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Abstract

In this thesis, we investigate the roughness feature within realised volatility
for different financial markets by using the multifractal detrended fluctuation
approach and microstructure noise index technique, and we confirm that the
Hurst parameter H 6= 1/2. To include this feature in stochastic volatility
modelling, we construct an arbitrage-free financial market model that con-
sists of two assets, the risk-free and the risky assets. The price of a risk-free
asset is described by an exponential function while the one for a risky as-
set is driven by a geometric Brownian motion with its stochastic volatility
described as a function of fractional Cox-Ingersoll-Ross process defined by
Yt = Z2

t , where the process (Zt)t≥0 satisfies a singular stochastic differential
driven by fractional Brownian motion (WH

t )t≥0, H∈(0,1). The stochastic pro-
cess (Zt)t≥0 verifies dZt =

(
f(t, Zt)Z

−1
t dt+ σdWH

t

)
/2, with f(t,z) being a

continuous function on R2
+ that represents the drift of the stochastic process

(Yt)t≥0. We show that the fractional volatility process is strictly positive for
all H ∈ (1

2
,1) and in the case where H < 1/2, we consider a sequence of

increasing drift functions (fn) and we prove that the probability of hitting
zero tends to 0 as n → ∞. We also show that both fractional volatility and
stock price processes are Malliavin differentiable for all H ∈ (0,1) and deduce
an expression of the expected payoff function having different forms. Some
simulations of option prices were performed.

Keywords: Fractional Brownian Motion, Hurst parameter, Malliavin calcu-
lus, Financial Market Model, Stock Price process, Fractional Volatility Pro-
cess, Fractional Cox-Ingersoll-Ross process, Heston model, Option Pricing,
Payoff function.
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Chapter 1

Introduction

The field of quantitative finance has a long and interesting history. It all
started with the thesis of Bachelier (1900) who assumed that the changes in
stock prices could be considered as independent and identically distributed
normal random variables. This implies that the price process has a “lack of
memory” or “Markov property”. The model proposed by Bachelier was in
fact a standard Brownian motion.

Bachelier’s work can therefore be regarded as the first route to modern op-
tion pricing theory and the first application of Brownian motion in finance.
Broadly speaking, Brownian motion describes the chaotic movements of mi-
croscopic particles in a fluid resulting from their collision with atoms and
molecules in the fluid. This phenomenon was observed for the first time by
the biologist Robert Brown in 1827 and was extensively studied by Einstein
in 1905 and Wiener (1923).

As discussed by Jarrow and Protter (2004), the modern option pricing the-
ory was sharped by the development of the theory of stochastic processes.
This was influenced by the work of Itô who, in particular, analysed the in-
finitesimal behavior of a Markovian particle. This analysis gave birth to the
theory of stochastic differential equations (SDE). Specifically, an SDE is an
equation of the form

dXt = η(t,Xt) dt+ σ(t,Xt) dWt,

1



where (Wt)t≥0 represents the standard Brownian motion (or Wiener process),
and the parameters η(t,Xt) and σ(t,Xt) are adapted processes that repre-
sent the drift and volatility of (Xt)t≥0 respectively. In particular, Samuelson
(1964) observed that standard Brownian motion can take negative values,
and consequently it is not suitable to model the dynamics of stock prices. He
proposed replacing the standard Brownian motion by a non-negative vari-
ation of Brownian motion called “geometric Brownian motion”, which is a
stochastic process that satisfies the following differential equation:

dXt = η Xt dt+ σXt dWt, (1.1)

where the parameters η and σ are positive constants that are considered as
the drift and volatility of the infinitesimal return process Rt := logXt. By
combining some previous studies in quantitative finance and with the help of
Itô’s calculus, Black and Scholes (1973) considered a financial market model
that consists of two assets: a risk-free asset whose prices satisfy the differ-
ential equation dAt = rAtdt, where r is a constant interest rate, and risky
asset defined by the geometric Brownian motion (1.1). They proposed a
model commonly known as the “Black-Scholes model” for pricing European
call and/or put options written on a stock.

Since then, the “Black-Scholes model” has become the cornerstone model
for both practitioners and researchers. The model was set up within the
arbitrage-free framework, it was rapidly adapted by almost all financial mar-
kets and has been used for pricing and hedging both vanilla and exotic op-
tions. See e.g. Fouque et al. (2011) for a summary.

The Black-Scholes model comes with strong assumptions, one of them is by
restricting the volatility to be constant. Recall that the volatility is an im-
portant indicator in financial market sectors. It is one of the measures used
by investors to gauge the risk related to fluctuation of a security or market
index within a chosen period.

– 2 –



This was the main motivation of Hull and White (1987) and Heston (1993) to
replace the constant volatility σ by a stochastic process driven by a standard
Brownian motion. For example, Heston (1993) considered a financial market
model defined by 

dAt = rAtdt,

dXt = ηXtdt+
√
YtXtdBt,

dYt = θ(µ− Yt)dt+ ν
√
YtdB̃(t)

(1.2)

where (Yt)t≥0 is a stochastic process that represents the instantaneous vari-
ance of the infinitesimal return dXt/Xt. The process (B̃t)t≥0 is a standard
Brownian motion that represents the randomness of (Yt)t≥0 and the parame-
ter θ > 0 represents the speed of reversion of the stochastic variance process
(Yt)t≥0 towards its long-run mean µ > 0 and the parameter ν > 0 is the
volatility of (Yt)t≥0.

The stochastic volatility process (Yt)t≥0 is commonly known as the “Cox-
Ingersoll-Ross (CIR) process” and was initially introduced by Cox et al.
(1985) to model the dynamics of interest rates. This process is popular due
to several interesting properties which include positiveness provided that the
(Feller) condition 2θµ > ν2 holds, mean reversion in the sense that the pro-
cess is pulled towards its long-run mean µ when it goes higher or lower than
µ. Moreover, the CIR process admits a stationary distribution and it is er-
godic. For more details, see e.g. Göing-Jaeschke et al. (2003), Chou and Lin
(2006) and Guo (2008) with references therein.

Since the standard CIR process is driven by a Brownian motion (B̃t)t≥0,
then it does not display memory. However, it was shown that historical
volatility time-series have a dependency structure. For example, volatility
may display long-range dependency (See e.g. Comte and Renault (1998)
and Chronopoulou and Viens (2010)), or short-range dependency known as
“rough volatility” as recently demonstrated by Gatheral et al. (2018) and
Livieri et al. (2018) with references therein. The dependency can be mea-

– 3 –



sured by using the so-called Hurst parameter H ∈ (0,1) initially introduced
by Hurst (1951). This was a main motivation of replacing the standard Brow-
nian motion in (1.2) by a fractional Brownian motion denoted by (WH

t )t≥0

as a source of randomness.

Roughly speaking, the fractional Brownian motion (fBm for short) is a
stochastic process initially introduced by Kolmogorov (1940) and later by
Mandelbrot and Van Ness (1968) as a centered Gaussian process character-
ized by its covariance defined by

E
[
WH

t W
H
s

]
=

1

2

(
t2H + s2H− | t− s |2H

)
, ∀s,t ≥ 0. (1.3)

The fBm is a generalisation of standard Brownian motion which coincides
with the last when the Hurst parameter H = 1/2. This process displays a
certain range of dependency and presents several important properties which
include self-similarity, stationarity of increments and time inversion.

Replacing the standard Brownian motion by a fBm on the stochastic volatil-
ity process in the market model (1.2) yields the so-called fractional Cox-
Ingersoll-Ross (fCIR) process. A classical definition of fCIR process was pre-
viously introduced by Mishura and Yurchenko-Tytarenko (2018) as a square
of the stochastic process driven by an additive fBm. In other words, under a
probability space (Ω,F ,P), set a stochastic process as

dZt =
1

2

((
µ− θZ2

t

)
Z−1

t dt+ σdWH
t

)
. (1.4)

Then the fCIR process (Yt)t≥0 can be defined by

Yt(ω) = Z2
t (ω)1[0,τ(ω)), ∀t ≥ 0, ω ∈ Ω, (1.5)

where τ is the first time the stochastic process (Zt)t≥0 hits zero. The cor-
responding financial market model initially defined by (1.2) now takes the
following form:

– 4 –





dAt = rAtdt,

dXt = ηXtdt+ σYtXtdBt,

Yt(ω) = Z2
t (ω)1[0,τ(ω))

dZt =
1
2

((
µ− θZ2

t

)
Z−1

t dt+ νdWH
t

)
(1.6)

The parameters of this financial market model can be obtained via calibra-
tion. The model (1.6) with H > 1/2 was previously investigated by Alòs
and Yang (2017), Bezborodov et al. (2019) with µ = 0 and Mishura and
Yurchenko-Tytarenko (2020), and was proved to be free of arbitrage.

The parameters θ and µ being constant, perfect calibration may not be pos-
sible. For example, Benhamou et al. (2010) show that the calibration error is
reduced sensibly when using time-dependent parameters in the standard He-
ston model. This was our main motivation for replacing the drift of volatility
by a continuous function.

In this thesis, we extend the idea of Mishura and Yurchenko-Tytarenko (2018)
and construct the fractional volatility process as a generalisation of fCIR
process defined by Yt(ω) = Z2

t (ω)1[0,τ(ω)) as previously but with the process
(Zt)t≥0 given by

dZt =
1

2
f(t,Zt)Z

−1
t dt+

1

2
σdWH

t , Z0 > 0, (1.7)

where f : [0,∞) × [0,∞) → (−∞,∞), (t, x) 7→ f(t,x), is a continuous
function and the stochastic process (WH

t )t≥0 is a fBm with Hurst parameter
H ∈ (0,1) that represents the randomness of (Zt)t≥0. We shall refer to the
corresponding financial market model as the “generalised fractional Heston-
type (fHt) model”. This model is free of arbitrage and incomplete since it
has more than one source of randomness given by (Bt)t≥0 and (WH

t )t≥0.

– 5 –



As a special case, the time-dependent fractional Heston model can be con-
structed with the stochastic volatility process (Yt)t≥0 defined by (1.5)-(1.7)
where the drift function is f(t,z) = θt(µt−z2). This model can be considered
as a generalisation of the time-dependent Heston model previously discussed
by Benhamou et al. (2010) with its volatility of infinitesimal return process
driven by a standard Brownian motion.

To ensure the existence and uniqueness of the stochastic differential equations
driven by an additive fBm of the form (1.7), Hu et al. (2008) proved that
the drift function g(t,z) := f(t,z)/z must satisfy the following conditions for
H > 1/2:

(c1) g : [0,∞) × (0,∞) → [0,∞) is a nonnegative continuous function
which has a continuous partial derivative ∂g(t, z)/∂z ≤ 0, ∀(t,z) ∈
(0,∞)× (0,∞).

(c2) There exist z1 > 0, a > 1
H
− 1 and a continuous function φ : [0,∞) →

[0,∞) with φ(t) > 0 for all t > 0 such that g(t, z) ≥ φ(t)z−a, ∀t ≥ 0

and 0 < z < z1.

Under the above assumptions, the stochastic differential Equation (1.7) has
a strictly positive solution (Zt)t≥0 that is, almost surely Zt > 0 for all t > 0.
(See Theorem 2.1 and Theorem 3.1 in Hu et al. (2008)). In addition, they
also showed that under the following condition:

(c3) there exists a function h : [0,∞) → [0,∞) which is nonnegative and
locally bounded such that g(t, z) ≤ h(t)(1 + 1/z) for all t ≥ 0 and
z > 0,

then the solution (Zt)t≥0 is such that for any fixed T > 0,

E
(

sup
0≤t≤T

|Zt|p
)
<∞, ∀p > 0.

The first objective of this study is to investigate the existence and positiveness
of the stochastic process (Z)t≥0 satisfying (1.7) for all Hurst parameters
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H ∈ (0, 1) under conditions weaker than (c1) and (c2). We shall consider the
following conditions:

(d1) The function g : [0,∞) × (0,∞) → (−∞,∞) defined by g(t,z) =

f(t,z)/(2z) is continuous and admits a continuous partial derivative
with respect to z on (0,∞). In addition, there exists a number z∗ > 0

such that for every z > z∗, g(t,z) < 0, for all t ≥ 0.

(d2) for any T > 0, there exists zT > 0 such that f(t, z) > 0, for all
0 < t ≤ T and 0 ≤ z ≤ zT .

Condition (d1) is given to ensure that the first time the solution reaches
zero is strictly positive. Intuitively, when the stochastic process (Zt)t≥0 in-
creases beyond the threshold z∗, the drift function becomes negative and as
a consequence (Zt)t≥0 tends to revert back to previous values. This is an
interesting property in finance. Condition (d2) implies that for all S > 0 and
T > 0, there exists zT > 0 such that inf{f(t,z) : S ≤ t ≤ T, 0 ≤ z ≤ zT} > 0.

Firstly, we will show that under conditions (d1) and (d2) given above, the
stochastic differential Equation (1.7) has a unique solution (Zt) which is
continuous and positive up to the time of first visit to zero. We will also
show that the square stochastic process (Yt)t≥0 (which is also defined up to
the first time (Zt) it hits zero) satisfies the stochastic differential equation

dYt = f(t,
√
Yt)dt+ σ

√
Yt ◦ dWH

t , Y0 > 0, H ∈ (0,1).

We shall also prove that in the case where H > 1/2, the solution to Equation
(1.7) is not only positive up to the time of the first visit to zero but it is
strictly positive everywhere. In other words, it never hits zero on the whole
line [0,∞) almost surely. It is remarkable that this result is true under mild
conditions (d1) and (d2).

In the case where H < 1/2, we have obtained that the probability of the
process (Yt)t≥0 hitting zero is small if the drift function f is sufficiently large.
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More precisely, if (fn)n∈N is an increasing sequence of continuous drift func-
tions fn defined on [0,∞)×[0,∞) taking values in R and satisfying conditions
(d1) and (d2) such that limn→∞ fn = ∞ and (Y n

t ) is the solution to Equa-
tion (1.7) corresponding to fn (up to the first time it hits zero), then the
probability of (Y n

t ) hitting zero converges to 0 as n→ ∞. We provide some
illustrating examples using simulations.

Note that Kubilius (2020) recently studied the stochastic differential equa-
tion of the form

dXt = g(Xt)dt+ σXβ
t dW

H
t (1.8)

for 1/2 < H < 1, 1/2 ≤ β < 1 and where the function g is such that there ex-
ists a continuously differentiable function f defined on (0,∞) such that: (1)
g(x) = xβf(x1−β), (2) there exist a > 0 and α ≥ 0 such that f(x) > ax−(1+α)

for sufficiently small x and (3) there exists K ∈ R such that f ′(x) ≤ K.

Under these conditions, it is proven that Equation (1.8) has a unique and
positive solution and derived an important estimator of the H for the solu-
tion. In some sense our model (1.7) extends (1.8). It would be interesting to
carry out an analysis of the H parameter of the solution to Equation (1.7)
as in Kubilius (2020).

Our second objective is to show that both stock price process (Xt)t≥0 defined
in (1.6) and fractional volatility process (Yt)t≥0 given by (1.5) and (1.7) are
Malliavin differentiable for all H ∈ (0,1). To achieve this, we construct an
approximating sequence (Zϵ

t )t≥0,ϵ>0 of (Zt)t≥0 in the light of Alòs and Ewald
(2008) and its corresponding sequence (Xϵ

t )t≥0, ϵ>0 of price process (Xt)t≥0.
We prove that Zϵ

t and Xϵ
t convergence to Zt and Xt respectively in Lp(Ω)

for all p ≥ 1 and H ∈ (0,1). This allowed us to find the expression of the
Malliavin derivatives. As a straight consequence, the expected payoff func-
tion can be derived following Altmayer and Neuenkirch (2015). This result
will open doors to several other applications of Malliavin calculus in finance
previously discussed under standard stochastic volatility models framework
(Alòs and Lorite; 2021).
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This thesis is an open-door for researchers and practitioners in financial mod-
elling who want to use this fractional volatility model for different purposes,
not only because of its roughness at all levels, but also its positiveness, its
differentiability and its ability to fit different financial market conditions.

The results in this thesis are summarized in three manuscript papers that
are under review namely: (1) Generalisation of Fractional Cox-Ingersoll-
Ross Process (also available on arXiv:2008.07798), (2) Malliavin differen-
tiability of fractional Heston-type model and applications to option pricing
(arXiv:2207.10709), and (3) Analysing South African Financial Stock Mar-
kets Volatility.

This thesis is structured as follows. Chapter 2 introduces some important
properties of fractional Brownian motion (fBm). Chapter 3 is devoted to the
stochastic analysis for fBm by using tools in Malliavin calculus. Chapter 4
introduces the Black-Scholes model and one of its major extension commonly
known as the standard Heston model. Chapter 5 discusses the roughness and
multifractality property of volatility time series. Chapter 6 introduces the
fractional Heston model and proposes its general form. The positiveness and
Malliavin differentiability of both stock price and generalised fractional Cox-
Ingersoll-Ross processes are discussed in Chapter 7. As an application to
option pricing, Chapter 8 discusses the expected payoff function for a special
exotic option constructed as a combination of vanilla and standard exotic
options. Some simulations of option prices are also provided.
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Chapter 2

Fractional Brownian Motion

It has been shown that most of financial time series, particularly instanta-
neous volatility, have random behavior and carry a dependency structure.
See e.g., Comte and Renault (1998) or Gatheral et al. (2018) with references
therein. The fractional Brownian motion, shortly written as fBm, is a po-
tential candidate that can be used to model such situations.

Broadly speaking, fBm is a stochastic process that belongs to the class of
centered Gaussian processes. This process is considered to be a generalisation
of standard Brownian motion and was initially introduced by Kolmogorov
(1940) as a realisation of a Wiener spiral in the Hilbert space and further
developed by Mandelbrot and Van Ness (1968). The sample paths of fBm
depend on a parameter H ∈ (0,1) known as “Hurst parameter” or “Hurst
index” that was initially discussed by the hydrologist Hurst (1951).

2.1 Definitions and existence of fBm

2.1.1 Some useful definitions

Let (Ω,F,P) be a probability space where Ω is a sample space, F is a sigma-
algebra of subsets of Ω and P a probability measure on a measurable space
(Ω,F). We recall the following definitions:

Definition 2.1. A random variable is a measurable function X : Ω → IR

with respect to the σ-algebra F and the Borel σ-algebra on IR. A random
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2.1. Definitions and existence of fBm

variable X is said to be a Gaussian random variable if its characteristic func-
tion given by E

[
eitX

]
takes the following form:

E
[
eitX

]
= exp

(
itµ− t2σ2

2

)
, ∀t ∈ IR.

where µ and σ are parameters that represent respectively the mean and
standard deviation of the Gaussian distribution. We write X ∼ N(µ, σ2).

Definition 2.2. A stochastic process denoted by (Xt)t≥0 is a family of ran-
dom variables defined on the probability space (Ω,F,P).

Definition 2.3. A filtration is an increasing family of σ-algebras (Ft)t≥0 that
represents information available at the time t ≥ 0. This means that for every
s, t ≥ 0 with s < t, Fs ⊂ Ft ⊂ F. A quadruple (Ω,F, (Ft)t≥0,P) is called a
filtered probability space.

Definition 2.4. Let (Ω,F, (Ft)t≥0,P) be a filtered probability space. A
stochastic process (Xt)t≥0 is said to be adapted to the filtration (Ft)t≥0 if Xt

is Ft − measurable.

Definition 2.5. Let (Ω,F,P) be a probability space. A standard Brownian
motion, denoted by (Bt)t≥0, is a stochastic process satisfying the following
conditions:

(c1) ∀ω ∈ Ω, B0(ω) = 0 P− a.s. and E[Bt] = 0, ∀t ≥ 0.

(c2) The sample path t 7→ Bt is continuous a.s.

(c3) The process (Bt)t≥0 has independent increments.

(c4) For any 0 ≤ s ≤ t, the random variable Bt−Bs is normally distributed
with mean 0 and variance t− s.

Definition 2.6. Let (Ω,F,P) be a probability space and H ∈ (0,1) a real
constant parameter. A Gaussian process (WH

t )t≥0 is called fractional Brown-
ian motion (fBm) defined on (Ω,F,P) if the following conditions are satisfied.

(c1) ∀ω ∈ Ω, WH
0 (ω) = 0 P− a.s. and E[WH

t ] = 0,
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2.1. Definitions and existence of fBm

(c2) ∀s, t > 0,
E
[
WH

t W
H
s

]
=

1

2

(
t2H + s2H− | t− s |2H

)
. (2.1)

The constant parameterH is well-known as “Hurst parameter”. ForH = 1/2,
the fBm (WH

t )t≥0 coincides with the standard Brownian motion (Bt)t≥0, that
is, (Bt)t≥0 ≡ (W

1
2
t )t≥0.

The definition above means that fractional Brownian motion is a Gaussian
process with mean 0 and variance t2H , that is Wt ∼ N(0,t2H). From this
definition, we may deduce the following intrinsic properties of fBm.

Proposition 2.1. Let (WH
t )t≥0 be a fBm with Hurst parameter H ∈ (0,1)

defined on (Ω,F,P). Then the following properties hold.

(p1) (WH
t )t≥0 has homogeneous increments, i.e., ∀s, t ≥ 0,

WH
t+s −WH

s ∼ WH
t .

(p2) ∀ω ∈ Ω, the sample paths t 7→ WH
t (ω) are continuous P− a.s.

(p3) The increments of (WH
t )t≥0 are not independent for all H 6= 1

2
.

(p4) (WH
t )t≥0 is self-similar process with Hurst parameter H. This means

that for any non-random constant c > 0, WH
ct ∼ cHWH

t .

(p5) The sample paths t 7→ WH
t (ω) are almost surely Hölder continuous of

order strictly less than Hurst parameter H.

2.1.2 Existence of fBm

Several approaches to proving the existence of fBm exist in the literature.
We refer the readers to Mandelbrot and Van Ness (1968), Decreusefond et al.
(1999) and Nourdin (2012). One possible way is through the Kolmogorov the-
orem.
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2.2. Basic representations of fBm

Definition 2.7. Let ψ : IR2
+ → IR be a symmetric function in the sense that

∀s,t ∈ IR, ψ(s,t) = ψ(t,s). Then ψ is said to be of positive type if for any
ti ∈ IR and constants cj, i, j = 1, ..., n ∈ IN,

n∑
i=1

n∑
j=1

cicjψ(ti, tj) ≥ 0.

The existence of a centered Gaussian process can be shown by using an
extension of the Kolmogorov theorem in connection with symmetric functions
known as “Daniell-Kolmogorov theorem” given below.

Theorem 2.2. Let ψ : IR2
+ → IR be a symmetric function of positive type.

Then there exists a centered Gaussian process (Xt)t≥0 defined on a probability
space (Ω,F,P) with covariance function ψ(s,t) = E[XsXt].

Proposition 2.3. The fBm (WH
t )t≥0 with covariance function ψ(s,t) =

E[WH
s W

H
t ] given by (2.1) exists for all Hurst parameters H ∈ (0,1).

The proof of this proposition relies on showing that the covariance function
(2.1) of fBm is symmetric of positive type. Consequently from Theorem 2.2,
fBm exists for all Hurst parameters H ∈ (0,1). For a detailed proof, we refer
the reader to Nourdin (2012, Proposition 1.6).

2.2 Basic representations of fBm

Several representations of fBm can be found in the literature (See e.g. Mar-
inucci and Robinson (1999) with references therein). In terms of stochastic
integral with respect to Brownian motion, the fBm can be represented in at
least three different ways as summarised in the following proposition.

Proposition 2.4. Let H ∈ (0,1) be the Hurst parameter and (Bt)t≥0 be a
standard Brownian motion. Then the stochastic processes (ŴH

t )t≥0, (W̃H
t )t≥0

and (WH
t )t≥0 defined respectively by

ŴH
t =

1

cH

(∫
R

(
(t− u)

H− 1
2

+ − (−u)H− 1
2

+

)
dBu

)
, (2.2)
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W̃H
t =

1

dH

(∫ 0

−∞

1− cos(ut)

|u|H+ 1
2

dBu +

∫ ∞

0

sin(ut)

|u|H+ 1
2

dBu

)
(2.3)

and
WH

t =

∫ t

0

κH(s,t)dBs (2.4)

are fractional Brownian motions with Hurst parameter H ∈ (0,1). In the
representations (2.2) and (2.3), the parameters cH and dH are constants and
are given by

cH =

(
1

2H
+

∫ ∞

0

(
(1 + u)H− 1

2 − uH− 1
2

)2
du

) 1
2

,

and

dH =

(
2

∫ ∞

0

1− cos(u)

u2H+1
du

) 1
2

.

The function κH(s,t) in the representation (2.4) is a square integrable kernel
given by

κH(s,t) =



M1(H)s
1
2
−H

∫ t

s

(u− s)H− 3
2uH− 1

2du, if H >
1

2

M2(H)

((
t

s

) 1
2
−H

(t− s)H− 1
2

−
(
H − 1

2

)
sH− 1

2

∫ t

s

uH− 3
2 (u− s)H− 1

2du

)
, if H <

1

2
.

(2.5)
where M1(H) and M2(H) are constants given by

M1(H) =

(
H(2H − 1)

β(H − 1
2
, 2− 2H)

) 1
2

,

and

M2(H) =

(
2H

(1− 2H)β(H + 1
2
, 1− 2H)

) 1
2

.

with β(·,·) the Beta function defined by β(p, q) =
∫ 1

0
xp−1(1− x)q−1dx,

∀p, q > 0,
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2.3. Covariance function of fBm

A detailed proof of this proposition is given in Nualart (2003). The repre-
sentation (ŴH

t )t≥0 is known as “moving average representation” of fBm and
was introduced by Mandelbrot and Van Ness (1968). The stochastic process
(W̃H

t )t≥0 is called “spectral or harmonisable representation” and the process
(WH

t )t≥0 is called “interval representation” or “Volterra representation” and
was previously discussed by Norros et al. (1999).

Throughout this work, we shall use the Volterra representation of fBm defined
by (2.4). Note that the square integrable kernel κH(s,t) has been investigated
in the literature. One of its representations is given by

κH(s,t) =
(t− s)H− 1

2

Γ(H + 1
2
)

2F1

(
H − 1

2
;
1

2
−H;H +

1

2
; 1− t

s

)
1[0,t](s), (2.6)

for all Hurst parameters H ∈ (0,1), s ∈ [0,t]. Here Γ(·) is a Gamma func-
tion and 2F1(a,b,c; z) is the Gauss hypergeometric function. Particularly, for
Hurst parameter H = 1/2, the kernel is reduced to an indicator function,
that is,

κH(s,t) = 1[0,t](s).

See Hult (2003) for more details.

2.3 Covariance function of fBm

In this subsection, we discuss some important results of the covariance func-
tion of fBm beyond its natural definition given by (2.1). The main references
that were used are Decreusefond et al. (1999) and Neuman and Rosenbaum
(2018) with references therein.

2.3.1 Representation of covariance function

Several representations of the covariance function of fBm exist. One of them
can be deduced from the interval representation (2.4). Before we discuss the
topic, we have to note that the covariance function shares in general the same
properties with the inner product denoted by 〈·,·〉.
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2.4. Fundamental properties of fBm

Consider a vector space H of random variables defined on the probability
space (Ω,F,P) with finite second moment. Clearly, H is a Hilbert space
with the inner product 〈X,Y 〉 = E

[
XY

]
. The covariance function of fBm is

the function ψ : [0,∞)× [0,∞) → R defined by

ψ(s,t) = E[WH
s W

H
t ] = 〈WH

s ,W
H
t 〉 = 1

2

(
s2H + t2H −

∣∣t− s
∣∣2H).

