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Abstract

Deep learning has successfully been applied in computer vision, including in image clas-

sification, object recognition and detection, and in image segmentation in applications

such as remote sensing, scene understanding, autonomous driving, medical image analy-

sis, robotics and video surveillance. The drawback of the majority of current approaches

is that they demand huge quantities of annotated training data to produce results, and they

use quite expensive computing resources. Data annotation is usually an expensive and

tedious task. On the other hand, data can be rare or difficult to gather for some reasons,

including for safety and ethical issues. Moreover, a deep learning model trained success-

fully for a specific task cannot be directly deployed for another task in another domain.

It is therefore essential to develop models that can learn from few annotated samples of

training data like humans do. Few-shot learning addresses the problem of closing the

gap into deep learning models that learn from huge annotated datasets and humans in the

challenging task of learning from few examples. The aim of this thesis is to propose novel

methods in deep learning image processing that optimize the model’s ability to detect and

recognise new object instances using few labelled data.

We present several novel methods that tackle the problems of image classification, ob-

ject detection, self-supervised knowledge distillation, and panoptic segmentation in few-

shot learning settings. Even though multiple computer vision themes can be identified

throughout this work, the most important is the limited data regime taken into account.

We consider the few-shot learning setting where tasks associated with their support and

vi



vii

query test data are received and trained in episodes. We introduce a novel few-shot meta-

learning classification model that consists of multiple learners supervised by a central

controller to control a feature extraction and meta-learning for integrated inference and

generalisation. Secondly, we introduce an approach for few-shot object detection that

meta-learns object localisation and classification by eliminating region-wise prediction,

and encoding support images and query images simultaneously into class-specific fea-

ture representations that automatically enters into a class-agnostic decoder to generate

output predictions for the categories known beforehand. We also introduce a fully convo-

lutional model for panoptic segmentation in few-shot settings that encodes each instance

into a specific kernel and generates a prediction by convolutions directly, thereby pre-

dicting both instance objects and background stuff together. In this way, instance-aware

and semantically consistent properties for object instances and their background can be

respectively satisfied in a unified workflow. Finally, we introduce a two-stage knowledge

distillation model that maximises the entropy of the feature embeddings of images using a

self-supervised auxiliary loss. Experiments on some public few-shot learning benchmark

datasets such as miniImageNet, Omniglot, COCO-20i and Mapillary Vistas demonstrate

the effectiveness of the proposed methods for few-shot learning in computer vision.

Keywords

Few-shot learning, image classification, object detection, knowledge distillation, panoptic

segmentation, deep neural networks, meta-learning, metric learning, image processing



Thesis Summary

Thesis Title: Few-Shot Learning for Image Classification and Object Detection

This thesis presents and optimise several novel models that tackle computer vision

problems of image classification, object detection, self-supervised knowledge distilla-

tion, and panoptic segmentation in few-shot learning settings. Few-shot learning aims

to close the gap between deep learning models that learn from huge, annotated datasets

and humans in the challenging task of learning from a few annotated examples. Even

though multiple computer vision themes can be identified throughout this work, the most

important is the limited data regime considered. We consider the few-shot learning set-

tings where computer vision tasks with limited data associated with their support and

query test data are received and trained in episodes. We first introduce a novel few-shot

meta-learning classification model that consists of multiple learners supervised by a cen-

tral controller to control feature extraction and meta-learning for integrated inference and

generalisation. Secondly, we introduce an approach for few-shot object detection that de-

tects and recognises new object instances by meta-learning object localisation and clas-

sification in a unified manner by eliminating region-wise prediction and encoding both

support images and query images into category-specific features that then feeds into a

category-agnostic decoder to generate predictions for the specific categories. We also in-

troduce a fully convolutional model for panoptic segmentation in few-shot settings that

encodes each instance into a specific kernel and generates a prediction by convolutions

directly, thereby predicting both instance objects and background stuff together. In this
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way, instance-aware and semantically consistent properties for object instances and their

background can be respectively satisfied in a unified workflow. Finally, we introduce a

two-stage knowledge distillation model that maximises the entropy of the feature em-

beddings of images using a self-supervised auxiliary loss. Experiments on some public

few-shot learning benchmark datasets such as miniImageNet, Omniglot, CIFAR-FS and

Oxford Flowers102 for image classification, Pascal 5i and COCO-20i for object detection,

and Mapillary Vistas for panoptic segmentation demonstrate the performance parameters

and the effectiveness of the proposed methods for few-shot learning. This thesis aims to

close the gap between conventional deep learning and human learning by creating com-

puter vision systems that learn from a few examples of image data.

Keywords Few-shot learning, image classification, object detection, knowledge dis-

tillation, panoptic segmentation, deep neural networks, meta-learning, metric learning,

image processing



IsiZulu

Isihloko sendaba ende: Indlela yokufunda yomshini yokuhlukaniswa kwemifanekiso

nokutholwa kwento

Le ndaba ende yethula futhi ithuthukise izifanekiso zamanoveli amaningana abhekana

nezinkinga zokubono zekhompyutha zokuhlukaniswa kwemifanekiso, ukutholwa kwez-

into, ukuhluzwa kolwazi oluzigadile kanye nendlela yokuhlukanisa umfanekiso osetshen-

ziselwa imisebenzi yokubona yekhompyutha eqoqweni lendlela yokufunda yomshini. In-

dlela yokufunda yomshini ihlose ukuvala igebe phakathi kwezifanekiso zokufunda ez-

ijulile ezifunda eqoqweni elikhulu lemininingwane yolwazi ehlobene, ezinezichasiselo

nakubantu emsebenzini oyinselele wokufunda ezibonelweni ezimbalwa ezinezichasiselo.

Ngisho noma izindikimba eziningi zokubono zekhompyutha zingabonakala kuwo wonke

lo msebenzi, okubaluleke kakhulu uhlelo lwemininingwane olulinganiselwe olucatshangel-

wayo. Sicabangela iqoqo lendlela yokufunda yomshini lapho imisebenzi yokubona yekhom-

puyutha inemininingwane elinganiselwe ehlotshaniswa nokusekelwa kwayo kanye nemi-

ningwane yokuhlola imibuzo iyatholwa futhi iqeqeshwe ngeziqephu. Okokuqala sethula

isifanekiso sokuhlukaniswa kokufunda ukufunda kwenoveli okumbalwa okuhlanganisa

abafundi abaningi abagadwe yisilawuli esimaphakathi ukuze kulawulwe ukukhishwa kwesici

kanye nokufunda ukufunda ukuze kufinyelelwe ekucabangeni okudidiyelwe kanye noku-

jwayelekile, Okwesibili, sethula indlela yokuthola izinto zendlela yokufunda yomshini

ethola futhi ebona izimo zento entsha ngokufunda ukufunda into ibe yasendaweni kanye

nokuhlukaniswa ngendlela ebumbene, ngokususa ukuqagela okuhlakaniphile kwesifunda
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kanye nokubhala ngekhodi kokubili imifanekiso esekelayo nemibuzo yemifanekiso kube

isigaba esithize. sezici ezibese zingena kudivayisi ejwayelekile yesigaba ukuze sikhiqize

izibikezelo zezigaba ezithile. Siphinde sethula isifanekiso somphumela wokuhlunga inhloso

evamile yemifanekiso ngokugcwele ngendlela yokuhlukanisa umfanekiso osetshenziselwa

imisebenzi yokubona yekhompyutha eqoqweni lendlela yokufunda yomshini elihlangan-

isa isenzakalo ngasinye sibe uhlamvu oluthile futhi sikhiqize ukubikezela ngokuhlunga

inhloso evamile yemifanekiso ngokuqondile, ngaleyo ndlela ibikezele kokubili izinto

eziyisibonelo nezinto zasemuva ndawonye. Ngale ndlela, izakhiwo eziqaphelayo nezin-

gaguquguquki ngokwezibalo zezenzakalo zento kanye nengemuva lazo zinganeliswa ngoku-

landelana kwazo ekuhambeni komsebenzi okuhlangene. Ekugcineni, sethula isifanekiso

sezigaba ezimbili zolwazi oluhluziwe esenza isimo sokuphazamiseka sibe sikhulu sesici

esishumekiwe semifanekiso kusetshenziswa ukulahlekelwa komsizi ozigadile. Izivivinyo

kwamanye amaqoqo emininingwane endinganiso yendlela yokufunda yomshini ezinjenge-

miniImageNet, i-Omniglot, i-CIFAR-FS ne-Oxford Flowers102 yokuhlukaniswa kwemi-

fanekiso, i-Pascal 5i ne- COCO-20i yokuthola into, kanye ne-Mapillary Vistas yokuh-

lukaniswa kwendlela yomfanekiso osetshenziselwa imisebenzi yokubona yekhompyutha

ibonisa imingcele yokusebenza kanye nempumelelo yezindlela ezihlongozwayo zendlela

yokufunda yomshini. Le ndaba ende ihlose ukuvala igebe phakathi kokufunda okujulile

okujwayelekile nokufunda komuntu ngokudala izinhlelo zokubona zekhompyutha ezi-

funda ezibonelweni ezimbalwa zemininingwane yemifanekiso.

Amagama asemqoka:

Few-shot learning - Indlela yokufunda yomshini

Image classification - ukuhlukaniswa kwemifanekiso

Object detection - ukutholwa kwento

Knowledge distillation - ukuhluzwa kolwazi

Panoptic segmentation - indlela yokuhlukanisa umfanekiso osetshenziselwa imisebenzi

yokubona yekhompyutha



xii

Deep neural networks - ikilasi lokufunda ngomshini

Meta-learning - ukufunda ukufunda

Metric learning - ukufunda umsebenzi webanga phezu kwezinto

Image processing - inqubo yomfanekiso



Northern Sotho

Thaetlele ya thesese: Few-shot learning ya tlhopho ya diswantšho le temogo ya dilo

Thesese ye e laetša le go šomiša mekgwa e meswa e mmalwa yeo e šomanago le

mathata a pono ya khomphutha a tlhopho ya diswantšho, temogo ya dilo, phetišo ya tsebo

ya boitekolo le karogantšho ya dilo ka maemong a few-shot learning. Maikemišetšo a

few-shot learning ke go tswalela sekgoba magareng ga mehuta ya go tsenelela ya go ithuta

yeo e hwetšago tsebo go tšwa ditlhalošong tše di filwego tša dihlopha tša tshedimošo

le batho ka mošomo o boima wa go ithuta ka mehlala ye mmalwa ye e hlalositšwego.

Le ge dikgwekgwe tša pono ya dikhomphutha tše ntši di ka bonwa mošomong wo ka

moka, se bohlokwa kudu ke mokgwa wo o lekaneditšwego wa datha wo o etšwego hloko.

Re ela hloko maemo a few-shot learning moo mešongwana ya pono ya khomphutha ya

go ba le datha ya thekgo ya yona le datha ya teko ya dipotšišo di amogetšwe gape ka

ditiragalo. Re thoma ka go tsebagatša mmotlolo wa tlhopho ya few-shot learning le meta-

learning tšeo di nago le baithuti ba bantši bao ba hlokomelwago ke molaodi wa bogare

go laola go tlošwa ga dilo le meta-learning sephetho se se kopantšwego le kakaretšo.

Sa bobedi, re tsebiša mokgwa wa temogo ya dilo wa few-shot wo o lemogang le go

amogela mehlala ya dilo tše diswa ka meta-learning le tlhopho ka mokgwa wa botee, ka

go tloša kakanyo ya kgakanego le go fetolela diswantšho tšeo di thekgang le diswantšho

tša potšišo go dibopego tša karolo ye e ikgethileng go karolo ya tlhathollo ya go se kgodiše

go tšweletša dikakanyo tša dikarolo tše itšego. Re tsebišitše gape mokgwa wo o feletšego

wa go latela dilo tša go raragana ka go šomiša few-shot learning go romela dilo lefelong
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le itšego gomme tša tšweletša kakanyo ya dilo thwii, gomme ya fa kakanyo ya ditiragalo

tša dilo tše pedi mmogo. Ka tsela ye, mehlala ya mokgwa wo le dilo tšeo di latelanago

tša semanthiki tša mešomo ya dilo le botšo bja tšona di ka latelana gabotse go mešomo

ye e kopantšwego. Mafelelong re tsebiša mmotlolo wa phetišo ya tsebo wa dikgato tše

pedi woo o kaonafatšago maemo a go raragana ga dilo tše di lokelwago diswantšhong

ka go šomiša tahlegelo ya thekgo ya boihlokomelo. Boitekelo godimo ga dihlopha tša

datha tše dingwe tša bohle tša tekanetšo ya few-shot learning bjale ka miniImageNet,

Omniglot, CIFAR-FS le Oxford Flowers102, Pascal 5i le COCO-20i ya temogo ya dilo,

le Mapillary Vistas ya karogantšho ya dilo go laetša magomo a tshepedišo le go šoma

gabotse ga mekgwa ye e šišintšwego ya few-shot learning. Maikemišetšo a thesese ye ke

go tswalela sekgoba magareng ga thuto ye e tseneletšego ya tlwaelo le go ithuta ga batho

ka go hlama mananeo a pono a khomphutha ao a ithutago go tšwa mehlaleng ye mmalwa

ya datha ya diswantšho.

Mantšu a bohlokwa: few-shot learning (FSL), tlhopho ya diswantšho, temogo ya

dilo, phetišo ya tsebo, karogantšho ya dilo, dineteweke tša nyurale ye e tseneletšego (deep

neutral networks (DNN)), meta-learning, thuto ya metriki, peakanyo ya diswantšho



Nomenclature

2D Two-Dimensional

3D Three-Dimensional

ANN Artificial Neural Networks

CNN Convolutional Neural Networks

DCN Deformable convolutional networks

DL Deep Learning

DETR DEtection TRansformer

DNN Deep Neural Networks

FSL Few-shot Learning

FC Fully Connected

FCN Fully Connected Neural Networks

FPN Feature Pyramid Network

FSL Few-shot Learning

FSOD Few-shot Object Detection

GANs Generative Adversarial Networks

GPU Graphics Processing Unit

JSON Javascript Object Notation

LSTM Long Short-Term Memory

LSTD Low-Shot Transfer Detector

MAML Model-agnostic meta-learning
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mAP mean Average Precision

MAP Masked Average Pooling

MPSR Multi-scale Positive Sample Refinement

MS COCO Microsoft Common Objects in Context

NMS Non-maximum suppression

ONCE OpeN-ended Centre nEt

PQ Panoptic Quality

ReLU Rectified Linear Unit

RNNs Recurrent Neural Networks

R-CNN Region-Based Convolutional Neural Networks

RoI Region of Interest

RPN Region Proposal Network

SAM Semantic Alignment Mechanism

SGD Stochastic Gradient Descent

SSD Single-Shot Detection

TPU Tensor Processing Unit

VAE Variational AutoEncoder

ViT Vision Transformer

YOLO You Only Look Once

YOLOR You only Learn One Representation



Definition of Terms

Attention: A mechanism that equips a neural network with the ability to focus on a subset

of important input features, and devote more computing power to that small but impor-

tant part of the input, described as soft attention or hard attention, and can be global, or

local. For matrix-valued inputs such as images, it is referred to as visual attention, and it

is implemented as element-wise multiplication.

Base set: Feature maps that have been acquired through transfer learning from a task with

a large amount of data to learn a representation of some inputs for further comparison in

the feature space. The base set can then be used with a new model where data is not

abundantly available.

Bipartite matching: An algorithm mainly used with transformer networks that finds the

best match between the ground truth and the predictions, which minimises the error be-

tween them.

Contrastive loss: A metric learning loss which operates on two given data points (X1

and X2) produced by a network, e.g. by a Siamese network, and their positions relative

to each other, and specifies whether they are similar or dissimilar.

Convolution: A mathematical operation on two functions (f and g) that produces a third

function (f ⋆ g) that expresses how the shape of one is modified by the other. The CNN

repeats the application of the same filter to an input that results in a map of activations

also known as a feature map for an image, indicating the strength and the locations of a

detected feature in an input space.
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Convolution filter: Is a matrix of weights comprised of integers that is applied to an

image with mathematical operation. It works by determining the value of a central pixel

by adding the weighted values of all its neighbours together. In CNNs, the value of each

filter is learned during the training process. It is also known as a kernel.

Convolutional neural network (CNN): A feed-forward neural network that is gener-

ally used to analyse visual images by processing data with grid-like topology. It contains

many convolutional layers stacked on top of each other, each one capable of picking up

patterns in the input image such as lines, gradients, circles, or even eyes and faces, and

therefore used to classify images, or detect and classify objects in an image.

Cosine similarity: A measurement that quantifies the similarity between two or more

vectors, described mathematically as the division between the dot product of vectors and

the product of the Euclidean norms or magnitude of each vector.

Cross entropy loss: A classification loss which operates on class probabilities produced

by the network independently for each sample, used when adjusting model weights dur-

ing model training.

Data augmentation: A technique used to artificially create new training data from ex-

isting training data by putting in slightly modified versions of already existing data into

the existing dataset, or adding newly created synthetic data from existing data with the

intention of expanding the training dataset with new, plausible training examples. It acts

as a regulariser and helps reduce over-fitting when training a machine learning model.

Deep learning: Subfield of machine learning based on artificial neural networks, which

can be thought of as learn hierarchical representations of the input data through non-linear

transformations, with architectures that include CNNs, RNNs, and LSTM, among others.

Embedding: A relatively low-dimensional, learned continuous vector representation of

discrete variables useful for reducing the dimensionality of categorical variables and

meaningfully representing categories in the transformed space. It captures some of the

semantics of the input by placing semantically similar inputs close together in the embed-
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ding space, making models more efficient and easier to work with.

Encoder-decoder architecture: Deep learning architecture that can handle inputs and

outputs of variable-length sequences suitable for sequence transduction problems where

an input sequence is read in entirety and encoded to a fixed-length internal representation.

An encoder first takes a sequence of variable-length as input and transforms it into a state

with a fixed shape. A decoder maps the encoded state of the fixed shape to a sequence of

variable-length.

