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Summary

In this dissertation, we investigate the role of the nucleon-nucleon (nn) and three-

body interactions on the ground-state structure of the 22C −→ 20C + n + n bor-

romean system. We start by outlining the theoretical formulation of a three-body

bound-state problems, starting with the fundamentals of two-body bound and scat-

tering states. The different steps leading to the transformation of the three-body

Schrödinger equation into a one-dimensional set of coupled differential equations are

shown. These equations are numerically solved to obtain the three-body ground-

state binding energy. The analysis of the numerical results show that even in the

absence of the nn interaction, the system remains bound, provided the three-body

interaction becomes more attractive. Similarly, the system remains bound in the

absence of the three-body interaction, provided the nn interaction becomes more at-

tractive. The ground-state binding energy is also found to be a continuous function

of the strengths and ranges of both interactions, meaning that when these param-

eters increase, the binding energy increases as well, making the system to be more

compact. The study presented in this dissertation highlights the interplay of the nn

and three-body interactions in the dynamics of the three-body neutron-halo system.

These results have been published in the Brazilian Journal of Physics (2022) 52, 193.

DOI: https://doi.org/10.1007/s13538-022-01194-5.

Using the ground-state binding energy, various thermodynamic properties such as

the mean energy, the free energy, the entropy as well as the specific heat capacity of

this system are also calculated.



Contents

1 Introduction 1

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Aim and objective of the study . . . . . . . . . . . . . . . . . . . . . 5

1.3 Methodological approach . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 8

2 Fundamentals of two-body systems 9

2.1 Two-body Schrödinger equation and wave function . . . . . . . . . . 9

2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Two-body potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Formalism of three-body systems 20

3.1 Jacobi coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 The angular momenta and spin of the system . . . . . . . . . . . . . 24

3.3 Hyperspherical Harmonics Method . . . . . . . . . . . . . . . . . . . 25

3.3.1 Hyperspherical coordinates . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Hyperspherical Harmonics . . . . . . . . . . . . . . . . . . . . 26

3.4 Faddeev Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Expansion of the wave function and coupled equations . . . . 30

3.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Results and Discussion 37

© University of South Africa 2023 v



4.1 Brief description of the 22C system . . . . . . . . . . . . . . . . . . . 37

4.1.1 n− 20C and nn interactions . . . . . . . . . . . . . . . . . . . 38

4.1.2 Three-body interactions . . . . . . . . . . . . . . . . . . . . . 40

4.2 Details of numerical calculations . . . . . . . . . . . . . . . . . . . . . 41

4.3 Brief analysis of the expansion basis . . . . . . . . . . . . . . . . . . . 41

4.4 Convergence of the ground-state binding energy as function of Kmax . 43

4.5 Ground-state binding energy versus the strength v3b . . . . . . . . . . 46

4.6 Ground-state binding energy versus the strength v0 . . . . . . . . . . 48

4.7 Ground-state binding energy versus the range ρ0 of the three-body

interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Ground-state binding energy versus the range x0 of the nn interaction 53

4.9 Some ground-state thermodynamic properties . . . . . . . . . . . . . 56

4.9.1 Mean Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.9.2 Free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.9.3 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.9.4 Heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.9.5 Condition of calculations and results . . . . . . . . . . . . . . 58

5 Conclusion 63

© University of South Africa 2023 vi



List of Tables

4.1 Parameters of the core-neutron Woods-Saxon potential, where V0, Vso

are the depths of the central and spin-orbit coupling term, and Ri, and

ai [i ≡ (0, so)], the corresponding absolute radii diffuseness. These

parameters were taken from Ref. [4]. . . . . . . . . . . . . . . . . . . 39

4.2 Three-body ground state binding energies ε3b (in MeV), for different

values of the depth of the three-body interaction given by Eqs.(4.2)

and Eq.(4.3). P1 represents the interaction (4.2), and P2 the interac-

tion (4.3). Setting v0 = 0 means that the nn interaction is removed,

meaning that there are no nn correlations. . . . . . . . . . . . . . . . 47

4.3 Three-body ground state binding energies ε3b (in MeV), for different

values of the v0 depth of the nn interaction given by Eq.(4.1). We only

consider the three-body interaction P1. Setting v3b = 0MeV means

that the three-body interaction is removed. . . . . . . . . . . . . . . . 48

4.4 Dependence of the three-body ground-state binding energy ε3b and

the 22C root mean-square matter radius Rm, for v3b = −4MeV, v0 =

−31.0MeV, and v0 = 0.0MeV. . . . . . . . . . . . . . . . . . . . . . . 52

© University of South Africa 2023 vii



4.5 Dependence of the three-body ground-state binding energy ε3b and

rms matter radius Rm on the range x0 of the nn interaction. Cases

where the three-body interaction is included (v3b = −2.46MeV) and

excluded (v3b = 0.0MeV) are considered. . . . . . . . . . . . . . . . . 54

© University of South Africa 2023 viii



List of Figures

1.1 The Borromean rings illustrating three-body borromean systems. . . 3

1.2 Nuclear chart of some of the known two-and three-body halo nuclei. . 3

3.1 Jacobi coordinates for a three-body system . . . . . . . . . . . . . . . 22

4.1 Resonance structure of the 21C system in the 1d 5
2

+ state . . . . . . . 39

4.2 Plot of the radial basis function [Eq.(3.45)], for different values of n. . 42

4.3 Plot of the hyperspherical basis function P`x,`yK (z), as function of z.

The label γ ≡ (n, `x, `y, K) in each panel represents some of the quan-

tum numbers used to describe the three-body state. . . . . . . . . . 43

4.4 Convergence of the three-body ground-state binding energy ε3b as a

function of the hypermomentum Kmax, for three different strengths

(v3b = −2.46 MeV,−10 MeV,−15 MeV) of the potential P1 [Eq. (4.2)].

The results are obtained with v0 = −31.0MeV, where v0 is the depth

of the nn interaction [Eq. (4.1)]. . . . . . . . . . . . . . . . . . . . . . 44

4.5 Convergence of the three-body ground-state binding energy ε3b as a

function of the hypermomentum Kmax. The depth of the potential P1

is set to v3b = −6.45MeV, in the absence of the nn interaction (v0 = 0). 45

© University of South Africa 2023 ix



4.6 Convergence of the three-body ground-state binding energy ε3b as a

function of the hypermomentum Kmax, in the absence of the three-

body interaction (v3b = 0). The depth of the nn interaction is set to

v0 = −38.5MeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7 Plot of the three-body potential V3b(ρ) given by Eq. (4.2) as function

of the hyperadius ρ for different values of the range ρ0 [panel (a)]

and of the nn interaction Vnn(x) given by Eq.(4.1) as function of nn

coordinate x, for different values of the range x0. . . . . . . . . . . . . 51

4.8 Ground-state binding energy ε3b [panel (a)], and rms matter radius

[panel (b)], as functions of the range of the three-body interaction (4.2). 52

4.9 Ground-state binding energy ε3b [panel (a)], and root-mean-square

matter radius [panel (b)], as functions of the range x0 of the nn inter-

action when the three-body interaction is included (v3b = −2.46MeV)

and excluded (v3b = 0MeV) . . . . . . . . . . . . . . . . . . . . . . . 54

4.10 Plots of the s-wave component of the ground-state radial wave function

for different values of the range ρ0 of the three-body interaction [panel

(a)] and the range x0 of the nn interaction [panel (b)], and for v3b =

−2.46MeV and v0 = −31.0MeV. . . . . . . . . . . . . . . . . . . . . . 55

4.11 Partition function of the 22C system as function of the temperature in

(GK) for different ground-state binding energies ε3b. . . . . . . . . . . 59

4.12 Mean energy of the 22C system as function of the temperature in (GK)

for different ground-state binding energies ε3b. . . . . . . . . . . . . . 60

4.13 Free energy of the 22C system as function of the temperature in (GK)

for different ground-state binding energies ε3b. . . . . . . . . . . . . . 61

© University of South Africa 2023 x



4.14 Entropy of the 22C system as function of the temperature in (GK) for

different ground-state binding energies ε3b. . . . . . . . . . . . . . . . 61

4.15 Specific heat capacity of the 22C system as a function of the temper-

ature in (GK) for different ground-state binding energies ε3b. . . . . . 62

© University of South Africa 2023 xi



Chapter 1

Introduction

Since the discovery of halo nuclei [1, 2], the study of the structure of these weakly-

bound systems has attracted immense attention from both experimental and the-

oretical perspectives as exemplified by Refs. [3–32]. Quantum halos are generally

regarded as systems with dominating few-body structure, with radii larger com-

pared to the size of the classically allowed regions [2]. They are defined as a cloud of

nucleons (the so-called core nucleus) to which one or two nucleons are weakly-bound,

there the valence nucleon (s) being located in the state with low orbital angular mo-

mentum (` ≤ 1), where ` is the orbital angular momentum of the core-nucleon(s)

relative motion. Consequently, halo nuclei are identified as s-wave and p-wave sys-

tems, with relatively weak ground-state binding energy. The requirement of a lower

ground-state orbital angular momentum is directed by the desire to minimize the

centrifugal barrier, whose effect is to squeeze the valence nucleon closer to the core

nucleus, hence preventing the formation of a halo state. As a results, most halo

nuclei are s-wave systems, with ` = 0 ground-state orbital angular momentum. Halo

nuclei are grouped into two categories: neutron-halos (or neutron-rich systems, when

the valence nucleon is a neutron), and proton-halo ( neutron-rich systems, when the

valence nucleon is proton). Due to the Coulomb barrier between the core nucleus

and the valence proton, which prevents the latter from moving far away from the
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former, there are more neutron-halo systems than proton-halo ones. This is mainly

attributed to the fact that there is no Coulomb barrier between the core nucleus and

the valence neutron, since the latter is not charged.

