00 0.99 0.99 0.99 1.00 -1.00 1.00
X3 1.00 0.00 -0.01 0.01 0.00 0.00 1.00 0.48 0.40 0.64 -0.58 0.61 1.00 0.99 0.98 0.99 -0.99 0.99
X4 1.00 0.00 -0.01 0.00 0.00 1.00 0.38 0.60 -0.54 0.58 1.00 0.98 0.99 -0.99 0.99
X5 1.00 0.03 0.00 -0.01 1.00 0.52 -0.46 0.49 1.00 0.99 -0.99 0.99
X6 1.00 0.01 0.01 1.00 -0.72 0.77 1.00 -1.00 1.00
X7 1.00 0.00 1.00 -0.70 1.00 -1.00
X8 1.00 1.00 1.00

D3 D5
X1 1.00 -0.42 0.85 0.80 -0.66 0.10 -0.88 -0.74 1.00 -0.48 0.97 0.97 -0.86 0.14 -1.00 -0.96
X2 1.00 -0.23 -0.59 -0.03 -0.83 0.41 0.60 1.00 -0.24 -0.66 -0.02 -0.93 0.43 0.71
X3 1.00 0.79 -0.79 -0.11 -0.93 -0.71 1.00 0.89 -0.96 -0.12 -0.98 -0.85
X4 1.00 -0.57 0.29 -0.86 -0.79 1.00 -0.73 0.35 -0.96 -0.99
X5 1.00 0.31 0.74 0.49 1.00 0.38 0.89 0.68
X6 1.00 -0.06 -0.32 1.00 -0.08 -0.42
X7 1.00 0.79 1.00 0.94
X8 1.00 1.00

The simulated data is split into the training set for model construction and the validation set for

model validation in the ratio 80 : 20 (see Section 2.1). We split the data at random to guarantee the

two parts have the same distribution. We use the 10-fold cross validation (10- f old CV ) criterion

to choose an optimal tuning parameter (λ ) to achieve the best overall prediction (see also Shao

1993). The tuning parameter value is intimately linked to the accuracy of the predictions made by

the models. The penalized QR variable selection procedures’ performances are found by averaging

the errors across different test sets of the data (see Section 2.1). We select the best variable selection

and model estimation procedure with the best predictive ability among a class of penalized QR

procedures. Cross validation methods select penalized QR procedures according to the procedure’s

predictive ability. A CV criterion is asymptotically equivalent to many model selection procedures

namely, AIC, BIC, Cp, etc.

In this thesis, we explore the penalized QR and WQR procedures using the hqreg package,

which is a readily available R-software program on the website http://cloud.r-project.org/package=hqreg

(see Yi 2017). The hqreg package implements the semi-smooth Newton coordinate descent algo-

rithm that chooses optimal λ when selecting the best procedure. We perform 10-fold cross val-
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idation for the regularization and variable selection using cv.hqreg(XXX ,yyy, ...) and fit the model by

hqreg(XXX ,yyy, ...) (see Yi 2017, for the detailed R codes).

In the next sections, we present results of simulation studies on the performance of the vari-

able selection and regularized QR and WQR procedures (non-adaptive and adaptive penalized

procedures). These penalized QR and WQR procedures are QR-RIDGE, QR-LASSO, QR-E-

NET , WQR-RIDGE, WQR-LASSO, WQR-E-NET , QR-ALASSO, QR-AE-NET , WQR-ALASSO

and WQR-AE-NET . We compare and contrast the performance of these penalized procedures

with the baseline scenario and, to a larger extent, among themselves. Low MAD of test error

values, higher percentages of correctly fitted models and a higher/lower average number of cor-

rectly/incorrectly fitted zero coefficients indicate better performance. Simulation results are cate-

gorized as follows: (i) results of regularized WQR procedures (see Section 5.2) and (ii) results of

adaptive penalized WQR procedures (see Section 5.4). The results of the application of the penal-

ized QR and WQR methods to real data sets from the literature are presented in Sections 5.3 and

5.5.

The data in this thesis is simulated using the algorithm.
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AAAlllgggooorrriiittthhhmmm : SSSiiimmmuuulllaaattteeeddd DDDaaatttaaa
IIInnnpppuuuttt :
Input data set {xxx′i,yi} # the unweighted data set.
ωi # the MCD based weights of size n.
βββ = (3,1.5,0,0,2,0,0,0). # p = 8.
εi # t-distributed or Gaussian distributed error term.
OOOuuuttt pppuuuttt: Data set {xxx∗

′
i ,y

∗
i }

(i) RD(xi) =

√(
xxxi − µ̂µµ

)′
Σ̂ΣΣ
−1 (

xxxi − µ̂µµ
)
, i ∈ [1 : n] # Compute the MCD based robust distance.

(ii) ωi = min
(

1, p
RD(xi)2

)
, i ∈ [1 : n]. # Compute the MCD based weights.

(iii) xxx∗
′

i = ωixxx′i. # ith row of a n× p matrix XXX∗ (weighted design matrix), and p is the
number of predictor variables and n is the sample size.
(iv) yi = xxx′iβββ + εi: # The unweighted response.
(v) y∗ = ωiyi: # The weighted response.
(vi) RRReeetttuuurrrnnn {xxx∗

′
i ,y

∗
i }

5.2 Results of Weighted Quantile Regression Regularization Pro-

cedures

Baseline scenario (D1)

Table 5.2 displays the simulation results for the well-conditioned predictor matrix D1 (baseline

scenarios) under the normal distribution and t-distribution with 1 d. f (implying outliers). Under

the normal distribution, LS-LASSO and QR-LASSO perform best in variable (model) selection at

τ = 0.50, followed by QR-E-NET , though the performance is not significantly different.
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Table 5.2: Simulation results for orthogonal case (D1) under the normal and t-distributions at
τ = 0.25 and τ = 0.50 RQ levels; bold text indicate better performance.

τ = 0.25 τ = 0.50

med(MAD) Correctly No. of Zeros med(MAD) Correctly No. of Zeros
Distribution Parameters Method Test Error Fitted c.zero inc.zero Optimal(λ ) Test Error Fitted c.zero inc.zero Optimal(λ )

D1−N(., .)

σ = 1

LS-RIDGE 0.16(2.54) 5.00 2.53 0.00 1.49
LS-LASS0 -0.02(1.15) 90.00 4.90 0.00 0.15
LS-E-NET -0.02(1.36) 66.50 4.64 0.00 0.30

QR-RIDGE 1.28(1.97) 0.00 2.27 0.00 0.12 -0.03(1.99) 1.50 2.33 0.00 0.14
QR-LASSO 0.71(1.20) 67.50 4.56 0.00 0.04 0.00(1.15) 62.00 4.49 0.00 0.05
QR-E-NET 0.72(1.25) 18.50 3.59 0.00 0.04 0.01(1.19) 24.00 3.60 0.00 0.04

σ = 3

LS-RIDGE -0.06(4.14) 5.00 2.46 0.00 1.51
LS-LASS0 -0.05(3.41) 73.00 4.86 0.14 0.25
LS-E-NET -0.06(3.54) 44.50 4.27 0.03 0.31

QR-RIDGE 2.70(4.32) 9.00 3.07 0.03 0.12 -0.04(4.06) 2.50 2.37 0.01 0.12
QR-LASSO 2.03(3.60) 39.50 4.52 0.38 0.04 0.01(3.45) 40.00 4.57 0.32 0.05
QR-E-NET 2.18(3.69) 30.50 4.00 0.20 0.04 0.00(3.55) 31.00 3.90 0.11 0.04

D1− td

d = 1

LS-RIDGE 0.24(4.12) 4.00 2.57 0.21 1.61
LS-LASS0 0.14(3.31) 32.00 4.99 1.80 0.48
LS-E-NET 0.15(3.46) 26.00 4.87 1.75 0.43

σ = 0.5 QR-RIDGE 2.17(3.21) 3.00 2.33 0.02 0.11 0.02(2.94) 1.50 2.56 0.01 0.13
QR-LASSO 1.24(2.16) 64.00 4.92 0.72 0.04 0.02(1.72) 64.50 4.94 0.67 0.04
QR-E-NET 1.44(2.41) 36.50 4.42 0.62 0.03 -0.01(1.94) 32.50 4.33 0.58 0.03

d = 1

LS-RIDGE 0.19(5.61) 3.00 2.54 0.43 2.15
LS-LASS0 0.20(5.38) 8.50 4.99 2.51 1.57
LS-E-NET 0.22(5.45) 12.00 4.96 2.43 1.33

σ = 1 QR-RIDGE 3.05(4.30) 2.50 2.37 0.03 0.11 0.02(4.15) 3.50 2.49 0.02 0.12
QR-LASSO 2.44(3.80) 30.50 4.95 1.57 0.04 0.02(3.34) 33.50 4.95 1.38 0.04
QR-E-NET 2.62(4.04) 26.00 4.78 1.49 0.03 0.02(3.58) 25.50 4.66 1.27 0.03

1 N(., .) denotes normally distributed and td denotes t-distribution with d degrees of freedom.

Remarks. In Table 5.2, the five zero coefficients correspond to the set {β j : j = 3,4,6,7,8}, hence

the maximum average of correctly shrunk coefficients is 5, while the set of correctly selected models

is given as a percentage.

With respect to the percentage of correctly fitted models and the average of correctly fitted zero

coefficients, LS-LASSO performs best. However, the performance of the respective procedures

is decreased at larger σ , with respect to the two metrics. Under the t-distribution scenario, the

QR-LASSO performs best at τ = 0.50 (followed by QR-E-NET ), with no marked difference in the

median and MAD of test error measures, indicating the robustness of the QR-LASSO procedure.

Just like under the MAD metric, QR-LASSO performs best at τ = 0.50, followed by QR-E-NET

with no marked differences in the percentage of correctly fitted models. The three procedures
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namely, LS-LASSO, QR-LASSO and QR-E-NET , perform more or less equally with respect to the

average of correctly fitted zero coefficients. Generally, the respective performances of QR-LASSO

and QR-E-NET procedures at τ = 0.25 and τ = 0.50 are more or less similar.
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Figure 5.2: Box plots for collinearity inducing points scenario D1 under normal distribution with
σ = 1, d = 1 at τ = 0.25 and τ = 0.50 RQ levels. Vertical panels 1, 2 and 3 are for QR-RIDGE,
QR-LASSO and QR-E-NET procedures (unweighted scenario).

Remarks. The non-zero coefficients and zero coefficients are (β1,β2,β5)
′=(3,1.5,2)′ and (β3,β4,β6,β7,β8)

′=

(0,0,0,0,0)′, respectively. In Figure 5.2, the QR-LASSO and QR-E-NET procedures perform best

with respect to correctly shrunk zero coefficients {β j : j = 3,4,6,7,8}. The QR-RIDGE procedure

is the worst performer. Similarly, the QR-LASSO and QR-E-NET procedures also perform best

with respect to the maximum average of estimated non-zero coefficients {β j : j = 1,2,5}.
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Collinearity inducing scenario (D2 and D4)

Simulation results of the collinearity inducing points scenarios (D2 and D4) are summarized in

Tables 5.3 (Gaussian distribution scenarios) and 5.4 (heavy-tailed distribution scenarios), and the
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Figure 5.3: Box plots for collinearity inducing points scenario D1 under t-distribution with σ = 1,
d = 1 at τ = 0.25 and τ = 0.50 RQ levels. Vertical panels 1, 2 and 3 are for QR-RIDGE, QR-LASSO
and QR-E-NET procedures (unweighted scenario).

Remarks. The non-zero coefficients and zero coefficients are (β1,β2,β5)
′=(3,1.5,2)′ and (β3,β4,β6,β7,β8)

′=

(0,0,0,0,0)′, respectively. In Figure 5.3, the QR-LASSO and QR-E-NET procedures perform best

with respect to correctly shrunk zero coefficients {β j : j = 3,4,6,7,8}. Similarly, the QR-LASSO

and QR-E-NET procedures also perform best with respect to the average of estimated non-zero

coefficients {β j : j = 1,2,5}.
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Figures 5.4, 5.5, 5.6 and 5.7 show box plots of shrunken zero coefficients (β j : j = 3,4,6,7,8)

at τ = 0.25 and τ = 0.50 RQ levels. Under the Norma distribution scenario, penalized WQR

procedures perform better than the unweighted ones in prediction (see MAD of test errors).

Table 5.3: Simulation results for D2 and D4 collinearity inducing scenarios under normal distribu-
tion at τ = 0.25 and τ = 0.50 quantile levels (n = 50); bold text indicate better performance.

τ = 0.25 τ = 0.50

med(MAD) Correctly No. of Zeros med(MAD) Correctly No. of Zeros
Distribution Parameter Method Test Error Fitted Correct Incorrect Test Error Fitted Correct Incorrect

D2−N(., .)

σ = 1

QR-RIDGE 2.77(4.43) 35.00 3.88 0.00 2.77(4.36) 0.00 2.77 0.00
QR-LASSO 2.77(4.64) 81.00 5.00 0.19 2.77(4.38) 9.00 5.00 1.05
QR-E-NET 2.77(4.62) 74.50 4.97 0.03 2.77(4.36) 73.50 5.00 0.27

WQR-RIDGE 0.95(1.38) 14.00 3.54 0.00 -0.01(1.39) 12.50 3.62 0.00
WQR-LASSO 0.55(0.92) 92.00 4.92 0.08 -0.01(0.98) 98.00 4.99 0.01
WQR-E-NET 0.59(0.94) 65.50 4.53 0.00 -0.02(1.05) 84.00 4.84 0.00

σ = 3

QR-RIDGE 2.67(5.10) 0.00 1.95 0.00 -0.50(5.08) 0.00 1.28 0.00
QR-LASSO 0.81(6.17) 19.00 4.19 0.47 2.74(6.49) 23.00 3.98 0.27
QR-E-NET 1.09(5.91) 12.00 3.32 0.14 -1.55(6.19) 4.50 2.56 0.13

WQR-RIDGE 1.95(2.97) 13.00 3.32 0.02 -0.05(2.96) 6.00 3.11 0.01
WQR-LASSO 1.58(2.60) 36.00 4.72 0.63 -0.11(2.59) 43.50 4.84 0,57
WQR-E-NET 1.59(2.64) 39.50 4.45 0.41 -0.08(2.68) 47.00 4.70 0.45

D4−N(., .)

σ = 1

QR-RIDGE 1.24(4.39) 0.00 2.43 0.00 -1.37(4.52) 0.00 1.08 0.00
QR-LASSO -1.15(5.63) 35.00 4.08 0.00 -1.36(4.51) 0.00 1.08 0.00
QR-E-NET -0.96(5.51) 7.00 2.68 0.00 -1.97(5.68) 0.00 1.94 0.00

WQR-RIDGE 1.96(2.96) 13.50 3.31 0.02 -0.05(2.97) 6.00 3.11 0.01
WQR-LASSO 1.55(2.60) 38.50 4.76 0.65 -0.11(2.59) 43.50 4.84 0.57
WQR-E-NET 1.59(2.65) 34.00 4.40 0.43 -0.08(2.68) 47.00 4.70 0.45

σ = 3

QR-RIDGE 3.17(5.08) 0.00 1.99 0.00 -0.24(5.06) 0.00 1.29 0.00
QR-LASSO 3.19(5.07) 0.00 5.00 3.00 -0.16(5.10) 0.00 5.00 3.00
QR-E-NET 3.19(5.07) 0.00 5.00 3.00 -0.16(5.10) 0.00 5.00 3.00

WQR-RIDGE 1.68(2.69) 0.50 1.67 0.11 -0.06(2.62) 0.00 1.97 0.08
WQR-LASSO 1.42(2.48) 15.00 4.41 0.94 -0.09(2.28) 23.00 4.56 0.70
WQR-E-NET 1.50(2.48) 8.50 3.98 0.77 -0.05(2.33) 13.50 4.06 0.49

1

N(., .) denotes normally distributed.

