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ABSTRACT 

 

Newcastle disease virus (NDV) is one of the highly contagious avian pathogens that threaten 

poultry producers based in endemic zones as a result of its epidemic potential. Selection for 

antibody (Ab) response has potential to effectively improve the resistance of disease in chickens. 

However, the molecular basis of the variation among chickens in Ab response to NDV remains 

unclear. This study aimed to identify the genes modulating Ab response to a viral pathogen such 

as NDV while under outdoor conditions. A genome-wide association study (GWAS) was 

conducted on Sasso T451A chickens that were naturally exposed to infectious diseases to identify 

regions associated with Ab response to NDV. Phenotypic and immune data from 1022 chickens in 

two batches (507 in batch four and 515 in batch five) and genotyping from 935 chickens (2,676,181 

single nucleotide polymorphisms(SNP)) were used for association analysis. BioMart data mining 

as well as variant effect predictor tools were used to annotate SNPs and candidate genes, 

respectively. The results revealed that batch four compared to batch five chickens showed a 

stronger Ab response at 56 days and lower Ab response at 112 days old. A total of five significant 

SNPs (rs733628728, rs316795557 (FOXP2), rs313761644 (CEP170B) and two unnamed) were 

significantly (p <3.92E-7) associated with chicken antibody response to ND. These SNPs present 

on chromosomes 1, 5 and 13, are in genomes regions including several genes with roles in the 

regulation of the immune response. The results of this study pave the path for more investigation 

into the host immune response to NDV. 

 

Keywords: Antibody response, Genome-wide linkage analysis, Newcastle disease, Sasso T451A, 

Vaccine challenges 
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CHAPTER 1. INTRODUCTION 
 

1.1. Background and Justification 

 

Within the past decades, the human population has increased exponentially worldwide, and it has 

been projected that its growth will reach 9.73 billion by 2050 and 11.2 billion by 2100, which 

makes it more difficult for agriculture to supply the rising demand for food (FAO, 2017). Extreme 

poverty is one of the root causes of food insecurity and malnutrition, affecting more than a billion 

people worldwide. Food security has remained a significant issue worldwide, particularly in 

developing nations (Barret, 2010). Emerging countries food supply will need to increase twice by 

2050, to meet population growth and dietary changes (IFAD, 2009; FAO, 2014). This will need to 

be achieved sustainably, maintaining the natural resources and environment globally (FAO, 2017). 

All the factors that determine food security: access, availability, stability, and utilization, are 

anticipated to be impacted by climate change. It will be necessary to provide help in bridging the 

protein gap with developing countries anticipated to make up 85% of the increased food 

consumption demand (FAO, 2007). 

 

Chicken are the most common livestock species in the world (FAO, 2000). There were 25.8 billion 

chickens in 2021, up from 13.9 billion in 2000. In 2020, 40% of the world’s meat production came 

from poultry (Statista, 2021). Over 98% of all poultry (ducks, chickens, and turkeys) maintained 

in Africa are chickens, which predominate flock make-up (Hassen et al., 2006). Africa produces 

only 5% of the world's chicken meat and eggs. Ethiopia is one of several developing nations where 

keeping chickens is common (Hassen et al., 2006), and where chicken meat contributes about 5% 

of the total national meat production (EMDDI, 2017). So, relative to other livestock species (e.g., 

cattle, sheep, and goats), chicken meat production remains small. Nevertheless, chickens represent 

a significant source of animal protein, even discounting egg production, for the Ethiopian 

smallholder household (Belay and Oljira., 2019). It is a livestock resource which requires little 

management.  

 

In Ethiopia, there are over 57 million chickens in total, with indigenous, hybrid and exotic breeds 

accounting for 78.85%, 12.03%, and 9.11%, respectively (CSA 2020/2021). To advance egg and 
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meat production, a number of exotic chicken breeds have been introduced to Ethiopian farmers 

(Demeke, 2008). Mostly layer and dual-purpose chicken breeds have been distributed in the last 

two decades. Among the dual-purpose breeds of chicken, Sasso T451A is one of the chicken breeds 

that have been introduced to Ethiopia. Sasso T451A chickens are characterized by being a slow-

growing, robust, and easy-to-manage chicken breed, which can be grown under different rearing 

systems from traditional to intensive production (SASSO, 2018). Compared to indigenous 

chickens at the same age, Sasso T451A chickens produce more eggs and they growth faster and 

larger (2.6–3.2 kg at 28 weeks age) (Osei-Amponsah et al., 2012).  

 

Livestock production in Ethiopia is in a period of transition. The transition from backyard farming 

towards a more commercial form of farming is  necessity to meet the needs of the rising population 

of the country (Ethiopian Growth and Transformation Plan (GTP I and II), 

https://www.agroberichtenbuitenland.nl/actueel/nieuws/2018/12/20/strategic-plan). In the poultry 

subsector, the traditional scavenging system is expected to be replaced with a semi-scavenging 

one at the smallholder level. It requires a coherent strategy and structure for poultry feed, breeding, 

health, disease prevention and control (NPC, 2018). Parallel to the transition of the poultry industry 

toward more intensification, the challenge of numerous diseases (caused by bacterial, parasitic and 

viral infections) will be on the rise. In developed countries, disease-related economic losses in the 

chicken industry can range from 10 - 20% of the total value of output, and they are probably even 

higher in developing nations (FAO, 2014). The combined effects of genetic improvement, optimal 

nutrition, vaccination strategies and impressive increases in disease protection have been 

accomplished by methodical efforts (Zhu et al., 2019). Selective breeding is an important 

additional method to be used to increase overall disease resistance for a stronger immune system 

(Cheng et al., 2013). 

 

The prevalent disease, predation, nutrition, lack of management and acceptable breeds in the nation 

limit the amount of chicken that can be produced (Terfa et al., 2018). The most economically 

significant of these restrictions, which affect both chicken population and its production, are 

diseases and notably viral diseases. The mortality (“from egg to adult”) has been estimated to be 

as high as 80% during disease epidemics (Zelalem et al., 2014). Numerous chicken diseases which 

include chronic respiratory disease, coccidiosis, Marek's disease, Newcastle disease (ND), and 

nutritional deficiencies have been identified in Ethiopia. These diseases represent a significant 

https://www.agroberichtenbuitenland.nl/actueel/nieuws/2018/12/20/strategic-plan
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source of economic losses (Mesfin and Bihonegn, 2018). Therefore, any progress in the production 

of free-range chickens will depend on the effective management of important poultry diseases, in 

particular the devastating ND (Tadesse et al., 2005).  