Furthermore, halo nuclei can be categorized into two-body systems and three-body

systems. A two-body halo system is obtained when only one nucleon is weakly-bound

to the core nucleus. For example: 8B → 7Be + p, 11Be → 10Be + n, 15C → 14C + n,
19C → 18C + n, among others, where p, is the valence proton and n, the valence

neutron. Due to advanced radioactive beam facilities, the neutron-rich limit of the

nuclear chart for heavier nuclei is becoming more accessible, such that heavy neutron-

halos are being identified (see for example Refs. [33–39]), whose internal structures

are yet to be well understood. A three-body halo system is obtained when two

nucleons are weakly-bound to the core nucleus. For example, 6He → 4He + n + n,
11Li → 9Li + n + n, 22C → 20C + n + n, among others. A three-body halo system

contains three two-body subsystems. For 6He→ 4He + n + n, these subsystems are
4He+n, n+4 He and n+n. When none of the three subsystem is bound (which is the

case for all three examples), the the system is called “Borromean” which is derived

from Borromean rings, heraldic symbol of the Italian princes of Borromeo. The three

rings are interlocked in such a way that if any of them breaks, the other two would

also fall apart (see Fig.1.1). For example, 6He→ 4He +n+n is a borromean system

since none of the 4He + n, n +4 He and n + n two-body subsystems is bound. The

chart in Figure 1.2, shows some of the well-known halo systems. A review on two-and

three-body halo and other weakly-bound nuclear and atomic systems can be found

in Ref. [2].
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Figure 1.1: The Borromean rings illustrating three-body borromean systems.

Figure 1.2: Nuclear chart of some of the known two-and three-body halo nuclei.

1.1 Problem statement

Despite these tremendous efforts, a complete understanding of the dynamics leading

to the formation of a three-body system, remain an open problem. For example,

the dynamics that an extra nucleon “brings” to an often unbound nucleus-nucleon

two-body system to form a three-body system are some of the outstanding issues in

this field. Furthermore, the literature still lacks a detailed analysis of the role of the
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nucleon-nucleon (nn) and three-body interactions. For instance, what happens if the

nn interaction is removed (switched off)? Will the system collapse? Which of the

different interactions predominantly sustains a three-body system? Do the effects of

the nn and three-body interactions depend on the size of the weakly-bound system?

In other words, are these effects similar or different for 22C and 6He, sytems, where

the former is about 3.7 times heavier than the latter? Naturally, one would assume

that since a three-body system is formed by “adding” an extra nucleon to a two-body

system, therefore, the nn interaction or nn correlations could be expected to play a

dominant role, such that if this interaction is switched off, the whole system would

collapse, as both nucleons could be flying independently outside the core nucleus.

This assertion may be more plausible in the three-body borromean systems, where

none of the three two-body subsystems is bound. However, few studies (if any) have

been devoted to a careful analysis of the role of the nn interaction by considering

the case where this interaction is removed from the three-body system.

Although it is asserted that the three-body interaction takes care of effects that are

not explicitly accounted for by the two-body interactions [40–42], of the various in-

teractions involved in a core+n+n three-body system, it is the one that attracts the

least attention. In most studies, the attention is focused on identifying new three-

body halo candidate, leaving the impression that the role of the different interactions

has been sufficiently elucidated. It could be that a more attractive three-body inter-

action may bind the three particles together even in the absence of a nn interaction.

On the other hand, the range of the this interaction may turn out to be another

important parameter in the study of three-body system. Among others, it can serve

to further prove that indeed the two nucleons are well outside the core nucleus. For

example, if the range of this interaction is shorter or equal to the radius of the core

© University of South Africa 2023 4



nucleus, then the three-body system may not be expected to be bound, particularly

in the case of a shallow nn interaction. This is because the two halo nucleons which

are outside the core nucleus, will be out of the range of the three-body interaction.

Therefore, studying the three-body binding energy as function of the range of the

three-body interaction may to some extent, provide further insight in determining

where exactly the two halo nucleons are located outside the core nucleus. It could

also be that in the absence of a three-body interaction, a more attractive nn interac-

tion might be needed in order to bind the three-body system. In the present study,

we will consider all these aspects.

1.2 Aim and objective of the study

Owing to the complex dynamics involved in a three-body system, a detailed study

of the nn and three-body interactions deserves further attention. In this paper, we

present a detailed analysis of the role of the nn and three-body interactions on the

ground-state structure of a three-body weakly-bound neutron-halo system. To this

end, we will study the ground-state binding energy as function of the strength of the

nn and three-body interactions, as well as the range of the three-body interaction.

We will then perform several calculations by varying the depths of the nn and three-

body interactions, and the range of the three-body interaction. Cases where the nn

interaction and the three-body interaction are removed from the three-body system

(of course not simultaneously), will also be considered. As a case study, we consider

the 22C three-body neutron-halo system. Although the exact ground-state binding

energy of the former system is not well established (in Ref. [29], the 2003 mass

evaluation gives a ground-state binding energy S2n = −0.4(8)MeV. A 2012 direct

mass measurement in Ref. [9], places a limit of S2n = −0.140(460)MeV, and S2n =
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−0.352MeV in the 2017 mass evaluation of Ref. [30]), it suffices to know that despite

these discrepancies, the 22C is bound and it is a borromean system. The interest in

this system has drawn significant attention, as exemplified by Refs. [3–24]. On the

other hand, the choice of this system is motivated by the fact that it is a neutron-halo

system, meaning that we do not need to worry about the Coulomb interaction which

would increase the number of potentials involved, which increases the number of free

parameters. Our approach is to minimize the number of free parameters in order

to facilitate our analysis. Furthermore, our study can be extended to weakly-bound

heavy systems which are increasingly being identified [33–39].

Despite the spectacle progress in the study of the three-body weakly-bound sys-

tems, their thermodynamic properties have not yet attracted intense investigation,

although there is an abundant literature on the thermodynamic properties of two-

body atomic systems as evidenced by Refs. [43–55]. In this work, in an effort to con-

tribute towards an investigation of the thermodyamic properties of the three-body

weakly-bound systems, we will use the ground-state binding energy to calculate the

ground-state thermodynamic properties. We will use this energy to calculate the

profile function which we will obtain to calculate the ground-state mean energy, free

energy, entropy as well as the specific heat capacity of the three-body system.

1.3 Methodological approach

In order to achieve the objectives assigned in this work, we will solve a three-body

problem for bound-states. A direct solution of a Schrödinger equation that involves

three-body particles does not exist even for bound-states. In this case, studies of

three and more particles have resorted to approximate approaches. One of the most
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popular approaches to the three-body systems is Faddeev equations, developed by L.

D. Faddeev [56], and expanded to momentum space framework by Merkuriev and co-

workers [57–61]. This approach is based on a decomposition of the three-body wave

function into three two-body wave functions, the so-called Faddeev amplitudes, each

of them associated with a two-body interaction. Upon the substitution of these am-

plitudes into the three-body Schrödinger equations, one obtains a set of three coupled

differential equations which are numerically solved with the appropriate boundary

conditions. However, each amplitude still contains a number of coordinates which

complicates a numerical treatment of the problem, particularly for scattering states.

As a result, further approximations of the Faddeev amplitudes have been applied,

such as the total-angular momentum representation [62,63]. However, not only these

amplitudes still depend on a number of coordinates, higher partial-waves are known

to play an important role in the study of three-body weakly-bound systems. In or-

der to circumvent this problem, most of studies of three-body weakly-bound systems

have resorted to the hyperspherical harmonics method (HHM) [64–66].This method

reduces the three-body Schödinger equation to a one-dimension radial coupled dif-

ferential equations in the hyperradius (which is invariant under any permutation of

the three particles). In this case, the asymptotic behavior of a three-body system

in the hyperadius is similar to that of a two-body system, such that for a bound-

state, the coupled differential equations are numerically solved with the same bound-

ary conditions as a two-body system. This remarkable advantage makes the HHM

the most popular method adopted to handle three-body systems, as evidenced by

Refs. [1–42, 56–100]. In order to solve the coupled differential equations, the radial

wave function is expanded on a basis of orthogonal polynomials such as the Lagrange

polynomials [101], Laguerre Polynomials [102],among others,which exhibit nice con-
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vergence behavior. In this dissertation, we also adopt the HHM in our investigation

of the ground-state properties of the 22C weakly-bound halo system.

1.4 Structure of the Dissertation

This dissertation is made up of five chapters. In Chapter 2, we discuss the ba-

sic formalism governing the dynamics of the two-body systems. Starting from the

Schrödinger equation that describes the relative motion of two-body systems, we dis-

cuss the boundary conditions of bound states, scattering states as well as resonance

states. The two-body potentials that are needed in the numerical solution of the

Schrödinger are also discussed. Chapter 3, deals with the hyperspherical harmon-

ics method for three-body systems. We first derive a complete basis hyperspherical

harmonics on which the three-body wave function is expanded. The Faddeev equa-

tions are presented and the Faddeev amplitudes are expanded on the hyperspherical

harmonics basis. The substitution of this expansion into Faddeev equations yields a

one-dimensional set of coupled differential equations. The results are presented and

discussed in Chapter 4, whereas our conclusion remarks are summized in Chapter

5.

© University of South Africa 2023 8



Chapter 2

Fundamentals of two-body systems

In this chapter, we are discussing the basic formalism governing the dynamics of

two-body systems. Starting from the Hamiltonian that describes the system, we are

describing the corresponding Schrödinger equation as well as the wave function. The

two-body interaction that enters this equation as an input in the numerical solution

of this equation will be also discussed together with the boundary conditions. The

chapter ends with a discussion of the two-body interactions that are useful in the

numerical solution of the Schrödinger equation.