Feature extraction: A machine learning process for methods that select and/or combine

variables into features, whereby the initial set of raw data is reduced to more manageable

groups for processing, effectively reducing the amount of data that must be processed.

The product will still be able to accurately and completely describe the original dataset.

Feature Pyramid Network (FPN): A top-down architecture with lateral connections

used as a generic feature extractor for building high-level semantic feature maps of an

input image at all scales that has been used with object detection systems. The feature ex-

tractor takes a single-scale image of an arbitrary size as its input, and the resulting output

has proportionally sized feature maps at multiple scales and levels.

Few-shot learning: A type of machine learning problem that uses CNNs (specified by

experience E, task T and performance P), where E contains only a limited number of

examples with supervised information for the target output.

Generative Adversarial Networks (GANs): A deep learning model based on the idea of

adversarial training that consists of two neural networks that compete against each other.

The generator is a convolutional neural network that artificially manufacture outputs that

could easily be mistaken for real data, and the discriminator is a deconvolutional neural

network that identifies which outputs it receives have been artificially created.

Hyperparameter: A neural network variable that is tuned before training the model like

number of layers, activation functions, loss functions, optimizers, early stopping, learning

rate.
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Knowledge distillation: A procedure for model compression, whereby to train the small

deep learning model called the student, on a transfer set with soft targets provided by the

large model also known as the teacher, usually by compressing the knowledge of a large

and computational expensive model (often an ensemble of neural networks) to a single

computational efficient neural network.

L1 and L2 Regularisation: Regularisation is a technique to penalise complex deep learn-

ing models to reduce over-fitting by making network weights small. L1 regularisation

adds a penalty that is equal to the absolute value of the magnitude of coefficient, or re-

stricts the size of the coefficients. L2 regularisation adds a penalty equal to the square of

the magnitude of coefficients.

Logits layer: The raw scores, or prediction values that are produced as real numbers

ranging from [-infinity, +infinity ] that are output by the last layer of a neural network and

are fed into the Softmax layer which turns them into probabilities and used for a classifi-

cation task in neural networks.

Loss function: A measure used to determine the error or the loss between the prediction

of the neural network with respect to the expected output label or given target value.

Mask classification: Image segmentation task whereby the image is partitioned into N

regions represented with binary masks, associating each region as a whole with some dis-

tribution over K categories, as opposed to per-pixel classification whereby the individual

image pixels are analysed by the spectral information they contain.

Mask transformer: Attention-based neural network, which consists of two sublayers,

namely, Self-Attention Network (SAN) and Feed-Forward Network (FFN). It basically

transforms a given sequence of elements, such as the sequence of words in a sentence, or

image patches into another sequence.

Mean squared error: The mean of the squared prediction errors over all instances in the

test set. The prediction error is the difference between the true value and the predicted

value for an instance.
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Meta-learning: An approach to machine learning whereby models are designed to learn

new skills or adapt to new environments rapidly across a suite of related prediction tasks

with a few training examples. Also referred to as “Learning-to-learn”.

Metric-learning: An approach in deep learning based directly on a distance metric that

aims to establish similarity or dissimilarity between objects. It aims to reduce the distance

between similar objects, and to increase the distance between dissimilar objects.

Neural style transfer: The technique of transferring the style such as texture, colours,

and other visual patterns from one image to another.

Non-maximum suppression (NMS): A class of algorithms used mainly in object detec-

tion to select one best bounding box out of many overlapping boxes, using, for instance,

some form of probability number and some form of overlap measure (e.g. IoU) for further

processing.

Object detection: A deep learning process that locates the presence of objects with a

bounding box or mask, and types or classes of the located objects in the input image. The

output is one or more bounding boxes usually defined by a point, width, and height, or a

mask that covers the identified image, and a class label for each bounding box or mask.

Object localisation: To predict the presence of a bounding box or mask around the object

if present in the image.

Optimisation: The problem of finding a set of inputs to an objective function that results

in a maximum or minimum function evaluation. Gradient Descent, Adaptive Learning

Rate, and Stochastic gradient descent (SGD) are some of the most used optimization al-

gorithms for deep learning.

Over-fitting: An analysis by a neural network model that corresponds too closely or ex-

actly to a particular set of data, and therefore fails to generalise and predict future obser-

vations reliably. This is the main cause of poor performance in deep learning. Approaches

to reducing overfitting include L1 regularization, adding dropout layers, and artificially

increasing the size of the training set.
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Panoptic segmentation: A type of segmentation that unifies the two distinct tasks of

semantic segmentation that assigns a class label to each pixel of an image and instance

segmentation that detects and segments each object instance in an image.

Parameter: A variable that is updated by the network during the training process such as

weights and biases that are tuned automatically by the model during training, as opposed

to hyperparameters that are set by the user before training.

Self-supervised learning: A machine learning approach that does not depend on the hu-

mans to label and categorise the training objects. The features, and the labels are learned

first from unlabelled data in what is called representation learning. The real model is then

learnt from the features extracted from the labelled data. The labels are generated from

the given data.

Semantic Alignment Mechanism (SAM): A mechanism used to facilitate meta-learning

with deep learning networks that orient high-level image feature semantics to low-level

feature semantics of images to improve model generalisation capabilities of meta-learnt

representations.

Siamese network An artificial neural network that uses the same weights while working

in tandem on two different input vector representations to compute comparable output

vectors.

Stochastic gradient descent (SGD): An iterative optimization algorithm for optimizing

an objective function that randomly picks one instance in the training set for each one step

and calculates the derivative of gradient based only on that single instance and calculating

the update immediately. SGD is used to find the optimal parameter configuration for a

deep learning algorithm by iteratively making small adjustments to the network configu-

ration to decrease the error of the network.

Support set and query set: In few-shot learning, we have n-labelled examples of each

K classes, that is N × K total examples which we call support set S. We also have to

classify a query set Q, where each example lies in one of the K classes.
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Transfer learning: A technique whereby an existing model trained on one dataset usu-

ally with a high level of generalisation is reused to solve a problem in another domain by

fine-tuning the former network model, keeping the weight fixed, or adapting them entirely

when training the model to save both training resources and time.

Triplet loss: A loss function defined on triples of images where a baseline (anchor) im-

age input is compared to a positive input and a negative input. The function makes the

distance of the embeddings between the anchor and a positive image, to be a positive, i.e.

the images are of the same type, whereas, in contrast, the anchor image when compared

to the negative example results will result in them having a larger distance between them.
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Chapter 1

Introduction

1.1 Introduction

In this chapter, the general context of this thesis is introduced, including the introduction

to few-shot learning, the aims and objectives of the study, the major results, and the thesis

contributions. The outline of the thesis is provided.

1.2 Supervised and Unsupervised Learning in Deep Learn-

ing

Over the past decade, there has been heightened interest in the use of deep neural net-

works (DNNs) in computer vision applications. The goal is for algorithms to learn com-

mon patterns from vast amounts of image data often with millions of images that have

been hand-annotated. For example, the ImageNet [43] is a large dataset of more than

fourteen (14) million visual images of approximately 150GB size that has been widely

used in visual object recognition research. The other datasets that have also been used

in image recognition are the MS-COCO [140] and Mapillary Vistas [161], among many

others. A common scenario for these datasets is one in which labels are costly and time-

1
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consuming to acquire from abundant data, for instance, collecting video, audio and image

data is cheap with today’s cameras, but high-precision labelling of the data is costly and

cumbersome, making the whole process infeasible. Deep learning networks are, how-

ever, incapable of adapting to new unseen data or environments. Whenever new data is

available, the deep neural network has to be re-trained to incorporate the new patterns

to be able to generalize, which becomes infeasible in the current world where new data

becomes available every time.

Deep learning refers to a broader family of machine learning methods based on ar-

tificial neural networks (ANNs) with representation learning. These learning methods

can generally be categorised into supervised, semi-supervised or unsupervised. With su-

pervised learning, the training set is submitted as input to the system during the training

phase. Each input is labelled with a desired output value. In this way the model is pro-

vided with both the input and the corresponding output. Models need to find the mapping

function to map the input variable (X) with the output variable (Y). In unsupervised learn-

ing, the model looks for previously undetected patterns in a dataset with no pre-existing

labels and with a minimum of human supervision. Semi-supervised approaches combine

a small number, depending on the size of the dataset, of labelled data with a large amount

of unlabelled data during training. It falls between supervised learning and supervised

learning.

Deep learning models [117, 124, 212, 225] have become exceptionally good at learn-

ing functions that map inputs to human-generated labels under one condition that an enor-

mous amount of labelled data must be fed to them first. There is also another drawback,

that these models, determined to classify the input into a category, do not learn much

about the inherent properties of input elements. The feedback the machine is given is

scarce in supervised learning, so naturally the networks are very sample inefficient. This

creates a significant issue that high-quality data is often hard to come by for a lot of appli-

cations and obtaining an annotated dataset can prove too costly an undertaking even for
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large organizations.

In computer vision tasks, deep learning has been successfully managed by convolu-

tional neural network (CNN) learning models. These include models for object recogni-

tion and detection, image classification, person identification, activity recognition, among

others, tasks that are useful in many fields of application, including autonomous driving,

medical image analysis, robotics and video surveillance. The drawback of these deep

learning approaches is that they require a huge amount of annotated training data for

supervised training, and computing resources for these tasks are generally expensive or

unavailable. Data annotation is usually an expensive and tedious task. On the other hand,

data can also be rare or difficult to gather for some reasons, including safety and ethical

issues. Moreover, a deep learning model trained successfully for a specific task A, cannot

be directly deployed for task B, even though they are similar. This means that a learning

algorithm can only be good at mastering one task. On the other hand, humans learn by

combining and generalizing multiple concepts. It is therefore essential to develop models

that can learn from few annotated samples of training data. Few-shot learning, a subfield

of machine learning aims to narrow the gap between machine and humans in the chal-

lenging task of learning from few examples. The aim of this thesis is to propose novel

methods that optimize the model ability to detect and recognise new object instances us-

ing few labelled data. The idea is to bridge the divide between conventional deep learning

and human learning. This can be achieved by creating systems that learn from a few

examples of data.

1.3 Few-shot Learning

In few-shot learning, the terms support set and query set are used to describe the dataset

for training and for testing. In traditional supervised learning, the test set has not been

seen before, though its examples belong to one of the classes that have been used during
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training. Test samples are from known classes. For instance, if the model is being used

to classify dogs and cats, only samples of dogs and cats are used for training. Sheep

cannot be part of either the training set or the test set in traditional supervised settings.

Few-shot learning is a different problem. The query has not been seen before. It is from

an unknown class. The support set could have samples of dogs, cats, and elephants. The

few-shot model could have a sheep as part of the query set. The training set does not have

the sheep class.

The idea behind few-shot learning is to learn a similarity function sim(X,X ′) which

measures the similarity between X and X ′. The ideal situation is that sim(X1, X2) = 1,

sim(X1, X3) = 0, and sim(X2, X3) = 0 (refer to Figure 1.1.

Figure 1.1: Illustration of the similarity between the support and the query sets for man-

grove species.

The basic idea is to first train a model using a large training dataset that has been

successfully used for classification such as the ImageNet dataset. The model can then

be quickly trained for novel datasets to adapt it. For instance, a model trained on a vast

dataset of images that includes vegetation types, animals, cars, and buildings can quickly

adapt to the training for the identification of tree species.
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1.4 Task Formulation

Few-shot learning aims to produce a model such that, given a learning episode with N

classes and a few labelled examples kc per class c ∈ 1, . . . , N , the model is able to

generalise to novel labels for that episode. The new model has learnt from a support

set S = {(x1, y1), . . . , (xK , yK)}, K =
∑

cKc. The model is assessed and evaluated

on a query set Q = {(x∗1, y∗1), . . . , (x∗T , y∗T )}. x, y is the input image vector x ∈ R and

the image label y ∈ 1, . . . , N . Episodes are described as N − way K − shot episodes.

Training often proceeds in an episodic fashion.

1.5 Relation to Other Common Machine Learning Sub-

Fields

There are some machine learning subfields that are related to few-shot learning. We

will describe continual learning, transfer learning, and open set recognition briefly and

highlight the main differences with few-shot learning.

Continual learning. Continual learning, also known as sequential learning, incre-

mental learning, or lifelong learning is also a type of machine learning that studies the

problem of learning from an endless or infinite stream of data stemming from chang-

ing input domains. It is associated with different learning tasks and problem domains,

with the goal of using the acquired knowledge in problem solving and future learning

[3, 156, 175, 271]. Continual learning models continuously learn based on the input of

increasing amounts of data while using previously acquired knowledge. It is motivated

by the Stability–Plasticity Dilemma [4] in humans who have astonishing ability to adapt

by effectively acquiring knowledge and skills, refining them on the basis of novel expe-

riences, and transferring them across multiple domains. The algorithms are designed to

accumulate and improve knowledge in a curriculum of learning-experiences, without suf-
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fering from catastrophic forgetting experienced by deep learning systems when exposed

to new sets of datasets. For most applications, it is infeasible to annotate all training la-

bels from all envisaged tasks before the start of the model learning process. Therefore,

continual learning constantly evolves and should adapt to the changing world, and models

must adapt and continue to learn. All previously seen data should have their dimension

reduced for such a system or process to be efficient. There is no need for a large scale full

re-training at each point. Continual learning is a more general formulation of few-shot

learning.

Transfer Learning. Transfer learning [272] aims at “aiding the learning process of a

given task by exploiting the knowledge of another model” [272, p. 1] such as InceptionV3

[226], or ResNet [83], and others, that has been trained using a different dataset domain

such as Imagenet or Microsoft COCO, to save time and resources, and also to train a

model where there is a shortage of training data. Deep neural networks are immensely

data-hungry and rely on huge amounts of labelled data to achieve high performance. It

has been observed that a deep neural network trained in computer vision images or video

shows that the first layers of the network learn the general features like when using Gabor

filters. The layers become steadily more particular to the information about the class

types that are present in the input image. Deep neural networks can take several days of

training, so the weights that have been learnt on a larger model can be used and fine-tuned

to save training time. Domain adaptation is a sub-field of transfer learning which deals

with situations in which a model trained on one image dataset distribution is thereafter

used in the context of a different dataset target. It may also use labelled data in one

or more source domains to solve novel tasks in another target domain where the source

and target tasks are the same but drawn from different input domains. The target dataset

is usually unlabelled. The primary objective is to adapt a model trained on the source

domain to perform well on the unlabelled target domain without changing how the model

works. Some successful few-shot learning models derive feature representations through
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transfer learning.

Open Set Recognition. Open set recognition aims to classify the known and recog-

nize the unknown where there exists partial data from the dataset at training time. The

models should be able to predict known and unknown classes submitted for classification

during testing, requiring the classifiers to not only accurately classify the seen classes,

but also effectively deal with unseen ones. The set is “open” because we want to classify

what we can amongst the closed set of classes that we have, but we want to classify sam-

ples from the open world, therefore open set. It can be categorized into four classes, 1)

known knowns, that is, labelled images of classes which we want to recognize; 2) known

unknowns - unlabelled images that do not belong to any of the classes that we want to

recognize, 3) unknown known classes - classes that we have no samples of but know that

exist through side information; and 4) unknown unknown class - classes that we have no

samples of and we do not know that exist.

1.6 Aim

The goal of this thesis is to study few-shot learning. This thesis presents several novel

methods that tackle the problems of image classification, object detection, self-supervised

knowledge distillation, and panoptic image segmentation in few-shot learning settings.

1.7 Contributions

Even though multiple computer vision themes can be identified throughout this work, the

most important is the limited data regime taken into account. We consider the few-shot

learning setting where tasks associated with their support and query test data are received

and trained in episodes.

Before presenting the main contributions, we review some of the most relevant liter-

ature in Chapter 2. The purpose is to give a general overview of the literature related to
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few-shot learning (Section 2.2) including approaches to few-shot learning (Section 2.3),

object detection (Section 2.5), knowledge distillation (Section 2.6), panoptic segmenta-

tion (Section 2.7.2), the Vision Transformer (Section 2.8), and commonly used datasets

for few-shot learning (Section 2.9). Chapters 3 to Chapter 6 contain separate related work

sections, more specific to their very content.

In Chapter 3, we introduce a novel meta-learning model that consists of dual learners

composed of a pre-trained encoder, and supervised by a central controller to control mod-

ules for feature extraction and meta-learning, and a meta-ensemble module for integrated

inference and generalisation. In particular, each meta-learner is fine-tuned by batch train-

ing and parameter-free decoder used for prediction. First, ResNet152 is used as a back-

bone to learn a representation fθ of input on base set. We then optimize the classifier by

using the cosine distance in the feature space in the meta-training stage. We provide some

insights for best practices in implementation on the Omniglot, miniImageNet and Oxford

Flowers 102 datasets.

Chapter 4 introduces a novel approach to fully convolutional few-shot multi-scale

object detection in input images. Our approach meta-learns object localisation and classi-

fication in a unified manner by eliminating region-wise prediction. Both support images

and query images are encoded into category-specific features first. They then feed into

a category-agnostic decoder to generate predictions for the specific image categories. To

facilitate meta-learning, a module designed in multi-scale architecture to enable multi-

scale object detection is designed. This model aligns semantics of high-level feature and

low-level feature representations. Experiments on two public benchmark datasets, Pascal

5i and COCO-20i demonstrate the proposed method’s effectiveness for “few-shot object

detection” [55, p. 1].

Chapter 5 introduces a novel fully convolutional model for few-shot learning for

panoptic segmentation. The model encodes each instance image into a specific kernel

and generates a prediction by convolutions directly, thereby predicting both instance im-



1.8. OUTLINE OF THE THESIS 9

age objects and background regions together. In this way, instance-aware and semanti-

cally consistent properties for things and stuff can be respectively satisfied in a unified

workflow. Experiments on the Mapillary Vistas dataset demonstrate the effectiveness of

the proposed method for few-shot panoptic segmentation.