 

Protection against NDV is through the use of vaccines generated with low virulent NDV strains. 

Immunity is derived from neutralizing antibodies formed against the viral hemagglutinin and 

fusion glycoproteins, which are responsible for attachment and spread of the virus. Given the 

objective of evaluating Ab response with respect to phenotypic and genetic variation, it would be 

important to outline related information, for example the basis of this Ab response. The disease 

specific response of the innate immune system may be a valuable indicator of the level of disease 

tolerance or resistance in the host. The innate immune response comprises factors that exist prior 

to the advent of infection and are capable of exclusion or rapid response to microbes. It has been 

demonstrated that immunological traits in poultry, such as Ab titers, are heritable (Lamont et al., 

2003), raising the prospect of identifying loci (genes) linked to immune (disease resistance) traits. 

The genetic regulation of immunological traits has been mapped using microsatellite markers in 

previous ND studies (Yunis et al., 2002). Quantitative trait loci (QTLs) analysis has revealed 

association with immunological genes on chicken chromosomes 2-5, 9, 13, 16, 18-19, 22 and on 

the Z sex chromosome (Slawinska and Siwek, 2013). 

 

It is challenging to measure traits like diseases resistance and response to infection (Psifidi et al., 

2016). However, measuring antibody titer following infection or vaccination is promising avenue 

as a proxy of the innate system efficiency. Then genome-wide association studies (GWAS) may 

be conducted to find genetic markers associated with the disease resistance phenotype under study 

using DNA Beadchip technology, allowing genotyping thousands of genetic markers 

simultaneously. This approach is commonly used for human disease and economically important 

animal traits research. In chickens, many GWAS have been conducted using the Illumina 60K 

SNP Beadchip or the 600K SNP Affymetrix array. Using this method, major loci associated with 

disease (Raeesi et al., 2017),  growth (Gu et al., 2011; Xie et al., 2012; Guo et al., 2017; Pertille 

et al., 2017), egg production (Liu et al., 2011; Wolc et al., 2012), carcass (Huang et al., 2018) and 

meat quantitative traits (Moreira et al., 2018), resistance to Marek’s disease (Li et al., 2013), and 

immune responses to NDV (Luo et al., 2013) have been identified.  
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1.2. Research problem statement 

 

Among the chicken infectious diseases, the highly contagious Newcastle viral disease is affecting 

both wild and domestic birds, making it one of the most contagious (Damena et al., 2016). In 

Ethiopia, ND outbreaks associated with the velogenic strain is known to cause serious economic 

losses and cause up to 80% mortality (Zelalem et al., 2014). Sasso T451A chicken flocks are now 

commonly raised in semi-scavenging village conditions in Ethiopia. However, the performance, 

genetic make-up, disease resistance, optimum management and adaptation to outdoor conditions 

have not been thoroughly assessed for this breed in the country. Accordingly, this study aims to 

undertake genomic and immune traits analyses of the Sasso T451A populations in Ethiopia. The 

research study will assess the association of SNP markers from genome-wide scans with Ab 

responses and production performance of Sasso T451A chickens raised in semi-scavenging village 

conditions at ILRI Addis Ababa poultry research facility.  

 

1.3. Relevance of the research 

 

The Next-Generation Sequencing (NGS) technology has accelerated the discovery of candidate 

genes associated to traits of economic importance. A study conducted by Benitez (2002) 

emphasized that accurate genetic data are dependent upon the availability of genetic variations. 

So, immune response is genetically variable, which gives rise to the possibility of enhancing 

disease resistance, either through traditional methods of animal breeding or by molecular genetic 

screening procedures. In this study, variation in immune response in Sasso T451A was assessed, 

correlated it with productivity traits and used genetic markers to contribute to our knowledge of 

the genetic control of such variation.  

 

1.4. Aim and objectives of the study 

 

The general aim of the study was to identify genes and genomic regions associated with the 

immune response of Sasso T451A chickens raised in Ethiopia in semi-scavenging system. 

The specific objectives of this study are the following:  



 

5 
 

a) To evaluate the presence of phenotypic and genetic variability of Ab responses to 

Newcastle Disease Virus (NDV). 

b) To identify and examine genomic regions associated with Ab response to NDV. 

 

1.5. Research hypothesis 

 

a) The Ab responses to a major infectious disease (ND) does not differ according to the 

genetic variation between individual chickens.  

b) The immune response traits are not associated with the genomic regions.  

 

1.6. Research question  

 

a) Do genetic factors affect the immune response of individual chickens, and to what extent? 

b) Is the immune response in chickens affected by the time of year of the challenge (batch 

effect)? 

 

1.7. Dissertation layout 

 

This study comprises of six chapters organised as follows: 

Chapter 1:  Introduction: Background of the study, which includes the research problem 

statement, relevance of the research, aims and objectives of the study, research 

hypothesis and question of our study. 

Chapter 2:  Literature review: It provides the summary of the literature (poultry industry, 

immune traits of chickens and use of genetic markers in chickens) and also provides 

a brief summary on the poultry production system, chicken breeds and an overview 

of Sasso T451A chicken in Ethiopia. 

Chapter 3:  Research methodology: It detailed information on methods such as sampling, 

genotyping including quality control, immune phenotypes, and genome-wide 

association analysis, genetic parameter estimation, SNP and candidate region 
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annotation, pathway, as well as functional enrichment analyses of the candidate 

regions.  

Chapter 4:  Results: This chapter provides all the findings of the current study. 

Chapter 5:  Discussion: Explanation and interpretation of the results in relation of previous 

studies. 