The following proposition gives a representation of the covariance function
in terms of the kernel defined by (2.5).

Proposition 2.5. For any Hurst parameter H ∈ (0,1), the covariance of
fBm can be represented by the following expression:

ψ(s,t) =

∫ s∧t

0

κH(s,r)κH(r,t)dr, (2.7)

where κH is the kernel defined by (2.5).

For the proof, we refer to Norros et al. (1999) or Nualart (2003).

2.3.2 Covariance function of fBm for small Hurst parameters

Some findings show that the volatility is rough, that is, can be modeled with
fBm with small Hurst parameters (See Gatheral et al. (2018) and Livieri
et al. (2018) with references therein). In this case, the covariance function
can be determined through the normalised fBm. For more details, see e.g.
Neuman and Rosenbaum (2018) and references therein.

2.4 Fundamental properties of fBm

2.4.1 Long-range and short-range dependency

Definition 2.8. Let L : (0,∞) −→ R be a Borel function. Then L is said to
be slowly varying at infinity if for any constant c > 0,

lim
t→+∞

L(ct)

L(t)
= 1.
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2.4. Fundamental properties of fBm

Definition 2.9. Let (Xt)t≥0 be a stationary stochastic process (i.e. Xt −
Xs ∼ Xt−s, ∀s, t ≥ 0, s < t) with the autocovariance function ψ(δ) =

cov(Xt,Xt+δ), δ > 0. Then (Xt)t≥0 is said to display long-range dependence
or long memory if there exists α ∈ (0,1

2
) such that

ψ(δ) = L(δ)δ2α−1, as δ → ∞,

where L is a slowly varying function at infinity. In discrete time, let (Xn)n∈N

be a stationary process with autocovariance function ψ(n) = cov(Xn,Xn+1).
Then the stochastic process (Xn)n∈N is said to display long-range dependence
if
∑∞

n=0 | ψ(n) |= ∞ and short-range dependence if
∑∞

n=0 | ψ(n) |<∞.

Proposition 2.6. The fBm (WH
t )t≥0 displays long-range dependency prop-

erty for H ∈ (1
2
, 1) and short-range for H ∈ (0, 1

2
).

Proof. The Taylor expansion of the autocovariance function ψ(n) defined by
(2.1) yields

ψ(n) ∼ H(2H − 1)n2H−2, as n −→ ∞.

It follows that
∑∞

n=0 | ψ(n) |= ∞ when H > 1/2 and
∑∞

n=0 | ψ(n) |<∞ for
H < 1/2.

2.4.2 Semimartingality

Semimartingality of a stochastic process is an important property that need
to be discussed carefully. Roughly speaking, a stochastic process is said to
be semimartingale if it can be decomposed as a local martingale and cadlag
(“Continue-A-Droite et Limit-A-Gauche”) processes. An alternative defini-
tion of semimartingale process in terms of quadratic variations can also be
used. Below we refer to Rogers (1997) to show that fBm is not semimartin-
gale except for Hurst parameter H = 1/2.

Definition 2.10. Let (Xt)t∈[0,T ] be a stochastic process with sample paths
defined on the interval [0,T ] and p > 0. Consider a partition Π = {t0, · · · , tm}
of [0,T ] with t0 = 0 and tm = T , and the corresponding sum

∑m
i=0

∣∣Xti −Xti−1

∣∣p.
Then the p−variation of (Xt)t≥0 denoted by 〈X〉p is the supremum of these
sums for all possible partitions.

– 17 –



2.4. Fundamental properties of fBm

If 〈X〉p is finite almost surely, then the sample paths of (Xt)t∈[0,T ] are said to
have bounded p−variations. In particular, if p = 2, then p−variation is said
to be quadratic, denoted by 〈X〉.

Definition 2.11. The stochastic process (Xt)t∈[0,T ] is said to be a semi-
martingale process if 〈X〉 < ∞ and 〈X〉 6= 0. When 〈X〉 = 0, the sample
paths of (Xt)t≥0 must have bounded variations.

Proposition 2.7. Let (WH
t )t∈[0,T ] be a fBm with H ∈ (0,1). Fix m = 2n

and ti =
iT
2n

for all i = 1, 2, ..., 2n. For any p > 0, the limit below holds with
probability one.

lim
n→∞

2n∑
i=1

∣∣∣WH
iT
2n

−WH
(i−1)T

2n

∣∣∣p =

0 if pH > 1

∞ if pH < 1

T if pH = 1.

See Rogers (1997).

Proposition 2.8. Let (WH
t )t≥0 be a fBm with Hurst parameter H ∈ (0,1).

Then (WH
t )t≥0 is not semimartingale for all H 6= 1/2.

Proof. This is a straightforward application of Proposition 2.7 by setting
p = 2 and by using Definition 2.11. For H = 1/2, that is the case of stan-
dard Brownian motion, the quadratic variation is finite and the stochastic
process is semimartingale. For H < 1/2, the quadratic variation is infinite
and cannot be a semimartingale. Finally, for H > 1/2, the quadratic varia-
tion is null but

sup
m≥0

m∑
i=1

∣∣Xti −Xti−1

∣∣
is infinite. To prove that, let p ∈ (1, 1

H
) and by Proposition 2.7,

lim
n→∞

2n∑
i=1

T pH (2n)1−pH = ∞.

On the other hand,

2n∑
i=1

∣∣∣X iT
2n

−X (i−1)T
2n

∣∣∣p ≤ sup
1≤i≤2n

∣∣∣X iT
2n

−X (i−1)T
2n

∣∣∣p−1

×
2n∑
i=1

∣∣∣X iT
2n

−X (i−1)T
2n

∣∣∣ .
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The sample paths of fBm being continuous almost surely (Proposition 1.1,
p2), then it follows that

sup
1≤i≤2n

∣∣∣X iT
2n

−X (i−1)T
2n

∣∣∣p−1

tends towards zero as n→ ∞. We deduce that

lim
n→∞

2n∑
i=1

∣∣∣X iT
2n

−X (i−1)T
2n

∣∣∣ = ∞.

It follows that fBm can only be semimartingale when H = 1/2.

This proposition shows clearly that the stochastic analysis of semimartin-
gales is not applicable to fBm. However, Cheridito et al. (2001) showed
that a linear combination of standard Brownian motion and fBm known as
“Mixed fBm”, yield semimartingality property for only H ∈ (3/4, 1). This
finding is very surprising. However, the main criticism brought on mixed
fBm is that it possibly cannot be used in financial modeling as a remedy of
Brownian motion shortfalls. This is simply because empirical observations
for asset prices or historical volatilities show that the probability that the
Hurst parameter H lies between 3/4 and 1 tends towards zero. See Cajueiro
and Tabak (2005), Cajueiro and Tabak (2008) and Livieri et al. (2018) as
practical examples among many other results.

2.4.3 Markov Property

Definition 2.12. Let (Ω,F, (Ft)t≥0,P) be a filtered probability space. Let
(Xt)t≥0 be a stochastic process adapted to the filtration (Ft). Then (Xt)t≥0

is said to be a Markov process if for all Borel set B ⊂ R and for s ≤ t,

P [Xt ∈ B | Fs] = P [Xt ∈ B | Xs] , s ≥ 0.

As shown in Kallenberg (1998, Proposition 11.7), if (Xt)t≥0 is a centered
Gaussian process with covariance function ψ(s,t), then the stochastic pro-
cess (Xt)t≥0 is Markovian if and only if
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ψ(s,t) =
ψ(s,u)ψ(t,t)

ψ(t,u)
, s,t,u ≥ 0, u < s. (2.8)

This may be used to prove the non-Markov property of fBm given in the
following proposition.

Proposition 2.9. The fBm (WH
t )t≥0 with H ∈ (0,1) is not a Markov process

for all H 6= 1/2.

2.4.4 Hölder Continuity

Definition 2.13. Let (Xt)t≥0 and (X̃t)t≥0 be two stochastic processes de-
fined on the same probability space (Ω,F,P). The (Xt)t≥0 is said to be a
modification of (X̃t)t≥0 if P(Xt = X̃t) = 1, ∀t ≥ 0.

Definition 2.14. (Hölder Continuity). Let (Xt)t≥0 be a stochastic process
and α ∈ (0,1] be a constant. A sample path t 7→ Xt(ω) is said to be Hölder
continuous of order α if there exists a positive random constant c = c(ω)

such that for all s, t ≥ 0,∣∣Xt −Xs

∣∣ ≤ c
∣∣t− s

∣∣α; a.s.

Theorem 2.10. (Kolmogorov’s Continuity Criterion). Let (Xt)t∈[0,T ], T > 0

be a real-valued stochastic process. If there exist positive constants p, c and β
such that

E
[∣∣Xt −Xs

∣∣p] ≤ c|t− s|1+β, ∀s ≥ 0, t ≤ T,

then the stochastic process (Xt)t∈[0,T ] admits a modification that is α−Hölder
continuous almost surely for any α ∈ (0,β/p).

Hence, the following proposition follows from Theorem 2.10 above.

Proposition 2.11. The sample paths of fBm are Hölder continuous with
order strictly less than H. That is, in the probability space (Ω,F,P), ∃Ω′ ⊂
Ω, P(Ω′) = 1, such that ∀ω ∈ Ω′, ∀0 ≤ s ≤ t and ∀α > 0, ∃c = c(ω, α) :∣∣WH

t (ω)−WH
s (ω)

∣∣ ≤ c
∣∣t− s

∣∣H−α
. (2.9)

The proof of this proposition follows from the Kolmogorov’s Continuity Cri-
terion 2.10. For more details, see Mishura (2008).
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2.5 Supremum of fBm

The exact distribution of the supremum of fBm (Wt)t∈[0,T ] on [0,T ] is still
an open problem. Here, we give some related results discussed by Molchan
(1999) and Aurzada (2011).

Theorem 2.12. Let (WH
t )t≥0 be a fBm with H ∈ (0,1). Then the following

expressions hold:

(a) ∀r ≥ 1, E
[(

sup
s∈[0,t]

WH
s

)r]
<∞. (2.10)

(b) ∀x > 0, lim
x→0+

1

log x
P
(

sup
s∈[0,1]

WH
s ≤ x

)
= −1 +

1

H
. (2.11)

For (a), see Mishura (2008). The Assertion (b) is rooted in the following
results discussed by Aurzada (2011) and Nourdin (2012):

E

[(∫ t

0

exp(WH
s )ds

)−1
]
∼ HtH−1E

[
sups∈[0,1]W

H
s

]
as t→ ∞

lim infx→0+

[
1

log x
logP

(
sups∈[0,1]W

H
s ≤ x

)]
≥ −1 +

1

H

lim supx→0+

[
1

log x
logP

(
sups∈[0,1]W

H
s ≤ x

)]
≤ −1 +

1

H
.

limx→∞
1
x2 logP

(
sups∈[0,1]W

H
s ≥ x

)
= −1

2
.
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Chapter 3

Tools in Malliavin Calculus for finance

Malliavin calculus is a field of stochastic analysis that deals with derivatives
and integration with respect to white noise. It has been widely used in
quantitative finance since it fits different diffusion processes, especially those
driven by fBm. In this chapter, we present some important tools in Malliavin
calculus with applications to stochastic processes used in finance. The main
references of this chapter are Decreusefond et al. (1999), Norros et al. (1999),
Nualart (2003), Nualart (2006) and Biagini et al. (2008). The following
section introduces some preliminaries on Malliavian calculus.

3.1 Preliminaries

3.1.1 Malliavin Derivative

Let H = L2([0,T ]). Then H is a real separable Hilbert space. In addition,
let (Bt)t∈[0,T ] be a Brownian motion and define B(ϕ) =

∫ T

0
ϕ(t)dBs, ϕ ∈ H.

Then from the theory of stochastic calculus,

E
[
B(ϕ1)B(ϕ2)

]
=

∫ T

0

ϕ1(t)ϕ2(t)dt, ∀ϕ1, ϕ1 ∈ H.

Obviously, the expected value above is an inner product (usually denoted by
〈·,·〉H). A natural exercise is to find the derivative, let’s say D, such that
DB(ϕ) = ϕ. This is what the Malliavin derivative can do for any White
noise. Recall the following definitions:
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3.1. Preliminaries

Definition 3.1. Let H be a real separable Hilbert space induced with the
inner product 〈·,·〉H. A stochastic process (Xϕ)ϕ∈H defined on a complete
probability space (Ω,F,P) is called isonormal Gaussian process if the follow-
ing condition holds

E
[
X(ϕ1)X(ϕ2)

]
= 〈ϕ1, ϕ2〉H, ∀ϕ1, ϕ2 ∈ H. (3.1)

The fBm (WH
t )t≥0 (see Definition 2.6) with covariance function defined by

(2.1) or (2.7) which are the inner products in the Hilbert space H is a special
example of isonormal Gaussian process. Let ξ be the set of real-valued step
functions on the interval [0,T ] and define the Hilbert space H = (ξ, 〈·,·〉H)
(that is the closer of ξ). Then

ψ(s,t) =
〈
1[0,s],1[0,t]

〉
H
, s, t ≥ 0, (3.2)

where 1[0,·] is an indicator function.

Definition 3.2. Let C∞(Rn) be the set of infinitely differentiable functions.
A random variable G taking the form

G = g(X(ϕ1), · · · , X(ϕn)), ϕ1, · · · , ϕn ∈ H, g ∈ C∞(Rn),

is said to be “smooth”. The set of all smooth random variables shall be
denoted by S.

Definition 3.3. Let G = g(X(ϕ1), · · · , X(ϕn)) ∈ S. The Malliavin (or
stochastic) derivative D of G with respect to xi = X(ϕi) is defined by

DxiG =
n∑

i=1

∂g

∂xi

(
X(ϕ1), · · · , X(ϕn)

)
ϕi. (3.3)

The superscript xi is often omitted on the Malliavin derivative when the
smooth random variable G depends only on one random variable.

Example 3.1.

1. Let B = (Bt)t≥0 be a standard Brownian motion, with Bt = B(1[0,t]).
Then DsBt = 1[0,t](s).

2. Let (Xt)[0,T ] be a geometric Brownian motion that verifies the following
differential equation:
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dXt = ηXtdt+ σXtdBt,

where η and σ are positive constants. Then DsXt = σXt1[0,t](s). Note
that in this example, the volatility σ is a constant. If the volatility
σ = σ(Yt) is stochastic depending on the stochastic process (Yt)[0,T ],
some approximations will be needed although the Malliavin derivative
is similar. This will be further discussed in Chapter 6.

Example 3.2. Let (WH
t )t≥0 be a fBm taking the Volterra representation

(2.4), that is WH
t =

∫ t

0
κH(s,t)dBs with (Bt)t≥0 the standard Brownian mo-

tion. Then the Malliavin derivative with respect to Bt of WH
t at time s ≥ 0,

denoted by DB
s W

H
t is given by

DB
s W

H
t = κH(s,t)1[0,t](s),

and for any standard Brownian motion (B̃t) that is independent to (Bt)t≥0,
the Malliavin derivative with respect to B̃t of WH

t is

DB̃
s W

H
t = 0.

Definition 3.4. Let ϕ ∈ H and define the inner product 〈DG, ϕ〉H by

〈DG, ϕ〉H = lim
ϵ→0

[
g
(
Xϕ1 + ϵ〈ϕ1,ϕ〉H, · · · , X(ϕn) + ϵ〈ϕn,ϕ〉H

)
− g(Xϕ1 , · · · , X(ϕn))

]
ϵ

.

(3.4)
Then 〈DG, ϕ〉H is called directional Malliavin derivative of the random vari-
able G at ϵ = 0.

From the above definition, we may introduce the integration-by-part formula
discussed in detail by Nualart (2006).

Proposition 3.1. Let G = g(X(ϕ1), · · · , X(ϕn)) ∈ S, ϕi ∈ H. Then

E
[
〈DG, ϕ〉H

]
= E

[
GX(ϕ)

]
, ϕ ∈ H. (3.5)
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Moreover, let G1, G2 ∈ S. Then

E
[
〈DG1G2, ϕ〉H

]
= E

[
G1G2X(ϕ)−G1〈DG2, ϕ〉H

]
. (3.6)

Remark. The relation (3.6) represents the Malliavin derivative of a product
of two smooth random variables.

Definition 3.5. Let f : Ω → H be a strongly measurable function (i.e.,
f can be represented as the pointwise limit of simple functions of the form∑

k xk1Tk
). Then f is called p-integrable if for any p ≥ 1,∫

Ω

||f ||pdP <∞.

The set of all p-integrable strongly measurable functions shall be denoted by
Lp(Ω;H) and the set of all p-integrable measurable functions by Lp(Ω). For
p = 2, the space L2(Ω;H) is a Hilbert space induced by the inner product
〈f1, f2〉 =

∫
Ω
〈f1, f2〉HdP.

Proposition 3.2. The Maliavian derivative operator D is closable from
Lp(Ω) to Lp(Ω;H).

See Nualart (2006).

Note that the domain of Malliavian derivative operator D in the space Lp(Ω)

denoted by D1,p is the closure of the space of smooth random variables S

equipped with the norm

∥∥G∥∥
1,p

=
(
E[|G|]p + E

∥∥∥DG∥∥∥p
H

) 1
p

<∞.

More generally, denote Dk, k > 0, the kth iteration of the Malliavian deriva-
tive and Dk,p its domain. Then Dk,p is the closure of S equipped with the
norm: ∥∥G∥∥

k,p
=

(
E[|G|]p +

k∑
i=1

E

∥∥∥DiG
∥∥∥p
H⊗i

) 1
p

<∞, (3.7)

where H⊗i is the ith tensor power of the separable Hilbert space H. Fix
p = 2, k ≥ 1 and let G1,G2 ∈ S. Then the space D1,2 is an Hilbert space
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equipped with the inner product

〈G1, G2〉k,2 = E
[
G1G2

]
+

k∑
i=1

E
[
〈DiG1,D

iG2〉H⊗i

]
.

The following proposition establishes the chain rule formula for Malliavin
derivative that was previously discussed by Nualart (2006, Proposition 1.2.3).

Proposition 3.3. Let G = (G1, · · · ,Gn) to be a vector of smooth random
variables Gi ∈ D1,p, i = 1, · · · ,n for a fixed p ≥ 1. Define F : Rn → R be
a continuously differentiable function with bounded partial derivatives. Then
F (G) ∈ D1,p and

DF (G) =
n∑

i=1

∂F (G)

∂xi
DGi.

This proposition can be extended to the case where G verifies the Lipschitz
condition as stated in the following lemma:

Lemma 3.4. Let G be a random variable whose law is absolutely continuous
with respect to the Lebesgue measure R and let F : R → R be a function
that verifies the Lipschitz condition, that is, for every x,y ∈ R, there exists
a constant K such that

∣∣F (x)− F (y)
∣∣ ≤ K

∣∣x− y
∣∣.

Then F (G) is Malliavin differentiable and

DF (G) = F ′(G)DG.

This is a straight consequence of Nualart (2006, Proposition 1.2.4).

Remark. The above lemma is also applicable to G = (G1, · · · ,Gn) with
each Gi ∈ D1,p, i = 1, · · · ,n.
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3.1.2 Divergence operator

Loosely speaking, the divergence operator is adjoint of Malliavin operator D
with its domain that consists of square integrable random processes defined
in the space H. The following definition is more formal.

Definition 3.6. Let D be the Malliavin derivative operator and consider the
linear mapping δ : L2(Ω,H) → L2(Ω) such that for any U ∈ L2(Ω,H), there
exists a square integrable function δ(U) that verifies the following equality

E
[
〈DG,U〉H

]
= E

[
Gδ(U)

]
,

for all G ∈ D1,2. Then δ is called “Skorokhod” or “divergence operator”.

Remarks

(a) The domain of the operator δ is given by Dom δ = {U ∈ L2(Ω,H) :∣∣E[〈DG,U〉H]∣∣ ≤ c||G||L2(Ω)}, where c = c(U) is a random constant.

(b) The divergence operator can be interpreted as a stochastic integral with
respect to a Gaussian process known as a divergence (or Skorokhod)
integral.

(c) By taking G as a constant, then E[δ(U)] = 0.

(d) If G ∈ D1,2, U ∈ Dom δ and GU ∈ L2(Ω,H), then

δ(GU) = Gδ(U)− 〈DG,U〉. (3.8)

(e) Fix n > 0 and let Gi = g(X(ϕi)) ∈ S, ϕi ∈ H, i = 1, · · · , n. Assume
that

U =
n∑

i=1

Giϕi.

From (3.6), we may deduce that

δ(U) =
n∑

i=1

GiX(ϕi)−
n∑

i=1

〈DGi, ϕi〉H. (3.9)
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Remarks. Assume that the Hilbert space H takes the form H = L2(B,B, µ∗)

where (B,B, µ∗) is a measure space with µ∗ that represents a non-atomic
measure on the measurable space (B,B). Then Dom δ ⊂ L2(B × Ω) and
the Skorohod integral δ(U) with respect to the Gaussian process (X(ϕ))ϕ∈L2

takes the following form

δ(U) =

∫
B

UdX(ϕ). (3.10)

Under the above settings, we may deduce the following lemma.

Lemma 3.5. Let (Ut)t∈[0,T ] ∈ D1,2(L2([0,T ])) and assume that the stochastic
process (DtUs)s,t∈[0,T ] is integrable. Then

Dt(δ(U)) = Ut +

∫ T

0

DtUsdXs. (3.11)

3.2 Malliavian Calculus for fBm with H > 1/2

3.2.1 The divergence operator for fBm with H > 1/2

Recall from our first chapter that the Volterra representation of fBm is given
by (2.4), that is, WH

t =
∫ t

0
κH(s,t)dBs, where (Bt)t≥0 is a standard Brownian

motion, and where κH(s,t) is a square integrable kernel given by

κH(s,t) = κ1(H)s
1
2
−H

∫ t

s

(u− t)H− 3
2uH− 1

2du. (3.12)

where κ1(H) is a constant defined by

κ1(H) =

(
H(2H − 1)

β(H − 1
2
, 2− 2H)

) 1
2

.

Now from (3.12), we can deduce that

∂κH
∂t

(s,t) = κ1(H)
(s
t

) 1
2
−H

(t− s)H− 3
2 . (3.13)
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As previously, let ξ be the set of real-valued step functions on the interval
[0,T ]. We define a linear operator κ∗ : ξ → L2([0,T ]) such that

(
κ∗Hϕ

)
(s) =

∫ T

s

ϕ
∂κH
∂t

(s,t)dt. (3.14)

It was shown in Norros et al. (1999) that if ϕ = 1[0,T ], thenBt ≡ WH
t

(
(κ∗)−11[0,T ]

)
is indeed a standard Brownian motion. Moreover, the image of κ∗H coincides
with the space L2[0,T ], that is

H = (κ∗H)
−1L2[0,T ]. (3.15)

Consequently, the domain of Malliavin derivative with respect to fBm (de-
noted by D1,2

H ) is then given by

D1,2
H = (κ∗H)

−1
(
D1,2(L2(0,T ))

)
. (3.16)

Proposition 3.6. Let DWH and DB be respectively the Malliavin derivatives
with respect to fBm (WH

t )t≥0 and the standard Brownian motion (Bt)t≥0.
Then for any G = g(WH

t ) ∈ D1,2
H ,

κ∗H
(
DWH

G
)
= DBG. (3.17)

Proof. We closely follow Alos et al. (2001). For any G = g(WH
t ) ∈ D1,2

H , we
have

E
[
〈U,DWH

G〉H
]
= E

[
〈U,DWH

g(WH
t )〉H

]
= E

[
〈κ∗HU, g′(WH

t )κ∗H1[0,t]〉L2(0,T )

]
= E

[
〈κ∗HU, g′(WH

t )κH(t,r)1[0,t](r)〉L2(0,T )

]
= E

[
〈κ∗HU,DBg(WH

t )〉L2(0,T )

]
.

As
E
[
〈U,DWH

G〉H
]
= E

[
〈κ∗HU, κ∗HDWH

G〉L2(0,T )

]
,

then
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E
[
〈κ∗HU, κ∗HDWH

G〉L2(0,T )

]
= E

[
〈κ∗HU,DBg(WH

t )〉L2(0,T )

]
,

which concludes the proof. �

Remarks.
As a straight consequence of Proposition 3.6, let δH(U) be the divergence
integral with respect to fBm (WH

t )t≥0 of U ∈ L2(Ω,H) and denote δ1/2 the
divergence operator for Brownian motion. Then the following hold:

(1) δH(U) = δ1/2(κ
∗
HU) =

∫ T

0

κ∗HUsδ1/2dBs.

(2) Dom δH = (κ∗H)
−1 Dom δ1/2,

(3) The divergence integral can be represented in terms of pathwise integral
with respect to fBm (WH

t )t≥0 as follows

δ(UH1[0,T ]) =

∫ t

0

UsdW
H
s . (3.18)

3.2.2 Connection to Stratonovich integral

There exists a connection between the divergence Stratonovich integrals with
respect to fBm. The Stratonovich integral belongs to the class of pathwise
integrals defined as follows.

Definition 3.7. Let (Ut)t∈[0,T ] be a stochastic process and (WH
t )t∈[0,T ] a fBm.

The pathwise Stratonovich integral with respect to fBm denoted by∫ T

0
Us ◦ dWH

s is defined as a pathwise limit (when it exists) given by∫ T

0

Us ◦ dWH
s = lim

n→∞

n∑
i=1

Uti+1
+ Uti

2

(
WH

ti
−WH

ti−1

)
, (3.19)

where 0 = t0 < t1 < . . . < tn−1 < tn = T is a partition of the interval [0, T ]
such that

sup
0≤i≤n

|ti − ti−1| → 0 as n→ ∞.
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Proposition 3.7. Fix T > 0. Let (Ut)t∈[0,T ] ∈ D1,2 and (WH
t )t∈[0,T ] be a fBm

with Hurst parameter H > 1/2. Then the Stratonovich integral
∫ T

0
Us ◦ dWH

s

can be represented by∫ T

0

Us ◦ dWH
s = δ(U) +H(2H − 1)

∫ T

0

∫ T

0

DUt|t− s|2H−2dsdt, (3.20)

provided that the double integral is well defined, that is,∫ T

0

∫ T

0

|DUt||t− s|2H−2dsdt <∞, (3.21)

or equivalently, for p > 1
2H−1

, the following condition must hold∫ T

0

(∫ T

0

|DUt|pdt
) 1

p

<∞. (3.22)

See e.g. Nualart (2006).

Remark. By using (3.18), the representation (3.20) can be written as∫ T

0

Us◦dWH
s =

∫ t

0

UsdW
H
s +H(2H−1)

∫ T

0

∫ T

0

DUt|t−s|2H−2dsdt. (3.23)

3.2.3 Itô Formula with respect to fBm

Proposition 3.8. Consider (Xt)t∈[0,T ] be a stochastic process with continuous
sample paths defined by

Xt =

∫ t

0

UsdW
H
s ,

where (U)t∈[0,T ] ∈ D1,2. Let f ∈ C2(R) . Then

f(Xt) =f(0) +

∫ t

0

f ′(Xs)UsdW
H
s

+H(2H − 1)

∫ t

0

f ′′(Xs)Us

(∫ T

0

∣∣s− r
∣∣2H−2

(∫ s

0

DrUrdW
H
r

)
dr

)
ds

+H(2H − 1)

∫ t

0

f ′′(Xs)Us

(∫ s

0

Ur

(
s− r

)2H−2
dr

)
ds.

(3.24)
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Remark. Since limH→ 1
2

2H−1
s2H−1 (s − r)2H−21[0,s] = 1, then (3.20) coincides

with the classical Itô formula when H → 1/2 as given in Fouque et al. (2011,
Section 1.1.4).