In Chapter 6, we introduce a two-stage deep learning knowledge distillation model

that uses a self-supervised loss to create augmented images. The model maximises the

entropy of the feature embeddings to estimate an optimal output manifold in the first stage.

The model reduces the gap between the embeddings while fixing the original image sam-

ples to the learned embedding manifold using a distillation loss for few-shot classification

of the input images. The entropy is minimised on feature representation by bringing self-

supervised twins together. It simultaneously constrains the manifold with student-teacher

knowledge distillation.

Finally, we conclude in Chapter 7 by outlining the main findings of the thesis and by

suggesting potential avenues for future research.

1.8 Outline of the Thesis

The rest of the manuscript is organized as follows: We present and discuss from a broad

perspective works on few-shot learning that emerged during the past few years in Chapter

2. Our novel work on few-shot image classification is detailed in Chapter 3. We also

present a novel approach for “few-shot object detection” [101, p. 1] for learning object

localisation and categorisation in Chapter 4. A fully convolutional model for few-shot

panoptic segmentation is proposed in Chapter 5. We move to present our few-shot two-

stage knowledge distillation model that maximises the entropy of feature embeddings

using a self-supervised auxiliary loss in Chapter 6. We outline the main findings, and

future directions in Chapter 7.
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1.9 Conclusion

This chapter provides the general context of the thesis including the introduction to few-

shot learning in deep learning settings, the aims and objectives of the study, and the thesis

contributions. The following chapter provides a comprehensive review of some of the

most relevant literature in few-shot learning, including a general overview of the liter-

ature related to few-shot learning in image classification, object detection, knowledge

distillation, the Vision Transformer, and panoptic segmentation.



Chapter 2

Literature Review

2.1 Introduction

We are interested in studying the problem of few-shot learning in deep learning with com-

puter vision. In particular, our focus is on improving methods for image classification,

object detection, panoptic segmentation, and knowledge distillation in few-shot learn-

ing settings, where models are trained with a small amount of data in episodic fashion

using support set images and corresponding query images. Most benchmarks combine

various methods, including data augmentation methods, metric-based methods, models-

based methods and optimisation-based methods in all areas of computer vision. Few-shot

learning presents several challenges in computer vision, including:

• Improving feature representation in classification, object detection and segmenta-

tion,

• Identifying object instances of interest given only a small amount of training data,

• Differentiating individual object instances,

• Simultaneously recognizing both semantic labels and object instances, and

11
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• Designing end-to-end models for few-shot learning.

Therefore, this thesis presents several novel methods that tackle the problems of im-

age classification, object detection, self-supervised knowledge distillation, and panoptic

segmentation in few-shot learning settings. We consider the few-shot learning setting

where tasks associated with their support and query test data are received and trained in

episodes.

This chapter explores the literature pertaining to all relevant research on the methods

and techniques in few-shot learning for image classification, object detection, knowledge

distillation and panoptic segmentation. Current research topics that have addressed the

problem of learning with limited data or few-shot learning in deep learning with image

processing, including seminal work in meta-learning, metric learning, data augmentation,

knowledge distillation, the vision transformer and self-supervised learning are explored.

We give a brief review of literature for few-shot learning and few-shot image classifica-

tion in Section 2.2. We explain approaches that have been used for few-shot learning in

Section 2.3. A brief overview for few-shot learning on object detection follows in Section

2.5. We then present a knowledge distillation view on few-shot learning in Section 2.6.

We give an overview of panoptic segmentation in Section 2.7, including semantic and

instance segmentation. Finally, we describe few-shot seminal work on the Vision Trans-

former (ViT) in deep learning in Section 2.8. The focus is on few-shot learning in image

processing.

2.2 Few-shot Learning

After the success of deep learning thanks to the powerful Graphics Processing Units

(GPUs) and Tensor Processing Units (TPUs) allowing training on large datasets and deep

architectures, few-shot learning has received increased attention in recent years. Few-

shot learning [56, 57, 121, 239], or the ability to learn from few labelled samples has
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been motivated by human-centred intelligence that has the ability to learn novel objects

on the fly from few samples. The current successful deep learning models for classifica-

tion, image segmentation, and object detection and recognition are based on supervised

learning. They train with large-scale datasets such as ImageNet, Microsoft COCO and

Open Images with millions of labelled samples. However, even with large-scale datasets

they remain limited in multiple aspects. Not all objects in our lives are within the one

thousand (1000) labels provided per object type, for instance on ImageNet. There is

therefore, need to develop models that can learn from few samples of data. Training an

accurate deep learning model using only a few training examples is a particularly chal-

lenging problem. Successful models learn patterns very slowly, and require vast amounts

of processing capabilities. The main goal of developing few-shot learning models and

techniques is to develop deep learning models that are able to infer from specific cases

better to novel classes given a quantity of samples. This is normally achieved with itera-

tive training based on the stored knowledge representations or embeddings acquired from

training the labels on a large annotated dataset.

Few-shot learning aims to build deep learning models that can learn efficiently to rec-

ognize patterns in the low data regime, applied in situations where image data is scarce.

Early works [56, 58] approaching few-shot learning focused on one-shot learning where

the distance function, or regularisation terms such as L1, L2; or the probability mod-

els were used to classify objects. Several directions have since been explored such as

metric learning [88, 103, 104, 113, 224], data augmentations [2, 22, 68, 253, 272], meta-

learning [61, 239], memory augmented networks [206], or combined model architectures

[88, 217]. More recently, the most popular and effective learners have addressed few-shot

learning using optimisation-based models, e.g. meta-learning and/or metric-learning-

based methods. The key idea is to leverage a large number of similar few-shot tasks

in order to learn how to adapt a base-learner network to a new task for which only a few

labelled examples or samples are available, and learn only features that are distinctive or
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similar in the images. The critical challenges that have been encountered are fast adapta-

tion without over-fitting, time and resource efficiency, and generalisation across different

datasets.

Figure 2.1: An illustration of few-shot learning using metric learning.

Various approaches have been employed for few-shot learning. Gradient descent-

based approaches [5, 61, 190] learn to rapidly adapt a model to a task via a small number

of iterations during processing. Metric learning-based [113, 214, 222, 239] (e.g. the Eu-

clidean Distance, or the Minkowski Distance) approaches learn a distance metric between

a query image, and the support images. Other approaches learn to map a test example to

a class label by accessing memory modules that store training examples for that task

[206]; and others learn how to generate the weights of a classifier [71, 182, 273], and

methods that “hallucinate” additional examples of a class from a reduced amount of data

[82, 151, 279]. Few-shot learning has also been employed in self-supervised learning

[47, 71, 199, 227, 288] where it focuses instead on unlabelled data and looks into it for

the supervisory signal to feed deep neural networks.

Many circumstances exist where accruing enough data to increase the accuracy of
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deep learning models is unrealistic. Few-shot learning models are driven by the concept

that reliable algorithms can be created from minimalist datasets. Some of the driving fac-

tors behind its increasing interest and adoption include the reduction of data collection

and computational costs since few-shot learning requires less data to train a model. Addi-

tionally, in the event of scarcity of data or rare-case learning, supervised machine learning

techniques find it challenging to make accurate predictions and make accurate inferences.

Definition Consider a machine learning task T (see Table 2.1). A machine learning

program can improve its performance P, e.g. for classification, object detection, or image

segmentation through experience E obtained by training on a large number of labelled

images. The program improves its classification accuracy P by training on a database of

experiences E of millions of images annotated by human experts. Few-shot Learning

is a type of machine learning problem specified by E, T and P, where E contains only a

limited number of examples with supervised information for the target [242, p. 1.5].

Table 2.1: Machine learning task

Task T Experience E Performance P

Image classification Large-scale labelled dataset Classification accuracy

Many successful deep learning approaches employ supervised learning models, and

these require that training samples be labelled. However, sometimes accruing enough

data to increase the accuracy of the model is unrealistic and difficult to achieve. Labelling

samples is generally costly. For instance, labelling x-ray images requires the involvement

of medical specialists. Few-shot learning may also be of great assistance to discover

patterns in confidential medical data or rare plant or animal diseases, and make beneficial

predictions. Humans are known to learn from very few examples. Unlike deep learning

models, humans do not need thousands of dog and cat images to distinguish between the

two animals. Even a child can learn what a dog is after seeing one or two examples of
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these animals. Few-shot learning aims to close this gap between deep learning models and

humans in the challenging task of learning from few examples. There is need, therefore,

to develop and improve ways to learn from few examples in deep learning.

A few-shot learning model is fed with a very small amount of training data, ideally

between 1 and 5, and sometimes up to 20 training examples and corresponding labels,

contrary to the deep learning practice of using a large amount of annotated data. For

instance, if we have a problem of categorizing tree species from aerial photos, some rare

species of trees may lack enough pictures to be used in the training images. If we have

only one image of a certain tree, this would be a one-shot machine learning problem. In

extreme cases, where we do not have every class label in the training, and we end up with

zero training samples in some categories, it would be a zero-shot [9] machine learning

problem.

2.2.1 Few-shot learning terminology

In few-shot learning, the terms support set (S) and query set (Q) are used to describe

the dataset for training and testing. For instance, a few examples are sampled from each

class from the dataset D and assigned as support set. Similarly, some other corresponding

data points are sampled from each class and assigned as the query set. In this setup, the

model is trained on the support set and tested on the query set. Moreover, the few-shot

learning models are trained in an episodic manner, such that, at each episode, new data

points are sampled from the dataset D and assigned as support and corresponding query

set. This means that at each episode the model is trained and tested on different support

and query sets. After a series of episodes the model has learned how to learn from a

smaller dataset [239].
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Figure 2.2: Few-shot learning: The model is trained using a series of similar training

tasks. The task in this instance is a 3-way-2-shot classification problem, which, in this

case, each training task contains a support set with three different classes of flowers;

daisy, dandelion and sunflower, and two examples of each flower species. During training

the objective or loss function is used to assess the performance on the image query set

for each task in turn given the respective support set images. At test time, a completely

different set of tasks is used. The query set is used to evaluate the performance, given

the support set. There is no overlap between the classes in the individual training tasks

and between those in the test task. The model or algorithm must learn to classify image

classes in general rather than any particular set.
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The terminology commonly used in few-shot learning to describe the problem setup

is N-way K-shot learning (see Figure 2.2). N-way K-shot learning refers to the number

of classes and the number of data samples from each class available during training to be

used as support set and query set. The aim is to discriminate between N classes with K

examples of each class. A typical problem size might be to discriminate between N=10

classes with only K=5 data samples from each class to train from. With this amount of

data samples, we cannot train a classifier using conventional deep learning methods that

depend on far more parameters than there are training examples. It will not be able to

generalize.

For example, if the task is to classify mangrove trees and non-mangrove trees, then it

is a 2-way setup as there are only 2 classes (mangroves and non-mangroves) to be learned.

Moreover, during training, if only 5 samples of mangroves trees and 5 samples of non-

mangroves are introduced to the model as support set, then it is a 2-way 5-shot learning

setup. The goal of few-shot learning is to classify new image data having seen only a

few training examples. In practice, few-shot learning is useful when training examples

are hard to find and rare for using normal deep learning models, or where the cost of

labelling data is high, such as diagnosis of rare diseases. If the data is insufficient to

constrain the problem, then one possible solution is to gain experience from other similar

problems from the same domain.

The capability and the performance of an algorithm to perform few-shot learning is

typically measured by its performance on the N-way, K-shot tasks. These tasks are run as

follows:

• A model is given a query sample belonging to a new, previously unseen class.

• It is also given a support set, S, consisting of N examples each from K different

unseen classes.

• The algorithm then has to determine which of the support set classes the query
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sample belongs to.

2.2.2 Few-shot learning notation

The primary goal of few-shot learning is to make a model generalise its performance to

novel categories from a handful of samples with iterative training based on prior knowl-

edge acquired from training samples on a labelled dataset consisting of a large number of

samples.

Table 2.2: Few-shot learning notation.

Commonly used Notation in Few-shot Learning

Symbol Description

Dtrain Training set

Dtest Testing set

(xn, yn) n number of samples and their labels in Dtrain

(xin, y
i
n) n number of samples and their labels in Dtest

h Hypothesis

ĥ Hypothesis for meta-learning

θ Model parameters

(S) labelled Support set

(Q) Query set

Ti i set of tasks where each task is a set of classes

Consider a learning task T (see Table 2.2), few-shot learning (FSL) deals with a

dataset D = {(Dtrain, Dtest)} consisting of a training set Dtrain = (xi, yi)
I
i=1 where I

is small, and a testing set Dtest = {xtest}. Let p(x, y) be the ground-truth joint proba-

bility distribution of input x and output y, and ĥ be the optimal hypothesis from x to y.

FSL learns to discover ĥ by fitting Dtrain and testing on Dtest. To approximate ĥ, the
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FSL model determines a hypothesis space H of hypotheses h(.; θ)’s, where θ denotes all

the parameters used by h. Here, a parametric h is used, as a non-parametric model often

requires large datasets, and thus not suitable for FSL. A FSL algorithm is an optimiza-

tion strategy that searches H in order to find the θ that parametrises the best h⋆ ∈ H.

The FSL performance is measured by a loss function ℓ(ŷ), y defined over the prediction

ŷ = h(x; θ) and the observed output y.

2.3 Few-Shot Learning Approaches

Few-shot learning methods have adopted an episode-based training strategy to learn meta-

knowledge that enables the model to adapt to new tasks that contain unseen classes with

only a few samples. Common approaches (refer to Figure 2.3) that have been used are

generative and data augmentation based (also known as hallucination methods), metrics-

based learning, also known as embedding-based (learning a general metric), optimization-

based (learning to optimize the model quickly), and models-based methods ((learning to

accumulate and generalize experience) [96]. An approach by [242] categorised existing

supervised few-shot learning methods based on prior knowledge based on which aspect

of either the data, model or algorithm is being enhanced. This taxonomy follows different

perspectives on how FSL methods solve the few-shot learning problem. The two, though,

generally acknowledge the use of prior knowledge to enhance FSL methods. In this work,

we basically follow the approach described in [96], and depicted in Figure 2.3. It is easier

to discuss these with recent achievements, challenges, and possibilities of improvement

of few-shot learning based deep learning architectures. The literature pertaining to the

four approaches to few-shot learning is described in the following sections.
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Figure 2.3: Few-shot learning approaches.

2.3.1 Generative and data augmentation-based approaches

In this line of approaches, either generative models [75] are trained to synthesize new

data based on few examples of the same class, or by some other form of transfer learning

[2, 22, 82, 114, 253, 285]. Generative and data augmentation models create images that

have new objects from the same domain that look so close to the real data they are created

from. These approaches also take advantage of semi-supervised approaches to generate

additional data from unlabelled data [50, 90, 148], either training data synthesis using

generative adversarial networks (GANs) [68, 185, 205], and/or augmentation and hallu-

cination of training examples [2, 32, 37, 82, 253] for data-starved classes, among other

methods.

In some situations, data can be found in abundance, but labels are highly costly to

acquire. For instance, collecting street data is easy and cheap, but high-precision labelling

of the photos and video frames is cumbersome, to the point that synthetic datasets [12,

22, 286] are becoming an appealing alternative to real data. Techniques like scaling and

rotating, as well as GANs have been implemented to make more extensive the size of

the training dataset where the goal is to make the model train and perform better and
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generally avoid over-fitting/under-fitting scenarios.

Notable work in data augmentation includes LASO or “Label-Set Operations net-

works” [2, p. 1] that combines several support set labels of input samples represented

by some feature vectors. Samples comprising of set operations of union, or intersection,

or/and set-difference are generated from input data samples. The resultant feature vectors

will be composed of feature labels that have gone through specific sets of mathematical

operations on the example label set of the respective support sets and query sets input.

The work by [82, 253, 285] show that the model’s ability to generalize better can

be enhanced by conceiving and coming up with almost similar “feature vectors for the

training setDtrain” [82, p. 1] so that the model can be exposed to and trained on additional

images. Zhang and Peng [285] uses a saliency network to generate as much as it can the

background features and and all the foreground feature information of an image. The idea

is to make extensive the prior knowledge by augmenting the available image data samples

and generating multiple variety of image samples for model training [12]. Their model

uses the generated saliency maps to make better the performance of the few-shot learning

technique by learning from the generated images. The model consists of three modules,

1) the saliency network, that generates the saliency maps based on the feature vector of

the support samples, 2) a network to encode and mix the background and foreground

feature information; and 3) a similarity network.

2.3.2 Metrics-based learning approaches

A number of approaches [70, 103, 113, 171, 172, 174, 196, 214, 216, 224, 239, 247,

255, 260] use a large corpus of instances of known categories to learn an embedding

into a metric space where some simple metric is then used to classify instances of new

categories via proximity to the few labelled training examples embedded in the same

space. In metrics-based learning, the input image samples are modified or reshaped to

a lower-level space representation and then classified based on a mathematical distance



2.3. FEW-SHOT LEARNING APPROACHES 23

metric between the two embeddings, or feature vectors. In other words, an algorithm

learns representations from the training samples based on specific objectives. The key

question is how to learn the embeddings that are a better representation of the task at

hand, or which loss function is good for the intended objective. There are many possi-

ble design choices for both the distance functions, including the cosine similarity [162],

the Euclidean distance [105, 106] and k-Nearest Neighbours [13]. The basic idea is to

learn a distance function between representations of support images typically with a con-

volutional neural network, and classify query images by comparing them to the labelled

support images. Each classification of the query image depends on the distance to the

support set images. These metric-based approaches have been used and been able to learn

very good embedding spaces with quite meaningful semantics embedded in the metric

space[174, 197, 216, 224].

The following section summarises four well known metrics-based approaches: “Siamese

networks” [113, p. 1], “Matching networks” [239, p. 1], the “Relation networks” [224,

p. 1], and the “Prototypical networks” [214, p. 1]. These attempt to improve the task

representative embedding through different architectures and training procedures.

