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Abstract

In this study, mathematical models for the dynamics of cystic echinococcosis transmission in

populations of dogs, sheep, and people are developed and analyzed. The predator-prey

interaction in these populations is first considered and analyzed. The primary objective of taking

this model into account is to determine sufficient conditions to ensure the existence of stable

equilibrium point which represent coexistence of the three populations. A mathematical model

for the dynamics of cystic echinococcosis transmission in the absence of controls is then

formulated and analyzed. Analytically, the basic reproduction number R0 and equilibrium

points are determined. To examine the dynamics of the disease, stability analysis of the disease

free equilibrium and endemic equilibrium is carried out. The results show that the disease-free

equilibrium is globally asymptotically stable if R0 ≤ 1, and unstable otherwise. It is further

demonstrated that the endemic equilibrium is asymptotically stable if R0 > 1. To support

analytic results numerical simulations are carried out. Sensitivity analyses of the critical

parameters are performed. In the result it is shown that the transmission rate of echinococcus’

eggs from the environment to sheep (βes) is the most influential parameters in the dynamics of

cystic echinococcosis.

To this effect, a model for the spread of cystic echinococcosis under interventions that involve

vaccination of sheep and cleaning or disinfection of the environment is formulated and studied.

The disease-free and endemic equilibrium points of the model are calculated. The control

reproduction number Rc for the deterministic model is derived, and the global dynamics are

established by the values of Rc. The disease-free equilibrium is globally asymptotically stable if

and only if the control reproduction number Rc ≤ 1, and the disease will be wiped out of the

populations. For Rc > 1, using Volterra-Lyapunov stable matrices, it is proven that the endemic

equilibrium is globally asymptotically stable, and the disease persists. Sensitivity analyses on the

control reproduction number Rc is carried out. It is revealed that the transmission rate from

sheep to dog (βsd) is the most influential parameter in the dynamics of cystic echinococcosis. To

xii



illustrate the analytical results and establish the long term behavior of the disease numerical

simulations are performed. The impact of control strategies is investigated. It is shown that,

whenever vaccination of sheep is carried out solely or in combination with cleaning or

disinfection of the environment, transmission of cystic echinococcosis can be controlled. However,

with cleaning or disinfecting of the environment alone, the disease persists in the populations.

Furthermore, an optimal control approach is applied to a model of cystic echinococcosis in the

populations of sheep, dog and human. The main objective is to reduce or eliminate the disease

from the three populations while minimizing the intervention implementation costs. We used

Pontryagin’s Minimum Principle to solve the optimal control problem. Numerical simulations of

the time evolution of infected sheep, dog and human populations are provided to illustrate the

effects of optimal and constant controls. It is noticed that optimal control strategy is better than

the small amount constant controls in reducing the prevalence of the disease in the populations.

While time independent control(s) is(are) administered at maximum amount, it is also noticed

that the optimal control strategy is effective as the time-dependent controls. We also calculate

the Incremental Cost Effectiveness Ratio(ICER) to investigate the cost effectiveness of these

strategies. Our results show that the most cost-effective strategy for cystic echinoccosis control is

the combination of vaccination of sheep and cleaning or disinfection of the environment.

xiii



Chapter 1

Introduction

1.1 Background

Echinococcosis, which is commonly known as hydatidosis, is zoonotic parasitic disease caused by

the larvae of Echinococcus. It is a parasitic disease caused by ingesting the eggs of tapeworm

genus Echinococcus through contaminated environment (typically food or water). The life cycle

of the parasite is maintained by intermediate herbivore hosts, such as sheep, goats, cattle,

camels, and cervids, as well as by predators that serve as definitive hosts (such as dogs, foxes,

canines, felids, or hyenids. [7]. Five species of Echinococcus have been identified which infect

wide range of domestic and wild animals. However, Echinococcus granulosus and Echinococcus

multilocularis are the most common species that infect human population [25, 32]. Echinococcus

granulosus causes cystic echinococcosis while Echinococcus multilocularis causes a type of

echinococcosis known as alveolar echinococcosis. The two types of echinococcosis have wide

geographic distribution, high prevalence and great economic impact [25,32,46]. Overall economic

losses due to this disease are estimated at two billion US$ annually and cystic echinoccoccosis is

believed to affect more than one million people worldwide [48].

Cystic echinococcosis (CE) is parasitic disease, also called “cystic hydated disease” caused by the

larval stage of small tapeworms (dog tapeworms) known as Echinococcus granulosus [25]. The

life cycle of the parasite involves two hosts, an intermediate host, commonly sheep, and a

definitive host, commonly dogs. In its transmission dynamics, the domestic dog is the principal

definitive host. When dogs are fed fresh offal or scavenge infected sheep carcasses containing

cysts, they become infected. The cysts develop into adult tapeworms in dogs. Infected dogs shed

tapeworm eggs in the feces to the environment. Echinococcus granulosus eggs that have been
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CHAPTER 1. INTRODUCTION

deposited in the soil can stay viable for up to a year [24, 29, 31]. The intermediate host such as

sheep, goats, cattle, camels, and cervids ingests the eggs incidentally while grazing, foraging or

drinking. The eggs hatch in the small intestine of the intermediate host, become larvae which

penetrate the gut wall, and are carried in the circulatory system to various organs. There the

cysts, called hydatid cysts or metacestodes, are formed. The life cycle of the parasite is

completed when the cysts are ingested by the definitive host, the larvae (protoscoleces) are

released from the cyst into the small intestine, and develop into adult tapeworms that produce

eggs which are released into the environment in the feces of the host animal. The most common

infection of humans is due to accidental ingestion of Echinococcus granulosus eggs passed into

the environment with feces from definitive hosts (dogs are the main sources). This occurs by

consumption of contaminated food and water or through contact with contaminated soil [48].

Only infected definitive hosts, which release Echinococcus granulosus eggs within their feces, are

relevant in terms of transmission of the infection/disease to humans. In humans, the cysts of

Echinococcus granulosus usually developed in organs such as the liver or lungs, so the signs of

disease are due to liver or lung deficiency. Rarely, cysts form in bones causing spontaneous

fractures, or in the brain causing neurological signs [25]. Figure 1.1 shows the life cycle of

Echinococcus granulosus.

Figure 1.1: Life cycle of Echinococcus granulosus [Source: European Scientific Counsel Companion
Animal Parasites (ESCCAP)] [58].
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1.2. SOCIO-ECONOMIC CONSEQUENCES OF CYSTIC ECHINOCCOSIS

The dynamics of Echinococcus granulosus transmission depends on number of factors. These

include the parasite’s biotic potential, activation of the immune system in its hosts over the life

cycle, life expectancy, and parasite development time [63]. Transmission of this parasite can be

impacted by social and ecological factors such as meat inspection procedures, how dead and

injured animals are disposed of, and populations of stray, feral, or sylvatic hosts, to name a few.

The prevalence of the parasites within the offal and the frequency of offal feedings both influence

the infection pressure within the definitive host. The transmission of the parasite is heavily

influenced by the definitive host’s immunity as well as the frequency of interaction between the

intermediate and definitive hosts (such as in herding dogs and pasture animals being kept in

close proximity where dogs can contaminate grazing areas with fecal matter) [1, 2, 6, 45]. When

the carrier host dies in the field or is slaughtered for consumption releasing viscera to the

environment, the carnivore-omnivore or predator–prey cycle is completed; therefore, the

domestic routine of slaughtering game or small animals is the main risk factor for the spread of

the disease [37].

Cystic echinococcosis has worldwide geographical distribution. Its prevalence in both animals

and humans has been extensively recorded in Australia, some parts of America (especially South

America), Central Asia, Northern and Eastern Africa, and the Mediterranean Basin [24, 31, 46].

The disease is typically common in pastoral regions where sheep, cattle, and camelids are

prominent and dogs are kept for herding or property guarding in close proximity to house holds.

Dogs in such regions are frequently fed offal and for religious and other reasons, their

populations might not be curtailed [21].

1.2 Socio-economic consequences of cystic echinoccosis

Cystic echinococcosis affects both human and animal health and has important economic

consequences. In humans, it may have various consequences, including direct monetary costs

(diagnosis, hospitalization, surgical or percutaneous treatments, therapy, post-treatment care,

travel for both patient and family members) as well as indirect costs (suffering and social

consequences of disability, loss of working days or “production”, abandonment of farming or

agricultural activities by affected or at-risk persons). It should be noted that some of the above

mentioned consequences are difficult to evaluate from an economic point of view and others can

be mainly or exclusively evaluated in social terms. The disease may negatively affect the

“quality” of life. In livestock, the following consequences of CE must be considered: reduced

3



CHAPTER 1. INTRODUCTION

yield and quality of meat, milk and wool; decreased hide value; reduced birth rate and fecundity;

delayed performance and growth; condemnation of organs, especially liver and lungs; costs for

destruction of infected viscera and dead animals. There are also other possible indirect

detrimental consequences, such as bans on export of animals and their products if these are

required to be free of CE. In livestock, the importance of the above-mentioned economic

consequences will depend, to a large extent, on the typology and general health status of the

animals and on the characteristics of the farming or livestock industry. Quantification,

standardized evaluation of such losses and exclusion of biasing factors in animal production are

very difficult; therefore the available data should be interpreted with caution [5, 13].

The awareness of the socio-economic impact of the disease has stimulated the implementation of

control campaigns against CE in certain areas or countries. Education, dog control, dog

treatment, detection and disposal of infected viscera, diagnosis (such as mass screening), and

therapy in humans, epidemiological surveillance and monitoring, program administration, and

evaluation are the main expenses incurred for cystic echinococcosis control programs. It should

be noted that some of the expenses sustained for echinococcosis control may simultaneously be

beneficial to control programs against other diseases or animal correlated problems (e.g. rabies,

tapeworm infections, dog straying, food hygiene). If the control includes vaccination, costs of

vaccine and stock vaccination must also be considered. The benefits of control programs may be

financial and non-financial (the latter category is difficult to evaluate). The most relevant

financial benefits are the following: increase in farm animal production; increase in the quantity

and quality of organs suitable for consumption by humans and carnivorous animals; decreased

medical costs. The non-financial benefits (in some cases these may be evaluated from an

economic point of view) include the following: increase in the average number of healthy years of

life, improvement of the physical, psychological and social status of the population, improvement

of veterinary and public health services, hygiene and primary health care, reduction in other

health or zoo-economic problems such as rabies, food-borne infections, diseases by cestode larvae

in farm animals, etc [5, 13].

1.3 Methods of Control of cystic echinococcosis

Infection with Echinococcus granulosus has become a major public health issue in several

countries and regions, even in places where the prevalence of the disease was previously at low

levels. This is due to less implementation of control programs against the disease as a result of

4



1.3. METHODS OF CONTROL OF CYSTIC ECHINOCOCCOSIS

economical problems and lack of resources [31]. Although control programs against human cystic

(CE) have been built up and viable control methodologies are accessible in some nations, the

parasite has still influenced many countries. Human CE is persisting in many parts of the world

with high incidences [25, 31]. The human incidence can exceed 50 per 100,000 person-years in

areas of endemicity, and prevalence rates as high as 5% to 10% can be found in some

countries [32]. The incidence of human Hydatid disease in any country is closely related to the

prevalence of the disease in domestic animals and is highest where there is a large dog

population and high sheep production [22]. The average annual death rate from echinococcosis is

0.007 per 10,000 population, which is very low. The main causes of death are either

complications of hepatic and pulmonary echinococcosis or echinococcosis of the heart. The

complications of liver echinococcosis may develop due to the changes occurring not only in the

parasitic cyst, but also in the affected organ or in the patient’s body [35]

According to WHO, cystic echinococcosis is a preventable disease. Under the umbrella of One

Health, WHO and its partner, the World Organization for Animal Health (OIE) are supporting

the development of echinococcosis control programs including animal interventions. Joint

meetings are being held regularly and technical support is provided to promote control. WHO

assists countries to develop and implement pilot projects leading to the validation of effective

cystic echinococcosis control strategies. Working with the veterinary and food safety authorities

as well as with other sectors is essential to attain the long-term outcomes of reducing the burden

of disease and safeguarding the food value chain [49]. To employ preventive measures,

understanding of the transmission dynamics, between dogs and sheep, and from dogs to human

is important. It is from this knowledge that effective control strategies can be devised, so that

the control strategies can be utilized to reduce the prevalence of the parasite in intermediate and

domestic hosts. Understanding of the epidemiology of echinococcosis has been greatly improved,

new diagnostic techniques for both humans and animals have been developed, new prevention

strategies have emerged with the development of a vaccine against Echinococcus granulosus in

intermediate hosts [25] . Since sheep has a substantial potential to transmit the parasite,

vaccination of sheep with an Echinococcus granulosus recombinant antigen (EG95) offers

encouraging prospects for prevention and control [9]. The EG95 vaccine against CE has proven

to be highly effective, it is currently being produced commercially and is registered in China and

Argentina. Trials in Argentina demonstrated the added value of vaccinating sheep, and in China

the vaccine is being used extensively [3, 22, 66]. Currently there are no human vaccines against

any form of echinococcosis [3]. To reduce the concentration of the parasite and break the
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parasite’s life cycle, cleaning or sanitization of environment offers a practical preventive

technique [50]. Echinococcus eggs can be inactivated by disinfectants such as formalin, chlorine

gas, certain freshly-prepared iodine solutions (but not most iodides) or lime can inhibit hatching

of the embryo and reduce the number of viable eggs. Food safety precautions such as washing of

fruits and vegetables, combined with good hygiene, can reduce exposure to eggs on food. The

hands should always be washed after handling pets or farming, gardening or preparing food, and

before eating. Water from unsafe sources such as lakes should be boiled or filtered. Meat,

particularly the intestinal tract of carnivores, should be thoroughly cooked before eating [28].

1.4 Aim and objectives of the study

The aim of this research is to derive optimal strategies to control cystic echinococcosis in the

populations of sheep, dog and human.

1.4.1 Objectives

This research work intends to :

• derive and analyze a mathematical model of the transmission dynamics of cystic

echinococcosis, and obtain the equilibrium points and study their stability,

• investigate the degree at which different parameters affects the transmission dynamics of

cystic echinococcosis, and

• obtain optimal strategies to eradicate or control cystic echinococcosis.

1.5 Significance of the study

This research work will put forward some controlling strategies, which will help the Ministry of

Health, policy makers and some concerned sectors in order to plan and implement the proposed

strategies to control the disease. Besides, the results obtained from this research can be used as

an input for researchers to extend the research work further.
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1.6. ORGANIZATION OF THE THESIS

1.6 Organization of the thesis

This thesis is presented in six chapters. Chapter 1 provides background of the life cycle of the

disease, controlling methods of the disease, objectives of the study and significance of the study.

Chapter 2 deals with Mathematical preliminaries and review of literature. Basic definitions of

important terminology that state properties of solutions of a system of ODE such as existence and

uniqueness of solutions and stability are presented. Chapter 3 presents the mathematical model

of predator-prey interaction model, and mathematical modeling of cystic echinococcosis without

interventions, and mathematical analyses are done. Chapter 4 deals with mathematical model

with intervention strategies, and a detail mathematical analysis of the model is done. Chapter 5

presents the optimal control theory of the disease transmission with the proposed controls. Finally,

Chapter 6 includes discussion of results, conclusion and recommendations.
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Chapter 2

Review of literature and Mathematical

Preliminaries

In this chapter we introduce review of literature and some of the preliminary notion of dynamical

systems theory that are relevant in this thesis. Basic definitions of important terminology, theorems

(propositions) that state fundamental properties of solutions of dynamical system (systems of

ODE) like existence, uniqueness of solutions and stability will be presented.

2.1 Review of literature

Mathematical modeling is an important interdisciplinary activity involving biology, epidemiology,

ecology and so on. Diseases’ dynamics are some of the various aspects of the disciplines studied

using mathematical modeling. It has played a significant role in understanding the dynamics of

the disease and in developing different control measures [12,16,18]. Considered as one of the first

compartmental models, Kermack–McKendrick epidemic model was developed in the late

1920s [34]. The model is described as the SIR model for the spread of disease. The model is a

good one for many infectious diseases, then, numerous and more complex compartmental

mathematical models have been developed. Moreover, the prey–predator interaction between

species have been taken into account in mathematical models of disease dynamics by many

scholars. The predator-prey interaction between species is an important issue from mathematical

as well as ecological point of view. There are considerable and significant efforts to study the

population dynamics in predator–prey relationships by using mathematical modeling. Lotka and

Volterra initially proposed the predator–prey model [41, 65]. Anderson and May were the first

who combined the disease dynamics model with the predator–prey interaction model [1].
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A mathematical model of the life cycle of Echinococcus granulosus was first developed by

Roberts and co-workers and by Harris and co-workers in the 1980s [20]. Over the last 30 years,

mathematical models of the transmission dynamics of this disease have also been developed and

studied [14, 29, 30, 53, 54, 63, 68]. A survey of Echinococcus granulosus, Taenia hydatigena and T.

ovis for sheep and goats were undertaken in order to investigate the transmission dynamics of

these parasites in northern Jordan. It was found that Echinococcus granulosus was in an

endemic steady state with no evidence of protective immunity in the intermediate host [47, 62].

Yang et al. [69] used statistical analysis to conclude that a control program, which combined

sheep vaccination and dog anthelmintic treatment, could achieve the goal of echinococcosis

control in the long term. Moss et al. [39] considered the reinfection of canine echinococcosis to

investigate the role of dogs in the spread of Echinococcus multilocularis in Tibetan communities

of Sichuan Province. The results suggested that dog deworming could be an effective strategy to

reduce the endemic in those communities. Craig et al. in [20] pointed out that combining

treatment and control measures to control echinococcosis was the most effective potential. Some

models have suggested that the use of both livestock vaccination and treatment of dogs could

reduce the frequency of anthelmintic treatment of dogs that is required whilst still achieving

effective control [57]. However, studies have shown that cystic echinococcosis is often expensive

and complicated to treat and may require extensive surgery and/or prolonged drug therapy.

Prevention programs focus on other control measures such as improved food inspection,

slaughterhouse hygiene, and public education campaigns. Conditions such as poor hygiene and

failure to wash contaminated food facilitate the spread of CE infection in the human population.

CE transmission from food to humans is common in areas where people usually consume raw

vegetables; most are cultivated in open fields where stray dogs roam freely and contaminate the

vegetables by dropping feces containing Echinococcus granulosus eggs [71].

Although, the aforementioned studies have produced useful insights on the transmission

dynamics of cystic echinococcosis. These models lacks the human transmission pathway,

predator–prey relationship between the populations, the saturation effect and other intervention

strategies. From the fact that cystic echinococcosis is a disease that affect human population,

advanced study by inclusion of a human transmission component to the model is essential.

Moreover, the predator-prey relationships between species play an important role from ecological

and epidemiological point of view. It affect the distribution, abundance, and dynamics of species

in ecosystems, and it has a detrimental effect in the dynamics of disease. Mathematical modeling
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in ecology helps to determine sufficient conditions for which the interacting populations coexist.

However, the predator-prey interaction between sheep, dog and human was not considered in

previous mathematical models of cystic echinococcosis. The incidence rate, i.e., the rate of new

infection plays an important role in the context of epidemiological modeling. Generally, the

incidence rate is assumed to be bilinear in the infected fraction I and the susceptible fraction S.

There are many factors that emphasize the need for a modification of the standard bilinear form.

It has been suggested by some authors [15, 26] that the disease transmission process may follow

the saturation incidence, saturation factor, which is more realistic than the bilinear one, as it

includes the behavioral change and crowding effect of the susceptible individual and also

prevents unboundeness of the contact rate.

The optimal control theory to find the optimal measures among comprehensive implementation

interventions, has been applied to models of infectious diseases [11, 38, 57], including the human

alveolar echinococcosis in Hokkaido [33]. Usually, the control of CE remains notoriously difficult,

time-consuming and costly, especially in large scale campaign in remote and larger pastoral

communities [22]. The prevention and control of CE require substantial financial resources. In

order to evaluate the effectiveness of the control programs, the optimal control measures must be

carried out in real-world interventions of CE [57].