3.3 Malliavian calculus for fBm with H < 1/2

3.3.1 Divergence operator for fBm with H < 1/2

Definition 3.8. Let f : R+ → R be a locally integrable function. The
Riemann−Liouville fractional integral of order α ∈ (0,1) is defined as

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− r)α−1f(r)dr,

where Γ( · ) is the Gamma function. The corresponding fractional derivatives
of order α ∈ (0,1) are given by

Dα
0+f =

d

dt
I1−α
0+ f,

provided that the derivatives above exist.

Proposition 3.9. Consider an interval (a,b) ⊂ [0,T ] and let (Ut)t∈(a,b] be a
stochastic process defined on the space H by Ut = WH

t 1(a,b]. Then for any
H ∈ (1

4
, 1
2
),

P
[
U ∈ H

]
= 1 (3.25)

and for any H ∈ (0, 1
4
],

P
[
U ∈ H

]
= 0. (3.26)

Proof. We follow the lines of Cheridito and Nualart (2005). To prove (3.25),
we first recall from Aurzada (2011) that for any H ∈ (1

4
, 1
2
), there exists a

random constant c = c(ω), ω ∈ Ω1 ⊂ Ω, such that

sup
t∈(a,b]

∣∣WH
t (ω)

∣∣ ≤ c
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and
sup

s,t∈(a,b]

∣∣WH
t (ω)−WH

s (ω)
∣∣

|t− s| 14
≤ c, ∀s 6= t.

For any ω ∈ Ω1, we define:

Ψ(t) = Ut(ω) = WH
t (ω)1(a,b]

and for α = 1
2
−H, we set

c̃ =
α

Γ(1− α)
c(ω).

Then for ϵ > 0, we have:

(a) For t ∈ (−∞, a), Dα
ϵ+Ψ(t) = 0.

(b) For t ∈ (a, b],

∣∣Dα
ϵ+Ψ(t)

∣∣ ≤ α

Γ(1− α)

(
1{t−a>ϵ}

∫ t−a

ϵ

∣∣∣Ψ(t)− Ψ(t− r)

r1+α

∣∣∣dr
+
∣∣Ψ(t)∣∣ ∫ T

min(t−a,ϵ)

r−(1+α)dr

)
≤ c̃

(
1{t−a>ϵ}

∫ T

ϵ

r−( 3
4
+α)dr +

∫ T

min(t−a,ϵ)

r−(1+α)dr

)
≤ c̃

[
1

1
4
− α

(t− a)
1
4
−α +

1

α
(t− a)α

]
.

(c) For t ∈ (b,∞),

∣∣Dα
ϵ+Ψ(t)

∣∣ ≤ α

Γ(1− α)

∫ t−a

t−b

∣∣Ψ(t− r)
∣∣

r1+α
dr

≤ c̃

(∫ t−a

t−b

r−(1+α)dr

)
=
c̃

α

(
(t− b)−α − (t− a)−α

)
.

Hence, we may conclude that
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Dα
ϵ+Ψ(t) = Ψ̃(t)

where

Ψ̃(t) =


0, for t ∈ (−∞, a)

c̃
[

1
1
4
−α

(t− a)
1
4
−α + 1

α
(t− a)α

]
, for t ∈ (a, b]

c̃
α

(
(t− b)−α − (t− a)−α

)
, for t ∈ (b,∞)

We may easily observe that Ψ(t) ∈ L2(R). It follows from Samko et al. (1993)
that Ψ(t) ∈ H. Next step now is to show (3.23) and it will be done by con-
tradiction. If U ∈ H, then from Samko et al. (1993), there exists ω ∈ Ω ⊂ Ω1

such that the sample path U(ω) satisfies∫ T

0

[
Ut+r(ω)− Ur(ω)

]
dr = O(t2α) as t→ 0. (3.27)

On the other hand, it easy to check that the stochastic process ŴH
t =

WH
t+a − WH

a is also a fBm with Hurst parameter H ∈ (0,1) and, by self-
similarity property (See Proposition 2.1),

t−2H

∫ b−a−t

0

[
ŴH

r+t − ŴH
r

]2
dr ∼

∫ b−a−t

0

[
ŴH

r+t
t
− ŴH

r
t

]2
dr

= t

∫ b−a
t−1

0

[
ŴH

v+1 − ŴH
v

]2
dv

=
(t− 1)(b− a− t)

(b− a)

∫ b−a
t−1

0

[
ŴH

v+1 − ŴH
v

]2
dv

(3.28)

By the Birkhoff ergodic theorem, (3.28) converges almost surely to

(b− a)E
[(
ŴH

1

)2] as t→ 0.

This implies that there exists a sequence (ti)i∈N converging to zero such that
for all ω ∈ Ω ⊂ Ω1,
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∫ T

0

[
Ur+ti(ω)− Ur(ω)

]2
dr ≥

∫ b−ti

a

[
ŴH

r+ti
(ω)− ŴH

r (ω)
]2
dr

=

∫ b−a−ti

0

[
ŴH

r+ti
(ω)− ŴH

r (ω)
]2
dr

=
b− a

2
t2Hi E

[(
ŴH

1

)2]
.

(3.29)

This contradicts (3.26) since the expressions (3.27) and (3.28) are both sat-
isfied only when H > α, that is, for H > 1

4
. Therefore, the probability (3.25)

holds.

This proposition shows clearly that for H ≤ 1
4

the stochastic process Ut =

WH
t 1(a,b] does not belong to the domain DomH δH . Therefore, this domain

shall be extended to a larger one, denoted by Dom⋄
H δH that will contain

Ut for all H ∈ (0,1). Again, we construct this domain by following closely
Cheridito and Nualart (2005). As previously, let us define a linear operator
κ⋄H : ξ → L2(Ω) such that

(
κ⋄Hϕ

)
(s) = κH(T,s)ϕ(s)−

∫ T

s

(
ϕ(t)− ϕ(s)

)∂κH
∂t

(s,t)dt, (3.30)

where κH(t,s) is a kernel defined by (2.5). In terms of fractional derivatives
(See Definition 3.8), the operator κ⋄H is defined by

(κ⋄Hϕ)(s) = K2(H)Γ

(
H +

1

2

)
s

1
2

(
D

1
2
−HuH− 1

2ϕ(u)
)
(s).

We may observe from (3.30) that if ϕ(s) = 1[0,t](s), then

(κ⋄H1[0,t])(s) = κH(t,s)1[0,t](s).

Let κ̂⋄H be the adjoint operator of κ⋄H and define the space H⋄ as

H⋄ =
(
κ⋄H
)−1(

κ̂⋄H
)−1

L2(R).

Let G = g(WH
ϕ1
, · · · ,WH

ϕn
) be a smooth random variable with ϕi ∈ H⋄ and
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g ∈ C∞(Rn). Then we have the following definition:

Definition 3.9. Let D a Malliavin derivative operator and consider a linear
mapping δH : L2(Ω,H⋄) → L2(Ω) such that for any stochastic process U ∈
L2(Ω,H⋄) and G ∈ D1,2, δH(U) verifies the following equality

E
[
δ(U)G

]
=

∫ T

0

E[Utκ̂
⋄
Hκ

⋄
HDG].

The domain of this operator δH is given by Dom⋄
H δH = {U ∈ L2(Ω,H⋄) :∣∣E[δ(U)G]∣∣ <∞}.

Remarks

(a) DomH δ ⊂ Dom⋄
H δ. Moreover, DomH δH = Dom⋄

H δH
⋂[⋃

p>1 L
p(Ω;H⋄)

]
(See Cheridito and Nualart (2005, Proposition 3.5)).

(b) For any U ∈ Dom⋄
H δH such that E[U ] ∈ L2(R). Then it follows that

E[U ] ∈ H⋄ (See Cheridito and Nualart (2005, Proposition 3.6)).

3.3.2 Itô Formula with respect to fBm with H ∈ (0,1/2)

After the above settings, we may discuss the Itô formula with respect to fBm
with H ∈ (0,1/2) within a larger domain Dom⋄

H δH . The following version of
Itô Formula was discussed by Cheridito and Nualart (2005).

Theorem 3.10. Let G ∈ C2(R) be a continuous function with continu-
ous first and second derivatives such that on [0,T ], there exist two posi-
tive constants c1 and c2 <

1
4
T−2H such that max{|G(t)|, |G′(t)|, |G′′(t)|} ≤

c1e
c2t2 , ∀t ∈ [0,T ]. Then G′(WH

t )1(a,b](t) ∈ Dom⋄
H δH and

G(WH
t ) = G(0) +

∫ t

0

G′(WH
s )dWH

s +H

∫ t

0

G′′(WH
s )s2H−1ds.

3.3.3 Connection to symmetric integral

Definition 3.10. Let (Ut)t∈[0,T ] be a stochastic process with integrable paths.
The symmetric integral of Ut with respect to fBm (WH

t )t∈[0,T ], denoted by
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∫ T

0
Us ∗ dWH

s is defined by∫ T

0

Us ∗ dWH
s = lim

ϵ→0

1

2ϵ

∫ T

0

Us

(
WH

s+ϵ −WH
s−ϵ

)
ds, (3.31)

provided the limit exists.

The following proposition can be regarded as an alternative to Proposition
3.7 when H < 1/2.

Proposition 3.11. Fix T > 0. Let U = (Ut)t∈[0,T ] ∈ D1,2(|H|) be a stochastic
process and let (WH

t )t∈[0,T ] be a fBm with Hurst parameter H < 1/2. Then
the symmetric integral

∫ T

0
Us ∗ dWH

s can be represented by∫ T

0

Us ∗ dWH
s = δ(U) + TrDU, (3.32)

where TrDU is the trace of the Malliavin derivative DU and it is defined by

TrDU = lim
ϵ→0

1

2ϵ

∫ T

0

〈
DUs,1[s−ϵ,s+ϵ]

∩
[0,T ]

〉
,

provided that the limit exists.

See e.g. Nualart (2006).
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Chapter 4

Stochastic volatility modelling under
Brownian motion

This chapter introduces the standard Black-Scholes model and one of its
major extensions commonly known as the Heston model under the standard
Brownian motion.

4.1 Black-Scholes model and beyond

The modern derivative pricing theory started growing with the work of Black
and Scholes (1973), commonly known as the “Black-Scholes model” and was
considered as one of the best models for option pricing. This model gives
the formula of the fair option price obtained from a portfolio that consists of
a risk-free asset and a risky asset. This yields a partial differential equation
with a boundary condition given as a payoff function. For each type of op-
tion, a solution can be found.

Roughly speaking, an option in finance is an agreement that gives its holder
the right to buy (for call option) or to sell (for put option) a fixed amount
at a specified future time. There exist two classes of options, vanilla options
which include European and American options, and exotic options which
are any option except vanilla options. Barrier options, Lookback options,
Asian options, etc. are typical examples of well-known exotic options (See
e.g. Fouque et al. (2011) with references therein for more details).
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4.1. Black-Scholes model and beyond

4.1.1 Black-Scholes formula

In the history of quantitative finance, the Black-Scholes formula is viewed as
a benchmark for option pricing on assets. Several approaches of deriving this
formula exist in the literature; here we first use the partial differential ap-
proach by following closely the idea of Wilmott (2013). In the sense of Black
and Scholes (1973), the financial market model consists of a risk-free asset
whose price, denoted by (At)t∈[0,T ], verifies the following ordinary differential
equation:

dAt = rAtdt, A0 = 1, (4.1)

where r is a positive constant interest rate. The solution to (4.1) is given
by At = ert. The process (At)t∈[0,T ] is also commonly known in finance as
“money in the bank”. The second model describes the dynamics of risky
assets (Xt)t∈[0,T ] defined by the following geometric Brownian motion:

dXt = ηXtdt+ σXtdBt, (4.2)

where (Bt)t∈[0,T ] is a standard Brownian motion that represents the source of
randomness of the risky asset defined on the probability space (Ω,F,P), η and
σ are positive constants that represent respectively the drift and volatility
of the infinitesimal return dXt/Xt. Summarizing the financial market model
under the Black-Scholes settings, we havedAt = rAtdt,

dXt = ηXtdt+ σXtdBt.
(4.3)

Definition 4.1. A portfolio or trading strategy is a pair (φ0
t ,φt), where φ0

t

and φt are adapted processes defined on the probability space (Ω,F,P) that
represent the amount of assets At and Xt respectively owned by an investor
at time t. The portfolio value denoted by Πt can be expressed as

Πt = φ0
tAt + φtXt.

This portfolio is said to be admissible if its value Πt is bounded below almost
surely. In addition, a portfolio is said to be self-financing if the change of the
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4.1. Black-Scholes model and beyond

value of the portfolio depends on the change of risk-free and the risky assets
only, that is

dΠt = φ0
tdAt + φtdXt.

Definition 4.2. Let Πt be the value of the portfolio (φ0
t ,φt) at time t ∈

[0,T ], T > 0. There is an arbitrage opportunity in a financial market if the
following conditions hold:

(c1) Π0 = 0

(c2) ΠT ≥ 0 and P
[
ω : ΠT (ω) > 0

]
> 0, a.s.

We may note that the non-arbitrage principle requires that the riskless port-
folio must grow exponentially at the risk-free rate r > 0, that is, must verify
the following ordinary differential equation:

dΠt = rΠtdt. (4.4)

Now to find the Black-Scholes equation, let P = (P (t,Xt))t∈[0,T ] be the price
at time t of an European-style option written on a stock which expires at
the maturity date T . Call options and the underlying asset price Xt are
positively correlated; put options and Xt are negatively correlated. One may
use this phenomena to construct a special portfolio that consists of the option
price and the short underlying asset position (given by −φtXt) as follows:

Πt = P (t,Xt)− φtXt (4.5)

and by self-financing, we have

dΠt = dP (t,Xt)− φtdXt.

After applying the standard Itô’s formula (See e.g. Fouque et al. (2011, Sec-
tion 1.1.4)) on the option price process P = P (t,Xt), we get the following
stochastic differential equation

dP =
∂P

∂t
dt+

∂P

∂Xt

dXt +
1

2
σ2X2

t

∂2P

∂X2
t

dt.

Consequently

– 40 –



4.1. Black-Scholes model and beyond

dΠt =
∂P

∂t
dt+

1

2
σ2X2

t

∂2P

∂X2
t

dt+

(
∂P

∂Xt

− φt

)
dXt. (4.6)

The next step is to eliminate risk in the portfolio, commonly known in quanti-
tative finance as “dynamic hedging” as well explained by Kassouf and Thorp
(1967). This can be done by choosing the quantity φt in (4.6) as

φt =
∂P

∂Xt

, (4.7)

which obviously yields a risk-free portfolio whose dynamics verifies the fol-
lowing differential equation:

dΠt =

(
∂P

∂t
+

1

2
σ2X2

t

∂2P

∂X2
t

)
dt. (4.8)

Since the dynamics of portfolio process must satisfy the differential equation
(4.4) to avoid arbitrage, then by plugging (4.5) and (4.8) into Equation (4.4)
yields the following parabolic partial differential equation

∂P

∂t
+

1

2
σ2X2

t

∂2P

∂X2
t

+ rXt
∂P

∂Xt

− rP = 0. (4.9)

Equation (4.9) is well-known as the “Black-Scholes partial differential equa-
tion” and can shortly be written as

A0P (t,Xt) = 0, (4.10)

where A0 is the differential operator defined by

A0 =
∂

∂t
+

1

2
σ2X2

t

∂2

∂X2
t

+ rXt
∂

∂Xt

− r · . (4.11)

By associating a payoff function h(T,XT ) to Equation (4.10) at the maturity
time T yields the Black-Scholes terminal value problem. For example, when
the payoff function is h(T,XT ) = (XT −S)+ (that is the case of European call
option), where S is a strike price, then the Black-Scholes terminal problem
is given by

A0P (t,Xt) = 0

h(T,XT ) = (XT − S)+
(4.12)
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4.1. Black-Scholes model and beyond

that yields the following solution

P (t,Xt) = XtN(d+(t,T,Xt))− Se−r(T−t)N(d−(t,T,Xt)),

where N(·) is the cumulative distribution function of the standard normal
distribution and

d+(t,T,Xt) =
ln(Xt

S
) + (r + 1

2
σ2)(T − t)

σ
√
T − t

and
d−(t,T,Xt) = d+(t,T,Xt)− σ

√
T − t.

See e.g. Black and Scholes (1973) for more details and Fouque et al. (2011)
for derivations of Black-Scholes boundary value problems for different vanilla
and exotic options.

4.1.2 Limitation of the Black-Scholes formula

The Black-Scholes formula was recognised as an excellent model by both
practitioners and researchers for pricing and hedging derivatives, and has
marked the history of quantitative finance. It was also rapidly adapted to
different options and financial market models. The main drawback of the
model is by assuming the log-return volatility to be constant. This assump-
tion was proven to be unrealistic and inconsistent with data. An example
of this can be observed in historical and implied volatility which are not
constants. See e.g. Dupire (1994), Derman and Kani (1994) with references
therein.

A solution to this problem was to replace the constant volatility with a
stochastic process resulting in what is now known as “stochastic volatility
modelling”. See e.g. Hull and White (1987) and Heston (1993) for more
details. The Heston model is one of popular stochastic volatility processes
used in finance. Its popularity is due to the positiveness of volatility among
several other features.
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4.2 Stochastic Volatility Modelling

Several stochastic volatility models were suggested in the literature. The
Heston model is more popular due to its positiveness among many other
properties. This section introduces a general form of Heston-type model
under the standard Brownian motion.

4.2.1 Generalisation of the standard Heston-type model

Let (Yt)t≥0 be the solution the stochastic differential equation:

dYt = f(t,Yt)dt+ ν
√
YtdB̃t (4.13)

where (B̃t)t≥0 is a standard Brownian motion and f(t,y) is the drift function.
For the stochastic process (Yt)t≥0 to exist, the drift f(t,y) must satisfy the
Lipschitz condition, that is, for all y1, y2 ∈ R, there exists a constant K such
that ∣∣f(t,y1)− f(t,y2)

∣∣ ≤ K
∣∣y1 − y2

∣∣.
The positiveness of stochastic process (Yt)t≥0 can be discussed by referring
to Hu et al. (2008, Theorem 2.1). With this, one may construct a finan-
cial market model that consists of a risk-free asset (At)t≥0 that satisfies (4.1)
and risky asset (Xt)t≥0 that verifies the following geometric Brownian motion:

dXt = ηXtdt+ σ(Yt)XtdBt, (4.14)

where η > 0 and σ(Yt) are respectively the positive constant drift and
stochastic volatility of the infinitesimal return dXt/Xt. The stochastic pro-
cess (Yt)t≥0 satisfies (4.13). For the stochastic process (Xt)t≥0 to be well-
defined, the following conditions must hold:∫ t

0

E[σ2(Ys)]ds <∞ and
∫ t

0

E
[
(σ(Ys)Xs)

2] ds <∞.

In addition, the Brownian motions (Bt)t≥0 and (B̃t)t≥0 are assumed to be
correlated, that is, there exists ρ ∈ [−1,1] such that E

[
BtB̃t

]
= ρt. This

holds if there exists an independent Brownian motion (Ṽt)t≥0 such that

Bt = ρB̃t +
√
1− ρ2Ṽt. (4.15)
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The financial market model can be summarised as

dAt = rAtdt,

dXt = ηXtdt+ σ(Yt)XtdBt,

dYt = f(t,Yt)dt+ ν
√
YtdB̃t

Bt = ρB̃t +
√
1− ρ2Ṽt

(4.16)

4.2.2 Option pricing under stochastic volatility

Partial Differential Equation Approach

In this section, we closely follow Wilmott (2013) and Fouque et al. (2011)
to extend the Black-Scholes formula under the stochastic volatility model
(4.13). Due to the fact that there are two sources of randomness, it follows
that hedging must be done on both stock price and volatility processes.

Let P1 = P1(t,T1, Xt,Yt) and P2 = P2(t, T2, Xt,Yt) be the option price pro-
cesses written on a stock at maturity dates T1 and T2 respectively. The option
price process P2(t, T2, Xt,Yt) will enable hedging of risk on volatility. We con-
struct a self-financing portfolio that consists of a triplet (φ1

t ,−φ2
t ,−φt) with

its portfolio value Πt that verifies

dΠt = φ1
tdP1 − φtdX − φ2

tdP2.

To avoid cumbersome notations, we set Xt = x and Yt = y. Then by apply-
ing the bi-dimensional Itô formula (see Fouque et al. (2011, Section 1.9.1))
to the process Πt, one may obtain

dΠt =

(
φ1
t

[
∂

∂t
+A(x,y)

]
P1 − φηx− φ2

t

[
∂

∂t
+A(x,y)

]
P2

)
dt

+

(
xσ(y)

[
φ1
t

∂P1

∂x
− φ2

t

∂P2

∂x
− φt

]
+ρν

√
y

[
φ1
t

∂P1

∂y
− φ2

t

∂P2

∂y

])
dBt

+ ν
√

(1− ρ2)y

[
φ1
t

∂P1

∂y
− φ2

t

∂P2

∂y

]
dṼt,

(4.17)
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where A(x,y) is the differential operator defined by

A(x,y) =
1

2
σ2x2

∂2

∂x2
+ ρν

√
yσ(y)x

∂2

∂x∂y
+
ν2

2
y
∂2

∂y2
+ ηx

∂

∂x
+ f(y)

∂

∂y
.

By performing dynamic hedging from the sources of randomness Bt and Ṽt,
we may choose φ and φ1

t as follows:
φ = φ1

t

∂P1

∂x
− φ2

t

∂P2

∂x

φ1
t = φ2

t

∂P2

∂y

(
∂P1

∂y

)−1

,

provided that ∂P1

∂y
6= 0. On the other hand, the dynamics of the riskless

portfolio must satisfy dΠt = rΠtdt to avoid arbitrage as mentioned earlier.
This yields the following:

∂P1

∂t
+A(x,y)P1 − (η − r)x

∂P1

∂x
− rP1

∂P1

∂y

=

∂P2

∂t
+A(x,y)P2 − (η − r)x

∂P2

∂x
− rP2

∂P2

∂y

.

(4.18)

This equation has two unknowns, P1 and P2. As the price process P1

and P2 have two different maturity dates, then there exists an option price
P = P (t,T,Xt) that does not depend on none of maturity dates T1 and T2

which is equal to a function, let us say P ∗ = P ∗(t,x,y), that does not depend
neither on T1 nor T2. That means

∂P

∂t
+A(x,y)P − (η − r)x

∂P

∂x
− rP

∂P

∂y

= P ∗. (4.19)

The function P ∗ = P ∗(t,x,y) can be chosen as (See Wilmott (2013) for the
explanation about this choice)

P ∗(t,x,y) = −f(t,y) + ν
√
yq(t,x,y), (4.20)
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where the function q(t,x,y) can be viewed as a total risk premium and it is
given by

q(t,x,y) = ρ
η − r

σ(y)
+ γ(t,x,y)

√
1− ρ2,

with γ(t,x,y) being an arbitrary function that can be considered as a volatility
risk premium. Plugging the expression (4.20) into (4.19) yields the following
partial differential equation:

∂P

∂t
+

1

2
σ2(y)x2

∂2P

∂x2
+ rx

∂p

∂x
− rP + ρν

√
yxσ(y)

∂2P

∂x∂y

+
ν2

2
y
∂2P

∂y2
+ f(t,y)

∂P

∂y
− ν

√
yq
∂P

∂y
= 0.

(4.21)

The partial differential equation (4.21) can be grouped into four terms as:

A0P +AyP + ρν
√
yxσ(y)

∂2P

∂x∂y
− ν

√
yq
∂P

∂y
= 0, (4.22)

where A0P is the standard Black-Scholes equation with volatility σ(Yt), the
second term AyP is an infinitesimal generator of the stochastic volatility
(Yt)t≥0, the third term represents the correlation and the last term may be
viewed as a premium. In general, the partial differential equation (4.21) or
(4.22) can be written shortly as

AP = 0, (4.23)

where A is an operator defined by

A =
∂

∂t
+ rx

∂

∂x
− ν

√
yq

∂

∂y
+ ρν

√
yxσ(y)

∂2

∂x∂y

+
1

2
σ2(y)x2

∂2

∂x2
+
ν2

2
y
∂2

∂y2
+ f(t,y)

∂

∂y
− r·

(4.24)

Associating Equation (4.23) to a payoff function given as a final condition
P (T,x,y) = h(x), one may obtain a terminal value problem to which the
solution can be found. The analytical solution to (4.23) is not always easy
to find. In general, numerical techniques are used to solve the problem.
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Risk-Neutral Approach

This approach consists of finding an equivalent martingale measure Q for
which the discounted stock price process (X∗

t )t≥0 defined by X∗
t = A−1

t Xt is
martingale. The option price process P (t,T,Xt) is then given by

P (t,T,Xt) = E∗
[
e−r(T−t)h(XT )

∣∣∣Ft

]
, (4.25)

where E∗[ · ] denotes the expectation taken under the risk neutral probability
measure Q. To find the probability Q, we first need to observe that the dis-
counted price process (X∗

t )t≥0 is martingale when it is driven by a standard
Brownian motion (B∗

t )t≥0 defined by

B⋆
t = Bt +

∫ t

0

η − r

σ(Ys)
ds, (4.26)

where η−r
σ(Yt)

is well known in finance as the “stochastic Sharp ratio” or the
“market price of risk”. For (4.26) to exist and to avoid outliers in the dis-
counted process (X̃t)t≥0, it is natural that the volatility σ(Ys) must not be
null. This shall be set as the following generic assumption.

Assumption 4.1. There exists a minimum value of the volatility σmin such
that for all y > 0, σ(y) > σmin > 0.

We may observe that the discounted stock price process will remain mar-
tingale although the independent Brownian motion is shifted by the expres-
sion

∫ t

0
γ(s,Xs,Ys)ds. This means there exists a standard Brownian motion

(Ṽ ⋆
t )t≥0 defined by

Ṽ ⋆
t = Ṽt +

∫ t

0

γ(s,Xs,Ys)ds,

that keeps the discounted stock prices process martingale. The process
γ(s,Xs,Ys) is also known in finance as the “volatility risk premium” and
the total risk premium is the quantity ρ η−r

σ(Yt)
+
√
1− ρ2γ(t,Xt,Yt).

On the other hand, from the classical Girsanov’s theorem (see e.g. Fouque
et al. (2011, Section 1.4.1)), the Brownian motions (B⋆

t )t≥0 and (Ṽ ⋆
t )t≥0 are

independent under the risk neutral probability measure Q that verifies the
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following differential equation:

dQ

dP
=exp

(
−1

2

∫ T

0

(
(η − r)2

σ2(Ys)
+ γ2(s,Xs,Ys)

)
ds

−
∫ T

0

η − r

σ(Ys)
dB∗

s −
∫ T

0

γ(s,Xs,Ys)dṼ
⋆
s

)
.

(4.27)

4.2.3 Free-arbitrage property

From the well-known “fundamental theorem of option pricing”, a financial
market defined on (Ω,F,P) is free of arbitrage if there exists an equivalent
martingale measure Q for which the discounted price is martingale. More-
over, the market model is complete if and only if the measure Q is unique
(Fouque et al.; 2011). This theorem yields the following result.

Proposition 4.1. The standard Heston-type model (4.16) is free of arbitrage.

Proof. The equivalent martingale measure Q exists indeed and it is given in
the differential equations (4.27). See also Bezborodov et al. (2019, Theorem
4) for additional comments.