2.3.2.1 Siamese networks

A Siamese network [113], also known as twin neural network (see Figure 2.4), is an ar-

chitecture with two parallel layers with two convolutional neural networks (CNNs) which

are identical and which share similar parameters. The network learns to differentiate be-

tween two given inputs by comparing the inputs based on a similarity distance metric,

instead of learning to classify using the loss functions. The middle layers extract features

of the same kinds from the support set images, as weights and biases are the same. The

last layers of Siamese networks use a loss function which calculates the similarity, or dif-

ference between the two inputs. Thus, the whole idea of a Siamese network architecture

is to learn to discriminate between inputs by using identical CNNs.
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Figure 2.4: An illustration of the basic Siamese network architecture.

For training the Siamese network, pairs of data points X1 and X2 have to be created

and input. For instance, we can create a pair of similar images, and another pair of

dissimilar images. Then we also need to create labels accordingly for similar (y = 1) if

the two images have the same feature maps), and dissimilar data points (y = 0), i.e., if

the images features are not related at all. Each pair is fed to the Siamese network during

training. At the end of the layer, a Siamese network uses a differentiating Contrastive

Loss Function [81] which consists of dual terms, the first part is the Mean Squared Error

multiplied with their respective labels to decrease the energy of like pairs and, the second

part resembles a Hinge Loss [159], with m as a threshold to increase the energy of unlike

pairs. The Contrastive Loss Function learns the parameters of the function in such a way

that neighbours are pulled together, and non-neighbours are pushed apart [81].

Siamese networks have been widely used in applications that implement one-shot

learning such as face detection, fingerprint detection, and signature verification. Some

improved versions of the Siamese network architecture have suggested a new loss func-

tion known as Triplet Loss [50, 207] which works directly on embedded distances. An
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anchor input is compared to a positive input and a negative input. The distance from an-

chor input to the positive input is minimised, and the distance from the anchor input to the

negative input is maximised. The result is that the pair of samples with the same labels

are smaller in distance than those with different labels. The loss function penalizes the

model such that the distance between the matching examples is reduced and the distance

between the non-matching examples is increased.

2.3.2.2 Matching networks

Vinyals et al. [239] (see Figure 2.5) considered that the Siamese neural network was

trained on the task of comparison of two images, and differed from the classification

task upon which it was evaluated. They then proposed a slightly different version in-

side of the meta-learning framework that they called Matching networks that implements

an end-to-end training procedure that combines feature extraction and differentiable k-

nearest neighbour (k-NN) with cosine similarity. Its architecture is majorly inspired by

the attention model and memory-based networks. Again, the idea is to map images to

an embeddings space, which also encapsulates the label distribution and then project test

image in the same embedding space using a different architecture and later, use cosine

similarity to measure the similarity metric. They use a comparatively large dataset for

solving a task than other few-shot learning approaches. Each image from the support and

the query set is fed to a CNN that outputs embeddings for them. The query image is

classified using the softmax of the cosine distance from its embeddings to the support-set

embeddings. Then the cross entropy loss, or contrast between two variables, on the re-

sulting classification is back-propagated through the CNN. This way, matching networks

learn to compute image embeddings, and allow the network to classify images with no

specific prior knowledge of classes, achieved simply by comparing different instances of

the different classes. Since the classes are different in every episode, matching networks

compute features of the images that are relevant to discriminate between classes as op-
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posed to standard classification whereby the algorithm learns the features that are specific

to each class.

Figure 2.5: Matching networks architecture as illustrated in [239].

The learning of parameters is very slow in matching networks, requiring various

weight updates using stochastic gradient descent [202]. When the dataset is small, prob-

lems of over-fitting and under-fitting have been encountered, and using regularization and

data augmentation have been implemented without solving the problem.

2.3.2.3 Relation network

The “Relation network” [224, p. 1] (see Figure 2.6), trained end-to-end, learns to learn a

distance metric to compare a small number of images within episodes in few-shot meta-

learning settings. An episode is comprised of indiscriminately chosen support set and

query set tasks from the training set Dtrain with k number of annotated labels selected

from each class. The network follows a two-steps procedure:

• first step, where the labels from Dtrain and the query set are modified by the em-

bedding module to a lower-level feature representation space;
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• second step compares low-level feature representations to measure the similarity

between the query image and any of the output class categories by using a relation

module.

Figure 2.6: Relation networks architecture as illustrated by [224].

2.3.2.4 Prototypical network

The Prototypical Network [214] (see Figure 2.7) is based on the principle that there is

always an “embedding in which points cluster around a single blueprint or prototype

image feature representation” [214, p. 1] for each class. A neural network is used to

learn a non-linear mapping of the input feature space into an embedding space. The class

prototype is taken as a mean of its support set feature representations in the embedding

space. Each class comes with an embedding of its meta-data into a shared space for

giving a high-level feature description of the class rather than a small number of labelled

examples. Classification is performed by finding the nearest, depending on the distance,

class prototype for an embedded query image point.
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Figure 2.7: Prototypical network architecture as illustrated in [214].

A lot of literature is also available about developments in metric learning-based ap-

proaches. For instance, the work by [255] proposes an improvement in prototypical net-

works that learns representations in localisation of realistic settings that results in signif-

icant increases in the performance without changing much the model complexity. They

deal with class imbalance problems by leave-one-out cross validation. To deal with the

clutter problem, they use an learner architecture which can competently confine the image

objects features before putting them into specific classes. They employed bilinear pool-

ing to increase the representation power of the learner model, and were able to double the

performance results with respect to accuracy of prototypical networks on the meta-iNat

[255] benchmark dataset.

Another extension related to the prototypical networks is Learning for Semi-Supervised

Classification by [195] that deals with semi-supervised data where data which is not an-

notated are available together with the supervised training Dtrain samples and their cor-

responding labels. Together, they can generate prototypes for representations. Conse-

quently, the training Dtrain samples comprises of a tuple (S, R), in which (S) is the set of

annotated support set image labels and (R) is the set of unlabelled image samples. Trans-

ferable Prototypical Networks [174] is also based on the rebuilding of the vanilla proto-

typical network [214] to a network that targets the scenario of unlabelled image samples

by jointly extending across the domain between the two. Firstly, the model classifier is
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constructed with unlabelled target data with both sources of data and its respective labels.

The model then directly predict the target labels of the query or target data.

Oreshkin et al. [172] introduces the task dependent adaptive metric learning that uses

different scaling methods. The model generally selects a specific task based on the soft-

max from the selection of performance measurements. It has a learnable parameter that

should allow it to select the best possible metric from the various available collection of

metrics. Representative-based metric learning [103] introduces an end-to-end approach

that combines multiple models for few-shot object classification and detection. The net-

work trains and learns the network parameters at the same time. It is also designed to

learn the feature representation space at that time. Task-Aware Feature Embedding [247]

focuses on the construction of feature representations that are set for each particular clas-

sification function. They use TAFE-Net which has two modules, the meta learner for

learning and producing feature representations for a particular task, and a prediction net-

work for the prediction layer that adjusts to the individual tasks at hand.

Prototypical networks vary from matching networks in the few-shot case with equiva-

lence in the one-shot learning scenario. There is only one support point per class. There-

fore, matching networks and prototypical networks become equivalent in such scenar-

ios. The approach is more efficient and far simpler than recent proposed approaches to

meta-learning. It has also produced state-of-the-art results even without sophisticated ex-

tensions that have been developed for matching networks. This has made prototypical

networks an appealing approach to problems of few-shot learning.

2.3.3 Optimization-based techniques

Optimization-based techniques [5, 61, 98, 137, 190, 206, 208, 291] are most understood,

and associated with the concept of “meta-learning” [206, p. 1] or “learning-to-learn” [61,

p. 1]. They tackle few-shot classification by optimizing model parameters to new tasks,

whereby a meta-optimiser is utilised to better train the model so that it can better gen-
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eralize during the initial training so that it can provide a better prediction for the novel

datasets. In other words, the system focuses on how to converge any objective or loss

function instead of minimizing a single loss function, which makes this algorithmic ap-

proach task and domain-invariant [96]. For example, to recognize types of flowers using a

cross-entropy loss function, one can train the model to learn to understand the difference

between any two images, not necessarily flowers, thus making the model task-agnostic.

The same model can be used, for instance, for flower recognition and flower detection,

and also be domain-agnostic, and used for dog recognition, or any other related task.

Model-agnostic meta-learning (MAML) [61], and its first order MAML [165], at-

tempts to solve the shortcomings of the gradient-descent approach by providing better

weight initialization for every new task. The key contribution of MAML is an easy to

understand, simple model- and task-agnostic fast learning algorithm. The key idea of

this approach is to train the model’s parameters using a different dataset. It is then used

for novel tasks by using the already initialized parameters to fine-tune the architecture

through one or more gradients so that it provides a better performance. The model that

they propose can quickly fine-tune the weights by transferring some internal parameters

that are more transferable than others. This results in a model that can quickly adapt

to novel tasks. This method of training a model’s parameters can also be viewed, from a

feature-learning standpoint, as building an internal representation. Another variant known

as REPTILE [165] is an approximation of MAML that executes SGD for a number of iter-

ations on a given task, and then gradually moves the initialization weights in the direction

of the weights obtained after these iterations. The intuition is that every task likely has

more than one set of optimal weights, and the goal is to find weight initialisations close to

at least one of those optimal weights for every task, and thereafter use the most optimal

ones.

Ravi’s [190] work is based on LSTM acting as a meta-learner model. The model

quickly adapts and update its operational rules and model parameters for training. It
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therefore, can generalize and learn a maximisation algorithm which will subsequently be

utilised to train a classifier from another model for few-shot learning. The gradient de-

scent [202] algorithm is used for optimizing the network towards a specific task. Jamal

[98] considered that a meta model trained on the base dataset (e.g. MAML) could be bi-

ased towards some tasks, which potentially results in large variations in the performance

on novel tasks. Thus, they proposed a novel TAML (“Task-agnostic Meta-Learning” [98,

p. 1]) algorithm which attains comparable performance to the state-of-the-art on 5-way

1-shot and 5-way 5-shot classification on the Omniglot [121] dataset. The algorithm

aims to train an initial model that is unbiased to all tasks. During the meta-training pro-

cess, the task-agnostic property of TAML is established by either maximizing the entropy

reduction for each task or minimizing the inequality in performance of various tasks.

ES-MAML [217], which is based on evolutionary algorithms attempts to avoid MAML’s

problem of estimating second derivatives. It is a conceptually simple and easy to imple-

ment model, and can handle new types of non-smooth adaptation operators for improving

the performance of the model. Other improvements to the original MAML include Mul-

timodal MAML (MMAML) [240]. This improvement has the capability to identify the

mode of tasks sampled from a multimodal task distribution and adapt quickly through gra-

dient updates by modulating its prior parameters learnt before according to the identified

mode. It allows faster, more efficient adaptation.

Another optimisation-based approach, LEO [204] decouples the gradient-based adap-

tation procedure from the underlying high-dimensional space of model parameters by

learning data-dependent latent generative representation of the model parameters. It

therefore performs gradient-based meta-learning in this low-dimensional latent space.

WarpGrad (Warped Gradient Descent) [63] methods meta-learn to warp task loss sur-

faces across the joint task-parameter distribution to facilitate gradient descent. This is

achieved by sharing fixed, meta-learned layers across task learners that precondition task

parameters during task adaptation.
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2.3.4 Model-based approaches

Model-based approaches rely on improved network architectures. These are largely de-

signed with the addition of external memory for the rapid generalization of one-shot learn-

ing tasks. They are inspired from how humans store prior information in memory units,

and how the information is accessed while learning new objectives. In these approaches,

models converge with only a few training steps using information stored in external mem-

ory. Some examples include Neural Turing Machines (NTMs) [77], Memory-augmented

neural networks (MANNs) [206], and Meta networks [160]. They have not had much

impressive results in few-shot learning, and therefore have not received much attention in

literature.

NTM (Neural Turing Machines) [77] is inspired by research from the field of com-

putational neuroscience that provide extensive evidence that memory is crucial in the

quick and meaningful storage and retrieval of information. An NTM is fundamentally

composed of a neural network, consisting of a controller and a two-dimensional matrix

known as the memory bank. Each step involves the neural network receiving some in-

put and generating some output corresponding to that input. By so doing, it accesses

the internal memory bank and performs read and/or write operations onto it. The basic

architecture is shown Figure 2.8.
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Figure 2.8: Illustration of the architecture of the Neural Turing Machine.

In few-shot settings, the MANN controller uses only content-based addressing, unlike

the NTM that uses both content-based addressing and location-based addressing. For a

given input, there are only two content-dependent actions a controller might need to take.

One action is that the input is very similar to previously seen input in which case we

might want to update whatever is in memory. The other action is that current input is not

similar to previously seen inputs in which case we do not want to overwrite the recent

information but the least used memory location.

In Meta networks [160], a base learner and meta-learner share parameters where a

meta-learner extracts prevalent feature embeddings of all tasks in order to acquire a gen-

eral knowledge of different tasks. The base learner learns the features embeddings of the

targeted task. Both these learners framed in a single learner. The knowledge learnt can

then be transferred to the base-level learner to provide some generalization in the context

of a single, only one task. In Meta networks [160], loss gradients are utilised as meta

information to enable models that learn fast weights. The slow and fast weights are then

jointly combined to make predictions.
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2.4 Few-shot Classification

In deep learning supervised classification, we are interested in learning a model ŷ = fθx,

parametrised by θ on Dtrain to predict the label ŷ ∈ 1, . . . , Ctotal for an unlabelled sample

xk on the test set Dtest = xk, given a dataset D = {Dtrain, Dtest}. The training set takes

labelled pairs as inputs (x, y), such that Dtrain = (xi, yi)i=1, yi ∈ 1, ..., Ctotal, where i is

the number of training samples, Ctotal is the number of categories in Dtrain.

Meta-learning methods have received much attention recently, and have been com-

bined with metric-based methods. In few-shot meta-learning, we consider a meta-set

D = {Dbase, Dval, Dnovel}. Cbase, Cval, Cnovel, are chosen to be mutually disjoint, where

C represents the category. The model learns M on Dbase that can quickly adapt to un-

seen categories in Dnovel with only a few support samples. Dval is held-out to assist with

adjusting the hyper-parameters during training. A model is evaluated on a set of N -way

K-shot classification tasks denoted as DT = Ti referred to as episodes in few-shot learn-

ing settings. Each episode has a split of support set Si that contains N unique categories

with k labelled examples each, and query set Qi that has the same number of categories,

andQ unlabelled examples. For instance, if at test time we are supposed to perform 3-way

2-shot classification, then the training episodes could comprise of N = 3, and K = 2.

An entire episode in few-shot learning is treated as a training instance.

The aim is to learn a classifier to recognise unseen classes during training with limited

labelled examples. Meta-learning methods, together with metric learning and augmenta-

tions have complemented each other that some authors, e.g. [13, 189, 204] have classified

metric-based methods under meta-learning. Similar few-shot learning methods have gen-

erally been used in classification, object detection, image segmentation, and other image

processing tasks with some modifications. Recent results show that deeper backbones

significantly reduce the gap across methods when domain differences are limited.

Some methods, e.g. [28, 46] first learn a deep learning network on all the available

images and transfer it to few-shot tasks in test time. Meta-Baseline [30] fine-tunes the
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entire network with a nearest-centroid cosine similarity and a scale parameter. Dhillon

et al. [46] explores fine-tuning in a transductive setting, where the query set is assumed

to be available at the same time. Yu et al. [273] first pre-trained a feature extractor on

base-class data, then used the same to initialize the weights of the classifier for the novel

classes. The model is updated with a semi-supervised learning method. Lifchitz et al.

[138] targeted the transfer of embeddings from a set with abundant data to other sets

with few available image examples. This work also proposed attaching new neurons

to a previously trained network, or implanting, to learn new, task-specific features that

enables training of multiple layers, departing from methods derived from metric learning

that train only the final layer. Huang et al. [92] uses fake gradients, and a semi-supervised

meta-learning approach that learns from multiple tasks in a transductive environmental

setting. They leverage the unlabelled query set in addition to the support set to generate a

more powerful model for each task. LGM-Net [127] is also designed to learn transferable

prior knowledge across various tasks. It then directly produces network parameters for

similar unseen tasks with training samples. It has two fundamental modules, the first

called TargetNet being a neural network for solving a specific task. The second one is

called MetaNet and it aims at learning to generate functional supportive weights for the

TargetNet module by observing the initial training samples.

Recent techniques [30] focus on generalising to unseen domains at test time in Meta-

Dataset [234]. CNAPS [10] uses the Mahalanobis distance, class-covariance-based dis-

tance metric and adopts a non-parametric classifier. SNAIL [157] combines temporal

convolutions to aggregate information from past experience, and soft attention to pin-

point specific pieces of information. The work by Gidaris et al. [72] extends an object

detection and recognition model with an attention-based weight generator for few-shot

classification. They redesigned the classifier of a ConvNet model as the cosine similarity

function between feature representations and classification weight vectors to learn novel

representational categories from only a few training data while at the same time remem-
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bering the base categories on which it was trained. This process unifies the detection and

recognition of both novel and base representations. It also improve recognition of feature

representations that generalize better on unseen object categories. Qi et al. [182] used

weight imprinting to recognize novel visual categories to ConvNet classifiers by directly

setting the final layer weights from novel training examples during low-shot learning. The

weight imprinting process directly sets weights for a new category based on an appropri-

ately scaled copy of the embedding layer activations for that training example. Qiao

et al. [183] adapts a pre-trained neural network to novel categories by directly predict-

ing the parameters from the activations. Zero training is required in adaptation to novel

categories, and fast inference is realized by a single forward pass. VAGER [291] gen-

eralizes meta-learns in the concept space rather than in the complicated instance space.

TAFE-Net or “Task-Aware Feature Embedding Networks” [247, p. 1] adapts the image

representation to a new task in a meta learning fashion. The network model consists of a

meta-learner that generates parameters for the feature layers in the prediction network so

that the feature embeddings can be accurately adjusted for that task.