In this thesis, the predator–prey model which represents the interaction between dog, sheep and

human populations is developed and analyzed. Sufficient conditions for which the interacting

populations coexist is determined. We formulate and analyze mathematical models for the

transmission dynamics of cystic echinococcosis without control, and then with vaccination of

sheep and disinfection or cleaning of the environment as control strategies. In these models, we

consider the populations of dog as definite host, the populations of sheep and human as

intermediate hosts and the concentration of parasites in the environment as the source of

infection for intermediate hosts. Due to the fact that sufficient number (saturation) of parasite

in the environment is required to produce infection in intermediate hosts, saturation effect in the

models is incorporated. We find equilibrium solutions and derive the basic and control

reproduction numbers using next generation method. Matrix-theoretic method is used to prove

the global stability of disease free equilibrium, and the Volterra–Lyapunov matrix theory

approach is used to prove the global stability of endemic equilibrium. Sensitivity analysis is done

to determine the most sensitive parameters. For this purpose, data from the literature and

assumed (estimated) values are used. Numerical simulations are used to illustrate our results.
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Although an analysis of the time-optimal application of outbreak controls is of clear practical

value, surprisingly little attention has been given in the models of cystic echinococcosis. In this

study, an optimal control problem is formulated by incorporating vaccination of sheep and

cleaning or disinfection of the environment as intervention strategies. Optimal control theory is

applied to suggest the most effective mitigation strategy to minimize the number of individuals

who become infected in the course of an infection while efficiently balancing the two controls

applied to the models over a finite time period. The detailed qualitative optimal control analysis

of the resulting model is carried out and the necessary conditions for optimal control is given

using Pontryagin’s Maximum Principle, in order to determine optimal strategies for controlling

the spread of the disease. The cost-effectiveness analysis of the control strategies is further

considered, in order to ascertain the most cost-effectiveness of strategies.

2.2 Mathematical Preliminaries

Definition 2.2.1 [61] Let X be a real vector space. A norm on X is a map ||.|| : X → [0,∞)

satisfying the following requirements:

(i) ||0|| = 0, ||x|| > 0 for all x ∈ X\{0}

(ii) ||λx|| = |λ|||x|| for all λ ∈ R and x ∈ X,

(iii) ||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ X.

The pair (X, ||.||) is called a normed vector space.

Remark 2.2.2 The p− norm of x = (x1, x2, · · · , xn) is defined as

||x||p =
(
|x1|2 + |x2|2 + · · ·+ |xn|2

)p
Definition 2.2.3 [61] The function f : Rn → Rn is differentiable at x0 ∈ Rn if there is a linear

transformation Df(x0) ∈ L(Rn) that satisfies lim
||h||→0

||f(x0 + h)− f(x0)−Df(x0)||
||h||

= 0.

The linear transformation Df(x0) is called the derivative of f at x0.

Definition 2.2.4 [61] Suppose that f : E → Rn is differentiable on E, then f ∈ C1(E) if the

partial derivative Df : E → L(Rn), is continuous on E .

Theorem 2.2.5 [61] Suppose that E is an open subset of Rn and that f : E → Rn. Then

f ∈ C1(E) if the partial derivatives
∂fi
∂xj

, i, j = 1, 2, · · ·n, exist and are continuous on E.
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2.3 Dynamical system

A system of differential equations is a collection of n interrelated differential equations of the form

ẋ(t) = f(t, x), (2.3.1)

where f(t, x(t)) =



f1(t, x1, · · · , xn)

f2(t, x1, · · · , xn)

.

.

.

fn(t, x1, · · · , xn)


.

An initial condition or initial value for a solution x : S → Rn is a specification of the form

x(t0) = x0 where t0 ∈ S and x0 ∈ Rn.

Definition 2.3.1 [17] Let I ⊆ [a,∞) be a time interval. A solution to (2.3.1) on I with initial

value x(0) = x0 is a mapping ψ : I → Rn which is continuously differentiable on I, and satisfies

(i)
d

dt
ψ(t) = f(t, x) for all t ∈ I,

(ii) ψ(t0) = x0.

An autonomous differential equation is a system of ordinary differential equations which does not

depend on the independent variable. An initial valued autonomous system is an equation of the

following form:

ẋ = f(x), x(t0) = x0 (2.3.2)

where f : Rn → Rn.

2.4 Existence and Uniqueness Theorem

The main problem in differential equations is to find the solution of any initial value problem; that

is, to determine the solution of the system that satisfies the initial condition x(t0) = x0 for each

x0 ∈ Rn. Unfortunately, nonlinear differential equations may have no solutions satisfying certain

initial conditions. To ensure existence and uniqueness of solutions, certain conditions must be

imposed on the function f .
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Definition 2.4.1 [61] Let E be an open subset of Rn. A function f : E → Rn is said to be

Lipschitz continuous on E if there is a positive constant K such that for all x, y ∈ E, ||f(x) −
f(y)|| ≤ K||x− y||.

Remark 2.4.2 One effective way to check if a function satisfies a Lipschitz condition is to check

if it is continuously differentiable. A continuously differentiable function is locally Lipschitz, hence

every IVP problem with f ∈ C1(E) possesses a unique maximal solution. Moreover, if the domain

E is convex, then a continuously differentiable function f is globally Lipschitz if and only if its

partial derivatives
∂fi
∂xj

, i, j = 1, 2, · · ·n, are globally bounded.

Theorem 2.4.3 [55] ( The Existence and Uniqueness Theorem)

If f is Lipschitz in a ball around the initial condition x(t0) = x0, then there exists a δ > 0 such

that the IVP (2.3.2) has unique solution over [t0, t0 + δ].

We are interested in the IVPs of form (2.3.2) whose solutions are defined on an interval I containing

the interval (t0,∞), i.e., IVPs with solutions defined globally in time. There are various results

ensuring this fact, and we first present one that is straightforward to understand but still covers

many interesting situations. This is done using the growth condition presented in the following

theorem.

Theorem 2.4.4 [17] Assume that f : (a,∞) × Rn → Rn is continuously differentiable, i.e., its

partial derivatives of first order are continuous functions, and there exist non- negative continuous

mappings h, k : (a,∞)→ R such that

||f(t, x)|| ≤ h(t)||x||+ k(t), for all (t, x) ∈ (a,∞)× Rn.

Then, there exists a unique solution to (2.3.1) which is defined globally in time.

Another condition that also ensures the existence of solutions defined globally in time is the

so-called dissipativity condition. This condition is used for autonomous version.

Theorem 2.4.5 [17] Assume that f : Rn → Rn is continuously differentiable, and and there

exist two constants α and β with β > 0 such that f(x).x ≤ α||x||2 +β. Then, there exists a unique

solution to (2.3.2) which is defined globally in time.
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2.5 Equilibrium points, and stability

Definition 2.5.1 [60] A point x = x∗ is an equilibrium point of the system (2.3.2) if f(x∗) = 0

for all t ∈ R.

An equilibrium point is also referred to as steady-state solution or critical point.

Definition 2.5.2 [60] The equilibrium point x = x∗ of (2.3.2) is

(a) stable, if for each ε > 0 there is δ = δ(ε) > 0 such that ||x(t0)− x∗|| < δ =⇒ ||x(t)− x∗|| <
ε,∀t > t0 ≥ 0,

(b) asymptotically stable if is stable and there exist a δ > 0 such that ||x(t0) − x∗|| < δ =⇒
lim
t→∞
||x(t)− x∗|| = 0,

(c) globally-asymptotically stable if it is stable and lim
t→∞
||x(t0)− x∗|| = 0 for all x(t0) ∈ Rn,

(d) unstable if it is not stable.

Definition 2.5.3 [17] A continuous function V : U ⊆ Rn → R

(a) is positive definite around x = 0 if V (0) = 0, and V (x) > 0, for all x ∈ U\{0}.

(b) is positive semi-definite around x = 0 if V (0) = 0, and V (x) ≥ 0, for all x ∈ U\{0}.

(c) is negative definite or negative semi-definite if −V is positive definite or positive semi-definite,

respectively.

2.5.1 Lyapunov stability and LaSalle’s Invariance Principle

Definition 2.5.4 [17] A function V : U ⊆ Rn → R is said to be a Liapunov function for (2.3.2)

if

• V is positive definite, and

• V̇ (x) < 0, for all x ∈ U\{0}

The following theorem provide sufficient conditions for the stability of the equilibrium point of

(2.3.2).

Theorem 2.5.5 [17] (Lyapunov’s stability theorem) Let V : U ⊆ Rn → R be continuously

differentiable function with V̇ along the trajectories of the system (2.3.2).
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1. If V is positive definite and V̇ is negative semi-definite, then the equilibrium point is stable.

2. If V is positive definite and V̇ is negative definite, then the equilibrium point is asymptotically

stable.

Theorem 2.5.6 [36] Let x = 0 be an equilibrium point for (2.3.2). Let V : U ⊆ Rn → R be

continuously differentiable function such that

(i) V is a Lyapunov function and

(ii) V is radially unbounded, that is, ||x|| → ∞ =⇒ V (x)→∞

then x = 0 is globally asymptotically stable.

Some times an equilibrium point can be asymptotically stable even if V̇ is not negative definite.

In fact if we can find a Lyapunov function whose derivative along the trajectories of the system

is only negative semi-definite, but we can further establish that no trajectory can stay at point

where V̇ = 0, then the equilibrium is asymptotically stable. This is the idea of LaSalle’s

invariance principle. Before stating the principle, we introduce the definitions of ω − limit set

and invariant set, which are important to state the LaSalle’s invariance principle.

Let φ(t, x0) be the autonomous dynamical system generated by the solutions of IVP (2.3.2).

Definition 2.5.7 [17] A set E is said to be ω − limit set of φ(t, x0) if for every x ∈ E, there

exist a strictly increasing sequence of times {tn} such that φ(tn, x0)→ x as tn →∞.

Definition 2.5.8 [17] A set M ⊆ Rn is said to be (positively) invariant set with respect to (2.3.2)

if ∀x ∈M , we have φ(t, x) ∈M , ∀t ≥ 0.

Theorem 2.5.9 [36](LaSalle’s invariance theorem) Let Ω ∈ D is a compact (i.e. closed and

bounded) positively invariant set with respect to (2.3.2). Let V : D → R be continuously

differentiable function such that V̇ (t) ≤ 0 in Ω. Let E be a set of all points in Ω, where

V̇ (0) = 0. Let M be the largest invariant set in E. Then every solution starting in Ω approaches

M as t→∞.
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2.5.2 Local stability

Linearization is a key concept when examining the equilibrium stability of a system of differential

equations [36]. In order to linearize the system (2.3.1) we need to first compute the Jacobian

matrix for the system. If a system consists of n functions of n variables, i.e f1(x1, · · · , xn),

f2(x1, · · · , xn),· · · , fn(x1, · · · , xn), then the Jacobian matrix, J , is a matrix of the partial

derivative of each function with respect to each variable: J =



∂f1

∂x1

. . .
∂f1

∂xn
. . .

. . .

. . .
∂fn
∂x1

. . .
∂fn
∂xn


.

The matrix J provides a linear approximation of a system at any given point, and when

evaluated at an equilibrium point P . J(P ) also encodes information above the nonlinear system.

It is necessary to evaluate a Jacobian matrix at P and examine its corresponding eigenvalues,

since analysis of the eigenvalues of the Jacobian matrix evaluated at a equilibrium gives insight

into the stability properties of that equilibrium.

Theorem 2.5.10 [36] Let f : Rn → Rn be C1 and x∗ ∈ Rn be a fixed point of (2.3.2). Let

Df(x∗) be the linearization of f and λ1, λ2, · · · , λn be its eigenvalues. x∗ is

(i) asymptotically stable if Re(λi) < 0 for all i = 1, 2, · · · , n,

(ii) unstable if Re(λi) > 0 for some i.

If the eigenvalues all have real parts zero, then further analysis is necessary.

It is possible to determine the signs of the eigenvalues of the Jacobian using a theorem of Routh

and Hurwitz. This is presented below.

Theorem 2.5.11 [51] (Routh-Hurwitz Criteria for a Characteristic Polynomial). Given the

polynomial Pn(x) = xn + a1x
n−1 + a2x

n−2 + · · · + an−1x + an where each ai is a constant real

coefficient, define the n Hurwitz matrices using the coefficients ai :
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H1 =
(
a1

)
, H2 =

(
a1 1

a3 a2

)
, H3 =

 a1 1 0

a3 a2 a1

a5 a4 a3

 · · · Hn =



a1 1 0 0 . . 0

a3 a2 a1 1 . . 0

a5 a4 a3 a2 . . 0

. . . . . . .

. . . . . . .

. . . . . . .

0 0 0 . . . an


All of the roots of Pn(x) are negative or have negative real part if and only if the determinants of

all the Hurwitz matrices are positive.

Corollary 2.5.12 [51] All of the roots of P3(x) are negative or have negative real part if and

only if a1 > 0, a1a2 > a3 , and a3 > 0.

2.6 The basic reproduction number

The basic reproduction number, R0, is defined as the expected number of secondary cases

produced by a single (typical) infection in a completely susceptible population. It is a threshold

parameter, intended to quantify the spread of disease by estimating the average number of

secondary infections in a wholly susceptible population, giving an indication of the invasion

strength of an epidemic. If R0 < 1 then on average an infected individual produces less than one

new infected individual over the course of its infectious period, and the infection cannot grow.

Conversely, if R0 > 1, then each infected individual produces, on average, at least one new

infection, and the disease can invade the population. A more general basic reproduction number

can be defined as the number of new infections produced by a typical infective individual in a

population at a DFE. One way to calculate the basic reproduction number uses the next

generation approach is presented in [23,64] below.

In compartmental models for infectious disease transmission, individuals are categorized into

compartments. Let x = (x1, x2, · · · , xn) with each xi ≥ 0, be the number of individuals in each

compartment. In this case, the first m compartments correspond to infected individuals. In

order to compute R0, it is important to distinguish new infections from all other changes in

population. Let Fi(x) be the rate of appearance of new infections in compartment i, V+
i (x) be

the rate of transfer of individuals into compartment i by all other means, and V−i (x) be the rate
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of transfer of individuals out of compartment i. It is assumed that each function is continuously

differentiable at least twice in each variable. The disease transmission model consists of non-

negative initial conditions together with the following system of equations:

ẋi = fi(x) = Fi(x)− Vi(x), i = 1, 2, · · ·n (2.6.1)

where Vi(x) = V+
i (x)−V−i (x) and the functions satisfy assumptions (A1)–(A5) described below.

Since each function represents a directed transfer of individuals, they are all non-negative. Thus,

(A1) if x ≥ 0, then Fi,V+
i ,V−i ≥ 0 for all i = 1, 2, · · ·n.

If a compartment is empty, then there can be no transfer of individuals out of the

compartment by death, infection, nor any other means. Thus,

(A2) if xi = 0 then V−i = 0. In particular, if x ∈ Xs, where Xs = {x ≥ 0|xi = 0, i = 1, 2, · · ·m}
is the set of all disease free states, then V−i = 0 for i = 1, 2, · · ·m.

The next condition arises from the simple fact that the incidence of infection for uninfected

compartments is zero.

(A3) Fi = 0 if i > m.

To ensure that the disease free subspace is invariant, we assume that if the population is

free of disease then the population will remain free of disease. That is, there is no (density

independent) immigration of infectives. This condition is stated as follows:

(A4) If x ∈ Xs then Fi = 0 and V+
i = 0 for i = 1, 2, · · ·m.

The remaining condition is based on the derivatives of f near a DFE. For our purposes,

we define a DFE of (2.6.1) to be a (locally asymptotically) stable equilibrium solution of

the disease free model. Consider a population near the DFE x0. If the population remains

near the DFE (i.e., if the introduction of a few infective individuals does not result in an

epidemic) then the population will return to the DFE according to the linearized system

ẋ = Df(x0)(x− x0) (2.6.2)

where Df(x0) is the derivative
∂fi
∂xj

evaluated at the DFE x0, (i.e, the Jacobian matrix). We

restrict our attention to systems in which the DFE is stable in the absence of new infection.

That is,

(A5) If F(x) is set to zero, then all eigenvalues of Df(x0) have negative real parts. The conditions

listed above allow us to partition the matrix Df(x0) as shown by the following lemma.
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Lemma 2.6.1 [23, 64] If x0 is a DFE of (2.6.1) and fi(x) satisfies (A1)–(A5) then the

derivatives DF(x0) and DV(x0) are partitioned as DF(x0) =

(
F 0

0 0

)
,

DV(x0) =

(
V 0

J3 J4

)
, where F and V are the m × m matrices defined by F =

[
Fi
xj

(x0)

]
and

V =

[
Vi
xj

(x0)

]
with 1 ≤ i, j ≤ m.

Further, F is non-negative, V is a non-singular M-matrix and all eigenvalues of J4 have positive

real part.

The next generation matrix is K = FV −1, whose (i, k) entry represent the expected number of

new infections in compartment i produced by the infected individual originally introduced into

compartment k. The (j, k) entry of V −1 is the average length of time this individual spends in

compartment j during its lifetime, assuming that the population remains near the DFE and barring

reinfection, and the (i, j) entry of F is the rate at which infected individuals in compartment j

produce new infections in compartment i. Thus, the basic reproduction number is defined as the

spectral radius of K [23, 64], given by

R0 = ρ(FV −1) (2.6.3)

The DFE, x0, is locally asymptotically stable if all the eigenvalues of the matrix Df(x0) have

negative real parts and unstable if any eigenvalue of Df(x0) has a positive real part. By Lemma

2.6.1, the eigenvalues of Df(x0) can be partitioned into two sets corresponding to the infected

and uninfected compartments, F − V and those of J4. The stability of the DFE is determined by

the eigenvalues of F − V . The following theorem states that R0 is a threshold parameter for the

stability of the DFE.

Theorem 2.6.2 [23, 64] Consider the disease transmission model given by (2.6.1) with f(x)

satisfying conditions (A1)–(A5). If x0 is a DFE of the model, then x0 is locally asymptotically

stable if R0 < 1, but unstable if R0 > 1, where R0 is defined by (2.6.3).

Global stability of DFE: A matrix-theoretic method

This method based on Perron eigenvector is used to prove the GAS of DFE. We use this approach

to systematically construct a Lyapunov function. Following the steps used in [23,64], set

f(x, y) = (F − V )x−F(x, y) + V(x, y) (2.6.4)
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Then the compartmental disease transmission model is given by

ẋ = V(x, y)−F(x, y), y′ = g(x, y) (2.6.5)

with g = (g1, · · · gm)T , x = (x1, · · ·xn)T ∈ Rn and y = (y1, · · · ym)T ∈ Rm represent the populations

in disease compartments and non disease compartments, respectively; F = (F1, · · · F1)T and

V = (V1, · · · V1)T where Fi represents the rate of new infections in ith disease compartment; and

Vi represents the transition terms in ith disease compartment. The disease compartmental model

can be written as

ẋ = (F − V )x− f(x, y) (2.6.6)

Theorem 2.6.3 [59] Let F , V satisfy conditions (A1)–(A5) and f(x, y) be defined as in (2.6.4).

If f(x, y) ≥ 0 in Γ ∈ Rn+m
+ , F ≥ 0, V −1 ≥ 0, R0 ≤ 1 and then the function W TV −1x is a Lyapunov

function for model (2.6.5) in Γ.

Theorem 2.6.4 [59] Let F , V satisfy conditions (A1)–(A5) and f(x, y) be defined as in (2.6.4),

Γ ∈ Rn+m
+ be compact such that (0, y0) ∈ Γ and Γ is positively invariant with respect to (2.6.5).

Suppose that f(x, y) ≥ 0 with f(x, y0) = 0 in Γ, F ≥ 0, V −1 ≥ 0 and V −1F is irreducible. Assume

that the disease-free system ẏ = g(0, y) has a unique equilibrium y = y0 > 0 that is GAS in Rm
+ .

Then the following results hold for (2.6.5).

1. If R0 ≤ 1, then the DFE, P0 is GAS in Γ,

2. If R0 > 1, then P0 is unstable and system (2.6.5) is uniformly persistent and there exists at

least one EE.