4.3 An Example: Standard Heston Model

4.3.1 Standard Heston model

The standard Heston model corresponds to the market model (4.16) with
stochastic volatility σ(Yt) =

√
Yt and the drift f(t,Yt) = θ(µ − Yt). Hence

the stochastic process (Yt)t≥0 is called “instantaneous variance” and verifies
the following differential equation:

dYt = θ(µ− Yt)dt+ ν
√
YtdB̃t, (4.28)

where θ is a positive parameter that represents the speed of reversion of the
stochastic process (Yt)t≥0 towards its long-run mean µ > 0, the parameter
ν > 0 is the volatility of the stochastic process (Yt)t≥0, and (B̃)t≥0 is the stan-
dard Brownian motion. The stochastic process (Yt)t≥0 is commonly known in
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financial mathematics as the “Cox-Ingersoll-Ross process” and was initially
introduced by Cox et al. (1985) to model the dynamics of interest rates. This
process is strictly positive provided that the Feller condition ν2 ≤ 2θµ holds,
it is mean reverting, stationary and ergodic. For more details, see e.g. Chou
and Lin (2006) and Guo (2008) with references therein. Hence, the financial
market model reads 

dAt = rAtdt,

dXt = ηXtdt+
√
YtXtdBt,

dYt = θ(µ− Yt)dt+ ν
√
YtdB̃t

Bt = ρB̃t +
√
1− ρ2Ṽt.

(4.29)

4.3.2 Option pricing formula

We follow Fouque et al. (2011) for the derivation of the option price formula.
The partial differential equation (4.21) under the Heston model is given by

∂P

∂t
+ rx

∂P

∂x
+ θ(µ− y)

∂P

∂y
+ ρνyx

∂2P

∂x∂y

+
1

2
yx2

∂2P

∂x2
+

1

2
ν2y

∂2P

∂y2
− rP = 0.

(4.30)

The next step is to write the above parabolic partial differential equation in
terms of a Green function in order to solve the parabolic partial differential
equation (4.30). For this, we need to start with the following changes of
variables:

τ(t) = T − t

z(t,x) = rτ(t) + log x

y = y,

(4.31)

then it follows that

P (t,x,y) = P (T − τ, exp(z(t,x)− rτ(t)),y), (4.32)

– 49 –



4.3. An Example: Standard Heston Model

and at the maturity date T , the payoff function is

P (T,x,y) = P (T, exp(z(T,x)),y) = h(exp(z(t,x))). (4.33)

In what follows, we use z for z(t,x) and τ for τ(t) to simplify the notations.
Assume now that the option price is proportional to a factor exp(−rτ), that
is, there exist an option price P̃ (τ, z, y) such that

P (t,x,y) = exp(−rτ)P̃ (τ, z, y),

with P (T,x,y) = P̃ (0, z, y) = h(exp(z)) = h̃(z). Then the following holds:

∂P

∂t
= exp(−rτ)

[
∂P̃

∂τ
− rP̃

]

∂P

∂x
= exp(−rτ) 1

x

∂P̃

∂z

∂2P

∂x2
= − exp(−rτ) 1

x2

[
∂P̃

∂z
− ∂P̃ 2

∂z2

]

∂2P

∂x∂y
= exp(−rτ) 1

x

∂2P̃

∂z∂y

∂P

∂y
= exp(−rτ)∂P̃

∂y

∂2P

∂y2
= exp(−rτ)∂

2P̃

∂y2
.

(4.34)

Substituting equations (4.34) into (4.30) yield

− ∂P̃

∂τ
+

1

2
y

(
∂2P̃

∂z2
− ∂P̃

∂z

)
+ θ(µ− y)

∂P̃

∂y

+
1

2
ν2y

∂2P̃

∂y2
+ ρνy

∂2P̃

∂z∂y
= 0,

(4.35)

and the pricing problem can be written shortly as
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AP̃ (τ, z, y) = 0

P̃ (0,z,y) = h̃(z)
(4.36)

where A is the differential operator defined by

A =− ∂

∂τ
+

1

2
y

(
∂2

∂z2
− ∂

∂z

)
+ θ(µ− y)

∂

∂y

+
1

2
ν2y

∂2

∂y2
+ ρνy

∂2

∂z∂y
.

(4.37)

To solve the option pricing problem (4.36), we may now use the Green’s
function as a tool. We first need to note the following definition.

Definition 4.3. Let A be a differential operator, linear in the variable z and
let G = G(τ,z,y;φ) be a function in variables τ, z, y and φ. Then G is called
a Green’s function for A if the following equation is satisfied

(A−1)z,z̃ = G(τ,z,y; z̃),

where A−1 is the inverse operator of A; the subscripts on A−1 means that
A−1 acts on z and z̃. In addition, the function G(τ,z,y; z̃) verifies

AG = ς(z − z̃),

with ς(·) is the dirac delta function.

Therefore, the option price P̃ (τ(t), z, y) can be represented as

P̃ (t,z,y) = exp(rτ)

∫
R

G(τ,z − z̃,y)h̃(z̃)dz̃ (4.38)

and the option price problem (4.36) can be reformulated as

AG(τ,z,y) = 0

G(0,z,y) = ς(z − z̃).
(4.39)
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By applying the Fourier transform to the option price problem (4.39), we
obtain the following result

Â Ĝ(τ,z,y) = 0

Ĝ(0,z,y) = 1,
(4.40)

where Â and Ĝ(τ,z,y) are Fourier transforms of A and G = G(τ,z,y) respec-
tively. The operator Â is given by

Â =− ∂

∂τ
+

1

2
(−k2 + ik)y +

1

2
ν2y

∂2

∂y2
+ (θµ− (θ + ρνik)y)

∂

∂y
, (4.41)

where we have used the fact that the Fourier transform of P̃ is ̂̃P defined by

̂̃P (τ,z,y) = exp(rτ)

2π

∫
R

exp(−ikz)Ĝ(τ,k,y)̂̃h(k)dk. (4.42)

Assume that the Fourier transform of the Green’s function G(τ,k,y), denoted
by Ĝ(τ,k,y), takes the following form:

Ĝ(τ,k,y) = exp [A1(τ,k) + yA2(τ, k)] . (4.43)

Then the problem (4.40) is transformed into the following system of two or-
dinary differential equations

dA1

dτ
(τ,k) = θµA2(τ,k)

A1(0,k) = 0,
dA2

dτ
(τ,k) =

1

2
ν2A2

2(τ,k)− (θ + ρνik)A2(τ,k) +
1

2
(−k2 + ik)

A2(0,k) = 0.

(4.44)

The second equation of the system (4.44) is a Riccati equation (See Rouah
(2015) for more details). The solution for A1(τ,k) can be obtained by integra-
tion on both side of the first equation of (4.44). After tedious computations,
an analytical solution can be found and is given by
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A1(τ,k) =

θµ

ν2

(
(θ + ρikν + a1(k))τ − 2 log

(
1− a2(k) exp(τa1(k))

1− a2(k)

))
A2(τ,k) =

θ + ρikν + a1(k)

ν2

(
1− exp(τa1(k))

1− a2(k) exp(τa1(k))

)
,

(4.45)
where

a1(k) =
√
ν2(k2 − ik) + (θ + ρikν)2

a2(k) =
ν + ρikν + a1(k)

ν + ρikν − a1(k)
.

(4.46)

The following proposition gives a summary of the option price formula under
the Heston model.

Proposition 4.2. Consider the financial market model (4.28). Then the
option price P = P (t,x,y) written on a stock Xt = x is given by

P (t,x,y) =
1

2πA(τ)

∫
R

exp (A1(τ,k) + yA2(τ, k)− ikz) ̂̃h(k)dk, (4.47)

where

A(τ) = exp(rτ)

τ = T − t

z = rτ − log x

P (t,x,y) = P̃ (t,z,y)A−1(τ)

(4.48)

and

A1(τ,k) =
θµ

ν2

(
(θ + ρikν + a1(k))τ − 2 log

(
1− a2(k) exp(τa1(k))

1− a2(k)

))

A2(τ,k) =
θ + ρikν + a1(k)

ν

(
1− exp(τa1(k))

1− a2(k) exp(τa1(k))

)
.

The process A(τ) is the risk-free asset price. Note that some extra condi-
tions must be taken into consideration for the integral in Equation (4.42)
or (4.47) to be well-defined and to facilitate numerical derivations. For an
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European call option, Kahl and Jäckel (2005) find an explicit formula which
is a consequence of Proposition 4.2 given as follows.

Proposition 4.3. Consider the Heston model (4.47) and let p(t,Xt,Yt) be
the option price written on the stock Xt = x with the payoff function being
given by h(x) = (x− S)+, where S is a positive constant that represents the
strike price. Then the option price P (t,x,y) under the Heston model is given
by

P (t,x,y) =
A(τ)

2π

∫
R

(uc∞)−1 I

(
− log u+ c∞ikim

c∞

)
du, (4.49)

where

I(k) =
S1+ik exp (A1(τ,k) + vA2(τ, k)− izk)

ik − k2

k = kre + ikim

c∞ =
v − θµτ

√
1− ρ2

ν

kre =
− log x

c∞

(4.50)

Although the standard Heston model is well accepted by both practitioners
and researchers, the exact option pricing formula (4.47) is not easy to deal
with even for the simplest options such as European option that is given by
(4.49). This is a motivation for practitioners and researchers to go either
for approximations (See e.g. Alòs and Ewald (2008)) or to use risk neutral
approach given by (4.25).

On the other hand, the standard Heston model does not capture dependency
features within the volatility time series. The observation from log-returns
on a given security or option prices suggest roughness of volatility time series.
This will be discussed in our next chapter 5.
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Chapter 5

Roughness and multifractality
properties of volatility time series

Standard stochastic volatility models (including the Heston model discussed
previously) are developed with the assumption that their random parts are
driven by a standard Brownian motion. This means that the Hurst parameter
H = 0.5 and the volatility time series do not display memory. Throughout
this chapter, we demonstrate that this is not always the case within volatility
time series.

Firstly, we consider selected major stock market indices since 2012 and esti-
mate their realised volatility. We apply the multifractal detrended fluctuation
analysis (MF-DFA) technique and we find that the Hurst parameter is of or-
der 0.5 to 0.8. In this case, we may say that the volatility displays long-range
dependence. Similar results were found by Comte and Renault (1998), Ca-
jueiro and Tabak (2008), Chronopoulou and Viens (2010), Power and Turvey
(2010), Abuzayed et al. (2018), Cont and Das (2022) with references therein.
In addition, we found that the volatility displays the multifractal property
in general. The source of this multifractality is mostly due to broad distri-
butions of the volatility time series.

When using the microstructure noise index (MNI) approach, we find that
the log-volatility are rough with Hurst parameter of order 0.2 to 0.3. Similar
results were discussed by Gatheral et al. (2018), Livieri et al. (2018) with
references therein.
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5.1 Multifractality and roughness of realised volatility

5.1.1 Multifractal detrended fluctuation analysis

First of all, recall that the volatility time series is not observable; it has to
be estimated from the stock price return or option prices. Throughout this
chapter, we use the realised volatility (Andersen et al.; 2003) as a proxy of
volatility. Denote (Xti)i=0,··· ,N the daily observed stock prices, and defined
the log-return (rti) as

rti = logXti − logXti−1
.

The (daily) realised volatility (σti)i=0,··· ,N is given by

σti =

(
N∑
i=0

r2ti

) 1
2

.

The multifractality properties of realised volatility can be analysed by us-
ing the so-called “generalised Hurst exponent” which will be discussed later
in this section. We use the multifractal detrended fluctuation analysis (MF-
DFA) method previously introduced by Kantelhardt et al. (2002) as an exten-
sion of the standard detrended fluctuation technique. For this, we consider
the realised volatility time series for N trading days on the time interval [0,T ]
given by (σti)i=0,··· ,N , with σtN = σT and denote σti = σi for simplicity. The
MF-DFA technique consists of the following steps.

1. Determine the time series (Vi)i=0,··· ,N as

Vi =
i∑

k=0

(
σk − µi

)
, (5.1)

where µi =
1
i

∑i
k=1 σk. This step can be done twice to capture time

series with strong anti-correlation as observed by Kantelhardt et al.
(2002). This means that one may determine again another time series
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as previously:
Ṽi =

i∑
k=0

(
Vk − µ̃i

)
, (5.2)

where (Vk)k=0,··· ,N is given by (5.1) and µ̃i =
1
i

∑i
k=1 Vk.

2. Set Nδ = bN
δ
c with δ being different lags chosen such that δ < N/4,

and divide the time series (Vi)i=0,··· ,N into Nδ equal segments of length
δ that do not overlap. To cover the whole time interval [0,T ], we may
start from t0 to tNs (which is not necessarily equal to tN) and from tN

to tN−δNδ
. This yields 2Nδ segments.

3. For each segment j = 0, · · · , Nδ and j = Nδ + 1, · · · , 2Nδ with j = δi,
eliminate the trend of the volatility time series by fitting the polyno-
mial Pm

j (i) of order m, and calculate the variance as follows:

F 2(j,δ) =


1
δ

δ∑
i=0

(
Vn − Pm

j (i)
)2
, j = 0, · · · , Nδ,

1
δ

δ∑
i=0

(
Vn′ − Pm

j (i)
)2
, j = Nδ + 1, · · · , 2Nδ

(5.3)

where n = (j − 1)δ + i and n′ = N − (j − Nδ)δ + i. The time series
(Vn) and (Vn′) are determined using (5.1) or (5.2).

4. Next, calculate the fluctuation function Fq(δ) of order q as the Hölder
mean (or generalised mean) of F 2(j,δ) with exponent q 6= 0 or as a
logarithmic mean for q = 0 as given below

Fq(δ) =



 1
2Nδ

2Nδ∑
j=0

(
F 2(j,δ)

q
2

)
1
q

∀q 6= 0,

exp

 1
4Nδ

2Nδ∑
j=0

log
(
F 2(j,δ)

) ∀q → 0.

(5.4)

For q = 2, one may recover the classical detrended fluctuation analysis
previously discussed by Peng et al. (1994).
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5. Finally, determine the inherent scaling behavior of the fluctuation func-
tion Fq(δ). If the time series (σi) display long or short range power-law
correlations, then the fluctuation function can be approximated as

Fq(δ) ∼ δh̃(q), (5.5)

where h̃(q) = 1 + h(q). The function h(q) is commonly known as the
“generalised Hurst exponent”. If h(q) depends on q, then the original
volatility time series (σti)i=0,··· ,N is said to be multifractal and if h(q) :=
H is constant, then (σti)i=0,··· ,N is said to be monofractal. In this
later case, the variance F 2(j,δ) stays identical for all lags δ. If q = 2,
then h(2) is simply the Hurst parameter H initially introduced by
Hurst (1951). If 0 < h(2) < 1/2, the time series (σi) displays short-
range dependence (or ) and if 1/2 < h(2) < 1, (σi) displays long-range
dependence (or long memory) and if h(q) = 1/2, there is no dependency
(or memory) at all. See Section 2.4.1 for definitions.

5.1.2 Sources of multifractality

There exists two main types of sources of multifractality (Kantelhardt
et al.; 2002): the broad (or fat-tailed) probability density function
(Type I) and temporal correlations of small and large fluctuations
(Type II). The easiest way to recognise this, is by performing random
shuffles of the original time series to eliminate correlations of type II.
In this case, type I should be the only source of multifractality and the
generalised Hurst exponent from the shuffled time series (denoted by
hshuf(q)) coincides with the original generalised Hurst exponent h(q),
that is hshuf(q) ∼ h(q). If multifractality is only generated from the
source of type II, then the generalised Hurst exponent is constant with
hshuf(q) ∼ 1/2.

5.1.3 Microstructure noise index

When using the microstructure noise index (MNI) approach, Gatheral
et al. (2018) defined the fluctuation function slightly differently for
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stochastic volatility as

Fq(δ) =
1

Nδ

Nδ∑
j=1

∣∣∣ log σj − log σj−1

∣∣∣q. (5.6)

Under the assumption that for some functions h(q) > 0 and c(q) > 0

depending on q, the limit N qh(q)
δ Fq(δ) → c(q) as δ → 0 holds. In this

case, h(q) can be viewed as the regularity of Y . Particularly, if (log σj)
behaves as a fBm, then (log σj) is monofractal and h(q) is a constant.
Now, by the law of large numbers,

Fq(δ) ∼ E
[∣∣∣ log σδ − log σ0

∣∣∣q] = c(q)δζ(q) as δ → ∞, (5.7)

where ζ(q) = qh(q), and provided that the volatility time series (σti)

satisfies the stationarity property. Consequently,

logFq(δ) ∼ c̃(q) + ζ(q) log δ, (5.8)

where c̃(q) = log c(q). Therefore, to find the Hurst parameter H one
has to compute Fq(δ) for each arbitrary lag δ and analyse the log-log
plot of Fq(δ) versus δ. Fit a straight line with slope qH, and deduce
the value of H, since q is known. For more details, see Rosenbaum
(2011) and Gatheral et al. (2018).

5.2 Financial data

To estimate the Hurst parameters of volatility, we retrieve from Yahoo finance
daily adjusted closing prices for selected major world stock market indices
(including some market indices of emerging economy countries) as shown
in Table 5.1 from 10 February 2012 to 10 August 2022. We use the realised
volatility of log-returns as our proxy1 as shown in figures 5.1. The descriptive
statistics of log-returns and realised volatility are summarised in tables 5.2

1Similarly, Gatheral et al. (2018) used the realised kernel, while Livieri et al. (2018)
the implied volatility as proxies of volatility to estimate the Hurst parameter.
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and 5.3 respectively.

Table 5.1: Selected world stock market indices
Code Index Name Code Index Name

GSPC S&P 500 BVSP IBOVESPA

DJI DOW JONES INDUSTRIAL AVERAGE HSI HANG SENG INDEX

IXIC NASDAQ Composite GDAXI DAX PERFORMANCE-INDEX

FCHI CAC 40 000001.SS SSE COMPOSITE INDEX

FTSE FTSE Index J203 FTSE/JSE SA ALL SHARE INDEX

Figure 5.1: Realised Volatility of different stock market indices.
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Table 5.2: Descriptive statistics of log-returns time series
1SS BVSP DJI FCHI FTSE GDAXI GSPC HSI IXIC J203.JO

Obs. (N) 2730 2730 2730 2730 2730 2730 2730 2730 2730 2730
Mean 0.000098 0.000153 0.000341 0.000238 0.000084 0.000227 0.000386 0.000040 0.000478 0.000222

SD 0.012452 0.014984 0.010362 0.012037 0.009727 0.012071 0.010381 0.011232 0.012123 0.010392
Minimum −0.088732 −0.159930 −0.138418 −0.130983 −0.115117 −0.130549 −0.127652 −0.060183 −0.131492 −0.102268
Quartile 1 −0.004727 −0.007157 −0.003082 −0.005073 −0.004329 −0.004787 −0.003087 −0.005088 −0.003823 −0.004502

Median 0.000000 0.000000 0.000135 0.000322 0.000054 0.000214 0.000135 0.000000 0.000371 0.000000
Quartile 3 0.005527 0.007951 0.004725 0.006093 0.004702 0.006238 0.004908 0.005571 0.006403 0.005839
Maximum 0.060399 0.130223 0.107643 0.080561 0.086664 0.104143 0.089683 0.086928 0.089347 0.072615

Table 5.3: Descriptive statistics of realised volatility time series
1SS BVSP DJI FCHI FTSE GDAXI GSPC HSI IXIC J203.JO

Obs. (N) 2730 2730 2730 2730 2730 2730 2730 2730 2730 2730
Mean 0.167682 0.205616 0.129067 0.166250 0.133165 0.168208 0.132225 0.161986 0.161465 0.144931

SD 0.095204 0.108859 0.097148 0.086236 0.072547 0.082893 0.093203 0.064620 0.097745 0.072377
Minimum 0.028405 0.081198 0.031084 0.038256 0.028913 0.040708 0.033852 0.059390 0.049705 0.048198
Quartile 1 0.111049 0.154822 0.078266 0.110839 0.089989 0.115032 0.080299 0.119805 0.103349 0.103653

Median 0.141285 0.187444 0.106714 0.148921 0.116644 0.154365 0.109996 0.150051 0.133233 0.129049
Quartile 3 0.191033 0.230664 0.149400 0.200453 0.154843 0.200439 0.157668 0.185886 0.193088 0.168583
Maximum 0.639929 1.261800 1.023685 0.786337 0.702989 0.776279 0.952041 0.536219 0.933666 0.769343

5.3 Empirical results

In the process of applying the MF-DFA technique, we consider two main
periods: Period 1 from 10 February 2012 to 10 August 2022 and Pe-
riod 02 prior the Covid-19 pandemic, that is, from 10 February 2012 to
10 March 2020. We choose different lags δ = 1, · · · , 2513 and we elimi-
nate the trend of the realised volatility time series by fitting (Vi)i=0,··· ,N or
(Ṽi)i=0,··· ,N defined respectively by (5.1) and (5.2) to a second order poly-
nomial P 2

j (i), i = 0, · · · , N and j = δi. The obtained fluctuation functions
Fq(δ) and the generalised Hurst exponents defined respectively by (5.4) and
(5.5) of all stock market indices depend on q as shown in figures 5.2, 5.4, 5.6,
5.8, 5.10, 5.12, 5.14, 5.16, 5.18 and 5.20. Thus, this shows that the volatility
time series enjoy the multifractality property in general.

To determine the source of this multifractality, we analyse the mean of 1000
shuffled time series of the original realised volatility and deduce the gener-

2On 11 March 2020, the Word Health Organisation declared the Covid-19 as a global
pandemic with over 80950 confirmed cases in over 110 countries.

3For δ > N/4, the fluctuation function becomes unreliable.
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alised Hurst exponent hshuf(q). We observe the following:

(a) For some financial markets such as HSI (See Figure 5.16, Period 1),
hshuf(q) coincides with h(q) almost everywhere. In this case, source of
Type I is mostly dominated.

(b) Financial markets such as FCHI (See Figure 5.8, Period 1), hshuf(q)

and h(q) are different but depend on q. However, we observe from most
of financial markets that hshuf(2) ∼ 0.5. In this case, the multifractility
is due to Type I and Type II.

(c) Financial markets such as FTSE (See Figure 5.10, Period 0), hshuf(q)

coincides with h(q) for all q > 0 and hshuf(2) ∼ 0.5. In this case, Type
I is dominated but the presence of Type II cannot be neglected.

We may conclude that the source of multifractality is mostly due to sources
of Type I. However, Type II should not be neglected.

In addition, the volatility time series display long range dependency with
Hurst exponent h(2) := H of order 0.5 to 0.7 during Period 0. These val-
ues are higher during Period 1 which includes the Covid-19 pandemic. See
tables 5.3 to 5.12 for a summary of selected values of h(q). It follows that
the fluctuation function and generalised Hurst exponent also depend on the
“event timelines”.

When using the microstructure noise index (MNI) approach, the log-log plots
of fluctuation functions Fq(δ) defined by (5.7) versus q were performed and
yielded the estimated Hurst exponent obtained from ζ(q) ∼ qH (See figures
5.3, 5.5, 5.7, 5.9, 5.11, 5.13, 5.15, 5.17, 5.19 and 5.21 for Period 1 only). We
find that the log-volatility are rough with Hurst exponent of order 0.2 to 0.3
prior and during the covid-19 pandemic as shown in tables 5.3 to 5.12. In
this context, we may say that the volatility is rough as previously observed
by Gatheral et al. (2018) and subsequent results.
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Figure 5.2: 1SS Volatility Fluctuation Function Fq(δ) and the generalised
Hurst exponent h(q), q ∈ [−15, 15] (MF-DFA).

Period 0 Period 1

Figure 5.3: 1SS Fluctuation Function Fq(δ) and ζ(q), q ∈ [0.5, 3] (MNI).

(A) Fq(δ) (B) ζ(q) ∼ qH

Table 5.4: 1SS values of generalised Hurst exponent h(q)

Period 0 (Prior the Covid-19 pandemic) Period 1 (10/02/2012 to 10/08/2022)

h(q) MF-DFA Shuffled MNI MF-DFA Shuffled MNI

h(−14) 1.421591 1.349413 − 1.442607 1.379425 −
h(−10) 1.386503 1.307803 − 1.401762 1.334572 −
h(−6) 1.292496 1.205044 − 1.288448 1.220748 −
h(−2) 0.878993 0.926703 − 0.905894 0.918216 −

h(2) := H 0.617345 0.557615 0.369539 0.632000 0.555546 0.354025
h(6) 0.584704 0.431628 − 0.647181 0.413202 −
h(10) 0.565686 0.404372 − 0.617552 0.379965 −
h(14) 0.557758 0.390742 − 0.598700 0.365185 −
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Figure 5.4: BVSP Volatility Fluctuation Function Fq(δ) and the generalised
Hurst exponent h(q), q ∈ [−15, 15] (MF-DFA)

Period 0 Period 1

Figure 5.5: BVSP Fluctuation Function Fq(δ) and ζ(q), q ∈ [0.5, 3] (MNI).

(A) Fq(δ) (B) ζ(q) ∼ qH

Table 5.5: BVSP values of generalised Hurst exponent h(q)

Period 0 (Prior the Covid-19 pandemic) Period 1(10/02/2012 to 10/08/2022)

h(q) MF-DFA Shuffled MNI MF-DFA Shuffled MNI

h(−14) 1.302556 1.221180 − 1.016113 1.238036 −
h(−10) 1.250648 1.157005 − 1.001396 1.175942 −
h(−6) 1.110142 0.998925 − 0.961745 1.027427 −
h(−2) 0.761120 0.722730 − 0.758341 0.796255 −

h(2) := H 0.532515 0.556492 0.276002 0.853822 0.553865 0.320254
h(6) 0.092457 0.470652 − 0.944826 0.268599 −
h(10) 0.008754 0.427830 − 0.910372 0.221613 −
h(14) 0.004833 0.403873 − 0.891654 0.205730 −
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Figure 5.6: DJI Volatility Fluctuation Function Fq(δ) and the generalised
Hurst exponent h(q), q ∈ [−15, 15] (MF-DFA)

Period 0 Period 1

Figure 5.7: DJI Fluctuation Function Fq(δ) and ζ(q), q ∈ [0.5, 3] (MNI).

(A) Fq(δ) (B) ζ(q) ∼ qH

Table 5.6: DJI values of generalised Hurst exponent h(q)

Period 0 (Prior the Covid-19 pandemic) Period 1(10/02/2012 to 10/08/2022)

h(q) MF-DFA Shuffled MNI MF-DFA Shuffled MNI

h(−14) 2.088692 1.275498 − 1.672211 1.308202 −
h(−10) 2.045217 1.220277 − 1.655236 1.252919 −
h(−6) 1.929241 1.076383 − 1.601587 1.112991 −
h(−2) 1.309514 0.771193 − 1.196371 0.846375 −

h(2) := H 0.776157 0.555106 0.285657 0.748110 0.554983 0.331512
h(6) 0.757996 0.439847 − 0.684569 0.280341 −
h(10) 0.736079 0.368481 − 0.637779 0.235104 −
h(14) 0.718593 0.328915 − 0.614068 0.220327 −
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Figure 5.8: FCHI Volatility Fluctuation Function Fq(δ) and the generalised
Hurst exponent h(q), q ∈ [−15, 15] (MF-DFA)

Period 0 Period 1

Figure 5.9: FCHI Fluctuation Function Fq(δ) and ζ(q), q ∈ [0.5, 3] (MNI).