Under the Gaussian distribution scenario, the WQR-LASSO procedure dominates in prediction,

followed by the WQR-E-NET procedure in all scenarios. The WQR-RIDGE performs the worst in

prediction in the penalized WQR scenarios. With respect to the percentage of correctly fitted mod-

els, the WQR-LASSO procedure performs best (followed by WQR-E-NET ) with WQR-E-NET in

fewer cases. WQR-LASSO performs best with respect to percentage of correctly fitted models at

τ = 0.25, except one when WQR-E-NET (σ = 3, D2). There is no clear ’winner’ in performance
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with respect to the average correctly/incorrectly fitted zero coefficients at all RQ levels. Increasing

the magnitude of the collinearity influential point from D2 to D4 greatly compromises the perfor-

mance of all procedures in correctly fitting the models. The zero coefficients are correctly shrunk

to zero/near zero in most cases, with varying degrees of accuracy.
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Figure 5.4: Box plots for collinearity inducing points scenario D2 under normal distribution with
σ = 1 at τ = 0.25 RQ level. Vertical panels 1, 2 and 3 are for QR-RIDGE, QR-LASSO and
QR-E-NET procedures (unweighted and weighted scenarios). The non-zero coefficients and zero
coefficients are (β1,β2,β5)

′ = (3,1.5,2)′ and (β3,β4,β6,β7,β8)
′ = (0,0,0,0,0)′, respectively.

Remarks. The non-zero coefficients and zero coefficients are (β1,β2,β5)
′=(3,1.5,2)′ and (β3,β4,β6,β7,β8)

′=

(0,0,0,0,0)′, respectively. In Figure 5.4, the LASSO penalized procedures perform best with re-

spect to correctly shrunk zero coefficients {β j : j = 3,4,6,7,8}.
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Figure 5.5: Box plots for collinearity inducing points scenario D2 under normal distribution with
σ = 1 at τ = 0.50 RQ level. Vertical panels 1, 2 and 3 are for QR-RIDGE, QR-LASSO and
QR-E-NET procedures (unweighted and weighted scenarios). The non-zero coefficients and zero
coefficients are (β1,β2,β5)

′ = (3,1.5,2)′ and (β3,β4,β6,β7,β8)
′ = (0,0,0,0,0)′, respectively.

Remarks. In Figure 5.5, the LASSO penalized procedures perform best with respect to correctly

shrunk zero coefficients {β j : j = 3,4,6,7,8}.

Table 5.4 summarizes the simulation results for the t-distribution case in the presence of

collinearity inducing points (D2 and D4). The results given in Tables 5.4 are also presented

graphically in Figure 5.8 as an alternative illustration. The QR-LASSO performs best among the

unweighted procedures with respect to prediction (see MAD of test errors). The WQR-LASSO

performs the best with respect to percentage of correctly fitted models and the average of correctly

fitted zero coefficients. In all pairwise comparisons, generally, the weighted penalized
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Figure 5.6: Box plots for collinearity inducing points scenario D4 under normal distribution with
σ = 1 at τ = 0.25 RQ level. Vertical panels 1, 2 and 3 are for QR-RIDGE, QR-LASSO and
QR-E-NET procedures (unweighted and weighted scenarios). The non-zero coefficients and zero
coefficients are (β1,β2,β5)

′ = (3,1.5,2)′ and (β3,β4,β6,β7,β8)
′ = (0,0,0,0,0)′, respectively.

Remarks. In Figure 5.6, the LASSO penalized procedures perform best with respect to correctly

shrunk zero coefficients {β j : j = 3,4,6,7,8}. All unweighted penalized QR procedures performed

poorly in terms of correctly shrinking zero coefficients. The penalized WQR procedures perform

better than the unweighted penalized procedures.
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Figure 5.7: Box plots for collinearity inducing points scenario D4 under normal distribution with
σ = 1 at τ = 0.50 RQ level. Vertical panels 1, 2 and 3 are for QR-RIDGE, QR-LASSO and
QR-E-NET procedures (unweighted and weighted scenarios). The non-zero coefficients and zero
coefficients are (β1,β2,β5)

′ = (3,1.5,2)′ and (β3,β4,β6,β7,β8)
′ = (0,0,0,0,0)′, respectively.

Remarks. In Figure 5.7, the LASSO penalized procedures perform best with respect to correctly

shrunk zero coefficients {β j : j = 3,4,6,7,8}. All unweighted penalized QR procedures performed

poorly in terms of correctly shrinking zero coefficients. The penalized WQR procedures perform

better than the unweighted penalized procedures.
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Figure 5.8: Performance at D2 and D4 under the t6 and t1 distributions with the RIDGE and
E-NET on the LHS and RHS of LASSO, respectively; Upper panel: Model/Variable selection
showing the proportion of correct models and the average of correct/incorrect β s selected; Lower
panel: Prediction metrics.

QRs outperform the unweighted ones with respect to the average of correctly shrunk zero co-

efficients. With respect to the percentage of correctly fitted models, the weighted procedures dom-

inate most of the time, with the exception of the WQR-RIDGE procedure, which performs equally

with its unweighted counterpart. Most penalized procedures perform poorly, except WQR-LASSO

with respect to percentage of correctly fitted models.
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Table 5.4: Simulation results for D2 and D4 collinearity inducing scenarios under t-distribution at
τ = 0.25 and τ = 0.50 quantile levels (n = 50); bold text indicate better performance.

τ = 0.25 τ = 0.50

Med(MAD) Correctly No. of Zeros med(MAD) Correctly No. of Zeros
Distribution Parameter Method Test Error Fitted Correct Incorrect Test Error Fitted Correct Incorrect

D2− td

d = 1,σ = 0.50

QR-RIDGE 3.03(4.31) 0.00 0.99 0.03 0.06(4.38) 0.00 0.95 0.00
QR-LASSO 1.38(2.68) 1.00 3.79 0.76 -0.02(2.06) 0.50 3.19 0.54
QR-E-NET 1.86(3.13) 0.00 1.95 0.56 0.00(2.78) 0.00 1.96 0.39

WQR-RIDGE 1.81(3.85) 0.00 1.05 0.00 0.51(3.82) 0.00 0.87 0.00
WQR-LASSO 1.64(4.18) 47.00 4.69 0.63 0.73(4.13) 53.50 4.66 0.40
WQR-E-NET 1.71(4.03) 12.00 3.81 0.46 0.66(4.02) 4.00 3.28 0.33

d = 1,σ = 1

QR-RIDGE 3.56(5.33) 0.00 0.96 0.10 -0.05(5.23) 0.00 0.91 0.01
QR-LASSO 2.21(5.97) 3.50 4.73 1.74 -0.10(4.01) 1.00 3.64 1.22
QR-E-NET 2.95(4.68) 0.00 2.47 1.03 0.02(4.49) 0.00 2.37 0.85

WQR-RIDGE 2.00(3.92) 0.00 0.91 0.01 0.27(3.99) 0.00 0.64 0.00
WQR-LASSO 1.64(2.69) 23.50 4.96 1.70 0.43(4.19) 35.50 4.72 0.98
WQR-E-NET 2.96(4.69) 0.00 2.49 1.06 0.38(4.05) 11.00 3.85 0.81

D4− td

d = 1,σ = 0.50

QR-RIDGE 3.38(5.06) 0.00 0.79 1.00 0.03(5.14) 0.00 0.82 1.00
QR-LASSO 2.15(3.59) 0.00 3.00 1.81 -0.01(4.10) 0.00 3.18 1.96
QR-E-NET 3.41(4.83) 0.00 1.09 1.07 0.07(4.99) 0.00 1.36 1.25

WQR-RIDGE 1.80(3.85) 0.00 1.04 0.00 0.51(3.82) 0.00 0.87 0.00
WQR-LASSO 1.65(4.13) 45.00 4.68 0.64 0.71(4.15) 51.50 4.64 0.41
WQR-E-NET 1.70(4.00) 12.00 3.80 0.47 0.68(4.01) 5.50 3.30 0.33

d = 1,σ = 1

QR-RIDGE 3.74(5.66) 0.00 0.71 1.00 0.00(5.67) 0.00 0.76 1.00
QR-LASSO 2.65(4.53) 0.00 3.10 1.85 -0.05(5.03) 0.00 3.51 2.29
QR-E-NET 3.70(5.41) 0.00 1.16 1.12 -0.06(5.51) 0.00 1.60 1.41

WQR-RIDGE 2.01(3.94) 0.00 0.93 0.01 0.26(3.99) 0.00 0.65 0.00
WQR-LASSO 1.97(4.10) 23.00 4.78 1.49 0.43(4.15) 36.50 4.73 0.97
WQR-E-NET 2.00(4.03) 15.50 4.35 1.27 0.39(4,02) 10.50 3.83 0.79

D2− td

d = 6,σ = 0.50

QR-RIDGE 2.62(3.26) 0.00 1.00 0.00 -0.02(3.37) 0.00 1.00 0.00
QR-LASSO 0.54(0.91) 3.50 3.19 0.00 0.02(0.85) 3.00 2.95 0.00
QR-E-NET 0.75(1.31) 0.00 1.94 0.00 0.02(1.14) 0.00 1.82 0.00

WQR-RIDGE 1.37.3.71) 0.00 1.56 0.00 1.02(3.72) 0.00 1.31 0.00
WQR-LASSO 1.32(4.23) 47.50 4.26 0.00 1.08(4.24) 52.00 4.25 0.00
WQR-E-NET 1.20(4.12) 4.50 2.96 0.00 1.01(4.15) 3.50 2.82 0.00

d = 6,σ = 1

QR-RIDGE 2.62(3.54) 0.00 1.00 0.00 0.05(3.61) 0.00 1.00 0.00
QR-LASSO 0.97(1.63) 3.00 2.98 0.02 0.03(1.55) 1.50 2.80 0.00
QR-E-NET 1.28(2.04) 0.00 1.81 0.04 0.04(1.90) 0.00 1.76 0.01

WQR-RIDGE 1.46(3.75) 0.00 1.31 0.00 0.82(3.70) 0.00 1.03 0.00
WQR-LASSO 1.48(4.09) 43.50 4.13 0.01 0.98(4.12) 46.00 4.14 0.00
WQR-E-NET 1.43(4.00) 6.50 3.10 0.00 0.96(4.00) 5.00 2.88 0.00

D4− td

d = 6,σ = 0.50

QR-RIDGE 3.16(4.45) 0.00 0.97 1.00 0.09(4.48) 0.00 1.00 1.00
QR-LASSO 1.65(2.67) 0.00 2.69 1.49 0.01(2.61) 0.00 2.76 1.27
QR-E-NET 3.20(4.26) 0.00 1.00 1.00 0.05(4.39) 0.00 1.02 1.02

WQR-RIDGE 1.36(3.71) 0.00 1.55 0.00 1.02(3.72) 0.00 1.30 0.00
WQR-LASSO 1.32(4.23) 49.00 4.27 0.00 1.06(4.25) 51.50 4.29 0.00
WQR-E-NET 1.21(4.13) 4.50 2.96 0.00 1.00(4.14) 4.50 2.86 0.00

d = 6,σ = 1

QR-RIDGE 3.20(4.61) 0.00 0.91 1.00 0.07(4.63) 0.00 0.98 1.00
QR-LASSO 1.83(2.83) 0.00 2.62 1.44 0.07(3.21) 0.00 2.81 1.38
QR-E-NET 3.16(4.36) 0.00 0.99 1.00 0.04(4.42) 0.00 1.02 1.01

WQR-RIDGE 1.46(3.74) 0.00 1.35 0.00 0.81(3.70) 0.00 1.03 0.00
WQR-LASSO 1.47(4.12) 43.00 4.12 0.01 0.98(4.11) 45.00 4.13 0.00
WQR-E-NET 1.46(3.97) 5.50 3.02 0.00 0.96(4.01) 7.00 2.83 0.00

1

td denotes t-distribution with d degrees of freedom.

Collinearity reducing scenario (D3 and D5)
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In Table 5.5, we examine the performance of regularized QR procedures (weighted and unweighted)

in the collinearity reducing points scenarios D3 and D5 under the Gaussian distribution. The zero

coefficients (β3,β4,β6,β7,β8) are penalized to zero/near zero as expected (see Figures 5.9, 5.10,

5.11 and 5.12). The WQR-LASSO performs the best in terms of the MAD of test errors, followed

by WQR-E-NET , though they perform more or less equally in D5.

Table 5.5: Simulation results for D3 and D5 collinearity reducing points scenarios under normal
distribution at τ = 0.25 and τ = 0.50 quantile levels (n= 50); bold text indicate better performance.

τ = 0.25 τ = 0.50

med(MAD) Correctly No. of Zeros med(MAD) Correctly No. of Zeros
Distribution Parameter Method Test Error Fitted Correct Incorrect Test Error Fitted Correct Incorrect

D3−N(., .)

σ = 1

QR-RIDGE 3.22(4.65) 0.50 2.38 0.00 -0.10(4.66) 0.00 1.02 0.00
QR-LASSO 3.29(4.65) 0.00 5.00 3.00 0.04(4.68) 0.00 5.00 2.86
QR-E-NET 3.29(4.65) 0.00 5.00 3.00 -0.04(4.64) 0.00 5.00 2.87

WQR-RIDGE 0.92(1.20) 4.00 2.74 0.00 0.00(1.09) 2.50 2.74 0.00
WQR-LASSO 0.45(0.76) 62.50 4.40 0.00 -0.01(0.75) 72.00 4.64 0.00
WQR-E-NET 0.48(0.80) 33.50 3.88 0.00 -001(0.78) 34.50 3.99 0.00

σ = 3

QR-RIDGE 3.38(5.38) 0.50 1.92 0.00 -0.22(5.38) 0.00 1.25 0.01
QR-LASSO 3.34(5.40) 0.00 4.99 2.85 -0.16(5.44) 0.00 5.00 2.66
QR-E-NET 3.34(5.39) 0.00 4.98 2.80 -0.15(5.40) 0.00 4.99 2.63

WQR-RIDGE 1.88(2.67) 3.00 2.63 0.04 -0.03(2.54) 3.00 2.67 0.06
WQR-LASSO 1.40(2.33) 36.00 4.55 0.49 -0.03(2.24) 34.50 4.65 0.51
WQR-E-NET 1.55(2.45) 26.50 4.14 0.41 -0.07(2.33) 29.50 4.34 0.42

D5−N(., .)

σ = 1

QR-RIDGE 3.22(4.65) 0.50 2.38 0.00 -0.10(4.66) 0.00 1.02 0.00
QR-LASSO 3.29(4.65) 0.00 5.00 3.00 -0.03(4.64) 0.00 5.00 2.97
QR-E-NET 3.29(4.65) 0.00 5.00 3.00 -0.03(4.65) 0.00 5.00 3.00

WQR-RIDGE 1.71(2.09) 1.50 2.54 0.01 0.00(1.62) 2.50 3.20 0.02
WQR-LASSO 1.57(2.02) 1.00 4.94 1.33 0.00(1.07) 48.50 4.66 0.21
WQR-E-NET 1.54(2.01) 0.50 4.93 1.34 0.00(1.16) 32.00 4.35 0.16

σ = 3

QR-RIDGE 3.38(5.39) 0.50 1.92 0.00 -0.22(5.39) 0.00 1.25 0.01
QR-LASSO 3.43(5.39) 0.00 5.00 3.00 -0.14(5.41) 0.00 5.00 2.97
QR-E-NET 3.43(5.39) 0.00 5.00 3.00 -0.14(5.41) 0.00 5.00 3.00

WQR-RIDGE 2.16(2.90) 2.00 2.51 0.02 -0.03(2.71) 2.00 2.57 0.06
WQR-LASSO 1.95(2.77) 2.00 4.93 1.80 -0.03(2.54) 1.00 4.88 1.48
WQR-E-NET 2.09(2.87) 8.00 4.85 1.59 -0.01(2.66) 4.50 4.72 1.33

1

N(., .) denotes normally distributed.

Although WQR-LASSO performs the best under D3 at τ = 0.25, the performance of all penal-

ized procedures is very poor in D5 at all quantile levels. However, the unweighted methods are

superior in terms of the average of correct zero coefficients, except for the RIDGE penalized pro-

cedure, which fluctuates in performance. The performance of the unweighted methods is generally
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weak throughout in terms of the percentage of correctly fitted models.
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Figure 5.9: Box plots for D3-normal distribution with σ = 1. Collinearity hiding points at τ =
0.25 quantile level. Vertical panels 1, 2 and 3 are for QR-RIDGE, QR-LASSO and QR-E-NET
procedures (unweighted and weighted scenarios). The non-zero coefficients and zero coefficients
are (β1,β2,β5)

′ = (3,1.5,2)′ and (β3,β4,β6,β7,β8)
′ = (0,0,0,0,0)′, respectively.