Chapter 6:  Conclusion and recommendations: Summary of the results and recommendations. 
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CHAPTER 2. LITERATURE REVIEW  
 

2.1. Poultry industry 

 

The poultry industry plays a vital role in the global economy, and it represents a major protein 

source for human consumption. The production of chickens around the world has changed 

significantly and increased during the past 50 years. Moreover, the consumption of chicken eggs 

and meat and animal-source foods has increased rapidly in the past decades (FAO, 2020). Indeed, 

poultry meat and eggs are among the main animal-supply ingredients extensively eaten across 

human societies, regardless of their cultures, traditions, and religions (FAO, 2008). The global 

industrial poultry sector includes three main segments: breeding of parental stocks, production of 

broiler and egg-layer, and processing of meat and eggs (FAO, 2014). It accounts for nearly 2/3 of 

chicken egg and meat production (Dolberg, 2007). In 2008, it was estimated that the commercial 

chicken (layer and broiler) markets produced more than 40 billion chickens yearly to satisfy the 

demands from consumers for meat (61 million metric tons) and eggs (> 55 million metric tons) 

throughout the world (FAO, 2008). In 2018 and 2020, the demand was 82.8 million metric tons of 

eggs and 137 million tons of poultry meat, respectively (FAO, 2020; FAO, 2021). The African 

continent contributes only 0.7% and 4.4% of the world chicken meat and egg production, 

respectively (FAO, 2014). In Ethiopia, indigenous, exotic and hybrid chickens contribute about 

95.86%, 1.35% and 2.79% of the national poultry production, respectively. These three categories 

of breed contributed 2%, 0.2%, and 0.01% of poultry meat in 2016 and 11%, 1.7%, and 0.07% egg 

production East Africa, Africa and the world, respectively (FAOSTAT, 2018). 

 

2.2. Poultry production systems in Ethiopia  

 

Different management and production systems can be used to raise chicken. In Ethiopia, there is a 

distinct difference between the traditional, low-input approach and the modern, high-tech system 

(Yami, 1995). There are three main production systems for chicken in Ethiopia: small-scale, 

backyard or village farming and large-scale commercial farming. The different production systems 

are catagorized based on purpose of production, breed types, input and output levels, type of 
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producer, housing, length of broodiness, feeding, mortality rate, health care, growth rate, bio-

security measures and number of chickens reared (Tadesse, 2015). 

 

The backyard production system is practiced by nearly all rural families, excluding the nomadic 

population. This dominant type of poultry production system relies on indigenous (local) chickens. 

It is characterized by small flock size with little or no inputs, semi-scavenging or scavenging 

feeding and minimal level of bio-security with minimal health care and high mortality rate 

(Desalew et al., 2013). Therefore, the only significant financial input required is the base stock, 

some local grains, and perhaps some basic nightshades, with most of the time being spent at night 

in the family homes. The local chickens are reared in small flocks (4-10 hens), its market weight 

of < 1500 g at six months old and produce a maximum of 40-60 eggs/year/hen (Dessie et al., 2011). 

In such production system, local chickens are mostly kept, though a few hybrid and exotic breeds 

may also be present (Desalew et al., 2013). ND is the main source of economic loss because 

vaccination often only takes place in response to an epidemic. 

 

Small-scale intensive production system is characterized by a medium level of supplementary 

feeding, minimal to low bio-security and small veterinary service inputs. Flock sizes in this 

production system typically vary from 50 to 500 exotic chickens. This production system is a 

recently developing system in peri-urban and urban areas, where exotic breeds of chicken are 

produced (meat and egg) along commercial lines (Alemu et al., 2009). The majority of Ethiopia's 

small-scale poultry farms are situated in and around Addis Ababa and Debre Zeit town in the 

Oromia region. Small-scale chicken farms could be kept as a primary source of revenue or as a 

secondary source of income. Here, the prevalence of diseases affecting poultry remain largely 

unknown. One of the rare examples is Kinunghi et al. (2004) study which reported that in such 

systems, chickens, with coccidiosis, experience mortality, slow weight gain and low eggs 

production. 

 

In the large-scale commercial chicken farms, an average of > 10,000 chickens are reared under 

indoor condition, with a medium to high level of biosecurity (Desalew et al., 2013). Here, we find 

exotic commercial lines which need expensive inputs like feed, housing, healthcare and general 

management. These commercial farms represent 2% of the Ethiopian poultry population. Here, the 
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chicken mortality rate up to adulthood only around 5% following the tight biosecurity measures in 

place (Bush, 2006). Large-scale commercial farms hens supply the foundation stock and feed for 

small-scale chicken farms (Nzietchueng, 2008). 

2.3. Chicken breeds  

 

Around the world, smallholder farmers raise a variety of poultry species. The most significant 

tropical species are pheasant, guinea fowl, turkey, goose, quail, ostrich, duck, and chicken. Around 

1,600 various domestic chicken breeds are recognized internationally (FAO, 2020). In Ethiopia, 

chickens are the only domesticated poultry species. Breeds of chicken fall into three major 

divisions: local, exotic, and hybrid (CSA, 2020/2021). In the past, exotic chickens were only raised 

in intensively managed commercial farms. Currently, exotic and their crossbreeds may also be 

found in some backyard chicken production systems, where they require more input than 

indigenous village chickens (USAID, 2012). 

2.3.1. Local chicken breeds  

 

Local African chicken ecotypes are crucial to household livelihoods in both rural and urban areas: 

provide high-quality protein and are important resource for people particularly for women and 

kids. Local village chickens are kept an extensive chicken production system, which is best 

characterized as a low input-low output. Local chickens are hardy and more disease resistant than 

the high-producing strains and adapted to the harsh local environmental conditions (Manyelo et 

al., 2020). The attractive traits of local chickens are hard eggshells, high fertility, tasty eggs and 

meat, and hatchability (Melesse, 2000). They are phenotypically diverse in plumage shank colour, 

feather patterns, body size, comb types and colour. However, low production performance, late 

maturity and slow growth are there defining traits. Their eggs are small with a thick shell and deep 

yellow yolk color. On average, a local chicken produces 40 to 60 eggs annually, in comparison to 

the over 300 eggs produced by commercial layers (Moredaa and Mesekel, 2016). Low genetic 

potential, nutritional deficiencies, and seasonal influences are some of the factors affecting the 

local chicken's low egg output. Also, maternal genetic instinct in local chickens means that hens 

will go broody after they have laid a clutch of eggs into hatching and they will rear their chickens 

(Pym et al., 2006). 
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2.3.2. Exotic chicken breeds 

 

Reports show that there are over 6.9 million hybrid and exotic chickens, representing 11.5% of 

Ethiopia's total poultry population (CSA 2020/2021). Exotic chickens were first imported into 

Ethiopia in the years 1953 were kept at Jimma Agricultural and Technical School (Wondmeneh et 

al., 2016). They were cockerels, pullets, and fertile eggs. Several exotic breeds of commercial 

chicken (Rhode Island Red, White and Brown Leghorns, Cornish, New Hampshire, Bovans, 

Australorp and Light Sussex) have been introduced over the past years. For these breeds to achieve 

their productivity, they require improved feed, vaccination, and therapeutic intervention (Tamir et 

al., 2015). The Ethiopian’s Extension Department of the Ministry of Agriculture (MoA) has shown 

more interest and preference in a dual-purpose (egg, meat) chicken breed (Rhode Island Red) 

among the exotic breeds that were distributed to smallholder farmers. Moreover, one of the reasons 

for the importation of the Egyptian Fayoumi breed was the hope that it would eventually 

outperform other exotic breeds in Ethiopia's rural areas in terms of productivity, disease resistance, 

and adaptability (Wilson, 2010). 