(A) Fq(δ) (B) ζ(q) ∼ qH

Table 5.7: FCHI values of generalised Hurst exponent h(q)

Period 0 (Prior the Covid-19 pandemic) Period 1(10/02/2012 to 10/08/2022)

h(q) MF-DFA Shuffled MNI MF-DFA Shuffled MNI

h(−14) 1.359729 1.239441 − 1.460154 1.259297 −
h(−10) 1.313247 1.174652 − 1.417552 1.199516 −
h(−6) 1.202345 1.012883 − 1.309917 1.050754 −
h(−2) 0.950623 0.725444 − 0.963263 0.782130 −

h(2) := H 0.580979 0.556520 0.280993 0.638468 0.556255 0.316489
h(6) 0.260257 0.481881 − 0.492475 0.343460 −
h(10) 0.208931 0.451810 − 0.475211 0.285767 −
h(14) 0.195218 0.435451 − 0.469807 0.266785 −
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Figure 5.10: FTSE Volatility Fluctuation Function Fq(δ) and the generalised
Hurst exponent h(q), q ∈ [−15, 15] (MF-DFA)

Period 0 Period 1

Figure 5.11: FTSE Fluctuation Function Fq(δ) and ζ(q), q ∈ [0.5, 3] (MNI).

(A) Fq(δ) (B) ζ(q) ∼ qH

Table 5.8: FTSE values of generalised Hurst exponent h(q)

Period 0 (Prior the Covid-19 pandemic) Period 1

h(q) MF-DFA Shuffled MNI MF-DFA Shuffled MNI

h(−14) 1.852467 1.257613 − 1.844968 1.288874 −
h(−10) 1.780357 1.200827 − 1.783604 1.235304 −
h(−6) 1.584935 1.059545 − 1.610959 1.101096 −
h(−2) 0.970782 0.776609 − 1.014557 0.830161 −

h(2) := H 0.656075 0.555795 0.272705 0.633030 0.555509 0.304612
h(6) 0.528627 0.458362 − 0.500261 0.319560 −
h(10) 0.463959 0.425628 − 0.467171 0.267337 −
h(14) 0.432069 0.408090 − 0.458427 0.250053 −
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Figure 5.12: GDAXI Volatility Fluctuation Function Fq(δ) and the generalised
Hurst exponent h(q), q ∈ [−15, 15] (MF-DFA)

Period 0 Period 1

Figure 5.13: GDAXI Fluctuation Function Fq(δ) and ζ(q), q ∈ [0.5, 3] (MNI).

(A) Fq(δ) (B) ζ(q) ∼ qH

Table 5.9: GDAXI values of generalised Hurst exponent h(q)

Period 0 (Prior the Covid-19 pandemic) Period 1

h(q) MF-DFA Shuffled MNI MF-DFA Shuffled MNI

h(−14) 1.678776 1.215541 − 1.613181 1.235344 −
h(−10) 1.623902 1.150479 − 1.574803 1.174310 −
h(−6) 1.473403 0.989872 − 1.462481 1.027462 −
h(−2) 0.974964 0.713174 − 1.045414 0.778809 −

h(2) := H 0.539951 0.555377 0.295113 0.589171 0.557152 0.321595
h(6) 0.267405 0.483850 − 0.450309 0.343581 −
h(10) 0.214509 0.455224 − 0.425196 0.285758 −
h(14) 0.196061 0.440086 − 0.414179 0.266188 −
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Figure 5.14: GSPC Volatility Fluctuation Function Fq(δ) and the generalised
Hurst exponent h(q), q ∈ [−15, 15] (MF-DFA)

Period 0 Period 1

Figure 5.15: GSPC Fluctuation Function Fq(δ) and ζ(q), q ∈ [0.5, 3] (MNI).

(A) Fq(δ) (B) ζ(q) ∼ qH

Table 5.10: GSPC values of generalised Hurst exponent h(q)

Period 0 (Prior the Covid-19 pandemic) Period 1

h(q) MF-DFA Shuffled MNI MF-DFA Shuffled MNI

h(−14) 2.047344 1.264491 − 2.040143 1.320792 −
h(−10) 2.018016 1.139041 − 1.998172 1.261406 −
h(−6) 1.936343 0.992953 − 1.874105 1.108772 −
h(−2) 1.339908 0.739310 − 1.215638 0.821894 −

h(2) := H 0.762391 0.555491 0.280501 0.744185 0.557539 0.330803
h(6) 0.686119 0.464776 − 0.681556 0.293461 −
h(10) 0.656698 0.432597 − 0.627063 0.248721 −
h(14) 0.639907 0.416626 − 0.601072 0.234418 −
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Figure 5.16: HSI Volatility Fluctuation Function Fq(δ) and the generalised
Hurst exponent h(q), q ∈ [−15, 15] (MF-DFA)

Period 0 Period 1

Figure 5.17: HSI Fluctuation Function Fq(δ) and ζ(q), q ∈ [0.5, 3] (MNI).

(A) Fq(δ) (B) ζ(q) ∼ qH

Table 5.11: HSI values of generalised Hurst exponent h(q)

Period 0 (Prior the Covid-19 pandemic) Period 1

h(q) MF-DFA Shuffled MNI MF-DFA Shuffled MNI

h(−14) 1.241045 1.200398 − 1.371597 1.254418 −
h(−10) 1.212088 1.139041 − 1.315450 1.196501 −
h(−6) 1.133941 0.992953 − 1.183382 1.053445 −
h(−2) 0.857404 0.739310 − 0.849666 0.788817 −

h(2) := H 0.586586 0.555491 0.278996 0.596510 0.555450 0.282349
h(6) 0.612770 0.464776 − 0.424257 0.384711 −
h(10) 0.580548 0.432597 − 0.342621 0.336305 −
h(14) 0.555460 0.416626 − 0.304832 0.318986 −
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Figure 5.18: IXIC Volatility Fluctuation Function Fq(δ) and the generalised
Hurst exponent h(q), q ∈ [−15, 15] (MF-DFA)

Period 0 Period 1

Figure 5.19: IXIC Fluctuation Function Fq(δ) and ζ(q), q ∈ [0.5, 3] (MNI).

(A) Fq(δ) (B) ζ(q) ∼ qH

Table 5.12: IXIC values of generalised Hurst exponent h(q)

Period 0 (Prior the Covid-19 pandemic) Period 1

h(q) MF-DFA Shuffled MNI MF-DFA Shuffled MNI

h(−14) 1.687229 1.269386 − 1.878549 1.396210 −
h(−10) 1.639742 1.216256 − 1.826700 1.340509 −
h(−6) 1.518275 1.076540 − 1.693917 1.187641 −
h(−2) 1.126494 0.768008 − 1.139335 0.836749 −

h(2) := H 0.675043 0.555486 0.272079 0.717800 0.556574 0.328282
h(6) 0.559124 0.476950 − 0.693269 0.317135 −
h(10) 0.512165 0.440926 − 0.636601 0.268927 −
h(14) 0.491122 0.418427 − 0.609397 0.253728 −
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Figure 5.20: J203 Volatility Fluctuation Function Fq(δ) and the generalised
Hurst exponent h(q), q ∈ [−15, 15] (MF-DFA)

Period 0 Period 1

Figure 5.21: J203 Fluctuation Function Fq(δ) and ζ(q), q ∈ [0.5, 3] (MNI).

(A) Fq(δ) (B) ζ(q) ∼ qH

Table 5.13: J203 values of generalised Hurst exponent h(q)

Period 0 (Prior the Covid-19 pandemic) Period 1

h(q) MF-DFA Shuffled MNI MF-DFA Shuffled MNI

h(−14) 1.353418 1.314675 − 1.301887 1.2881311 −
h(−10) 1.318935 1.256170 − 1.258195 1.224682 −
h(−6) 1.240393 1.096257 − 1.155945 1.061922 −
h(−2) 0.864210 0.748953 − 0.845457 0.776682 −

h(2) := H 0.518455 0.555196 0.340130 0.663775 0.556908 0.346055
h(6) 0.410350 0.497614 − 0.938929 0.294917 −
h(10) 0.363307 0.476313 − 0.995972 0.243772 −
h(14) 0.339515 0.462623 − 1.007934 0.226535 −
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5.4 More implementations

5.4.1 Implementation on fBm

We would like to apply the previous approaches to test the roughness of fBm
(WH

t )t≥0, H∈(0,1) obtained through simulations. Note that fBm is a monofrac-
tal process where the generalised Hurst exponent h(q) := H is a constant.
Recall that techniques for simulation of fBm are divided into two categories:
the exact and approximate techniques. Exact techniques include the Hosking
method (Hosking; 1984), Cholesky method (Asmussen; 1998) and Davies-
Harte method (Davies and Harte; 1987). On the other hand, approximate
techniques rely heavily on representations and properties of fBm. A summary
of these techniques was discussed by Dieker (2004).

Figure 5.22: A sample path of fBms (WH)t∈[0,10], H = 0.2 and H = 0.7.

Consider a fBm (WH
t )t∈[0,10] with two different Hurst parameters H = 0.2 and

H = 0.7 as show on Figure 5.22. Next, we apply the MF-DFA approach to
analyse the roughness and to recover those Hurst parameters. The fluctuation
function and the generalised Hurst function are given in figures 5.23 and 5.24
for H = 0.2 and H = 0.7 respectively.
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Figure 5.23: Fq(δ) and h(q), q ∈ [0, 15] of fBm (WH
t )t∈[0,1], H=0.2.

Fq(δ) h(q)

Figure 5.24: Fq(δ) and h(q), q ∈ [0, 15] of fBm (WH
t )t∈[0,1], H=0.7.

Fq(δ) h(q)

We may observe that the values of Hurst parameters for fBm (WH
t ) with

H = 0.2 and H = 0.7 are recovered with an error of ±0.02 as shown in Table
5.14 below.

Table 5.14: Selected values of h(q) for fBms (WH
t )t∈[0,1], H=0.2, H=0.7

h(q) h(0.5) h(1) h(1.5) h(2) h(2.5) h(3)

(WH
t )t∈[0,1], H=0.2 0.221258 0.220367 0.220629 0.221740 0.223442 0.225521

(WH
t )t∈[0,1], H=0.7 0.686006 0.688613 0.691043 0.693179 0.694979 0.696447
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5.4.2 Implementation on stochastic process with an additive fBm

The stochastic process (Yt)t≥0 with additive fBm verifies the following differ-
ential equation:

dYt = f(t,Yt)dt+ νdWH
t , (5.9)

where f(t,Yt) and ν are respectively the adapted drift process and positive
constant volatility of (Yt)t≥0. This process was previously discussed by Nu-
alart and Ouknine (2002) and Hu et al. (2008) for H > 1/2. Particularly,
Nualart and Ouknine (2002) showed that (5.9) exists and is unique if the drift
function f(t,y) satisfies the linear growth condition (that is, for a constant
c > 0, |f(t,y)| ≤ c(1+ |z|)) for H < 1/2, and the Hölder continuity condition
for H > 1/2 (that is, for c > 0, y1, y2 ∈ R, 2−H

2
< α < 1 and β > H − 1

2
,

|f(t,y1)− f(t,y)| ≤ c(|y1 − y2|α + |t1 − t2|β)). This kind of process is impor-
tant in this work as it will be used as a stochastic model of instantaneous (or
spot) volatility in upcoming chapters. Further analysis such as positiveness
and differentiability will also be examined.

To generate sample paths of (5.9), we choose the drift function f(t,y) =

θt(µt − y)4, where θt = θ > 0 and µt = c + ν2

2θ

(
1 − e−2θt

)
, where c > 0 is a

constant. This yields the following drift function:

f(t,y) =
ν2

2θ

(
1− e−2θt

)
+ (c− θy2), (5.10)

We shall then simulate the corresponding process (Yt)t∈[0,T ] on a compact
interval [0, T ] using the Euler method (See e.g. Higham et al. (2002) for more
details about the method). Subdivide the interval [0,T ] into N subintervals
of equal length δt = T/N with end points 0 = t0, t1, t2, . . . , tN = T . The
corresponding discrete version of the process (Yt)t≥0 is given by

Ŷti = Ŷti−1
+ f(ti−1,Ŷti−1

)δt+ νδWH
ti

(5.11)

with δWH
ti

= WH
ti

−WH
ti−1

. Set all the parameters as follows: the constant

4In this case the stochastic process (Yt)t≥0 is mean-reverting.
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volatility ν = 0.2, initial value Y0 = 1, time-step δt = 0.001, θ = 1 and c = 0.
A sample path of (Yt)t≥0 for H = 0.2 and H = 0.7 are given respectively in
Figure 5.25.

Figure 5.25: A sample path of (Yt)t∈[0,10], H = 0.2 and H = 0.7.

The fluctuation function Fq(δ) and the generalised Hurst exponent h(q) for
the stochastic process (Yt)t≥0 with H = 0.2 and H = 0.7 are given in figures
5.26 and 5.27 respectively.

Figure 5.26: Fq(δ) and h(q) of (Yt)t∈[0,10] with H = 0.2.

Fq(δ) h(q)
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Figure 5.27: Fq(δ) and h(q), q ∈ [0, 15] of (Yt)t∈[0,10] with H = 0.7.

Fq(δ) h(q)

As previously, we recovered the values of Hurst parameters H = 0.2 and
H = 0.7 with an error of ±0.02 as shown in Table 5.14. This also shows that
h(q) depends only on the random part of the stochastic process (Yt)t≥0.

Table 5.15: Selected values of h(q) for (Yt)t∈[0,10], H=0.2, H=0.7

h(q) h(0.5) h(1) h(1.5) h(2) h(2.5) h(3)

(Zt)t∈[0,1], H = 0.2 0.221099 0.219903 0.219874 0.220703 0.222130 0.223936

(Zt)t∈[0,1], H = 0.7 0.686486 0.689173 0.691698 0.693941 0.695855 0.697444

5.5 Conclusion

In this chapter, we use multifractal detrended fluctuation analysis to demon-
strate that the volatility displays the multifractality property through re-
alised volatility time series estimated from prices of major stock market
log-return indices from 10 February 2012 to 10 August 2022. This multi-
fractality takes its origin from the broad probability density function as well
as temporal correlations. We also show that the volatility display long-range
dependence with Hurst parameter of order 0.5 to 0.7. These values are even
higher on the period from 08 February 2012 to December 2020, when the
Covid-19 pandemic was on its peak, with Hurst parameters of order 0.6 to
0.8. Similar results were found in Comte and Renault (1998), Cajueiro and
Tabak (2008), Chronopoulou and Viens (2010), Power and Turvey (2010),
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Abuzayed et al. (2018) and Cont and Das (2022).

When using the microstructure noise index technique, we find that the log-
volatility time series is rough for all realised volatility, that is, it displays
short-range dependence with Hurst parameter of order 0.2 to 0.3. These re-
sults are in line with some findings in Gatheral et al. (2018), Livieri et al.
(2018), Bayer et al. (2016) and Takaishi (2020). One may conclude that
there are some contradictions, and this is the subject of further investiga-
tions. However, in both cases, the Hurst parameter is not always half unlike
stochastic volatility models under standard Brownian such as the Heston
model.

Regarding the volatility roughness, Cont and Das (2022) believe that the
“origin of the roughness observed in realized volatility time series lies in the
microstructure noise rather than the volatility process itself”. On the other
hand, Alòs and Lorite (2021) think that short and long range volatility pro-
cesses are somehow compatible by illustrating the following example. Con-
sider two fBms (WH=0.2

t )t≥0 and (WH=0.7
t )t≥0. Then the random variable

Xt := WH=0.2
t +WH=0.7

t behaves either as a short or long range dependent
process as shown in Figure 5.28.
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Figure 5.28: Illustration of Long-range versus Short-range dependence of
different fractional Brownian motions.

(WH=0,2
t )t∈[0,10] (WH=0,7

t )t∈[0,10] Xt := WH=0,2
t +WH=0,7

t

5.5.1 Modelling volatility

Section 5.4.2 shows that the roughness of a given stochastic process depends
only on its random component. Therefore, it will make sense to replace the
standard Brownian motion of the stochastic volatility in Heston model by
a fBm discussed in chapter 2. The corresponding financial market model,
namely “fractional Heston model”, is then given by:

dAt = rAtdt,

dXt = ηXtdt+
√
YtXtdBt,

dYt = θ(µ− Yt)dt+ ν
√
YtdW

H
t

(5.12)

where the stochastic processes (Bt)t≥0 and (WH
t )t≥0 are indeed correlated.

The stochastic process (Yt)t≥0 is called “fractional Cox-Ingersoll-Ross (fCIR)”
process and can be considered as a generalisation of the standard CIR pro-
cess. The correlation between (Bt)t≥0 and (WH

t )t≥0 can be determined by
representing the fBm (WH

t ) in terms of a standard Brownian motion as in-
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5.5. Conclusion

troduced in Proposition 2.4. In the remainder of this thesis, we will use the
Volterra (or interval) representation defined by (2.4) and (2.5).

We may also note that the fCIR process (Yt)t≥0 cannot be used directly to
model volatility time series since its adapted volatility process ν

√
Yt does not

verify the Lipschitz condition to guarantee its existence and uniqueness. For
this reason, the stochastic process (Yt)t≥0 can be decomposed as a square of
a stochastic process with additive fBm of the form (5.9). This will be further
discussed in chapters 6 and 7.
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Chapter 6

Generalisation of Fractional
Heston-Type Model

The previous chapter shows clearly that the Hurst parameter is not neces-
sarily equal to half as in the case of stochastic volatility models driven by
standard Brownian motions (See e.g. Heston (1993) and subsequent results).
In this chapter, we discuss financial markets of the form (5.12) known as the
fractional Heston-type model and propose a general form of this model where
the adapted drift of the volatility is replaced by a continuous function. Our
analysis considers all values of Hurst parameters.

6.1 Fractional Heston Model

6.1.1 The financial market model

In the fractional Heston model, the standard Brownian motion (B̃t)t≥0 in
(4.28) is replaced by a fBm (WH

t )t≥0 with Hurst parameter H ∈ (0,1).
See e.g. Bayer et al. (2016), Alòs and Yang (2017), Livieri et al. (2018),
Bezborodov et al. (2019), Fallah et al. (2019), El Euch et al. (2019) and
Mishura and Yurchenko-Tytarenko (2020) with references therein. The re-
sulting stochastic volatility model is called “fractional Cox-Ingersoll-Ross
(fCIR) process”.
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6.1. Fractional Heston Model

The fCIR process has been defined in different ways. Alòs and Yang (2017)
defined the fCIR process for H > 1/2 in terms of fractional integral and
derived the approximated option price formula for an European option. On
the other hand, Mishura and Yurchenko-Tytarenko (2018) used the following
definition:

Yt(ω) = Z2
t (ω)1[0,τ(ω)), ∀t ≥ 0, ω ∈ Ω, (6.1)

where (Zt)t≥0 is a singular stochastic differential equation driven by an ad-
ditive fBm (WH

t )t≥0, H∈(0,1) and taking the following form:

dZt =
1

2

(
µ

Zt

− θZt

)
dt+

ν

2
dWH

t , (6.2)

with µ and θ defined as previously, ν is also a positive parameter and the
fBm (WH

t )t≥0 represents the source of randomness of both processes (Zt)t≥0

and (Yt)t≥0. In addition, the random variable τ in (6.1) represents the first
time the process (Zt)t≥0 hits zero. It is explicitly defined by

τ(ω) = inf
{
t > 0 : Zt(ω) = 0

}
. (6.3)

The numerical scheme of fCIR process defined by (6.1) and (6.2) was investi-
gated by Hong et al. (2019). The financial market model can be summarised
as follows: 

dAt = rAtdt,

dXt = ηXtdt+ σ(Yt)XtdBt,

Yt = Z2
t 1[0,τ(ω)]

dZt =
1
2

(
µ
Zt

− θZt

)
dt+ ν

2
dWH

t .

(6.4)

The financial market model (6.4) was previously used for pricing derivatives
by Bezborodov et al. (2019) for µ = 0 and Mishura and Yurchenko-Tytarenko
(2020) for any µ ≥ 0 in the case of long-range dependency volatility time-
series, that is where H > 1/2. For the case of rough volatility that is where
H < 1/2, some studies are currently being investigated but not in the form
of our financial market model.
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6.1. Fractional Heston Model

For example, El Euch and Rosenbaum (2018) and El Euch et al. (2019)
investigated the rough Heston model where the fractional volatility has a
special form which coincides with the standard Heston model when H → 1/2.
Some results were discussed in Bayer et al. (2016) where rough volatility takes
the form of the rough Bergomi model.

6.1.2 Option pricing

The risk-neutral approach (4.25) has mostly been used since the analytical
solution does not exist under fractional volatility modelling. Several investi-
gations are rather focused on computing the expected payoff function which
is not necessary continuous in general. For example, Bezborodov et al. (2019)
assumed that the stock price is driven by a geometric Brownian motion as in
(6.4) and the dynamics of instantaneous volatility (Yt)t≥>0 is described by a
fractional Ornstein-Uhlenbeck process that satisfies the following stochastic
differential equation:

dYt = −θYtdt+ dWH
t ,

where θ is positive parameter and (WH
t )t≥0 a fBm with H > 1/2. They

discussed the expected payoff in two representations: The first is similar to
Altmayer and Neuenkirch (2015) and is given by

E [h(XT )] = E

[
L(XT )

XT

(
1 +

IT
T

)]
where

L(XT ) =

∫ XT

0

h(x)dx and IT =

∫ T

0

1

σ(Yt)
dBt,

with σ(Yt) the volatility of the infinitesimal return that is differentiable and
satisfies the polynomial growth condition. The second representation of the
expected value is proposed as:

E [g(RT )] =
1√
2π

E

[
1

ĨT

∫ +∞

−∞
G
((
s+R0 + ηT − 1

2
ĨT

2)
ĨT

)
e−

s2

2 sds

]
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where

Rt := logXt, g(x) := h(ex), G(x) :=

∫ x

0

h(s)ds and ĨT
2
:=

∫ T

0

σ2(Ys)ds.

On the other hand, Alòs and Yang (2017) approximated the option price
formula in terms of the Black-Scholes formula that works only for European
option and for H > 1/2. They constructed the fractional volatility process
from the standard CIR process Ỹt = Z̃t

2, where (Z̃2
t )t≥0 satisfies

Z̃t
2
= θ + (Z̃0

2 − θ)e−κt + ν

∫ t

0

e−κ(t−s)Z̃sdWt,

where θ, κ and ν are positive parameters, and where (Wt)t≥0 represents the
standard Brownian motion. Setting

C1(t, Z̃0) = θ + (Z̃0
2 − θ)e−κt

and
ZW

t =

∫ t

0

e−κ(t−s)Z̃sdWt,

the fractional volatility process Ỹt = Z̃2
t can be constructed as follows

Z̃2
t = C1(t, Z̃0) + a1νZ

W
t + a2νI

H− 1
2

+ ZW
t

with a1 and a2 non-random positive parameters and Ix+f(t) the fractional
Riemann-Liouville integral defined by

Ix+ =
1

Γ(x)

∫ t

0

(t− s)x−1f(s)ds.

Let PBS(t,Xt) be the option price under the classical Black-Scholes model
and set

Mt =

∫ T

t

E
[
Z̃2

s

]
ds.

Then the option price P (t,Xt) under fractional volatility model can be ap-
proximated for the European option (that is when h(XT ) = (XT − S)+) as
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6.2. Generalisation of Fractional Heston Model

follows:

P (t,Rt) = PBS(0,R0)+
1

2

∫ T

0

e−rsJ1(s,Rs)Z̃td〈M,R〉s

+
1

8

∫ T

0

e−rsJ2(s,Rs)Z̃td〈M,R〉s.

where

J1(s,Rs) =

(
∂3

∂s3
− ∂2

∂s2

)
PBS(s,Rs)

and

J2(s,Rs) =

(
∂4

∂s4
− 2

∂2

∂s3
+

∂2

∂s2

)
PBS(s,Rs).

For more details, see Alòs and Yang (2017).

6.2 Generalisation of Fractional Heston Model

Although the stochastic volatility process in (6.4) presents several important
features, its drift function that consists of the reversion speed and long-run
mean are assumed to be constant. This is not always consistent with the
volatility time-series and perfect calibration of the parameters may not be
possible. For example, Benhamou et al. (2010) shows that calibrating with
time-varying parameters of the drift function minimises the calibration er-
ror. El Euch et al. (2019) have noted similar observations for rough volatility
models.

To overcome this, we leave a window of flexibility of the drift taking a gen-
eral form and satisfying some weak assumptions that will be discussed later.
We shall now introduce a fractional Heston-type model where the volatility
follows a generalised fCIR process defined as a square of a stochastic process
driven by an additive fBm with H ∈ (0,1). In the next section, we shall
discuss the existence and uniqueness of such a stochastic process.
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6.2. Generalisation of Fractional Heston Model

6.2.1 The generalised fCIR process

Definition 6.1. Let (Zt)t≥0 be a stochastic process that satisfies the follow-
ing stochastic differential equation

dZt =
1

2
f(t,Zt)Z

−1
t dt+

ν

2
dWH

t , (6.5)

where f : [0,∞) × [0,∞) → (−∞,∞), (t, z) 7→ f(t,z) is a continuous func-
tion. Then the generalised fCIR process (Yt)t≥0 is defined by

Yt = Z2
t 1[0,τ)(t). (6.6)

This kind of stochastic process was previously introduced by Hu et al. (2008).
To ensure the existence of the solution to (6.5), we need to impose the fol-
lowing conditions on the drift function f(t,z) given in the assumption below.

Assumption 6.1.

(i) The drift function g : [0,∞)× (0,∞) → (−∞,∞) defined by g(t,z) =
f(t,z)/z is continuous and admits a continuous partial derivative with
respect to z on (0,∞). In addition, there exists a number z∗ > 0 such
that for every z > z∗, g(t,z) < 0, for all t ≥ 0.

(ii) for any T > 0, there exists zT > 0 such that f(t, z) > 0 for all
0 < t ≤ T and 0 ≤ z ≤ zT .

Theorem 6.1. If the drift function f(t,z) satisfies Assumption 6.1, then
for all H ∈ (0,1), equation (6.5) has a unique solution (Zt)t≥0 which is
continuous and positive up to time of the first visit to zero.

Proof. Let ℓ > 0 be a small number such that ℓ < Z0. For fixed T > 0,
consider the sequence of processes (Zn(t)) defined on [0, T ] by

Z0(t) = Z0,

for all t ∈ [0,T ] and for all n ∈ N,

Zn+1(t) =


Z0 +

∫ t

0

g(s, Zn(s))ds+
σ
2
WH

t , if t ≤ τn,ℓ

ℓ otherwise
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6.2. Generalisation of Fractional Heston Model

where g(t,z) = f(t,z)/(2z) and τn,ℓ = inf{0 ≤ t ≤ T : Zn(t) = ℓ} where τn,ℓ is
the first time that the process (Zn(t)) reaches the level ℓ with inf(∅) = +∞.
Clearly, if Zn(t) does not reach the level ℓ on [0,T ], then Zn+1 is defined by

Zn+1(t) = Z0 +

∫ t

0

g(s, Zn(s))ds+
σ

2
WH

t , t ∈ [0,T ].

For instance

Z1(t) = Z0 +

∫ t

0

g(s, Z0)ds+
σ

2
WH

t , t ∈ [0,T ].

We want to show that there exists a number η > 0 independent of n and such
that τn,ℓ ≥ η for all n. It is clear that τn,ℓ ≥ τn+1,ℓ because Zn+1(t) = ℓ for all
t ≥ τn,ℓ. The function t 7→ g(t, Zn(t)) is bounded on t ∈ [0, τn,ℓ]. Indeed, for
every t ∈ [0, τn,ℓ], write [0, t] = I1 ∪ I2 where I1 is the union of sub-intervals
of [0, t] where Zn ≤ z∗ and I2 is the union of sub-intervals of [0, t] where
Zn > z∗. Then∫ t

0

g(s, Zn(s))ds =

∫
I1

g(s, Zn(s))ds+

∫
I2

g(s, Zn(s))ds ≤
∫
I1

g(s, Zn(s))ds

because g(s, Zn(s)) < 0 for s ∈ I2 by Assumption 6.1(i). Therefore

Zn+1(t) = Z0 +

∫ t

0

g(s, Zn(s))ds+
σ

2
WH

t

≤ Z0 +

∫
I1

g(s, Zn(s))ds+
σ

2
WH

t .