In Table 5.6, we examine the performance of regularized QR procedures (both weighted and

unweighted) in the collinearity reducing points scenarios D3 and D5 under the t-distribution. The

results given in Tables 5.6 are also presented graphically in Figure 5.13 as an alternative illus-

tration. Under the t-distribution scenario, the weighted regularized procedures dominate the pre-

diction performance, with WQR-LASSO performing the best, followed by WQR-E-NET . With

respect to average number of correctly fitted zero coefficients and percentage of correctly fitted

models, the WQR-LASSO procedure performs the best. In the unweighted scenario, QR-LASSO

outperforms other unweighted versions across all metrics.
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Figure 5.10: Box plots for D3 under normal distribution . Collinearity hiding points at τ = 0.50
quantile level with σ = 1. Vertical panels 1, 2 and 3 are for QR-RIDGE, QR-LASSO and QR-E-
NET procedures (unweighted and weighted scenarios). The non-zero coefficients and zero coeffi-
cients are (β1,β2,β5)

′ = (3,1.5,2)′ and (β3,β4,β6,β7,β8)
′ = (0,0,0,0,0)′, respectively.

Heavy-tailed distribution scenario (D6)

Table 5.7 summarizes the simulation results of penalized QR procedures (weighted and unweighted)

for the design matrix D6 under the t-distribution, where the collinearity in the design matrix is gen-

erated by the exponential decay vi j = ρ | j−i|, coupled with high leverage points. The results given

in Tables 5.7 are also presented graphically in Figure 5.14 as an alternative illustration. In the

pairwise comparisons, the unweighted procedures outperformed the weighted ones in prediction,

with the WQR-LASSO dominating the weighted penalized procedures and the QR-LASSO domi-

nating the weighted penalized ones. The WQR-LASSO performs best with the remaining metrics

(percentage of correctly fitted models and average of correctly fitted zero coefficients).
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Figure 5.11: Box plots for D5 under normal distribution with σ = 1. Collinearity hiding points at
τ = 0.25 quantile level. Vertical panels 1, 2 and 3 are for QR-RIDGE, QR-LASSO and QR-E-NET
procedures (unweighted and weighted scenarios). The non-zero coefficients and zero coefficients
are (β1,β2,β5)

′ = (3,1.5,2)′ and (β3,β4,β6,β7,β8)
′ = (0,0,0,0,0)′, respectively.

The zero coefficients (β3,β4,β6,β7,β8) are correctly penalized to zero/near zero as expected

(see Figures 5.15 and 5.16).

5.3 Applications of Penalized Weighted Quantile Regression to

Well-known Data Sets from the Literature

In this section, we apply our penalized procedures to well-known data sets from the literature and

check their performance in terms of correctly shrinking the correct zero coefficients. We also use

94



the coefficient estimation biases to measure the performance of these penalized procedures.
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Figure 5.12: Box plots for D5 under normal distribution with σ = 1. Collinearity hiding points at
τ = 0.50 quantile level. Vertical panels 1, 2 and 3 are for QR-RIDGE, QR-LASSO and QR-E-NET
procedures (unweighted and weighted scenarios). The non-zero coefficients and zero coefficients
are (β1,β2,β5)

′ = (3,1.5,2)′ and (β3,β4,β6,β7,β8)
′ = (0,0,0,0,0)′, respectively.

The two real data sets considered are the Hawkins et al. (1984) and the Hocking and Pendleton

(Hocking & Pendleton 1983) data sets.

5.3.1 Hawkins, Bradu and Kass Data Set

We employ (Hawkins et al. 1984) artificial data with outlying points. The artificial data consist of

75 observations composed of three predictor variables (X1,X2,X3) and the response variable, Y .
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Table 5.6: Simulation results for D3 and D5 collinearity reducing points scenarios under t-
distribution with d=(1 and 6) degrees of freedom at τ = 0.25 and τ = 0.50 quantile levels; bold
text indicate better performance.

τ = 0.25 τ = 0.50 (LAD)

Med(MAD) Correctly No. of Zeros med(MAD) Correctly No. of Zeros
Distribution Parameter Method Test Error Fitted Correct Incorrect Test Error Fitted Correct Incorrect

D3− td

d = 1,σ = 0.50

QR-RIDGE 3.17(5.26) 0.00 2.94 0.02 -0.04(5.22) 0.00 2.94 0.01
QR-LASSO 1.38(2.74) 34.50 4.57 0.75 -0.03(2.06) 58.50 4.71 0.46
QR-E-NET 2.23(3.79) 8.00 4.06 0.85 -0.05(2.30) 3.00 3.56 0.51

WQR-RIDGE 1.77(2.43) 0.00 4.00 0.01 0.00(1.79) 0.50 2.19 0.00
WQR-LASSO 1.00(1.82) 48.50 4.86 0.91 -0.01(1.27) 61.00 4.91 0.63
WQR-E-NET 1.11(1.95) 24.00 4.40 0.85 -0.02(1.36) 37.00 4.40 0.58

d = 1,σ = 1

QR-RIDGE 3.58(5.65) 0.00 2.81 0.11 -0.07(5.62) 0.00 2.94 0.03
QR-LASSO 2.69(4.75) 20.00 4.79 1.49 -0.02(3.55) 22.00 4.78 1.01
QR-E-NET 3.18(5.28) 5.50 4.58 1.91 -0.06(4.23) 4.00 4.16 1.31

WQR-RIDGE 2.28(2.98) 1.50 2.69 0.02 0.00(2.63) 1.00 2.49 0.01
WQR-LASSO 1.76(2.83) 24.50 4.94 1.70 -0.02(2.26) 29.00 4.95 1.41
WQR-E-NET 1.91(2,89) 17.50 4.76 1.66 0.00(2.39) 20.50 4.70 1.36

D5− td

d = 1,σ = 0.50

QR-RIDGE 3.21(5.30) 0.00 2.10 2.00 -0.03(5.33) 0.00 2.19 1.01
QR-LASSO 3.09(5.23) 1.50 5.00 2.42 0.04(4.27) 33.50 4.99 1.79
QR-E-NET 3.15(5.29) 0.00 4.93 2.74 0.00(5.32) 0.00 4.98 2.94

WQR-RIDGE 1.76(2.42) 0.00 2.46 0.01 0.00(1.82) 0.50 2.23 0.00
WQR-LASSO 1.01(1.81) 49.50 4.86 0.90 -0.01(1.28) 62.00 4.93 0.63
WQR-E-NET 1.13(1.98) 26.00 4.40 0.86 -0.01(1.36) 34.00 4.39 0.57

d = 1,σ = 1

QR-RIDGE 3.61(5.72) 0.00 2.10 2.00 -0.06(5.72) 0.00 2.21 1.01
QR-LASSO 3.55(5.80) 1.00 5.00 2.55 -0.04(5.32) 13.00 5.00 2.50
QR-E-NET 3.56(5.73) 0.00 4.96 2.81 -0.04(5.73) 0.00 4.99 2.95

WQR-RIDGE 2.29(2.98) 1.50 2.69 0.02 0.00(2.64) 1.50 2.48 0.02
WQR-LASSO 1.77(2.83) 23.50 4.93 1.71 -0.03(2.29) 29.00 4.95 1.43
WQR-E-NET 1.92(2.89) 16.50 4.76 1.67 0.00(2.38) 21.50 4.72 1.34

D3− td

d = 6,σ = 0.50

QR-RIDGE 2.90(4.83) 0.00 3.00 0.00 -0.05(4.84) 0.00 2.95 0.00
QR-LASSO 0.56(0.85) 48.50 4.23 0.00 0.02(0.80) 67.00 4.54 0.02
QR-E-NET 1.12(1.75) 0.50 3.08 0.00 -0.01(0.88) 2.00 2.92 0.00

WQR-RIDGE 0.95(1.21) 0.00 1.80 0.00 0.00(0.90) 0.00 1.75 0.00
WQR-LASSO 0.50(0.63) 63.50 4.49 0.00 0.00(0.54) 80.00 4.78 0.00
WQR-E-NET 0.53(0.65) 14.00 3.50 0.00 0.01(0.55) 21.00 3.64 0.00

d = 6,σ = 1

QR-RIDGE 3.12(4.84) 0.00 3.00 0.00 -0.04(4.83) 0.00 2.99 0.00
QR-LASSO 1.06(1.60) 39.50 3.82 0.01 0.00(1.51) 55.50 4.35 0.03
QR-E-NET 1.54(2.37) 5.50 3.27 0.00 -0.02(1.79) 2.00 3.07 0.00

WQR-RIDGE 1.31(1.53) 0.50 2.16 0.00 0.00(1.31) 0.00 1.93 0.00
WQR-LASSO 0.75(1.01) 56.00 4.35 0.02 0.02(0.92) 63.50 4.53 0.00
WQR-E-NET 0.78(1.03) 25.00 3.66 0.00 0.01(0.92) 19.00 3.56 0.00

D5− td

d = 6,σ = 0.50

QR-RIDGE 2.96(5.02) 0.00 2.03 2.00 -0.06(5.02) 0.00 2.01 1.00
QR-LASSO 2.96(4.86) 1.00 5.00 2.13 -0.01(2.02) 58.50 4.98 0.94
QR-E-NET 2.94(4.98) 0.00 4.93 2.78 0.00(4.99) 0.00 4.98 2.93

WQR-RIDGE 0.96(1.21) 0.00 1.80 0.00 0.00(0.90) 0.00 1.78 0.00
WQR-LASSO 0.50(0.63) 63.50 4.49 0.00 0.00(0.53) 78.50 4.76 0.00
WQR-E-NET 0.54(0.65) 14.00 3.48 0.00 0.01(0.55) 20.50 3.66 0.00

d = 6,σ = 1

QR-RIDGE 3.18(4.96) 0.00 2.11 2.00 -0.03(4.99) 0.00 2.07 1.00
QR-LASSO 3.08(4.90) 1.00 5.00 2.33 -0.13(3.83) 34.00 4.99 1.71
QR-E-NET 3.11(5.00) 0.00 4.93 2.83 0.00(5.00) 0.00 4.99 2.93

WQR-RIDGE 1.31(1.52) 0.50 2.17 0.00 0.00(1.30) 0.50 1.93 0.00
WQR-LASSO 0.75(1.01) 56.50 4.36 0.02 0.01(0.91) 60.00 4.46 0.00
WQR-E-NET 0.78(1.03) 25.50 3.66 0.00 0.01(0.92) 19.50 3.58 0.00

1

td denotes t-distribution with d degrees of freedom.
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D3 and D5 under the t Distribution on 6 and 1 degrees of freedom
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Figure 5.13: Performance at D3 and D5 under the t6 and t1 distributions distributions with the
RIDGE and E-NET on the LHS and RHS, respectively, with the RIDGE and E-NET on the RHS
and LHS of LASSO, respectively; Upper panel: Model/Variable selection showing the proportion of
correct models and the average of correct/incorrect β s selected; Lower panel: Prediction metrics.

Remarks. The prediction pattern under the t-distributions exhibited under D3 and D5 in Figure

5.13 (lower panel) are different to that exhibited at D2 and D4 (Figure 5.8) in that the MAD of

measure is more erratic (but the absolute median error is less erratic) at D3 and D5 but absolute.

In fact, the prediction picture of QR-LASSO and WQR-LASSO at τ = 0.50 based on the absolute

median error are similar at D3 and D5, whereas, at D2 and D4, WQR-LASSO performs better

with respect to this measure.
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D6 under the t Distribution
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Figure 5.14: Performance at D6 under the t6 and t1 distributions with the RIDGE and E-NET on
the LHS and RHS of LASSO, respectively; Model/Variable selection showing the proportion of
correct models and the average of correct/incorrect β s selected; Lower panel: Prediction metrics.

Remarks. The prediction pattern under the t-distributions exhibited under D6 in Figure 5.14

(lower panel) is slightly poorer under the t1-distribution compared to that exhibited under the

t6-distribution.
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Table 5.7: Simulation results D6 collinearity by 0.5| j−i| exponential decay under t-distribution
with d=(1 and 6) degrees of freedom at τ = 0.25 and τ = 0.50 quantile levels; bold text indicate
better performance.

τ = 0.25 τ = 0.50

Med(MAD) Correctly No. of Zeros med(MAD) Correctly No. of Zeros
Distribution Parameter Method Test Error Fitted Correct Incorrect Test Error Fitted Correct Incorrect

n=50(m=5)

D6− td

d = 1,σ = 0.50

QR-RIDGE 2.24(3.58) 0.00 0.04 0.00 0.06(2.95) 0.00 0.07 0.00
QR-LASSO 1.27(2.30) 27.00 4.35 0.66 0.02(1.83) 19.50 4.18 0.55
QR-E-NET 1.42(2.54) 0.00 2.12 0.53 0.03(2.10) 0.00 2.14 0.42

WQR-RIDGE 32.17(39.34) 0.00 0.00 0.00 0.62(39.30) 0.00 0.00 0.00
WQR-LASSO 9.81(17.70) 29.00 4.42 0.68 0.21(14.08) 20.00 4.22 0.54
WQR-E-NET 14.34(24.45) 0.00 1.28 0.53 0.50(19.78) 0.00 1.46 0.46

d = 1,σ = 1

QR-RIDGE 2.96(4.27) 0.00 1.09 0.01 0.06(4.00) 0.00 1.32 0.00
QR-LASSO 2.50(3.92) 20.00 4.81 1.65 0.04(3.51) 18.50 4.70 1.46
QR-E-NET 2.69(4.09) 4.50 4.29 1.50 0.07(3.61) 2.00 3.87 1.21

WQR-RIDGE 24.34(34.30) 0.00 0.96 0.01 0.42(34.04) 0.00 1.49 0.00
WQR-LASSO 18.30(28.42) 21.00 4.83 1.65 0.49(25.38) 20.00 4.72 1.49
WQR-E-NET 20.89(31.63) 0.00 3.79 1.63 0.52(28.20) 2.50 3.40 1.30

D6− td

d = 6,σ = 0.50

QR-RIDGE 0.99(1.57) 0.00 1.06 0.00 0.00(1.57) 0.00 1.65 0.00
QR-LASSO 0.50(0.82) 10.50 3.68 0.00 0.00(0.77) 17.00 3.85 0.00
QR-E-NET 0.56(0.92) 0.00 2.70 0.00 0.02(0.83) 0.50 2.54 0.00

WQR-RIDGE 16.82(25.36) 0.00 0.38 0.00 -0.11(25.29) 0.00 1.92 0.00
WQR-LASSO 3.67(5.97) 14.50 3.76 0.00 0.01(5.49) 21.50 3.88 0.00
WQR-E-NET 6.10(9.65) 0.00 1.35 0.00 -0.03(9.35) 0.00 1.92 0.00

d = 6,σ = 1

QR-RIDGE 1.10(2.13) 0.00 1.17 0.00 0.02(2.16) 0.00 1.47 0.00
QR-LASSO 0.93(1.53) 23.00 3.84 0.00 0.01(1.42) 18.00 3.78 0.00
QR-E-NET 1.01(1.59) 0.00 2.76 0.00 0.03(1.49) 0.00 2.59 0.00

WQR-RIDGE 18.29(27.42) 0.00 0.62 0.00 0.15(27.38) 0.00 1.68 0.00
WQR-LASSO 6.77(11.18) 25.50 3.93 0.00 0.04(10.48) 19.00 3.74 0.00
WQR-E-NET 8.53(14.16) 0.00 1.61 0.00 0.38(14.10) 0.00 1.80 0.00

n=100(m=10)

D6− td

d = 1,σ = 0.50

QR-RIDGE 2.11(3.45) 0.00 0.40 0.00 0.05(3.23) 0.00 0.11 0.00
QR-LASSO 1.37(2.47) 59.00 4.89 0.75 0.02(2.00) 57.50 4.80 0.68
QR-E-NET 1.45(2.61) 6.00 3.48 0.65 0.04(2.20) 1.00 2.63 0.48

WQR-RIDGE 24.68(35.82) 0.00 0.14 0.00 0.15(35.98) 0.00 0.02 0.00
WQR-LASSO 10.18(18.26) 60.00 4.92 0.78 0.16(14.77) 58.50 4.84 0.70
WQR-E-NET 14.09(23.75) 1.00 2.37 0.74 0.34(21.48) 1.00 1.68 0.56

d = 1,σ = 1

QR-RIDGE 3.13(4.74) 0.00 0.42 0.00 0.09(4.50) 0.00 0.11 0.00
QR-LASSO 2.51(4.12) 33.00 4.96 1.54 0.04(3.64) 32.00 4.86 1.32
QR-E-NET 2.62(4.25) 10.00 4.04 1.24 0.06(3.81) 4.00 3.41 1.03

WQR-RIDGE 27.14(39.88) 0.00 0.00 0.00 0.74(39.76) 0.00 0.05 0.00
WQR-LASSO 18.68(30.49) 34.00 4.93 1.46 0.22(26.78) 34.00 4.90 1.36
WQR-E-NET 22.41(34.25) 1.00 3.27 1.33 0.49(31.92) 1.00 2.57 1.11

D6− td

d = 6,σ = 0.50

QR-RIDGE 0.98(1.60) 0.00 0.64 0.00 -0.01(1.74) 0.00 0.20 0.00
QR-LASSO 0.44(0.71) 50.00 4.26 0.00 -0.01(0.72) 42.50 4.26 0.00
QR-E-NET 0.45(0.74) 1.00 2.14 0.00 0.00(0.76) 0.00 1.72 0.00

WQR-RIDGE 20.59(30.57) 0.00 0.00 0.00 0.10(30.78) 0.00 0.00 0.00
WQR-LASSO 3.26(5.23) 50.00 4.31 0.00 -0.05(5.27) 51.00 4.40 0.00
WQR-E-NET 5.43(8.77) 0.00 1.08 0.00 0.11(9.77) 0.00 0.85 0.00

d = 6,σ = 1

QR-RIDGE 1.41(2.20) 0.00 0.52 0.00 0.03(2.29) 0.00 0.22 0.00
QR-LASSO 0.84(1.33) 41.00 4.11 0.00 0.01(1.32) 33.00 3.98 0.00
QR-E-NET 0.87(1.41) 1.50 2.21 0.00 0.02(1.38) 0.50 1.79 0.00

WQR-RIDGE 16.37(22.15) 0.00 0.07 0.00 0.16(32.31) 0.00 0.00 0.00
WQR-LASSO 6.17(9.77) 45.50 4.15 0.00 0.05(9.65) 36.50 4.06 0.00
WQR-E-NET 8.87(13.96) 0.00 1.09 0.00 0.12(14.27) 0.00 0.74 0.00

1

td denotes t-distribution with d degrees of freedom.
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Figure 5.15: Box plots for D6 under t-distribution with σ = 1 and d=6 degrees of freedom at
τ = 0.25 quantile level. Vertical panels 1, 2 and 3 are for QR-RIDGE, QR-LASSO and QR-E-NET
procedures (unweighted and weighted scenarios). The non-zero coefficients and zero coefficients
are (β1,β2,β5)

′ = (3,1.5,2)′ and (β3,β4,β6,β7,β8)
′ = (0,0,0,0,0)′, respectively.