Global stability of EE: Volterra–Lyapunov matrix theory

The study of the endemic global stability is not only mathematically important, but also essential

in predicting the evolution of the disease in the long run so that prevention and intervention

strategies can be effectively designed. The method of Lyapunov functions are widely used to prove

the global stability of Endemic equilibrium point. However, it is often difficult to construct such

Lyapunov function and no general method is available. The general form of Lyapunov functions

used in mathematical biology is given by D =
∑n

i=1 ci(xi−x∗i−x∗i ln xi
x∗i

). When applied to a disease

models, suitable coefficients ci have to be determined such that the derivative of D along solutions
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of the model is non positive, and such a determination becomes very challenging for models

with higher dimensions. We incorporated the Volterra-Lyapunov matrix theory into Lyapunov

functions, which under certain conditions eliminates the need of determining the coefficients. We

apply the method of Lyapunov functions combined with the Volterra-Lyapunov matrix properties

which lead to the proof of the global stabiltiy of the endemic equilibrium (EE). Below we introduce

necessary concepts and notations that will facilitate our global stability analysis, as presented

in [40,70].

Definition 2.6.5 [56] Let A is a symmetric matrix. A is

(a) positive definite if the quadratic form xTAx > 0 for all x = (x1, x2, · · · , xn) 6= 0.

(b) negative definite if the quadratic form xTAx < 0 for all x = (x1, x2, · · · , xn) 6= 0.

Notation: We write a matrix A > 0(< 0) if A is symmetric positive (negative) definite. The

following fundamental result on matrix stability was originally proved by Lyapunov.

Lemma 2.6.6 [40] Let A be an n × n real matrix. Then all the eigenvalues of A have negative

(positive) real parts if and only if there exists a matrix H > 0 such that HA+ ATHT < 0(> 0).

Definition 2.6.7 [40] We say a non-singular n×n matrix A is Volterra–Lyapunov stable if there

exists a positive diagonal n× n matrix M such that MA+ ATMT < 0.

The following lemma determines all 2× 2 Volterra–Lyapunov stable matrices.

Lemma 2.6.8 [40] Let D =

(
d11 d12

d21 d22

)
be a 2 × 2 matrix. Then D is Volterra–Lyapunov

stable if and only if d11 < 0, d22 < 0, and det(D) = d11d22 − d12d21 > 0.

The characterization of Volterra–Lyapunov stable matrices of higher dimensions, however, is much

more difficult. We need the following definition.

Definition 2.6.9 [40] We say a non-singular n × n matrix A is diagonally stable (or positive

stable) if there exists a positive diagonal n× n matrix M such that MA+ ATMT > 0.

From Definitions 2.6.7 and 2.6.9, it is clear that a matrix A is Volterra–Lyapunov stable if and

only if its negative matrix, −A, is diagonally stable.

Lemma 2.6.10 [40] Let D = (dij) be a non singular n × n matrix (n ≥ 2) and

M = diag(m1,m2, · · ·mn) be a positive diagonal n × n matrix. Let E = D−1. Then, if dnn > 0,

M̃D̃ + (M̃D̃)T > 0 and M̃Ẽ + (M̃Ẽ)T > 0, it is possible to choose mn > 0 such that

MD +DTMT > 0
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2.7 Bernoulli Equation

A first-order order differential equation (ODE) is said to be linear if it can be brought into the

form y′ + p(x)y = r(x) [76]. If it cannot be brought into this form, the differential is called

nonlinear. The general solution of the linear equation y′ + p(x)y = r(x), is

y(x) = e−h
(∫

ehr(x)dx+ c
)
, where h =

∫
p(x)dx.

Numerous applications can be modeled by ordinary differential equations (ODEs) that are

nonlinear but can be transformed to linear ODEs [76]. One of the most useful ones of these is

the Bernoulli equation:

y′ + p(x)y = g(x)ya

where a any real number. If a = 0 or a = 1, the resulting equation is linear. Otherwise it is

nonlinear. To find the solutions to non linear equations, we substitute u(x) = [y(x)]1−a, so that

we get the linear ODE

u′ + (1− a)pu = (1− a)g(x),

which has a solution u(x) = e−(1−a)p
(∫

e(1−a)p(1− a)g(x)dx+ c
)
.

2.8 Optimal control theory

Optimal control theory is a modern extension of the calculus of variations to find an optimal

path or value that gives either maximum or minimum points of functions. An optimal control

problem contains state variables, control(s) and an objective function(s). Optimal control theory

is applied to suggest the most effective mitigation strategy to minimize the number of individuals

who become infected in the course of an infection while efficiently balancing the controls applied

to the models with various cost scenarios. The formulation of optimal control problem mainly

involves three parts; state variables, controls and objective functional. In general, an optimal

control problem can be formed by a system of equations where state variables are described by

dx

dt
= g(x(t), u(t), t)), (2.8.1)

where x(t) = (x1(t), x2(t), · · · , xn(t))T denotes a vector of state variables

u(t) = (u1(t), u2(t), · · · , um(t))T is a vector of control variables, g is a n × 1 vector field. The
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objective functional is in the form

J(φ, u) = φ(t) +

∫ T

0

L(x(t), u(t), t)dt, (2.8.2)

where a real valued function L is called the running cost, and φ(t) is called the terminal cost.

Generally, an optimal control problem aims to find the optimal control, u(t) so that the functional

J(φ, u) is minimized or maximized. The solution method involves defining an ancillary function

known as the control Hamiltonian

H = L(x(t), u(t), t) + λ(t)g(x(t), u(t), t)),

which combines the objective function and the state equations much like a Lagrangian in a static

optimization problem, only that the multipliers λ(t), referred to as costate variables, are

functions of time rather than constants. To achieve this goal, we need to use Pontryagin’s

Maximum/Minimum principle and some numerical methods [44,52]. The Pontryagin’s Maximum

principle is described below.

Theorem 2.8.1 [52] If u∗(t) and x∗(t) are optimal for our problem as described above, then

there exists a piecewise differentiable adjoint variable, λ(t) such that

H(t, x∗, u(t), λ(t)) ≤ H(t, x∗, u∗(t), λ(t)) for all controls u at each time t, where the Hamiltonian

H is

H = L(x(t), u(t), t) + λ(t)g(x(t), u(t), t)),

and

λ′(t) =
∂(H(t, x∗, u(t), λ(t)))

∂(x)

λ(T ) = 0, where t0 ≤ t ≤ T.

After formulating the Hamiltonian and applying the theorem above, our optimal control problem

now includes two systems of differential equations that need to be solved. The first system is from

the original state equations and the second one is the system of adjoint equations. One necessary
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condition for the optimality is that at u∗:

∂H

∂u
= 0

Due to the presence of both initial conditions ( for the state equations ) and final time conditions

(for the adjoint equations ), and the fact that most models of our interest are nonlinear, the

optimal control system has to be solved numerically. We will use the Forward-Backward Sweep

Method to conduct the numerical simulation. The steps are described as follows:

Assume that u = u(t, x, λ) can be found explicitly from the optimality condition.

Step 1 Make an initial guess for u (usually 0) on the entire domain.

step 2 Using the initial condition x(0) = a and the values for u, solve x forward in time over the

domain.

Step 3 Using the transversality condition λ(T ) = b (usually 0) and the values for u and x, solve

λ backward in time.

Step 4 Update u by the new x and λ values. We use the optimality condition to update control

u at this step.

Step 5 Check convergence. If values in this iteration and the last one are negligibly close, output

the current values as solutions; otherwise, return to Step 2.
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Chapter 3

Mathematical modeling of

echinococcosis in humans, dogs and

sheep without intervention

In this chapter, the transmission dynamics of echinococcosis in the humans, dogs and sheep

populations without intervention modeled and analyzed. A compartmental nonlinear

deterministic mathematical model for the disease outbreak is used. Mathematical analysis of the

model will be carried out to study the disease dynamics over time and this is used as a tool for

the development of control strategies.

3.1 A mathematical model of cystic echinococcosis

without any intervention

3.1.1 Predator–Prey model

A deterministic mathematical model to represent the population dynamics of sheep, dog and

human population in an ecological situation is used. We assume that sheep are the main food

source for human and dogs. In the absence of the two populations, the sheep population Ns

initially grows exponentially at a per-capita growth rate rs = bs − µs, where bs and µs are the

birth rate and death rate of sheep respectively. However, due to lack of availability of food for

sheep the growth of sheep is self-limiting by the carrying capacity of the environment Ks. The dog

population, Nd grows at a rate proportional to the number of encounters between sheep population

(Ns), and dog population (Nd). The growth rate of dog population due to consumption of sheep
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only is ωNsNd, where ω denotes the conversion efficiency of consumed sheep into dog reproduction

rate. Without sheep as the source of food, the dog population (Nd) grows at a per-capita growth

rate rd = bd−µd, where bd and µd are the birth rate and the natural death rate of dog respectively.

The growth of dog population never exceeds the carrying capacity of the environment Kd. Sheep

are the main food source for human. In the absence of sheep, it is assumed that there exists some

alternative food source for growth of human population. With sheep as source of food, human

population (Nh) grows at a rate θNsNh, where θ denotes the conversion efficiency of consumed

sheep into human reproduction rate. In the absence of sheep as source of food, human population

Nh grows exponentially at a per-capita growth rate rh = bh − µh, where bh and µh are the birth

rate and death rate of human respectively. Human population eventually increase up to the

carrying capacity of the environment Kh. The rate of consumption of sheep by dog and human

are represented by a and c respectively. Furthermore, the sheep, dog and human populations die

naturally at rates represented by µs, µd and µh respectively. Hence, the predator-prey interaction

between the sheep, dog and human populations is represented by a system of nonlinear ordinary

differential equations:

dNs

dt
= rs

(
1− Ns

Ks

)
Ns − aNsNd − cNhNs (3.1.1)

dNd

dt
= rd

(
1− Nd

Kd

)
Nd + ωNsNd (3.1.2)

dNh

dt
= rh

(
1− Nh

Kh

)
Nh + θNsNh, (3.1.3)

with initial conditions Ns(0) ≥ 0, Nd(0) ≥ 0, Nh(0) ≥ 0, where rs > 0, a > 0, ω > 0, c > 0,

µs > 0, µd > 0, µh > 0, θ > 0 and rh > 0.

Theorem 3.1.1 The region

Ω =

{
(Ns, Nd, Nh) ∈ R3

+ : 0 ≤ Ns(t) ≤ Ks, Nd(t) ≤ Kd +
ωKdKs

rd
, Nh(t) ≤ Kh +

θKhKs

rh

}
is

positively invariant for model (3.1.1)-(3.1.3).

Proof. We show the existence and uniqueness of solutions, positivity and boundedness of the

solution of model (3.1.1)-(3.1.3), since the state variables Ns, Nd and Nh represent population

densities. The positivity of these variables is to conform the reality for biological populations,

while boundedness of the solution to conform with the natural restriction to growth due to

limited resources.

Existence and Uniqueness of solutions: The system (3.1.1)-(3.1.3) with initial conditions
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can be expressed as :
dx

dt
= f(x), x(0) = x0, where x = (Ns, Nd, Nh)

T is a vector in R3
+, and

f(x) = (f1(x), f2(x), f3(x))T is the vector field in R3
+ such that

f1(x) = rs

(
1− Ns

Ks

)
Ns − aNsNd − cNhNs, f2(x) = rd

(
1− Nd

Kd

)
Nd + ωNsNd, and

f3(x) = rh

(
1− Nh

Kh

)
Nh + θNsNh. Using standard theorem of the dynamical system [60], f(x) is

the Lipschitz continuous. Hence, a unique solution of (3.1.1)-(3.1.3) exists in some open ball

containing x(0). To show that this is a global solution, it suffices to verify that the dissipative

condition of Theorem 2.4.5 is satisfied. Before proving this theorem is satisfied, we first prove

positivity and boundedness of the solutions as follows.

Positivity and boundedness of solutions:

Equation (3.1.1) is a Bernoulli type [76]. Thus, the integral solution of equation (3.1.1) is given

by

Ns(t) =
KsNs(0)e

∫ t
0 (rs−aNd−cNh)dτ

Ks + rsNs(0)
∫ t

0
e
∫ τ
0 (rs−aNd−cNh)dzdτ

.

Since Ns(0) ≥ 0, we have Ns(t) ≥ 0 for all t > 0.

Equation (3.1.2) is a Bernoulli type [76], whose integral solution is given by

Nd(t) =
KdNd(0)e

∫ t
0 (rd+ωNs)dτ

Kd + rdNd(0)
∫ t

0
e
∫ τ
0 (rd+ωNs)dzdτ

.

Thus, Nd(0) ≥ 0 implies that Nd(t) ≥ 0 for all t > 0. In similar manner, an integral solution of

(3.1.3) is given by

Nh(t) =
KhNh(0)e

∫ t
0 (rh+θNs)dτ

Kh + rhNh(0)
∫ t

0
e
∫ τ
0 (rh+θNs)dzdτ

.

Since Nh(0) ≥ 0, we obtain Nh(t) ≥ 0 for t > 0. Therefore, the solution (Ns(t), Nd(t), Nh(t)) of

the model (3.1.1)-(3.1.3) is non negative for all t ≥ 0.

Boundedness of the solution is proved as follows.

From 3.1.1, we have

dNs

dt
= rs

(
1− Ns

Ks

)
Ns − aNsNd − cNhNs ≤ rs

(
1− Ns

Ks

)
Ns,
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In this case, limt→∞ supNs(t) = Ks. Hence, Ns(t) ≤ Ks.

From 3.1.2, we have

dNd

dt
= rd

(
1− Nd

Kd

)
Nd + ωNsNd

≤ rd

(
1− Nd

Kd

)
Nd + ωKdNd,

:= (rd + ωKs)Nd −
rd
Kd

N2
d

:= −(rd + ωKs)Nd −
rd
Kd

(
N2
d −

2Kd(rd + ωKs)

rd
Nd +

K2
d(rd + ωKs)

2

r2
d

)
+
Kd(rd + ωKs)

2

rd

:= −(rd + ωKs)Nd −
rd
Kd

(
Nd −

Kd(rd + ωKs)

rd

)2

+
Kd(rd + ωKs)

2

rd

This gives us

dNd

dt
+ ψNd ≤ η

where ψ = rd + ωKs and η =
Kd

rd
(rd + ωKs)

2. From the solution of the corresponding differential

equation, we have Nd(t) ≤
η

ψ
−
(
Nd(0)− η

ψ

)
e−ψt. As t → ∞, it is clear that Nd(t) →

η

ψ
.

Therefore, Nd(t) ≤ Kd +
ωKdKs

rd
.

In similar ways, Nh(t) ≤ Kh +
θKhKs

rh
. This proves that all solutions of the system are uniformly

bounded.

Now we prove the dissipative condition is satisfied as follows.

f(x).x =(f1, f2, f3).(Ns, Nd, Nh)

=rs

(
1− Ns

Ks

)
N2
s − aN2

sNd − cNhN
2
s + rd

(
1− Nd

Kd

)
N2
d + ωNsN

2
d

+ rh

(
1− Nh

Kh

)
N2
h + θNsN

2
h

≤ rsN
2
s + rdN

2
d + rhN

2
h + ωNsN

2
d + θNsN

2
h

≤ rsN
2
s + rhN

2
h + ωKsKd

2 + θKsK
2
h ≤ α||x||2 + β
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where α = rs + rd + rh and β = ωKsKd
2 + θKsK

2
h. In this case x = (Ns, Nd, Nh)

T is a vector

R3
+. Hence, condition of Theorem 2.4.5 is satisfied and hence a unique solution x which is globally

defined in time exists.

Equilibrium Points

Our next result concerns the existence of equilibrium points of the system (3.1.1)-(3.1.3) that

are biologically feasible, and determine the conditions for the existence of the equilibrium of the

system in the feasible region. At equilibrium, equations of model (3.1.1)-(3.1.3) are

rs

(
1− Ns

Ks

)
Ns − aNsNd − cNhNs = 0 (3.1.4)

rd

(
1− Nd

Kd

)
Nd + ωNsNd = 0 (3.1.5)

rh

(
1− Nh

Kh

)
Nh + θNsNh = 0 (3.1.6)

Equilibrium points are:

1. The trivial fixed point E0 = (0, 0, 0), which represents the extinction of the three populations.

2. E1 = (Ks, 0, 0),

3. E2 = (0, 0, Kh),

4. E3 = (0, Kd, 0),

5. E4 = (0, Kd, Kh),

6. E5 = (N̄s, N̄d, N̄h) =

(
rdKs(rs − aKd)

rsrd + aωKsKd

,
rsKd(rd + ωKs)

rsrd + aωKsKd

, 0

)
, where rs > aKd. This

represents the extinction of humans.

7. E6 = (N̂s, N̂d, N̂h) =

(
rhKs(rs − cKh)

rsrh + cθKsKh

, 0,
rsKh(rh + θKs)

rsrh + cθKsKh

)
, where rs > cKh. This

represents the extinction of dog.

8. Equilibrium point of the coexistence:

E7 = (N∗s , N
∗
d , N

∗
h),
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with N∗s =
−rdrhKs(aKd + cKh − rs)

A∗
, if rs ≥ aKd + cKh,

N∗d =
Kd(rsrdrh + ωrsrhKs + cθrdKsKh − cωrhKsKh)

A∗
if rsrdrh + ωrsrhKs + cθrdKsKh >

cωrhKsKh,

N∗h =
Kh(rsrdrh + θrsrdKs + aωrhKsKd − aθrdKsKd)

A∗
if rsrdrh + θrsrdKs + aωrhKsKd >

aθrdKsKd

where A∗ = rsrdrh + cθrdKsKh + aωrhKsKd.

3.1.2 Stability of equilibrium points

Since we are working with a first order nonlinear system of differential equations, we can analyze

the local stability of our model at its equilibrium points by linearizing the system using the

Jacobian matrix as stated in section 2.5.2. The Jacobian matrix for the system ( 3.1.1)-(3.1.3) is

J =


rs −

2rsNs

Ks

− aNd − cNh −aNs −cNs

ωNd rd −
2rdNd

Kd

+ ωNs 0

θNh 0 rh −
2rhNh

Kh

+ θNs


The eigenvalues of the Jacobian are determined from the characteristic equation

χ(J) = λ3 + a1λ
2 + a2λ+ a3 = 0,

where a1 = −Tr(J), a2 = M11 + M22 + M33 and a3 = −det(J); where M11, M22 and M33 are the

minors of the entries a11, a22 and a33 for the Jacobian J = (aij)3.

The conditions for local stability of the equilibrium points are discussed as follows.

1. At equilibrium point E0, the Jacobian matrix is J(E0) =

 rs 0 0

0 rd 0

0 0 rh

. The eigenvalues

of J(E0) are λ1 = rs, λ2 = rd and λ3 = rh. Hence, E0 is unstable since the eigenvalues

λ1 = rs > 0, λ2 = rd > 0 and λ3 = rh > 0 are positive.
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2. At equilibrium point E1, the Jacobian matrix is

J(E1) =

 −rs −aKs −cKs

0 rd + ωKs 0

0 0 θKs + rh


The eigenvalues of J(E1) are λ1 = −rs, λ2 = rd + ωKs > 0 and λ3 = θKs + rh > 0. Thus,

E1 is unstable because the eigenvalues λ2 > 0 and λ3 > 0.

3. At equilibrium point E2, the Jacobian matrix is J(E2) =

 rs − cKh 0 0

0 rd 0

θKh 0 −rh

. The

eigenvalues of J(E2) are λ1 = rs − cKh, λ2 = rd and λ3 = −rh. Hence, E2 is unstable.

4. At equilibrium point E3, the Jacobian matrix is

J(E3) =

 rs − aKd 0 0

ωKd −rd 0

0 0 rh

 .

The eigenvalues of J(E3) are λ1 = rs − aKd, λ2 = −rd and λ3 = rh. Hence, E3 is unstable.