Let
A = sup({|g(s, z)| : s ∈ [0, T ] and z ∈ [ℓ, z∗]}).

Clearly A < ∞ because g is continuous on [0,+∞) × (0,+∞). Because for
s ∈ I1, Zn(s) < z∗, then

Zn+1(t) ≤ Z0 + At+
σ

2
WH

t ≤ B
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where
B = Z0 + AT +

σ

2
sup

0≤t≤T
|WH

t |.

(Here the bound B is independent of n). Therefore for all t ∈ [0, τn,ℓ], we
have that Zn+1(t) ∈ [ℓ, B] for all n ∈ N. Since τn+1,ℓ ≤ τn,ℓ, it follows in
particular that

Zn+1(t) ∈ [ℓ, B] for all 0 ≤ t ≤ τn+1,ℓ.

Moreover, since by definition,

Zn+1(t) = Z0 +

∫ t

0

g(s, Zn(s))ds+
σ

2
WH

t ,

taking t = τn+1,ℓ yields

ℓ = Z0 +

∫ τn+1,ℓ

0

g(s, Zn(s))ds+
σ

2
WH

τn+1,ℓ
.

Set
K = sup({|g(s, z)| : s ∈ [0, T ] and z ∈ [ℓ, B]}),

then
ℓ ≥ Z0 −Kτn+1,ℓ +

σ

2
WH

τn+1,ℓ
.

Equivalently
σ

2
WH

τn+1,ℓ
≤ ℓ− Z0 +Kτn+1,ℓ

which implies that

τn+1,ℓ ≥ inf{t ≥ 0 :
σ

2
WH

t ≤ ℓ− Z0 +Kt}.

Set
η = inf{t ≥ 0 :

σ

2
WH

t ≤ ℓ− Z0 +Kt}.

Clearly η > 0 because obviously the fractional Brownian motion (WH
t ) starts

at 0, that is, WH
0 = 0 and ℓ < Z0. Hence, τn+1,ℓ ≥ η > 0 uniformly for n

(and η is independent of n).
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6.2. Generalisation of Fractional Heston Model

Let τℓ = infn≥0 τn,ℓ, then τℓ ≥ η > 0. We will then show that the problem has
a positive solution on the interval [0,τℓ]. For all n and all t ∈ [0,τℓ], Zn(t) ≥ ℓ

and Zn(t) ≤ B.

Since the function g(t,x) admits a partial derivative with respect to x on
(0,∞), then in particular for fixed t, the function (t,x) 7→ g(t,x) is uniformly
Lipschitz for x in a bounded closed interval away from 0. In addition, since
for all t ∈ [0, τℓ], Zn(t) ∈ [ℓ, B], then there exists C > 0 such that

∣∣g(t,Zn(t))− g(t,Zn−1(t))
∣∣ ≤ C

∣∣Zn(t)− Zn−1(t)
∣∣, t ∈ [0,τℓ].

Therefore,

∣∣Zn+1(t)− Zn(t)
∣∣ ≤

∫ t

0

∣∣(g(s,Zn(s))− g(s,Zn−1(s)))
∣∣ds

≤ C

∫ t

0

∣∣Zn(s)− Zn−1(s)
∣∣ds.

Then an application of Grönwall’s lemma implies that the sequence (Zn(t))

converges uniformly on the interval [0, τℓ] and hence its limit is a positive
continuous solution to (6.5) on [0, τℓ]. Therefore, equation (6.5) admits a
positive solution up to the first time it hits the level ℓ. For the uniqueness of
the solution, if (Zt) and (Z̃t) are two solutions on some interval [0, τℓ) starting
at the same point Z0, then for any t < τℓ,

|Zt − Z̃t| ≤
∫ t

0

|(g(s, Zs)− g(s, Z̃s))|ds ≤ C

∫ t

0

|Zs − Z̃s|ds.

Again Grönwall’s lemma implies that Zt = Z̃t everywhere in [0, τℓ). Since
ℓ > 0 can be taken arbitrarily small, this implies the existence of a solution
up to the first time it hits 0.

In the next proposition, we prove that the generalised fCIR process can be
represented in a standard form of fCIR process in terms of the Stratonovich
integral (See Definition (3.7), (3.19)).
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Proposition 6.2. The generalised fCIR process (Yt)t≥0 defined by (6.6) up
to the first time it hits zero, satisfies the following stochastic differential equa-
tion:

dYt = f(t,
√
Yt)dt+ ν

√
Yt ◦ dWH

t . (6.7)

Proof. For τ := inf{s > 0 : Zs = 0} and t ∈ [0,τ) fixed, we have from equa-
tions (6.5) and (6.6) that

Yt = Z2
t =

(
Z0 +

1

2

∫ t

0

f(s,Zs)Z
−1
s ds+

ν

2
dWH

t

)2

,

where Z0 is an initial value of the stochastic process (Zt)t∈[0,τ). In discrete
time, assume that the interval [0, t] is subdivided into N equal subintervals
with 0 < t1 < · · · < tN = t, the time-steps ∆t = t/N , and ti = i∆t,

i = 0, · · ·, N. Then it follows that

Yt = Y0 +
N∑
i=1

(Yti − Yti−1
)

= Y0 +
N∑
i=1

([
Z0 +

∫ ti

0

1

2
f(s,Zs)Z

−1
s ds+

ν

2
dWH

ti

]2
−
[
Z0 +

1

2

∫ ti−1

0

f(s,Zs)Z
−1
s ds+

ν

2
WH

ti−1

]2)

= Y0 +
N∑
i=1

[
1

2

∫ ti

ti−1

f(s,Zs)Z
−1
s ds+

ν

2

(
WH

ti
−WH

ti−1

)]
×
[
2Z0 +

1

2

(∫ ti

0

f(s,Zs)Z
−1
s ds+

∫ ti−1

0

f(s,Zs)Z
−1
s ds

)
+
ν

2

(
WH

ti
+WH

ti−1

)]
.

The last equation above is obtained by factorising the difference of two
squares. After some expansions, we obtain that
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Yt = Y0 + Z0

N∑
i=1

∫ ti

ti−1

f(s,Zs)Z
−1
s ds

+
1

4

N∑
i=1

∫ ti

ti−1

f(s,Zs)Z
−1
s ds

(∫ ti

0

f(s,Zs)Z
−1
s ds+

∫ ti−1

0

f(s,Zs)Z
−1
s ds

)

+
ν

4

N∑
i=1

(
WH

ti
+WH

ti−1

)∫ ti

ti−1

f(s,Zs)Z
−1
s ds

+ νZ0

N∑
i=1

(
WH

ti
−WH

ti−1

)
+
ν

4

N∑
i=1

(∫ ti

0

f(s,Zs)Z
−1
s ds+

∫ ti−1

0

f(s,Zs)Z
−1
s ds

)(
WH

ti
−WH

ti−1

)
+
ν2

4

N∑
i=1

(
WH

ti
+WH

ti−1

)(
WH

ti
−WH

ti−1

)
.

Let

Yt = Y0 +
6∑

k=1

Ik(N,t,Zt)

where

I1(N, ti,Zti) = Z0

N∑
i=1

∫ ti

ti−1

f(s,Zs)Z
−1
s ds

I2(N, ti,Zti) =
1

4

N∑
i=1

∫ ti

ti−1

f(s,Zs)Z
−1
s ds

(∫ ti

0

f(s,Zs)Z
−1
s ds+

∫ ti−1

0

f(s,Zs)Z
−1
s ds

)

I3(N, ti,Zti) =
ν

4

N∑
i=1

(
WH

ti
+WH

ti−1

)∫ ti

ti−1

f(s,Zs)Z
−1
s ds

I4(ti,Zti) = νZ0

N∑
i=1

(
WH

ti
−WH

ti−1

)

I5(N, ti,Zti) =
ν

4

N∑
i=1

(∫ ti

0

f(s,Zs)Z
−1
s ds+

∫ ti−1

0

f(s,Zs)Z
−1
s ds

)(
WH

ti
−WH

ti−1

)
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I6(N, ti,Zti) =
ν2

4

N∑
i=1

(
WH

ti
+WH

ti−1

)(
WH

ti
−WH

ti−1

)
.

Set
I(t) =

∫ t

0

f(s,Zs)Z
−1
s ds.

Then it follows that

3∑
k=1

Ik(N, ti,Zti) =
(
I(ti)− I(ti−1)

)
Z0

+
N∑
i=1

(
I(ti)− I(ti−1)

)((I(ti)− I(ti−1)

4
+
ν(WH

ti
+WH

ti−1
)

4

)
.

After making use of the definition of Stratonovich integral 3.7, we get the
following

lim
N→∞

3∑
k=1

Ik(N, ti,Zti) = Z0I(t) +
1

2

∫ t

0

(
I(s) + νWH

s

)
◦ dI(s).

Since I(s) is differentiable, then it follows that

lim
N→∞

3∑
k=1

Ik(N, ti,Zti) = Z0I(t) +
1

2

∫ t

0

(
I(s) + νWH

ts

)
dI(s)

=

(∫ t

0

f(s,Zs)Z
−1
s ds

)
Z0

+
1

2

∫ t

0

((∫ s

0

f(u,Zu)Z
−1
u du

)
+ νWH

s

)
f(s,Zs)Z

−1
s ds

=

∫ t

0

f(s,Zs)Z
−1
s

(
Z0 +

1

2

∫ s

0

f(u,Zu)Z
−1
u du+

ν

2
WH

s

)
ds

=

∫ t

0

f(s,Zs)Z
−1
s Zsds =

∫ t

0

f(s,Zs)ds.
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On the other hand

6∑
k=4

Ik(N,ti,Zti) = νZ0

N∑
i=0

(
WH

ti
−WH

ti−1

)

+
ν

2

N∑
i=0

I(ti) + I(ti−1)

2

(
WH

ti
−WH

ti−1

)

+
ν2

4

N∑
i=0

(
WH

ti
+WH

ti−1

)(
WH

ti
−WH

ti−1

)
.

Once more, we get from Definition 3.7 the following result

lim
N→∞

6∑
k=4

Ik(N,ti,Zti) = νZ0W
H
t +

ν

2

∫ t

0

I(s) ◦ dWH
s +

ν2

2

∫ t

0

WH
s ◦ dWH

s

= νZ0W
H
t +

ν

2

∫ t

0

(∫ s

0

f(u,Zu)Z
−1
u du

)
◦ dWH

s

+
ν2

2

∫ t

0

WH
s ◦ dWH

s

= νZ0W
H
t +

ν

2

∫ t

0

(
2Zs − 2Z0 − νWH

s

)
◦ dWH

s

+
ν2

2

∫ t

0

WH
s ◦ dWH

s

= ν

∫ t

0

Zs ◦ dWH
s .

The second equality holds since
∫ s

0
f(u,Zu)Z

−1
u du = 2Zs − 2Z0 − νWH

s . Now
when N → ∞, that is when δt→ 0, we have

lim
N→∞

YδtN = Y0 + lim
N→∞

6∑
k=1

Ik(N,t,Zt)

= Y0 +

∫ t

0

f(s,Zs)ds+ ν

∫ t

0

Zs ◦ dWH
s

= Y0 +

∫ t

0

f
(
s,
√
Ys
)
ds+ ν

∫ t

0

√
Ys ◦ dWH

s .
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It follows that
dYt = f(t,

√
Yt)dt+ ν

√
Yt ◦ dWH

t ,

which concludes the proof of this proposition.

Remark 6.1. The function f(t,
√
Yt) represents the drift of the generalised

fCIR process (Yt)t≥0.

6.2.2 The generalised fractional Heston-Type model

We may now construct the fractional Heston model under the generalised
fCIR process that shall be called “Generalised fractional Heston-type (fHt)
model”. The fBm (WH

t )t≥0 shall be represented by

WH
t =

∫ t

0

κH(s,t)dVt, (6.8)

where (Vt)t∈[0,T ] is a standard Brownian motion and where κH(s,t) is a square
integrable kernel given by (2.5). The Brownian motion (Bt)t∈[0,T ] (which
represents the source of randomness of the stock price process (Xt)t∈[0,T ])
and Brownian motion (Vt)t∈[0,T ] are assumed to be correlated. That is, there
exists a constant ρ ∈ [−1, 1] such that

E
[
BtVt

]
= ρt. (6.9)

The relation (6.9) means that there exists a Brownian motion (Ṽt)t∈[0,T ] in-
dependent of (Vt)t∈[0,T ], that is E

[
Vt,Ṽt

]
= 0, such that

Bt = ρVt +
√

1− ρ2Ṽt. (6.10)

Therefore, all components of the financial market model under fCIR process
are summarised as follows:
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dAt = rAtdt,

dXt = ηXtdt+ σ(Yt)XtdBt,

Yt = Z2
t 1[0,τ(ω)]

dZt =
1
2
f(t,Zt)Z

−1
t dt+ 1

2
νdWH

t

WH
t =

∫ t

0

κH(s,t)dVt

Bt = ρVt +
√

1− ρ2Ṽt.

(6.11)

Remark 6.2. For H > 1/2 and when f(t,z) = (µ−θz2) where θ and µ are con-
stants, the generalised fCIR process (Yt)t≥0 coincides with the fCIR process
given by Mishura and Yurchenko-Tytarenko (2018). When f(t,z) = −θz2,
then (Yt)t≥0 coincides with the one defined in Mishura et al. (2018).

In addition, when the speed of reversion or the long-run mean are time depen-
dent, that is θ = θt or µ = µt with f(t,z) = (µt−θtz2), the process (Yt)t≥0 can
be regarded as time-dependent fCIR process and the corresponding market
shall be called “time-dependent fHt model” and shall be considered as an ex-
tension of time-dependent Heston model previously discussed by Benhamou
et al. (2010). This kind of model has not been investigated thus far to the
best of our knowledge.

Taking into consideration Proposition 6.2, the financial market model can be
written as 

dAt = rAtdt

dXt = ηXtdt+ σ(Yt)XtdBt

dYt = f(t,
√
Yt)dt+ ν

√
Yt ◦ dWH

t

WH
t =

∫ t

0

κH(s,t)dVt

Bt = ρVt +
√

1− ρ2Ṽt.

(6.12)
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Remark 6.3.

(1) This financial market model is applicable for all H ∈ (0,1) unlike pre-
vious models which only work for H ≥ 1/2.

(2) The stock price process (Xt)t≥0 is given by

Xt = X0 exp

[
ηt+

∫ t

0

σ(Ys)dBs −
1

2

∫ t

0

σ2(Ys)ds

]
. (6.13)

Since the stock price is driven by a standard Brownian motion, it is
easy to show from Itô calculus that (Xt)t≥0 and its infinitesimal return
dRt := dXt/Xt exist and are unique. This is due to the fact that∫ t

0

E[σ2(Ys)]ds <∞ and
∫ t

0

E
[
(σ(Ys)Xs)

2] ds <∞.

6.2.3 No arbitrage properties

The arbitrage-free property can be determined by the existence of an equiva-
lent martingale measure as discussed previously. Since the stock price process
is still driven by the standard Brownian motion, one may follow the idea of
Bezborodov et al. (2019, Theorem 4) to prove that the probability measure
Q exists and can be deduced from the following equation:

dQ

dP
=exp

(
−(η − r)2

2

∫ T

0

1

σ2(Ys)
ds

+(η − r)ρ

∫ T

0

1

σ(Ys)
dVs +

√
1− ρ2 (η − r)

∫ T

0

1

σ(Ys)
dṼs

)
.

(6.14)

Remark 6.4. The equation (6.14) is well-defined if the Assumption 4.1 is
satisfied. In general, the sample paths of the stochastic volatility process
must always be strictly positive almost surely. This property is crucial and
will be discussed in our next chapter.
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Chapter 7

Positiveness and Differentiability of
The Generalised Fractional
Heston-Type Model

In this chapter, we discuss positiveness of the generalised fCIR process of the
fractional Heston-type model defined by Yt(ω) = Z2

t (ω)1[0,τ(ω)), where the
stochastic process (Zt)t≥0 satisfies a singular stochastic differential equation
driven by an additive fBm given by dZt = 1

2

(
f(t, Zt)Z

−1
t dt+ σdWH

t

)
as

previously. We also show that both the fractional volatility and stock price
processes are Malliavin differentiable. This last property is an open-door
to further applications of Malliavin calculus in quantitative finance and all
results of standard Heston model case (See e.g. Alòs and Lorite (2021) for a
summary) can be extended to fractional Heston models.

7.1 Positiveness of the generalised fCIR process

Positiveness is an important property that deserves particular attention. Re-
call that the standard Cox-Ingersoll-Ross process is positive when the Feller
condition 2θµ > ν2 holds. For the generalised fCIR process, we firstly con-
sider the Assumption 6.1 given again by

(i) The drift function g : [0,∞)× (0,∞) → (−∞,∞) defined by g(t,z) =
f(t,z)/z is continuous and admits a continuous partial derivative with
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respect to z on (0,∞). In addition, there exists a number z∗ > 0 such
that for every z > z∗, g(t,z) < 0, for all t ≥ 0, and

(ii) for any T > 0, there exists zT > 0 such that f(t, z) > 0 for all
0 < t ≤ T and 0 ≤ z ≤ zT .

7.1.1 Positiveness analysis of fCIR process for H > 1/2

Theorem 7.1. Let (Zt)t≥0 be a stochastic process defined by

dZt =
f(t,Zt)

2Zt

dt+
ν

2
dWH

t , Z0 > 0, (7.1)

where ν > 0, (WH
t )t≥0 is a fBm with H > 1

2
and f : [0,∞) × [0,∞) is a

continuous function that satisfies Assumption 6.1. Then the sample paths
Zt(ω) are positive almost surely.

Proof. The existence and uniqueness of the stochastic process (Zt)t≥0 were
discussed in Theorem 6.1. We shall now prove that under the same assump-
tion, the process (Zt)t≥0 is positive and will never hit zero almost surely. To
achieve that, we have to show that

P(ω ∈ Ω : τ = ∞) = 1,

where τ(ω) = inf{t > 0 : Zt(ω) = 0}. We prove this by contradiction by
assuming that P(ω ∈ Ω : τ = ∞) < 1 or equivalently P(ω ∈ Ω : τ < T ) > 0,

for any T > 0. As discussed in our first chapter, the sample paths of fBm
(WH

t )t≥0 is locally Hölder continuous of order H − α for each small number
α > 0. Therefore, we can fix a subset Ω1 of the underlying sample space Ω

with P(Ω1) = 1 such that for each ω ∈ Ω1, α > 0,

∣∣WH
t (ω)−WH

s (ω)
∣∣ ≤ c|t− s|H−α, ∀s, t ∈ [0, T ]

where c = c(T, ω, α) is a random constant depending on T , ω and α. Our
assumption P(τ < T ) > 0 implies P(τ < T ) = P{ω ∈ Ω1 : τ(ω) < T} > 0.

Now choose ω ∈ Ω1 with τ(ω) < T . It is given that the process (Zt) starts at
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the point Z0 > 0. Consider a small number ε such that 0 < ε < Z0 and let
τε be the last time the process (Zt(ω))t≥0 hits ε before reaching zero, that is,

τε(ω) = sup{t ∈ (0,τ(ω)) : Zt(ω) = ε}. (7.2)

Since
Zt = Z0 +

1

2

∫ t

0

f(s,Zs)Z
−1
s ds+

ν

2
WH

t ,

then
Zτ − Zτε =

1

2

∫ τ

τε

f(s,Zs)Z
−1
s ds+

ν

2

(
WH

τ −WH
τϵ

)
.

Since clearly, Zτ = 0 and Zτε = ε, then

1

2

∫ τ

τε

f(s,Zs)Z
−1
s ds+

ν

2

(
WH

τ −WH
τϵ

)
= −ε

or equivalently,

ν

2

(
WH

τ −WH
τϵ

)
= −ε− 1

2

∫ τ

τε

f(s,Zs)Z
−1
s ds.

As f(t, z) is a positive function and Zs > 0 for all s < τ , then clearly∫ τ

τε

f(s,Zs)Z
−1
s ds > 0.

This implies that

ν

2

∣∣WH
τ −WH

τϵ

∣∣ = ε+
1

2

∫ τ

τε

f(s,Zs)Z
−1
s ds

or equivalently

ν
∣∣WH

τ −WH
τϵ

∣∣ = 2ε+

∫ τ

τε

f(s,Zs)Z
−1
s ds.

Since ω ∈ Ω1, and τε, τ ∈ [0, T ], then

∣∣WH
τ −WH

τϵ

∣∣ < c
∣∣τ − τε

∣∣H−α
.
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Hence
2ε+

∫ τ

τε

f(s,Zs)Z
−1
s ds ≤ νc

∣∣τ − τε
∣∣H−α

.

On the other hand, for all s ∈ [τε, τ ], it is the case that Zs ∈ [0,ε]. Let

f̃ = inf{f(t,z) : 0 ≤ t ≤ T, 0 ≤ z ≤ Z0}.

The infimum f̃ exists because f is continuous. Since 0 < τϵ < τ ≤ T and
0 < ε < Z0, then for all s ∈ [τε, τ ], f(s, Zs) ≥ f̃ . This implies f(s,Zs)Z

−1
s ≥

f̃ ε−1 that yields∫ τ

τε

f(s,Zs)Z
−1
s ds ≥

∫ τ

τε

f̃ ε−1ds = f̃ ε−1(τ − τε). (7.3)

Therefore, 2ε+ f̃ ε−1(τ − τε) ≤ νc
∣∣τ − τε

∣∣H−α from which it follows that

f̃ ε−1(τ − τε)− cν
∣∣τ − τε

∣∣H−α
+ 2ε ≤ 0. (7.4)

Consider the function Fε defined by

Fε(x) = f̃ ε−1x− cνxH−α + 2ε,

that is, Fε(x) is obtained by replacing τ − τε with x. Then the inequality
(7.4) yields

Fε(τ − τε) ≤ 0, (7.5)

for all ω ∈ Ω1 such that τ(ω) < T . The next step in this proof is to show
that the inequality in (7.5) does not hold. First of all, it is clear that Fε(0) =

2ε > 0. We shall indeed obtain that there exists a fixed number ε∗ > 0, such
that for all 0 < ε < ε∗, it is the case that Fε(x) > 0 for all x > 0. This
will contradict (7.5) from which it will follow that P(τ < T ) = 0 for a fixed
time T . To show that Fε(x) > 0 for all x > 0, we need to find all critical
points of Fε(x). Clearly, the first and second derivatives with respect to x

are respectively given by

F ′
ε(x) = f̃ ε−1 − cν(H − α)xH−α−1
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and
F ′′
ε (x) = −cν(H − α)(H − α− 1)xH−α−2.

It is clear that Fε(x) is convex as F ′′
ε (x) > 0. Moreover, the critical point x̂

of Fε(x) is given by

x̂ =

(
f̃ ε−1

cν(H − α)

) 1
H−α−1

.

Note that x̂ is well defined since f̃ ≥ 0. Hence,

Fε(x̂) = f̃ ε−1x̂− cνx̂H−α + 2ε

= x̂
(
f̃ ε−1 − cνx̂H−α−1

)
+ 2ε

= x̂

(
f̃ ε−1 − f̃ ε−1

H − α

)
+ 2ε

=
x̂f̃ε−1(H − α− 1)

H − α
+ 2ε

=

(
f̃H−α

cν(H − α)2+α−H

) 1
H−α−1

ε
H−α

1−H+α (H − α− 1) + 2ε.

Since H − α− 1 < 0, then

Fε(x̂) ≥

(
f̃H−α

cν(H − α)2+α−H

) 1
H−α−1

ε
H−α

1−H+α (H − α− 1) + 2ε.

Set

κ = −

(
f̃H−α

cν(H − α)2+α−H

) 1
H−α−1

(H − α− 1)

q =
H − α

1−H + α
.

Clearly, since H > 1/2, we can choose α so small that H > 1
2
+α and obtain

that q ≥ 1. Then it follows that
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Fε(x̂) ≥ −κεq + 2ε.

It is now an easy matter to show that there exists ε∗ > 0 such that for all
0 < ε < ε∗, it is the case that

Fε(x̂) ≥ −κεq + 2ε > 0.

Indeed, choosing ε∗ ≤
(
2
κ

) 1
q−1 yields Fε(x̂) > 0 for all x > 0. This concludes

the proof of the theorem.

To illustrate the above result of Theorem 7.1, we consider a generalisation
of a time-dependent CIR process commonly known as the “extended CIR”
process. Recall that the extended CIR process is defined by

dYt = θt(µt − Yt)dt+ ν
√
YtdWt, Y0 > 0 (7.6)

where θt is the time-dependent speed of reversion towards its time-dependent
long run mean µt of the process (Yt)t≥0 and ν a positive parameter. This
model was initially introduced by Hull and White (1990) and it is widely
used in both short interest rates and stochastic volatilities modelling as time-
dependent Heston model (See e.g. Benhamou et al. (2010)). The choice of
parameters θt and µt are done through market calibration. The general case
where the Brownian motion is replaced with a fBm shall be called “time-
dependent fCIR process” and takes the form

Yt = Z2
t 1[0,τ), t ≥ 0 (7.7)

where
dZt =

f(t,Zt)

2Zt

dt+
ν

2
dWH

t , Z0 > 0. (7.8)

with the drift function given by

f(t,z) = θt
(
µt − z2

)
. (7.9)

We shall then simulate the corresponding process (Yt)t∈[0,T ] on a finite inter-
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val [0, T ] using the Euler method (See e.g. Higham et al. (2002) for more
details about the method). Subdivide the interval [0,T ] into N subintervals
of equal length δt = T/N with end points 0 = t0, t1, t2, . . . , tN = T . The
corresponding discrete version of the process (Yt)t≥0 is given by

X̂ti = Ẑ2
ti
,

where Z0 > 0 and for i = 1,2, . . . , N ,

Ẑti =


Ẑti−1 +

f(ti−1,Ẑti−1
)

2Ẑti−1

δt+
ν

2
δWH

ti
if Zti−1

> 0,

0 otherwise

with δWH
ti

= WH
ti

−WH
ti−1

.

In what follows, we shall consider two different drift functions for simulation
of the process (7.8). Firstly, let θt = θ > 0 and µt = c+ ν2

2θ

(
1− e−2θt

)
, where

c > 0 is a constant. This yields the drift function

f(t,z) =
ν2

2θ

(
1− e−2θt

)
+ (c− θz2), (7.10)

It is clear that the function f(t,z) satisfies Assumption 6.1.

We simulate 1000 sample paths of the process (Yt)t∈[0,T ] where T = 10, volatil-
ity ν = 0.4 starting at Z0 = 1 with time-step δt = 0.001 and the results are
given in Figure 7.1 (with given parameters c, θ and H). All the sample paths
in Figures 7.1 where H > 0.5 are strictly positive (do not hit zero) in line
with Theorem 7.1.
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Figure 7.1: (A) Sample paths of fCIR process for H > 1/2

θ = 1, c = 2, H = 0.6 θ = 1, c = 2, H = 0.8

For the second illustration, we consider again θt = θ > 0 and µt =
(
1 + c

θ

)
ect+

ν2

2θ

(
1− e−2θt

)
, where c > 0 is a constant. This yields the functions

f(t,z) =
(
θ + c

)
ect +

ν2

2

(
1− e−2θt

)
− θz2, (7.11)

As previously, we considered 1 000 realisations of the sample paths of the
stochastic process (Yt)t∈[0,10] with volatility ν = 0.4 starting at v0 = 1 with
time-step δt = 0.001. We have observed similar results and the output is
given in Figure 7.2.