The advantage of this data is that the position of extreme points is known exactly, making it

possible to measure procedures effectively. The observations 1-10 are high leverage points (influ-

ential points), and points 11-14 are non-influential high leverage points. Artificial data are used

to compare the RIDGE, LASSO and E-NET penalized QR variable selection procedures (both

weighted and unweighted). The partitioned response vector YYY = (YYY ′
1,YYY

′
2) generates the response

variable in this section, where YYY 1 = XXX ′
1βββ 1+ε1, ε1 ∼ t1 for observations 11-75 with βββ 1 = (2,2,0)′

and YYY 2 = XXX ′
2βββ 2, where βββ 2 = (1,1,0)′ for observations 1-10. The data is categorized into full and

reduced data sets. The full data set contains collinearity inducing points, while the reduced data

does not have collinearity inducing points.
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Figure 5.16: Box plots for D6 under t-distribution with σ = 1 and d=6 degrees of freedom at
τ = 0.50 quantile level. Vertical panels 1, 2 and 3 are for QR-RIDGE, QR-LASSO and QR-E-NET
procedures (unweighted and weighted scenarios). The non-zero coefficients and zero coefficients
are (β1,β2,β5)

′ = (3,1.5,2)′ and (β3,β4,β6,β7,β8)
′ = (0,0,0,0,0)′, respectively.

We present parameter estimates and biases in Table 5.8 with the results of both the full and

reduced data scenarios. The zero coefficient β3 is correctly shrunk to zero for WQR-LASSO at

τ = 0.25 and τ = 0.50 RQ levels with very minimal bias. The zero coefficients are shrunk to near

zero for the rest of the penalized QR procedures. The penalized WQR performs better at τ = 0.50

and is equivalent to the non-penalized version under both the RIDGE and E-NET penalties, since

λ = 0. The WQR-LASSO is the best penalized WQR procedure at τ = 0.25 when λ ̸= 0 and all

zero coefficients are shrunk to zero. Considering all penalties, an improvement in performance is

depicted in the reduced data (data without high leverage points-observations 1-14) scenario at all

RQ levels. In this reduced data scenario, penalized WQR procedures outperform their unweighted
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versions.

5.3.2 Hocking and Pendleton Data Set

The performance of weighted regularized QR and WQR procedures in this section is evaluated us-

ing bias in estimated coefficients and penalization of zero coefficients in the Hocking and Pendleton

data set (Hocking & Pendleton 1983). The data set consists of 26 observations, with a response

variable Y and 3 predictor variables (X1,X2,X3) with X3 created by a linear combination of X1 and

X2. In the literature, observations 11, 17 and 18 are flagged as outlying points, and this data set con-

tains collinearity hiding points. The response vector YYY is generated by YYY 1 = XXX ′
1βββ 1+ε1, ε1 ∼ t1, for

the first 22 observations and Y2 = XXX ′
2βββ 2 for the remaining 4 observations, such that YYY = (YYY ′

1,YYY
′
2),

where βββ 1 = (3,−2,0)′ and βββ 2 = (1,1,0)′. We consider the results of the full data set contain-

ing collinearity hiding points (high leverage points that are collinearity influential points) and the

reduced data without collinearity hiding point 24.

We summarize the results of the full and reduced Hocking & Pendleton (1983) data set in

Table 5.9 for assessing the performance of the penalized QR and WQR procedures. The Table

summarizes the β coefficients and biases (the difference between the true β s and the estimated

β s). Unlike at τ = 0.25, the last coefficient is shrunk to zero at τ = 0.50 in the penalized weighted

scenarios. In the unweighted versions, the β s are best estimated at τ = 0.25, whereas in the

WQR scenario, the β s are best estimated at τ = 0.50 across all penalty functions. When the

tuning parameter λ = 0 in the penalized WQR procedures, the non-penalized WQR procedures are

optimal.

103



Ta
bl

e
5.

9:
R

es
ul

ts
fo

r
th

e
H

oc
ki

ng
fu

ll
an

d
re

du
ce

d
da

ta
se

ts
at

τ
=

0.
25

an
d

τ
=

0.
50

qu
an

til
e

le
ve

ls
;b

ol
d

te
xt

in
di

ca
te

be
tte

r
pe

rf
or

-
m

an
ce

.

Q
R

Q
R

-R
ID

G
E

Q
R

-L
A

SS
O

Q
R

-E
-N

E
T

W
Q

R
-R

ID
G

E
W

Q
R

-L
A

SS
O

W
Q

R
-E

-N
E

T
β

β̂
(B

ia
s)

β̂
(B

ia
s)

β̂
(B

ia
s)

β̂
(B

ia
s)

β̂
(B

ia
s)

β̂
(B

ia
s)

β̂
(B

ia
s)

FU
L

L
λ

0.
11

0.
06

0.
11

0.
00

0.
00

0.
00

τ
=

0.
50

In
te

rc
ep

t
0.

00
25

.0
9(

-2
5.

09
)

24
.3

4(
-2

4.
34

)
27

.6
3(

-2
7.

63
)

23
.6

3(
-2

3.
63

)
0.

36
(-

0.
36

)
0.

36
(-

0.
36

)
0.

36
(-

0.
36

)
X

1
3.

00
1.

55
(1

.4
5)

0.
86

(2
.1

4)
1.

28
(1

.7
2)

1.
06

(1
.9

4)
2.

94
(0

.0
6)

2.
94

(0
.0

6)
2.

94
(0

.0
6)

X
2

-2
.0

0
-2

.3
0(

0.
30

)
-0

.8
6(

-1
.1

4)
-2

.1
2(

0.
12

)
-1

.2
1(

-0
.7

9)
-2

.0
8(

0.
08

)
-2

.0
8(

0.
08

)
-2

.0
8(

0.
08

)
X

3
0.

00
-0

.6
6(

0.
66

)
0.

17
(-

0.
17

)
-0

.4
9(

0.
49

)
0.

00
(0

.0
0)

0.
01

(-
0.

01
)

0.
01

(-
0.

01
)

0.
01

(-
0.

01
)

λ
0.

00
0.

06
0.

06
0.

00
0.

00
0.

00

τ
=

0.
25

In
te

rc
ep

t
-1

.0
0

23
.5

3(
-2

4.
53

)
25

.2
6(

-2
6.

26
)

30
.3

2(
-3

1.
32

)
33

.1
3(

-3
4.

13
)

-0
.0

8(
-0

.9
2)

-0
.0

8(
-0

.9
2)

7.
62

(-
8.

62
)

X
1

3.
00

1.
19

(1
.8

1)
1.

09
(1

.9
1)

0.
56

(2
.4

4)
0.

30
(2

.7
0)

2.
95

(0
.0

5)
2.

95
(0

.0
5)

2.
95

(0
.0

5)
X

2
-2

.0
0

-1
.9

6(
-0

.0
4)

-1
.9

8(
-0

.0
2)

-1
.7

0(
-0

.3
0)

-1
.5

3(
-0

.4
7)

-2
.4

7(
0.

47
)

-2
.4

7(
0.

47
)

-2
.4

7(
0.

47
)

X
3

0.
00

-0
.1

5(
0.

15
)

-0
.1

6(
0.

16
)

0.
00

(0
.0

0)
0.

02
(-

0.
02

)
-0

.0
3(

0.
03

)
-0

.0
3(

0.
03

)
-0

.0
3(

0.
03

)
R

E
D

U
C

E
D

λ
0.

00
0.

22
0.

08
0.

00
0.

06
0.

00

τ
=

0.
50

In
te

rc
ep

t
0.

00
-5

9.
31

(5
9.

31
)

-5
6.

47
(5

6.
47

)
40

.6
7(

-4
0.

67
)

8.
77

(-
8.

77
)

0.
12

(-
0.

12
)

-0
.2

4(
0.

24
)

0.
12

(-
0.

12
)

X
1

3.
00

5.
78

(-
2.

78
)

5.
65

(-
2.

65
)

0.
00

(3
.0

0)
2.

09
(0

.9
1)

2.
88

(0
.1

2)
2.

77
(0

.2
3)

2.
88

(0
.1

2)
X

2
-2

.0
0

-0
.2

2(
-1

.7
8)

-0
.3

2(
-1

.6
8)

-1
.1

8(
-0

.8
2)

-1
.3

7(
-0

.6
3)

-1
.8

8(
-0

.1
2)

-1
.4

4(
-0

.5
6)

-1
.8

8(
-0

.1
2)

X
3

0.
00

2.
13

(-
2.

13
)

2.
05

(-
2.

05
)

0.
00

(0
.0

0)
0.

30
(-

0.
30

)
0.

07
(-

0.
07

)
0.

20
(-

0.
20

)
0.

07
(-

0.
07

)
λ

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

τ
=

0.
25

In
te

rc
ep

t
-1

.0
0

-5
6.

16
(5

5.
16

)
-5

9.
60

(5
8.

60
)

-5
9.

61
(5

8.
61

)
-5

9.
61

(5
8.

61
)

-0
.3

7(
-0

.6
3)

-0
.3

7(
-0

.6
3)

-0
.3

7(
-0

.6
3)

X
1

3.
00

5.
67

(-
2.

67
)

5.
80

(-
2.

80
)

5.
80

(-
2.

80
)

5.
80

(-
2.

80
)

3.
02

(-
0.

02
)

3.
02

(-
0.

02
)

3.
02

(-
0.

02
)

X
2

-2
.0

0
-0

.6
1(

-1
.3

9)
-0

.4
8(

-1
.5

2)
-0

.4
8(

-1
.5

2)
-0

.4
8(

-1
.5

2)
-2

.5
9(

0.
59

)
-2

.5
9(

0.
59

)
-2

.5
9(

0.
59

)
X

3
0.

00
1.

96
(-

1.
96

)
2.

13
(-

2.
13

)
2.

13
(-

2.
13

)
2.

13
(-

2.
13

)
-0

.1
2(

0.
12

)
-0

.1
2(

0.
12

)
-0

.1
2(

0.
12

)
1

T
he

in
te

rc
ep

tF
−

1 (
τ
)
+

ββ β
0,

tr
an

sl
at

e
to

0
an

d
−

1
un

de
rt

he
t 1

er
ro

rt
er

m
di

st
ri

bu
tio

n,
at

qu
an

til
e

le
ve

ls
τ
=

0.
50

an
d

τ
=

0.
25

,r
es

pe
ct

iv
el

y.
T

he
bi

as
es

ar
e

ca
lc

ul
at

ed
by

th
e

di
ff

er
en

ce
be

tw
ee

n
th

e
tr

ue
an

d
es

tim
at

ed
pa

ra
m

et
er

s
(ββ β

−
β̂β β

).
T

he
y

sh
ow

th
e

ab
ili

ty
of

ou
rr

eg
ul

ar
iz

at
io

n
an

d
va

ri
ab

le
se

le
ct

io
n

pr
oc

ed
ur

es
in

Q
R

pr
oc

ed
ur

es
,t

o
sh

ri
nk

so
m

e
ze

ro
co

ef
fic

ie
nt

s
to

ze
ro

.

104



5.4 Results on Adaptive Penalized Quantile Regression

In this section, we present simulation results, discuss them and compare the performance of non-

adaptive penalized QR procedures namely, QR-LASSO, QR-E-NET , WQR-LASSO, and WQR-E-

NET , with their adaptive variants namely, QR-ALASSO, QR-AE-NET , WQR-ALASSO and WQR-

AE-NET . We evaluate the variable selection and prediction performance of these adaptive pe-

nalized procedures in the presence of collinearity, high leverage points and collinearity influential

points under two different distribution scenarios. The two distribution scenarios are the Gaussian

distribution with varying σs and the t-distribution with varying degrees of freedom (d) and σs. The

best adaptive penalized QR procedure (weighted/unweighted) is determined by the metrics namely,

the average number of correctly/incorrectly fitted zero coefficients, the percentage of correctly fit-

ted models and the MAD of test errors (MAD = 1.4826(Median{εi}−Median{εi}) , i ∈ [1 : n],

where Median{εi} is the median of test errors). Without loss of generality, we only consider non-

adaptive and adaptive penalized procedures at τ = 0.25 and τ = 0.50 RQ levels, with the mixing

parameter for the E-NET penalty as α = 0.50.

Baseline scenario (D1)

We discuss simulation results for the baseline scenario (orthogonal design scenario-D1) under

the Gaussian distribution and t-distribution (heavy tailed distribution cases with d = 1 degree of

freedom) scenarios (see Table 5.10). The baseline scenario contains no high leverage points and

typically no collinearity influential points. The adaptive regularized QR procedures namely, QR-

ALASSO and QR-AE-NET , correctly shrink zero coefficients to zero/near zero compared to the

non-adaptive versions (see also the box plots of these baseline scenarios in Figure 5.17). In the

majority of cases, adaptive penalized procedures outperform the non-adaptive versions, with the
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exception of QR-LASSO at τ ∈ (0.25;0.50) RQ levels (t-distribution case, d = 1, σ = 1). In the

Gaussian and t-distribution cases, QR-ALASSO is superior to the QR-AE-NET with respect to the

MAD of test errors metric. Also, QR-ALASSO has higher percentages of correctly fitted models

and average number of correctly fitted zero coefficients.

Table 5.10: Penalized quantile regression at D1 under the normal and t-distributions for n = 50 at
τ = 0.25 and τ = 0.50 RQ levels; bold text indicate better performance.

τ = 0.25 τ = 0.50

median(MAD) Correctly No of Zeros median(MAD) Correctly No of Zeros
Distribution Parameter Method Test Error Fitted c.zero inc.zero median(λ ) Test Error Fitted c.zero inc.zero median(λ )

D1−N(., .)