 

2.3.3. Hybrid chicken breeds 

 

Hybrids or crossbreed chickens result from the crossing of two lines or strains of chickens to 

combine in the hybrid the desirable characteristics of both parental strains (e.g., productivity and 

adaptability). The Ethiopian Institute of Agricultural Research (EIAR) started a crossbreeding 

program to create a synthetic dual-purpose breed for local poultry production (Wondmeneh et al., 

2016). The two exotic chicken breeds that are used are Rhode Island Red (R) and Fayoumi (F) as 

dam lines, and two local chicken breeds [local Netch (W) and Naked neck (N)], a white feathered 

chicken as sire lines. The local breeds were used as sire lines to produce the hybrids growth and 

egg production performance of the two crosses RW (R♀ X W♂) and (FN (F♀ X N♂), which are 

being compared with the exotic pure line and with each other’ performance (Bekele et al., 2010). 
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2.4. Overview of Sasso T451A chicken in Ethiopia 

 

To increase poultry productivity, different breeds of exotic chickens have been imported into 

Ethiopia. Among these, the Sasso T451A breed is increasingly becoming popular among 

smallholder farmers raising poultry under a traditional management system. In Ethiopia, Sasso 

T451A chicken are imported and distributed by EthioChicken, a private poultry farm company. 

The Sasso is a French, dual-purpose breed initially developed for France's 'Label Rouge' market 

to provide consumers with high-quality chicken meat and eggs. Today many different Sasso hybrid 

strains may be produced by crossing different parental Sasso lines of other production 

characteristics (SASSO, 2018). An F1 cross between the male line T44 and the female line SA51A, 

known as Sasso T451A, has been evaluated and found to be adaptable to a wide range of tropical 

settings (Yakubu and Ari, 2018). However, it shows different production characteristics depending 

on the agro-ecology. Also, its productivity on-farm at the smallholder level is generally lower 

compared to on-station performance (Aman et al., 2017). 

2.5. The immune traits of chickens 

 

While enhancing growth and reproductive traits are the primary production goals in poultry 

breeding, immune traits selection has received very little attention. With chicken diseases still 

quite serious, routine immunization remains one of the largest expenses in poultry industry and 

the majority of smallholder farmers are not reached or are unable to afford it. The host’s defense 

immune response to a foreign (not recognized as self) molecule or pathogen typically defines the 

immune system (Geng, 2007). In chickens, immune response is affected by numerous 

environmental and genetic factors (Gavora, 2019). Given the characteristics of quantitative genetic 

variation, the genome must have numerous locations and multiple alleles that each influence a 

single trait (Dorshorst et al., 2011). An approach could be to choose individuals based on their 

genotype for a marker linked to an immune response QTL (for example, using marker-assisted 

selection (MAS). The finding of linkages between DNA markers and immune responses 

phenotypes is a prerequisite to this approach. 

 

Numerous studies have demonstrated that selecting for improved immune responses can increase 

the genetic disease resistance of chickens (Bovenhuis et al., 2002; Dorshorst et al., 2011). In 
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addition to disease resistance, genetically enhancing the immune system can also improve vaccine 

effectiveness (Lamont et al., 2003). Increasing disease resistance genetically could lower the cost 

of immunization and other disease prevention measures, enhance the effectiveness of vaccines as 

well as decrease mortality and performance loss during illness outbreaks (Barbour et al., 2012). 

 

Immune performance evaluation in chicken breeding commonly includes the following: sheep red 

blood cells, Ab response to influenza virus, heterophils to lymphocytes ratio, total serum 

concentrations of immunoglobulin Y and immune organ index (spleen, thymus), thymus weight at 

100 days, spleen weight at 100 days (Zhang et al., 2015a) and ND virus. According to Nassir's 

observation, the velogenic strains of the ND virus are present all over Ethiopia (Nassir, 1998). 

Once outbreaks of ND occurred, the survivors have high Ab levels and are resistant for a while. 

Still, as the level of protection falls and with the emergence of new strains, the population becomes 

susceptible again, and the cycle is repeated. 

 

The advent of genome-wide DNA arrays for poultry has enabled the study of the association of 

genomic markers and regions with important phenotypic traits. Results from such analyses are 

expected to facilitate selective breeding programs towards enhanced chicken productivity, health, 

and other traits (e.g., environmental adaptive traits). Previous work has demonstrated the utility of 

this approach for the genomic study of health and immune traits in African chickens (Psifidi et al., 

2016; Banos et al., 2020). The variability in resistance or susceptibility to infections; and 

demonstrated the presence of relationship between LEI0258 marker polymorphisms and variations 

in chicken susceptibility to ND (Mpenda et al., 2020). 
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CHAPTER 3. MATERIAL AND METHODS  
 

3.1. Study animals and sampling 

 

This study used samples that were collected for a previous study and approved for this project by 

the ILRI Research Ethics Committee (ILRI-IACUC2020-10/ 2021/CAES_AREC/068). The 

samples were from a total of 2,573 Sasso T451A chickens, were raised in five batches, of which 

the last two batches were used in this study. A total of 1,022 Sasso T451A day old chickens were 

acquired from EthioChicken. The chickens were maintained at the International Livestock 

Research Institute (ILRI) poultry research facility, consisted of 507 batch four (194 males and 313 

females) and 515 batch five (209 males, 306 females) chicken. They were maintained in a deep 

litter house during the brooder phase for 56 days from hatching. All chickens were vaccinated at 

the facility according to their vaccination protocol shown in Table 1, and they received therapeutic 

when needed. All chickens were tagged and sampled before being released into the paddock when 

they were approximately 56 days old.  

At 56 days old, chickens were put together outside into a single large pen (400 m2, 20 m x 20 m) 

at the ILRI poultry research facilities, where they were moving freely during daytime and kept 

indoor in poultry shed at night. The chickens occupied the pen for 4 weeks, after which they were 

moved to the adjacent pen for another 4 weeks shown in Table 2. Chickens were fed as per the 

recommended amount per chicken according to their age (Sasso protocol for T4451 hen) (SASSO, 

2018) for the first 4 weeks. For the remaining 4 weeks, feed offered per chicken remained constant. 