5. At equilibrium point E4, the Jacobian matrix is

J(E4) =

 rs − aKd − cKh 0 0

ωKd −rd 0

θKh 0 −rh


One of the eigenvalue of J(E4) is λ1 = rs − aKd − cKh, and the other two are determined

from the quadratic equation

λ2 + (rd + rh)λ+ rdrh = 0

Hence, E4 is stable if rs < aKd + cKh. Otherwise, it is unstable.
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6. At equilibrium point E5, the Jacobian matrix is

J(E5) =


rs −

2rsN̄s

Ks

− aN̄d −aN̄s −cN̄s

ωN̄d rd −
2rdN̄d

Kd

+ ωN̄s 0

0 0 rh + θN̄s


One of the eigenvalue of J(E5) is λ1 = rh + θN̄s, the remaining two are obtained from∣∣∣∣∣∣∣∣

rs −
2rsN̄s

Ks

− aN̄d − cN̄h − λ −aN̄s

ωN̄d rd −
2rdN̄d

Kd

+ ωN̄s − λ

∣∣∣∣∣∣∣∣ = 0

which has the characteristic polynomial

λ2 +

(
rs
Ks

N̄s +
rd
Kd

N̄d

)
λ+

(
rsrd
KsKd

+ aω

)
N̄sN̄d = 0

Hence, E5 is unstable because λ1 = rh + θN̄s > 0.

7. At equilibrium point E6, the Jacobian matrix is

J(E6) =


rs −

2rsN̂s

Ks

− cN̂h −aN̂s −cN̂s

0 rd + ωN̂s 0

θN̂h 0 rh −
2rhN̂h

Kh

+ θN̂s


One of the eigenvalue of J(E6) is λ1 = rd + ωN̂s, the other two are obtained from the

quadratic equation

λ2 +

(
rs
Ks

N̂s +
rh
Kh

N̂h

)
λ+

(
rsrh
KsKh

+ cθ

)
N̂sN̂h = 0

Hence, E6 is unstable because λ1 > 0.
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8. At equilibrium point E7, the Jacobian matrix is

J(E7) =


rs −

2rsN
∗
s

Ks

− aN∗d − cN∗h −aN∗s −cN∗s

ωN∗d rd −
2rdN

∗
d

Kd

+ ωN∗s 0

θN∗h 0 rh −
2rhN

∗
h

Kh

+ θN∗s


The characteristic equation of the matrix is given by: λ3 + a1λ

2 + a2λ + a3 = 0, where

a1 = −tr(J(E7)) = rs −
2rsN

∗
s

Ks

− aN∗d − cN∗h + rd −
2rdN

∗
d

Kd

+ ωN∗s + rh −
2rhN

∗
h

Kh

+ θN∗s ,

a2 = M11 + M22 + M33 (sum of the second order principal minors), and a3 = −det(J(E7)).

By the necessary and sufficient conditions of Routh-Hurtwitz criteria, E7 is asymptotically

stable when the following conditions are satisfied: a1 > 0, a3 = −det(J(E7)) > 0 and

a1a2 − a3 > 0.

Stability of equilibrium point E7

Since the transmission dynamics of the cystic echinococcosis involves the dog, sheep and human

populations, we are mainly concerned in equilibrium point of the coexistence. The detail analysis

of the local stability conditions of the equilibrium points were presented above, and the conditions

for local and global stability of the equilibrium point E7 are presented in the following Theorem.

Theorem 3.1.2 1. E7 is locally asymptotically stable if rs ≥
2rsN

∗
s

Ks

+ aN∗s + cN∗h ,

rd ≥
2rdN

∗
d

Kd

− ωN∗s , rh ≥
2rhN

∗
h

Kh

− θN∗s .

2. The equilibrium point E7 is globally asymptotically stable in Int.R3
+.

Proof. The method of Lyapunov function is used to prove global stability of E7. To study

the global stability of the co-existence equilibrium point, we construct a Lyapunov function for a

predator-prey model ( 3.1.1)-(3.1.3) (Theorem 2.5.6). For an equilibrium point E7 = (N∗s , N
∗
d , N

∗
h),

let us define a function

V (Ns, Nd, Nh) = Ns −N∗s −N∗s ln
Ns

N∗s
+
a

ω

{
Nd −N∗d −N∗d ln

Nd

N∗d

}
+
c

θ

{
Nh −N∗h −N∗h ln

Nh

N∗h

}
.

(i) V (E7) = N∗s −N∗s −N∗s ln N∗
s

N∗
s

+
a

ω

{
N∗d −N∗d −N∗d ln

N∗
d

N∗
d

}
+
c

θ

{
N∗h −N∗h −N∗h ln

N∗
h

N∗
h

}
= 0,
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The time derivative of V is

V ′(Ns, Nd, Nh) = (5V (Ns, Nd, Nh))
TV (Ns, Nd, Nh) =

∂V

∂Ns

dNs

dt
+

∂V

∂Nd

dNd

dt
+

∂V

∂Nh

dNh

dt

=

(
Ns −N∗s
Ns

)
dNs

dt
+
a

ω

(
Nd −N∗d
Nd

)
dNd

dt
+
c

θ

(
Nh −N∗h
Nh

)
dNh

dt

= −
(
rs
Ks

(Ns −N∗s )2 +
ard
ωKd

(Nd −N∗d )2 +
crh
θKh

(Nh −N∗h)2

)
.

In particular, if Ns = N∗s , Nd = N∗d and Nh = N∗h , we have

V ′ = −
(
rs
Ks

(N∗s − N∗s )2 +
crh
θKh

(N∗h − N∗h)2

)
= 0. This indicates that V ′(E7) = 0. But if

(Ns, Nd, Nh) 6= E7, it is clear that V ′ < 0. Therefore,
dV

dt
is negative definite.

In order to verify that V (Ns, Nd, Nh) > 0 for all (Ns, Nd, Nh) 6= E7, it suffices to show that

V (E7) is a minimum(global minimum). In this case we apply the second order partial test

for three variables. The Hessian matrix H(E7) =


1

(N∗s )2
0 0

0
a

ω(N∗d )2
0

0 0
c

θ(N∗d )2

 with

D1 =
1

(N∗s )2
> 0, D2 =

∣∣∣∣∣∣∣
1

(N∗s )2
0

0
a

ω(N∗d )2

∣∣∣∣∣∣∣ > 0 and D3 = |H(E7)| > 0. This indicates that

V (E7) is the local minimum. Moreover, V is a convex function on a convex set. Therefore,

V (E7) is minimum, and consequently V (Ns, Nd, Nh) > 0 for all (Ns, Nd, Nh) 6= E7.

(ii) From result in (i), we can see that V ′(Ns, Nd, Nh) < 0 whenever (Ns, Nd, Nh) 6= E7.

(iii) Clearly V (Ns, Nd, Nh)→∞ if ||(Ns, Nd, Nh)|| =
√
N2
s +N2

d +N2
h →∞

Thus, V is a Lyapunov function. Therefore, the equilibrium point E7 = (N∗s , N
∗
d , N

∗
h) is globally

asymptotically stable.
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3.2 Modeling the transmission dynamics of Cyst

Echinococcosis

In Section 3.1.1, sufficient conditions to ensure the existence of stable equilibrium point which

represent coexistence of the three populations in the predator-prey interaction model are derived.

The intuition is to study the dynamics of cystic echinococcosis on an environment where the

three populations coexist in the area. At any time t the existing total dog, human and sheep

populations in the area are denoted by Nd(t), Nh(t) and Ns(t) respectively. To describe the

dynamics of echinococcosis compartmental framework is used. In human population there are

four classes: the Susceptible (Sh), the Exposed (Eh), the Infectious (Ih) and the Removed (Rh)

classes. The dog population has three classes: the Susceptible (Sd), the Exposed (Ed), and

the Infectious (Id) classes. The sheep population has also three classes: the Susceptible (Ss), the

Exposed (Es), and the Infectious (Is) classes. The dog, human and sheep populations are recruited

to the susceptible population at constant rates denoted by Λd, Λh and Λs respectively. In the

dynamics of the disease transmission, susceptible sheep are infected by ingesting parasite eggs in

the feces of infected definitive hosts (dogs), while humans are infected by accidentally ingesting

Echinococcus granulosus’ eggs from the environment (typically food or water). The concentration

of Echinococcus granulosus’ eggs in the environment is denoted by B. The incorporation of the

saturation is relevant since for the disease to be spread from environment to sheep, there must be a

sufficient number (saturation) of parasite eggs in the environment that can cause infection. Rate of

infection of susceptible sheep is
βesB

χs +B
, where βes denotes the rate of ingestion of Echinococcus’

egg from the environment by sheep and χs is the half-saturation constant of parasite in the

environment sufficient to infect sheep. Rate of infection of susceptible humans is
βehB

χh +B
, where

βeh denotes the rate of ingestion of Echinococcus’ egg from the environment by human, and χh is

the half-saturation constant of parasite in the environment sufficient to infect human. Susceptible

dogs are infected by preying on the infected sheep. The disease transmission rate from sheep to

dogs is denoted by βsd. The rates at which exposed dog, sheep and human progress to infectious

classes are denoted by γd, γs and γh respectively. Infected human population could recover from

the disease naturally, at rate αh, where as sheep and dogs cannot recover once they are infected.

We assume that there is no Echinococcus induced death. However, dogs, sheep and humans

die naturally at rates µd, µs and µh respectively. The concentration of Echinococcus granulosus’

eggs in the environment is increased by shedding of a parasite from infected dog at rate δ and

decreased by the natural death rate of Echinococcus granulosus’ eggs at rate µe. The variables

and parameters of the model are summarized in Table 3.1 and Table 3.2.
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Table 3.1: Definitions of Variables

Variables Definitions
Sh, Eh, Ih and Rh Number of Susceptible, Exposed, Infected and Removed humans

respectively.
Sd, Ed, and Id Number of Susceptible, Exposed and Infected dogs respectively.
Ss, Es, and Is Number of Susceptible, Exposed and Infected sheep respectively.
B The concentration of Echinococcus granulosus’ eggs in the environment.
N∗d , N∗s , and N∗h Total number of dog, sheep and human respectively.

Table 3.2: Descriptions of parameters

Parameters Descriptions
Λd, Λh, Λs recruitment rate of dog, human and sheep respectively.
µd Natural death rate of dog
µh Natural death rate of human
µs Natural death rate of sheep
µe Natural death rate of Echinococcus granulosus’ eggs.
γd, γs and γh The rates at which exposed dog, sheep and human progress to infective classes

respectively.
βsd The transmission rate from sheep to dogs.
βes Transmission rate of Echinococcus’ eggs from the environment to sheep.
βeh Transmission rate of Echinococcus’ eggs from the environment to human.
δ Eggs contamination rate of the environment by infected dogs.
χh The concentration of Echinococcus granulosus’ eggs at which half of all

contacts with human produce infection.
χs The concentration of Echinococcus granulosus’ eggs at which half of all

contacts with sheep produce infection.
αh Human recovery rate.
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The Flow Chart for the transmission dynamics of the disease is shown in Figure 4.1. It

demonstrates the interactions between the three populations and the transition of individuals

from one compartment to another. The solid arrows show progression of individuals from one

compartment to another. The broken line from Is to the line between Sd and Ed tells us that dogs

become infected when they feed on organs of an infected sheep. The broken lines from B to the

line between Es and Ss, and from B to the line between Eh and Sh express the fact that sheep

and humans are infected by accidentally ingesting an egg of Echinococcus granulosus.

µhRh µhIh µhEh µhSh

Rh Ih Eh Sh Λh

µdSd

SdΛd Ed Id

µdId

Is Es Ss Λs

µsIs µsEs µsSs

µdEd

B µeB

βesB

χs +B
Ss

βehB

χh +B
Sh

δId

αhIh

βsdIsSd γdEd

γhEh

γsEs

Figure 3.1: The flow diagram for cyst echinococcosis transmission dynamics.
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Based on these assumptions and using the transitions among different classes of disease stages

given in Figure 4.1, the transmission dynamics of cyst echinococcosis in the populations of dog,

human and sheep is represented by the following system of ordinary differential equations.

dSd
dt

= Λd − βsdIsSd − µdSd (3.2.1)

dEd
dt

= βsdIsSd − γ̃dEd (3.2.2)

dId
dt

= γdEd − µdId (3.2.3)

dB

dt
= δId − µeB (3.2.4)

dSh
dt

= Λh −
βehB

χh +B
Sh − µhSh (3.2.5)

dEh
dt

=
βehB

χh +B
Sh − γ̃hEh (3.2.6)

dIh
dt

= γhEh − q̃hIh (3.2.7)

dRh

dt
= αhIh − µhRh (3.2.8)

dSs
dt

= Λs −
βesB

χs +B
Ss − µsSs (3.2.9)

dEs
dt

=
βesB

χs +B
Ss − γ̃sEs (3.2.10)

dIs
dt

= γsEs − µsIs (3.2.11)

subject to initial conditions Sd(0) ≥ 0, Ed(0) ≥ 0, Id(0) ≥ 0, B(0) ≥ 0, Sh(0) ≥ 0, Eh(0) ≥ 0,

Ih(0) ≥ 0, Rh(0) ≥ 0, Ss(0) ≥ 0, Es(0) ≥ 0, and Is(0) ≥ 0, where γ̃d = µd + γd, γ̃h = µh + γh,

q̃h = µh + αh and γ̃s = µs + γs

3.3 Well-posedness of the Model

In this section we prove model (3.2.1)-(3.2.11) is epidemiologically and mathematically well posed

in a set or not.

Theorem 3.3.1 The region D = D1 × D2 × D3 × D4 ⊂ R3 × R4 × R3 × R, where

D1 =

{
(Sd, Ed, Id) ⊂ R3

+ : Sd + Ed + Id =
Λd

µd

}
,

D2 =

{
(Sh, Eh, Ih, Rh) ⊂ R4

+ : Sh + Eh + Ih +Rh =
Λh

µh

}
,
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D3 =

{
(Ss, Es, Is) ⊂ R3

+ : Ss + Es + Is =
Λs

µs

}
and D4 =

{
B ⊂ R+ : B ≤ δΛd

µeµd

}
is positively

invariant for model (3.2.1)-(3.2.11).

Proof. Existence and Uniqueness of solutions:

The model (3.2.1)-(3.2.11) with initial conditions can be expressed as :

dx

dt
= f(x), x(0) = x0

where x = (Sd, Ed, Id, B, Sh, Eh, Ih, Rh, Ss, Es, Is)
T is a vector in R11

+ , and

f(x) = (f1(x), f2(x), · · · , f11(x))T is the vector field in R11
+ such that f1(x), f2(x), · · · , f11(x) are

right sides of the model (3.2.1)-(3.2.11). Using standard theorem of the dynamical system [60],

f(x) is Lipschitz continuous. Hence, a unique solution of (3.2.1)-(3.2.11) exists in some open ball

containing x(0). To show that this is a global solution, it suffices to verify that the dissipative

condition of Theorem 2.4.5 is satisfied. Before proving this theorem is satisfied, we first prove

positivity and boundedness of the solutions as follows.

Positivity and boundedness of solutions

Since the model deals with the human, sheep and dog populations, we need to show that the

state variables remain positive at all times.

Suppose that (Sd(t), Ed(t), Id(t), B(t), Sh(t), Eh(t), Ih(t), Rh(t), Ss(t), Es(t), Is(t)) be the solution

of the model (3.2.1)-(3.2.11) defined for all t ≥ 0.

From equations (3.2.1), (3.2.5) and (3.2.9) we respectively obtain

dSd
dt

> − (βsdIs + µd)Sd ⇒ Sd(t) > Sd(0)e−
∫ t
0 (βsdIs+µd)dτ > 0,

dSh
dτ

> −
(
µh +

βehB

χh +B

)
Sh ⇒ Sh(t) > Sh(0)e

−
∫ t
0

µh+
βehB

χh +B

dτ
> 0,

dSs
dt

> −
(
µs +

βesB

χs +B

)
Ss ⇒ Ss(t) > Ss(0)e

−
∫ t
0

µs+ βesB

χs +B

dτ
> 0.

Thus, the variables Sd(t), Sh(t) and Ss(t) are positive for all t ≥ 0.
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We prove the remaining variables are positive by a method of contradiction. Suppose that the

conclusion is not true. Then, there exists t1 ∈ [0, r) for some r > 0 such that

e(t1) = min{(Ed(t1), Id(t1), B(t1), Eh(t1), Ih(t1), Rh(t1), Es(t1), Is(t1))} = 0.

If e(t1) = Ed(t1), then from (3.2.2) and since Sd(t) > 0 for t > 0, we obtain
dEd
dt

> −γ̃dEd for all

t ∈ [0, t1). It then follows that

0 = Ed(t1) > Ed(0)e
∫ t1
0 −γ̃ddt > 0,

which leads to a contradiction.

If e(t1) = Id(t1), then from (3.2.3) we have
dId
dt

> −µdId for all t ∈ [0, t1). Thus,

0 = Id(t1) > Id(0)e
∫ t1
0 −µddt > 0,

which leads to a contradiction.

If e(t1) = B(t1), then from (3.2.4), we have
dB

dt
> −µeB for all t ∈ [0, t1). Thus,

0 = B(t1) > B(0)e
∫ t1
0 −µedt > 0,

which also leads to a contradiction.

Similar contradictions can be obtained if e(t1) = Eh(t1), e(t1) = Ih(t1), e(t1) = Rh(t1),

e(t1) = Es(t1) or e(t1) = Is(t1).

From continuity of the functions (the state variables), any of the variables can never be negative.

Therefore, the solution of (3.2.1)-(3.2.11) is positive for all t ≥ 0.

Secondly, we prove boundedness of the solutions as follows.

From equations (3.2.1)-(3.2.3), we have

dNd

dt
= Λd − µdNd,
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The solution of the differential equation results in Nd(t) = Nd(0)e−µdt +
Λd

µd
(1− e−µdt), which

shows that limt→∞ supNd(t) =
Λd

µd
. Hence, Sd(t), Ed(t), and Id(t) are bounded.

From equations (3.2.5)-(3.2.8), we have

dNh

dt
= Λh − µhNh,

The solution of the differential equation results in Nh(t) = Nh(0)e−µdt +
Λh

µh
(1− e−µht), which

shows that limt→∞ supNh(t) =
Λh

µh
. Hence, Sh(t), Eh(t) Rh(t), and Ih(t) are bounded.

From equations (3.2.9)-(3.2.11), we have
dNs

dt
= Λs − µsNs, The solution of the differential

equation results in Ns(t) = Ns(0)e−µst +
Λs

µs
(1− e−µst), which shows that

limt→∞ supNs(t) =
Λs

µs
. Hence, Ss(t), Es(t) and Is(t) are bounded. Finally, from equation (3.2.4)

of the model, and since Id(t) ≤ Nd(t) ≤
Λd

µd
, we have

B(t) ≤ e−
∫ t
0 µedτ

(∫ t

0

δ
Λd

µd
e−

∫ τ
0 µedsdτ

)
:=

δΛd

µeµd
− δΛd

µeµd
e−µet ≤ δΛd

µeµd
.

Now we prove the dissipative condition is satisfied as follows.

f(x).x = (f1, f2, · · · f11).(Sd(t), Ed(t), Id(t), B(t), Sh(t), Eh(t), Ih(t), Rh(t), Ss(t), Es(t), Is(t))

≤ ΛdSd + βsdIsSdEd + γdE
2
d + δId + ΛhSh +

βehB

χh +B
ShEh + γhEhIh + αhIhRh + ΛsSs

+
βesB

χs +B
SsEs + γsEsIs

≤ ΛdSd + ΛhSh + ΛsSs +
βsdΛs

µs

(
Λd

µd

)2

+ γd

(
Λd

µd

)2

+
δΛd

µd
+ βeh

(
Λh

µh

)2

+ γh

(
Λh

µh

)2

+ αh

(
Λh

µh

)2

+ βes

(
Λs

µs

)2

≤ (Λd + Λh + Λs)(Sd + Sh + Ss) +
βsdΛs

µs

(
Λd

µd

)2

+ γd

(
Λd

µd

)2

+
δΛd

µd
+ βeh

(
Λh

µh

)2

+ γh

(
Λh

µh

)2

+ αh

(
Λh

µh

)2

+ βes

(
Λs

µs

)2

≤ a||x||2 + b
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where a = Λd + Λh + Λs, and

b =
βsdΛs

µs

(
Λd

µd

)2

+ γd

(
Λd

µd

)2

+
δΛd

µd
+ βeh

(
Λh

µh

)2

+ γh

(
Λh

µh

)2

+ αh

(
Λh

µh

)2

+ βes

(
Λs

µs

)2

.

Hence, condition of Theorem 2.4.5 is satisfied and hence a unique solution x which is globally

defined in time exists.