σ = 1

QR-LASSO 0.72(1.17) 62.00 4.40 0.00 0.04 0.02(1.16) 65.50 4.51 0.00 0.04
QR-E-NET 0.75(1.26) 16.50 3.35 0.00 0.03 0.02(1.19) 21.00 3.56 0.00 0.04
QR-ALASSO 0.71(1.10) 99.50 5.00 0.00 0.03 0.01(1.13) 100.00 5.00 0.00 0.04
QR-AE-NET 0.75(1.16) 97.00 4.97 0.00 0.05 0.01(1.17) 100.00 5.00 0.00 0.06

σ = 3

QR-LASSO 2.20(3.60) 44.00 4.39 0.28 0.04 0.09(3.47) 47.50 4.51 0.22 0.05
QR-E-NET 2.29(3.68) 27.00 3.83 0.14 0.04 0.06(3.62) 32.50 3.99 0.09 0.04
QR-ALASSO 2.15(3.38) 60.00 4.95 0.46 0.01 0.06(3.41) 49.00 4.90 0.55 0.02
QR-AE-NET 2.28(3.54) 67.50 4.90 0.28 0.01 0.05(3.51) 60.50 4.85 0.30 0.03

D1− td

d = 1,σ = 1

QR-LASSO 2.32(3.81) 30.50 4.96 1.66 0.04 0.03(2.91) 40.50 4.96 1.27 0.04
QR-E-NET 2.55(3.87) 29.50 4.77 1.46 0.03 0.02(3.27) 29.00 4.64 1.10 0.03
QR-ALASSO 2.36(3.78) 11.50 4.97 1.95 0.00 -0.07(3.24) 32.50 4.99 1.56 0.00
QR-AE-NET 2.52(3.93) 12.50 4.94 1.86 0.00 -0.05(3.43) 37.00 4.93 1.38 0.00

d = 1,σ = 3

QR-LASSO 4.70(7.15) 1.50 5.00 2.93 0.06 -0.14(6.89) 1.50 4.99 2.85 0.05
QR-E-NET 4.72(7.14) 1.50 4.99 2.91 0.05 -0.14(6.91) 1.00 4.97 2.84 0.05
QR-ALASSO 4.68(7.12) 0.50 4.99 2.93 0.00 -0.14(6.84) 0.50 5.00 2.86 0.00
QR-AE-NET 4.72(7.17) 0.50 5.00 2.94 0.00 -0.13(6.90) 2.00 4.99 2.85 0.00

1 N(., .) denotes normally distributed and td denotes t-distribution with d degrees of freedom.

Remarks. The set of zero coefficients corresponds to the set {β j : j = 3,4,6,7,8} with a maximum

average of correctly shrunk coefficients of 5. The set of correctly selected models is evaluated as a

percentage.
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Figure 5.17: Box plots of coefficient values at D1 for RQ at τ = 0.25 and τ = 0.50. Horizontal pan-
els 1 and 3 are under the normal distribution with σ = 1. Horizontal panels 2 and 4 are under the
t-distribution with σ = 1, d = 1. All box plots are for unweighted procedures. The non-zero coef-
ficients and zero coefficients are (β1,β2,β5)

′ = (3,1.5,2)′ and (β3,β4,β6,β7,β8)
′ = (0,0,0,0,0)′,

respectively.

Collinearity inducing scenario (D2 and D4)

The results of the collinearity-inducing point scenarios D2 and D4 are shown in Table 5.11. The

adaptive regularized QR procedures outperform the non-adaptive ones 100% of the time in pairwise
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comparisons with respect of correct shrunk zero coefficients (see also Box plots in the Figures

5.18 and 5.19). Adaptive penalized procedures outperform the non-adaptive penalized ones, both

in correctly fitting the models and with respect to prediction (all above 80% of the time). The

weighted scenarios depict a similar performance pattern as the unweighted ones.

The adaptive penalized WQR procedures namely, WQR-ALASSO and WQR-AE-NET outper-

form the non-adaptive versions of WQR procedures with respect to correctly fitting the models and

in prediction (more than 60% of the time). In the pairwise comparisons, the WQR-ALASSO and

WQR-AE-NET procedures outperform the non-weighted versions QR-ALASSO and QR-AE-NET

with respect to all metrics in the majority of cases.

Table 5.11: Weighted and unweighted quantile regression at D2 and D4 for n = 50 (τ = 0.25 and
τ = 0.50) under the normal distribution; bold text indicate better performance.

τ = 0.25 τ = 0.50

median(MAD) Correctly No of Zeros median(MAD) Correctly No of Zeros
Distribution Parameter Method Test Error Fitted c.zero inc.zero median(λ ) Test Error Fitted c.zero inc.zero median(λ )

D2−N(., .)

σ = 1

QR-LASSO -1.10(5.65) 38.00 4.00 0.01 0.03 -1.87(5.78) 36.00 3.83 0.01 0.02
QR-E-NET -0.93(5.55) 2.50 2.55 0.00 0.02 -1.91(5.72) 0.00 1.94 0.00 0.02
QR-ALASSO -1.15(5.66) 79.00 4.80 0.02 0.01 -1.90(5.82) 86.50 4.87 0.01 0.02
QR-AE-NET -0.43(4.99) 98.00 4.98 0.00 0.02 -1.64(5.17) 88.00 4.88 0.00 0.03

σ = 3

QR-LASSO 0.96(6.30) 17.50 4.23 0.43 0.02 -1.41(6.56) 21.00 3.99 0.28 0.03
QR-E-NET 1.25(5.85) 9.50 3.39 0.16 0.02 -1.34(6.21) 4.50 2.53 0.09 0.02
QR-ALASSO 0.74(6.53) 46.00 4.88 0.50 0.01 -1.63(6.66) 82.50 4.98 0.18 0.01
QR-AE-NET 1.43(5.61) 44.00 4.81 0.41 0.01 -0.97(5.73) 45.50 4.60 0.28 0.02

σ = 1

WQR-LASSO -1.48(4.49) 62.50 4.47 0.00 0.03 -2.22(4.24) 66.50 4.57 0.00 0.04
WQR-E-NET -1.56(4.61) 11.00 3.34 0.00 0.03 -2.04(4.39) 30.00 3.86 0.00 0.04
WQR-ALASSO -1.56(4.62) 97.50 4.98 0.00 0.02 -2.12(4.50) 100.00 5.00 0.00 0.02
WQR-AE-NET -1.61(4.19) 93.00 4.92 0.00 0.04 -2.09(4.26) 98.50 4.99 0.00 0.04

σ = 3

WQR-LASSO 0.50(4.63) 29.50 4.53 0.62 0.03 -1.06(4.49) 36.50 4.69 0.54 0.04
WQR-E-NET 0.76(4.31) 28.00 4.34 0.54 0.04 -0.99(4.28) 28.00 4.34 0.37 0.05
WQR-ALASSO 1.50(2.28) 47.50 4.97 0.73 0.01 0.04(2.27) 51.50 5.00 0.59 0.02
WQR-AE-NET 1.64(2.38) 57.00 4.97 0.49 0.02 0.03(2.26) 67.00 4.99 0.38 0.03

D4−N(., .)

σ = 1

QR-LASSO 0.97(1.65) 10.00 3.88 0.61 0.02 -0.03(1.40) 5.50 3.49 0.44 0.02
QR-E-NET 2.74(3.71) 1.00 1.69 0.16 0.01 -0.07(3.56) 0.00 1.06 0.01 0.02
QR-ALASSO 0.84(1.37) 75.50 5.00 0.34 0.01 0.01(1.42) 83.50 4.97 0.14 0.01
QR-AE-NET 2.46(3.46) 41.00 4.35 0.13 0.01 -0.01(3.14) 11.00 3.96 0.03 0.01

σ = 3

QR-LASSO 1.67(6.06) 3.50 4.07 1.26 0.02 -1.31(6.57) 5.00 3.46 0.64 0.02
QR-E-NET 2.64(5.30) 0.00 2.25 0.75 0.01 -0.78(5.30) 0.00 1.60 0.36 0.02
QR-ALASSO 1.40(6.37) 43.50 4.84 0.88 0.01 -1.25(6.76) 81.50 5.00 0.45 0.01
QR-AE-NET 2.79(5.09) 32.00 4.39 0.53 0.01 -0.48(5.09) 6.00 2.81 0.31 0.01

σ = 1

WQR-LASSO 0.47(0.78) 64.50 4.51 0.00 0.03 0.00(0.85) 67.50 4.58 0.00 0.04
WQR-E-NET 0.49(0.85) 30.00 3.96 0.00 0.04 0.00(0.90) 33.00 4.05 0.00 0.04
WQR-ALASSO 0.48(0.79) 96.50 4.97 0.00 0.02 0.00(0.82) 99.50 5.00 0.01 0.02
WQR-AE-NET 0.54(0.89) 100.00 5.00 0.00 0.04 0.00(0.80) 99.50 5.00 0.01 0.04

σ = 3

WQR-LASSO 1.37(2.31) 15.00 4.46 1.09 0.04 -0.04(2.33) 32.50 4.64 0.59 0.04
WQR-E-NET 1.52(2.38) 35.00 4.29 0.28 0.04 -0.06(2.34) 20.50 4.01 0.42 0.04
WQR-ALASSO 1.48(2.30) 46.50 4.92 0.58 0.01 -0.04(2.32) 33.50 4.83 0.79 0.01
WQR-AE-NET 1.62(2.41) 41.00 4.87 0.68 0.02 -0.02(2.30) 32.50 4.83 0.70 0.01

1 N(., .) denotes normally distributed.
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Figure 5.18: Box plots of coefficient values in the D2 and D3 scenarios at τ = 0.25 RQ levels.
Horizontal panels 1 and 2 are for D2 under the normal distribution with σ = 1. Horizontal panels
3 and 4 are for D3 scenario under the normal distribution with σ = 1 (both weighted and un-
weighted scenarios). The non-zero coefficients and zero coefficients are (β1,β2,β5)

′ = (3,1.5,2)′

and (β3,β4,β6,β7,β8)
′ = (0,0,0,0,0)′, respectively.

Collinearity reducing scenario (D3 AND D5)

In Table 6.12, we show simulation results of variable selection and prediction performance in

the presence of collinearity hiding points (D3 and D5 scenarios) under the normal distribution.
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The QR-ALASSO and QR-AE-NET procedures dominate the non-adaptive penalized QR versions

QR-LASSO and QR-E-NET with respect to all metrics.
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Figure 5.19: Box plots of coefficient values in the D2 and D3 scenarios at τ = 0.50 RQ levels.
Horizontal panels 1 and 2 are for D2 under the normal distribution with σ = 1. Horizontal panels
3 and 4 are for D3 scenario under the normal distribution with σ = 1 (both weighted and un-
weighted scenarios). The non-zero coefficients and zero coefficients are (β1,β2,β5)

′ = (3,1.5,2)′

and (β3,β4,β6,β7,β8)
′ = (0,0,0,0,0)′, respectively.

The two unweighted adaptive procedures (QR-ALASSO and QR-AE-NET ) outperform the non-
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adaptive ones by 100% and 88% with respect to prediction, by 100% and 50% with respect to

correctly fitted models, respectively and by 100% for both with respect to the average

Table 5.12: Weighted and unweighted quantile regression at D3 and D5 for n = 50 (τ = 0.25 and
τ = 0.50) under the normal distribution; bold text indicate better performance.

τ = 0.25 τ = 0.50

median(MAD) Correctly No of Zeros median(MAD) Correctly No of Zeros
Distribution Parameter Method Test Error Fitted c.zero inc.zero median(λ ) Test Error Fitted c.zero inc.zero median(λ )

D3−N(., .)

σ = 1

QR-LASSO 0.65(1.21) 60.50 4.45 0.00 0.01 -0.01(1.19) 62.50 4.48 0.00 0.02
QR-E-NET 0.81(1.46) 12.50 3.48 0.00 0.01 -0.04(1.39) 12.50 3.45 0.00 0.02
QR-ALASSO 0.68(1.19) 95.00 4.97 0.02 0.01 -0.03(1.16) 100.00 5.00 0.00 0.01
QR-AE-NET 0.84(1.39) 81.50 4.81 0.00 0.01 -0.09(1.64) 44.50 4.45 0.00 0.02

σ = 3

QR-LASSO 2.01(3.79) 42.50 4.48 0.35 0.01 -0.08(3.61) 53.00 4.54 0.30 0.02
QR-E-NET 2.47(4.20) 17.50 3.97 0.43 0.01 -0.10(4.02) 11.00 3.92 0.54 0.01
QR-ALASSO 2.15(3.64) 77.00 4.96 0.29 0.01 -0.14(3.50) 72.00 4.88 0.25 0.00
QR-AE-NET 2.37(3.95) 45.00 4.44 0.33 0.00 -0.17(4.06) 42.50 4.64 0.50 0.01

σ = 1

WQR-LASSO 0.48(0.91) 28.50 3.83 0.00 0.04 -0.01(0.67) 71.50 4.65 0.00 0.04
WQR-E-NET 0.41(0.77) 15.50 3.59 0.00 0.03 -0.01(0.77) 35.00 3.96 0.00 0.05
WQR-ALASSO 0.41(0.71) 98.00 4.98 0.00 0.02 -0.02(0.75) 100.00 5.00 0.00 0.03
WQR-AE-NET 0.47(0.74) 85.00 4.85 0.00 0.04 -0.01(0.68) 95.00 4.95 0.00 0.04

σ = 3

WQR-LASSO 1.25(2.12) 29.00 4.39 0.57 0.03 -0.05(2.27) 39.50 4.66 0.48 0.04
WQR-E-NET 1.46(2.31) 24.50 4.21 0.42 0.04 -0.05(2.30) 31.50 4.38 0.35 0.04
WQR-ALASSO 0.11(4.96) 39.50 4.82 0.61 0.01 -1.24(4.57) 47.50 4.90 0.58 0.00
WQR-AE-NET 0.61(4.50) 56.00 4.94 0.52 0.02 -1.11(4.33) 52.50 4.93 0.47 0.01

D5−N(., .)

σ = 1

QR-LASSO 2.68(4.14) 12.00 5.00 1.89 0.01 -0.06(2.34) 54.50 4.98 0.80 0.00
QR-E-NET 3.27(4.67) 0.00 4.94 2.94 0.04 -0.02(4.67) 0.00 4.97 2.91 0.09
QR-ALASSO 0.93(1.52) 93.00 5.00 0.08 0.00 -0.02(1.54) 89.50 5.00 0.16 0.00
QR-AE-NET 3.26(4.66) 0.00 5.00 2.90 0.02 -0.01(4.67) 0.00 5.00 2.96 0.05

σ = 3

QR-LASSO 3.61(5.43) 1.00 5.00 2.57 0.05 0.08(5.40) 11.50 4.98 2.56 0.01
QR-E-NET 3.68(5.45) 0.00 4.94 2.87 0.04 -0.03(5.42) 0.00 4.96 2.92 0.09
QR-ALASSO 2.65(4.27) 41.00 5.00 0.88 0.00 0.02(4.66) 20.50 4.97 2.06 0.00
QR-AE-NET 3.66(5.46) 0.00 4.97 2.96 0.00 -0.04(5.43) 0.00 4.99 2.95 0.07

σ = 1

WQR-LASSO 0.50(0.82) 71.00 4.61 0.00 0.04 0.01(0.70) 68.50 4.61 0.00 0.04
WQR-E-NET 0.53(0.82) 46.00 4.23 0.00 0.04 0.01(0.69) 34.50 3.95 0.00 0.04
WQR-ALASSO 0.51(0.78) 97.50 4.98 0.00 0.03 0.01(0.66) 98.50 4.99 0.00 0.02
WQR-AE-NET 0.55(0.77) 92.50 4.92 0.00 0.04 0.01(0.73) 97.50 4.98 0.00 0.04

σ = 3

WQR-LASSO 1.57(2.39) 36.50 4.64 0.55 0.04 0.04(2.26) 42.00 4.72 0.47 0.04
WQR-E-NET 1.67(2.46) 27.50 4.24 0.43 0.04 0.03(2.26) 29.00 4.35 0.38 0.05
WQR-ALASSO 1.52(2.26) 48.50 4.94 0.67 0.01 0.03(2.14) 39.50 4.98 0.73 0.01
WQR-AE-NET 1.64(2.31) 67.00 4.97 0.33 0.02 0.03(2.65) 86.50 5.00 0.15 0.03

1 N(., .) denotes normally distributed.

number of correctly fitted zero coefficients. The performance picture in the weighted scenario

is as follows: with respect to prediction, both the WQR-LASSO and WQR-E-NET procedures out-

perform their respective unweighted adaptive penalized versions in prediction 63% of the time.

These adaptive penalized WQR procedures also dominate their non-adaptive versions with respect

to correctly fitting models. Despite the dominance of WQR-AE-NET when σ = 3 (D3 and D5),

the WQR-ALASSO procedure dominates the weighted penalized criteria. Therefore, our proposed

adaptive weights improve the performance of models with respect to all metrics in the unweighted
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adaptive QR scenarios. However, in the weighted scenario, the adaptive weights hamper the per-

formance of the models with respect to prediction.