As the chickens were scavenging within the pen during the daytime, their feed was supplemented 

with scavenging products (e.g., insects, plants, etc.). Chickens were naturally exposed to infectious 

diseases under these conditions. Throughout all phases of growth, the chickens had full access to 

water, and they were vaccinated with a commercial (National Veterinary Institute (NVI), Ethiopia) 

NDV live vaccine of the Hichner B1/LaSota strain, using the standard dose given by the 

manufacturer, by the ocular route at 7 and 21 days of age (NVI, 2016). 

Each batch remained in the paddock and monitored for eight weeks. A total of 1.5 ml of blood 

from the wing vein was collected with a 2 ml syringe with a 23G x 1 (0.6mm x 25 mm) needle 

from each bird. Blood from 1022 chickens from day 56 and 762 chickens from day 112 was 
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allowed to coagulate overnight at room temperature prior to the removal of serum. After being 

separated, the serum was put into cryovial tubes, labeled, and kept at -200C until testing. Volume 

of 50 - 250 μl of whole blood was drawn with syringes and preserved in cryo-tubes filled with 1.5 

ml absolute ethanol (100%) https://www.sheffield.ac.uk/nbaf-s/protocols_list. The blood was 

transported to ILRI Addis Ababa molecular laboratory, where it was transferred into QIAcard FTA 

Elute Micro cards, labeled and stored at room temperature until shipment for genome sequencing.  

Table 1. Vaccination protocol at brooding facility 

Age in Day  Disease vaccinated for  Name of the vaccine Way of administration 

0 MDV+ IBDV+NDV Mareks * Gumboro + HB1 Sub-cutaneous + Spray  

7 NDV HB1 Ocular 

14 Infectious Bursal Disease Gumboro Ocular  

21 NDV Lasota Ocular 

28 Fowl pox  Fowl pox Wing-web 

42 Fowl typhoid  Fowl typhoid  Sub-cutaneous 

 MDV= Marek’s disease virus; IBDV= Infectious bursal disease virus; NDV= Newcastle disease 

virus; HB1= Hichner B1. 

 

Table 2. Occupied plots by the subsequent batch 

 

Batch of birds Plot no. (first four weeks) Plot no. (last four weeks) 

Practice run 1 2 

1st batch  2 3 

2nd batch 3 4 

3rd batch 4 1 

4th batch 1 2 

5th batch 2 3 

 

3.2.  Immune phenotypes  

 

The measurement of NDV-specific antibodies was done in serum collected at 56 and 112 days of 

age using the IDEXX NDV ELISA kit for chickens (IDEXX Laboratories, Westbrook, ME, USA, 

Cat#99-09263) based on the principle of Indirect Enzyme Linked Immunosorbent Assay (ELISA). 

All collected samples (day 56, 1004 and day 112, 766) were tested (serum dilution 1:100) in 

duplicate with a negative and positive control being added to each plates. Optical density (OD) 

values of test samples and controls were read using an ELISA reader (BioTek®-ELx800™, USA) 

at 650 nm. In all cases, OD were converted into a ratio to the positive control (S:P ratio) using the 

following equation (Bettridge et al., 2014):       

https://www.sheffield.ac.uk/nbaf-s/protocols_list
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S:P ratio = (mean sample OD−negative control OD)/ (positive control OD−negative control OD) 

 

By presenting the values on a scale, this data transformation made values (“1 = positive control 

and 0 = negative control”) equal between plates. Plate to plate variations were accounted for by 

numbering the ELISA plates. Log-transformed Ab titers of NDV with significantly skewed 

distributions were normalized. To determine the statistical significance of variations in Ab 

response to NDV between batches four and five at 56 and 112 days of age, a Student's t-test in R 

was used, P<0.05 (Team, 2018). 

3.3. Genotyping and quality control  

 

DNA was extracted from the blood preserved on QIAcard FTA Elute Micro cards (QIAGEN, Cat. 

No. WB120410). The extracted DNA (n = 963, batch 4, 465 and batch 5, 498) was shipped to 

GeneSeek (Neogen Genomics, Lincoln, NE, United States). The genomic DNA was then 

genotyped by low-pass genome sequencing and with imputationed using the Gencove platform. 

The GATK software, using the default parameters, was used for SNPs calling. Indels were 

sequenced/imputed but excluded for the analysis (Mckenna et al., 2010). Finally, 14,123,057 SNPs 

remained for further analysis. Before statistical analysis, evaluation of the data quality and pre-

processing of the data were performed to avoid introduction of bias into the analysis (Anderson et 

al., 2010). Raw SNP data were first subjected to quality control and loci with unknown 

chromosomal location were removed. PLINK v1.9 (Purcell et al., 2007) was used data quality 

control. All samples with high genotyping missing rate (> 10%) were excluded. SNPs were 

removed if they failed to pass the following criteria: minor allele frequency (MAF) > 0.01, call 

rate > 90%, P-value > 1×10–6 for Hardy-Weinberg equilibrium test. After a series of quality 

checks, 935 samples and 11,272,670 SNPs remained for the analysis.  

3.4. Genome-wide association study 

 

Population structure and relatedness are the main sources of confounding effects in genetic 

association studies (Astle and Balding, 2009). The linear mixed model method is efficient at 

preventing population stratification bias and it minimizes inflation from genetic effects (e.g., 

polygenic background). It is the commonest approach for a GWAS analysis with related 

individuals. Principal component analysis (PCA) was carried out and applied in PLINK analysis 
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toolset in order to evaluate population structure PCA, bearing in mind that clusters of SNPs in high 

linkage disequilibrium (LD) may bias the PCA results (Wang et al., 2009). First, using a 100 SNP 

sliding widows with a step of 10 SNPs, all autosomal SNPs were pruned for LD (r2 > 0.8). The top 

three principal components (PC) that were used as covariates in the mixed model were then 

determined using these unlinked SNPs. Using the pruned SNPs, a pairwise kinship matrix was 

then built. 