MetaSGD [137] proposes a SGD like optimiser [5] that has a much higher represen-

tation perfomance by learning to learn the learner initializations and the learner update

direction and learning rate simultaneously. All the learning takes place in a single meta-

learning process. The model adapts easily and quickly to the various novel tasks. It is eas-

ily applicable for both supervised learning and reinforcement learning. Learning involves

two steps. The first step involves the meta-learner gradually learning on the different tasks

in the meta-space. The second step is based on the feedback of the meta-learner where

the learning approach of the meta-learner is evolved in the learning space.

Few-shot learning methods that have used weights from pre-trained classification

models, e.g. ResNet or EfficientNet family pre-trained on a large-scale datasets have

generally been better than randomly initialised ones. For that reason, [223] used weights

of the deep neural network for transfer learning using the operations of scaling and shift-
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ing to indicate how to transfer. Some classification methods [183, 203, 204] have also

used pre-trained weights, with the weights fine-tuned for each classification task. A re-

cent model by [1] propose a metric-learning loss for minimizing the distance between

related base samples and the centroid of novel instances in their feature representations.

It also has a conditional adversarial alignment loss based on the Wasserstein distance.

This leverages part of the base data by aligning the novel training instances to the closely

related ones in the base training set.

Most of these methods do not consider the time and resource efficiency which limits

their practical use. They also depend on hyper-parameter tuning on each specific dataset.

There are real-world scenarios with generally unknown datasets and tasks. More so,

many datasets always change over time. The two other main challenges that make it

difficult from making a fair comparison among few-shot classification algorithms are the

discrepancy of the implementation details among multiple few-shot learning algorithms,

and the performance of baseline approaches. The performance of baseline approaches can

be significantly under-estimated when, for instance, some models are trained without data

augmentation. While the current evaluation focuses on recognizing novel classes with

limited training examples, these novel classes are sampled from the same dataset. The

lack of domain shift between the base and novel classes makes the evaluation comparison

scenarios unrealistic.

2.5 Object Detection

Object detection is a fundamental problem in computer vision in which the objective is

to obtain the objects’ specific positions in the input image, and classifying each object

according to each type. In image classification, there is usually only one main target ob-

ject in the image and the model’s sole focus is to identify the target category. However,

in many situations, there are multiple targets in the image that we are interested in. The
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task of object detection therefore, involves two subtasks, 1) localizing one or more ob-

jects within an image, and 2) classifying each object in the image. Therefore, the model

predicts the class of the image like in image classification tasks, and also predicts the

coordinates of the bounding box or mask that fits the detected object. The conventional

object detection framework in deep learning usually has four components:

• Region proposal, i.e., a deep learning model is used to generate regions of interest

(ROI) to be further processed by the system.

• Feature extraction and network predictions, the pre-trained CNN network that is

used for feature extraction to extract features from the input image that are repre-

sentative for the task at hand and use these features to determine the class of the

image.

• Non-maximum suppression (NMS), to avoid repeated detection of the same in-

stance by combining overlapping boxes into a single bounding box for each object.

• Evaluation metrics, e.g. mean average precision (mAP), precision-recall curve (PR

curve), and intersection over union (IoU).

Two approaches have mainly been utilised in deep learning-based object detection

systems, 1) a dual-step object detector, and 2) a one-step object detector. Region-based

convolutional neural networks (R-CNN) series [73, 74, 198] represent a two-step object

detector to propose area of interest called a Region-of-Interest (RoI) and clarify the RoI

with classification and localisation. The original R-CNN uses a first network to determine

the ROI in an image, and another following network to classify the content of each ROI.

The later variations, the Fast R-CNN and later the Faster R-CNN have tried to make the

algorithm work better by reducing the number of ROI, as well as to lessen the redundant

computations on the image.

Single-stage object detectors including YOLO family [192, 193, 194] and SSD [146]

and their variations detects objects in a single forward pass directly using a single fully
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CNN. The prediction of the bounding-box and the label of each object are done concur-

rently. These one-step detectors require far less computational complexity since they are

proposal free methods. These have gone through incremental improvements since their

creation. SSD improves YOLO by employing default boxes (anchors) to adjust to various

object shapes. YOLOv2 improves YOLO with a series of techniques such as multi-scale

training and new network architecture (DarkNet-19). Proposal-free methods do not re-

quire a per-region classifier, which makes them significantly faster. Recently, YOLOR

(“You Only Learn One Representation” [241, p. 1]) that encodes implicit knowledge and

explicit knowledge together was proposed. It can learn knowledge from normal learning

as well as subconsciousness learning, and can learn a unified representation to integrate

the two, and simultaneously serve multiple tasks, including object detection, panoptic

segmentation, multi-label image classifications among the many tasks.

2.5.1 Few-shot object detection

The model for “few-shot object detection” [55, p. 1] achieves learning-to-learn by gener-

ally transferring feature embeddings or representations that can be generalised to recog-

nise novel objects given a few data samples of training images and their corresponding

labels. Prior works to few-shot object detection have generally been formulated in three

paradigms. Initial works used transfer learning [24] via fine-tuning given a feature extrac-

tor trained on a dataset with abundant base classes. Other notable methods that address

the problem using transfer-learning are the fine-tuning approach (TFA) [248], and Multi-

scale Positive Sample Refinement (MPSR) [256]. Distance-metric learners, for instance,

RepMet [103] extracts meta-level knowledge representations that easily and quickly ad-

just to new class instances by learning on other auxiliary tasks. The output class instances

are firmly controlled on support set images which are commonly employed for few-shot

learning.

Others re-weight full image features using class-specific attention vectors as in You



2.5. OBJECT DETECTION 40

Only Look Once (YOLO) [101], or utilise RoI features, for example Faster-RCNN [263],

while [54, 55] use attentive feature vectors together with mathematical relational oper-

ators [224] to learn lower-level feature embeddings that are able to recognise the base

input categories from the novel class categories. In [259], the authors demonstrate the use

of additional feature representations to further guide the object detection network model,

an approach further expanded by [250] to separate the learning between class-specific

and class-agnostic components. These models can also resolve misclassification or mask

identification issues between categories in the predicted RoIs.

Few-shot metric-learning approaches [55, 134, 153, 164, 187, 208, 259] learn an ap-

plicable feature representation space in which features of same class examples are similar.

The features of mismatched classes are therefore categorised as different, or unrelated.

They have been able to learn embedding in some cases with quite meaningful semantics

embedded in the metric [101]. In ∆-encoder [208], learning to synthesize samples of

categories unseen during training when only a single or a few real examples are available.

The encoder learns to extract transferable deformations between pairs of examples of the

same class, while the decoder learns how to apply these deformations to other examples to

learn to sample from new categories. Fan et al. [55] propose a matching metric between

image pairs based on the Faster R-CNN framework equipped with attention RPN and

multi-relation detector trained using the contrastive training strategy. They contributed a

new highly diverse FSOD (“Few-shot Object Detection” [55, p. 1]) dataset that contains

1000 categories of various objects with high-quality annotations. The same idea was

extended to [164] and [153] implemented using GANs [75] to learn a deep image embed-

ding on unlabelled data with two loss functions, a reconstruction loss, and the triplet loss

aimed at self-supervised learning. Rahman et al. [187] proposed a unified any-shot de-

tection model that utilises a rebalanced loss function. It uses semantics as prototypes for

object detection, a formulation that naturally minimizes knowledge forgetting and miti-

gates the class-imbalance in the label space. The model can concurrently learn to detect
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both zero-shot and few-shot object classes. Another model by [259] is composed of a

feature-extractor, a feature attention highlight module as well as a two-stage detection

back-end that can quickly adapt to novel classes. The performance of metric learners is

in many cases comparable to the meta-learning approaches that have also been used for

object detection in few-shot settings.

Meta-learning approaches [44, 66, 102, 109, 109, 129, 145, 152] have also been used

in object detection. These are designed to learn a meta-learner to parameterise the op-

timization algorithm, resulting in models that once trained can learn on new such tasks

with relatively few examples and adapt to new environments quickly. Deng et al. [44]

and Kang et al. [101] redefine one-stage YOLOv2 [192] by applying re-weighting of the

features scheme to an object detector. They also readdress a two-stage Faster R-CNN

[198] object detector with the assistance of a meta-learner that inputs support set images

together with bounding box annotations. In [44], a re-weighting module effectively learns

to extract meta-feature representation knowledge from the support set images, and adap-

tively assign different weights for each feature representation from the support images.

It also uses a bounding box prediction module that executes the object detection task on

the re-weighted feature maps of the support images based on YOLOv3 [193]. The model

by [102] also has a meta feature learner that extracts features from labelled base classes,

and a re-weighting module within a one-stage detection architecture using a YOLOv2

framework (i.e., DarkNet-19). The re-weighting module M , taking the support exam-

ples as input, learns to embed support information into re-weighting vectors and adjust

contribution of each meta feature of the query image accordingly for following metric ap-

proaches. In [109] a prototypical feature knowledge transfer supported with an attached

meta-learning model is proposed. The meta-learner’s input are support set images that are

composed of the few examples of the novel categories and those of the base categories.

The model predicts prototypes that represent each category as a vector embedding. Then,

the prototypes re-weight each ROI feature vector from a query image to remodel R-CNN
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predictor heads. They predict the prototypes under a graph structure. The Meta-SSD [66]

is composed of a meta-learner and an object detector. The meta-learner can teach the de-

tector how to learn from few examples in just one updating step by utilising a Single-Shot

MultiBox Detector (SSD) [146] employed as the object detector. Meta-RetinaNet [129] is

trained by the Balanced Loss and employs a Meta Coefficient Learner (MCL) to augment

the deep neural networks. The MCL adapts to tasks for all the convolutional layers by

employing the product of pre-trained convolution weights and coefficient vectors. It could

adequately transfer the learned knowledge to new tasks while overcoming the over-fitting

problem by training fewer parameters.

Among the seminal work for FSOD include LSTD or “Low-Shot Transfer Detector

for Object Detection” [24, p. 1]. LSTD design a flexible deep architecture to allevi-

ate transfer difficulties in low-shot detection that integrates the advantages of both SSD

and Faster R-CNN in a unified deep framework. Second, they introduce a regularized

transfer learning framework where the transfer knowledge and background depression

regularizations are proposed to leverage object knowledge respectively from source and

target domains, in order to further enhance fine-tuning with a few target images. Meta R-

CNN [263], Towards General Solver for Instance-level Low-shot Learning also extends

Faster Mask R-CNN by proposing meta-learning over RoI (Region-of-Interest) features

instead of a full image feature which disentangles multi-object information merged with

the background, enabling Faster R-CNN/Mask R-CNN turn into a meta-learner to achieve

object detection tasks. They specifically introduce a Predictor-head Remodelling Network

(PRN) that shares its main backbone with Faster R-CNN/Mask R-CNN. The input to PRN

are images containing low-shot objects together with their bounding boxes or masks to

infer their class attentive feature vectors. These feature vectors take channel-wise soft-

attention on RoI features, re-modelling those R-CNN predictor heads to detect and/or

segment the objects consistent with the classes these vectors represent.

MetaYOLO [101] or “Few-shot Object Detection via Feature Re-weighting” [101,
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p. 1], and MetaDet [252] or “Meta-Learning to Detect Rare Objects” [252, p. 1] both

leverage meta-level knowledge from fully-labelled base classes. They easily and quickly

adapt to novel classes by using a meta feature learner for extracting meta features that are

generalizable to detect novel object classes by using training data from base classes with

sufficient samples. They also use a re-weighting module within a one-stage detection

architecture. The re-weighting module transforms the support examples from the novel

classes to a global vector that indicates the relevance of meta features for detecting the

corresponding objects. These two modules use a carefully designed loss function. They

are, together with a detection prediction module, jointly trained end-to-end based on an

episodic few-shot learning. FSDetView [259] propose a meta-learning framework that

can be applied to the tasks of few-shot object detection and few-shot viewpoint estimation

including for 3D data by leveraging on rich feature information originating from base

classes with many samples. They propose a simple joint feature embedding module to

make the most of this feature sharing.

MPSR (“Multi-Scale Positive Sample Refinement for Few-Shot Object Detection”

[256, p. 1]) tackles the problem of scale variations to enrich object scales in FSOD.

It generates multi-scale positive samples as object pyramids and refines the prediction at

various scales, and can be integrated as an auxiliary branch to Faster R-CNN with Feature

Pyramid Network(FPN) that have been used with object detection systems for building

high-level feature maps of an input image at several image scales, delivering a strong

FSOD solution.

FSOD (“Frustratingly Simple Few-Shot Object Detection” [55, p. 1]) improved the

object detection tasks by “fine-tuning only the last layer of existing detectors” [246, p.

1] to achieve incredible results to the “few-shot object detection” [55, p. 1] task, and

outperformed meta-learning methods. However, the high variance in the image samples

frequently results in unreliability of existing benchmarks. They therefore, had to examine

and make corrections their evaluation methods by involving multiple groups of training
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labels, and eventually obtained substantial improvements in terms of comparisons, and

managed to build new benchmarks based on PASCAL VOC, COCO [140] and LVIS [80]

datasets.

FSCE (“Few-Shot Object Detection via Contrastive Proposal Encoding” [221, p. 1])

present an approach to learning good feature embeddings by contrastive-aware object

encodings via a contrastive proposal encoding loss (CPE loss). This facilitates the clas-

sification of identified objects from the image by promoting instance level intra-class

compactness and interclass variance. SRR-FSD or “Semantic Relation Reasoning for

Shot-Stable Few-Shot Object Detection” [293, p. 1] employs “semantic relation together

with the visual information” [293, p. 1]. Each class concept is represented by a repre-

sentation learned from a large image dataset. The detector is trained to undertake image

representations of objects into this meaningful embedding space. Fan et al. [55] proposed

Attention-RPN, Multi-Relation Detector and Contrastive Training strategy. These exploit

the similarity between few shot support set and query set to detect novel objects. It also

suppresses false detection in the background. A new dataset with high-quality annotations

called FSOD with 1000 categories of diverse objects is also introduced with this work.

“Meta R-CNN” [263, p. 1] and its variations [136, 256, 258, 259] are built upon

“Faster R-CNN” [198, p. 1]. These meta-learn channel-wise attention layer for remod-

elling the RoI head. ONCE [178] and Meta-YOLO [101] are grounded on single-stage

detectors. These Meta-learning detectors usually need initially well-located regions. To

get an initial well-located region is usually hard to to obtain without learnable shape priors

and fine-tuned RPN, especially if the dataset has very few training images. FSOD [55]

makes an effort to do away with this issue by “meta-learning an Attention-RPN” [55, p.

1]. MetaDet [251] leverages meta-level knowledge about model parameter generation for

category-specific components of novel classes. Other approaches, e.g. [107] to Object de-

tection with limited labelled samples has been addressed in weakly-supervised settings .

They consider bounding box annotations to be expensive to obtain, and therefore consider
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the problem of training object detectors with only image-level labels.

The recently proposed GenDet [145] is trained by numerous few-shot detection tasks

sampled from base classes each with sufficient samples, and thus it is expected to gener-

alize well on novel classes. An adaptive pooling module is further introduced to suppress

distracting samples and aggregate the detectors generated from multiple shots. The algo-

rithm trains a reference detector for each base class in the conventional way, with which

to guide the training of the detector generator. The reference detectors and the detec-

tor generator can be trained simultaneously. Finally, the generated detectors of different

classes are encouraged to be orthogonal to each other for better generalization.

Kim et al. [109] further developed the idea by introducing prototypical network [214]

knowledge transfer into “few-shot object detection” [55, p. 1] which is premised on the

belief that there exist embeddings in which similar class points cluster around a single

prototype representation. They attached a meta-learner that takes support set images that

include the few labels of the novel image classes and base classes from the dataset. They

predict unique prototypes under a graph structure that represent each class category as a

vector. Then, the prototypes are used to re-weight each ROI feature vector from a query

image. This is done to remodel R-CNN predictor heads.

2.6 Knowledge Distillation

Knowledge distillation [18, 89, 181] is a model compression [18] method in which a

smaller model is trained to imitate a larger model, or ensemble of models that have been

pre-trained, and the training has to be done without loss of validity (see Figure 2.9 for

a generic model framework). Work by [89, 181] demonstrate convincingly that the fea-

ture knowledge acquired by a large ensemble of models can be transferred to a smaller

model through learning. The performance is generally accomplished by minimizing a

“loss function in which the target is the distribution of class probabilities predicted by
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the teacher model, or the output of a softmax function on the teacher model’s logits” [89,

p. 4]. Since the softmax does not provide much information beyond the ground truth

labels already provided in the dataset, [89] introduced the concept of “softmax tempera-

ture” [p. 1] to tackle this issue. The probability π of class is calculated from the logits

z. Extensive downstream computer vision tasks, such as semantic segmentation, trans-

fer learning, image classification, and object detection, can significantly benefit from the

distilled pre-trained models.

Figure 2.9: Generic teacher-student framework for knowledge distillation. Image source

[76]

In their experiments, Hinton [89] use temperature values ranging from 1 to 20. Lower

temperatures work better when the student model is very small compared to the teacher

model. As the temperature is raised, the resulting soft-labels distribution becomes richer

in information. There is normally no way to predict the capacity for information the

smaller model will contain after training. Experiments indicate that a very small model

might not be able to capture all of the information from the bigger model. In their ex-

periments, Hinton et al. [89] use a weighted average between the distillation loss α and

the student loss β. They obtained the best results when setting α to be much smaller than

β. Other works [23, 120, 295] which utilize knowledge distillation do not use a weighted
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average. Some set α = 1 while leaving β tunable, while others do not set any constraints.