Heavy-tailed distribution scenarios (D2 AND D3)

Table 5.13 shows the results of variable/model selection and prediction performance in the pres-

ence of collinearity inducing and hiding points (D2 and D3) under the t-distribution (heavy-tailed

distribution). For brevity, the results of the heavy-tailed D4 and D5 scenarios are left out since the

results are similar to those of D2 and D3.

In the collinearity inducing points scenario D2 under the t-distribution adaptive penalized QR

and WQR versions outperform the non-adaptive penalized QR versions with respect to all metrics.

In the pairwise comparisons, the QR-ALASSO and QR-AE-NET procedures outperform the non-

adaptive versions in prediction 88% of the time (both procedures). With respect to correctly fitted

models, they (QR-ALASSO and QR-AE-NET ) are superior 100% and 38% of the time, respec-

tively. With respect to correctly shrinking zero coefficients, the unweighted adaptive penalized QR

procedures outperform the unweighted non-adaptive penalized versions 100% and 88% of the time,

respectively. The pairwise comparisons demonstrate the dominance of penalized WQR procedures

(WQR-ALASSO and WQR-AE-NET ) over non-adaptive penalized versions. They (WQR-ALASSO

and WQR-AE-NET ) dominate the non-adaptive penalized WQR versions in prediction 100% and

75% of the time, respectively. With respect to correctly fitted models, these penalized WQR pro-

cedures perform better, that is, 88% of the time compared to the non-adaptive penalized WQR

ones. In pairwise comparisons, the WQR-ALASSO and WQR-AE-NET procedures outperform the

unweighted versions (QR-ALASSO and QR-AE-NET ) with respect to prediction. In terms of all

metrics, the WQR-ALASSO overall outperforms all other models.
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Table 5.13: Weighted and unweighted quantile regression at D2 and D3 under heavy tailed t-
distribution for n = 50 (τ = 0.25 and τ = 0.50); bold text indicate better performance.

0.25 0.50

median(MAD) Correctly No of Zeros median(MAD) Correctly No of Zeros
Distribution Parameter Method Test Error Fitted c.zero inc.zero median(λ ) Test Error Fitted c.zero inc.zero median(λ )

D2− td

d = 1,σ = 1

QR-LASSO 2.49(4.51) 1.50 4.26 1.50 0.02 0.00(3.64) 3.00 3.97 1.20 0.02
QR-E-NET 3.26(5.05) 0.00 2.79 1.32 0.02 -0.01(4.32) 0.00 2.67 0.92 0.02
QR-ALASSO 2.72(4.55) 0.50 4.50 1.56 0.00 0.02(3.76) 1.50 4.00 1.30 0.00
QR-AE-NET 3.53(5.28) 0.00 3.37 1.41 0.00 0.05(4.64) 0.00 3.12 1.20 0.00

d = 1,σ = 0.5

QR-LASSO 1.08(2.02) 15.50 4.05 0.54 0.02 -0.02(1.70) 30.00 4.37 0.53 0.03
QR-E-NET 1.75(3.09) 0.00 1.30 0.20 0.02 0.01(2.49) 0.00 1.64 0.27 0.02
QR-ALASSO 1.16(2.11) 58.00 4.92 0.71 0.01 -0.02(1.72) 76.50 4.95 0.46 0.02
QR-AE-NET 1.38(2.44) 0.50 2.59 0.20 0.01 0.01(2.21) 0.00 2.89 0.26 0.01

d = 1,σ = 1

WQR-LASSO 1.57(2.51) 21.50 4.85 1.65 0.04 0.03(2.21) 29.50 4.73 1.14 0.04
WQR-E-NET 1.61(2.60) 4.00 4.35 1.55 0.04 0.02(2.30) 9.00 4.11 1.00 0.04
WQR-ALASSO 1.68(2.63) 11.00 4.96 1.84 0.00 0.01(2.30) 20.50 4.95 1.38 0.00
WQR-AE-NET 1.70(2.68) 8.50 4.86 1.74 0.00 0.03(2.42) 16.00 4.76 1.27 0.00

d = 1,σ = 0.5

WQR-LASSO 0.81(1.41) 46.50 4.74 0.82 0.04 0.01(1.15) 51.50 4.67 0.51 0.04
WQR-E-NET 0.89(1.56) 5.00 3.77 0.74 0.04 0.01(1.25) 7.00 3.51 0.46 0.04
WQR-ALASSO 0.94(1.60) 43.50 4.98 1.01 0.01 0.02(1.26) 64.50 5.00 0.64 0.01
WQR-AE-NET 1.02(1.65) 39.50 4.84 0.87 0.01 0.03(1.34) 51.00 4.74 0.56 0.02

D2− td

d = 6,σ = 1

QR-LASSO 0.82(1.30) 14.00 3.40 0.01 0.02 -0.01(1.27) 11.50 3.31 0.00 0.02
QR-E-NET 1.18(1.80) 0.00 1.90 0.00 0.02 -0.02(1.60) 0.00 1.89 0.00 0.02
QR-ALASSO 0.81(1.29) 88.50 4.88 0.00 0.01 -0.02(1.26) 90.00 4.90 0.00 0.01
QR-AE-NET 0.96(1.52) 0.00 2.43 0.00 0.02 -0.02(1.47) 0.00 2.40 0.00 0.02

d = 6,σ = 0.5

QR-LASSO 0.40(0.64) 16.00 3.51 0.01 0.02 -0.02(0.61) 10.50 3.32 0.00 0.03
QR-E-NET 0.62(1.02) 0.00 1.90 0.00 0.02 0.00(0.84) 0.00 1.94 0.00 0.02
QR-ALASSO 0.40(0.64) 92.00 4.92 0.00 0.01 -0.01(0.62) 93.00 4.93 0.00 0.02
QR-AE-NET 0.51(0.78) 0.00 2.38 0.00 0.02 -0.02(0.72) 0.00 2.33 0.00 0.02

d = 6,σ = 1

WQR-LASSO 0.50(0.97) 42.00 4.10 0.00 0.04 -0.03(0.83) 48.00 4.29 0.00 0.04
WQR-E-NET 0.51(1.00) 1.50 2.72 0.00 0.04 -0.03(0.86) 3.00 2.69 0.00 0.04
WQR-ALASSO 0.47(0.93) 93.50 4.94 0.00 0.02 -0.04(0.84) 97.50 4.98 0.00 0.03
WQR-AE-NET 0.52(0.99) 68.50 4.66 0.00 0.03 -0.03(0.87) 70.00 4.67 0.00 0.04

d = 6,σ = 0.5

WQR-LASSO 0.26(0.49) 31.00 3.92 0.00 0.04 0.00(0.41) 39.50 4.16 0.00 0.04
WQR-E-NET 0.27(0.51) 2.50 2.62 0.00 0.04 0.00(0.43) 3.00 2.78 0.00 0.04
WQR-ALASSO 0.27(0.50) 95.50 4.95 0.00 0.02 0.00(0.41) 98.00 4.98 0.00 0.02
WQR-AE-NET 0.31(0.54) 78.50 4.76 0.00 0.03 -0.01(0.44) 83.50 4.83 0.00 0.04

D3− td

d = 1,σ = 1

QR-LASSO 1.32(2.39) 17.00 3.84 0.43 0.03 -0.02(2.39) 28.50 4.30 0.46 0.06
QR-E-NET 2.07(3.49) 0.00 1.77 0.30 0.02 -0.07(3.56) 1.00 1.52 0.25 0.02
QR-ALASSO 1.35(2.38) 49.50 4.68 0.46 0.00 -0.03(2.28) 65.00 4.91 0.50 0.01
QR-AE-NET 1.93(3.30) 0.50 2.12 0.31 0.00 -0.05(3.35) 0.50 2.02 0.26 0.00

d = 1,σ = 0.5

QR-LASSO 0.77(1.28) 56.00 4.55 0.25 0.03 0.01(1.23) 63.00 4.71 0.31 0.04
QR-E-NET 1.75(2.65) 0.00 2.17 0.20 0.02 0.00(2.15) 0.00 2.08 0.21 0.02
QR-ALASSO 0.85(1.43) 8.00 4.18 0.26 0.00 0.02(1.22) 29.50 4.45 0.32 0.00
QR-AE-NET 1.65(2.44) 0.00 2.25 0.18 0.00 0.03(2.05) 0.00 2.35 0.22 0.00

d = 1,σ = 1

WQR-LASSO 1.50(2.62) 37.00 4.96 1.51 0.04 -0.04(2.30) 51.00 4.96 1.12 0.05
WQR-E-NET 1.61(2.78) 17.00 4.45 1.36 0.04 -0.03(2.48) 21.00 4.21 0.96 0.05
WQR-ALASSO 1.49(2.59) 30.00 4.98 1.59 0.00 -0.04(2.29) 38.50 4.99 1.29 0.01
WQR-AE-NET 1.64(2.79) 36.00 4.75 1.37 0.00 -0.04(2.45) 46.00 4.70 0.98 0.01

d = 1,σ = 0.5

WQR-LASSO 0.67(1.30) 67.50 4.87 0.54 0.04 -0.01(1.17) 69.50 4.88 0.49 0.04
WQR-E-NET 0.77(1.47) 24.00 3.91 0.47 0.04 -0.01(1.29) 10.50 3.36 0.40 0.04
WQR-ALASSO 0.69(1.28) 69.00 4.99 0.66 0.02 0.00(1.14) 74.50 5.00 0.60 0.03
WQR-AE-NET 0.77(1.43) 65.50 4.82 0.49 0.03 0.00(1.29) 65.50 4.83 0.47 0.04

D3− td

d = 6,σ = 1

QR-LASSO 0.82(1.29) 3.50 2.91 0.02 0.01 0.02(1.26) 2.50 2.67 0.01 0.02
QR-E-NET 1.57(2.23) 0.00 0.17 0.00 0.01 0.00(2.48) 0.00 0.02 0.02 0.02
QR-ALASSO 0.82(1.28) 94.50 4.97 0.02 0.01 0.04(1.20) 94.50 4.95 0.00 0.01
QR-AE-NET 1.03(1.56) 0.00 2.52 0.00 0.01 0.04(1.63) 0.00 2.27 0.00 0.02

d = 6,σ = 0.5

QR-LASSO 0.37(0.66) 4.00 2.84 0.00 0.01 -0.02(0.64) 1.50 2.62 0.00 0.01
QR-E-NET 1.04(1.66) 0.00 0.14 0.00 0.01 -0.07(2.03) 0.00 0.01 0.00 0.02
QR-ALASSO 0.38(0.64) 92.00 4.92 0.00 0.01 -0.03(0.61) 89.50 4.88 0.00 0.02
QR-AE-NET 0.53(0.90) 0.00 1.40 0.00 0.01 -0.06(1.08) 0.00 1.06 0.00 0.02

d = 6,σ = 1

WQR-LASSO 0.40(0.76) 49.00 4.28 0.00 0.04 -0.01(0.69) 53.50 4.40 0.00 0.05
WQR-E-NET 0.42(0.77) 4.50 2.89 0.00 0.04 -0.01(0.73) 7.00 2.84 0.00 0.04
WQR-ALASSO 0.40(0.76) 96.00 4.96 0.01 0.03 -0.01(0.68) 97.50 4.98 0.00 0.03
WQR-AE-NET 0.43(0.75) 77.00 4.74 0.00 0.04 0.00(0.69) 70.50 4.66 0.00 0.05

d = 6,σ = 0.5

WQR-LASSO 0.19(0.36) 43.00 4.25 0.00 0.05 0.00(0.33) 47.50 4.26 0.00 0.05
WQR-E-NET 0.22(0.38) 3.50 2.77 0.00 0.04 0.00(0.36) 4.00 2.84 0.00 0.05
WQR-ALASSO 0.19(0.36) 97.00 4.97 0.00 0.03 0.00(0.32) 97.00 4.97 0.00 0.03
WQR-AE-NET 0.21(0.38) 70.00 4.67 0.00 0.04 -0.01(0.33) 62.00 4.58 0.00 0.05

1

td denotes t-distribution with d degrees of freedom.
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Table 5.13 shows the results of variable/model selection and prediction performance in the

presence of collinearity hiding points D3 under the t-distribution. The adaptive penalized QR and

WQR versions performed better than the non-adaptive penalized versions with respect to all the

metrics.

0
1

2
3

RQ−LASSO, τ = 0.25

Coefficients

C
o
e
ff
ic

ie
n
ts

 v
a
lu

e
s

β
^

1 β
^

2 β
^

3 β
^

4 β
^

5 β
^

6 β
^

7 β
^

8

0
1

2
3

RQ−E−NET, τ = 0.25

Coefficients

C
o
e
ff
ic

ie
n
ts

 v
a
lu

e
s

β
^

1 β
^

2 β
^

3 β
^

4 β
^

5 β
^

6 β
^

7 β
^

8

0
1

2
3

4

RQ−ALASSO, τ = 0.25

Coefficients

C
o
e
ff
ic

ie
n
ts

 v
a
lu

e
s

β
^

1 β
^

2 β
^

3 β
^

4 β
^

5 β
^

6 β
^

7 β
^

8

0
1

2
3

RQ−AE−NET, τ = 0.25

Coefficients

C
o
e
ff
ic

ie
n
ts

 v
a
lu

e
s

β
^

1 β
^

2 β
^

3 β
^

4 β
^

5 β
^

6 β
^

7 β
^

8

0
1

2
3

WRQ−LASSO, τ = 0.25

Coefficients

C
o
e
ff
ic

ie
n
ts

 v
a
lu

e
s

β
^

1 β
^

2 β
^

3 β
^

4 β
^

5 β
^

6 β
^

7 β
^

8

0
1

2
3

WRQ−E−NET, τ = 0.25

Coefficients

C
o
e
ff
ic

ie
n
ts

 v
a
lu

e
s

β
^

1 β
^

2 β
^

3 β
^

4 β
^

5 β
^

6 β
^

7 β
^

8

0
1

2
3

WRQ−ALASSO, τ = 0.25

Coefficients

C
o
e
ff
ic

ie
n
ts

 v
a
lu

e
s

β
^

1 β
^

2 β
^

3 β
^

4 β
^

5 β
^

6 β
^

7 β
^

8

0
1

2
3

WRQ−AE−NET, τ = 0.25

Coefficients

C
o
e
ff
ic

ie
n
ts

 v
a
lu

e
s

β
^

1 β
^

2 β
^

3 β
^

4 β
^

5 β
^

6 β
^

7 β
^

8

0
1

2
3

RQ−LASSO, τ = 0.5

Coefficients

C
o
e
ff
ic

ie
n
ts

 v
a
lu

e
s

β
^

1 β
^

2 β
^

3 β
^

4 β
^

5 β
^

6 β
^

7 β
^

8

0
1

2
3

RQ−E−NET, τ = 0.5

Coefficients

C
o
e
ff
ic

ie
n
ts

 v
a
lu

e
s

β
^

1 β
^

2 β
^

3 β
^

4 β
^

5 β
^

6 β
^

7 β
^

8

0
1

2
3

RQ−ALASSO, τ = 0.5

Coefficients

C
o
e
ff
ic

ie
n
ts

 v
a
lu

e
s

β
^

1 β
^

2 β
^

3 β
^

4 β
^

5 β
^

6 β
^

7 β
^

8

−
0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

RQ−AE−NET, τ = 0.5

Coefficients

C
o
e
ff
ic

ie
n
ts

 v
a
lu

e
s

β
^

1 β
^

2 β
^

3 β
^

4 β
^

5 β
^

6 β
^

7 β
^

8

0
1

2
3

WRQ−LASSO, τ = 0.5

Coefficients

C
o
e
ff
ic

ie
n
ts

 v
a
lu

e
s

β
^

1 β
^

2 β
^

3 β
^

4 β
^

5 β
^

6 β
^

7 β
^

8

0
1

2
3

WRQ−E−NET, τ = 0.5

Coefficients

C
o
e
ff
ic

ie
n
ts

 v
a
lu

e
s

β
^

1 β
^

2 β
^

3 β
^

4 β
^

5 β
^

6 β
^

7 β
^

8

0
1

2
3

WRQ−ALASSO, τ = 0.5

Coefficients

C
o
e
ff
ic

ie
n
ts

 v
a
lu

e
s

β
^

1 β
^

2 β
^

3 β
^

4 β
^

5 β
^

6 β
^

7 β
^

8

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

WRQ−AE−NET, τ = 0.5

Coefficients

C
o
e
ff
ic

ie
n
ts

 v
a
lu

e
s

β
^

1 β
^

2 β
^

3 β
^

4 β
^

5 β
^

6 β
^

7 β
^

8

Figure 5.20: Box plots at τ = 0.25 and τ = 0.50 quantile level for D2 scenario under the t-
distribution with σ = 1. Horizontal panels 1 and 2 are at τ = 0.25 and horizontal panels 3 and
4 are at τ = 0.50 RQ level (weighted and unweighted). The non-zero coefficients and zero coeffi-
cients are (β1,β2,β5)

′ = (3,1.5,2)′ and (β3,β4,β6,β7,β8)
′ = (0,0,0,0,0)′, respectively.
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Figure 5.21: Box plots at τ = 0.25 and τ = 0.50 quantile level for D3 scenario under the t-
distribution with σ = 1. Horizontal panels 1 and 2 are at τ = 0.25 and horizontal panels 3 and
4 are at τ = 0.50 RQ level (weighted and unweighted). The non-zero coefficients and zero coeffi-
cients are (β1,β2,β5)

′ = (3,1.5,2)′ and (β3,β4,β6,β7,β8)
′ = (0,0,0,0,0)′, respectively.