The EIGENSOFT package was used to evaluate genetic relatedness between individuals and 

population stratification within batches prior to the GWAS analysis (Price et al., 2006). The 

genome-wide efficient mixed model association (GEMMA) algorithm (Zhou and Stephens, 2014) 

was performed using the GWAS, and univariate linear mixed model were fitted separately for 

immune trait/batch/age as follows:  

y = Wα + xβ + u + ε, 

where y indicates the vector of immune trait values for every individual; W is a matrix of covariates 

(fixed effects that contains the batch, age:56 or 112 days), calendar season [autumn (September to 

November, batch 4) and winter (December to February, batch 5)]  growth traits, sex, the top three 

PCs and a column of 1s); α is a vector of the corresponding coefficients including the intercept; x 

represents a vector of genotypes of a marker; β is the effect size of the marker; u represents a vector 

of random effects with a covariance structure as u ∼ N(0, Gσ2 u), where G is the genetic relatedness 

matrix calculated from all SNP markers and σ2 u is the polygenic additive variance; e is a vector 

of residual errors with e ∼ N(0, Iσ2 e), where I is the identity matrix and σ2e is the residual variance. 

The significance threshold for the GWAS was defined using the Bonferroni correction method. 

These two thresholds were set for the data: p < 1/N for suggestive significance and p < 0.05/N for 

a 5% genome-wide significance level, where N is the number of the SNPs remaining after quality 

control. To analyze the findings from the GWAS, quantile-quantile plots and Manhattan were 

drawn, and genomic inflation factor (λ) was calculated with the median option by the qqman 

package in R for each trait (Turner, 2018). 
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3.5. Genetic parameter estimation  

 

Genetic parameters were estimated for Ab response to NDV using a similar univariate linear mixed 

model than the one utilized for GWAS. With Genome-wide complex trait analysis (GCTA) 

(Yang et al., 2011), the estimates of the variance components were calculated using the restricted 

maximum likelihood analysis option. Using the same model, bivariate analyses were performed to 

estimate genetic and immune phenotypic correlations among the traits. We conducted these 

analyses separately for each chicken batch. 

 

3.6. Annotation candidate region  

 

The Galgal6 assembly was used to map all significant SNPs detected in the GWAS to the reference 

genome. For the annotation we used the Variable effect predictor (VEP) tool in Ensembl 

(http://www.ensembl.org/Tools/VEP). Additionally, using the Galgal6 assembly and the BioMart 

data mining tool (http://www.ensembl.org/biomart/martview/), we annotated genes positioned 100 

kb downstream and upstream of the significant SNPs associated to Ab response to NDV. 

 

3.7. Functional enrichment analyses of the candidate regions  

 

STRING Genomics 11.0 (Szklarczyk et al., 2019) was used to classify the genes according to their 

biological pathways. It uses protein-protein interaction (PPI) networks and GO terms of the 

candidate genes. Gallus gallus was the background species and a PPI enrichment score > 0.15, the 

most stringent confidence interval, was used to construct the global network. The STRING 

specification calls for known PPI in research papers and curated databases. Additionally, it used 

protein homology, co-expression, gene neighbors, fusions, and co-occurrences to forecasts 

interacting genes. 

 

 

http://www.ensembl.org/Tools/VEP
http://www.ensembl.org/biomart/martview/
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CHAPTER 4. RESULTS   
 

4.1. Antibody titers for Newcastle disease virus 

 

Experimental chickens from two batches were used in this study. The Ab response to NDV, as 

assessed by an ELISA test, of individuals in both batches, four and five, was recorded at 56 and 

112 days of age, to evaluate the effect of batch and sex on immune trait. The Ab response to NDV 

was highly variable across chickens, and a significant effect (p < 0.05) was observed at 56 days of 

age between batches four and five. Compared to batch four, batch five chickens had a weaker Ab 

response at 56 days and stronger Ab response at 112 days of age to viral vaccination. There was 

no effect of sex on any of the vaccine Ab responses tested, indicating no difference in the humoral 

immune response in male and female chickens. The adjusted mean ± standard error of Ab 

responses to NDV was 0.6 ± 0.02 and 0.16 ± 0.01 for batch four and 0.39 ± 0.02 and 0.97 ± 0.012 

for batch five at day 56 and 112, respectively (Figure 1). 

 

 

Figure 1. NDV-specific serum titers for each batch of chickens at day 56 and day 112. 
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4.2. Genetic Parameters 

 

The ratio of additive genetic variance (Vg) to phenotypic variance (Vg + Ve) was used to compute 

heritability (h2). The estimate of heritability for Ab response to NDV was performed using the 

GCTA. NDV Ab titer at day 56 and day112 had estimated heritability of 0.09 + 0.14 and 0.13 + 

0.15, respectively (Table 3).  

 

Table 3. Variance component estimates and heritability of antibody response to NDV 

 

 

 

 

Vp =Phenotypic variance; Vg = Additive genetic variance; SE =Standard error; Ve =Environmental variance  

4.3. Principal component analysis  

 

The PCA analysis did not reveal any clear genetic separation between the two batches. The first 

PCA explained 10.0% and the second principal component explained 6.7% of the total variance 

(Figure 2). Consequently, to consider for differences in the population structure, the first two PCAs 

were handled as covariates and incorporated in the GWAS model as fixed effects. 

 

Figure 2. Principal component analysis of the two batches. Dots of different colors (red and green) 

represent individual bird of each batch (batch_4: green; batch_5: red) 

Age Source Vg Ve Vp Vg /Vp Pval 

Day56 Variance 0.0106 0.1141 0.1247 0.09 0.27 

SE 0.0176 0.0178 0.0067 0.14 

Day112 Variance 0.0027 0.0187 0.0214 0.13 0.2 

SE 0.0032 0.0032 0.0012 0.15 
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4.4. Genome‑wide association studies 

 

The univariate GWAS was performed to detect genomic regions related to Ab response to NDV 

of Sasso T451A at 56 and 112 days of age. GWAS was performed for Ab response to NDV, and 

the findings are presented as Manhattan and QQ plots (Figure 3). For each analysis, genomic 

control inflation factors were greater (with a small margin) than 1 (λ = 1.02 and 1.00 respectively), 

which indicated low population stratification. 

A total of five differentiated SNPs were found to be associated with antibody response to NDV, 

of which 2 of them are novel.  These SNPs are located in the candidate genes rs733628728 (p = 

3.62 x 10-7) at position at 15792460 and an unnamed SNPs  (p = 1.36 x 10-7) at 258025 and at 

198020 (p = 3.92 x 10-7) onchromosome 13, 33 and 30 at day 112 for batch four, and for SNPs  

rs316795557 (p = 1.18 x 10-7) at 26416538,  and rs313761644 (p = 2.32 x 10-7) at 51943226 on 

chromosome 1 and 5 at day112 for batch five, respectively. No SNPs obtained the significant p-

values for antibody response to NDV at day 56 for both batches (Table 3; Figure 3). 