Building supervised learning models has been widely used as machine learning tech-

niques that work effectively in performing regression and classification tasks. They re-

quire data to be manually labelled. This process is generally slow, error prone, and ex-

pensive. It also suffers from such issues as “generalization error, spurious correlations,

and adversarial attacks” [144, p. 1] which slows down model building. To avoid these

limitations, self-supervised learning has recently gained momentum in an effort to elimi-

nate the need for data labels. It aims at embedding augmented versions of similar samples

closer and diverse samples far from each other, achieved by a similarity metric to measure

the closeness of the two embeddings [97]. By building models autonomously, supervised

learning can be employed without any external interaction, and can effectively mimic

how humans come up with certain decisions by using their own intellect. It can largely

reduce the cost and time to build machine learning models. It aims to address challenges

in supervised learning when it comes to collecting comprehensive data, cleaning, classify,

and labelling data for clear embeddings, a process which is arduous and time-consuming

compared with how humans approach learning.

Self-supervised learning [47, 222, 275] can be viewed as an autonomous form of su-

pervised learning though it is some form of unsupervised learning since there is no manual

label involved. It does not require human input in the form of data labelling. Whereas

unsupervised learning concentrates on detecting specific data patterns, such as cluster-

ing, or anomaly detection; self-supervised learning aims at recovering, which is still in

the paradigm of supervised settings [145]. Self-supervised learning method involves two

steps: pre-training the network with unlabelled data, and training on the target task with

labelled data as a downstream task.
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Figure 2.10: The general pipeline of self-supervised learning. An unlabelled dataset is

used to pre-train the network that is then used to train the network on labelled dataset.

A common workflow for self-supervised representation learning on images is to train

a model with unlabelled images and then use one intermediate feature layer of this model

to feed a multinomial logistic regression classifier. Some recent work propose training

supervised learning on labelled data and self-supervised pretext tasks on unlabelled data

simultaneously with shared weights [222, 275]. Rotations, or other argumentations of an

entire image [71] is another interesting way for self-supervised learning. This modifies

an input image while the semantic content of the image remains unchanged.
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Figure 2.11: Illustration of self-supervised learning by rotating the input images. (Image

source: [71])

Doersch et al. [47] formulates the self-supervised task as predicting the relative po-

sition between two random patches from one image. This way, the model needs to un-

derstand the spatial context of objects on the image to tell the relative position between

constituent parts. Noroozi and Favaro [168] followed the idea of chromatic aberration to

design a jigsaw puzzle game as pretext task: the model is trained to place nine shuffled

patches back to the original locations that are each independently processed by a convo-

lutional network with shared weights and outputs a probability vector per patch index out

of a predefined set of permutations. Colourisation [281] has also been proposed, where a

model is trained to colour a grayscale input image. The task is to map this image to a dis-

tribution over quantized colour value outputs in the CIE Lab* colour space to approximate

human vision.

The GANs have also been able to learn to map from simple latent variables to ar-

bitrarily complex data distributions. For example, [49] introduced bi-directional GANs

with an additional encoder to learn the mappings from the input to the latent variable.
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The discriminator predicts in the joint space of the input data and latent representation to

tell apart the generated pair from the real one. Van Den Oord et al. [236] proposed the

Contrastive Predictive Coding (CPC) that translates a GAN modelling problem to a clas-

sification problem. The idea of momentum contrast that stores representations of all the

data points in a database and samples a random set of keys as negative examples was used

in [85, 257]. Chen et al. [27] proposed a “framework for contrastive learning of visual

representations that learns representations for visual inputs by maximizing agreement be-

tween differently augmented views” [27, p. 1] of the same sample via a contrastive loss

in the latent space.

Bootstrap Your Own Latent (BYOL) [78] relies on two neural networks, referred to

as online and target networks with the same architecture that learn from each other. They

managed to accomplish state-of-the-art performances in the absence of negative samples.

CURL (Contrastive Unsupervised Representations for Reinforcement Learning) [218] re-

lies on random crop data augmentation in reinforcement learning that trains a visual rep-

resentation encoder by ensuring that the embeddings of the augmented versions match

by using a contrastive loss. It learns a visual representation for RL tasks by “matching

embeddings of two data-augmented versions and of the raw observation via contrastive

loss” [218, p. 1].

Dvornik et al. [52] design an “ensemble of deep networks to leverage the variance of

the classifiers” [52, p. 2], and introduce strategies to encourage the networks to cooperate,

while encouraging prediction diversity. Lee et al. [125] trains the model to learn a single

unified task with respect to the joint distribution of both the original and self-supervised

tasks fully-labelled datasets without optimising the summation of their corresponding

losses. The original image labels are augmented via self-supervision of input transfor-

mations. They also propose a knowledge transfer technique they call self-distillation. Li

et al. [135] introduced a two-stage procedure to learn a multi-domain networks by dis-

tilling knowledge of multiple separately trained networks after co-aligning their features
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with the help of adapters and centred kernel alignment which can be further refined for

previously unseen domains by utilising distance learning methods.

Zhao and Wen [288] present a novel two-phase pipeline that leverages self-supervised

learning and knowledge distillation by first learning a teacher model which possesses rich

and generalizable visual representations via self-supervised learning, and secondly to dis-

til the representations into a student model in a self-distillation manner by fine-tuning the

student model for image classification. A margin loss for the self-supervised contrastive

learning proxy task is also proposed. Rajasegaran et al. [188] also follows a 2-stage

process for learning whereby a neural network is trained to make as large as possible

the entropy of the feature embedding. They utilise a self-supervised loss in the metric

space. In the Stage Two, they create an output manifold, and then minimize the entropy

on feature embedding by bringing self-supervised twins together. Their work inhibits

the manifold with student-teacher knowledge distillation. Self-Supervised Knowledge

Distillation (SSKD) [269] sought to improve the “quality of labels by capturing feature

representation from multiple augmented views” [269, p. 3] of unlabelled image using

two modules: 1) the identity learning, that explores the relationship between “unlabelled

samples and predicts their one-hot labels by clustering to give exact information for con-

fidently distinguished images and the soft label learning, and soft label learning regards

labels as a distribution and induces an image to be associated with several related classes

for training peer network in a self-supervised manner ” [269, p. 1]. Rizve [199] propose

a training mechanism that jointly “enforces equivariance and invariance to a general set

of geometric transformations” [199, p. 1].

Roy et al. [201] leverage the intra-class knowledge from the neighbour classes with

the intuition that neighbour classes share similar statistical information. A regressor is

trained on the “many-shot classes and is used to evaluate the few-shot class means from

a few samples, then superclasses are clustered to obtain each superclass’ statistical mean

and feature variance to be used as transferable knowledge inherited by the children few-
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shot classes” [201, p. 6]. Such knowledge is then used by a generator to “augment the

sparse training data” [201, p. 7] to help the downstream classification tasks. Wang et al.

[246] employed the visual knowledge to help the feature extractors focus on different

visual parts, and design a classifier to learn the distribution over all input categories. They

then develop three schemes to minimize the prediction error and balance the training

procedure, i.e. hard labels (a label assigned to a member of a class where membership

is binary) to provide precise supervision, semantic textual knowledge is utilized as weak

supervision to find the potential relations between the novel and the base categories, and

an imbalance control is presented from the data distribution to alleviate the recognition

bias towards the base categories.

Momentum 2 Teacher [135] present a student-teacher based self-supervised learning

that performs momentum update on both network weights and batch normalization (BN)

statistics. The teacher’s weight is a momentum update of the student, and the teacher’s

BN statistics is a momentum update of those in history. Chen et al. [30] use of a relatively

deep and wide networks during unsupervised pre-training and supervised fine-tuning on

a few labelled examples, and found out that the fewer the labels, the more this approach

(task-agnostic use of unlabelled data) benefits from a bigger network. After fine-tuning,

the big network can be “further improved and distilled into a much smaller one with little

loss in classification accuracy by using the unlabelled examples for a second time” [30,

p. 3], but in a task-specific way.

Cui et al. [40] performs distillation by only driving prediction of the student model

consistent with that of the teacher model instead of frameworks which require student

model to be consistent with both soft-label generated by teacher model and hard-label an-

notated by humans. Koohpayegani et al. [115] follows the same approach by developing a

model compression method to compress an already learned, deep self-supervised teacher

model to a smaller student one to mimic the relative similarity between the data points in

the teacher’s embedding space.
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In contrast, [227] introduce a self-supervised learning algorithm that use a soft simi-

larity for the negative images rather than a binary distinction between positive and neg-

ative pairs. They iteratively distil a slowly evolving teacher model to the student model

by capturing the similarity of a query image to some random images and transferring

that knowledge to the student using contrastive learning (see Figure 2.12). Following the

same path, Adversarial Contrastive Learning (ACL) [100] leverages contrastive learning

framework learning representations by maximizing feature consistency under differently

augmented views, and integrating self-supervised pre-training with adversarial training

to improve robustness-aware self-supervised pre-training by learning representations that

are consistent under both data augmentations and adversarial perturbations.

Results of ongoing research [30, 135, 201, 227] in self-supervised knowledge distilla-

tion using few-shot learning methods indicate that these methods can significantly reduce

the training time and cost of neural networks. It can also assist in downstream computer

vision tasks such as object detection and image classification that can significantly benefit

from the distilled pre-trained models.

Figure 2.12: Contrastive learning for self-supervised learning. Image source: [71]
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2.7 Image Segmentation in Deep Learning

Image segmentation can be formulated as the problem of classifying pixels with semantic

labels, also known as semantic segmentation; or partitioning of individual objects, or in-

stance segmentation, or both semantic and instance segmentation, referred to as panoptic

segmentation. Semantic segmentation performs “pixel-level labelling with a set of object

categories for all image pixels” [284, p. 3]. Instance segmentation extends the scope of

semantic segmentation by detecting and delineating each object of interest in the image.

Early work on image segmentation methods include thresholding, k-means clustering,

histogram-based methods, region-growing, watershed methods, active contours, Markov

random fields, and sparsity-based methods. In recent years, deep learning models have

caused a paradigm shift in the field. A new generation of image segmentation models

with remarkable performance improvements, often achieving the highest accuracy rates

on popular benchmarks (e.g. Figure 2.13) have been developed. Image segmentation has

become a key computer vision and image processing with important applications such as

augmented reality, medical image analysis, scene understanding, and video surveillance,

among others. Various architectures have been developed, including encoder-decoder

architectures, visual attention models, multi-scale and pyramid-based approaches, con-

volutional pixel-labelling networks, recurrent networks, and generative models among

others.
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Figure 2.13: Some examples of qualitative segmentation results of DeepLabV3 [244] on

sample images.

Several deep learning models have been proposed in literature for instance and se-

mantic segmentation, including fully convolutional networks [150], who used transfer

learning to modify VGG16 and GoogLeNet to output partial segmentation maps instead

of classification scores. They used skip connections (Figure 2.14) in which “feature maps

from the final layers of the model are up-sampled and fused with feature maps of ear-

lier layers” [150, p. 1]. The model combines semantic information (from deep, coarse

layers) and appearance information (from shallow, fine layers) in order to produce accu-

rate and detailed segmentations. Tested on PASCAL VOC, NYUDv2, and SIFT Flow

datasets, the model achieved state-of-the-art segmentation performance. Various works

have demonstrated that fully-connected networks can be applied to such areas as brain

tumour segmentation [282], instance-aware semantic segmentation [66, 229], skin lesion

segmentation [274] and iris segmentation [138] in an end-to-end fashion. These models

have computationally been expensive for real-time inference, and are not generalisable to

3D images.
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Figure 2.14: Illustration of skip connections for segmentation. Image source [150]

Noh et al. [167] introduced a model for semantic segmentation based on transposed

convolution, or deconvolution. Their model (see Figure 2.14), consists of an encoder

using convolutional layers adopted from the VGG 16-layer network, and a multilayer de-

convolutional network that inputs the feature vector and generates a map of pixel-accurate

class probabilities. The latter comprises deconvolution and unpooling layers, which iden-

tify pixel-wise class labels and predict segmentation masks. SegNet ([7]) (Figure 2.15),

a fully convolutional encoder-decoder architecture with a decoder upsamples its lower-

resolution input feature maps using pooling indices computed in the max-pooling step

of the corresponding encoder to perform non-linear up-sampling. A limitation of the

encoder-decoder based models in image segmentation is the loss of fine-grained image

information, due to the loss of resolution through the encoding process.
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Figure 2.15: An illustration of the SegNet architecture which is fully convolutional. Im-

age source [7]

U-Net [200] (Figure 2.16), proposed for segmenting biological microscopy images,

was trained on 30 transmitted light microscopy images. The architecture comprises two

parts, a contracting path to capture “context, and a symmetric expanding path that enables

precise localization” [200, p. 1]. Its training strategy relies on the use of data augmenta-

tion to learn effectively from very few annotated images.

Figure 2.16: The U-Net semantic segmentation model on sample images. Image source

[200]
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Models that use R-CNN (Region-Based Convolutional Neural Networks) such as

[73, 74, 198] have proven successful in object detection applications by using a region

proposal network (RPN) that proposes bounding box or mask candidates that extracts a

Region of Interest (RoI), and an RoIPool layer computes features from these proposals

to infer the bounding box coordinates and class of the object have been used to address

the instance segmentation problem by simultaneously performing object detection and

semantic segmentation [83].

Other models that have been proposed are based on RNNs [179], Attention-Based

Models [79], Generative adversarial networks [75]. All the above models have only been

successful when trained with large datasets.

2.7.1 Few-shot semantic and instance segmentation

Instance segmentation, e.g. using Mask R-CNN [84] aims to “discriminate objects in the

pixel level, which is a finer representation compared with detected boxes, and can be sub-

divided into box-based methods” [184, p. 2], e.g. [20, 111, 184, 261] that utilize detected

boxes to locate objects, and box-free approaches [34, 248, 264] that generate instances

without the assistance of object boxes. Semantic segmentation assigns each pixel with a

semantic category, “without considering diverse object identities ” [261, p. 1]. The task

of few-shot segmentation [209] aims at assigning a category label to each image pixel

with few annotated samples. The dense prediction can only be achieved under the guid-

ance of latent features defined by sparse annotations. Few-shot segmentation methods

perform image segmentation for a particular object class in a query image, using a small

set of support image-mask pairs. Just like image classification, successful training of a

semantic segmentation model have required large densely-annotated supervised learning

image datasets that are costly to obtain [129, 144, 270]. Once the the model is done with

training, new object categories are difficult to add to the model, meaning that the model

has to undergo new training.
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In few-shot settings, which is the focus of this work, the aim is to train a model that

can quickly adapt to new tasks given a few examples for input. In this few-shot learning

task, there is a densely annotated training dataset Dtrain which consists of objects in base

categories Ctrain. The model aims to train based on the training set and evaluate it on

a testing set Dtest, both consisting of novel object categories Ctest, i.e. Ctrain

⋂
Ctest =

0. The testing set Dtest is specifically constructed in an episodic form — for a K-shot

learning task, each episode ei = {(Si, Qi)}xks and yks consists of a support set Si =

{(xks , yks )}, k ∈ {1 . . . K}i and a query set Qi = {(xq, yq)} xks and yks xk
s and yks i, where

xks and yks are the kth support image and its corresponding object mask, respectively. xq

and yq are the query image and the ground truth, respectively. During each testing episode,

the model is asked to perform segmentation on xq based on the object information in xks

and yks .

Shaban et al. [209] was the original work that tackled the problem of few-shot image

segmentation. Their method directly “predicts the weight of the dense-classifier based

on support images” [209, p. 1]. They also created a dataset, namely Pascal-5i [209] for

few-shot segmentation which has become one of the most used benchmark for evaluat-

ing few-shot segmentation methods. Subsequent works on few-shot semantic segmenta-

tion are typically based on a two-branch comparison framework, which can be seen as

an extension of metric learning methods in few-shot image classification. Wang et al.

[246] tackled the few-shot segmentation problem from a non-parametric metric learning

perspective and present PANet that learns class-specific prototype representations from

support images for each semantic class within an embedding space and then performs

segmentation over the query images through matching each pixel to the learned proto-

types. CANet [276] is a class-agnostic segmentation network that performs few-shot

segmentation on new classes that consists of a “two-branch dense comparison module

which performs multi-level feature comparison between the support image and the query

image, and an iterative optimization module which iteratively refines the predicted re-
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sults” [276, p. 1]. Furthermore, they introduce an attention mechanism to effectively fuse

information from multiple support examples under the setting of k-shot learning. The

encoder network is used to map the low resolution encoder feature maps to full input

resolution feature maps for pixel-wise classification, and resembles the 13 convolutional

layers in the VGG16 network [226]. The decoder uses “pooling indices computed in the

max-pooling step of the corresponding encoder to perform non-linear upsampling” [276,

p. 1] thereby eliminating the need for learning to upsample.

Other ideas [143, 148] use prototypical representation by learning to extract proto-

types from both support and query images of the known classes. Liu et al. [148] decom-

pose the class representations into a set of “part-aware prototypes” [148, p. 1], capable of

capturing “diverse and fine-grained object features” [148, p. 1]. In addition, they leverage

unlabelled data to enrich the same part-aware prototypes, resulting in better modelling of

intra-class variations of semantic objects. They also develop a novel graph neural network

model to generate and enhance the proposed part-aware prototypes based on labelled and

unlabelled images. Liu et al. [144] propose a Prototype Refinement Network (PRNet)

that learns to bidirectionally extract prototypes from both support and query images of

the known classes. They use an adaptation step that makes the model learn new concepts

which is directly implemented by retraining, and prototype fusion which fuses support

prototypes with query prototypes, incorporating the knowledge from both sides.

Inspired by few-shot classification work by [61] and [190], [176] proposed a Class-

Agnostic Few-shot Edge detection Network (CAFENet) based on meta-learning strat-

egy they called “few-shot semantic edge detection” [176, p. 1], aiming to localize crisp

boundaries of novel categories. It employs a “semantic segmentation module” [p. 1] in

small-scale to compensate for lack of semantic information in edge labels. The predicted

segmentation mask is used to “generate an attention map to highlight the target object

region, and make the decoder module concentrate on that region” [176, p. 1]. They

also propose a new regularization method based on multi-split matching, and two new
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datasets, FSE-1000 and SBD-5 I for semantic edge detection. Hendryx et al. [87] pro-

posed EfficientLab architecture to evaluate first-order model agnostic meta-learning al-

gorithms, including REPTILE [165] on few-shot image segmentation, and used Bayesian

optimization to infer the optimal test-time adaptation routine hyperparameters. He et al.