3.4 Existence and stability of Equilibria

The equilibrium point(s) of the system (3.2.1)-(3.2.11) are found by solving the system:

Λd − βsdIsSd − µdSd = 0 (3.4.1)

βsdIsSd − γ̃dEd = 0 (3.4.2)

γdEd − µdId = 0 (3.4.3)

δId − µeB = 0 (3.4.4)

Λh −
βehB

χh +B
Sh − µhSh = 0 (3.4.5)

βehB

χh +B
Sh − γ̃hEh = 0 (3.4.6)

γhEh − q̃hIh = 0 (3.4.7)

αhIh − µhRh = 0 (3.4.8)

Λs −
βesB

χs +B
Ss − µsSs = 0 (3.4.9)

βesB

χs +B
Ss − γ̃sEs = 0 (3.4.10)

γsEs − µsIs = 0 (3.4.11)

From equations (3.4.3) and (3.4.4), we respectively have

Id =
µeB

δ
and Ed =

µdµeB

δγd
(3.4.12)

From equations (3.4.1), (3.4.2) and using (3.4.12) we have

Sd =
Λd

µd
− µeγ̃dB

δγd
(3.4.13)
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Substituting (3.4.13) in (3.4.1) yields

Is =
1

βsd

(
µeµ

2
dγ̃dB

δγdΛd − µeµdγ̃dB

)
(3.4.14)

Similarly, from equations (3.4.9)-(3.4.11), we obtain

Is =
γsβesΛsB

µsγ̃s[µsχs + (µs +Bes)B]
(3.4.15)

By equating (3.4.14) and (3.4.15), we then obtain a quadratic equation

B2[µeγ̃d(µsµ
2
dγ̃s(µs + βes) + µdγsβesβsdΛs)]−B[δγdγsβesβsdΛsΛd − µeχsµ2

sµ
2
dγ̃dγ̃s] = 0 (3.4.16)

Thus, we have two roots

B = 0 and B =
δγdγsβesβsdΛsΛd − µeχsµ2

sµ
2
dγ̃dγ̃s

µeγ̃d(µsµ2
dγ̃s(µs + βes) + µdγsβesβsdΛs)

(3.4.17)

All the remaining state variables Sh, Eh, Ih, Rh, Ss and Es obtained from equations (3.4.5)-(3.4.10)

are expressed in terms of B, where B ≥ 0. Thus, the results of the possible equilibrium points of

the above cases are presented in sections 3.4.1 and 3.4.3.

3.4.1 Disease-Free Equilibrium (DFE)

From algebraic computation when B = 0, the system (3.2.1)-(3.2.11) has the DFE

X0 = (
Λd

µd
, 0, 0, 0,

Λh

µh
, 0, 0, 0,

Λs

µs
, 0, 0).

The basic reproductive number is one of the fundamental concepts in mathematical biology. We

determine the basic reproduction number using the Next Generation Matrix (NGM)

approach [64]. According to the concepts of the next generation matrix and reproduction

number presented in 2.6, we define
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F =



βsdIsSd

0

0
βehB

χh +B
Sh

0
βesB

χs +B
Ss

0


and V =



γ̃dEd

µdId − γdEd
µeB − δId
γ̃hEh

q̃hIh − γhEh
γ̃sEs

µsIs − γsEs


. The Jacobian matrix of the infection

subsystem at X0 can be decomposed as F − V , where F is a matrix of transmission rates given

by

F =



0 0 0 0 0 0 βsd
Λd

µd
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0
βehΛh

χhµh
0 0 0 0

0 0 0 0 0 0 0

0 0
βesΛs

χsµs
0 0 0 0

0 0 0 0 0 0 0


, (3.4.18)

and V is a matrix of transition rates given by

V =



γ̃d 0 0 0 0 0 0

−γd µd 0 0 0 0 0

0 −δ µe 0 0 0 0

0 0 0 γ̃h 0 0 0

0 0 0 −γh q̃h 0 0

0 0 0 0 0 γ̃s 0

0 0 0 0 0 −γs µs


. (3.4.19)
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Thus,

V −1 =



1

γ̃d
0 0 0 0 0 0

γd
µdγ̃d

1

µd
0 0 0 0 0

δγd
µeµdγ̃d

δ

µeµd

1

µe
0 0 0 0

0 0 0
1

γ̃h
0 0 0

0 0 0
γh
γ̃hq̃h

1

q̃h
0 0

0 0 0 0 0
1

γ̃s
0

0 0 0 0 0
γs
µsγ̃s

1

µs



,

and the next generation matrix is

FV −1 =



0 0 0 0 0
γsβsdΛd

µsµdγ̃s

βsdΛd

µdµs
0 0 0 0 0 0 0

0 0 0 0 0 0 0
δrdβehΛh

χhµdµhµeγ̃d

δβehΛh

χhµdµhµe

βehΛh

χhµhµe
0 0 0 0

0 0 0 0 0 0 0
δrdβesΛs

χsµdµsµeγ̃d

δβesΛs

χsµsµdµe

βesΛs

χsµsµe
0 0 0 0

0 0 0 0 0 0 0


.

The basic reproduction number is the spectral radius. Thus,

R0 = ρ(FV −1) =

√
γsβesΛs

χsµe

βsd
µ2
sγ̃s

δγdΛd

µ2
dγ̃d

. (3.4.20)

We write as R0 =
√
RdRsRe, where Rd =

βsdγdΛd

µ2
dγ̃d

corresponds to the number of dog that one

infectious sheep causes the disease over its expected infection period in a completely susceptible

dog population, Rs =
γsβesΛs

µ2
sγ̃s

corresponds to the number of sheep that an infectious dog induce

the disease over its expected infection period in a completely susceptible sheep population, and

Re =
δ

µeχs
corresponds to the contribution of environment to sheep population as a result of one

infectious dog subject during its infectious period.
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3.4.2 Stability of the DFE

Theorem 3.4.1 If R0 < 1, then the disease free equilibrium X0 is globally asymptotically stable

in D. If R0 > 1, then the DFE is unstable, the system is persistent and there is at least one

equilibrium in the interior of D.

Proof. We use a matrix-theoretic method as explained in Section 2.6.

The disease compartments of model (3.2.1)-(3.2.11) can be written as x′ = (F − V )x − f(x, y)

where x = (Ed, Id, B,Eh, Ih, Es, Is)
T , y = (Sd, Sh, Rh, Ss)

T , F and V are matrices given in (4.3.3)

and (3.4.19), and

f(x, y) =



βsdIs(
Λd

µd
− Sd)

0

0
βehB

χh
(
Λh

µh
− χhSh
B + χh

)

0
βesB

χs
(
Λs

µs
− χsSs
B + χs

)

0


≥ 0,

since Sd ≤
Λd

µd
, Sh ≤

Λh

µh
, χh ≤ χh +B, Ss ≤

Λs

µs
, and χs ≤ χs +B. Matrices F and V −1 are entry

wise non negative with

V −1F =



0 0 0 0 0 0
βsdΛd

µdγ̃d

0 0 0 0 0 0
γdβsdΛd

µ2
dγ̃d

0 0 0 0 0 0
δγdβsdΛd

µeµ2
dγ̃d

0 0
βehΛh

µhχhγ̃h
0 0 0 0

0 0
γhβehΛh

µhχhγ̃hq̃h
0 0 0 0

0 0
βesΛs

µsχsγ̃s
0 0 0 0

0 0
γsβesΛs

µ2
sχsγ̃s

0 0 0 0
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Since V −1F is a reducible matrix [8], the condition of Theorem 2.6.4 fails. Instead, to establish

the global stability of the DFE, we construct a Lyapunov function by using Theorem 2.6.3. Let

W T = (w1, w2, w3, w4, w5, w6, w7) be the left eigenvector of V −1F corresponding to the eigenvalue

R0. Thus,

W TV −1F = R0W.

As a result, we found that W =

(
0, 0, 1, 0, 0, 0, 0,

δγdβsdΛd

µ2
dµeγ̃dR0

)
is the left eigenvector of V −1F

corresponding to the eigenvalue R0 . Thus, by Theorem 2.6.3,

Q = W TV −1x =
δγdEd
µdµeγ̃d

+
δId
µdµe

+
B

µe
+

(
γs
µsγ̃s

Es +
Is
µs

)
δγdβsdΛd

µeγ̃dµ2
dR0

,

is a Lyapunov function for the model (3.2.1)-(3.2.11). Then differentiating along the solutions of

the system (3.2.1)-(3.2.11) gives

Q′ = (R0−1)

(
δγdβsdIsΛd

µ2
dµeγ̃dR0

+B

)
−
(
δγdβsdIs
µdµeγ̃d

(
Λd

µd
−Sd)+

γsγdβesβsdBΛd

µsµeµ2
dχsγ̃dR0

(
Λs

µs
− Ssχs
B + χs

)

)
. (3.4.21)

Since Sd ≤
Λd

µd
, Ss ≤

Λs

µs
and χs ≤ χs +B, Q′ ≤ 0 if R0 < 1. Furthermore, Q′ = 0 implies that

Case 1. B = 0 and Is = 0. Thus, using the results obtained in Section 3.4, we have Ed = 0,

Id = 0, Eh = 0, Ih = 0, Rh = 0, Es = 0, Sd =
Λd

µd
, Sh =

Λh

µh
, and Ss =

Λs

µs
.

Case 2. R0 = 1, Sd =
Λd

µd
and Ss =

(χs +B)Λs

µsχs
. Thus, using the results obtained in Section 3.4,

we also have Ed = 0, Id = 0, Eh = 0, Ih = 0, Rh = 0, Es = 0, Sd =
Λd

µd
, Sh =

Λh

µh
, and

Ss =
Λs

µs
.

Hence, the largest invariant set with respect to (3.2.1)-(3.2.11) where Q′ = 0 in int(D) is the

singleton {X0}. Therefore, by Lasalle’s invariance principle as stated in Theorem 2.5.1, the disease

free equilibrium X0 is globally asymptotically stable if R0 < 1. Furthermore, from (3.4.21), if

R0 > 1 then Q′ = (R0 − 1)W Tx = (R0 − 1)

(
δγdβsdIsΛd

µ2
dµeγ̃dR0

+ B

)
> 0 in D provided B > 0

and (Sd, Ss) = (
Λd

µd
,
Λs

µs
). By continuity Q′ > 0 in a neighborhood of X0. Thus, the disease
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free equilibrium X0 is unstable, and using Theorem 2.6.4, the system (3.2.1)-(3.2.11) is uniformly

persistent and hence imply there is at least one endemic equilibrium in the interior of D.

3.4.3 Existence and stability of the Endemic Equilibrium (EE)

From the result in (3.4.17), an endemic equilibrium is obtained when B > 0. Thus, the endemic

equilibrium point of the system in terms of the reproduction number R0 is given by

XE = (S∗d , E
∗
d , I
∗
d , B

∗, S∗h, E
∗
h, I
∗
h, R

∗
h, S

∗
s , E

∗
s , I
∗
s ),

where

I∗d =
µeB

∗

δ
(3.4.22)

E∗d =
µeµdB

∗

δγd
(3.4.23)

S∗d =
Λd

µd
− µeγ̃dB

∗

δγd
(3.4.24)

S∗h =
(χh +B∗)Λh

µh(χh +B∗) + βehB∗
(3.4.25)

E∗h =
βehΛhB

∗

γ̃h(µh(χh +B∗) + βehB∗)
(3.4.26)

I∗h =
γhβehΛhB

∗

q̃hγ̃h(µh(χh +B∗) + βehB∗)
(3.4.27)

R∗h =
γhαhβehΛhB

∗

µhq̃hγ̃h(µh(χh +B∗) + βehB∗)
(3.4.28)

S∗s =
Λs(χs +B∗)

µs(χs +B∗) + βesB∗
(3.4.29)

E∗s =
ΛsβesB

∗

γ̃s(µs(χs +B∗) + βesB∗)
(3.4.30)

I∗s =
γsβesΛsB

∗

µsγ̃s(µs(χs +B∗) + βesB∗)
(3.4.31)

B∗ =
χsγ̃sµdµ

2
s

µsµdγ̃s(µs + βes) + γsβsdβesΛs

(R2
0 − 1) (3.4.32)

Theorem 3.4.2 If R0 > 1, then an endemic equilibrium

XE = (S∗d , E
∗
d , I
∗
d , B

∗, S∗h, E
∗
h, I
∗
h, R

∗
h, S

∗
s , E

∗
s , I
∗
s ) defined by equations (3.4.22) - (3.4.32) is globally

asymptotically stable.
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Proof. To prove the global asymptotic stability of the endemic equilibria, we use the method of

Lyapunov functions combined with the theory of Volterra–Lyapunov stable matrices. To do this,

we define a Lyapunov function :

V =w1(Sd − S∗d)2 + w2(Ed − E∗d)2 + w3(Id − I∗d)2 + w4(B −B∗)2

+
1

2
(Sh − S∗h + Eh − E∗h + Ih − I∗h +Rh −R∗h)2 +

1

2
(Ss − S∗s + Es − E∗s + Is − I∗s )2.

Thus,

dV

dt
=2w1(Sd − S∗d)

(
dSd
dt

)
+ 2w2(Ed − E∗d)

(
dEd
dt

)
+ 2w3(Id − I∗d)

(
dId
dt

)
+ 2w4(B −B∗)

(
dB

dt

)
+ (Ss − S∗s + Es − E∗s + Is − I∗s )

(
d

dt
(Ss + Es + Is)

)
+ (Sh − S∗h + Eh − E∗h + Ih − I∗h +Rh −R∗h)

(
d

dt
(Sh + Eh + Ih +Rh)

)
.

The time derivative of V (t) along the solutions of model equations (3.2.1)-(3.2.11), we obtain

dV

dt
=Y (WA+ ATW T )Y T − µs(Ss − S∗s + Es − E∗s + Is − I∗s )2

− µh(Sh − S∗h + Eh − E∗h + Ih − I∗h +Rh −R∗h)2,

where Y = (Sd − S∗d , Ed − E∗d , Id − I∗d , B −B∗), W = diag(w1, w2, w3, w4) and

A =


−βsdIs − µd 0 0 0

βsdIs −γ̃d 0 0

0 γd −µd 0

0 0 δ −µe

 .

Obviously, the second and third terms of
dV

dt
are negative. To show the global stability of endemic

equilibrium XE, it suffices to show that A is Volterra-Lyapunov stable in D\{XE}. For this

purpose, we show that matrix Ã is Volterra-Lyapunov stable, and matrix U = Ã−1 is Volterra-

Lyapunov stable (or −Ã−1 is diagonally stable).
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Condition 1: To show Ã is Volterra-Lyapunov stable, we consider

D = −Ã =

 βsdIs + µd 0 0

−βsdIs γ̃d 0

0 −γd µd

 .

The matrix D̃ is obtained by deleting its 3rd row and 3rd column,

−D̃ =

(
−βsdIs − µd 0

βsdIs −γ̃d

)
.

Clearly a11 = −βsdIs − µd < 0, a22 = −γ̃d and det(−D̃) > 0. Based on Lemma 2.6.8, −D̃ is

Volterra-Lyapunov stable.

Moreover, we obtain

−D̃−1 =

 − 1

βsdIs + µd
0

− βsdIs
γ̃d(µd + βsdIs)

− 1

γ̃d

 .

Clearly, the diagonal elements − 1

βsdIs + µd
< 0, − 1

γ̃d
< 0 and det(−D̃−1) > 0. Thus, based

on Lemma 2.6.8, −D̃−1 is Volterra-Lyapunov stable.

Therefore, D = −Ã is diagonally stable, and hence Ã is Volterra-Lyapunov stable.

Condition 2: To show Ã−1 is Volterra-Lyapunov stable, we consider

E = −Ã−1 =


1

βsdIs + µd
0 0

βsdIs
γ̃d(µd + βsdIs)

1

γ̃d
0

βsdIsγd
γ̃dµd(µd + βsdIs)

γd
γ̃dµd

1

µd

, and we have

−Ẽ =

 − 1

βsdIs + µd
0

− βsdIs
γ̃d(µd + βsdIs)

− 1

γ̃d

 .

Using Lemma 2.6.8, it is easy to observe that −Ẽ is Volterra-Lyapunov stable.
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Moreover, we have −Ẽ−1 =

(
−βsdIs − µd 0

βsdIs −γ̃d

)
.

Based on Lemma 2.6.8, we can also observe that −Ẽ−1 is also Volterra-Lyapunov stable.

Therefore, Ã−1 is Volterra-Lyapunov stable.

Based on Lemma 2.6.10, there exists a diagonal matrix W = diag{w1, w2, w3, w4} such that

W (−A) + (−A)TW T > 0 or WA+ ATW T < 0. This shows that A is Volterra-Lyapunov stable.

Therefore,
dV

dt
< 0, and by LaSalle’s invariance principle (Theorem 2.5.1), XE is globally

asymptotically stable in the interior of D, and is unique provided that R0 > 1.

3.5 Numerical simulations of the model

3.5.1 Elasticity indices

Our study in previous sections illustrated that the quantity of R0 plays a significant role in

dynamics of cystic echinococcosis. In this section, we perform a sensitivity analysis of the basic

reproduction number R0 to determine the most influential parameters in the dynamics of the

disease. For this purpose, some important data are taken from the literature. and some

parameter values are computed, and assumed (estimated) values are also used, as given in Table

3.3. According to World Health Organization, from 2000-2019 GC, the global life expectancy of

human is 66.8-73.4 [68] . Using mean value of 70.1, the death rate of human is taken to be

µh =
1

70.1× 365
= 0.00004. The incubation period of cystic echinococcosis in human is 20 − 30

years. Using the mean value of 25 years, we found that γh =
1

25× 365
= 0.0001. The life

expectancy of dog is 10− 13 [74, 75]. Using mean value of 11.5, the death rate of dog is taken to

be µd =
1

11.5× 365
= 0.00024. The life expectancy of sheep is 10− 12 [73]. Using mean value of

11, the death rate of dog is taken to be µs =
1

11× 365
= 0.00025. The parasite’s eggs which are

shed from dogs can survive for long periods in the environment and remain viable up to a

year [63]. This results in µe =
1

365
= 0.003. It was reported in [37] that latent period of human

is 5-15 years, with this value we obtain γh =
1

14× 365
= 0.00019. Some realistically feasible

assumed (estimated) parameter values ( specially for transition and transmission rates) are also

used based on range of data reported in [4,5,37,63]. The intention for this work is not validating
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the model results of the real situation obtained in a particular study, but for illustrative purposes

only, and the result will be used to suggest possible intervention strategies.

Table 3.3: Parameters, Baseline values and Sources

Parameters Baseline values(with unit) Range Sources

µd 0.00024/day [74, 75]

βsd 0.00001/day Assumed

γd 0.001/day
[ 1

3× 365
,

1

1× 365
] Assumed

µh 0.00004/day [68]

βeh 0.00001/day [1× 10−5, 5× 10−5] Assumed

γh 0.00019/day [67]

αh 0.00001/day [
1

25× 365
,

1

2× 365
] Assumed

µs 0.00025/day [73]

βes 0.00005/day [0.000001, 0.1] Assumed

µe 0.003/day [63]

γs 0.001/day [
1

3× 365
,

1

1× 365
] [4]

δ 0.00014cells/ml.day [63]

χh 120cells/ml Assumed

χs 100cells/ml Assumed

To determine the parameter that contributes most to the disease transmission, we perform local

sensitivity analysis by calculating the normalized sensitivity index (elasticity index) as introduced

in [19, 43]. The normalized forward sensitivity index (elasticity index) of a variable (R0) with

respect to a parameter p is the ratio of the relative change in the variable to the relative change

in the parameter, given by

ΥR0
p =

∂R0

∂p
× p

R0
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Table 3.4: Elasticity indices of R0 relative to some model parameters

Parameters ΥR0
p =

∂R0

∂p
× p

R0

Baseline value Range Elasticity index

βes
1

2
0.00005 0.000005− 0.0001 0.5

βsd
1

2
0.000001 0.0000001− 0.000002 0.5

δ
1

2
0.000014 0.0000014− 0.000028 0.5

χs −1

2
100 60− 140 -0.5

γs
µs

2(µs + γs)
0.0001 0.00001− 0.0002 0.1

γd
µd

2(µd + γd)
0.0001 0.0001− 0.0002 0.1

Table 3.4 gives the elasticity indices of R0 with respect to key parameters of model

(3.2.1)-(3.2.11) at the baseline values indicated in Table 3.3 and arranged in descending order of

magnitudes. The sign of the elasticity index tells whether R0 increases (positive sign) or

decreases (negative sign) with the parameter; whereas the magnitude determines the relative

importance of the parameter. From the magnitude of elasticity index, we can notice that four

parameters (βes, βsd, δ, χs) have equal and the greatest influence for the transmission of the

disease, followed by γs and γd.