The pairwise comparisons show the QR-ALASSO and QR-AE-NET procedures dominating

the non-adaptive versions. The QR-ALASSO and QR-AE-NET procedures outperform the non-

adaptive versions with respect to prediction, that is, 63% and 75% of the time, thus correctly fitting
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the models 100% and 38% of the time, respectively and correctly shrinking zero coefficients (both

100% of the time). However, these penalized QR procedures perform equally at correctly fitting

the models 62% of the time.

The WQR-ALASSO and WQR-AE-NET procedures outperform the unweighted adaptive pe-

nalized versions overall, though marginally with respect to correctly fitting models and correctly

shrinking zero coefficients (see also Figure 5.20 and 5.21). The WQR-ALASSO procedure outper-

forms all other penalized procedures with respect to all metrics, though marginally with respect

to the last two metrics (percentage of correctly fitting models and the average number correctly

shrunk zero coefficients).

Table 5.14: Weighted and unweighted quantile regression at D6 under heavy tailed t-distribution
for n = 50 (τ = 0.25 and τ = 0.50); bold text indicate better performance.

τ = 0.25 τ = 0.50

median(MAD) Correctly No of Zeros median(MAD) Correctly No of Zeros
Distribution Parameter Method Test Error Fitted c.zero inc.zero median(λ ) Test Error Fitted c.zero inc.zero median(λ )

D6− td

d = 1,σ = 1

QR-LASSO 2.54(4.43) 22.50 4.71 1.34 0.04 -0.06(3.48) 37.00 4.69 0.90 0.04
QR-E-NET 2.79(4.69) 3.00 3.06 0.96 0.04 -0.06(3.72) 1.50 2.67 0.76 0.04
QR-ALASSO 2.69(4.59) 21.00 4.95 1.64 0.02 -0.05(3.45) 42.50 4.98 1.14 0.02
QR-AE-NET 0.73(4.67) 10.00 4.19 0.99 0.03 -0.07(3.72) 11.50 4.02 0.77 0.03

d = 1,σ = 0.5

QR-LASSO 1.10(1.95) 25.50 4.15 0.52 0.03 -0.04(1.62) 33.00 4.30 0.36 0.04
QR-E-NET 1.34(2.37) 0.00 2.36 0.44 0.03 0.00(1.83) 0.00 2.45 0.33 0.03
QR-ALASSO 1.11(1.96) 74.00 4.98 0.56 0.02 -0.02(1.60) 81.50 5.00 0.43 0.02
QR-AE-NET 1.34(2.37) 22.50 4.22 0.48 0.03 -0.02(1.87) 12.00 4.01 0.36 0.04

d = 1,σ = 1

WQR-LASSO 1.63(3.05) 14.00 4.66 1.52 0.04 0.04(2.47) 26.00 4.65 1.09 0.04
WQR-E-NET 1.82(3.22) 1.00 3.61 1.07 0.04 0.05(2.74) 2.50 3.57 0.81 0.04
WQR-ALASSO 1.67(3.11) 13.00 4.79 1.66 0.02 0.06(2.46) 23.50 4.75 1.24 0.02
WQR-AE-NET 1.84(3.28) 2.00 4.25 1.27 0.02 0.04(2.71) 0.00 4.05 0.98 0.03

d = 1,σ = 0.5

WQR-LASSO 1.08(1.99) 67.00 4.80 0.38 0.04 0.02(1.52) 58.50 4.67 0.33 0.04
WQR-E-NET 1.27(2.23) 1.00 2.45 0.32 0.03 0.03(1.78) 0.00 2.02 0.29 0.04
WQR-ALASSO 1.05(1.98) 79.00 5.00 0.46 0.02 0.02(1.58) 83.00 4.99 0.36 0.01
WQR-AE-NET 1.25(2.24) 25.00 4.10 0.32 0.01 0.02(1.76) 8.00 3.59 0.29 0.02

D6− td

d = 6,σ = 1

QR-LASSO 0.82(1.25) 53.50 4.26 0.00 0.04 0.05(1.26) 51.00 4.35 0.00 0.05
QR-E-NET 0.86(1.35) 3.00 2.44 0.00 0.03 0.03(1.30) 1.50 2.29 0.00 0.04
QR-ALASSO 0.83(1.24) 96.00 4.96 0.00 0.02 0.05(1.23) 95.50 4.95 0.00 0.03
QR-AE-NET 0.89(1.31) 30.50 4.03 0.00 0.03 0.04(1.29) 29.00 4.05 0.00 0.04

d = 6,σ = 0.5

QR-LASSO 0.40(0.66) 63.50 4.51 0.00 0.04 0.00(0.64) 72.50 4.65 0.00 0.05
QR-E-NET 0.41(0.72) 2.50 2.77 0.00 0.04 0.01(0.67) 5.00 3.00 0.00 0.04
QR-ALASSO 0.40(0.65) 88.00 4.88 0.00 0.03 0.01(0.63) 93.50 4.93 0.00 0.03
QR-AE-NET 0.42(0.70) 24.50 4.08 0.00 0.03 0.00(0.67) 25.50 4.01 0.00 0.04

d = 6,σ = 1

WQR-LASSO 0.54(0.92) 43.00 4.23 0.00 0.04 0.01(0.87) 55.50 4.45 0.00 0.04
WQR-E-NET 0.55(0.96) 2.00 3.07 0.00 0.04 -0.01(0.89) 6.00 3.23 0.00 0.04
WQR-ALASSO 0.55(0.91) 69.50 4.69 0.01 0.02 0.00(0.85) 83.00 4.82 0.00 0.02
WQR-AE-NET 0.60(0.98) 25.50 4.21 0.00 0.03 -0.01(0.93) 37.50 4.32 0.00 0.04

d = 6,σ = 0.5

WQR-LASSO 0.26(0.47) 35.50 4.06 0.00 0.04 -0.01(0.44) 44.00 4.19 0.00 0.04
WQR-E-NET 0.25(0.51) 5.00 3.16 0.00 0.03 0.00(0.47) 5.00 3.13 0.00 0.04
WQR-ALASSO 0.26(0.46) 72.50 4.72 0.00 0.02 -0.01(0.42) 85.00 4.85 0.00 0.02
WQR-AE-NET 0.26(0.48) 14.00 4.06 0.00 0.03 0.00(0.44) 31.00 4.26 0.00 0.03

1

td denotes t-distribution with d degrees of freedom.
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Heavy-tailed distribution scenario (D6)

Table 5.14 shows simulation results of variable/model selection and prediction performance at the

design matrix D6 with collinearity introduced by the exponential decay 0.50| j−i| under the
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Figure 5.22: Box plots at τ = 0.25 and τ = 0.50 quantile level for D6 scenario under the t-
distribution with σ = 1. Horizontal panels 1 and 2 are at τ = 0.25 and horizontal panels 3 and
4 are at τ = 0.50 RQ level (weighted and unweighted). The non-zero coefficients and zero coeffi-
cients are (β1,β2,β5)

′ = (3,1.5,2)′ and (β3,β4,β6,β7,β8)
′ = (0,0,0,0,0)′, respectively.
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t-distribution with 1 and 6 degrees of freedom. In the unweighted scenarios, adaptive penalized

procedures (QR-ALASSO and QR-AE-NET ) outperform the non-adaptive versions with respect to

all metrics. The QR-ALASSO and QR-AE-NET procedures outperform the non-adaptive versions

with respect to prediction 75% and 62% of the time, and 100% and 88% of the time with respect to

correctly fitting models, respectively. The adaptive procedures dominate the non-adaptive versions

with respect to the average correctly shrunk zero coefficients 100% of the time in both cases.

The adaptive penalized WQR procedures exhibit the same pattern as the unweighted scenarios,

with the WQR-ALASSO and WQR-AE-NET procedures dominating the weighted non-adaptive

penalized versions (WQR-LASSO and WQR-E-NET ) with respect to prediction, correctly fitted

models and correctly shrunk zero coefficients. Both the WQR-ALASSO and WQR-AE-NET pro-

cedures outperform the non-adaptive weighted ones in prediction, 100% and correctly fit models

88% of the time. The adaptive penalized ones also correctly shrink zero coefficients better than

the non-adaptive ones (see also Figure 5.22). The pairwise comparisons show the WQR-ALASSO

and WQR-AE-NET procedures dominating the unweighted versions in prediction, though all pro-

cedures perform more or less similar with respect to correctly fitted models and correctly shrunk

zero coefficients.

5.5 Applications of Adaptive Penalized Procedures to Well-known

Data Sets from the Literature

The Jet-Turbine Engine (Montgomery et al. 2009) and Gunst and Mason Gunst & Mason (1980)

data sets are used in this section to demonstrate the efficacy of adaptive weights ω̌ j based on
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β̂WR
j (τ) estimates in regularized QR and WQR procedures. In the literature, these data sets are

used to illustrate the effectiveness of some robust methodologies to mitigate against adverse effects

of collinearity and collinearity influential points. The Jet-Turbine Engine data set is very popular

with Engineers and has high collinearity reducing points (see Montgomery et al. 2009, Bagheri &

Midi 2012). The Gunst and Mason data set, unlike the Jet-Turbine Engine data set, is known to

contain collinearity-inducing points (see also Gunst & Mason 1980). We measure the performance

of adaptive procedures using biases of the estimated coefficients and how zero coefficients are

correctly penalized to zero.

5.5.1 The Jet-Turbine Engine Data Set

This section compares the performance of adaptive versus non-adaptive penalized QR and WQR

procedures using the Jet-Turbine Engine data set (Montgomery et al. 2009). The 40 observation

Jet-Turbine Engine data set consists of variables namely, (i) the response variable "thrust of a jet-

turbine engine" denoted by Y and (ii) predictor variables, primary speed of rotation denoted by

X1, secondary speed of rotation denoted by X2, fuel flow rate denoted by X3, pressure denoted

by X4, exhaust temperature denoted by X5 and ambient temperature at time of test denoted by

X6. The observations 6 and 20 are high leverage collinearity reducing points (see Bagheri &

Midi 2012). The data is standardized, and the predictor variable generated by the equation: Y1 =

XXX ′
1βββ 1 + ε1, ε1 ∼ t6 for 38 observations, excluding high leverage points 6 and 20 with XXX2 and

YYY 2 comprising cases (observations) 6 and 20, such that XXX = (XXX1,XXX2)
′ and YYY = (YYY ′

1,YYY
′
2)

′, where

βββ 1 = (50,0,0,10,15,0)′.

Table 5.15 shows parameter estimates (β s) and their respective biases from the true coeffi-
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cients/true β s (βββ 1 = (50,0,0,10,15,0)′). In the majority of cases, the zero coefficients (β2,β3, β6)

are correctly shrunk to zero (see Table 5.15). The adaptive regularized and non-adaptive regu-

larized QR and WQR procedures are compared in terms of their biases from the true coefficients

(βββ 1 = (50,0,0,10,15,0)′) and the penalization to zero of zero coefficients. Zero coefficients are

correctly penalized to zero/near zero as expected in all versions of the regularized procedures. The

adaptive penalized versions are more than 50% better than the non-adaptive penalized versions (2

out of 4 zero coefficients are exact zeros). The penalized WQR procedures outperform the un-

weighted versions in the collinearity reducing scenario at the τ = 0.50 QR levels, and the converse

is true at the τ = 0.25 RQ levels. The adaptive penalized QR and WQR versions outperform the

non-adaptive penalized procedures at both τ = 0.50 and τ = 0.25 for WQR-ALASSO. The best

performing procedure is the WQR-ALASSO at τ = 0.50. In most cases, the optimal λ is close to

zero (λ < 0.01).

5.5.2 The Gunst and Mason Data Set

We assess the performance of the adaptive regularized QR and WQR procedures in this section us-

ing estimated coefficient bias and how zero coefficients are correctly penalized to zero in the Gunst

and Mason data set (Gunst & Mason 1980). The 49 observation data set (data set of 49 countries),

where the response variable "gross national product" is denoted by Y = GNP and predictor vari-

ables are as follows: (i) infant death rate denoted by X1 = T NFD, (ii) physician to population

ratio denoted by X2 = PHY S, (iii) population density denoted by X3 = DENS, (iv) density of agri-

cultural land denoted by X4 = AGDS, (v) measure of literacy X5 = LIT and (vi) higher education

index denoted by X6 = HIED. In the literature, predictor variables DENS and AGDS are strongly
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correlated (high collinearity) with few high leverage points. These outlying and influential points

are namely, 7 (Canada), 13 (El Salvador), 17 (Hong Kong), 20 (India), 39 (Singapore) and 46

(United States of America), with observations 17 and 39 being collineairity inducing points. Data

are standardized and the response variable is generated by the equation Y1 = XXX ′
1βββ 1+ε1, ε1 ∼ t6 for

the first 43 observations, with XXX2 and YYY 2 comprising observations 7, 13, 17, 20, 39 and 46 such

that XXX = (XXX ′
1,XXX

′
2)

′ and YYY = (YYY ′
1,YYY

′
2)

′, where βββ 1 = (0,8,−13,0,0,6)′.

We summarize the results in Table 5.16, by showing estimated β s and their corresponding

biases. The zero coefficients (β1,β4, β5) are correctly penalized to zero and show low estimation

biases. The non-zero coefficients are very close to the true β values (β2,β3,β6)
′ = (8,−13,6)′

at the optimal λ both at the τ = 0.25 and τ = 0.50 RQ levels. The adaptive versions outperform

the non-adaptive versions in prediction and correct penalization most of the time. The adaptive

versions have fewer biases 67% of the time. The WQR-ALASSO outperforms the rest of the proce-

dures. The WQR-ALASSO correctly penalizes zero coefficients, that is, 100% and 50% of the time

more than the rest of the procedures at τ = 0.50 and τ = 0.25 QR levels, respectively. Adaptive

penalized procedures are better than non-adaptive penalized procedures 67% of the time. The

ALASSO penalized procedures are marginally better than the rest of the procedures at τ = 0.50.

Most unweighted models show an affinity to be optimal when λ = 0.

5.6 Concluding Remark

In this chapter, we performed simulation studies by considering six predictor space design ma-

trices with data aberrations comprising high leverage points, collinearity influential points and

collinearity under different distribution scenarios (Gaussian and t-distributions). We investigated
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the finite sample performance of regularized QR and WQR procedures. In Section 5.1, we de-

scribed the design of the simulation studies. In Section 5.2, we presented results for the penalized

WQR procedures and in Section 5.3, we applied the penalized WQR procedures to well-known

data sets in the literature. We consider the Hawkins, Bradu and Kass data set in Subsection 5.3.1

and the Hocking and Pendleton data set in Subsection 5.3.2. In Section 5.4, we presented results

for the adaptive penalized QR and WQR procedures. Applications of the adaptive penalized QR

and WQR procedures to well-known data sets in the literature were presented in Section 5.5. In

Subsections, 5.5.1 and 5.5.2, we presented applications to the Jet-Turbine Engine data set and the

Gunst and Mason data set, respectively. In Sections 5.2 and 5.4, MAD of test errors, percentages

of correctly fitted models and average number of correctly/incorrectly fitted zero coefficients were

used to measure the performance of the penalized procedures. In addition to these metrics, box

plots and stacked bar graphs were also used. The suggested penalized procedures performed better

than existing ones in the majority of cases (see Chapter 6 (Contributions and Recommendations

Chapter) for a more detailed discussion). The discussion of all the results and recommendations

for further study are presented in Chapter 6.