2.1 Two-body Schrödinger equation and wave func-

tion

In this section, we consider a two-body system, formed by a core nucleus “c”, and a

valence nucleon “v”(proton or neutron), which we we consider to be loosely bound

to the core nucleus. We denote by Ic, and s the spins of the core nucleus and

nucleon respectively, and x their relative coordinate, associated with the orbital

angular momentum `. The core-nucleon relative motion is described by the following

© University of South Africa 2023 9



Schrödinger equation

H0Φ(x) = ε2bΦ(x), (2.1)

where Φ(x) is the wave function, ε2b the total energy (ε2b < 0) for bound-states and

(ε2b > 0) for scattering states, and H0 the two-body Hamiltonian of given by

H0 = T̂x + Vcv(x), (2.2)

with Vcv(x) is the core-nucleon interacting potential, and

T̂x = − ~2

2µcv
∇2

x (2.3)

is the kinetic energy operator, where µcv the reduced mass, given by

µcv =
mcmv

mc +mv

, (2.4)

(where mc and mv are the respective atomic masses of the core nucleus and the va-

lence nucleon), and ∇2
x is the usual nabla operator. In spherical coordinates (x, θ, φ),

the nabla operator is defined as

∇2
x =

1

x2

∂

∂x

(
x2 ∂

∂x

)
+

1

x2 sin2 θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

x2 sin2 θ

∂2

∂φ2

=
1

x2

∂

∂x

(
x2 ∂

∂x

)
+
̂̀2
x2
, (2.5)
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where ̂̀2 is the orbital angular momentum operator, whose z-projection is

̂̀
z =

~
i

∂

∂φ
. (2.6)

With equation (2.5), the kinetic energy operator becomes

T̂x = − ~2

2µcv

[
1

x2

∂

∂x

(
x2 ∂

∂x

)
+
̂̀2
x2

]
. (2.7)

Since we consider the potential Vcv(x) to be spherical, the expression (2.5) ensures

that the Hamiltonian H0 commutes with the operators ̂̀ and ̂̀z. To construct the

wave function Φ(x), we need to consider the internal structures of both the core

nucleus and valence nucleon. In this case, the wave function is written as follows

Φ(x) = i`
[
[Y ν
` (Ωx)⊗X µ

s ]jmj ⊗X σ
I

]
jabΛ

ujab` (k, x)

x
(2.8)

where Y ν
` (Ωx) is the usual spherical harmonics (ν is the z-projection of the orbital

angular momentum `, Ωx ≡ (θx, φx) is a solid angle expression in terms of spherical

coordinates), j is the total angular momentum obtained from the coupling of ` and

s (j = ` + s), with mj its z-projection, X µ
s is the nucleon spin wave function (µ

is the z-projection of the spin s), (mj = ν + µ), X σ
I is the wave function of the

spin of the core nucleus (σ is the z-projection of the spin I), jab is the total angular

momentum obtained from the coupling of the angular momentum j and the spin I

(jab = j + I), and Λ is its z-projection (Λ = mj + σ). In equation (2.8), we are

assuming the ` + s, j + I = jab coupling scheme, and ujab` (k, x) is the radial wave

function, with k =

√
2µcvε2b

~2
the wave number. In what follows, we shall denote the

wave function Φ(x) as ΦjabΛ(x). Using the relation of angular momentum couplings
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and to the Clebsh-Gorden coefficients, we can write equation (2.8) as follows

ΦjabΛ(x) = i`
∑
νµ

∑
mjσ

〈`νsµ|jmj〉〈jmjIσ|jabΛ〉Y ν
` (Ωx)X µ

s X σ
I

uj`(k, x)

x
, (2.9)

where 〈....|..〉 is the Clebsh-Gordon coefficient. If the spin of the core nucleus is zero

(Ic = 0), then jab = j, and equation (2.9), reduces to

Φjmj(x) = i`
∑
νµ

〈`νsµ|jmj〉Y ν
` (Ωx)X µ

s

uj`(k, x)

x
. (2.10)

It can be shown that the radial wave function (k, x) satisfies the following differential

equation

[
− ~2

2µcv

(
d2

dx2
− `(`+ 1)

x2

)
+ Vcv(x)

]
uj`(k, r) = ε2bu

j
`(k, x), (2.11)

where `(` + 1)/x2 is known as the centrifugal barrier. For ` 6= 0, it creates a strong

repulsion at short distances, and pushes the wave function outside the area of closest

approach. It is also one of the reasons halo states in neutron rich nuclei with ` 6= 0

are unlikely.

2.2 Boundary conditions

In order to solve the differential equation (2.11), one needs to impose appropriate

boundary conditions. For bound state, the boundary conditions require the wave

function uj`(k, x) to be regular at the origin [ujb`b(k, x)→ 0, x→ 0], and the following
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form at larger distance (x→∞)

ujb`b(kb, x)
x→∞→ CbW−η,`b+ 1

2
(2kbx), (2.12)

where Cb is the asymptotic normalization coefficient (ANC), and W−η,`b+ 1
2
(2kbx)

(η = µcv
~2

ZcZve2

k
is the Sommerfeld parameter, with Zce, Zve are the core and nucleon

charges, respectively) is the Whittaker function [103], having the following asymp-

totic form

W−η,`b+ 1
2
(2kbx)

x→∞→ e−kIx+ηI ln(2kbx), (2.13)

with

ηI =
−iZcZve2µcv

~2kb
(2.14)

kb = i

√
2µcv
~2

Eb, (2.15)

where ε2b < 0 is the binding energy. In this neutron case, Zv = 0, such that equation

(2.12) reduces to

ujb`b(kb, x)
x→∞→ Cbe

−kbx, (2.16)

The bound-state wave function is square-integrable and is normalized according

to

∫ ∞
0

|ujb`b(kb, x)|2 = 1, (2.17)
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and fulfill the following orthogonality property

〈
ujb`b(kb, x)|uj

′
b

`′b
(k′b, x)

〉
= δ`b`′bδjbj′bδkbk′b , (2.18)

where δr is the delta function [103]. For scattering states, the wave function uj`(k, x)

is also regular at the origin, and has the following behavior in the asymptotic re-

gion

uj`(k, x)
x→∞→ F`(η, kx) cos δ`j(k) +G`(η, kx) sin δ`j(k), (2.19)

where δ`j(k) are the nuclear phase shifts, and F`(η, kx) is the regular [F`(η, kx →
0)→ 0], and G`(η, kx) irregular [G`(η, kx→ 0) 6= 0] Coulomb functions [104]. They

exhibit the following asymptotic behaviour

F`(η, kx)
x→∞→ sin

[
kx− η ln(2kx)− `π

2
+ σ`η(k)

]
,

G`(η, kx)
x→∞→ cos

[
kx− η ln(2kx)− `π

2
+ σ`η(k)

]
, (2.20)

where σ`η(k) are the Coulomb phases, given by

σ`η(k) = arg Γ(1 + `+ iη), (2.21)

with Γ(y) the Gamma function. For a valence neutron, where η = 0, the Coulomb

functions transform into spherical Bessel functions j`(kx) and n`(kx), which in the
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asymptotic region and are given by

j`(kx)
x→∞→ sin

(
kx− `π

2

)
,

n`(kx)
x→∞→ cos

(
kx− `π

2

)
, (2.22)

and they are generally defined as

j`(kx) = (−x)`
(

1

x

d

dx

)`
sin(x)

x

n`(kx) = −(−x)`
(

1

x

d

dx

)`
cos(x)

x
. (2.23)

In this case, equation (2.19) becomes

uj`(k, x)
x→∞→ sin

(
kx+

`π

2
+ δ`j(k)

)
. (2.24)

Scattering wave functions are not square-integrable. they satisfy the following or-

thogonality relation

〈
uj`(k, x)|uj′`′ (k, x)

〉
= δ(k − k′)δ``′δjj′ , (2.25)

and they are orthogonal to the bound states,

〈
uj`(k, x)|ujb`b(kb, x)

〉
= 0. (2.26)

The phase shifts δ`j(k) can be used to define the parameters of a resonance state.

A resonance is regarded as a “quasi-bound” short-lived state which happens when
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the particle gets trapped in the Coulomb barrier for a while, and among others, it is

characterized by the fact that the corresponding phase shift approaches π/2 as the

incident energy approaches the resonance energy (εr). Its width Γ is given in terms

of δ`j(k) by

Γ = 2

[
∂

∂ε
cot δ`j

∣∣∣∣
ε=εr

]−1

. (2.27)

2.3 Two-body potentials

The important parameter that enters the Schrödinger equation is the interaction

between the two particles. A bound-state and resonant state cannot exist unless

the interacting potential exists. When this potential does no longer exist, the two

particles are said to be in the continuum, where they are flying independently of each

other. This is where the asymptotic behavior (2.19) of the scattering states applies.

For bound-states, when the potential vanishes in the asymptotic region, the wave

function decays to zero, since the system cannot be bound beyond the range of the

potential. In general, the core-nucleon potential Vcv(x) is given by

Vcv(x) = V nucl
cv (x) + V coul

cv (x) + Vcent(x), (2.28)

where V nucl
cv (x) is the nuclear component, V coul

cv (x) the Coulomb component, and

Vcent(x) the centrifugal component. The nuclear potential contains two terms, the

central term and the spin-orbit coupling term, i.e.,

V nucl
cv (x) = V nucl

0 (x) + V nucl
so (x), (2.29)
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where V nucl
0 (x) is the central term, and V nucl

so (x) the spin-orbit coupling term. There

are a number of shapes adopted in the literature for the nuclear potential. The most

popular is the Woods-Saxon shape, where both terms are given by

V nucl
0 (x) =

V0[
1 + exp

(
x−R0

a0

)]
V nucl
so (x) =

(
~
mπc

)2
(` · s)

x

d

dx

Vso[
1 + exp

(
x−Rso
aso

)] , (2.30)

where
(

~
mπc

)2

= 2 fm, V0 and Vso are the depths of the central and spin-orbit cou-

plings, respectively, and (Ry, ay), [y ≡ (0, so)] are the corresponding radius and

diffuseness. In general, the radius Ry is given by Ry = ry(A
1/3
c + A

1/3
v ). But when

Av = 1 (for a nucleon), Ry = ry × A
1/3
c is always considered, where ry ∈ [1, 2] is

the distance of closest approach. The different parameters are adjusted to repro-

duce bound and scattering properties of the two-body system. Normally, they make

the fitting easier, the parameters Ry and ay are fixed and only V0 and Vso are ad-

justed. Sometimes, the same parameters do not describe the sytem’s ground-state

and scattering states properties. In this case, it is common to use a depth V0 that

is partial-wave dependent (`-dependent), i.e., V `
0 . However, if the system has no

known continuum structure, there is no need using V `
0 . An accurate description of

the two-body scattering states is of great importance in the analysis of three-body

systems. Equation (2.30) shows that the nuclear potential has a short range. This

means that V nucl
cv (x)→ 0 when x ≥ Ry. The negative sign before V0 accounts for the

attractive nature of the nuclear potential.
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The Coulomb potential is often considered to be a point-like sphere such that

V coul
cv (x) =



ZcZve
2

RC

(
3
2 −

x2

2R2
C

)
x ≤ RC

ZcZve
2

x x > RC ,

(2.31)

where RC is the Coulomb radius, similar to Ry. When the valence nucleon is a

neutron, V coul
cv (x) = 0. The centrifugal component is given by

V cent
cv (x) =

`(`+ 1)

x2
. (2.32)

For an s-wave state (` = 0), V cent
cv (r) = 0. When the interacting partners are

both nucleons, one potential Vcv(x) becomes a nucleon-nucleon potential [Vnn(x)]. A

number of such potentials are available in the literature. For example, one mentions

the semi-realistic Gogny-Pires-Tourreil (GPT) potential [105]

Vnn(x) = V `
c (x) + Vso(x) + Vt(x)

=
3∑
i=1

V `
ci exp

[
−
(
x/x`ci

)2]
+ Vso exp

[
−
(
x/xso

)2] (2.33)

+
3∑
i=1

Vti exp
[
−
(
x/xti

)2]
,

where V `
c (x) (which can also be `-dependent) represents the central term, Vso(x)

the spin-orbit term and Vt(x) the tensor term. More details of this potential can

be found in Ref. [105] as well as the numerical values of the different parameters.