3.5.2 Global sensitivity analysis

From the local sensitivity analysis, we observed that it is difficult to differentiate explicitly the

most influential parameter(s) of the model. In order to determine which parameter(s) among the

six is (are) most influential in the dynamics of the disease, global sensitivity analysis is done. We

employed the technique of Latin Hypercube Sampling (LHS) to test the sensitivity of the model

to each input parameter, as described and implemented in [42], and Partial Rank Correlation
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Coefficients (PRCCs) to measure the relative degree of sensitivity of the outcome variable to each

parameter, regardless of whether the parameter has a positive or negative influence on the outcome

variable. This is done computationally by sampling parameters from a uniformly distributed range

using Latin Hy- percube Sampling (LHS). Latin Hypercube Sampling is a statistical sampling

method that evaluates sensitivity of an outcome variable to all input variables. To examine the

dependence of R0 on parameter variations, we determine the PRCC values by considering a range

of parameters as given in Table 3.4. The parameters were sampled 1000 times for 1000 runs. Figure

3.2 show the plots of 1000 runs output and PRCCs plotted for 6 parameters. The parameter with

PRCC value far away from zero indicates the more strongly the parameter influence R0. The

negative sign for PRCCs indicates inverse proportionality.

Sensitivities

es

sd

 

s

s

d

 (p<0.05)

Figure 3.2: Global sensitivity analysis displaying the partial rank correlation coefficients(PRCC)
of R0.

From Figure 3.2 , it is observed that the transmission rate of Echinococcus’ eggs from

environment to sheep (βes), followed by transmission rate from sheep to dog (βsd), and eggs

contamination rate of the environment by infected dogs (δ) are the most influential parameters

among the six parameters in the disease dynamics.

3.5.3 Numerical simulations

In this section, numerical simulations to gain insight into some of quantitative features of the

model (3.2.1)-(3.2.11) are presented.
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Simulations are carried out using the baseline parameter values given in Table 3.4, and this

results in a reproductive number R0 = 2.56 > 1. The total populations of dog, human and sheep

are assumed to be Λd = 3, Λh = 2, Λs = 4 respectively. The time evolution of human, sheep and

dog populations is depicted in Figure 3.3. It can be noticed that all the compartments of the

dog, human and sheep populations converge asymptotically to their respective endemic

equilibrium points irrespective of different initial conditions. This shows the global stability of

the endemic equilibrium as proved in Theorem 3.4.2.
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Figure 3.3: Time evolution of the dog, sheep and human populations with baseline parameter
values as in Table 3.4, using different initial conditions gives R0 = 2.56, and with approximate
equilibrium values S∗d = 4449, E∗d = 5683, I∗d = 2368, S∗h = 22742, E∗h = 7788, I∗h = 11624,
R∗h = 7846, S∗s = 14480, E∗s = 1086, I∗s = 434, B = 111 .

By reducing βes = 0.00005 to βes = 0.00005/10, we get R0 = 0.80 < 1. From the Numerical

simulation with different initial conditions in Figure 3.4 depicts that all disease compartments E∗d ,

I∗d , B∗, E∗h, I
∗
h, R∗h, E

∗
s and I∗s converge asymptotically to zero, while the non infected compartments

S∗d , S
∗
h and S∗s converge to

Λd

µd
= 12, 500,

Λh

µh
= 50, 000 and

Λs

µs
= 16, 000 respectively. This shows
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the global stability of the disease free equilibrium as proved in Theorem 3.4.1.
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Figure 3.4: Time evolution of the dog, sheep and human populations with baseline parameter
values as in Table 3.4, using different initial conditions,except for βes = 0.00005/10, which gives
R0 = 0.80.

3.5.4 Control strategies

The global sensitivity analysis presented in section 3.5.2 depicts that cyst echinococcosis can be

controlled by reducing the transmission rate of echinococcus’ eggs from environment to sheep

(βes). In this section, we illustrate the effect of the transmission rate of echinococcus granulosus’

eggs from environment to sheep (βes).
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3.5. NUMERICAL SIMULATIONS OF THE MODEL
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Figure 3.5: The numerical simulations displaying effects of controlling strategies on cumulative
number of infectious dog, human and sheep populations, using parameter values in Table 3.4, with
varying values of βes.

.

The effect of the transmission rate of Echinococcus granulosus’ eggs from environment to sheep

(βes) using baseline parameter values in Table 3.4, and when βes varied from 0.0005 to 0.000005,

is displayed in Figure 3.5. As a result the infectious sheep, dog and human populations are

respectively reduced from 2513 to 0 , 3356 to 0, and 12495 to 0, where the basic reproductive

number is also reduced from R0 = 8.08 to R0 = 0.808. The result shows that increasing the

transmission rate of Echinococcus granulosus’ eggs from environment to sheep (βes) will intensify

the transmission of the disease. Thus, to control the disease transmission, we suggest that it

is important to plan an intervention strategy to decrease the transmission rate of Echinococcus

granulosus’ eggs from environment to sheep (βes).
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Chapter 4

A mathematical model of echinococcosis

with intervention

In this chapter, a mathematical model of the dynamics of CE with vaccination of sheep and

cleaning or disinfection of the environment is formulated and analyzed. This is a valuable tool to

develop best ways of controlling the disease transmission, including comparisons of different

possible approaches. The use of mathematical models to evaluate these interventions proceeds by

first constructing a mathematical model that describes the transmission of the infection. The

mathematical model of cyst echinococcosis with the proposed interventions is presented and

studied in the following sections.

4.1 Model formulation

In this section, the mathematical model presented in 3.1 is extended by incorporating vaccination of

sheep and cleaning or disinfection of the environment. However, due to the presence of vaccination

of sheep, the sheep population has four classes: the Susceptible (Ss), the Exposed (Es), the

Infectious (Is), and the Vaccinated (Vs) classes. We introduced vaccination to the susceptible

sheep population at a rate ν, so that the population of susceptible sheep is reduced through

vaccination and moved to vaccinated Vs class. We assume that sheep that are vaccinated will

progress to vaccinated class, but vaccination is not lifelong. The sheep population may lose

of vaccine-induced immunity and move back to susceptible class at a rate ρ, i.e τ =
1

ρ
is the

average duration of vaccine protection. Since the EG95 vaccine against CE has proven to be

highly effective [66], the efficacy of sheep vaccination is assumed to be 100%. The concentration of

Echinococcus granulosus’ eggs is increased by shedding of a parasite from infected dog at rate δ and
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4.1. MODEL FORMULATION

decreased by the natural death rate of Echinococcus granulosus’ eggs at rate µe and disinfection

or cleaning of environment at rate µ. All other assumptions and the variables stated in Section

3.1 including the total populations is valid for this model too.

µhRh µhIh µhEh µhSh

Rh Ih Eh Sh Λh

µdSd

SdΛd Ed Id

µdId

Is Es Ss Λs

µsIs µsEs

µsSs

µdEd

B µeB

µB

βesB

χs +B
Ss

βehB

χh +B
Sh

δId

Vs

µsVs

αhIh

βsdIsSd γdEd

γhEh

γsEs

νSsρVs

Figure 4.1: The flow diagram for cyst echinococcosis transmission dynamics with controls.
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The transmission dynamics of the disease in the three populations is expressed by the following

system of first order differential equations:

dSd
dt

= Λd − βsdIsSd − µdSd, (4.1.1)

dEd
dt

= βsdIsSd − (µd + γd)Ed, (4.1.2)

dId
dt

= γdEd − µdId, (4.1.3)

dB

dt
= δId − (µe + µ)B, (4.1.4)

dSh
dt

= Λh −
βehB

χh +B
Sh − µhSh, (4.1.5)

dEh
dt

=
βehB

χh +B
Sh − (µh + γh)Eh, (4.1.6)

dIh
dt

= γhEh − (µh + αh)Ih, (4.1.7)

dRh

dt
= αhIh − µhRh, (4.1.8)

dSs
dt

= Λs + ρVs −
βesB

χs +B
Ss − νSs − µsSs (4.1.9)

dVs
dt

= νSs − ρVs − µsV s, (4.1.10)

dEs
dt

=
βesB

χs +B
Ss − (µs + γs)Es, (4.1.11)

dIs
dt

= γsEs − µsIs, (4.1.12)

with initial conditions Sd(0) ≥ 0, Ed(0) ≥ 0, Id(0) ≥ 0, B(0) ≥ 0, Sh(0) ≥ 0, Eh(0) ≥ 0,

Ih(0) ≥ 0, Rh(0) ≥ 0, Ss(0) ≥ 0, Es(0) ≥ 0, Is(0) ≥ 0 and Vs(0) ≥ 0.

For convenience, we make the following substitutions: γ̃d = µd + γd, γ̃h = µh + γh, q̃h = µh + αh

and γ̃s = µs + γs. Thus, we can rewrite the system (4.1.1)-(4.1.12) with initial conditions as

dX

dt
= g(t,X(t)), X(0) = X0 (4.1.13)
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4.2. WELL-POSEDNESS OF THE MODEL

where X(t) = (Sd, Ed, Id, B, Sh, Eh, Ih, Rh, Ss, Vs, Es, Is)
T , g : R+ × R12

+ → R12
+ defined by

g(t,X(t)) =



Λd − βsdIsSd − µdSd
βsdIsSd − γ̃dEd
γdEd − µdId

δId − (µe + µ)B

Λh −
βehB

χh +B
Sh − µhSh

βehB

χh +B
Sh − γ̃hEh

γhEh − q̃hIh
αhIh − µhRh

Λs + ρVs −
βesB

χs +B
Ss − νSs − µsSs

νSs − ρVs − µsV s
βesB

χs +B
Ss − γ̃sEs

γsEs − µsIs


4.2 Well-posedness of the Model

Before we proceed with the mathematical analysis, we need to show that the model (4.1.1)-

(4.1.12) (alternatively model (4.1.13)) is well-posed epidemiologically and mathematically in a

feasible domain.

Theorem 4.2.1 The region D = D1 × D2 × D3 × D4, where

D1 =

{
(Sd, Ed, Id) ⊂ R3

+ : Sd + Ed + Id =
Λd

µd

}
,

D2 =

{
(Sh, Eh, Ih, Rh) ⊂ R4

+ : Sh + Eh + Ih +Rh =
Λh

µh

}
,

D3 =

{
(Ss, Es, Is) ⊂ R3

+ : Ss + Es + Is + Vs =
Λs

µs

}
and D4 =

{
B ⊂ R+ : B ≤ δΛd

µd(µe + µ)

}
is

positively invariant for model (4.1.1)-(4.1.12).

Proof. The proof of this theorem follows similar ways as the proof of Theorem 3.3.1.

4.3 Existence and stability of Equilibria

The equilibrium point(s) of the system (4.1.1)-(4.1.12) are obtained by equating the right hand

sides zero. Following similar algebraic computations as Section 3.4, we found a quadratic equation
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in B. Thus,

dB2 − eB = 0, (4.3.1)

where

d = γ̃d(µe + µ)[µsµ
2
dγ̃s(βes(ρ+ µs) + µs(ρ+ µs + ν)) + γsβesβsd(ρ+ µs)Λs]

and

e = δγdγs(ρ+ µs)βesβsdΛsΛd − (µe + µ)µ2
sχsµ

2
dγ̃dγ̃s(ρ+ µs + ν).

Thus, we have two roots

B = 0, and

B =
δδγdγs(ρ+ µs)βesβsdΛsΛd − (µe + µ)µ2

sχsµ
2
dγ̃dγ̃s(ρ+ µs + ν)

γ̃d(µe + µ)[µsµ2
dγ̃s(βes(ρ+ µs) + µs(ρ+ µs + ν)) + γsβesβsd(ρ+ µs)Λs]

. (4.3.2)

The results presented in sections 4.3.1 and 4.3.4 follow from these two roots.

4.3.1 Disease-Free Equilibrium (DFE)

From algebraic computation when B = 0, the system (4.1.13) has the DFE given by

X0 = (S0
d , E

0
d , I

0
d , B

0, S0
h, E

0
h, I

0
h, R

0
h, S

0
s , E

0
s , I

0
s , V

0
s )

=

(
Λd

µd
, 0, 0, 0,

Λh

µh
, 0, 0, 0,

(ρ+ µs)Λs

µs(ρ+ µs + ν)
, 0, 0,

νΛs

µs(ρ+ µs + ν)

)
.

4.3.2 The Control Reproduction Number

Due to the presence of controls in the model (4.1.13), the term ”the control reproduction

number” is used. The control reproduction number, denoted by Rc represents the average

number of secondary infections caused by an infectious individual over the course of infectious

period in a totally susceptible population under specified controls. We derive the control

reproduction number Rc by using the Next Generation Matrix (NGM) approach [23, 64] on the

system (4.1.13). According to the concepts of the next generation matrix and reproduction

number presented in Section 2.6, we define
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F =



βsdIsSd

0

0
βehB

χh +B
Sh

0
βesB

χs +B
Ss

0


and V =



γ̃dEd

µdId − γdEd
(µe + µ)B − δId

γ̃hEh

q̃hIh − γhEh
γ̃sEs

µsIs − γsEs


,

The Jacobian matrix of the infection subsystem at X0 can be decomposed as F − V , where F is

a matrix of transmission rates given by

F =



0 0 0 0 0 0 βsd
Λd

µd
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0
βehΛh

µhχh
0 0 0 0

0 0 0 0 0 0 0

0 0
βes(ρ+ µs)Λs

µsχs(ρ+ µs + ν)
0 0 0 0

0 0 0 0 0 0 0


, (4.3.3)

and V is a matrix of transition rates given by

V =



γ̃d 0 0 0 0 0 0

−γd µd 0 0 0 0 0

0 −δ µe + µ 0 0 0 0

0 0 0 γ̃h 0 0 0

0 0 0 −γh q̃h 0 0

0 0 0 0 0 γ̃s 0

0 0 0 0 0 −γs µs


. (4.3.4)
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Thus,

V −1 =



1

γ̃d
0 0 0 0 0 0

γd
µdγ̃d

1

µd
0 0 0 0 0

δγd
(µe + µ)µdγ̃d

δ

(µe + µ)µd

1

µe + µ
0 0 0 0

0 0 0
1

γ̃h
0 0 0

0 0 0
γh
γ̃hq̃h

1

q̃h
0 0

0 0 0 0 0
1

γ̃s
0

0 0 0 0 0
γs
µsγ̃s

1

µs



,

and the next generation matrix is

FV −1 =



0 0 0 0 0
γsβsdΛd

µ2
sγ̃s

βsdΛd

µ2
s

0 0 0 0 0 0 0

0 0 0 0 0 0 0
δrdβehΛh

χhµhµdγ̃d(µe + µ)

δβehΛh

χhµdµh(µe + µ)

βehΛh

χhµh(µe + µ)
0 0 0 0

0 0 0 0 0 0 0
φδγdβesΛs

χsµsµdγ̃d(µe + µ)

φδβesΛs

χsµsµd(µe + µ)

φβesΛs

χsµs(µe + µ)
0 0 0 0

0 0 0 0 0 0 0


,

where φ =
ρ+ µs

ρ+ µs + ν
.

Thus, the control reproduction number is given by

Rc = ρ(FV −1) =

√
φ

γsβesΛs

χs(µe + µ)

βsd
µ2
sγ̃s

δγdΛd

µ2
dγ̃d

=

√
φµe
µe + µ

R0,

where R0 =

√
γsβesKs

χsµe

βsd
µ2
sγ̃s

δγdKd

µ2
dγ̃d

is the basic reproduction number as derived in (3.4.20), which

represents the average number of secondary infections caused by an infectious individual over the

course of infectious period in a totally susceptible population without vaccination and disinfection

or cleaning of the environment. Here, we can notice that Rc < R0.
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4.3.3 Stability of the DFE

Theorem 4.3.1 If Rc < 1, then the disease free equilibrium X0 is globally asymptotically stable

in D. If Rc > 1, then the DFE is unstable, the system is persistent and there is at least one

equilibrium in the interior of D.

Proof. To prove the global stability of the disease free equilibrium X0, we use a matrix-theoretic

method as explained in Section 2.6. Similar to Theorem 3.4.1, we prove the global stability of the

DFE by constructing a Lyapunov function by using Theorem 2.6.3. As a result, we found that

Q = W TV −1x =
δγdEd

µd(µe + µ)γ̃d
+

δId
µd(µe + µ)

+
B

(µe + µ)
+

(
γs
µsγ̃s

Es +
Is
µs

)
δγdβsdΛd

µ2
d(µe + µ)γ̃dRc

,

is a Lyapunov function for model (4.1.1)-(4.1.12). Then differentiating along the solutions of the

system (3.2.1)-(3.2.11) gives

Q′ = (Rc−1)

(
δγdβsdIsΛd

µ2
d(µe + µ)γ̃dRc

+B

)
−
(

δγdβsdIs
µd(µe + µ)γ̃d

(
Λd

µd
− Sd) +

γsγdβesβsdBΛd

µs(µe + µ)χsµ2
dγ̃dRc

(
S0
s −

Ssχs
B + χs

))
.

Since Sd ≤
Λd

µd
, Ss ≤ S0

s and χs ≤ χs +B, Q′ < 0 if Rc < 1. Q′ = 0 implies that

Case 1. B = 0 and Is = 0. Thus, using the results obtained in Section 3.4, we have Ed = 0,

Id = 0, Eh = 0, Ih = 0, Rh = 0, Es = 0, Sd =
Λd

µd
, Sh =

Λh

µh
, and Ss =

Λs

µs
.

Case 2. Rc = 1, Sd =
Λd

µd
and Ss =

(χs +B)S0
s

χs
. Since Ss ≤ S0

s , we have Ss = S0
s and B = 0.

Thus, using the results obtained in Section 3.4, we also have Ed = 0, Id = 0, Eh = 0, Ih = 0,

Rh = 0, Es = 0, Sd =
Λd

µd
, Sh =

Λh

µh
, Vs = V 0

s and Ss = S0
s .

Hence, the largest invariant set of the model where Q′ = 0 in int(D) is the singleton {X0}.
Therefore, as stated in Theorem 2.5.1 by Lasalle’s invariance principle, the disease free

equilibrium X0 is globally asymptotically stable if Rc < 1.