The penalized WQR procedures used in this thesis to analyze low-dimensional problems can

also be used to analyze high-dimensional problems, making them appropriate for examining com-

plicated big data sets found in a variety of domains. The extended penalized QR framework will

hopefully successfully combat the problem of dimensionality by encouraging sparsity and offering

more precise estimates of the conditional quantiles in high-dimensional scenarios. The exten-

sion would increase the options for statistical methods for high-dimensional data analysis by giv-

ing researchers a powerful tool for examining collinearity among predictors in multidimensional

datasets.
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Chapter 6

Contributions and Recommendations for

Further Study

In this thesis, we suggested several variable selection and regularization techniques in a QR set-

ting. These regularization techniques are categorized broadly into penalized WQR and adaptive

penalized QR and WQR techniques. The penalized WQR and adaptive (both weighted and un-

weighted) procedures were suggested as solutions to predictor space data aberrations’ (collinearity,

high leverage points and collinearity influential points) in mitigating against their adverse effects

on QR. These high leverage points that induce or reduce collinearity are collinearity influential

points. The suggested regularized methods are attractive because of their robustness in the pres-

ence of these data aberrations and heavy-tailed distributions. The first part of this study is premised

on extending the WLAD procedure (Arslan 2012) to the penalized WQR framework with LASSO,

RIDGE and E-NET penalties. The second part is premised on the proposed adaptive weights

based QR procedures (both weighted and unweighted).
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6.1 Contributions

Six predictor design matrix scenarios (D1-D6) were considered in the simulation study to inves-

tigate the efficacy of the suggested penalized WQR and adaptive penalized procedures in miti-

gating the adverse effects of collinearity, high leverage points and collinearity influential points.

These design matrix scenarios range from the orthogonal case D1, the collinearity inducing points

in D2/D4, the collinearity reducing case in D3/D5 to the exponential decay 0.5| j−i| induced

collinearity case coupled with high leverage points. All these design scenarios contain high lever-

age points, except D1. The design scenarios D1-D5 were considered under the Gaussian and

t-distribution with D6 considered under the t-distributions only. The procedures were also applied

to real data sets from the literature.

Firstly, the thesis suggested penalized WQR procedures using robust weights based on the com-

putationally intensive high breakdown MCD method rather than the well-known classical Maha-

lanobis distance. We used the MCD-based weights ωi that Arslan (2012) successfully implemented

in the WLAD-LASSO. Though the implementation was in a WLAD scenario, we extended it to the

WQR scenarios with the accrued benefits of robustness in the predictor space. These robust weights

are used in the formulation of the suggested robust penalized WQR methods (see Chapter 4). The

RIDGE, LASSO and E-NET penalized WQR procedures are the WQR-RIDGE, WQR-LASSO and

the WQR-E-NET procedures, respectively. These penalized WQR procedures are robust in the

presence of high leverage points and collinearity influential points. The weights ωi based on MCD

down-weighs extreme points, thereby reducing their undue influence. These regularized WQR

procedures, unlike the LS estimators, are also robust in the response space, since RQs influence

functions are bounded in the Y -space.
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We used a simulation study and applications to well known data sets from the literature to in-

vestigate the efficacy of the suggested WQR procedures in mitigating the adverse effects of high

leverage points and collinearity influential points. The results show that generally penalized WQR

procedures outperform the unweighted QR versions, with the WQR-LASSO outperforming all oth-

ers, albeit marginally to the WQR-E-NET in some case, in the D2/D4 design scenario under the

Gaussian distribution. Although the WQR-LASSO procedure dominates at D2/D4 design scenario

under the Gaussian distribution, in few cases, it is dominated by the WQR-E-NET procedure in

prediction. As explained by Zou & Hastie (2005), this occasional dominance of the WQR-E-NET

version over the LASSO penalized WQR version is to be expected . When the penalized procedures

are applied to well-known data sets from the literature, the application of the MCD based robust

weight is adequate (without penalty) in some cases, with the non-penalized versions outperform-

ing the penalized versions, i.e., the optimal tuning parameter will be λ = 0. The WQR-LASSO and

WQR-E-NET procedures are too "greedy" at τ = 0.25, shrinking all parameters to zero, and the

best performance is mostly at the RQ level τ = 0.25. Simulations show an improvement in variable

selection due to the robust weighting formulation.

Simulations also show that WQR-RIDGE, WQR-LASSO and the WQR-E-NET procedures

perform better than QR variable selection procedures QR-RIDGE, QR-LASSO and QR-E-NET ,

respectively. In conclusion, the simulation study and applications to the (Hawkins et al. 1984) and

Hocking & Pendleton (1983) data sets show an improvement in variable selection and regulariza-

tion due to the MCD based robust weighting formulation.

Secondly, this thesis suggested ALASSO and AE-NET penalized WQR (WQR-ALASSO and

WQR-AE-NET ) methodologies with a slope coefficient as the initial coefficient estimator used

to compute adaptive weights. This study is premised on estimated local RQ estimator rather
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than the global conditional mean regression (LS) estimator, which motivated the choice of our

adaptive weights. We used a RIDGE penalized WQR based coefficient estimate in the adaptive

weights construction in which the weights are used to down-weigh extreme values (high leverage

points) and are based on the minimum covariance determinant (MCD) estimator of Rousseeuw

(1985). The WQR-LASSO and WQR-E-NET procedures (the initially proposed penalized WQR

procedures) have been further extended to the ALASSO and AE-NET regularized WQR versions

namely, the WQR-ALASSO and WQR-AE-NET procedures, as mitigation against both high lever-

age and collinearity influential observations. The adaptive regularized QR/WQR methodologies

satisfy sparsity conditions, are asymptotically normally distributed and provide a balance between

bias-variance trade-offs.

In this adaptive regularization framework, we carried out a comparative study of the models via

simulation studies, as well as applications to well-known real data sets from the literature. With

respect to correctly shrinking zero coefficients in the presence of collinearity-inducing or reducing

observations, adaptive penalized procedures outperform non-adaptive versions in the vast majority

of cases. The same pattern is exhibited in terms of percentage of correctly fitted models, and the

same procedure is better with respect to prediction. Under both the normal and t-distribution sce-

narios, the regularized WQR (WQR-ALASSO and WQR-AE-NET ) procedures outperform the non-

adaptive penalized versions in prediction and percentage of correctly fitting models. As exhibited

in the unweighted adaptive versions, we have the same pattern of results in the non-adaptive, where

the unweighted ones are less effective than the weighted ones. The proposed adaptive penalized

procedures were applied to the real-life data sets, including the Jet-Turbine Engine (Montgomery

et al. 2009) used in the Engineering and the Gunst and Mason (Gunst & Mason 1980) data sets.

Our adaptive penalized procedures showed that the proposed adaptive weights are effective. The
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real-life example depicts better performance by adaptive penalized procedures in comparison to

the non-penalized versions (adaptive versions are better 67% the time), with the WQR-ALASSO

outperforming all the procedures. Under the normal distribution scenarios (D1-D5), the adaptive

versions (QR-ALASSO, QR-AE-NET , WQR-ALASSO and WQR-AE-NET ) perform better than the

non-adaptive versions when σ is small. In the presence of large errors, the ALASSO penalized QR

is superior to other unweighted procedures, as in the Zou (2006) LS case. Under the heavy-tailed

distribution scenario (see design matrices D2, D3 and D6 under the t-distribution), the same pattern

of results is exhibited, as in the Gaussian cases, with the ALASSO penalized procedures being more

effective variable/model selection and parameter estimation procedures than other versions. The

suggested adaptive weights perform better than a constant one, and these adaptive weights have an

advantage of having an adaptive weight at a particular RQ level. We conclude that the proposed

adaptive variable selection and parameter estimation procedures effectively deal with collinearity

and collinearity influential point adverse effects, particularly in cases of heavy-tailed distributions

(t-distribution). In heavy-tailed distribution with higher degrees of freedom, the AE-NET penalty

is recommended as an alternative to the ALASSO penalty.

Although the coefficient estimates from LASSO penalized WQR procedures are biased since

they are shrunken towards zero, model simplicity is increased. The less biased, adaptive penalized

WQR techniques offer an alternative.

6.2 Recommendations

In this section, we suggest two major areas of research. These areas include diagnosis of collinear-

ity influential points in a QR setting and the extension of our work to include group penalties and

129



high dimensional data sets.

6.2.1 Other Penalty Based Regularization Quantile Regression Procedures

This thesis considered penalized QR variable selection procedures with RIDGE, LASSO, E-NET ,

ALASSO and AE-NET penalties. New research can focus on other penalties, such as SCAD, LARS,

AR-LASSO and group LASSO penalties, etc. The group LASSO penalty is given by λΣm
ℓ

√
pℓ|β (ℓ)|,

where β (ℓ) is the coefficient vector of group ℓ, pℓ is the number of predictors in group ℓ from

m different groups (Simon & Tibshirani 2012). The LARS and SCAD penalties are discussed in

this thesis. The extension of these penalties to the QR procedures scenarios can be pursued in the

future. We suggest these procedures to check if our methods can be further improved.

Our penalized QR procedures are most suitable when the main aim is variable selection in the

presence of high leverage and collinearity influential points. However, the investigation of the

applicability of our proposed penalized WQR procedures, specifically in the context of statistical

inference, is beyond the scope of this research. We advise further research into how well our

penalized procedures perform in various statistical inference settings, such as hypothesis testing

and confidence interval estimates. Understanding how covariates are interpreted and used in these

settings will be useful for applied researchers.

Further research could focus on developing and evaluating post-selection inference techniques

specifically tailored for quantile regression, e.g., post-LASSO penalized WQR procedures and their

post-selection inference. The oracle property of these post-selection procedures can also be inves-

tigated in the future, along with their strengths, providing valuable insights into the performance

and limitations of the procedures and refining their applicability in practice. A comparative study
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can be conducted involving our methods and post-LASSO penalized WQR procedures by checking

the accuracy, bias reduction, computational efficiency, and interpretability of the procedures.

6.2.2 Collinearity Influential Points Detection in a Quantile Regression Set-

ting

For future research, we suggest collinearity influential point diagnostics in a QR setup using the

diagnostic robust generalized potential DRGP, the ER approaches and residuals. One may use

the single point deletion or group deletion criteria in a QR scenario in the formulation of these

diagnostics procedures. The group deletion approach of diagnosing high leverage points (Imon

2002) partitions the design matrix into good and bad cases identified by the minimum volume

ellipsoid (MV E) (Rousseeuw 1985) or the minimum covariance determinant (MCD) (Rousseeuw

1984). The group deletion criterion also known as generalized potential (GP) is an extension

of the single deletion approach (see also Bagheri et al. 2012, Nurunnabi et al. 2016). One can

also formulate diagnostic tools using the Hadi & Simonoff (1993) idea of an ES-based multiple

outlier diagnostic procedures, or the Habshah et al. (2009) idea of the diagnostic robust generalized

potential (DRGP) for identifying multiple collinearity influential observations in a QR setting.

6.2.3 High Dimensional Quantile Regression

This section summarizes some QR aspects in high-dimensional that can be considered for further

study. QR with p fixed asymptotics were extensively explored by Koenker & Bassett (1978).

These QR models with p fixed asymptotics and traditional models pose problems in handling

the increasing availability of data, and high-dimensional models proffer a solution through the
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improvement of accuracy and validity (Koenker et al. 2018). According to Koenker et al. (2018),

two asymptotic regimes exist in high-dimensional models namely, p increases slowly relative to

sample size n, and that p increases fast with n. Two asymptotic regimes exist in high-dimensional

models namely, p increases slowly relative to sample size n, and that p increases fast with n. The

QR estimator under necessary conditions achieves a uniform ℓ2-rate of convergence of
√

p/n,

and the Bahadur (1966) embedded representation aids the construction of uniform convergence

bands.

Consider the outcome of interest Y and the conditioning variables ZZZ, then the conditional quan-

tile function is given by QY |Z(τ) for τ ∈ T ⊂ (0,1) Koenker et al. (2018). To estimate the condi-

tional quantile function, we let XXX = GGG(ZZZ), where GGG(ZZZ) denotes a p-vector of known transforma-

tions of ZZZ, and the resultant βββ (τ) vector is then given by

QY |Z(τ) = XXX ′
βββ (τ)+ rτ(ZZZ),

where rτ(ZZZ) = QY |Z(τ)−XXX ′
βββ (τ) denotes the approximate error function, and p ≫ n. We have

ZZZ = XXX and rτ(ZZZ) = 0 in the parametric case, and the non-parametric case coefficient process

{βββ (τ) : τ ∈ A } is taken to give a good approximate of the conditional quantile function. Regular-

ization methods are used to explore high-dimensional data patterns in pursuit of high-dimensional

models. In the literature, small sub-models Tτ ⊂ {1,2, . . . , p}, with parameters (|Tτ | ≥ s), yield

good approximations. These approximate sparse models with s ≪ n non-zero coefficients enough

to achieve a vanishing approximation error for each τ , supτ∈T ||βτ ||0 ≤ s and supτ∈T En[rτ(ZZZ)2]≤

Cs log(p∨n)
n , where ||.||0 is the number of non-zero components of a vector, and C denotes a fixed

constant.
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6.2.4 Inference

We recommend future research in statistical inference. In implementing our methods, we recom-

mend reading Cahyani et al. (2016). It is important to consider data sets which have high leverage

points in the implementation.
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Figure 6.1: Tolerance Ellipses with RQ lines and Distance-Distance Plots, Gunst-Mason Data
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Figure 6.2: Tolerance Ellipses with RQ lines and Distance-Distance Plots, Hawkins Data
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Figure 6.3: Tolerance Ellipses with RQ lines and Distance-Distance Plots, Hocking Data
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Figure 6.4: :Profiles for RIDGE-type, LASSO-type and E-NET -type estimators for the Gunst-
Mason data set.
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Figure 6.5: :Profiles for RIDGE-type, LASSO-type and E-NET -type estimators for the Hawkins
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Figure 6.6: :Profiles for RIDGE-type, LASSO-type and E-NET -type estimators for the Hocking
dataset.
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Figure 6.7: Profiles for RIDGE-type, LASSO-type and E-NET -type estimators for Gunst and Mason
dataset.
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Figure 6.8: Profiles for RIDGE-type, LASSO-type and E-NET -type estimators for Hawkins dataset.
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Figure 6.9: Profiles for RIDGE-type, LASSO-type and E-NET -type estimators for Hocking dataset.
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Figure 6.10: Profiles for RIDGE-type, LASSO-type and E-NET -type estimators for D6 dataset.
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Figure 6.11: Box Plots for D1 under normal distribution with σ = 1 at τ = 0.25 and τ = 0.5
quantile level.
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Figure 6.12: Box Plots for D1 under t-distribution with σ = 1, d = 1 at τ = 0.25 and τ = 0.5
quantile level.

154



APPENDIX B: ALGORITHMS

In case a reader wants to use bootstrapping in the simulations as suggested by one Examiner, we
present an algorithm as an extra (see also Ogundimu 2022).

AAAlllgggooorrriiittthhhmmm : RRReeeggguuulllaaarrriiizzzeeeddd QQQuuuaaannntttiiillleee RRReeegggrrreeessssssiiiooonnn
IIInnnpppuuuttt :
Data set {xxx∗

′
i ,yyy

∗} such that xxx∗
′

i = ωixxx′i, the input ith row
of a n× p matrix XXX∗, and p is the number of predictor variables and n is the sample size.
yyy∗ = ωiyyy: # The weighted response vector of size n.
λ : # The regularization parameter.
ωi: # The MCD based weight vector of size n.
ε = 10−6 # Set convergence threshold.
OOOuuuttt pppuuuttt: Penalized WQR Model
(i) Fit the penalized WQR models and MADapp of test errors
(ii) Generate K data sets of the same sample size (n) using bootstrap samples with replacement.
(iii) Compute MADboot(k). # For k ∈ [1 : K], apply the penalized WQR procedures, making sure optimal
λ is selected for each sample to provide models having predictors coefficients
based on the regularization parameter. # The bootstrap performance.
(iv) Compute MADorig(k). # MAD from the original data set for each of the K models.
(v) Compute Opt(k) = MADboot(k)−MADorig(k) # Optimal in model fit for each of the bootstrap sample.
(vi) Compute Opt = 1

K ΣK
k=1Opt(k) # The average optimism to measure the test performance.

(vii) Compute MADad j = MADapp −Opt. # Optimism adjusted measure for the original model.
(viii) RRReeetttuuurrrnnn ⟨Opt(k),Opt,MADad j⟩
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