Other nucleon-nucleon potentials are available in the liteturature, see for example
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Refs. [85, 105–113]. All nn potentials are validated once they reproduce deuteron

(2H→ p + n) ground and scattering properties, and other nn scattering properties.

Another nn potential that is commonly used in the study of three-body system is

given by the following simple Gaussian shape [114]

Vnn(x) = v0e
(−x/x0)2 , (2.34)

where V0 = −31.0MeV and x0 = 1.8 fm. These parameters reproduce the well-known

nn scattering properties, such that nn the scattering length as = −15 fm.
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Chapter 3

Formalism of three-body systems

In this chapter, we outline the main features of the hyperspherical harmonics method

(HHM). Starting with the Jacobi coordinates, we will discuss the different expres-

sions of the hyperspherical harmonics. We will separate the total wave function into

its Faddeev amplitudes, which will be expanded on the hyperspherical harmonics

basis. Once this expansion is substitued into the Schrödinger equation, a set of one-

dimension coupled differential equations will be obtained. The three-body system

we are interested in has the core “c+n+n”, where “c” is the core nucleus surrounded

by two weakly-bound neutrons “n + n”. For the sake of simplicity, we will consider

an inert core, meaning that we freeze its degrees of freedom, meaning that we do not

consider the case where it is excited. We do not expect this approach to have any

meaningful effect on the results, particularly when the core nucleus has no known

excited bound-states, and is not deformed.

The spacial topology of the three-body system is represented by Fig.3.1. In that

figure, we consider three particles i, j and k, where j identifies the core nucleus

and i, k the two nucleons. In Fig.3.1, we identify the core nucleus by j and the two

neutrons by i and k. In this case (j, k) is the interacting pair and i is the spectator

particle. Fig.3.1b is obtained by a cyclic permutation of particles k and i, where
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the (j, i) is the interacting pair and k the spectator particle. Fig.3.1c is obtained by

a cyclic permutation of particles j and k, where (i, k) is the interacting pair and j

the spectator particle. The three-body then corresponds to a set of three two-body

subsystems, each interacting pair corresponds to a two-body potential.

3.1 Jacobi coordinates

Jacobi coordinates have the advantage of removing the center-of-mass motion when

one is interested in the individual motion of each particle, making these coordinates

attractive in various research fields. In Fig.3.1a, (xi,yi) represents the Jacobi coor-

dinates of the spectator particle i, (xj,yj), represents the Jacobi coordinates of the

spectator particle j, and (xk,yk), the Jacobi coordinates of the spectator particle k.

Considering Ai, Aj and Ak to be the atomic numbers of the particles i, j, and k, the

Jacobi coordinates (xi,yi) are defined as

xi =

(
2AjAk
Ai + Aj

)1/2

(rj − rk)

yi =

(
2Ai(Aj + Ak)

Ai + Aj + Ak

)1/2(
ri −

Ajrj + Akrk
Aj + Ak

)
, (3.1)

where the vectors ri, rj and rk are space coordinates (internal coordinates) of the par-

tices i, j and k. The other pair of coordinates (xj,yj) and (xk,yk), can be obtained

from (xi,yi) by applying the clockwise and anticlockwise permutation operators P+
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(a)

j

i

k

yi

xi

(b)

j

k

i

yk

xk

(c)

i

j

k

yj

xj

Figure 3.1: Jacobi coordinates for a three-body system

and P−, as follows  xj

yj

 = P+

 xi

yi


 xk

yk

 = P−

 xi

yi

 , (3.2)
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where the operators P+ and P− are defined as

P+ =


(

AjAk
(Aj+Ai)(Ak+Ai)

)1/2

−
(

AAi
(Aj+Ai)(Ak+Ai)

)1/2

(
AAi

(Aj+Ai)(Ai+Ak)

)1/2 (
AjAk

(Aj+Ai)(Ak+Ai)

)1/2



P− =


(

AjAk
(Aj+Ai)(Ak+Ai)

)1/2 (
AAi

(Aj+Ai)(Ak+Ai)

)1/2

−
(

AAi
(Aj+Ai)(Ak+Ai)

)1/2 (
AjAk

(Aj+Ai)(Ak+Ai)

)1/2

 , (3.3)

with A = Ai + Aj + Ak. In our case, where the particles i and j are nucleons

(Ai = Aj = 1), these permutations become,

P+ =


√

Ak
2Ak+2

−
√

Ak+2
2Ak+2

√
Ak+2
2Ak+2

√
Ak

2Ak+2



P− =


√

Ak
2Ak+2

√
Ak+2
2Ak+2

−
√

Ak+2
2Ak+2

√
Ak

2Ak+2

 . (3.4)

The coordinates xj,yj and xk,yk are then given by

xj =

√
Ak

2Ak + 2
xi −

√
Ak + 2

2Ak + 2
yi

yj =

√
Ak + 2

2Ak + 2
xi +

√
Ai

2Ai + 2
yi, (3.5)
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and

xk =

√
Ak

2Ak + 2
xi +

√
Ak + 2

2Ak + 2
yi

yk = −
√

Ak + 2

2Ak + 2
xi +

√
Ak

2Ak + 2
yi, (3.6)

3.2 The angular momenta and spin of the system

Before we dive into the details of the HHM calculations, we would like to first outline

the various ingredients. In particular, in this section, we would like to list the different

angular momenta involved in the three-body system. In order to avoid cumbersome

notations, we are dropping the subscipts on the Jacobi coordinates and simply refer

to them as x and y. The orbital angular momenta associated with the coordinates x

and y are respectively `x and `y, with mx and my their corresponding z-projections.

The orbital angular momenta `x and `y are coupled to obtain the total orbital angular

momentum L (L = `x+`y), withML its z-projection. The spins of the two nucleons

are coupled to obtain the total spin S (S = si + sk), with MS its z-projection.

The orbital angular momentum L is coupled with the total spin S to obtain the

angular momentum Jab (Jab = L+S), with Λ its z-projection. The core spin will be

identified by I, with σ its z-projection. The coupling of the angular momentum Jab

with I, gives the total angular momentum J = Jab + I, whose z-projection is M .

This amounts to the following coupling scheme { [(`x, `y)L, (si, sk)S]Jab; I} J . For a
core nucleus with zero spin, the couplings are significantly reduced and the coupling

scheme reduces to { [(`x, `y)L, (si, sk)S]} J . Other coupling scheme are possible and

all of them are connected by the Raynal-Revai coefficients [115].
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3.3 Hyperspherical Harmonics Method

3.3.1 Hyperspherical coordinates

Each Jacobi coordinate is defined in spherical coordinates by x ≡ (x, θx, φx) ≡
(x,Ωx), and y ≡ (y, θy, φy) ≡ (y,Ωy), where Ωx and Ωy are solid angles in the direc-

tions of the coordinates x and y expressed in spherical coordinates, and (x, y) are

their radial components. The spherical harmonics associated with the solid angles

Ωx and Ωy are denoted by Y mx
`x

(Ωx) and Y mx
`x

(Ωy), respectively. The angular part

of the three-body wave function will then contain Ω ≡ (Ωx,Ωy), which represents a

set of four angles. The radial coordinates (x, y) are used to define the hyperspherical

radial coordinate ρ, which is invariant under the permutation of the different Ja-

cobi coordinates, and the hyperangle α. The set (ρ, α) represnts the hyperspherical

coordinates and are defined as

ρ2 = x2
i + y2

i = x2
j + y2

j = x2
k + y2

k =
3∑
i=1

Air
2
i

α = arctan

(
x

y

)
. (3.7)

In terms of the hyperspherical coordinates (ρ, α), the radial Jacobi coordinates x, y

are given by

x = ρ cosα

y = ρ sinα. (3.8)

The three-body wave function denoted by ΨJM(x,y) is then a 6-dimension function,

which can be factorized as ΨJM(x,y) ≡ f(ρ)g(Ω), where f(ρ) represents its radial
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part and g(Ω) its angular part, with Ω ≡ (α,Ωx,Ωy).

3.3.2 Hyperspherical Harmonics

Let Hmx,my
K`x`y

(x,y) be a homogeneous polynomial degree K (we will refer to K as the

hypermomentum). A Harmonic Polynomial (HP), is homogeneous polynomial that

satisfies the generalized Laplace equation [116]

∇2Hmxmy
K`x`y

(x,y) ≡
(
∂2

∂x2
+

∂2

∂y2

)
Hmxmy
K`x`y

(x,y) (3.9)

where the Laplacian ∇2 is defined as

∇2 =
∂2

∂ρ2
+

5

ρ

∂

∂ρ
+ K̂2(Ω), (3.10)

where K̂2(Ω) is the hyperangular momentum operator defined by

K̂2(Ω) = − ∂2

∂α2
− 4

cos(2α)

sin(2α)

∂

∂α
+

1

cos2(α)
̂̀2
x(Ωx) +

1

sin2(α)
̂̀2
y(Ωy). (3.11)

The hyperspherical Harmonics (HH), are the value of the HP at the surface of the

unit hypersphere (ρ = 1), given by [117]

Y
`x`y
KLML

(Ω) = ρ−KHmxmy
K`x`y

(x,y), (3.12)

and are eigenfunctions of K̂, implying that [116]

K2(Ω)Y
`x`y
KLML

(Ω) = K(K + 4)Y
`x`y
KLML

(Ω). (3.13)

© University of South Africa 2023 26



They are also eigenfuctions of the square of the orbital angular momenta `x and `y,

and their z-projections `xz and `yz , which means that

̂̀2
xY

`x`y
KLML

(Ω) = `x(`x + 1)Y
`x`y
KLML

(Ω)̂̀2
yY

`x`y
KLML

(Ω) = `y(`y + 1)Y
`x`y
KLML

(Ω)̂̀
xzY

`x`y
KLML

(Ω) = mxY
`x`y
KLML

(Ω) (3.14)̂̀
yzY

`x`y
KLML

(Ω) = myY
`x`y
KLML

(Ω).