[83] proposed a framework called Mask R-CNN for object instance segmentation that ex-

tends Faster R-CNN [198] by adding a branch for predicting an “object mask in parallel

with a branch for bounding box recognition” [198, p. 1]. The approach detects objects

in an image while simultaneously generating a segmentation mask for each instance. Fan

et al. [55] extends the Mask R-CNN [83] to produce a Fully Guided Network (FGN) that

perceives few-shot instance segmentation as a guided model where the support set is en-

coded and utilized to guide the predictions of a base instance segmentation network. In

this view, FGN introduces different guidance mechanisms into the various key compo-

nents in Mask R-CNN, including “Attention-Guided RPN, Relation Guided Detector, and

Attention-Guided FCN” [55, p. 1], in order to make full use of the guidance effect from

the support set and adapt better to the inter-class generalization.

Various other approaches have been explored. Tian et al. [228] formulated the few-

shot segmentation problem as a learning-based pixel classification problem, and propose

a framework they called MetaSegNet can be trained by the episodic training mechanism,

and is based on meta-learning whose architecture of embedding module consisting of the

global and local feature branches is developed to extract the appropriate meta-knowledge.

Siam et al. [211] propose a method that constructs the new class weights from few labelled

samples in the support set, while updating the previously learned classes [211]. They

extended the work on adaptive correlation filters inspired from the work on an adaptive

masked imprinted weights. Their method utilizes a “masked average pooling layer on

the output embeddings” [211, p. 3] that acts as a positive proxy for that class. It is

then used to adaptively update the 1x1 convolutional filters that are responsible for the

final classification. Tian et al. [232] proposed the “Prior Guided Feature Enrichment



2.7. IMAGE SEGMENTATION IN DEEP LEARNING 62

Network (PFENet), designed to have a training-free prior mask generation method and

Feature Enrichment Module (FEM) that overcomes spatial inconsistency” [232, p. 2] by

adaptively enriching query features with support features and prior masks.

Similarity Guidance Network [286] is proposed as an end-to-end framework for one-

shot segmentation by predicting the segmentation mask of a query image with the refer-

ence to one densely labelled support image of the same category. To obtain the robust

representative feature of the support image, they first adopt a “masked average pooling

strategy for producing the guidance features by only taking the pixels belonging to the

support image” [286, p. 2] into account. They then leverage the cosine similarity to

“build the relationship between the guidance features and features of pixels” [286, p. 2]

from the query image. In this way, the possibilities embedded in the produced similar-

ity maps can be adapted to guide the process of segmenting objects. Zhao et al. [290]

tackle one-shot semantic segmentation problem by first training an object-ness segmen-

tation module which generalizes well to unseen categories. Then the object-ness module

is used to predict the objects present in the query image, and train an “object-ness-aware

few-shot segmentation model that takes advantage of both the object information and

limited annotations of the unseen category” [290, p. 2] to perform segmentation in the

query image. Zhu et al. [293] presents an adaptive tuning framework, in which “the dis-

tribution of latent features across different episodes is dynamically adjusted based on a

self-segmentation scheme, augmenting category-specific descriptors” [293, p. 2] for label

prediction. Specifically, a novel “self-supervised inner-loop is firstly devised as the base

learner to extract the underlying semantic features from the support image. Then, gradi-

ent maps are calculated by “back-propagating self-supervised loss through the obtained

features, and leveraged as guidance for augmenting the corresponding elements” [293,

p. 2] in embedding space. Finally, with the ability to continuously learn from different

episodes, an “optimization-based meta-learner is adopted as outer loop of their proposed

framework to gradually refine the segmentation results” [293, p. 2].
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Stacked Deconvolutional Network (SDN) [66] propose a model in which multiple

shallow deconvolutional networks are stacked one by one to integrate contextual informa-

tion and bring the fine recovery of localization information, with “inter-unit and intra-unit

connections designed” [66, p. 2] to assist “network training and enhance feature fusion”

[66, p. 2] since the connections improve the flow of information and gradient propaga-

tion throughout the network. Hierarchical supervision is applied during the upsampling

process of each SDN unit to enhance the discrimination of feature representations and

optimization. Gairola et al. [67] demonstrate gaps in the utilization of similarity informa-

tion in few-shot segmentation in existing methods, and propose SimPropNet, that jointly

predict the support and query masks to force the support features to share characteristics

with the query features. They also utilize similarities in the background regions of the

query and support images using a novel foreground-background attentive fusion mecha-

nism. Li et al. [129] proposed a few-shot segmentation dataset, FSS-1000, which consists

of 1000 object classes with pixel-wise annotation of ground-truth segmentation.

2.7.2 Panoptic segmentation

Kirillov et al. [112] propose the challenging task of panoptic segmentation that unifies the

typically distinct tasks of semantic segmentation and instance segmentation [112] into

one which is our main focus in this part of the thesis. They also propose a novel “panop-

tic quality (PQ) metric” [112, p. 1] that captures performance for all classes “(‘stuff’ and

‘things’)” [112, p. 1] in an interpretable and unified manner. The goal in panoptic seg-

mentation is to perform a unified segmentation task. A ‘thing’ is a countable object, for

example animal, table or tree. It is a category that has instance-level annotation, the same

used in object detection. The ‘stuff’ is amorphous, structureless region of similar texture

such as road and sky. It is a category without instance-level annotation. Studying ‘thing’

comes under object detection and instance segmentation, while studying ‘stuff’ comes

under semantic segmentation. Encoding pixels involves assigning each pixel of an image
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two labels, one for semantic label, and other for instance identity. The pixels having the

same label are considered belonging to the same class, and instance identity for ‘stuff’ is

ignored. Unlike instance segmentation, each pixel in panoptic segmentation has only one

label corresponding to one instance, i.e. there are no overlapping instances.

Panoptic segmentation segments the image I ∈ RH×W×3 into a cluster of categorised

masks for the whole image:

{yi}Ki=1 = {(mi, ci)}Ki=1,

where K represents the ground truth masks mi ∈ {0, 1}H×W do not coincide or

encroach into each other, and ci denotes the prior terrestrial observations that have been

made into ground truth class labels of mask mi.

Many approaches for panoptic segmentation extend Mask R-CNN [84] for object in-

stance segmentation that extends Faster R-CNN [198] by adding a branch for predicting

an object mask in parallel with a branch for bounding box recognition. For instance,

Fully Guided Network (FGN) [55] perceives few-shot instance segmentation as a “guided

model where the support set is encoded and utilized to guide the predictions of a base

Mask R-CNN instance segmentation network” [55, p. 1]. It introduces different guidance

mechanisms into the various key components in Mask R-CNN, including what they called

“Attention-Guided RPN, Relation-Guided Detector, and Attention-Guided FCN, in order

to make full use of the guidance effect from the support set” [55, p. 1] and adapt better

to the inter-class generalization. Efficient Panoptic Segmentation (EfficientPS) [158] in-

corporates a novel semantic head that “aggregates fine and contextual features coherently

and a new variant of Mask R-CNN as the instance head” [158, p. 1]. They also propose a

novel “panoptic fusion module” [158, p. 1] that congruously integrates the output logits

from both the heads of their architecture to yield the final panoptic segmentation output.

Additionally, they introduce the “KITTI panoptic segmentation dataset” [158, p. 1] that

contains panoptic annotations for the KITTI benchmark.

Other notable work include Panoptic-FCN [129], that aims to represent and predict
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foreground ‘things’ and background ‘stuff’ [112] in a unified fully convolutional pipeline.

Specifically, Panoptic-FCN encodes each object instance or ‘stuff’ category into a “spe-

cific kernel weight with the proposed kernel generator and produces the prediction by con-

volving the high-resolution feature directly” [129, p. 1]. With this approach, “instance-

aware and semantically consistent properties for ‘things’ and ‘stuff’ can be respectively

satisfied in a simple generate-kernel-then segment workflow” [129, p. 1]. De Geus et al.

[42] propose a single deep neural network for panoptic segmentation, that makes joint se-

mantic and instance segmentation predictions and combines these to form an output in the

panoptic. The entire prediction is made in one pass, reducing the required computation

time and resources. Ying et al. [270] proposed an end-to-end encoder-decoder network ar-

chitecture that utilises object information from support samples to separate target objects

from the background in a query image. They design an object representation generator

(ORG) module incorporated into the architecture to aggregate local object features from

support images and produce object-level representation. The ORG module can be em-

bedded into the network and trained end-to-end in a weakly-supervised fashion without

extra human annotation.

Occlusion Aware Network (OANet) [142] predict both the instance and ‘stuff’ seg-

mentation in a single network. Moreover, they introduce a novel “spatial ranking module

to deal with the occlusion problem” [127, p. 1] between the predicted instances. Deep-

erLab [266] present a “single-shot, bottom-up approach for panoptic segmentation that

generalizes the tasks of semantic segmentation for ‘stuff’ classes and instance segmen-

tation for ‘thing’ classes” [266, p. 1], assigning both semantic and instance labels to

every pixel in an image. Axial-DeepLab [244] predicts pixel-wise offsets to pre-defined

instance centres. These centre-based proxy sub-task makes it difficult to deal with objects

with irregular shapes. MaX-DeepLab [243] directly projects labelled masks with a “mask

transformer”, and learns using a “panoptic quality inspired loss” [243, p. 1] via “bipar-

tite matching” [243, p. 1]. The mask transformer employs a “dual-path architecture that
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introduces a global memory path in addition to a CNN path” [243, p. 1]. This allows

direct exchange of information with all CNN layers. The approach simplifies the pipeline

that depends heavily on “surrogate sub-tasks and hand-designed components, such as box

detection, non-maximum suppression, and thing-stuff merging” [243, p. 1]. Panoptic-

DeepLab [34] adopts the “dual-ASPP (Atrous Spatial Pyramid Pooling) and dual-decoder

structures” [34, p. 1] specific to semantic and instance segmentation, respectively. The

semantic segmentation branch is the same as the DeepLab [266], while the instance seg-

mentation branch is class-agnostic, involving a simple instance centre regression.

CIAE (Category- and Instance-Aware Pixel Embedding) [69] simplifies the panop-

tic segmentation pipeline by consistently modelling the two classes with a novel panoptic

segmentation framework with a pixel-wise embedding feature that encodes both semantic-

classification and instance-distinction information, and which extends a detection model

with an extra module to predict category- and instance-aware pixel embedding. CondInst

(conditional convolutions for instance and panoptic segmentation) [231] unifies instance

and panoptic segmentation. It designs dynamic instance-aware mask heads, conditioned

on the instances to be predicted instead of using instance-wise ROIs as inputs to the in-

stance mask head of fixed weights.

Bounding-Box Free Network (BBFNet) [17] predicts coarse watershed levels and uses

them to detect large instance candidates [17] where boundaries are well defined. For

smaller instances, whose boundaries are less reliable, BBFNet also predicts “instance

centres by means of Hough voting followed by mean-shift” [17, p. 1] to reliably detect

small objects. A novel triplet loss network helps merging fragmented instances while

refining boundary pixels. The approach is differs from prior works in panoptic segmen-

tation that rely on a combination of a semantic segmentation network based on Mask

R-CNN to guide the prediction of instance labels, which is costly computationally for in-

stance segmentation. They use this observation to exploit class boundaries from semantic

segmentation networks and refine them to predict instance labels.
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BANET [30] introduce a novel deep panoptic segmentation scheme based on a bidi-

rectional learning pipeline, and a plug-and-play occlusion handling algorithm to deal with

the occlusion between different object instances. Chen et al. [30] introduce a novel deep

panoptic segmentation scheme based on a bidirectional learning pipeline, and a plug-and-

play occlusion handling algorithm to deal with the occlusion between different object

instances. UPSNet [261] proposes a panoptic head that does not use parameters. This

allows backpropagation to both panoptic segmentation modules, while DETR [20] gener-

ally depends on the box prediction and detection.

Weber et al. [254] uses an object detector to design an end-to-end single-shot method

that segments both countable object instances as well as background regions into a non-

overlapping panoptic segmentation at almost video frame rate. The model has a shared

encoder-decoder backbone, and utilises multiple branches for semantic segmentation, ob-

ject detection, and instance centre prediction. The panoptic head combines all outputs into

a panoptic segmentation and can even handle conflicting predictions between branches as

well as resolving inter- and intra-class overlaps to achieve a non-overlapping segmenta-

tion. SPiNet [94] integrated execution flows for semantic and instance segmentation and

generated a unified feature map they called Panoptic-Feature with information on ‘things’

and ‘stuff’.

2.7.2.1 Panoptic quality

Panoptic quality(PQ), or the product a recognition quality (RQ) term and a segmentation

quality (SQ) term, measures the “quality of a predicted panoptic segmentation relative

to the ground truth” [112, p. 1], and involves segment matching and “PQ computation

given the matches of ‘stuff’ and ‘things’ in a uniform way” [112, p. 1], thus unifies

the evaluation over all classes. It is normally calculated per class independently, and the

results averaged over classes, making it sensitive to class imbalances.

The Intersection over Union (IoU) (see Figure 2.17) is a common way to describe the
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quality of the model’s bounding box prediction over an object on the image. By diving

the area the prediction and ground truth intersect by the area they both consume, we get

a ratio that is inclusively between 0 and 1, with 0 meaning there is no intersection and 1

being a perfect fit.

IoU = Prediction ∩ GroundTruth
Prediction ∪ GroundTruth

Figure 2.17: Illustration of Intersection over Union (IoU).

Figure 2.18: Illustration of TP, FN and FP
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For each class in a dataset, the unique matching splits the predicted and ground truth

segments into three sets: true positives (TP), false positives (FP), and false negatives

(FN ), representing matched pairs of segments, “unmatched predicted segments, and un-

matched ground truth segments” [112, p. 1], respectively (see Figure 2.18). PQ is defined

as:

PQ =
∑

(p,q)∈TP IoU (p,q)

|TP |+1
2 |FP |+

1
2 |FN |∑

(p,q) ∈ TP IoU(p, q) is the average IoU of matched segments, while
1
2
| FP | +1

2
| FN | is added to the denominator to penalize segments without

matches

2.8 The Vision Transformer

The Transformer [237] has recently emerged as an alternative to CNNs for visual recog-

nition [51, 233, 241, 289]. The Vision Transformer (ViT) [51] (see Figure 2.19) is an

attention-based neural network which has become the de facto standard for natural lan-

guage processing. In computer vision, attention has been applied in conjunction with

CNN layers, or to replace certain components of CNNs, or replace CNNs entirely. An im-

age is split into linearly embedded fixed-size non-overlapping patches, positional embed-

dings added, and the resulting sequence fed into transformer encoder (see Figure 2.20).

Recently, they have emerged as an alternative to CNNs [20, 51], and a pure transformer

has been applied directly to sequences of image patches, e.g. in [51], the first paper that

successfully trains a transformer encoder on ImageNet, attaining very good results com-

pared to familiar convolutional architectures. The image patches are expected to be of the

same size. Although they are competitive to CNNs in terms of their global computations

and perfect memory, they have yet to be used extensively [20]. They are currently more

computationally expensive, and require much more data to train than CNNs [21].
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The architecture of the ViT follows the following basic steps:

• Split an image into patches, flatten the patches,

• Produce lower-dimensional linear embeddings from the flattened patches, add po-

sitional embeddings,

• Feed the sequence as an input to a standard transformer encoder,

• Pre-train the model with image labels (fully supervised on a huge dataset), and

• Fine-tune on the downstream dataset for image classification.

Figure 2.19: Illustration of the Vision Transformer. The image is split into fixed-size

patches, linearly embed each of them, add position embeddings, and feed the resulting

sequence of vectors to a standard Transformer encoder. Image source [51].
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Figure 2.20: The Transformer encoder block is identical to the original transformer pro-

posed by [237].

Although [51] is the first paper that directly applies a pure transformer to sequences of

images and show that the reliance on CNNs is not necessary, there have been previous at-

tempts in image processing. Notable work includes those that combine CNNs with some

forms of self-attention by augmenting feature maps, e.g. by [11], or by further processing

the output of a CNN using self-attention, for example for object detection and panoptic

segmentation [20]. Chen et al. [30] trains a model in an unsupervised fashion as a gener-

ative model, and applies transformers to image pixels after reducing the image resolution

and the colour space, thereby achieving a 72% accuracy on the ImageNet dataset.

DETR (DEtection TRansformer) [20] consists of a convolutional backbone followed

by an encoder-decoder transformer which can be trained end-to-end for object detec-

tion and panoptic segmentation. It removes the need for hand-designed components

unlike models such as Faster-R-CNN and Mask-R-CNN, which use region proposals,

non-maximum suppression procedure and anchor generation as preprocessing steps. De-

formable DETR [293] mitigates the high complexity and slow convergence issues of
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DETR via a novel sampling-based efficient attention mechanism. Its attention modules

only attend to a small set of key sampling points around a reference, and can achieve

better performance than DETR especially on small objects, and with less training epochs.

The CrossTransformer [48] is a few-shot transformer-based neural network architec-

ture that takes a small number of labelled images and an unlabelled query, and then infers

class membership by computing distances between spatially-corresponding features. It

uses prototypical networks blueprint that aggregate information in a spatially-aware way,

using local features that are more likely to generalize. They demonstrated a good per-

formance on the Meta-dataset [234]. The classifier is more robust to task and domain

shift.

The Swin Transformer [149] is a hierarchical transformer with the flexibility to model

at various scales, whose representation is computed with shifted windows. This brings

greater efficiency by limiting self-attention computation to non-overlapping local win-

dows while allowing cross-window connections. It has linear computational complexity

with respect to image size, making it compatible with a broad range of computer vision

tasks. DINO [21] showed the potential of self-supervised pre-training a standard ViT

model to developing a BERT-like [45] model that have been successful with language

processing.