 

Table 4. Differentiated variants and potential candidate genes associated with Ab response to 

NDV 

Chr= chromosome number; MAF= Minor allele frequency 

 

 

Traits SNP ID Chr Position MAF Beta p-value Candidate gene 

Batch4 

Day112 

 33 258025 0.014 0.2584082 1.36 x 10-7  

rs733628728 13 15792460 0.036 0.1622703 3.62 x 10-7  

 30 198020 0.032 0.1741291 3.93 x 10-7  

Batch5 

Day112 

rs316795557 1 26416538 0.243 0.1380258 1.18 x 10-7 FOXP2 

rs313761644 5 51943226 0.013 -0.4900926 2.32 x 10-7 CEP170B  
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A A 

B B 

C C 

D D 

 

Figure 3. Quantile–quantile (Q–Q) (right) plots and Manhattan (left) of SNP-based GWAS for batch 4 day56 (A), 

batch 4 day112 (B), batch 5 day56 (C), and batch 5 day112 (D). The Q–Q plots revealed the expected −log10(p), 

while the Manhattan plots revealed −log10 (observed p) for SNPs (y-axis) against their corresponding positions on 

each chromosome (x-axis). The horizontal dashed and solid lines in Manhattan plots represent the genome-wide 

suggestive (−log10(p) = 3.74) and significant (−log10(p) =1.86) thresholds, respectively.  
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4.5. Annotation of SNPs and candidate regions 

 

The annotation and location of all significant SNPs (n=21) detected by using GWAS analyses are 

represented in Table 4 (both batches and age group at 112 days). These SNPs were located in 

intron, downstream and upstream of a gene intergenic region. The genomic intervals 100 kb 

downstream and upstream of the GWAS identified significant SNPs were referred to as candidate 

regions, and annotated genes within those specific regions were identified. The list of candidate 

genes for Ab response to ND at 112 days for both batches are summarized in Table 4. The list 

includes nine genes protein phosphatase 1 regulatory subunit 3A (PPP1R3A), transient receptor 

potential cation channel subfamily C member 7 (TRPC7), dynamin-2-like (DNM2), cell division 

cycle 37 (CDC37), tyrosine kinase 2 (TYK2), trafficking protein particle complex 5 (TRAPPC5), 

B-cell receptor-associated protein 31 (BCAP31), WD repeat domain 13 (WDR13), and 

phospholipase D family member 4 (PLD4) (Table 4). 

Table 5. Gene ID and name, chromosome and size of the candidate regions including 100 kb 

upstream and downstream the significant SNPs 

Gene stable ID Gene name Chromosome   Region  

ENSGALG00000009435  PPP1R3A 1 26.5-26.53 Mb 

ENSGALG00000006297  TRPC7 13 15.7-15.76 Mb 

ENSGALG00000051104  

 
13 15.796-15.799 Mb 

ENSGALG00000040741  DNM2 30 90-110 kb 

ENSGALG00000041323  

 
30 137.1-137.8 kb 

ENSGALG00000048930  CDC37 30 170-179 kb 

ENSGALG00000030599  TYK2 30 180-196 kb 

ENSGALG00000050608  

 
30 200-214 kb 

ENSGALG00000039088  TRAPPC5 30 242-247 kb 

ENSGALG00000035236  BCAP31 30 269-271 kb 

ENSGALG00000044536  WDR13 30 273.5-276.5 kb 

ENSGALG00000050708  

 
33 167.5-168.4 kb 

ENSGALG00000047992  

 
33 180-250 kb 

ENSGALG00000048833  

 
33 215.2-217.6 kb 

ENSGALG00000049509  

 
33 313.8-314.6 kb 

ENSGALG00000034369  

 
33 347.1-347.9 kb 

ENSGALG00000051385  

 
5 51.888-51.890 Mb 

ENSGALG00000041565  

 
5 51.928-51.942 Mb 

ENSGALG00000011639  

 
5 51.945-51.975 Mb 

ENSGALG00000011646  PLD4 5 51.985-51.996 Mb 

ENSGALG00000047641  

 
5 52.04-52.042 Mb 

http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000009435
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000006297
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000051104
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000040741
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000041323
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000048930
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000030599
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000050608
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000039088
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000035236
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000044536
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000050708
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000047992
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000048833
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000049509
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000034369
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000051385
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000041565
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000011639
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000011646
http://apr2022.archive.ensembl.org/gallus_gallus/Gene/Summary?db=core;g=ENSGALG00000047641
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4.6. Gene annotation and functional enrichment analysis 

 

All mapped genes for Ab response to ND showed the presence of enriched gene clusters related to 

regulation of transcription, endoplasmic reticulum to Golgi vesicle-mediated transport, DNA-

templated, cytokines and interferons signaling, a variety of cellular processes, neural mechanisms, 

inflammatory response, metal-ions binding and transport, and ATP binding. The GO analysis 

showed no statistically significant results except panther GO-slim molecular function, which are 

olfactory receptor activity (GO:0004984) and odorant binding (GO:0005549), fold enrichment 

(FC >45) and FDR (P<0.001).  

Using STRING analysis, the network proteins that are encoded by the 11 candidate genes revealed 

more interactions among themselves compared to those expected for a random set of proteins of 

the same size drawn from the genome (PPI enrichment p-value P < 0.305; expected number of 

edges = 4; number of nodes = 10; avg. local clustering coefficient = 0.4; average node degree =1; 

and observed number of edges = 5) (Figure 4). This indicates that the current group of proteins 

appear to be a random assortment of proteins that are not very well related; these proteins have not 

received a lot of research attention and STRING may not yet be aware of their relationships 

(Szklarczyk et al., 2019).  

 

Figure 4. Functionally significantly enriched genes protein-protein interactions following 

STRING analysis. 
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CHAPTER 5. DISCUSSION  
 

Genome-wide association study is a research method utilized to identify genomic variants 

statistically associated to recorded phenotypes including economically important traits (disease) 

in domestic animals such as disease resistance or tolerance (Raeesi et al., 2017). Here, we 

investigated the genome of Sasso T451A chickens to identify genetic variation linked to the 

immune response of NDV. According to Fischer et al. (2013), the host immune response to viruses 

is a complex process with a previous study suggesting a polygenic control for the immune response 

to ND (Saelao et al., 2019).  