Figure 7.2: (B) Sample paths of fCIR process for H > 1/2

θ = 1, c = 0.02, H = 0.6 θ = 1, c = 0.02, H = 0.8
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7.1.2 Analysis of Positiveness of (Yt)t≥0 for H < 1/2

The proof of Theorem 7.1 relies heavily on the fact that H > 1/2 and in
general the result is not true for H < 1/2. We shall consider a sequence of
continuous functions

fk(t, z) : [0,∞)× [0,∞) → (−∞,+∞), k ∈ N

such that each function fk satisfies the Assumption 6.1. Moreover for each
point (t,z) ∈ [0,∞) × [0,∞), fk(t,z) ≤ fk+1(t,z) and limk→∞ fk(t,z) = ∞.

Now, consider for each k, the stochastic process (Z
(k)
t )t≥0 defined by

Z
(k)
t =


Z0 +

∫ t

0

fk(t,Z
(k)
s )

Z
(k)
s

ds+
ν

2
WH

t if t < τ (k)(ω)

0 otherwise,

where τ (k)(ω) = inf{t ≥ 0 : Z
(k)
t (ω) = 0}. We have the following result:

Theorem 7.2. For any T > 0, let (Zt)t∈[0,T ] be a stochastic process defined
by (7.1) driven by a fBm with Hurst parameter H < 1/2. Then

P(ω ∈ Ω : τ (k)(ω) > T ) → 1 as k → ∞.

Proof. The proof of this more general theorem is based on Mishura and
Yurchenko-Tytarenko (2018). Firstly, we assume that there exists T > 0, an
increasing sequence (kn)n>1 and p > 0 such that

P(τ (kn) ≤ T ) → p, kn → ∞. (7.12)

As in the previous proof, for fixed T > 0, consider a point zT small enough
such that 0 < zT < Z0 and T1 > 0 is the first time the process (Zt)t≥0 hits
the value zT . Take 0 < ε < zT . Then uniformly for all k ∈ N, fk(t, z) > 0 for
all T1 ≤ t ≤ T and 0 ≤ z ≤ ε. Let f̃ = inf{f(t,z) : T1 ≤ t ≤ T, 0 ≤ z ≤ zT , }.
Clearly f̃ > 0. Also let τ (kn)ε = sup{t ∈ (0,τ) : Z

(kn)
t = ε} be the last hitting

time of ε before reaching zero. Let
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f̃k = inf{fk(t, z) : S ≤ t ≤ T, 0 ≤ z ≤ Z0}, k > 0.

Moreover, for a small number α > 0, the subspace Ω1 of probability 1 such
that for all s, t ∈ [0, T ], |WH

t (ω)−WH
s (ω)| ≤ c|t−s|H−α, where c = c(T, ω, α)

is a constant depending on T , ω and α. Let

Ω
(kn)
T =

{
ω ∈ Ω1 : τ

(kn) ≤ T
}
. (7.13)

Then, for all ω ∈ Ω
(kn)
T , similar arguments as in the proof of Theorem 7.1,

yields

Z
(kn)

τ (kn)−Z
(kn)

τε(kn) = −ε = 1

2

∫ τ (kn)

τε(kn)

fkn(t,Z
(kn)
s )

(
Z(kn)

s

)−1
ds+

ν

2

(
WH

τ (kn)−WH
τε(kn)

)
In a similar way as in the previous proof, for all s ∈ [τε

(kn), τ (kn)],

fkn(t,Z
(kn)
s ) ≥ f̃kn and therefore

fkn(t,Z
(kn)
s )

(
Z(kn)

s

)−1 ≥ f̃knε
−1.

Since ∣∣∣WH
τ (kn) −WH

τ
(kn)
ε

∣∣∣ ≤ c
∣∣∣τ (kn) − τ (kn)ε

∣∣∣H−α

,

it follows (as in the previous proof) that

cν
(
τ (kn) − τ (kn)ε

)H−α

≥ f̃knε
−1(τ (kn) − τ (kn)ε ) + 2ε.

This implies in particular thatcν
(
τ (kn) − τ

(kn)
ε

)H−α

≥ 2ε

cν
(
τ (kn) − τ

(kn)
ε

)H−α

≥ f̃kn(τ
(kn) − τ

(kn)
ε )ε−1.

(7.14)

We shall show that the two inequalities are contradictory. Elementary cal-
culations show that the second inequality in (7.14) is equivalent to

– 107 –



7.1. Positiveness of the generalised fCIR process

(
τ (kn) − τ (kn)ε

)
≤
(

1

cν
f̃knε

−1

) 1
H−α−1

.

Taking both side with power H−α and thereafter multiplying both sides by
cν yields

cν
(
τ (kn) − τ (kn)ε

)H−α

≤ cν

(
1

cν
f̃knε

−1

) H−α
H−α−1

=
(
c

1
1−H+α

)(
ν

1
1−H+α

)
ε

H−α
1−H+α

(
f̃kn

)− H−α
1−H+α

.

On the right-hand side, the Hölder constant c = c(ω) is random depending on
the path ω of fBm. As in Mishura and Yurchenko-Tytarenko (2018), it is well-
known that c(ω) is finite almost surely and hence as P

(⋂
n>1 Ω

(kn)
T

)
= p > 0,

then there exists a (non-random) constant M and a subset E of
⋂

n>1 Ω
(kn)
T

with P(E) > 0 such that c = c(ω) ≤M for all ω ∈ E. Therefore, everywhere
in E,

cν
(
τ (kn) − τ (kn)ε

)H−α

≤
(
M

1
1−H+α

)(
ν

1
1−H+α

)
ε

H−α
1−H+α

(
f̃kn
)− H−α

1−H+α .

Clearly M and ν are constants. Moreover, since fn(t,z) → ∞ as n→ ∞ (for
every (t,z)) then clearly also f̃kn → ∞ for kn → ∞. Hence

lim
kn→∞

(
f̃kn

)− H−α
1−H+α

= 0,

because − H−α
1−H+α

< 0. Then clearly, for any given ε > 0, we can choose kn
very large (depending on ε) such that

(
M

1
1−H+α

)(
ν

1
1−H+α

)
ε

H−α
1−H+α

(
f̃kn

)− H−α
1−H+α

< 2ε.

This yields
cν
(
τ (kn) − τ (kn)ε

)H−α

< 2ε,

which contradicts the first inequality in (7.14). This concludes the proof of
the theorem.
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To illustrate this theorem, we consider again the extended fCIR process
defined by (7.7), (7.8) and (7.10). We simulate 1000 sample paths of the
stochastic volatility (Yt)t∈[0,T ] where T = 10, the volatility of volatility ν = 0.4

starting at Z0 = 1 with time-step δt = 0.001 and the results are given in Fig-
ure 7.3 (with given parameters c, θ and H < 1/2).

Figure 7.3: Sample paths of fCIR process for H < 1/2

θ = 1, c = 0.02, H = 0.1 θ = 1, c = 0.02, H = 0.4

7.2 Malliavin Differentiability of (Zt)t≥0 and (Xt)t≥0

7.2.1 Differentiability of (Zt)t≥0

In this section, we show that the generalised fCIR process is Malliavin dif-
ferentiable. Before this, it is advisable to investigate previous results for the
standard Heston model discussed by Alòs and Ewald (2008) who considered
the Cox-Ingersoll-Ross process (4.3) of the form

dYt = (µ− θYt)dt+ ν
√
YtdBt,

where µ, θ and ν are positive constants and (Bt)t≥0 is a standard Brownian
motion as discussed in our previous chapter. They introduced the square
root process Zt :=

√
Yt, where (Zt)t≥0 is stochastic process that satisfies
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dZt =

((µ
2
− ν2

8

) 1

Zt

− θ

2
Zt

)
dt+

ν

2
dBt. (7.15)

This differential equation (7.15) was obtained by using the Itô formula.
Firstly, they constructed the approximation processes (Zϵ

t )t≥0, ϵ>0 as solu-
tions of the following stochastic differential equation:

dZϵ
t =

((µ
2
− ν2

8

)
Λϵ(Z

ϵ
t )−

θ

2
Zϵ

t

)
dt+

ν

2
dWt, (7.16)

where
Λϵ(z) = Φϵ(z)z

−1, Λϵ(0) = 0, (7.17)

with Φϵ(z) a differentiable function defined by

Φϵ(z) =

 1, if z < ϵ

0, if z ≥ 2ϵ

and Φϵ(z) ≤ 1 for all z ∈ R. This kind of approximations (7.16) were also
discussed by Altmayer and Neuenkirch (2015) and Mishura and Yurchenko-
Tytarenko (2019). Alòs and Ewald (2008) proved that (Zϵ

t )t≥0, ϵ>0 converges
to Zt in L2(Ω) and are both Malliavin differentiable. They also derived an
approximation of option price formula using Malliavin calculus.

In light of these previous constructions, we need an additional weak assump-
tion on the drift function g(t,z) to construct our approximations processes
(Zϵ

t )t≥0, ϵ>0 of (Zt)t≥0.

Assumption 7.1.

– For H > 1/2, the drift function g(t,z) = f(t,z)/z is monotonic in z,
that is for all z1 ∈ R such that z1 ≤ z,

g(t,z1) ≤ g(t,z).

– For H ≤ 1/2, the function g(t,z) satisfies the linear growth condition,
that is, for any positive constant c,
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|g(t,z)| ≤ c(1 + |z|).

Under this assumption, we may construct the approximating sequence (Zϵ
t )t≥0, ϵ>0

that satisfies the following differential equation:

dZϵ
t =

1

2
f(t,Zϵ

t )Λϵ(Z
ϵ
t )dt+

σ

2
dWH

t , Zϵ
0 = Z0 > 0, (7.18)

where the function Λϵ(z) in (7.18) is defined by

Λϵ(z) = (z1{z>0} + ϵ)−1. (7.19)

It is easy to verify that Λϵ(z) > 0 for all ϵ > 0. As a straight consequence,
the drift of (Zϵ

t )t≥0, ϵ>0 is also positive. In addition, limz→0 Λϵ(z) = ϵ−1,
limz→∞ Λϵ(z) = 0 and

Λ′
ϵ(z) =

 0, if z ≤ 0

− 1
(z+ϵ)2

, if z > 0
(7.20)

In addition, the drift function of (7.17) given by g(t,z) = f(t,z)Λϵ(z) verifies
Assumption 6.1. Consequently from Theorem 6.1, the process (Zϵ

t )t≥0, ϵ>0 has
a unique solution which is continuous and positive up to time of the first visit
zero. The main motivation of constructing the process Zϵ

t (ω) is to enable its
sample paths to be strictly positive everywhere almost surely for all Hurst
parameters H ∈ (0,1). The next step is to show that for every t ≥ 0, the
sequence Zϵ

t converges to Zt in Lp as ϵ→ 0.

Proposition 7.3. The sequence of estimated random variables Zϵ
t defined

by (7.18) with its drift that verifies the Assumption 7.1, converges to Zt in
Lp(Ω) for all p ≥ 1.

Proof. We discuss the proof of this proposition in three separate steps in line
with different Hurst parameters: H = 1/2, H > 1/2 and H < 1/2.

Case 1. H = 1/2. This case was discussed previously by Alòs and
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Ewald (2008, Proposition 2.1) under a specific construction of the func-
tion Λϵ(z) given by (7.17).

Case 2. For H > 1/2, the dominated convergence theorem shall be ap-
plied. Firstly, we need to show the pointwise convergence of the approx-
imated stochastic process (Zϵ

t )t≥0 towards (Zt)t≥0 that satisfies (7.1),
that is limϵ→0 Z

ϵ
t = Zt. For this, let τϵ(ω) = inf{t ≥ 0 : Zt(ω) ≤ ϵ}

be the first time the process (Zt)t≥0 hits ϵ . Since the sample paths
of the stochastic process (Zt)t≥0 are positive everywhere almost surely
as discussed in Theorem 7.1, then P(ω ∈ Ω : τ0 = ∞) = 1 a.s. and
consequently, limϵ→0 τϵ = ∞ almost surely.

Now, denote (Zτϵ
t )t∈[0,τϵ] be the stochastic process (Zt)t≥0 up to the

stopping time τϵ. Then, for all t ∈ [0,τϵ] and using the definition of
Λϵ(z) given by (7.19), Zτϵ

t = Zϵ
t almost surely when ϵ → 0 since the

drift function f(t,z) verifies Assumption 7.1, that is monotonicity prop-
erty.

Again, the positiveness of (Zt)t≥0 means that limϵ→0 Z
τϵ
t = Zt a.s. We

may conclude that limϵ→0 Z
τϵ
t = limϵ→0 Z

ϵ
t = Zt almost surely and for

all t ≥ 0.

On the other hand, the result from Hu et al. (2008, Theorem 3.1) shows
that for a fixed T > 0 and for all p ≥ 1,

E
[
sup

t∈[0,T ]

∣∣Zt

∣∣p] = C <∞,

where C = C(p,H, γ, β, T, Z0) is a non-random constant taking the
form

C = C1(1 + Z0) exp

[
C2

(
1 +

∣∣∣∣WH
∣∣∣∣ γ

β(γ−1)

)]
,

where β ∈ (1
2
, H), γ > 2β

2β−1
, C1 = C1(γ,β,T ) and C2 = C2(γ,β,T ) are

nonrandom constants depending on parameters γ, β, T , and
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∣∣∣∣WH
∣∣∣∣ = sup

s≥0, t≤T

{
|WH

s −WH
t |

|s− t|β

}
.

This result also implies that

E
[
sup

t∈[0,T ]

∣∣Zϵ
t

∣∣p] = C(p,H, γ, β, T, Z0) <∞.

It follows that supt∈[0,T ]

{∣∣Zϵ
t (ω)

∣∣} ∈ Lp(Ω) which yields the desired Lp

convergence.

Case 3. For H < 1/2, we consider a sequence of an increasing drift
functions fk(t,z), k ∈ N and define the stochastic process (Z(ϵ,k)

t )t≥0 as
follows:

Z
(ϵ,k)
t =


Z0 +

1

2

∫ t

0

fk

(
t,Z

(ϵ,k)
s

)
Λ
(
Z

(ϵ,k)
s

)
ds+

ν

2
WH

t if t < τ (k)(ω)

0 otherwise,

where the function Λ(z) is defined by (7.18) and τ (k)(ω) = inf{t ≥ 0 :

Z
(ϵ,k)
t (ω) = 0} is the first time that the stochastic process (Z

(ϵ,k)
t )t≥0

hits zero. If we now define τ (ϵ,k)(ω) = inf{t ≥ 0 : Z
(ϵ,k)
t (ω) ≤ ϵ} be the

first time the process (Z
(ϵ,k)
t )t≥0 hits ϵ, then from theorem 7.2, for any

fixed T > 0, P(ω ∈ Ω : τ (ϵ,k) > T ) → 1 as k → ∞. This implies that
lim(ϵ,k)→(0,∞) τ

(ϵ,k) = T̃ > T almost surely. This is because the process
(Z

(ϵ,k)
t )t≥0 remains positive up to time T̃ which is not necessary equal

to infinity unlike the previous case.

After using similar arguments of Case 2, one may conclude that
limϵ→0 Z

τϵ
t = limϵ→0 Z

ϵ
t = Zt for all t ∈ [0, T̃ ]. Next, we need to show

that E
[
supt∈[0,T ]

∣∣Zt

∣∣p] < ∞. To achieve this, we borrow some ideas
from Mishura and Yurchenko-Tytarenko (2019).

Firstly, let Z̃0 be a small positive value less than the initial value Z0

such that 0 < Z̃0 < Z0 and let τ1 = τ1(ϵ,ω) be the last time the stochas-
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tic process (Zϵ
t )t≥0, ϵ>0 hits (or before hits) Z̃0, that is,

τ1(ϵ,ω) = sup{t ≥ 0 : Zϵ
t (ω) ≥ Z̃0, ∀t ∈ [0,T ]}. (7.21)

Technically, there exists a constant M ≥ 2 such that Z̃0 =
Z0

M
. Now we

can consider two cases: t ∈ [0, τ1] and t ∈ (τ1, T ].

Case 3.1: t ∈ [0, τ1]. By triangle inequality, we have

|Zϵ
t |p =

∣∣∣Z0 +
1

2

∫ t

0

f(s,Zϵ
s)Λϵ(Z

ϵ
s)ds+

ν

2
WH

t

∣∣∣p
≤

(
Z0 +

1

2

∣∣∣∣∣
∫ t

0

f(s,Zϵ
s)Λϵ(Z

ϵ
s)ds

∣∣∣∣∣+ ν

2

∣∣WH
t

∣∣)p

≤

(
Z0 +

1

2

∫ t

0

∣∣∣f(s,Zϵ
s)Λϵ(Z

ϵ
s)
∣∣∣ds+ ν

2

∣∣WH
t

∣∣)p

.

(7.22)

By applying the Callebaut’s inequality theorem which can be expressed
as: ∀ai ≥ 0 and ∀n,p ≥ 1;(

n∑
i=1

ai

)p

≤ np

n∑
i=1

(ai)
p,

it will be easy to show that for all p ≥ 1,(
Z0 +

1

2

∫ t

0

∣∣∣f(s,Zϵ
s)Λϵ(Z

ϵ
s)
∣∣∣ds+ ν

2

∣∣WH
t

∣∣)p

≤ 3p

(
Zp

0 +

(
1

2

∫ t

0

∣∣∣f(s,Zϵ
s)Λϵ(Z

ϵ
s)
∣∣∣ds)p

+
(ν
2

∣∣WH
t

∣∣)p).
(7.23)

From (7.21), we may deduce that Zϵ
t ≥ Z̃0 > 0, with t on [0, τ1]. This

yields Λϵ(Z
ϵ
t ) < MZ−1

0 , M ≥ 2 and

∫ t

0

∣∣∣f(s,Zϵ
s)Λϵ(Z

ϵ
t )
∣∣∣ds ≤(M

Z0

)∫ t

0

∣∣∣f(s,Zϵ
s)
∣∣∣ds. (7.24)

Since the drift function satisfies the linear growth condition, this means
there exists a positive constant k such that f(t,z) ≤ k(1+|z|). It follows
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from (7.24) that∫ t

0

∣∣∣f(s,Zϵ
s)
∣∣∣ds ≤ ∫ t

0

∣∣∣k(1 + |Zϵ
s|)
∣∣∣ds ≤ k

(
T +

∫ t

0

|Zϵ
s|ds

)
. (7.25)

Inequalities (7.22), (7.23) and (7.25) yield the following:

|Zϵ
t |p ≤ 3p

(
Zp

0 +

(
kM

2Z0

)p(
T +

∫ t

0

|Zϵ
s|ds

)p

+
(ν
2

)p ∣∣WH
t

∣∣p).
On the other hand, recall from our first chapter, Theorem 2.12 that
|WH

t | < sups∈[0,T ] |WH
s | <∞ and since(

T +

∫ t

0

|Zϵ
s|ds

)p

≤ 2p
(
T p +

∫ t

0

|Zϵ
s|pds

)
,

then it follows that

|Zϵ
t |p ≤ (3Z0)

p +

(
3kMT

Z0

)p

+ (3ν)p sup
s∈[0,T ]

∣∣WH
s

∣∣p + (3kM

Z0

∫ t

0

|Zϵ
s|ds

)p

.

≤ (3Z0)
p +

(
3kT

Z0

)p

+ (4ν)p sup
s∈[0,T ]

∣∣WH
s

∣∣p + (3k

Z0

∫ t

0

|Zϵ
s|ds

)p

.

From the Grönwall-Bellman inequality theorem, we obtain

|Zϵ
t |p ≤

(
(3Z0)

p +

(
3kMT

Z0

)p

+ (4ν)p sup
s∈[0,T ]

∣∣WH
s

∣∣p) exp

((
3kM

Z0

)p

t

)
≤
(
(3Z0)

p +

(
3kMT

Z0

)p)
exp

((
3kM

Z0

)p

T

)
+

(
(4ν)p sup

s∈[0,T ]

∣∣WH
s

∣∣p) exp

((
3kM

Z0

)p

T

)
which can be shortly written as |Zϵ

t |p ≤ C, where C = C(r, k, T, Z0, ν,H)

is a non-random constant in parameters r, k, T, Z0, ν and H taking the
following form

C ≤ C1 + C2 sup
s∈[0,T ]

∣∣WH
s

∣∣p,
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with C1 = C1(p, k,T,Z0) and C2 = C2(p, k,T,Z0,ν) are non-random
constants defined respectively by

C1 = (3Z0)
p

(
1 +

(
kMT

Z2
0

)p)
exp

((
3kM

Z0

)p

T

)
(7.26)

and
C2 = (4ν)p exp

((
3kM

Z0

)p

T

)
. (7.27)

Case 3.2: t ∈ (τ1, T ], with T > τ1 > 0. Define

τ2 = τ2(ϵ,ω) = sup{s ∈ (τ1,t) : |Zϵ
s(ω)| < Z̃0}.

Then we have:

|Zϵ
t |p ≤ |Zϵ

t − Zϵ
τ2
|p + |Zϵ

τ2
|p

≤ Zp
0 + |Zϵ

t − Zϵ
τ2
|p

≤ Zp
0 +

(
1

2

)p ∣∣∣∣ ∫ t

τ2

f(s,Zϵ
s)Λϵ(Z

ϵ
t )ds+ ν

(
WH

t −WH
τ2

)∣∣∣∣p
≤ Zp

0 +

(∫ t

τ2

∣∣∣f(s,Zϵ
s)Λϵ(Z

ϵ
t )
∣∣∣ds)p

+ (2ν)p
(∣∣WH

t

∣∣p + ∣∣WH
τ2

∣∣p).
(7.28)

As previously, the integral in the last inequality of (7.28) can be ex-
pressed as follows∫ t

0

∣∣∣f(s,Zϵ
s)Λϵ(Z

ϵ
t )
∣∣∣ds ≤ k

Z0

(
T +

∫ t

0

|Zϵ
s|ds

)
, ∀t ∈ [0,T ].

On the other hand, we may observe that

∣∣WH
t

∣∣p + ∣∣WH
τ2

∣∣p ≤ 2 sup
s∈[0,T ]

|WH
s |p.

It follows that,
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|Zϵ
t |p ≤ Zp

0 +

(
2kT

Z0

)p

+

(
2k

Z0

∫ t

0

|Zϵ
s|rds

)p

+ 2(2ν)p sup
s∈[0,T ]

|WH
s |p

≤ (3Z0)
p +

(
3kMT

Z0

)p

+ (4ν)p sup
s∈[0,T ]

∣∣WH
s

∣∣p + (3kM

Z0

∫ t

0

|Zϵ
s|ds

)p

.

From this expression, we may also conclude that |Zϵ
t |p ≤ C, where

C = C(C1,C2) where C1 and C2 are non-random constants defined by
(7.26) and (7.27) respectively. This shows that E

[
supt∈[0,T ]

∣∣Zϵ
t

∣∣p] <∞
and consequently, E

[
supt∈[0,T ]

∣∣Zt

∣∣p] <∞.

This concludes the proof of this proposition.

Corollary 7.4. Fix p ≥ 1. Then

lim
ϵ→0

E

[
sup
t≥0

∣∣σ(Y ϵ
t )− σ(Yt)

∣∣p] = 0 a.s.

Proof. This follows immediately from the previous proposition and the fact
that σ(y) satisfies the linear growth condition.

In what follows, we show that the stochastic processes (Zϵ
t )t≥0 and (Zt)t≥0 are

Malliavin differentiable with respect to the Brownian motions (V )t≥0, (Ṽ )t≥0

and fBm (WH
t )t≥0.

Proposition 7.5. Let (Zϵ
t )t≥0, ϵ>0 be a stochastic process that verifies the

stochastic differential equation (7.18) driven by a fBm (WH
t )t∈[0,T ] that takes

the Volterra representation form given by

WH
t =

∫ t

0

κH(s,t)dBs,

where (Bt)t≥0 is a standard Brownian motion and κH(s,t) is a square inte-
grable kernel given by (2.5). Assume that the drift function f(t,z) is differ-
entiable and define

Fϵ(t,z) =
∂f(t,z)

∂z
Λϵ(z) + f(t,z)Λ′

ϵ(z),
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where Λ′
ϵ(z) is defined by (7.20). Moreover, let DB

u and DW
u be the Malliavin

derivatives at the time u ∈ [0,T ] with respect to (Bt)t≥0 and (WH
t )t≥0 respec-

tively. Then it follows that Zϵ
t ∈ D1,p, Y ϵ

t = (Zϵ
t )

2 ∈ D1,p, DB
u Y

ϵ
t = 2Zϵ

tD
B
uZ

ϵ
t

DW
u Y

ϵ
t = 2Zϵ

tD
W
u Z

ϵ
t ,

(7.29)

where DB
u Y

ϵ
t and DW

u Y
ϵ
t are given respectively by

DB
uZ

ϵ
t =

ν

2

(
κH(t,u) +

∫ t

u

κH(s,u)Fϵ(s,Z
ϵ
s) exp

(∫ t

s

Fϵ(u,Z
ϵ
u)du

)
ds

)
1[0,t](u)

(7.30)
and

DW
u Z

ϵ
t =

ν

2

(
exp

(∫ t

s

Fϵ(u,Z
ϵ
u)du

))
1[0,t](u). (7.31)

Proof. The expressions (7.29) are due to the chain rule of Malliavin deriva-
tives. The Malliavin derivative DB

uZt can be found as follows:

DB
uZ

ϵ
t =

1

2

∫ t

0

DB
u (f(s,Zϵ

s)Λϵ(Z
ϵ
s)) ds+

ν

2
DB

uW
H
t

=
1

2

∫ t

0

Fϵ(s,Z
ϵ
s)D

B
uZ

ϵ
sds+

ν

2
κH(t,u)1[0,t](u)

The function Fϵ(s,z) exists indeed since Λ′
ϵ(z) is well-defined for all H ∈ (0,1).

Next, by letting Dt = DB
uZ

ϵ
t , we obtain a Volterra integral equation given by

Dt =
1

2

∫ t

0

Fϵ(s,Z
ϵ
s)Dsds+

ν

2
κH(t,u)1[0,t](u),

to which a solution is given by

Dt =
ν

2

(
κH(t,u) +

∫ t

u

κH(s,u)Fϵ(s,Z
ϵ
s) exp

(∫ t

s

Fudu
)
ds

)
1[0,t](u).

Since Dt ∈ Lp(Ω), then it follows that the stochastic process Zϵ
t ∈ D1,p from

Nualart (2006). The proof of (7.31) can be deduced in a similar way or by
following the idea of Hu et al. (2008, Theorem 3.3).
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Remark 7.1.

(1) This proposition holds for allH ∈ (0,1). However, forH > 1/2 one may
use the stochastic process (7.1) without going through its approximat-
ing sequence (Zϵ

t )t≥0, ϵ>0 since the sample paths of (Zt)t≥0 are strictly
positive everywhere almost surely as shown in Theorem 7.1.

(2) As a straight consequence of Proposition 7.3, we have

lim
ϵ→0

Fϵ(t,z) = F (t,z)

where
F (t,z) =

(∂f(t,z)
∂z

− f(t,z)
)
z−2.