In this case { K̂, ̂̀2x, ̂̀2y, ̂̀xz , ̂̀yz} , represents a complete set of observables in the three-

body angular subspace, such that the HH define a complete and orthonormal basis

on which the three-body wave function can be expanded. The HH are given by the

following expression [86,88,118,119]

Y
`x,`y
KLM(Ω) = [Y`x(Ωx)⊗ Y`y(Ωy)]LML

P`x,`yK (α)

=
∑
mxmy

〈`xmx`ymy|LM〉Y mx
`x

(Ωx)Y
my
`y

(Ωy)P`x,`yK (α), (3.15)

where the function P`x,`yK (α) is given by

P`x,`yK (α) = N
`x`y
K (cosα)`x(sinα)`yP

(`x+ 1
2
,`y+ 1

2
)

n (cos 2α), (3.16)

with P
(a,b)
n (z), being Jacobi polynomials, and N

`x`y
K the normalization coefficients,

defined as

N
`x`y
K =

[
2n!(K + 2)(n+ `x + `y + 1)!

Γ(n+ `x + 3
2
)Γ(n+ `y + 3

2
)

]1/2

, (3.17)
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where n =
K − `x − `y

2
, is a positive integer. The HH fulfil the following the or-

thogonality relation

∫
dΩ[Y

`x,`y
KLML

(Ω)]? × Y
`x,`y
KLML

(Ω) = δKK′δLL′δ`x`′xδ`y`′y , (3.18)

where dΩ = sin2 α cos2 αdαdΩxdΩy. The expansion of the three-body wave func-

tion on the HH basis is the foundation of the Hyperspherical Harmonics Expansion

Method (HHEM) [86,120]. If we consider the spins of the particles, the hyperspher-

ical harmonics basis becomes

Y JM
γK (Ω) =

[
[Y

lx,ly
KLML

(Ω)⊗XS]JabΛ ⊗XI

]
JM

, (3.19)

where γ ≡ { [(`x, `y)L, (sj, sk)Sx]Jab; I} , represents the different quantum numbers,

XS and XI are the spin wave functions. Equation (3.19) can be further expanded as

follows

Y JM
γK (Ω) =

∑
m`xm`y

〈`xm`x`ym`y |LML〉
∑

MLMS

〈LMLSMS |JabΛ〉

×
∑
Λσ

〈JabΛIσ|JM〉XSXIY`x(Ωx)Y`y(Ωy)P`x,`yK (α). (3.20)

This equation reduces to

Y JM
γK (Ω) =

∑
m`xm`y

〈`xm`x`ym`y |LML〉
∑

MLMS

〈LMLSMS |JM〉XS

× Y`x(Ωx)Y`y(Ωy)P`x,`yK (α), (3.21)

if I = 0.
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3.4 Faddeev Equations

Faddeev equations are known to be an accurate method that directly solve three-

body problems, both for bound and scattering states. The essence of this method

is the decomposition of the three-body wave function into its components, known

as Faddeev amplitudes. In other words, each set of Jacobi coordinates (x,y) cor-

responds to one component of the total wave function, such that the total wave

function contains three components. Before discussing these components, let us first

write the three-body Schrödinger equation as follows

H3bΨ
JM(x,y) = ε3bΨ

JM , (3.22)

where ΨJM is the three-body wave function, ε3b is the total energy of the system,

and H3b is the Hamiltonian defined as

H3b = H0 + Vij(xk) + Vik(xj) + Vjk(xi), (3.23)

where H0 is the Hamiltonian of the three free particles, and Vij(xk), Vik(xj) and

Vjk(xi) are potentials of the interacting pairs (i, j), (i, k), and (j, k). Such potentials

are discussed in section 2.28. The wave function ΨJM(x,y) is then decomposed into

the following three components

ΨJM(x,y) = ψJMi (xi,yi) + ψJMj (xj,yj) + ψJMk (xk,yk) (3.24)
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Inserting equations (3.24) and (3.23) into equation (3.22), one obtains the following

set of coupled Faddeev equations

(H0 + Vij(xk)− ε3b)ψk = −Vij(xk)(ψj + ψi)

(H0 + Vik(xj)− ε3b)ψj = −Vik(xj)(ψk + ψi) (3.25)

(H0 + Vjk(xi)− ε3b)ψi = −Vjk(xi)(ψi + ψk).

These equations can be rewritten as
H0 + Vij − E3B Vij Vij

0 H0 + Vik − E3B Vik

0 0 H0 + Vjk − E3B




ψk

ψj

ψi

 = 0 (3.26)

Because in our case the particles i and j are both nucleons, meaning that Vik(xj) =

Vjk(xi), the above set of equations reduces to two equations,

(H0 + Vij(xk)− ε3b)ψk = −Vij(P+ψi + ψi)

(H0 + Vjk(xi)− ε3b)ψi = −Vjk(xj)(ψk + P+ψi), (3.27)

where the operator P+ is defined by equation (3.4).

3.4.1 Expansion of the wave function and coupled equations

In order to obtain a set of coupled differential equations to be solved numerically,

we resort to the HHM and expand the Each Faddeev amplitude ψJM(x,y) on the
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hyperspherical harmonics basis Y JM
γK (Ω), as follows

ψJM(x,y) = ρ−5/2
∑
γK

F J
γK(ρ)Y JM

γK (Ω), (3.28)

where F J
γK(ρ) are the expansion coefficients to be deterimed numerically. The sub-

stitution of this expansion into the Schrödinger equation, yieds the following set of

coupled differential equations

[
− ~2

2mN

d2

dρ2
+ LK(ρ)− ε3b

]
F J
γK(ρ) +

∑
γ′K′

V J
γ′K′,γK(ρ)F J

γ′K′(ρ) = 0, (3.29)

where mN is the nucleon’s mass, LK(ρ) is given by

LK(ρ) =
~2

2mN

(K + 3/2)(K + 5/2)

ρ2
, (3.30)

and V J
γ′iK

′
i,γiK

(ρ), are coupling matrix elements, which contains three components

each for each set of Jacobi coordinates, i.e.,

V J
γ′K′,γK(ρ) = V

J(i)
γ′K′,γK(ρ) + V

J(j)
γ′K′,γK(ρ) + V

J(k)
γ′K′,γK(ρ), (3.31)

The component V J(i)
γ′K′,γK(ρ) is given by

V
J(i)
γ′K′,γK(ρ) = 〈Y JM?

γ′K′ (Ωi)|Vjk(xi)|Y JM
γK (Ωi)〉

=

∫
Y JM?
γ′K′ (Ωi)Vjk(xi)Y

JM
γK (Ωi)dΩi. (3.32)
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Again, for the sake of simplicity, we drop the subscripts i, j, k and rewrite this equa-

tion as

V J
γ′K′,γK(ρ) =

∫
Y JM?
γ′K′ (Ω)V (x)Y JM

γK (Ω)dΩ, (3.33)

where

dΩ = sin2 α cos2 αdαdΩxdΩy. (3.34)

and the coordinate x is given in terms of the hyperspherical coordinates (ρ, α) by

equation (3.8) Due to the orthoganality of the HH [equation (3.18)], and the following

property of the spherical harmonics

∫
dΩxY

?
`x(Ωx)Y`′x(Ωx) = δ`x`′x∫

dΩyY
?
`y(Ωy)Y`′y(Ωy) = δ`y`′y , (3.35)

and considering the potential V (x) to be spherical, equation (3.33) becomes

V J
γ′K′,γK(ρ) = δγγ′δKK′

∫ π/2

0

P`x`yK (α)V (ρ cosα)P`
′
x`

′
y

K′ (α) sin2 α cos2 αdα, (3.36)
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where the function P`x`yK (α) is given by equation (3.16). Adopting the following

change of variable

z = cos 2α

cosα =

(
1 + z

2

)1/2

sinα =

(
1− z

2

)1/2

(3.37)

dz = −4 cosα sinαdα

dα = − dz

4 cosα sinα
= − dz

4

(
1+z

2

)1/2(
1−z

2

)1/2
,

equation (3.34) becomes

dΩ = −
(

1 + z

2

)(
1− z

2

)
× dz

4

(
1+z

2

)1/2(
1−z

2

)1/2
dΩxdΩy (3.38)

= − 1

32
(1 + z)1/2(1− z)1/2dzdΩxdΩy

= − 1

25
W (z)dzdΩxdΩy,

where

W (z) = (1 + z)1/2(1− z)1/2 (3.39)

is the weight function in the Gauss-Jacobi quadrature. In practice, the variable z is

a zero of the Jacobi polynomials. With the transformation (3.37), equation (3.16)
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becomes

P`x,`yK (α) = N
`x`y
K

(
1 + z

2

) `x
2
(

1− z
2

) `y
2

P
`x+ 1

2
,`y+ 1

2
n (z) (3.40)

=
1

2
(`x+`y)

2

N
`x,`y
K (1 + z)

`x
2 (1− z)

`y
2 P

`x+ 1
2
,`y+ 1

2
n (z)

In this equation shows that P`x,`yK (α) vanishes at z = ±1 and peaks at z = 0.

Inserting equations (3.38) and (3.40) into equation (3.36), one obtains

V
J(i)
γ′K′,γK(ρ) =

1

2θ
δγγ′δKK′N

`x,`y
K N

`′xi,`
′
y

K′

∫ 1

−1

(1 + z)δ(1− z)β

× V

[
ρ

(
1 + z

2

)1/2]
P
`x+ 1

2
,`y+ 1

2
n (z)P

`′x+ 1
2
,`′y+ 1

2

n′ (z)dz, (3.41)

where

θ =
(6 + `x + `y + `′x + `′y)

2

δ =
(`x + `′x + 1)

2
(3.42)

β =
(`y + `′y + 1)

2
.