 

Overall, the heritability estimates were lower (0.09 - 0.13) than previous reports on the same 

phenotypic trait (NDV-specific Ab responses) (Lwelamira et al., 2009; Luo et al., 2013).  

Nevertheless, much of this kind of studies estimated heritability under no environmental 

disturbances. Heritability can vary over time because the variation as a result of environmental 

factors, where genes engaged in specific traits may manifest in a different way (Charmantier and 

Garant., 2005). To our knowledge, heritability estimates for the Ab response to NDV in Sasso 

T451A chicken are being reported for the first time in this work. 

 

The PCA results (Figure 2) could partly be attributed to the fact that the two batches were of the 

same breed (Rothschild et al., 2018). Furthermore, PCA results are compatible with a three-way 

crossing origin for the studied population. Compared to 2-way crossbred chickens, three-way 

crossbred chickens exhibit better egg characteristics and have lower mortality (Khawaja et al., 

2013). The improvement of traits like annual egg production, feed conversion, age at sexual 

maturity, and intake is also here better addressed. 

 

It is essential to highlight that the region identified in the current study to be significantly (P < 

3.92E-7) associated with the antibody response to NDV differs from those identified in previous 

analyses. In broiler chickens, the QTLs for the Ab response to ND were found on chromosomes 2 

and 18 (Yonash et al., 2001); whereas Biscarini et al. (2010) found a total of 13 QTLs on 

chromosomes 3, 4, 5, 9, 13, 16, 22, and Z. In addition, Wang et al.  (2015) identified 6 QTLs on 

chromosomes 2, 4, and Z. The major histocompatibility complex (MHC) which is linked to 



 

25 
 

chicken resistance (Zhang et al., 2015b) was found on chromosome 16. These different findings 

could have taken place for a number of reasons, including genetic composition of the experimental 

populations, the number of SNPs or marker density, the type of the targeted Ab reaction, time post-

vaccination and the dose of NDV applied, choice of statistical models and limited power of most 

QTL mapping studies (Saelao et al., 2019). The significant thresholds are different from the 

traditional limits commonly used to detect candidate regions for functional associations between 

Ab response to ND and SNPs. In the current investigation used the Bonferroni correction method. 

 

Other prior studies used layer and broiler chickens (Yonash et al., 2001; Biscarini et al., 2010), 

but the current study utilised Sasso T451A (dual-purpose) chicken. The majority of earlier 

investigations used microsatellite markers, while SNP-based GWAS was employed in the current 

investigation. The focus of this study was on the secondary instead of the primary Ab response to 

ND virus. In the secondary and primary Ab response, the dominant class of Ab produced is 

immunoglobulin Y (IgY) and IgM, respectively; thus, chicken's ranking on Ab response to the first 

immunization may be different from that to the second, resulting in the identification of distinct 

QTLs (Biscarini et al., 2010). This study was found suggestive QTL for Ab response to NDV at 

day 112 on chromosomes 13, 30, and 33 and 1 and 5 at day 112 for batch four and five, 

respectively.  Nevertheless, besides the previously reported chromosomes 1, 5, and 13 (Luo et al., 

2013, Wang et al., 2015, Saelao et al., 2019), there were no previous investigation on the QTLs 

on chromosomes 30 and 33 that controlling ND antibody response. 

 

MicroRNA, antibodies, and additional molecules produced by disease-resistant genes help the host 

in fending off pathogen-caused harm (Dar et al., 2018). By the advent of many molecular 

technologies and assays in chickens, many anti-disease genes (e.g., SEMA5A, IFN, MH, MX, 

NRAMP1, ZYXIN, ANTI-ALV, CD1CB, TGFBR2TVB, CD1B, MHC, CHMP2B, ROBO1and 

ROBO2) have so far been discovered (Deist et al., 2017; Lillie et al., 2017).  

 

This study revealed 11 putative genes (PPP1R3A, TRPC7, DNM2, CDC37, TYK2, TRAPPC5, 

BCAP31, WDR13, FOXP2, CEP170B and PLD4) detected SNPs suggestively associated with Ab 

response to ND in Sasso T451A at day 112. The gene ontology (GO) annotation shows that each 

of these genes is responsible for the regulation of binding, transport, cytokine activity, immune 
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responses (innate and adaptive immunity), transcription, and development. Among these genes, 

six were found close to the significant SNPs (PPP1R3A, WDR13, FOXP2, BCAP31, TYK2, 

DNM2). These genes should be investigated further to ascertain their associations with Ab 

response to ND in Sasso T451A chicken in Ethiopia. Until now, none of these potential Ab 

response to ND genes have been directly linked to the immunological response in chickens 

(Adhikari and Davie, 2018; Elbeltagy et al., 2019).  
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CHAPTER 6. CONCLUSION AND RECOMMENDATIONS 
 

6.1.  Conclusion 

 

To our knowledge, this is the first study aimed to identify genes and genomic regions associated 

with Ab response to NDV in Sasso T451A chickens raised in Ethiopia. The outcomes stipulate 

valuable understandings on the SNPs and candidate genes that are elaborate in the genetical 

architecture of Ab response to NDV in two age groups and batches chickens. The SNPs (regions) 

that are associated with Ab response to NDV can be used as information in MAS. In this study, 

five genomic regions that are significantly associated with Ab response to NDV were identified 

(rs733628728, rs316795557 (FOXP2), rs313761644 (CEP170B) and two are novel genes. The 

genetic basis of ND will facilitate the discovery of strategies to assist in genetic selection of 

chickens for NDV resistance and better vaccine response. The enhancement of genetic resistance 

to ND will furthermore help in protecting the Ethiopia poultry industry and improve global food 

security. Moreover, the genes and variants uncovered in this study demand more investigation in 

order to comprehend the underlying molecular pathways for actual use. 

6.2.  Recommendations 

 

Further studies to unravel what constitutes an Ab response to NDV are needed to help in facilitating 

future breeding programmes. Producing chickens that are able to perform optimally in difficult 

and challenging condition will eventually increase the supply of good quality protein for human 

consumption. This information could contribute to breeding decisions for chicken production in 

NDV endemic areas. 

6.3.  Future Studies 

 

To comprehend the underlying molecular mechanisms of action, it is important to do additional 

research on the variations found in this study. Similarly, further studies are needed to determine 

the functional role of the QTLs in the antibody response to NDV. 
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