It follows from Proposition 7.5 that Zt ∈ D1,p, and

DṼ
u Zt = 0, (7.32)

DV
u Zt =

ν

2

(
κH(t,u)+

∫ t

u

κH(s,u)F (s,Zs) exp
(∫ t

s

F (u,Zu)du
)
ds

)
1[0,t](u)

(7.33)
and

DW
u Zt =

ν

2

(
exp

(∫ t

s

F (u,Zu)du
))

1[0,t](u). (7.34)

7.2.2 Differentiability of the stock price process (Xt)t≥0

With (Zϵ
t )t≥0, ϵ>0, let us construct the approximating sequence (Xϵ

t )t≥0, ϵ>0 of
the stock price process (Xt)t≥0 defined by the following geometric Brownian
motion:

dXϵ
t = ηXϵ

tdt+ σ(Y ϵ
t )XtdBt, (7.35)

where
Y ϵ
t = (Zϵ

t )
2,
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with (Zϵ
t )t≥0, ϵ>0 the approximating sequence that satisfies (7.18). The solu-

tion to (7.35) is unique and can be found by using the standard Itô formula
(Fouque et al.; 2011, Section 1.1.4). Next step is to prove that Xϵ

t converges
to Xt in Lp, p ≥ 1 as given in the following proposition.

Proposition 7.6. The sequence Xϵ
t converges to Xt in Lp(Ω) for all p ≥ 1.

Proof. Consider the sequence of log-returns Rϵ
t := logXϵ

t that satisfies:

Rϵ
t = R0 + ηt− 1

2

∫ t

0

σ2(Y ϵ
s )ds+

∫ t

0

σ(Y ϵ
s )dBs,

where R0 := logX0. Then for some non-random constant C > 0, one may
have:

E

[
sup
t≥0

∣∣Rϵ
t −Rt

∣∣p] ≤ C

2p
E

[
sup
t≥0

∣∣∣∣∣
∫ t

0

(
σ2(Y ϵ

s )− σ2(Ys)
)
ds

∣∣∣∣∣
p]

+ CE

[
sup
t≥0

∣∣∣∣∣
∫ t

0

(σ(Y ϵ
s )− σ(Ys)) dBs

∣∣∣∣∣
p]

Set

T1 := E

[
sup
t≥0

∣∣∣∣∣
∫ t

0

(
σ2(Y ϵ

s )− σ2(Ys)
)
ds

∣∣∣∣∣
p]

and

T2 := E

[
sup
t≥0

∣∣∣∣∣
∫ t

0

(σ(Y ϵ
s )− σ(Ys)) dBs

∣∣∣∣∣
p]
.

Then it follows firstly that T1 → 0 from Corollary 7.4. To analyse conver-
gence of T2, we use the Burkholder - Davis - Gundy inequality (that is, for
any martingale M , E

[
| supt≥0Mt|p

]
≤ cE

[
〈M〉

p
2
t

]
for some constant c = c(p)

depending on p ≥ 1 and where 〈 · 〉 represents the quadratic variation). One
may deduce that

T2 ≤ c(p)E

sup
t≥0

∣∣∣∣∣
∫ t

0

(σ(Y ϵ
s )− σ(Ys)) ds

∣∣∣∣∣
p
2

 ,
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which also converges to zero from Corollary 7.4. It follows that

lim
ϵ→0

sup
t≥0

∣∣Rϵ
t −Rt

∣∣p = 0, ∀p > 0

that implies the desired Lp convergence of Xϵ
t to Xt.

Proposition 7.7. Assume that the volatility σ(y) is Lipschitz and differen-
tiable. Then Xϵ

t , R
ϵ
t ∈ D1,p and for all u ≤ t, we have

DB
uX

ϵ
t = Xϵ

tD
B
uR

ϵ
t, DV

uX
ϵ
t = Xϵ

tD
B
uR

ϵ
t and DṼ

uX
ϵ
t = Xϵ

t

√
1− ρ2 σ(Y ϵ

t )1[0,t](u),

(7.36)
where

DB
uR

ϵ
t =

(∫ t

u

σ′(Y ϵ
s )D

B
u Y

ϵ
s dBs −

∫ t

u

σ(Y ϵ
s )σ

′(Y ϵ
s )D

B
u Y

ϵ
s ds

)
1[0,t](u) (7.37)

and

DV
uR

ϵ
t =

(
ρ

∫ t

u

σ′(Y ϵ
s )D

V
u Y

ϵ
s dVs +

√
1− ρ2

∫ t

u

σ′(Y ϵ
s )D

V
u Y

ϵ
s dṼs

−
∫ t

u

σ(Ys)σ
′(Y ϵ

s )D
V
u σ(Y

ϵ
s )ds

)
1[0,t](u)

(7.38)

In addition,

sup
u, t≥0

∣∣∣DuR
ϵ
t −DuXt

∣∣∣→ 0,

where Du represents a Malliavin derivative with respect to Bt, Vt or Ṽ .

Proof. The equation (7.36) follows immediately from chain rule formula
for Malliavin derivatives. Expressions of derivatives DB

uR
ϵ
t and DV

uR
ϵ
t are

straight consequences of Nualart (2006, Theorem 1.2.4).

Corollary 7.8. The laws of both stock price process (Xt)t≥0 and its log return
(Rt)t≥0 are absolutely continuous.
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Proof. One may verify that
∣∣∣∣DB

uRt

∣∣∣∣
L2(Ω)

> 0 and
∣∣∣∣DB

uXt

∣∣∣∣
L2(Ω)

> 0 almost
surely, then the absolutely continuity with respect to the Lebesgue measure
on R follows immediately from Nualart (2006, Theorem 2.1.3).

Remark 7.2.

(1) The Malliavin differentiability property of both stochastic volatility and
stock price processes will be crucial for the derivation of the expected
payoff function that will be discussed in the next chapter.

(2) The approximated stochastic volatility and stock price processes will
be compulsory for H ≤ 1/2 and optional for H > 1/2. However, for
the sake of consistency, we shall use the approximated sequences (7.18)
and (7.35) with ϵ = 0 for H > 1/2 and with ϵ > 0 for H ≤ 1/2.

(3) For the simulations of stock price process, one may use the Euler-
Maruyama approximation scheme as discussed previously. This can
be done by considering the time interval [0,T ] that is subdivided into
N sub-intervals of equal length such that 0 = t0, t1, · · · ,tN = T with
ti = iT/N and the lag ∆t = T/N . The estimated stock price at time ti
denoted by (X̂ti)i=1,··· ,N and the volatility (Ŷti)i=1,··· ,N are respectively
given by



X̂ti+1
= X̂ti

(
1 + η∆t+ σ(Ŷti)

(
ρ∆Vti −

√
1− ρ2∆Ṽti

))
Ŷti = Ẑ2

ti
1[0,τ(ω)]

Ẑti+1
= Ẑti +

1

2

∫ ti+1

0

f(s,Ẑs)Λ(Ẑs)ds+
1
2
ν∆WH

ti+1
.

(7.39)

where ∆Vti = Vti+1
−Vti , ∆Ṽti = Ṽti+1

− Ṽti and ∆WH
ti+1

= WH
ti+1

−WH
ti

are respectively the increment of Brownian motions Vt∈[0,10], Ṽt∈[0,T ] and
fBm WH

t∈[0,T ]. As an illustrative example, the following figures repre-
sent 10 sample paths of the stock price process on the interval [0,T ]
with N = 1000, ρ = 0.6, X0 = 100, η = r = 0.05, ν = 0.1, and
σ(Ŷti) = 0.8Ŷti + 0.1. The drift of the fractional volatility process is
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defined by (7.9) with θ = 1, c = 2.

Figure 7.4: Ten (10) sample paths of stock price process

H = 0.15, ϵ = 0.001 H = 0.5, ϵ = 0.001

H = 0.65, ϵ = 0 H = 0.9, ϵ = 0
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Chapter 8

An Application to Option Pricing

One common technique used in option pricing is the standard Monte Carlo
Simulation. This method works perfectly when the payoff function converges
in mean (See e.g. Fu and Hu (1995)). This is not always attainable for dis-
continuous payoff functions. A straight solution is to transform the expected
payoff function E[h(Xt)] into an expectation of a continuous function, and
this can be achieved by using the Malliavin calculus tools.

The aim of this chapter is to discuss option pricing under general settings
where the volatility of the infinitesimal return is defined in terms of the
square of the generalised fCIR process driven by fBm with Hurst parameters
H ∈ (0,1). We shall consider payoff functions that are not necessary con-
tinuous, such as a combination of vanilla and exotic options, and derive its
option price.

Under the above settings, the standard Monte-Carlo technique produces high
relative errors as observed by Altmayer and Neuenkirch (2015). We rely on
some results of Malliavin calculus to discuss the expected payoff function
since the volatility and stock price processes are Malliavin differentiable as
discussed in our previous chapter. Throughout this chapter, we shall recon-
sider the financial market model of the form
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dAt = rAtdt,

dXt = ηXtdt+ σ(Yt)XtdBt,

Yt = Z2
t 1[0,τ(ω)]

dZt =
1
2
f(t,Zt)Z

−1
t dt+ 1

2
νdWH

t

WH
t =

∫ t

0

κH(s,t)dVt

Bt = ρVt +
√

1− ρ2Ṽt,

(8.1)

where all components of the above financial market model were discussed in
chapters 4 and 5. The main references here are Altmayer and Neuenkirch
(2015), Bezborodov et al. (2019), Hong et al. (2019) and Mishura and Yurchenko-
Tytarenko (2020).

8.1 The Expected Payoff function

We apply some results in Malliavin calculus to derive the expected value of
the payoff function denoted by E[h(XT )], where h : R → R represents the
payoff function that satisfies the following assumption:

Assumption 8.1. The payoff function h : R → R and its antiderivative
denoted by L(x) satisfy the Lipschitz condition.

Proposition 8.1. L(XT ) ∈ D1,2.

Proof. Firstly, it is straightforward to check that E[L2(XT )] <∞ since L(x)
also verifies the linear growth condition and the sample paths of the stock
price process (Xt)t∈[0,T ] are bounded almost surely. On the other hand, since
L verifies Assumption 8.1 and the laws of the stock price process (Xt)t∈[0,T ]

is absolutely continuous with respect to the Lebesgue measure on R (See
Corollary 7.8), then from the chain rule formula for Malliavin derivatives
(See Lemma 3.4), we may deduce

DVL(XT ) = L′(XT )D
VXT = h(XT )D

VXT .

It follows that
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E
[∫ T

0

(
DV

s L(XT )
)2
ds

]
= E

[∫ T

0

(
h(XT )D

V
s XT

)2
ds

]
= E

[
h2(XT )

∫ T

0

(
DV

s XT

)2
ds

]
≤
(
E
[
h4(XT )

] ∫ T

0

E
[(
DV

s XT

)4]
ds

) 1
2

<∞.

The first inequality is due to Hölder inequality and the finiteness of the last
expression makes sense since Xt ∈ D1,2 as discussed in our fourth chapter. It
follows from (3.7) that ||L||1,2 <∞ which concludes the proof.

As now L(XT ) is Malliavin differentiable, then the following lemma that
discusses the expected payoff follows.

Lemma 8.2. Let h(x), x ∈ R be a payoff function that satisfies Assumption
8.1 and denote h(ex) := g(x) with its antiderivative G(x) that also satisfies
the Lipschitz condition. Set

IT :=
1

T
√

1− ρ2

∫ T

0

1

σ(Yu)
dṼ . (8.2)

Then
E [g(RT )] = E

[
G(RT )IT

]
, (8.3)

and

E [h(XT )] = E

[
L(XT )

XT

(
1 + IT

)]
. (8.4)

where RT := logXT and

L(XT ) =

∫ XT

0

h(x)dx. (8.5)

Proof. We follow the idea of Altmayer and Neuenkirch (2015). To establish
the equality (8.3), we rewrite E[g(RT )] as
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E[g(RT )] = E
[
1

T

∫ T

0

g(RT )du

]
= E

[
1

T

∫ T

0

g(RT )D
Ṽ
uRT

1

DṼ
uRT

du

]
.

From Proposition 8.1, we may deduce that G(RT ) ∈ D1,2 and

DṼG(RT ) = g(RT )D
ṼRT .

We now obtain

E[g(RT )] = E
[
1

T

∫ T

0

DṼG(RT )
1

DṼ
uRT

du

]
.

In addition, from Proposition 7.7,

DṼ
uRT =

√
1− ρ2σ(Yu)1[0,t](u)

and since the integral
∫ T

0
1

σ(Yu)
du is well defined from Assumption 4.1, then

we have:

E[g(RT )] = E

[
G(RT )

T
√
1− ρ2

∫ T

0

1

σ(Yu)
dṼu

]
,

and defining IT by (8.2), we obtain (8.3). To establish (8.4), we rewrite the
function G(x) (which is the antiderivative of g(x)) as follows

G(x) =

∫ x

0

g(u)du+ C,

where C is a constant taking the form C =
∫ 1

0
h(u)du and by using the

standard integration by part formula, one may obtain

G(x) =
L(ex)

ex
+

∫ x

0

L(eu)

eu
du.

With this setting, we have
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E[h(XT )] = E[g(RT )]

= E
[
G(RT )IT

]
= E

[(
L(XT )

XT

+

∫ RT

0

L(eu)

eu
du

)
IT

]

= E

[
L(XT )

XT

IT

]
+ E

[(∫ RT

0

L(eu)

eu
du

)
IT

]

= E

[
L(XT )

XT

IT

]
+ E

[
L(XT )

XT

]

= E

[
L(XT )

XT

(
1 + IT

)]
.

Remark 8.1.

1. The expected value of the payoff function given by (8.3) and (8.4)
excludes the case of perfect correlation between the stock price and
stochastic volatility process, that is where ρ = ±1. This cannot be
viewed as a drawback since perfect correlation is rare to happen in
financial markets.

2. The exact formula (8.4) also holds for jump discontinuous payoff func-
tions, that is, there exists a point x0 ∈ R such that limx→x+

0
h(x) 6=

limx→x−
0
h(x).

8.2 Approximation of The Expected Payoff function

We may use again the Euler-Maruyama approximation scheme to compute
the expected payoff numerically. We may use the following approximations:
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X̂ti+1
= X̂ti

(
1 + η∆t+ σ(Ŷti)

(
ρ∆Vti −

√
1− ρ2∆Ṽti

))
Ŷti = Ẑ2

ti
1[0,τ(ω)]

Ẑti+1
= Ẑti +

1

2

∫ ti+1

0

f(s,Ẑs)Λ(Ẑs)ds+
1
2
ν∆WH

ti+1

ÎT =
1

T
√

1− ρ2

N∑
i=0

1

σ(Ŷi)
∆Ṽti ,

(8.6)

with 0 = t0, t1, · · · ,tN = T with ti = iT/N and the lag ∆t = T/N as
previously. The following proposition discusses the absolute error of the
approximated expected payoff.

Proposition 8.3. For any r > 0, p ∈ (0,1], q,ε,H ∈ (0,1) and ∆t < 1 − ε

there exist finite and non-random constants K = K(X0, Y0,H, T, ν,q,r), K1 =

K1(X0, Y0,H, T, ν,q,r) and K2 = K2(r) such that

E

∣∣∣∣∣L(XT )

XT

− L(X̂T )

X̂T

∣∣∣∣∣
2
 ≤ K∆t2qH . (8.7)

Moreover, after setting

ĥ(X̂T ) =
L(X̂T )

X̂T

(
1 + ÎT

)
,

then ∣∣∣E[h(XT )
]
− E

[
ĥ(X̂T )

]∣∣∣ ≤ K1 +K2∆t
qH . (8.8)

The proof of this proposition can be done by following Hong et al. (2019,
Theorem 4.1), Bezborodov et al. (2019, Lemma 14 and Theorem 15) and
Mishura and Yurchenko-Tytarenko (2020).
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8.3 Some simulations

In this section, we simulate option prices for different forms of drift func-
tions available in the literature and different values of Hurst parameters. To
give more credit to the exact formula (8.7), we use a special class of discon-
tinuous payoff functions known in option trading as “combination options”
constructed by combining standard options, strike prices or/and maturity
dates under the same stock price process. For the sake of simplicity, we shall
consider payoff functions given as a combination of vanilla and exotic options
with the same strike price and same maturity date.

8.3.1 Pricing options with volatility taking the form of
Ornstein-Uhlenbeck and standard fCIR process

Firstly, we consider the stochastic process (Zt)t≥0 defined as a Ornstein-
Uhlenbeck process, that is with f(t,z) = −θz2, where θ is a positive param-
eter, ν = 2 and H > 1/2. Under these settings, one may recover the model
discussed by Bezborodov et al. (2019) with Yt = Z2

t instead. In this case,
the volatility process will not necessarily be positive almost surely since it
violates the Assumption 6.1 and consequently the Theorems 7.1 and 7.2 do
not apply, and the probability of hitting zero is high. To compensate for this,
the volatility function σ(y) is chosen to be strictly positive.

In addition, we define the payoff function h(x) as a combination of European
and binary options with the same strike price S and time to maturity T ,
that is h(XT ) = (XT − S)+ + 1{XT>S}. It is easy to check that the strike
price S is a removable discontinuity of the payoff function h. In addition,
the expression of L(XT ) can be deduced from (8.5) as

L(XT ) =


1
2

[(
XT − S

)(
XT − S + 2

)]
if XT ≥ S

0 otherwise.
(8.9)

We use the same parameters (η = r = 0.2, θ = 0.6, T = 1, H = 0.6) with
different forms of volatility process σ(Yt) of the infinitesimal return process
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dXt/Xt as in Bezborodov et al. (2019). Since for this, we may not use equa-
tions (6.1) and (6.2), we consider the direct form of the stochastic volatility
(Yt)t≥0 driven by a fBm represented by the Volterra stochastic integral (2.5)
which can be discretised as follows:

WH
tj

=
N

T

j−1∑
i=0

(∫ ti+1

ti

κH(tj,s)ds

)
δVi, (8.10)

for all j = 1, · · · , N ; i = 0, · · · , j and where δVi = Vi−Vi−1 is the increment
of standard Brownian motion with WH

t0
= 0. Here κH(tj,s) is a discretised

square integrable kernel (2.6) given by

κH(tj,s) =
(tj − s)H− 1

2

Γ(H + 1
2
)

2F1

(
H− 1

2
;
1

2
−H;H+

1

2
; 1− tj

s

)
1[0,tj ](s), ∀s ∈ [0,tj].

(8.11)
In this case, we observe that the values of option prices are not remarkably
different for ρ = 0 and H ≥ 1/2. The option prices are increasing or decreas-
ing when ρ is positive or negative respectively.

Recall that the financial market model used in Bezborodov et al. (2019) has
several limitations which are not in line with what can be observed. Exam-
ples of these are no correlations between returns and volatility, possibility of
negative volatility and zero long-run mean µ. Now, taking into account the
standard fCIR process that describes the volatility, with f(t,z) = µ−θz2 and
correlation ρ between infinitesimal returns and volatility, the option prices
are simulated with ρ = 0.5 and µ = 0.1.

We perform 100 trials for 1000 simulations and 500 time-steps on the time
interval [0,1]. We get the mean of option prices (that is, expected payoff
function discounted by the net present value) with their corresponding coef-
ficient of variations. Table 8.1 corresponds to the formula (8.4) and Table 8.2
to direct estimation of expected payoff function also known as the standard
Monte Carlo method.
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Table 8.1: Option prices using Direct Estimations
H 0.1 0.3 0.5 0.7 0.9

Mean/CV Mean CV Mean CV Mean CV Mean CV Mean CV

σ(Yt) =
√
Yt + 0.1 0.774185342 0.062159457 0.782211975 0.015363114 0.775305642 0.053605636 0.765667823 0.022561751 0.776062568 0.061121985

σ(Yt) = Yt + 0.1 0.932824188 0.023154477 0.959352477 0.019764205 0.946670803 0.008803027 0.952432308 0.016014640 0.948353316 0.008871172

σ(Yt) =
√
Y 2
t + 1 0.707885444 0.093317545 0.715438258 0.077237936 0.695277007 0.053520175 0.720631067 0.041407711 0.729078909 0.085659766

Table 8.2: Option prices using (8.4)
H 0.1 0.3 0.5 0.7 0.9

Mean/CV Mean CV Mean CV Mean CV Mean CV Mean CV

σ(Yt) =
√
Yt + 0.1 0.79340973 0.07560649 0.81121348 0.04028921 0.78827183 0.11421244 0.76642501 0.08935762 0.7704734 0.13411309

σ(Yt) = Yt + 0.1 0.99910672 0.09628926 0.95410606 0.16524115 0.97622451 0.06896021 0.97074148 0.10076119 1.013755924 0.10492516

σ(Yt) =
√
Y 2
t + 1 0.67871381 0.08759139 0.69286223 0.09071164 0.66834204 0.10850252 0.69416225 0.09554705 0.707316469 0.07008638

Remark 8.2.

We note here that the standard Monte Carlo error is of order 0.04 while the exact error of the formula (8.4) can
be deduced from (8.8) and needs further investigations. However, we observe that for all Hurst parameters H, the
means of option prices become consistent for N ≥ 500 for the standard Monte Carlo method while the means of
option prices are consistent when using (8.8) from only when N ≥ 180.
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8.3.2 Pricing options with volatility taking the form of fCIR pro-
cess with time varying parameters

In this section we perform some simulations of option prices under the frac-
tional Heston model with time varying parameters. For this, the drift func-
tion is given by (7.9) in our previous chapter, that is,

f(t,z) = µt − θtz
2,

where θt = θ > 0 and µt = c+ ν2

2θ

(
1− e−2θt

)
. It follows that

f(t,z) =
ν2

2θ

(
1− e−2θt

)
+ (c− θz2).

We shall use the same values of parameters as given in Chapter 6, that is,
Z0 = 1, ν = 0.4, c = 0.02, θ = 1. To keep positiveness of the stochastic pro-
cess (Zt)t≥0 for all H ∈ (0,1), we shall rather use its approximated stochastic
process (Zϵ

t )t, ϵ≥0 defined previously as

dZϵ
t =

1

2
f(t,Zϵ

t )Λϵ(Z
ϵ
t )dt+

σ

2
dWH

t , Zϵ
0 = Z0 > 0,

where the function Λϵ(z) is defined by

Λϵ(z) = (z1{z>0} + ϵ)−1

with ϵ = 0.01 for H < 1/2 and ϵ = 0 for H ≥ 1/2. As previously, the fBm is
simulated by using the formula (8.9) and (8.10). We again perform 100 trials
for 1000 simulations and 500 time-steps on the time interval [0,1]. We get
the mean of option prices with their corresponding coefficient of variations
for different volatility functions σ(y) under the European-Binary option as
given in tables 8.3 and 8.4.

Note that Remark 8.2 is also true for this case. In addition, the formula
(8.4) is mostly needed in this case because of heavy computations due to
time varying parameters.
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Table 8.3: Option prices using Direct Estimations
H 0.1 0.3 0.5 0.7 0.9

Mean/CV Mean CV Mean CV Mean CV Mean CV Mean CV

σ(Yt) =
√
Yt + 0.1 0.757738549 0.048177774 0.769114549 0.057692257 0.756162793 0.045562288 0.756665572 0.051234111 0.763148888 0.043265712

σ(Yt) = Yt + 0.1 0.932035897 0.012595508 0.934337494 0.022642941 0.933212125 0.024487 0.928706032 0.014969569 0.929103212 0.01457107

σ(Yt) =
√
Y 2
t + 1 0.770104152 0.088196662 0.782432528 0.062946479 0.75433847 0.069371091 0.746931996 0.072156192 0.75975843 0.084981952

Table 8.4: Option prices using (8.4)
H 0.1 0.3 0.5 0.7 0.9

Mean/CV Mean CV Mean CV Mean CV Mean CV Mean CV

σ(Yt) =
√
Yt + 0.1 0.769174923 0.159481951 0.79459017 0.136648616 0.781942914 0.157116756 0.747618003 0.12525256 0.755713234 0.06592363

σ(Yt) = Yt + 0.1 0.94650013 0.102404072 1.02769617 0.128530355 0.919334248 0.111971197 0.983793301 0.095406694 0.88152163 0.101523439

σ(Yt) =
√
Y 2
t + 1 0.803170587 0.273211512 0.793796973 0.205160841 0.756164588 0.210899491 0.742696383 0.203031148 0.759959966 0.198280955



Conclusion and Further Research

We have constructed an arbitrage-free financial market model that consists
of a risk-free asset with prices At that verifies dAt = rAtdt and the risky
asset with price given as a geometric Brownian motion dXt = ηXtdt +

σ(Yt)XtdBt. The volatility of infinitesimal return dXt/Xt given by σ(Yt) is a
function of the generalised fCIR process (Yt)t≥0 defined by Y 2

t = Z2
t 1[0,τ)

with dZt = 1
2
f(t,Zt)Z

−1
t dt + 1

2
σdWH

t , Z0 > 0, where f(t,x) is a contin-
uous function on R2

+ that satisfies two mild conditions. We firstly show
that the fractional volatility process (Yt)t≥0 satisfies the differential equation
dYt = f(t,

√
Yt)dt+ σ

√
Yt ◦ dWH

t .

We have also discussed positiveness of the volatility process. We proved that
if the Hurst parameter H > 1/2, the process (Yt)t≥0 will never hit zero, that
is, it remains strictly positive everywhere almost surely under some mild as-
sumptions on the function f(t,x). In the case whereH < 1/2, we considered a
sequence of increasing drift functions (fn) that tends to infinity and we proved
that the probability of hitting zero converges to zero as n goes to infinity.
The positiveness can be kept for this last case by introducing an approxi-
mating sequence of (Zt)t≥0 defined by (Zϵ

t )t≥0, ϵ>0 that satisfies the stochastic
differential equation: dZϵ

t =
1
2
f(t,Zϵ

t )Λϵ(Z
ϵ
t )dt+

σ
2
dWH

t , Z
ϵ
0 = Z0 > 0. These

results are illustrated with some simulations.

In addition, the stock price and volatility processes are proven to be Malliavin
differentiable through the approximating sequence (Zϵ

t )t≥0, ϵ>0. This property
and the strictly positiveness enabled us to deduce an expression of the ex-
pected payoff function that may have discontinuities such a combination of
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8.3. Some simulations

vanilla and exotic options. Some simulations of option prices with different
forms of volatility function σ(Yt) were performed.

The next step in this research is calibration of volatility parameters to real
market data through analytical or by using machine learning techniques. The
flexibility of the adapted drift process will be of great impact in improving
calibration error.

In addition, the Malliavin differentiability of both stock price and volatility
processes is an open door to several other applications in quantitative finance
other than option pricing discussed in this thesis. For example, one may in-
vestigate the implied volatility surface by using Malliavin calculus tools.

Finally, in this thesis we assumed that the interest rate is a positive constant
parameter. This limitation can be overcome by including standard stochastic
interest rate models. For example, the short-interest rate may be described
by a standard Cox-Ingersoll-Ross process as suggested by Hull and White
(1990), and the corresponding financial market model that requires further
investigation would have the following form:

dAt = rtAtdt,

drt = θ̃(µ̃− rt)dt+ σ̃
√
rtdB̃t

dXt = ηXtdt+ σ(Yt)XtdBt,

Yt = Z2
t 1[0,τ(ω)]

dZt =
1
2
f(t,Zt)Z

−1
t dt+ 1

2
νdWH

t

WH
t =

∫ t

0

κH(s,t)dVt,

where θ̃ represents the speed of reversion of the stochastic interest rate pro-
cess (rt)t≥0 towards its long run mean µ̃ and σ̃ is the volatility. Attention
should be paid to the correlations between Brownian motions (Bt)t≥0, (B̃t)t≥0

and (Vt)t≥0 (or (WH
t )t≥0).
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