Despite the oscillatory behavior of Jacobi polynomials, which increases with n, the

coupling matrix elements (3.41) will quickly converge due to the short-range nature

of the potential V (x), since in our case this potential contains only the nuclear part.

One can easily notice that for higher values of orbital angular momenta `x and `y, the

coupling matrix elements (3.41) rapidly decrease, due to the factor 2θ. Therefore,

higher partial-waves are not expected to have a meaningful effect on the ground-

state structure of the system. It follows that `x = `y = 0, accounts for the lagest
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contribution to the coupling matrix elements.

In order to solve the coupled differential equations (3.29), one needs to also evaluate

the coupling matrix elements V J(j)
γ′K′,γK(ρ) and V

J(k)
γ′K′,γK(ρ). To this end, we need

to find the appropriate HH expansion basis since the expansion basis in equation

(3.19) is no longer valid due to different Jacobi coordinates. However, one does not

need to start all over again in building new expansion bases for each set of Jacobi

coordinates. The basis transformation between different sets of Jacobi coordinates

is done as follows [115]

Y
lxa ,lya
KLML

(Ωa) =
∑
lxi llyi

〈lxi , lyi |lxa , lya〉Y
lxi ,lyi
KLML

(Ωi), (3.43)

where 〈lxi , lyi |lxa , lya〉 are Raynal-Revai coefficients [115], with a ≡ j, k. The set

of coupled equations 3.29, needs to be transformed into an eigenvalue problem for

numerical treatment. To this end, we expand the radial wave function F J
γK(ρ) as

follows

F J
γK(ρ) =

N∑
n=0

aJγKRn(ρ), (3.44)

where the basis functions Rn(ρ) are given by

Rn(ρ) = ρ5/2ρ−3
0

[
n!

(n+ 5)!

]1/2

L5
n(z)e−z/2, (3.45)

with z = ρ/ρ0(ρ being the scaling radius) and Lαn(z) is the associated Laguerre

polynomial. In equation (3.44), N is the maximum number of basis points that are
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needed to guarantee the convergence of the numerical calculations.

3.5 Boundary conditions

In order to solve the coupled differential equations (3.29), one needs to determine

the boundary conditions imposed in the radial wave function F J
γK(ρ) at the origin

and in the asymptotic region (ρ→∞). One of the key features of the HHM is that

the asymptotic behavior of a three-body system in the hyperadius is similar to that

of a two-body system, such that for a bound-state the coupled differential equations

are solved subject to the following boundary conditions

F J
γK(ρ)

ρ→0→ ρL +1, F J
γK(ρ)

ρ→∞→ exp(−κρ), (3.46)

where κ =
√

2mN |ε3b|, is the ground-state wave number.

In the next chapter, we discuss the numerical results obtained for the 22C three-body

halo system.
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Chapter 4

Results and Discussion

In this chapter, we present and discuss the various results of our numerical calcu-

lations. We analyse in detail the relevance of nn and three-body interactions on

the ground-state properties of the 22C neutron-halo nucleus. To this end, we study

the ground-state binding energy as a function of the strength and ranges of these

interactions. The chapter starts with a brief description of the parameters that are

involved in the numerical calculations.

4.1 Brief description of the 22C system

The first observation of a bound 22C can be traced back in 1986 [121], and it is

modeled as 22C → 20C + n + n. Although earlier measurement reported the 21C →
20C + n system to be bound [122], a latter measurement found that this system is

in fact unbound [123]. As such, the 22C is regarded as a borromean system, where

none of the sub-systems is bound. Due to a large matter radius extracted from the

measured reaction cross section (5.4± 0.9 fm) [6], this system is known to be a two-

body neutron-halo system [6]. In other words, the 22C is formed by a core nucleus
20C to which two neutrons are weakly-bound. The Iπ = 0+ ground-state of the core

nucleus predominantly consists of a (0d 5
2
)6 configuration [16]. To support the halo
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nature of this system, the two-body subsystems must be either very weakly bound

or low-lying resonances, or virtual states must be present, in order to support a halo

state [2]. A resonance in the d3/2+ state of the 21C has been suggested in [124]. In

the ground-state of the 22C system is (s1/2)2 configuration which is predominantly

dominated, while other components add rather small admixtures [125, 129]. The

ground state of this system consists almost entirely of configurations with total spin

of halo neutrons [s1s2]S = 0 (with weight more then 98%), which emphasizes the

halo structure of this nucleus, and is identified by Jπ = 0+ [16, 125]. This make-up

simplifies the couplings of the angular momenta in Chapter 3.

4.1.1 n− 20C and nn interactions

As for any three-body system, the ground-state properties of the 22C are determined

by intercluster (two-body) potentials. The selection of these potentials is complicated

by the lack of experimental information on the neutron-22C subsystem, given the fact

that a bound-state of 21C does not exist. In this case, we resort to a partial-wave

dependent (`-dependent) potential [Vn−core(x)] for the n − 20C subsystem. For the

Vcore−n(x), we consider the usual Woods-Saxon potential, with both central and

spin-orbit coupling terms, given by equation (2.30). The different parameters of this

interaction, taken from Ref. [4], are summarized in Table 4.1. The depth V `=2
0 =

−47.8MeV was selected to produce a neutron separation energy of about 2.93MeV in

the 1d 5
2

+ state of the 21C system. With the same value produces a 3/2+ resonance,

with energy εr = 0.83MeV as one observes in Fig.4.1. The same depth V `=0
0 =

−47.8MeV was found too strong and produced a bound 2s 1
2

+ state. It was then

reduced to V `=0
0 = −29.8MeV in order to ensure that the 2s 1

2

+ state is unbound.

The same depth V `=0
0 = −29.8MeV was used in other partial waves non-S-wave
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Figure 4.1: Resonance structure of the 21C system in the 1d 5
2

+ state

partial waves other than d-waves.

Table 4.1: Parameters of the core-neutron Woods-Saxon potential, where V0, Vso are
the depths of the central and spin-orbit coupling term, and Ri, and ai [i ≡ (0, so)], the
corresponding absolute radii diffuseness. These parameters were taken from Ref. [4].

` V0 R0 a0 VSO RSO aSO

0 -29.8 3.393 0.65 35 3.393 0.65

2 -47.8 3.393 0.65 35 3.393 0.65

For the nucleon-nucleon (nn) potential, we used a simple Gaussian potential [114],

given by

Vnn(x) = v0e
−(x/x0)2 , (4.1)

where we tuned the parameters (v0, x0) to reproduce the well-known nn scattering

length as = −15 fm. We found that this scattering length is obtained with (v0, x0) =

(−31.0 MeV, 1.8 fm), which are the same pameters in Ref. [114], also adopted in
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other works, such as Ref. [130]. With this simple potential, setting v0 = 0, implies

that Vnn = 0. Other choices of the nn potential are available in the literature, such

as the Gogny-Pires-Tourreil potential [105], which is one of the commonly used in

the three-body calculations. We motivate the choice of this simple interaction by

the fact that it contains few parameters, which is convenient for the present study,

which involves varying both v0 and x0.

4.1.2 Three-body interactions

For the three-body forces, we used two different interactions. The one that is given

by the following simple power form

V3b(ρ) =
v3b

1 +

(
ρ/ρ0

)a , (4.2)

where ρ0 = 5 fm defines the range of the potential, a = 3 fm, and another one of the

following Gaussian shape

V3b(ρ) = v3be
−(ρ/ρ0)2 , (4.3)

where ρ0 =6 fm. In the discussion of the results, we will denote the interaction (4.2)

by P1, and the interaction (4.3), by P2. Both interactions have been used in different

studies such as in Refs. [72,126,127].
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4.2 Details of numerical calculations

In order to numerically solve the coupled differential equations (3.29), various numeri-

cal parameters are needed. The coupling matrix elements were numerically evaluated

by means of the Gauss-Jacobi quadrature. The number of mesh points used in this

calculation was NJ = 100. The number of basis points used in the expansion of

the radial wave function of the Laguerre basis [equation (3.45)], was NL = 80. The

parameter ρ0 in equation (3.45) was set to ρ0 = 0.2 fm. The coupled differential

equations were integrated out to ρmax = 100 fm, and the interval [0 : ρmax] was sliced

into 1000 equally spaced mesh points. The orbital angular momenta `x and `y were

truncated to a maximum value of (`x, `y)max = 3, and the hyperangular momentum

K was truncated by Kmax = 40. These numerical parameters were selected in ac-

cordance with the convergence requirement, in particular for a large range of the nn

potential, where the wave function was observed to exhibit a long-range behavior.

The numerical calculations were performed using the computer code FaCe [42].

4.3 Brief analysis of the expansion basis

In Fig. 4.2, we plot the basis expansion Rn(ρ) of the expansion (3.45), as a function

of the hyperadius ρ, for various values of the positive integer n. One observes in that

figure that for lower values of n (n = 2), the function Rn(ρ) repidly converges to zero

for large ρ ≥ 20 fm. For larger values of n, the function Rn(ρ) becomes oscillatory.

We also analyzed the behavior of the hyperspherical basis functions P`x,`xK (α), given

by equation (3.16), which are shown in Fig.4.3, as function of z. The variable z and

weight function were determined by the Gauss-Jacobi quadrature. In this figure,

the label γ ≡ (n, `x, `y, K), standing for some of the various quantum numbers that
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Figure 4.2: Plot of the radial basis function [Eq.(3.45)], for different values of n.

describe the three-body state. As expected, according to equation (3.40), one sees

in that figure that the basis function is zero for z = +1, and z = −1. It becomes

highly oscillatory and n increases, which reflects the oscillatory nature of the Jacobi

polynomials of higher degrees (higher values of n).
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Figure 4.3: Plot of the hyperspherical basis function P`x,`yK (z), as function of z. The
label γ ≡ (n, `x, `y, K) in each panel represents some of the quantum numbers used
to describe the three-body state.