For Rc > 1, then Q′ = (Rc − 1)W Tx = (Rc − 1)

(
δγdβsdIsΛd

µ2
d(µe + µ)γ̃dRc

+B

)
> 0 in D provided

B > 0 and (Sd, Ss) = (S0
d , S

0
s ), where S0

d =
Λd

µd
and S0

s =
(ρ+ µs)Λs

µs(ρ+ µs + ν)
. By continuity Q′ > 0 in

a neighborhood of X0. Thus, the disease free equilibrium X0 is unstable , and using Theorem

2.6.4, the system (4.1.13) is uniformly persistent and hence imply there is at least one endemic

equilibrium in the interior of D.
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4.3.4 Existence and stability of the Endemic Equilibrium (EE)

From (4.3.2), it follows that the model (4.1.13) admits an endemic equilibrium. Thus, the endemic

equilibrium point of the system in terms of the control reproduction number Rc is given by

XE = (S∗d , E
∗
d , I
∗
d , B

∗, S∗h, E
∗
h, I
∗
h, R

∗
h, S

∗
s , E

∗
s , I
∗
s , V

∗
s ),

where

I∗d =
(µe + µ)B∗

δ
(4.3.5)

E∗d ==
µd(µe + µ)B∗

δγd
(4.3.6)

S∗d =
Λd

µd
− (µe + µ)γ̃dB

δγd
(4.3.7)

S∗h =
(χh +B∗)Λh

µh(χh +B∗) + βehB∗
(4.3.8)

E∗h =
βehΛhB

∗

γ̃h(µh(χh +B∗) + βehB∗)
(4.3.9)

I∗h =
γhβehΛhB

∗

q̃hγ̃h(µh(χh +B∗) + βehB∗)
(4.3.10)

R∗h =
γhαhβehΛhB

∗

µhq̃hγ̃h(µh(χh +B∗) + βehB∗)
(4.3.11)

S∗s =
(ρ+ µs)(χs +B∗)Λs

(βes(ρ+ µs) + µs(ρ+ µs + ν))B∗ + µsχs(ρ+ µs + ν)
(4.3.12)

E∗s =
βes(ρ+ µs)ΛsB

∗

γ̃s[(βes(ρ+ µs) + µs(ρ+ µs + ν))B∗ + µsχs(ρ+ µs + ν)]
(4.3.13)

I∗s =
γsβes(ρ+ µs)ΛsB

∗

µsγ̃s[(βes(ρ+ µs) + µs(ρ+ µs + ν))B∗ + µsχs(ρ+ µs + ν)]
(4.3.14)

V ∗s =
ν(χs +B∗)Λs

(βes(ρ+ µs) + µs(ρ+ µs + ν))B∗ + µsχs(ρ+ µs + ν)
(4.3.15)

B∗ =
χsγ̃sµdµ

2
s(ρ+ µs + ν)

µsµdγ̃s[βes(ρ+ µs) + µs(ρ+ µs + ν)] + γsβesβsd(ρ+ µs)Λs

(R2
c − 1) (4.3.16)

It can be noted that the endemic equilibrium point reduces to disease free equilibrium point for

Rc = 1.

Theorem 4.3.2 If Rc > 1, then an endemic equilibrium

XE = (S∗d , E
∗
d , I
∗
d , B

∗, S∗h, E
∗
h, I
∗
h, R

∗
h, S

∗
s , E

∗
s , I
∗
s , V

∗
s ) defined by equations (4.3.5) - (4.3.16) is globally

asymptotically stable.
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Proof. The method of Lyapunov functions combined with the theory of Volterra–Lyapunov stable

matrices is used to prove the global asymptotic stability of the endemic equilibria. To do this, we

define a Lyapunov function :

L =w1(Sd − S∗d)2 + w2(Ed − E∗d)2 + w3(Id − I∗d)2 + w4(B −B∗)2 +
1

2
(Sh − S∗h + Eh − E∗h

+ Ih − I∗h +Rh −R∗h)2 +
1

2
(Ss − S∗s + Es − E∗s + Is − I∗s + Vs − V ∗s )2.

Thus,

dL

dt
=2w1(Sd − S∗d)

(
dSd
dt

)
+ 2w2(Ed − E∗d)

(
dEd
dt

)
+ 2w3(Id − I∗d)

(
dId
dt

)
+ 2w4(B −B∗)

(
dB

dt

)
+ (Ss − S∗s + Es − E∗s + Is − I∗s + Vs − V ∗s )

(
d

dt
(Ss + Es + Is + Vs)

)
+ (Sh − S∗h + Eh − E∗h + Ih − I∗h +Rh −R∗h)

(
d

dt
(Sh + Eh + Ih +Rh)

)
.

The time derivative of L(t) along the solutions of model equations (4.1.1)-(4.1.12), we obtain

dL

dt
=Y (WA+ ATW T )Y T − µs(Ss − S∗s + Es − E∗s + Is − I∗s + Vs − V ∗s )2

− µh(Sh − S∗h + Eh − E∗h + Ih − I∗h +Rh −R∗h)2,

where Y = (Sd − S∗d , Ed − E∗d , Id − I∗d , B −B∗), W = diag(w1, w2, w3, w4) and

A =


−βsdIs − µd 0 0 0

βsdIs −γ̃d 0 0

0 γd −µd 0

0 0 δ −µe − µ

 .

Obviously, the second and third terms of
dL

dt
are negative. To show the global stability of endemic

equilibrium XE, it suffice to show that A is Volterra-Lyapunov stable in D/{XE}. For this purpose,

we show that matrix Ã is Volterra-Lyapunov stable, and matrix U = Ã−1 is Volterra-Lyapunov

stable (or −Ã−1 is diagonally stable).
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Condition 1: To show Ã is Volterra-Lyapunov stable, we consider

D = −Ã =

 βsdIs + µd 0 0

−βsdIs γ̃d 0

0 −γd µd

 .

The matrix D̃ is obtained by deleting its 3rd row and 3rd column, and results in

−D̃ =

(
−βsdIs − µd 0

βsdIs −γ̃d

)
.

Clearly a11 = −βsdIs − µd < 0, a22 = −γ̃d and det(−D̃) > 0. Based on Lemma 2.6.8, −D̃ is

Volterra-Lyapunov stable.

Moreover, we obtain −D̃−1 =

 − 1

βsdIs + µd
0

− βsdIs
γ̃d(µd + βsdIs)

− 1

γ̃d

 .

Clearly, the diagonal elements − 1

βsdIs + µd
< 0, − 1

γ̃d
< 0 and det(−D̃−1) > 0. Thus, based

on Lemma 2.6.8, −D̃−1 is Volterra-Lyapunov stable.

Therefore, D = −Ã is diagonally stable, and hence Ã is Volterra-Lyapunov stable.

Condition 2: To show Ã−1 is Volterra-Lyapunov stable, we consider

E = −Ã−1 =


1

βsdIs + µd
0 0

βsdIs
γ̃d(µd + βsdIs)

1

γ̃d
0

βsdIsγd
γ̃dµd(µd + βsdIs)

γd
γ̃dµd

1

µd

 .

This results in

−Ẽ =

 − 1

βsdIs + µd
0

− βsdIs
γ̃d(µd + βsdIs)

− 1

γ̃d

 .

Using Lemma 2.6.8, it is easy to observe that −Ẽ is Volterra-Lyapunov stable.
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Moreover, we have −Ẽ−1 =

(
−βsdIs − µd 0

βsdIs −γ̃d

)
. Based on Lemma 2.6.8, we can also

observe that −Ẽ−1 is also Volterra-Lyapunov stable.

Therefore, Ã−1 is Volterra-Lyapunov stable.

Based on Lemma 2.6.10, there exist a diagonal matrix W = diag{w1, w2, w3, w4} such that

W (−A) + (−A)TW T > 0 or WA + ATW T < 0, which indicates that A is Volterra-Lyapunov

stable. Therefore,
dL

dt
< 0, and by LaSalle’s invariance principle (Theorem 2.5.1), XE is globally

asymptotically stable in the interior of D, and is unique provided that Rc > 1.

4.4 Numerical simulation of the model

4.4.1 Elasticity indices

To identify the most important parameter(s) in the dynamics of the disease, we carried out

sensitivity analysis as done in Section 3.5.1. The normalized forward sensitivity index (elasticity

index) of a variable (Rc) with respect to a parameter p is the ratio of the relative change in the

variable to the relative change in the parameter, given by

ΥRcp =
∂Rc

∂p
× p

Rc

.

The intention for this work is not also to validate the model results of the real situation obtained

in a particular study, but for illustrative purposes only. For this purpose, we use data as given

in Table 4.1, and with sensitivity analysis, we can get insight into the appropriate intervention

strategies to prevent and control the spread of the disease.
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Table 4.1: Parameters, Baseline values and Sources

Parameters Baseline values (Unit) Sources

µd 0.00024/day [74, 75]

βsd 0.00001/day Assumed

γd 0.001/day Assumed

µh 0.00004/day [68]

βeh 0.00001/day Assumed

γh 0.00019/day [67]

αh 0.00001/day Assumed

µs 0.00025/day [73]

βes 0.00001/day Assumed

µe 0.003/day [63]

γs 0.001/day [4]

δ 0.00014cells/ml.day [63]

χh 120cells/ml Assumed

χs 100cells/ml Assumed

ν 0.005/day Assumed

ρ 0.001/day Assumed

µ 0.001/day Assumed
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4.4. NUMERICAL SIMULATION OF THE MODEL

Sensitivity indices of the control reproduction numberRc with respect to the model parameters

are determined and presented in Table below.

Table 4.2: Elasticity indices of Rc relative to some model parameters

Parameters ΥRc
p =

∂Rc

∂p
× p

Rc

Baseline value Range Elasticity index

βes
1

2
0.00001 0.000005− 0.0001 0.5

βsd
1

2
0.000001 0.0000001− 0.000002 0.5

δ
1

2
0.001 0.0001− 0.002 0.5

χs −1

2
100 60− 140 -0.5

ν − ν

2(ρ+ ν + µs)
0.005 0.0005− 0.01 -0.48

ρ
ρν

2(ρ+ µs)(ρ+ ν + µs)
0.001 0.0001− 0.002 0.39

µ − µ

2(µe + µ)
0.001 0.0001− 0.002 -0.38

γs
µs

2(µs + γs)
0.001 0.0001− 0.002 0.1

γd
µd

2(µd + γd)
0.001 0.0001− 0.002 0.1

Table 4.2 gives the elasticity indices of Rc with respect to key parameters of model

(4.1.1)-(4.1.12) at the baseline values indicated in Table 4.1 and arranged in descending order of

magnitudes. The sign of the elasticity index tells whether Rc increases (positive sign) or

decreases (negative sign) with the parameter; whereas the magnitude determines the relative

importance of the parameter. From the magnitude of elasticity index, we can notice that four
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parameters (βes, βsd, δ, χs) have equal and the greatest influence for the transmission of the

disease, whereas γs and γd have the least influence.

4.4.2 Global sensitivity analysis

In order to determine which parameter(s) among the eight is (are) most influential in the dynamics

of the disease, global sensitivity analysis is done. To examine the dependence of Rc on parameter

variations, we determine the PRCC values by considering a range of parameters as given in Table

4.2 , with sample size 1000. The result is depicted in Figure 4.2.

Sensitivities

es

sd

 

s

s

d

 (p<0.05)

Figure 4.2: Global sensitivity analysis displaying the partial rank correlation coefficients(PRCC)
of control reproduction number Rc.

From Figure 4.2, it is observed that the transmission rate from sheep to dog (βsd) and

parasite eggs contamination rate of the environment by infected dogs ( δ ) are the most

influential parameters among the eight parameters in the disease dynamics. On the other hand,

µ is the least sensitive parameter for the dynamics of the disease.
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4.4.3 Numerical simulations

In this section, we carry out numerical simulations for mathematical model of cystic echinococcosis

in the populations of sheep, dogs and humans. We use the total populations Λd = 8, Λh = 2,

Λs = 10, and parameter values given in Table 4.1. This yields a control reproduction number Rc =

0.58 < 1. Using different initial conditions, the time evolution of human, sheep and dog populations

for model (4.1.13) is displayed in Figure 4.4. We can notice that all disease compartments E∗d , I
∗
d ,

B∗, E∗h, I
∗
h, R∗h, E

∗
s and I∗s converge asymptotically to zero, while the non infected compartments

S∗d , S
∗
h and S∗s + V ∗s converge to

Λd

µd
= 12, 500,

Λh

µh
= 50, 000 and

Λs

µs
= 16, 000 respectively. This

asserts the global stability of the disease free equilibrium as proved in Theorem 4.3.1.
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Figure 4.3: Time evolution of the dog, sheep and human populations with baseline parameter
values as in Table 4.1, using different initial conditions which gives Rc = 0.58.

Figures 4.4 shows that the time evolution of human, sheep and dog populations for model

(4.1.13) with parameter values given in Table 4.1 by increasing βsd = 0.0000001 to βsd = 0.000001.

In this case, the control reproductive number is Rc = 1.82 > 1, and depict the global stability of

the endemic equilibrium as proved in Theorem 4.3.2. It can be noticed that all the compartments

of the dog, human and sheep populations converge asymptotically to their respective endemic

equilibrium points irrespective of any value for the initial conditions.
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Figure 4.4: Time evolution of the dog, sheep and human populations with baseline parameter
values as in Table 4.1, using different initial conditions, except for βsd = 0.000001 which gives
Rc = 1.82, and with approximate equilibrium values S∗d = 6467, E∗d = 4259, I∗d = 1774, S∗h =
26989, E∗h = 6575, I∗h = 9813, R∗h = 6624, S∗s = 10227, E∗s = 560, I∗s = 224, V ∗s = 5023 .

In the case of endemicity, the prevalence rate of human is

Number of new cases of disease during specified period

average population size× duration of follow up
=

9813

50000× 1
× 100%

= 19.6%

The prevalence rate resulted in the numerical simulation is higher than the WHO published data,

since the WHO report showed that the human prevalence rate is 5%− 10% (as indicated in [32]).

This result has shown 9.6%. discrepancy from maximum WHO published data.
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4.4.4 Effects of Control Strategies on Rc

The numerical simulations are performed to illustrate the effect of vaccination of sheep and

cleaning or disinfecting the environment in the dynamics of the disease transmission in the

populations of sheep, dogs and humans while they are used alone or simultaneously.

The effect of vaccination of sheep using baseline parameter values in Table 4.1 except for µ = 0,

and when ν is varied from 0.005 to 0.5, is displayed in Figure 4.5. As a result the infectious

sheep, dog and human populations are respectively reduced from 635 to 0 , 2668 to 0, and 8293

to 0, where the control reproduction number is also reduced from Rc = 2.93 to Rc = 0.51. This

result shows that increasing the rate of vaccination of sheep (ν) reduces the time evolution of

infected human, sheep and dog populations. The effect of disinfection or cleaning the

environment using baseline parameter values in Table 4.1 except for ν = 0, and when µ is varied

from 0.1 to 0.001, is displayed in Figure 4.6. As a result the infectious sheep, dog and human

populations are respectively reduced from 452 to 0 , 1640 to 0, and 5136 to 0, where the control

reproduction number is also reduced from Rc = 2.65 to Rc = 0.58. This result shows that

increasing the rate of disinfection or cleaning the environment (µ) has very less effect to

eradicate the disease transmission in human, sheep and dog populations.
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Figure 4.5: The numerical simulations displaying effects of vaccination of sheep only on the number
of infectious dog, human and sheep populations, using parameter values in Table 4.1, with varying
values of ν (µ = 0).
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Figure 4.6: The numerical simulations displaying effects of disinfection or cleaning the environment
only on the number of infectious dog, human and sheep populations, using parameter values in
Table 4.1, with varying values of µ (ν = 0).

.

Numerical simulation is also performed to illustrate the effect of vaccination of sheep and

disinfection or cleaning the environment when the two control strategies are administered

simultaneously, as displayed in Figure 4.7. The number of infectious sheep, dog and human

populations are respectively reduced from 544 to 0, 2551 to 0, and 7416 to 0, where the control

reproduction number is also reduced from Rc = 2.54 to Rc = 0.09. One can observe that these

combined effects allow to reduce the size of infected individuals. Thus, increasing the vaccination

rate of sheep alone or a simultaneous increase of the vaccination rate of sheep and rate of

cleaning or disinfecting the environment is an effective control measure of cyst echinococcosis.
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Figure 4.7: The numerical simulations displaying effects of combining controlling strategies on the
number of infectious dog, human and sheep populations, using parameter values in Table 4.1.
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Furthermore, we assess the impact of combined control strategies using contour plots of Rc as

function of the control strategies, and with varying rate of transmission from sheep to dog (βsd),

we estimate the least values of the two control parameters which will ensure the disease

eradication in the populations.

Figure 4.8(a) shows contour curves of Rc as a function of ν and µ using baseline parameter

values in Table 3.1. The figure depicts that the disease will be eliminated if the controls

ν ∈ [0, 0.2] and µ ∈ [0, 0.14]. Contour plots of Rc as function of the control strategies, for rate of

transmission from sheep to dog (βsd = 0.000005) is displayed in Figure 4.8(b). The least values

of ν and µ that will ensure parasites eradication are estimated to be ν = 0.06 and µ = 0.1 or

ν = 0 and µ = 0.1 so that Rc = 98. In this case, the combined control strategies has effect in the

disease transmission with range of Rc ∈ [0.37, 0.98] and mean 0.675. Contour plots of Rc as

function of the control strategies, for rate of transmission from sheep to dog (βsd = 0.000005) is

displayed in Figure 4.8(c). The least values of ν and µ that will ensure parasites eradication are

estimated to be ν = 0.14 and µ = 0.19 or ν = 0 and µ = 0.19 so that Rc = 1.. In this case, the

combined control strategies have effect in the disease transmission with range of Rc ∈ [0.26, 1]

and mean 0.63. These results have shown that a remarkable increase in the control reproduction

number is observed with an increase rate of transmission from sheep to dog (βsd). Hence, to

ensure the eradication of parasites, we must introduce the least values of the controls that can

bring the value Rc < 1 with respect to the rate of transmission from sheep to dog (βsd).
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Figure 4.8: Contour curves of Rc as a function of ν and µ using different rate of transmission from
sheep to dog (βsd) with (a) parameter values in Table 4.1, (b) βsd = 0.000005, (c) βsd = 0.00001
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Chapter 5

Optimal control of a mathematical

model of Echinococcosis in humans,

dogs and sheep.

The mathematical model (4.1.1)-(4.1.12) presented in Chapter 4 is considered. From numerical

simulations performed in 4.4.4, it was found that vaccination of sheep when carried out solely or in

combination with cleaning or disinfection of the environment is an effective control method for the

disease. In this study, the impact of time dependent intervention strategies will be investigated.

The effectiveness of optimal control(s) in comparison to constant control(s) is also explored. All

assumptions stated in Chapter 4, including the total populations is valid for this model too.

5.1 Optimal Control of the model

In this section, we perform optimal control study on model (4.1.1)-(4.1.12) to explore the most

effective mitigation strategy which will minimize the number of sheep, dogs and human who

become infected in the course of infection while efficiently balancing vaccination of sheep and

cleaning or disinfection of the environment when applied to the models with various cost scenarios.

The optimal control model for the disease is formulated by considering the following controls:

1. Sanitation control, µ(t) which measures the efforts to prevent susceptible sheep and human

from contracting the disease. This include drinking clean water, personal hygiene, avoiding

eating raw food, and intensive cleanliness of the environment which help to break the parasite

transmission cycle,
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2. Vaccination of sheep, which is administered at rate ν(t).

The objective functional is given by

J(ν, µ) =

∫ T

0

(
w1Id + w2Ih + w3Is +B1ν(t)2 +B2µ(t)2

)
dt, (5.1.1)

where w1, w2 and w3 are positive balancing coefficients corresponding to state variables Id, Ih

and Is respectively. The terms w1, w2 and w3 represent the weights associated with infectious

dog (Id), infectious human (Ih) and infectious sheep (Is) respectively. The coefficients B1 and B2

represent the weights on the cost associated with vaccination of sheep and cleaning or disinfection

of environment respectively. We consider the system on a time interval [0, T ] for some T > 0. The

controls are defined as

Γ = {(ν, µ) | 0 ≤ ν(t) ≤ νmax, 0 ≤ µ(t) ≤ µmax},

where νmax and µmax denote the upper bounds for the effort of vaccination and sanitation

respectively. A successful control strategy is one that reduces the number of infected individuals

while minimising the costs J(ν, µ) associated with these efforts. Thus, our goal is to find a pair

of controls (ν∗, µ∗), such that

J(ν∗, µ∗) = min
(ν,µ)∈Γ

J(ν, µ),

This minimise the number of infected individuals from the populations while keeping the cost of

controls low.

5.2 Existence of the Optimal Control

The existence of optimal control follows from Fleming and Rischel [27] due to convexity of the

integrand of the objective functional J in (5.1.1) over a convex and closed control set Γ, and

system (4.1.1)-(4.1.12) satisfies the Lipschitz property with respect to the state variables since the

state solutions are bounded. The basic framework of an optimal control problem is to prove the

existence of an optimal control and then characterize it. Pontryagin’s Maximum Principle is used

to establish necessary conditions that must be satisfied by an optimal control solution [52]. The

existence of an optimal control pair as well as the necessary conditions that the optimal control

solutions of system (4.1.1)-(4.1.12) satisfy are shown below. This principle introduces adjoint

functions that allow the state system (4.1.1)-(4.1.12) to be attached to the objective functional,

that is, it converts the system (4.1.1)-(4.1.12) into the problem of minimizing the Hamiltonian
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H(t) given by:

H(t) = w1Id + w2Ih + w3Is +B1ν
2 +B2µ

2 + λg(t,X(t)), (5.2.1)

where λ = (λ1, λ2, · · · , λn) is a row matrix (vector) of adjoint functions (variables) or co-state

variables. In the following theorem, we present the adjoint system and control characterisation.