4.4 Convergence of the ground-state binding energy

as function of Kmax

We start this section by analyzing the convergence of the three-body ground-state

binding energy ε3b. Three different cases using the three-body interaction P1: (i) by

© University of South Africa 2023 43



varying the depth v3b, (ii) by removing the nn interaction (v0 = 0MeV), and (iii)

by removing the three-body interaction (v3b = 0MeV). By so doing, we intend to

check the stability of the various calculations. Although the convergence was checked

Kmax
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)
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40353025201510
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−3.44
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−3.48

ε b
(M

eV
)
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Figure 4.4: Convergence of the three-body ground-state binding energy ε3b as
a function of the hypermomentum Kmax, for three different strengths (v3b =
−2.46 MeV,−10 MeV,−15 MeV) of the potential P1 [Eq. (4.2)]. The results are
obtained with v0 = −31.0MeV, where v0 is the depth of the nn interaction [Eq.
(4.1)].

against other numerical integration parameters, such as `x, and `y, we only discuss

the convergence of ε3b as a function of the maximum hypermomentum Kmax. Fig.4.4,

displays the convergence of ε3b for three different values (−2.46MeV, −10MeV and
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Figure 4.5: Convergence of the three-body ground-state binding energy ε3b as a
function of the hypermomentum Kmax. The depth of the potential P1 is set to
v3b = −6.45MeV, in the absence of the nn interaction (v0 = 0).

−15MeV) of the strength (depth) v3b of the three-body interaction P1. The values

−10MeV and −15MeV were arbitrary selected, whereas the value −2.46MeV was

adjusted to reproduce ε3b = −0.44MeV, which is close to one of the two neutrons

separation energies assigned to the 22C system in Ref. [29]. The nn interaction is

included with v0 = −31.0MeV, and x0 = 1.8MeV. Inspecting Fig.4.4, it resorts

that the convergence of the binding energy is achieved for all three values of v3b,

for Kmax ≥ 20. This implies that the depth of the three-body interaction does not

affect the number of partial-waves that are needed to guarantee the convergence of the

ground-state binding energy. Another noticeable aspect in Fig.4.4, is that the binding

energy increases with the depth of the three-body interaction [see panels (b) and (c)

of that figure], which indicates that the system becomes more compact as the three-

body interaction becomes more attractive. The convergence of ε3b in the absence of

the nn interaction (v0 = 0MeV, which implies that there are no nn correlations, at

least as long as the nn correlations are all removed when Vnn = 0MeV), is displayed

in Fig.4.5. One also observes that the convergence is achieved for Kmax ≥ 20. To

obtain the same ground-state binding energy ε3b = −0.44MeV, we adjusted the

depth of the three-body interaction to v3b = −6.45MeV. The convergence of ε3b
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Figure 4.6: Convergence of the three-body ground-state binding energy ε3b as a
function of the hypermomentum Kmax, in the absence of the three-body interaction
(v3b = 0). The depth of the nn interaction is set to v0 = −38.5MeV.

when there is no three-body interaction (v3b = 0MeV) is displayed in Fig.4.6. One

notices that the convergence is also achieved. Also, to obtain the same binding energy

ε3b = −0.44MeV, the depth of the nn interaction was increased to v0 = −38.5MeV.

In the light of the results in Figs.4.4-4.6, one can draw the following conclusion. In

the absence of the three-body interaction, the three-body system is bound by a more

attractive nn interaction. Likewise, in the absence of the nn interaction, the system

is bound by a more attractive three-body interaction. This amounts to saying that

the depths of these interactions play a complementary role in the three-body system,

at least as far as the present system is concerned.

4.5 Ground-state binding energy versus the strength

v3b

In order to better display the relevance of the strength of the three-body interaction

on the ground-state binding energy, we show in Table 4.2, the binding energies for

the three selected values of the depth v3b of the three-body interactions P1 and
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Table 4.2: Three-body ground state binding energies ε3b (in MeV), for different
values of the depth of the three-body interaction given by Eqs.(4.2) and Eq.(4.3). P1
represents the interaction (4.2), and P2 the interaction (4.3). Setting v0 = 0 means
that the nn interaction is removed, meaning that there are no nn correlations.

v3b -2.46MeV -10 MeV -15MeV

P1 v0 = −31 MeV -0.441 -2.437 -3.442

v0 = 0 MeV − -1.186 -1.972

P2 v0 = −31 MeV -0.373 -2.274 -3.264

v0 = 0 MeV − -0.952 -1.723

P2, when the nn is included (v0 = −31.0MeV), and excluded (v0 = 0MeV). For

example, it is seen in that table, that for v3b = 10MeV, ε3b = −2.437MeV, whereas

for v3b = 15MeV, ε3b = −3.442MeV, for the potential P1. When the nn interaction

is removed we found that the system is no longer bound for v3b = −2.46MeV,

but is bound for v3b = −10 MeV,−15 MeV. This can further proves that for the

considered system, a shallower three-body interaction cannot produce a three-body

bound system in the absence of the nn interaction. To verify whether this observation

is dependent on the shape of three-body interaction, we also show Table 4.2, the

results obtained with the interaction P2. Although the numbers are slightly lower

compared to the interaction P1, the same trend is maintained. The dash mark

(−) in Table 4.2, serves to indicate that there is no bound-state for the particular

parameters. We extended the radial integration up to ρmax = 1000 fm, but still a

bound-state could not be found for v3b = −2.46MeV and v0 = 0MeV.
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4.6 Ground-state binding energy versus the strength

v0

In Table 4.3, we also analyze the dependence of the three-body binding energy

on the strength of the nn interaction. To this end, we also selected three values

v0 = −31 MeV, −38.5 MeV and −60 MeV. The value −60MeV, was arbitrarily

selected whereas the value −38.5MeV was adjusted to obtain the binding energy

ε3b = −0.441MeV in the absence of the three-body interaction. An observation of

that table shows that the binding energy increases as well with the strength of the

nn interaction. One further notes that in the absence of the three-body interaction,

the binding energy decreases significantly (ε3b = −0.067MeV) for v0 = −31MeV,

suggesting that for v0 � −31MeV, a bound state might not be expected in the

absence of the three-body interaction.

Table 4.3: Three-body ground state binding energies ε3b (in MeV), for different values
of the v0 depth of the nn interaction given by Eq.(4.1). We only consider the three-
body interaction P1. Setting v3b = 0MeV means that the three-body interaction is
removed.

v0(MeV) -31MeV -38.5MeV -60 MeV

v3b = −2.46 MeV -0.441 -0.962 -1.845

v3b = 0 MeV -0.067 -0.441 -1.706
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4.7 Ground-state binding energy versus the range

ρ0 of the three-body interaction

So far, our analysis has focused on the binding energy as a function of the strengths

of the nn and three-body interactions. Another crucial parameter to consider is the

range of these interactions. For instance, apart from the 22C and 20C matter radii,

the range of the three-body interaction may as well reflect the fact that the two halo

neutrons are located outside the 20C core nucleus. If for example the range ρ0 is

such that ρ0 � Rc [where Rc, is the root-mean-square (rms) matter radius of the 20C

core nucleus], one may not expect a bound 22C system, mainly because such range

would be too short to reach the peripheral neutrons. Also, in a three-body system,

the two halo neutrons are known to be far from each other, making the range of the

nn interaction an important parameter. The results so far presented were obtained

with the range of the three-body interaction set to ρ0 = 5 fm for the interaction

P1 and ρ0 = 6 fm for the interaction P2, which is well above Rc = 2.913 fm and

Rm = 3.503 fm (where Rm is the rms matter radius of the 22C system), quoted

from [6]. Before we discuss the results, let us first check the behavior of the potential

V3b(ρ) for different values of the range ρ0. In panel (a) of Fig.4.7, this potential

is plotted as a function of the hyper-radius ρ where the range given in terms of

Rc, considering only the interaction P1. The figure shows that for ρ0 = 1
4
Rc, the

potential vanishes at ρ ≥ 2 fm, and its tail extends to 15 fm for ρ0 = 5
2
Rc. In

other words, for ρ0 = 1
4
Rc, the potential vanishes for ρ ≥ Rc, in which case it may

be assimilated to a zero-range interaction. The binding energy as well as the rms

matter radii corresponding to different values of ρ0 up to ρ0 = 5
2
Rc, are presented in

Table 4.4, considering only the interaction P1, with v3b = −2.46MeV.We show the
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results obtained when the nn interaction is included (v0 = −31MeV) and when it is

excluded (v0 = 0MeV). The rms matter radius was calculated as follows [86]

Rm =

√
Ac
A
R2
c +
〈ρ2〉
A

,

=

√
1

Ac + 2

(
R2
c + 〈ρ2〉

)
(4.4)

where A = 22 and Ac = 20, are the atomic mass numbers, and 〈ρ2〉 the mean-squared

hyper-radius, obtained from the radial wave function F J
β (ρ) as follows

〈ρ2〉 =
∑
β

∫ ∞
0

dρρ2
∣∣F J

β (ρ)
∣∣2. (4.5)

Looking at Table 4.4, one sees that the binding energy is a continuous function of the

range ρ0, meaning that it increases with the range of the potential. In other words,

as ρ0 increases, reaching even beyond the peripheral neutrons, the system becomes

more compact. For ρ0 = 1
4
Rc and ρ0 = 1

2
Rc, the system is very weakly-bound, with

ε3b = −0.069MeV and = −0.077MeV, respectively. As seen in Fig.4.7, for these two

values, the potential vanishes rapidly beyond ρ = Rc. One may then urgue that for

ρ0 � Rc, the system might not be bound. In this case, the three-body potential

being assimulated to a zero-range potential, its depth v3b should be strong enough

to provide a bound-state, alluding to the three-body Thomas effect [128]. When

the nn interaction is removed, the system becomes only bound for ρ0 ≥ 2Rc. In

the light of this result, one may argue that in the absence of nn interaction, the

two independent neutrons are located further away from the core nucleus, such that

a long-range three-body interaction is required in order to sustain a bound-state.

This is consistent with the fact that when the nn interaction is removed, the binding
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Figure 4.7: Plot of the three-body potential V3b(ρ) given by Eq. (4.2) as function
of the hyperadius ρ for different values of the range ρ0 [panel (a)] and of the nn
interaction Vnn(x) given by Eq.(4.1) as function of nn coordinate x, for different
values of the range x0.

energy decreases (see Tables 4.2 and 4.4). Since the binding energy increases with the

range ρ0, this implies that that the rms matter radius Rm decreases and this what is

observed in Table 4.4. This is also well depicted in Fig.4.8, where the binding energy

and rms matter radius are plotted as functions of the range ρ0. With ρ0 = 5.0 fm,

we obtained the same value Rm = 3.503 fm as in Ref. [6].
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Table 4.4: Dependence of the three-body ground-state binding energy ε3b and the
22C root mean-square matter radius Rm, for v3b = −4MeV, v0 = −31.0MeV, and
v0 = 0.0MeV.

ρ0
1
4Rc

1
2Rc Rc

3
2Rc 2Rc

5
2Rc

v0 = −31 ε3b (MeV) -0.069 -0.077 -0.145 -0.327 -0.609 -0.913

Rm (fm) 4.548 4.482 4.110 3.738 3.551 3.476

v0 = 0 ε3b (MeV) − − − − -0.050 -0.244

Rm (fm) − − − − 4.910 3.823

v0 =−31 MeV

ρ0(fm)

R
m

(f
m

)

(b)
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b(

M
eV

)

(a)

876543210

0

−0.2

−0.4
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Figure 4.8: Ground-state binding energy ε3b [panel (a)], and rms matter radius
[panel (b)], as functions of the range of the three-body interaction (4.2).
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4.8 Ground-state binding energy versus the range

x0 of the nn interaction

Let us now turn to the effect of the range x0 of the nn interaction. The plot of this

interaction as a function of the nn coordinate x is shown in panel (b) of Fig.4.7,

for different values of the range x0 also given in terms of Rc. We observe in that

figure that for x0 = 1
4
Rc, this interaction is confined within x = 2 fm, which is less

than Rc. One notes that the interaction extends beyond x = 14 fm for x0 = 5
2
Rc,

which is about 5 times the size of the core nucleus and about 4 times the size of the

three-body system. The various binding energies and rms matter radii obtained for

various values of the range x0 are shown in Table 4.5. They were obtained when the

three-body interaction is included and excluded in the calculations. We found that

the system is not bound for x0 = 1
4
Rc, and extremely weakly-bound (ε3b ' 3 eV) for

x0 = 1
2
Rc. It is also observed that the binding energy increases with the range x0 as

it is with ρ0 in Table 4.4. In the absence of the three-body interaction (v3b = 0), the

table shows that the system is only bound for x0 ≥ Rc. The results are also plotted

as function of x0 in Fig.4.9, for a better display.

For completeness, we analyze the radial ground-state wave functions, F J
β (ρ), con-

sidering only the more dominant s-wave component, i.e., β ≡ (0, 0, 0, 0, 0). This

component is shown in Fig.4.10, for values of the ranges ρ0 [panel (a)] and x0 [panel

(b)]. In both panels of that figure, we obtain the expected behavior of the bound-

state wave function for a weakly-bound system, where a smaller binding energy,

corresponds to a longer tail of the wave function.
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Table 4.5: Dependence of the three-body ground-state binding energy ε3b and rms
matter radius Rm on the range x0 of the nn interaction. Cases where the three-
body interaction is included (v3b = −2.46MeV) and excluded (v3b = 0.0MeV) are
considered.

x0
1
4Rc

1
2Rc Rc

3
2Rc 2Rc

5
2Rc

v3b = −2.46MeV ε3b (MeV) − -0.000 -0.296 -1.437 -1.919 -2.044

Rm (fm) − 5.615 3.817 3.458 3.321 3.314

v3b = 0 ε3b (MeV) − − -1.778 -1.861 -1.900 -2.159

Rm (fm) − − 3.352 3.348 3.330 3.325

v3b = 0 MeV

v3b =−2.46 MeV

x0(fm)

R
m

(f
m

)

(b)
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Figure 4.9: Ground-state binding energy ε3b [panel (a)], and root-mean-square matter
radius [panel (b)], as functions of the range x0 of the nn interaction when the three-
body interaction is included (v3b = −2.46MeV) and excluded (v3b = 0MeV)
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Figure 4.10: Plots of the s-wave component of the ground-state radial wave function
for different values of the range ρ0 of the three-body interaction [panel (a)] and
the range x0 of the nn interaction [panel (b)], and for v3b = −2.46MeV and v0 =
−31.0MeV.
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4.9 Some ground-state thermodynamic properties

This section is devoted to the study of some of the properties of the ground-state

from a thermodynamical point of view. Thermodynamic properties of the ground-

state such as mean energy U , entropy S, free energy F , and heat capacity C, of the

system can be obtained by using the ground-state binding energy. This requires the

knowledge of the partition function z of the system, which is given by [131,132]

Z =
nmax∑
n=0

e−µεn , (4.6)

where εn represents the energy levels of the system, µ = (kBT )−1, with kB being

the Boltzmann constant, and T is the temperature at thermodynamic equilibrium.

Setting y = e−µεn and applying the geometric progression to z, one obtains [133]

Z = y + y3 + y5 + y7 =
y

1− y2
=

1

eµεn − e−µεn . (4.7)

Applying Euler formula

ex − e−x = 2 sinh x, (4.8)

equation (4.7) reduces to

Z =
1

2 sinh(µεn)
. (4.9)
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4.9.1 Mean Energy

The mean energy is given in terms of the partition function by

U = −∂ lnZ

∂β
= kBT

2∂ lnZ

∂T

= −εn
2

coth(βεn) (4.10)

4.9.2 Free energy

The free energy is given in terms of the partition function by

F = − 1

β
lnZ = −kBT ln

[
1

2 sinh(βεn)

]
(4.11)

4.9.3 Entropy

The entropy is given in terms of the partition function by

S = kB lnZ − kBµ
∂ lnZ(µ)

∂µ

= kB lnZ +
εn
2T

coth(βεn) (4.12)

= kB ln

[
1

2 sinh(βεn)

]
+
εn
2T

coth(βεn).
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4.9.4 Heat capacity

The heat capacity is given in terms of the partition function by

C =
∂U

∂T
= −kBµ

2 ∂
2

∂µ2
lnZ

=
ε2
n

2kBT 2
cosech2(βεn). (4.13)

4.9.5 Condition of calculations and results

In the calculations, we converted the three-body ground-state binding energy ε3b

from megaelectron volt (MeV) to Kelvin (K) using 1 MeV = 1.16 × 1010 K, and

kB = 1.38× 10−23 J/K. In this case, we obtain ε3b/kBT = 1010 K× ε3b/T . With the

tempereture T in Kelvin, this ratio is dimensionless. In our numerical calculations,

we considered the temperature in gigakelvin (GK), such that ε3b/kBT = 10 × ε3b.

In order to test the relevance of the binding energy on the different thermodynamic

propoerties, we considered three different binding energies. In Fig.4.11, we show

the partition function in terms of the temperature T for three different ground-state

binding energies. As one observes in this figure, the temperature increases, the

partition function decreases rapidly, in accordance with equation (4.9). The mean

free energy is shown in Fig.4.12. We notice that the mean free energy increases with

the ground-state binding energy. It is also observed that as the energy increases, the

mean free energy appears to become more almost independent of the temperature

at low temperature. The free energy is shown Fig.4.13, where we observe that it

actually represents the inverse of the mean free energy, where it decreases as the

temperature increases.
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Figure 4.11: Partition function of the 22C system as function of the temperature in
(GK) for different ground-state binding energies ε3b.

The entropy is plotted in Fig.4.14, where we observe that it actually tends to infinity

at very low temperatures and approaches zero for higher temperature. This figure

also shows that the entropy decreases with the energy.

The specific heat capacity is plotted in Fig.4.15. We notice that it is tends to zero

at low temperatures and appears to weakly depend on the temperature for higher

temperature. One also sees that the heat capacity is weakly dependent on the binding

energy for higher temperatures. The results are showing the significance of a low

binding energy of the system’s thermodynamic properties. It could be interesting

to expand on this preliminary study of the thermodynamics properties of weakly-

bound halo systems. The study of the uncertainty measures in three-body weakly-

bound systems such as Fisher information and the Shanon entropy is a subject of

interest.
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Figure 4.12: Mean energy of the 22C system as function of the temperature in (GK)
for different ground-state binding energies ε3b.
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Figure 4.13: Free energy of the 22C system as function of the temperature in (GK)
for different ground-state binding energies ε3b.
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Figure 4.14: Entropy of the 22C system as function of the temperature in (GK) for
different ground-state binding energies ε3b.
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Figure 4.15: Specific heat capacity of the 22C system as a function of the temperature
in (GK) for different ground-state binding energies ε3b.
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Chapter 5

Conclusion

In this dissertation, we have presented a detailed analysis of the role of the strengths

and ranges of the nucleon-nucleon (nn) and three-body interactions on the ground-

state properties of a three-body neutron-halo system, considering the 22C system. To

this end, we performed several calculations by varying the strengths and ranges of

both interactions. We started by outlining the theoretical formulation of a three-body

problem, starting with the fundamentals of two-body bound and scattering states.

The different steps leading to the transformation of the three-body Schrödinger equa-

tion into a one-dimensional set of coupled differential equations are outlined. These

equations were numerically solved subject to the appropriate boundary conditions,

in order to obtain the three-body ground-state binding energy and wave function.

We then investigated how varying the different potential parameter affect the bind-

ing energy. Varying the strength of the three-body interaction, it is found that the

three-body system remains bound even when the nn interaction is removed, pro-

vided the three-body interaction is more attractive (i.e., its strength is increased).

Likewise, by varying the strength of the nn interaction it is shown that the three-

body system remains bound in the absence of the three-body interaction, provided

the nn interaction is more attractive. We then inferred that the strength of the nn

and three-body interactions are complementary in a three-body system, at least as
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far as the system considered is concerned. We also found the ground-state binding

energy to be a continuous function of the strength and range of both interactions,

meaning that when these parameters increase, the binding energy increases as well,

making the system to be more compact. It could be interesting to perform a similar

system on a light borromean system such as 6He. A comparison with the present

study would clearify the effect of the core mass and radius on the binding energy of

the system. To some extent, it could also elucidate the effect of the core nucleus on

nucleon-nucleon correlations in a three-body system.

We also analyzed the ground-state thermodynamic properties of this system. With

the knowledge of the partition function which is dependent on the ground-state

binding energy, we calculated the mean energy, the free energy, the entropy as well

as the heat capacity of the system. The study of the uncertainty measures in three-

body weakly-bound systems such as Fisher information and the Shanon entropy is a

subject of interest.
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