Theorem 5.2.1 There exists (ν∗, µ∗) ∈ Γ such that the objective functional in (5.1.1) is

minimized.

Proof. To achieve the optimal control, the adjoint functions must satisfy
dλi
dt

= −∂H
∂X

. Thus, we

obtain the adjoint system

dλ1

dt
= − ∂H

∂Sd
= λ1µd + (λ1 − λ2)βsdIs, (5.2.2)

dλ2

dt
= − ∂H

∂Ed
= λ2γ̃d − λ3γd, (5.2.3)

dλ3

dt
= −∂H

∂Id
= λ3µd − λ4δ − w1, (5.2.4)

dλ4

dt
= −∂H

∂B
= λ4(µe + µ) + (λ5 − λ6)

βehχhSh
(χh +B)2

+ (λ9 − λ11)
βesχsSs

(χs +B)2
, (5.2.5)

dλ5

dt
= − ∂H

∂Sh
= λ5µh + (λ5 − λ6)

βehB

χh +B
, (5.2.6)

dλ6

dt
= − ∂H

∂Eh
= λ6γ̃h − λ7γh, (5.2.7)

dλ7

dt
= −∂H

∂Ih
= λ7q̃h − λ8αh − w2, (5.2.8)

dλ8

dt
= − ∂H

∂Rh

= λ8µh, (5.2.9)

dλ9

dt
= −∂H

∂Ss
= λ9µs + (λ9 − λ11)

βesB

χs +B
+ (λ9 − λ10)ν, (5.2.10)

dλ10

dt
= −∂H

∂Vs
= (λ10 − λ9)ρ, (5.2.11)

dλ11

dt
= − ∂H

∂Es
= λ11γ̃s − λ12γs, (5.2.12)

dλ12

dt
= −∂H

∂Is
= λ12µs + (λ1 − λ2)βsdSd − w3, (5.2.13)

with transversality conditions (or final time conditions) λ(tf ) = 0.

The characterization of the optimal controls ν∗(t) and µ∗(t) are based on the conditions
∂H

∂ν
= 0
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and
∂H

∂µ
= 0 respectively, subject to the constraints 0 ≤ ν ≤ νmax and 0 ≤ µ ≤ µmax. This gives

us

2B1ν + (λ10 − λ9)Ss = 0, (5.2.14)

2B2µ− λ4B = 0. (5.2.15)

Solving for the controls in (5.2.14) and (5.2.15), we get ν̃ =
(λ9 − λ10)Ss

2B1

, µ̃ =
λ4B

2B2

. By applying

the standard arguments and the bounds for the controls, we obtain the characterization of the

optimal control

ν∗ = max{0,min(ν̃), νmax} (5.2.16)

µ∗ = max{0,min(µ̃), µmax} (5.2.17)

5.3 Numerical results

In this section, we present some numerical results of the proposed optimal control problem. We

use an iterative scheme to solve the optimality system. Starting with a guess for the adjoint

variables, the state equations are solved forward in time over the simulated time using fourth

order Runge-Kutta scheme. Then these state values are used to solve the adjoint equations

backward by a backward fourth order Runge-Kutta scheme. Finally, we update the controls by

using the previous controls and the value from the characterizations (5.2.16)-(5.2.17), and the

iterations continue until convergence.

To illustrate the results of the foregoing analysis, we have simulated system (4.1.1)-(4.1.12) using

the parameters in Table 3.1.

The simulations are carried out using the following initial values: Sd = 7500, Ed = 2500,

Id = 2500, B = 10, Sh = 34000, Eh = 6500, Ih = 9000, Rh = 1000, Ss = 7000, Es = 4800,

Vs = 1700 and Is = 3200. The total populations of dog (Nd), sheep (Ns) and human (Nh) are

respectively 12,500, 16,000 and 50,000 respectively. Furthermore, taking lack of resources and

misuse of controls in to account, we take Γ = {(ν, µ) | 0 ≤ ν(t) ≤ 0.7, 0 ≤ µ(t) ≤ 0.7}, with

T = 2000 (days). The cost coefficients corresponding to state variables are set to be w1 = 20,
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w2 = 20, and w3 = 20. These weight parameters determine the importance of variables in the

objective functional. Assuming that both controls have equal significance, the quadratic cost

coefficient corresponding to control measures are arbitrary chosen to be B1 = 3.2 and B2 = 3.2

(dimensionless). Simulations of the populations of infected sheep, dog and human with optimal

control and constant control are compared. For this purpose, optimal strategies with the

following three scenarios are considered.

Strategy A: Cleaning or disinfection of the environment alone.

Strategy B: Vaccination of sheep alone.

Strategy C: Combination of vaccination of sheep and cleaning or disinfection of the environment.

Strategy A: Cleaning or disinfection of the environment alone

Simulations (a)-(c)in Figure 5.1 illustrate the time evolution of infected dogs (Id), infected sheep

(Is) and infected humans (Ih), in the presence of vaccination of sheep alone, that is, with optimal

cleaning or disinfection of the environment alone, 0 ≤ µ(t) ≤ 0.7 and ν = 0. In order to see

the effect of optimal cleaning or disinfection of the environment alone and compare with the time

independent rate, we consider time independent rates of cleaning or disinfection of the environment

alone µ = 0, µ = 0.005 and µ = 0.6. The number of human and the number of infectious

sheep due to the time-independent (constant) rate, µ is less than the number of infectious human

and infectious sheep resulted from the optimal control. However, the number of infectious dogs

corresponding to the optimal control do not show a significant reduction while compared to the

number of infected dogs resulted from the time-independent (constant) rate µ. The total number

of infections in dog, human and sheep populations without control are respectively 2277, 8949 and

5204, whereas in the presence of this optimal strategy a total of 2 infected dogs, 20 infected humans,

and 138 infected sheep are averted. The cost functions corresponding to cleaning or disinfection

of the environment is as shown in the Fig. 5.1(d). The figure depicts that the associated costs

of implementing the strategy increases until 970 days then decreases in the rest time horizon.

Simulation result of Figure 5.1(e) shows the optimal path of the controls. In this case, the control

measure ν start at the highest bound at the beginning and remains there till the final time. The

associated total costs of implementing this strategy is J = 3.25× 103.
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Figure 5.1: The time evolution of the number of infected individuals with optimal and constant
rate of cleaning or disinfection of the environment alone (µ)), the cost and the control profile of
vaccination of sheep, µ(t).

.

Strategy B: Vaccination of sheep alone

In order to see the effect of optimal vaccination of sheep, and compare with the time independent

rate, we consider the time-independent (constant) rate of vaccination of sheep, ν = 0, ν = 0.005

and ν = 0.6. The results in (a)-(c) in Figure 5.2 show that, the number of infectious individuals in

the three populations corresponding to the optimal control are less than the number of infectious

individuals resulted from the time-independent (constant) rate of vaccination of sheep. The total

number of infections in dog, human, sheep populations without control are Id = 2214, Ih = 8953,

and Is = 3769 respectively, whereas in the presence of the optimal strategy a total of 11 infected

dog, 3 infected humans and 170 infected sheep are averted. Simulations results of Figure 5.2(e)

show the optimal path of the controls. The control measure ν at the upper bound at the beginning

and remains there till the final time. The cost functions corresponding to sheep vaccination are as

shown in the Fig. 5.2(d). In this case, the figures depict that the associated costs of implementing

the strategy increases up to 476 days then it drops in the remaining time horizon. The associated

total costs of implementing this strategy is J = 2.9503× 105.
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Figure 5.2: The time evolution of the number of infected individuals with optimal and constant
rate of vaccination of sheep alone (ν)), the cost and the control profile of vaccination of sheep,
ν(t).

.

Strategy C: Combination of vaccination of sheep and cleaning or disinfection of the

environment.

Numerical simulations (a)-(c) in Figure 5.3 illustrate the effects of combining the optimal

vaccination rate of sheep ν and the optimal rate of cleaning or disinfection of the environment µ,

where 0 ≤ ν(t) ≤ 0.7 and 0 ≤ µ(t) ≤ 0.7. The results in Figure 5.3 show that, the number of

infectious dogs, human and sheep corresponding to the optimal control are less than the number

of infected individuals in the three populations resulted from small amount time-independent

(constant) controls. However, it can also be noticed that, the number of infectious dogs, sheep

and human populations do not show significant differences while compared to the numbers of

infected dos, sheep and human populations obtained with constant controls, ν = µ = 0.7. The

total number of infections in dog, human and sheep populations without control are respectively

2214, 8953 and 3769, whereas in the presence of this optimal strategy a total of 13 infected dogs,

24 infected humans, and 171 infected sheep are averted. Simulations results of Figure 5.3(e)

shows the optimal path of the controls. The control measure µ is at upper bound up to 1420

days and eventually drops to the lower bound in the remaining time horizon. But the control

measure ν start at the lower bound at the beginning and remains there till the final time. The

cost function corresponding to sheep vaccination and cleaning or disinfection of the environment

is as shown in the Fig. 5.3(d). The figure depict that the associated costs of implementing the
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strategy increases up to 330 days and decrease in the remaining time horizon. The associated

total costs of implementing this strategy is J = 2.946× 105.
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Figure 5.3: The time evolution of the number of infected individuals with optimal and constant
optimal controls (µ = 0.01, ν = 0.05), the cost and the control profile of both interventions, ν(t)
and µ(t)

.

From the results of Figures, for a small amount(fraction) of time independent control(s), we

can notice that the optimal control strategy is more effective than the time-independent small

fraction control(s). However, while time independent control(s) is(are) administered at

maximum effort, the optimal control strategy has similar effect as the time-independent

control(s). Moreover, combining both optimal controls is more effective in disease management

than using the optimal vaccination of sheep alone or optimal disinfection of the environment.

Next, we demonstrate the effect of practicing vaccination of sheep on the number of infected

population by keeping cleaning or disinfection of the environment constant. Accordingly, the

model is simulated for percentage values ν(t) = 1%, ν(t) = 10% and ν(t) = 70%, with a constant

rate of cleaning or disinfection of the environment µ = 0 and µ = 0.01 in Figure 5.4 and Figure

5.5 respectively.

86



5.3. NUMERICAL RESULTS

0 1 2 3 4 5

Time (days) 10 4

0

500

1000

1500

2000

2500

3000

C
u
m

u
la

ti
v
e
 n

e
w

 i
n
fe

c
ti
o
u
s
 c

a
s
e
s
 o

f 
d
o
g
s

=0%

=1%

=10%

=70%

0 1 2 3 4 5

Time (days) 10 4

0

5000

10000

15000

C
u
m

u
la

ti
v
e
 n

e
w

 i
n
fe

c
ti
o
u
s
 c

a
s
e
s
 o

f 
h
u
m

a
n
s

=0%

=1%

=10%

=70%

0 1 2 3 4 5

Time (days) 10 4

0

100

200

300

400

500

600

700

800

900

1000

C
u
m

u
la

ti
v
e
 n

e
w

 i
n
fe

c
ti
o
u
s
 c

a
s
e
s
 o

f 
S

h
e
e
p
.

=0%

=1%

=10%

=70%

Figure 5.4: Effect of different percentage values of control ν(t) with µ = 0 on the number of cases.
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Figure 5.5: Effect of different percentage values of control ν(t) with µ = 0.01 on the number of
cases.

.

From Figures 5.4 and 5.5, it can be inferred that, if at least 1% of sheep populations maintained

practicing vaccination, then the number of cases in the three populations would have reduced as

compared to the results with no vaccination. The figures further reveal that improved results would

have been obtained for ν = 10% and ν = 70% in the the number of cases in the three populations.

Figure 5.5 also showed that the number of cases in the three population is significantly reduced

when vaccination of sheep is practiced with cleaning or disinfection of the environment.
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5.3.1 Cost effectiveness

Controlling and eliminating the spread of infectious diseases in a in community require time and

money. Therefore, it is essential to identify and implement cost-effective strategies to prevent the

spread the disease. We use the incremental cost-effectiveness ratio (ICER) to do this. The ICER

is defined as the cost per health outcome [72], which is given by:

ICER =
The difference in costs between strategies

Total number of infection averted

We calculated the number of infections averted by subtracting the number of infections with

control from without control. On the other hand, the total cost of each strategy was obtained

using the cost function J . To use the ICER method, we first rank the control strategies based on

averted human infection, as shown in Table 5.2.

Table 5.1: Cost-effectiveness of the control strategies.

Strategy Total human infection averted Total cost ($)

No Strategy 0 0

Strategy A 6 3.25× 105

Strategy B 3 2.9503× 105

Strategy C 24 2.946× 105

The ICER, is calculated as follows.

ICER(A) =
3.25× 105

6
= 5.4× 104

ICER(B) =
2.9503× 105 − 3.25× 105

3− 6
= 9.99× 103

ICER(C) =
2.946× 105 − 2.9503× 105

24− 3
= −20.48

ICER values for the four strategies indicates that strategy A has greatest ICER value. Due to

this reason, Strategy A is excluded, and the analysis continued by comparing ICER values of the

remaining strategies. We recalculate ICER as follows.
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Table 5.2: Cost-effectiveness of the control strategies.

Strategy Total human infection averted Total cost ($)

No Strategy 0 0

Strategy B 3 2.9503× 105

Strategy C 24 2.946× 105

The ICER, is calculated as follows.

ICER(B) =
2.9503× 105

3
= 9.8× 104

ICER(C) =
2.946× 105 − 2.9503× 105

24− 3
= −20.48

The comparison between the two strategies shows that B is more costly than the other C. Thus, B is

excluded. Therefore, Strategy C ( combination of vaccination of sheep and cleaning or disinfection

of the environment) is the most effective strategy to prevent the disease.
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Chapter 6

Discussion and Conclusion

6.1 Results and Discussion

In this study, mathematical models with and without intervention strategies were formulated to

describe the transmission dynamics of cystic echinococcosis in dogs, sheep and humans. These

models are distinct from previous mathematical cystic echinococcosis studies, in which most

models do not incorporate human populations [3, 29, 30, 53, 54, 63], predator-prey interaction

between the populations, the saturation effect of the parasite in the environment. We introduced

a model for the predator–prey interaction of the sheep, dog and human populations in order to

ascertain the conditions for the coexistence of these populations. We then determined the

equilibrium points, and studied the stability of each of these points. We also formulated a

compartmental model for transmission dynamics of cyst echinococcosis without any intervention

strategies. We calculated both the Disease Free Equilibrium (DFE) and the Endemic

Equilibrium (EE) points of the model. To study the behavior of the disease, the basic

reproduction number R0 was derived. We proved that, when R0 ≤ 1 the DFE is locally

asymptotically stable and globally asymptotically stable, which implies the disease dies out,

whereas when R0 > 1, the EE is globally asymptotically stable, which implies that the disease

persists in all the populations. To identify which parameter has a great impact in the disease

transmission, we performed both local and global sensitivity analyses on the basic reproduction

number, from which we noticed that the most sensitive parameter is the transmission rate of

Echinococcus’ eggs from environment to sheep (βes). Furthermore, we observed that the

variation of βes has a significant effect on the number of infectious sheep, dog and human

populations. Thus, the effective controlling strategy is to decrease the transmission rate of

Echinococcus’ eggs from environment to sheep (βes). We extended the model by incorporating
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the vaccination of sheep and cleaning or disinfection of the environment. The model has a

Disease Free Equilibrium point (DFE) which is both locally and globally asymptotically stable

whenever the control reproduction number Rc ≤ 1. We also determined the Endemic

Equilibrium points (EE) and proved that it is globally stable whenever the control reproduction

number Rc > 1. Moreover, we have performed sensitivity analysis on the control reproduction

number with the two control strategies, from which we have noted that the most sensitive

parameters are the transmission rate from sheep to dog (βsd) and Echinococcos’ eggs

contamination rate of the environment by infected dogs (δ). Numerical simulations of the model

have shown that, whenever the control strategies are carried out solely then vaccination of sheep

is the better alternative to eradicate cyst echinococcosis, but when disinfection or cleaning the

environment is carried out solely, its effect to eradicate the disease is low. Furthermore, the

numerical result obtained in this study is compared with the WHO data.

In order to reduce or eliminate the disease while minimizing the intervention implementation

costs, an optimal control model with vaccination of sheep and cleaning or disinfection of the

environment is developed and analyzed. The Pontryagin’s Maximum Principle is applied in order

to determine the necessary conditions for the optimal control of the disease. The effect of

constant and time dependent vaccination of sheep and cleaning or disinfection of the

environment have not also been examined in the previous studies. It this study their effects are

studied. Numerical simulations of two strategies are depicted and discussed. The results of the

simulations revealed that the optimal controls are more effective to reduce the disease in the

populations of dog, sheep and human than small amount time-independent controls. But the

time-independent controls if administered at maximum effort, has also the same effect as the

optimal control(s) to reduce the disease in the populations. Carrying out the cost effectiveness

analysis using ICER, the most cost-effective strategy to use in the control of cystic echinoccosis

disease is determined. Doing this, the differences between the costs and health outcomes of these

interventions are compared. The cost effectiveness analysis was carried out using numerical

simulations and the result revealed that vaccination of sheep in combination with cleaning or

disinfection of the environment is cost-effective strategy. This indicates that administering

optimal vaccination of sheep in combination with optimal cleaning or disinfection of the

environment is effective strategies to eradicate the outbreak of the disease from the three

populations with minimum cost.
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6.2 Conclusion

In order to understand the dynamics of the dynamics of cystic echinococcosis in human

population, a basic deterministic mathematical model without intervention strategies was first

proposed and analyzed. This provided insights into the dynamics of the disease transmission,

and helped to formulate intervention strategies. A model which incorporates two control

strategies; namely vaccination of sheep and disinfection or cleaning the environment was then

proposed and analyzed. The result of the analysis have shown that vaccination of sheep solely or

in combination with cleaning or disinfecting of the environment reduce the number of infectious

individuals in the three populations. This is distinct from the outcomes seen in [22, 57, 77]. This

is because each model uses a different set of intervention techniques. Furthermore, for effective

utilization of limited resources, the optimal control measures have played great role during

intervention period [22]. The control options would be evaluated on the basis of their

effectiveness and cost. Due to this reason, the optimal control measures was carried out in the

two interventions of CE. Rong et al in [57] suggest that, the implementation of optimal control

strategy can significantly reduce the infections. Improving the cost of health education and

domestic dog deworming could not decrease human infections. Due to the difference in

intervention strategies, this result do not agree with the result of our study. The analyses of our

study have shown that time dependent vaccination of sheep solely or in combination with

cleaning or disinfecting of the environment can be carried out for long time span to reduce the

disease transmission in the dog, sheep and human populations. Administering time dependent

vaccination of sheep solely or in combination with cleaning or disinfecting of the environment

with maximum amount is effective strategies to eradicate the outbreak of the disease from the

three populations. Due to economic pressure over the government agencies all around the world,

the effectiveness and cost-effectiveness of the control strategies needs to be studied [72]. Due to

this fact, he cost effective analysis was also carried out. The result of the analyses have shown

that combination of vaccination of sheep and cleaning or disinfection of the environment is cost

effective strategy to prevent the disease. However, the cost effectiveness analyses were not

carried out in the aforementioned studies.
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Limitation and extension of the study

One of the limitations of this study is lack of realistic data, thus in this study estimated parameter

values were used. For the model to be more realistic and to make possible future predictions,

collecting relevant data from the environment is very important. Furthermore, the sensitivity

analysis of the model with the two intervention strategies also showed that the most sensitive

parameters are the transmission rate from sheep to dog (βsd). This indicates that to eradicate

the disease from the three populations the model needs to incorporate other possible intervention

strategies that can reduce βsd. We therefore suggest extension of our work by introducing different

intervention strategies. It is also understood that models of the dynamics of disease transmission

use different scenario to represent the birth/death rates. In this particular study, we have taken

a constant birth rate and linear death rate, and other scenarios are needed be considered and

studied in the future projects.
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