2.9 Datasets for Few-Shot Learning

Few-shot learning usually adopts episodic training. In order to sample different tasks

for the few-shot learning classification, a dataset such as Omniglot [122, 239], tieredIm-

ageNet [195], MiniImageNet [190, 239], CIFAR-FS [15, 116], FC100 [116, 172], and

CUB 200 [88], with many different classes is required. The models are expected to learn

from each of the episodes. Most of the current few-shot learning algorithms are bench-

marked on some of these few-shot learning datasets. Omniglot is a dataset for handwritten
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characters from 50 different alphabets that consists of 1623 samples in total [121, 122].

Each character is a 105 x 105 greyscale image. There are only 20 samples for each charac-

ter, each drawn by a distinct individual. MiniImageNet is a lighter version of the original

ImageNet dataset, designed specifically for evaluation of the few-shot learning models.

This dataset consists of 100 classes with 600 samples of 84 × 84 colour images for each

class. CUB 200 is a dataset of photos of 200 different bird species with 6,033 samples in

total. Many other datasets have recently been proposed for use for benchmarking few-shot

learning algorithms, including Meta-Dataset [234] that has been used for benchmarking

with meta-learning. The TCGA [277] is a dataset of classification tasks over the values

of an attribute based on the gene expression data from patients diagnosed with specific

types of cancer. FSOD models have been evaluated on the datasets that have been used

for few-shot learning. Pascal 5i [209] and COCO-20i [140, 163] have widely been used

benchmarks for “few-shot object detection” [55, p. 1] and object classification.

A variety of datasets have been used for panoptic segmentation training and testing,

including Cityscapes [39], Mapillary Vistas [161], MS COCO [140], Wild Panoramic

Panoptic Segmentation (WildPPS) [99], KITTI panoptic segmentation dataset [158, 195].

Pascal-5i [209] and COCO- 20i [163] are widely-used benchmarks. The COCO dataset

contains “80 ‘thing’ classes and 53 ‘stuff’ classes” [163, p. 2], with 118K, 5K, and 20K

images for training, validation, and testing, respectively. Cityscapes dataset consists of

“5, 000 street-view fine annotations with size 1024 × 2048” [39, p. 1], which can be di-

vided into 2, 975, 500, and 1, 525 images for training, validation, and testing, respectively.

Mapillary Vistas is a “traffic-related dataset with resolutions ranging from 1024 × 768 to

more than 4000 × 6000” [161, p. 1]. It includes 37 ‘thing’ classes and 28 ‘stuff’ classes

with 18K, 2K, and 5K images for training, validation, and testing (p. 1), respectively.

Other two recent datasets that have been popular for few-shot semantic and instance seg-

mentation are the Cityscapes-Panoptic-Parts and PASCAL-Panoptic-Parts introduced by

[154]. Both have annotations compatible with panoptic segmentation, and additionally,
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they have part-level labels for selected semantic classes. In this work, we will use a num-

ber of few-shot learning datasets, including the Pascal-5i [209], which was created based

on Pascal VOC 2012, with 20 categories in the original PASCAL-VOC dataset evenly

divided into 4 splits for 4-fold (1 split for testing and the other 3 splits for train) cross-

validation, and COCO-20i [163] from MS-COCO 2014 (see Table 4.2) for benchmarking.

We will also benchmark with the Omniglot, Mapillary Vistas, and Oxford Flowers 102.

The more challenging MS COCO-20i has 80 categories in the original MS-COCO 2014

dataset that are “evenly divided into 4 splits for 4-fold cross-validation (20 categories for

testing and the remaining 60 categories for training, and 1000 support-query pairs for

testing in each split)” [163, p. 2].

2.10 Conclusion

This chapter provides a comprehensive review of some of the most relevant literature in

few-shot learning, including the literature related to few-shot learning in computer vision

tasks of image classification, object detection, knowledge distillation and segmentation.

Work on meta-learning, metric learning, data augmentation, panoptic segmentation, and

self-supervised learning was also explored, with more emphasis on work related to the

few-shot learning environment.

In Chapter 3, we propose an alternative novel method for few-shot classification

method by employing novel dual meta-learners with a meta-ensemble module for gen-

eralisation and inference of images.



Chapter 3

Few-Shot Image Classification with

Dual Meta-Learners

3.1 Introduction

In the previous chapter, a comprehensive study of the literature, including the models and

algorithms that have been proposed for few-shot image classification, object detection,

knowledge distillation and image segmentation in deep learning supervised settings was

explored. Several approaches, including generative and augmentation-based approaches,

metric learning-based learning, meta-learning and optimisation-based learning were ex-

plained. In this chapter, we introduce a novel meta-learning model for few-shot classifi-

cation that consists of dual meta-learners supervised by a central controller that controls a

feature extraction module and a meta-learning module, and a meta-ensemble module for

integrated inference and generalisation. Each meta-learner is composed of a pre-trained

encoder fine-tuned by batch training and parameter-free decoder used for prediction. We

use ResNet-152 as a backbone to learn vector representations fθ of input and ImageNet

pre-trained weights. We then optimize the classifier by using the cosine distance with

a learnable scale parameter in the feature space in the meta-training stage. Empirical

75
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evaluation on the Omniglot, Oxford Flowers102 and MiniImageNet datasets is provided.

3.2 Meta Learning

In supervised learning settings, meta-learning learns from a set of labelled tasks, each

represented as a labelled support and query set, and a testing set [61, 137]. A meta-

learner is a “trainable learning algorithm that can train a learner by influencing its actions

or behaviour” [61, p. 1]. By being exposed to a broad scope of a task space, a meta-

learner may figure out a learning strategy tailored to the tasks in that space, and learn

gradually. A meta-learning algorithm or “learning-to- learn” [61, p. 1] is expected to

improve its performance with a number of increased training episodes by carrying out

rapid learning within each task, whose feedback is used to adjust the learning strategy

of the meta-learner [61, 238, 239]. The base-learner, one of the components in meta-

learning, works at the “level of individual tasks, or episodes” [206, p. 1] which in few-

set settings is characterised by having a small set of labelled images. The meta-learner

learns on a bunch of similar tasks to maximize the combined generalization from such

sequential episodes with the goal of improving the performance of the base learner. The

learning process can “continue forever” [206, p. 1], thus enabling continual or “life-long

learning” [3, p. 1], and at any moment, the meta-learner can be applied to learn a learner

for any new task [59]. Meta-learning has been applied successfully to few-shot learning

on classification [28, 138], object detection [134, 136, 153] and reinforcement learning

[180, 218].

Metric based, e.g., prototypical networks [103, 131, 172] and optimization based, e.g.,

MAML [5, 61, 137] methods have been the most popular and effective methods that have

been used with meta-learners (see Chapter 2 for the detailed literature). They both do not

learn an explicit learner [61], which is typically done by an optimizer such as SGD.
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Figure 3.1: Meta-training episodes are characterised by a small number of samples repre-

senting novel classes with each episode having a new set of parameters θe (e = 1...n ∈ Z)

to be trained. During each training episode, the global deep learning network weights are

affected by the new parameters changes, affecting the set of global parameters ω, and

allowing knowledge to be accrued over episodes.

Meta-learning methods aim to acquire task-level meta-knowledge that can help the

model quickly adapt to new tasks and environments with very few labelled examples

[61]. A popular line of research, for instance, by [64, 137, 165, 204, 224] is to learn to

fine-tune and aim to “obtain a good parameter initialization” [61, p. 2] that can adapt to

new tasks with a few scholastic gradient descent updates. Some simple fine-tuning based

approaches [29, 33, 46] turn out to produce better results than many prior works that

use meta-learning on few-shot image classification. Another popular line of research for

few-shot image classification is to use parameter generation during adaptation to novel

tasks [32, 46, 71, 249]. Gidaris et al. [71] propose an attention-based weight generator

to generate the classifier weights for the novel classes. Wang et al. [247] construct task-
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aware feature embeddings by generating parameters for the feature layers.

The challenge in meta-learning is to learn from “prior experience in a systematic,

data-driven” [165, p. 2] way. First, there is need to collect “meta-data that describe prior

learning tasks and previously learned models, and to learn from this prior meta-data, to

extract and transfer knowledge” [165, p. 2] that guides the search for optimal models for

new tasks [64, 137, 165, 204, 224]. The more similar those previous tasks are, the more

types of meta-data we can leverage [53, 87, 189], and defining task similarity will be a key

overarching challenge. When a new task represents “completely unrelated phenomena, or

random noise” [204, p. 1], leveraging prior experience will not be effective [87, 157, 189,

245]. There exists challenges in meta-learning that have remained largely unexplored.

The use of single meta-learners heavily relies on trial and error hyperparameter tuning

such as number of epochs, mini-batch sizes, and learning rates, to avoid over-fitting and

under-fitting. The existing meta-learning methods do not consider the time and resource

efficiency, making it difficult to meet real-world application requirements.

To tackle these challenges, we introduce a novel few-shot classification model that

consists of dual meta-learners and a meta-ensemble module both supervised by a central

controller (see Figure 3.3, and Figure 3.4) to control a feature extraction module and a

meta-learning module, and a meta-ensemble module for integrated inference and general-

isation. The ResNet-152 network with ImageNet pre-trained weights acts as a backbone

that controls the feature extraction module, a meta-learning module, and meta-testing

module for few-shot classification. Each meta-learner is composed of a pre-trained en-

coder fine-tuned by batch training and parameter-free decoder used for prediction. First,

we train a feature extractor on all base categories to learn representations of inputs [31].

In the meta-training stage, the classifier is optimized in the metric space by “cosine dis-

tance” [286, p. 1] with a learnable scale parameter. Then in the meta-testing stage, the

query sample in the unseen category is predicted by the adapted classifier given a few

support samples.
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Figure 3.2: The pipeline of the meta-learning method, including: (a) training on the base

dataset, (b) meta-transfer learning on the based on the parameters of pre-trained feature

extractor. Learning is scheduled by the meta-learner; and (c) meta-test is done for a novel

task which consists of a base-learner with fixed parameters. Then follows fine-tuning and

a final evaluation stage.

Our model enables more effective initializations and faster adaptation, and has con-

nections between instance-based information and semantic-based information. We con-

sider the case of meta-learning based method that consists of mainly two stages: 1) meta-

training, and 2) meta-testing. During the first meta-training stage, a sequence of episodes

is randomly sampled from the labels of the base classes where each episode contains K

support examples and Q query examples from N classes, denoted as an N-way K-shot

episode (See Chapter 3). In this way, the meta-training stage can mimic the few-shot

testing stage where only a few labels are available per class.
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Figure 3.3: A meta-learner is first trained on the episodes of data generated by the meta

data train generator. The meta-learner outputs a learner, which is then trained on the

support set of each meta-test episode to output a predictor for evaluation.

The main contributions of this chapter are summarised as follows:

• We introduce a few-shot meta-learning model with dual learners supervised by a

central controller that control a feature extraction and meta-learning, and a meta-

ensemble module for integrated inference and generalisation. Each meta-learner is

composed of a pre-trained encoder fine-tuned by batch training and parameter-free

decoder used for prediction, first trained on a ResNet-152 backbone to learn image

feature representations, with an optimize the classifier by using the cosine distance

with a learnable scale parameter in the feature space in the meta-training stage.

• On the basis of empirical evaluation on the Omniglot, MiniImageNet, and Oxford

Flowers102 datasets, we provide some insights for best practices in implementa-

tion.

The remainder of this chapter is organized as follows. In Section 3.3, we discuss the

related work on meta-learners developed recently, and the state-of-the-art on few-shot

classification approaches related to our work in this chapter. The proposed meta-learning
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method is described in Section 3.4. We discuss the experimental results and illustrate the

datasets used for training, and testing our model in Section 3.5. Some qualitative results

are presented in Section 3.6. Finally, Section 3.7 concludes the chapter.

3.3 Related Work

The most successful methods that have been implemented in few-shot image classification

belong to optimization-based methods [60, 165, 204], and metric-based methods [174,

214, 224, 239] (see Chapter 2). This has been achieved by learning a good parameter

initialization for the classifier, and the learned weights can be quickly adapted to novel

classes using gradient-based optimization on few labelled samples, or by learning a task-

independent embedding, vector representations that can generalize to novel categories

under a chosen distance metric such as a distance parametrised by a neural network,

cosine distance, or Euclidean distance. The distance metrics provide a weighted nearest

neighbour classifier representing each class with the average of the samples in the support

set. Some recent works [30, 267] take advantage of both, and utilize meta-learning after

pre-training, further boosting model performance.

Seminal work include MAML [60] that proposed a general optimization algorithm

that poses the learning to learn problem in a bi-level optimization where the weights of

the network are modelled as a function of the initial network weights. It aims to find a

set of model parameters, such that a “small number of gradient steps with a small amount

of training data” [60, p. 3] from a new task will produce large improvements on that

classification task. Reptile [165] alleviates the expensive second order derivative compu-

tation in MAML by a first order approximation. It ignored the “second-order derivatives

of MAML” [60, p. 3]. It achieved comparable results to complete MAML with orders of

magnitude speed-up, and removed “re-initialization for each task, making it a more natu-

ral choice in certain settings” [60, p. 3]. MAML++ [6] introduces multiple speed and sta-
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bility improvements over MAML. Meta-learner [190] exploited an LSTM to satisfy quick

“acquisition of task-dependent knowledge and slow extraction of transferable knowledge”

[190, p. 3]. LEO [204] proposed that it is beneficial to “decouple the optimization-based

meta-learning algorithms from high-dimensional model parameters” [204, p. 1]. In par-

ticular, it learned a stochastic latent space from which the high-dimensional parameters

can be generated. MetaOptNet [15] replaced the linear predictor with an SVM in the

MAML framework; it incorporated a “differentiable quadratic programming (QP) solver

to allow end-to-end learning” [15, p. 2]. Triantafillou et al. [234] showed that prototypi-

cal networks and MAML could be combined by leveraging prototypes for the initializa-

tion of the output weights value in the inner loop. MetaDelta [31] consists of multiple

meta-learners, and is composed of a pre-trained encoder fine-tuned by batch training and

parameter-free decoder used for prediction. It requires expensive computing resources to

implement.

The work in this chapter is related to the rich literature on few-shot image classifica-

tion which uses meta-learning, and metric-based methods for few-shot learning. This is

the first work to conduct meta-learning analysis using dual meta-learners that are centrally

controlled for feature extraction and meta-learning; and a meta-ensemble module for in-

tegrated inference and generalisation. Although our method is closely related to MAML

[60] and MetaDelta [31], it benefits from data augmentation, transfer learning and metric

learning. Similar to previous work [36, 190, 245, 278], our method also adopts a pre-

trained ResNet-152 backbone to project images to latent vectors [6, 19], and adapts dual

meta-learners to improve on the classification generalisation and improve on the time and

memory resources. Contrary to MetaDelta, our method trains the classifiers in an episodic

way on the training classes in few-shot settings. We implement a meta-ensemble module

to improve the generalisation of the model’s predictions.
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3.4 Proposed Method

In this chapter, we propose a few-shot meta-learning [61, 165] model (illustrated in Fig-

ure 3.4) for few-shot learning that consists of a dual meta-learners with a central con-

troller trained with different hyper-parameters, a feature extractor, a meta-learning stage

and a meta-testing stage. The main process to start/stop the training process is centrally

controlled. The two meta-learners are derived by training with different initial hyper-

parameters also managed by the controller module. We leverage the optimised ResNet-

152 CNN encoder trained on ImageNet to embed images into features, i.e. to map images

to feature vectors, i.e. ResNet-152 weights have been re-used as the starting point for the

training process and retrained to adapt to the new few-shot classification problem. The

goal of meta-training is to minimize the N-way prediction loss in the query set. A base

dataset Dbase is used train the feature extractor that learns representations of inputs that

will be used for further comparison in the feature space. All base categories are trained

by minimizing a standard cross-entropy loss and removing its last fully-connected (FC)

layer to get a 512-dimensional feature representation f(θ). We then add a classifier head

onto the encoder for fine-tuning.

During the few-shot meta-training stage, a meta-learner classifier M is then trained

over a set of episodes. The feature representation, f(θ), is treated here as an initial weight

and optimised directly by minimising the generalisation error across episodes. We use

the cosine distance to compare the feature representations for a single episode of training.

During the meta-testing stage, we discard the classifier head and map the images to em-

beddings with the fine-tuned encoder, the classifier M is estimated on a set of episodes

sampled from the novel meta-test setDnovel. Then, we can compare the query images with

the images in the support set by comparing the embeddings’ pairwise cosine similarities,

and use similarity scores to make predictions.
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3.4.1 Dual meta-learners

Two different meta-learners (see Figure 3.4) are derived by training with different hyper-

parameters in parallel for resource efficacy. They are both controlled by a central con-

troller that dispatches the meta-data, and also decides when to start and stop the meta-

training and testing. We apply episodic training to learn a CNN encoder for feature vector

embedding for many epochs r. Then a decoder is used during the meta-validation and

testing periods to decode the vectors of each episode to the predicted labels for the clas-

sification accuracy.

Figure 3.4: Dual meta-learner and a meta-ensemble module to improve generalisation of

the model.

3.4.2 Meta-ensemble

The meta-ensemble module (see Figure 3.4) integrates the predicted probabilities of the

two meta-learners and outputs the final predictions. This design further improves the

robustness of our system. The meta-ensemble module is trained after finishing the meta-

training of all meta-learners. To train the meta-ensemble model, we divide the meta-valid

data into a training set and a test set. Taking the concatenation of the predicted probabil-

ities from the two meta-learners as input, several meta-ensemble models are trained on

the training set simultaneously and evaluated on training set based on episodic accuracy.
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The best meta-ensemble model is then saved for the inference in the meta-test period.

In our experiments, we implement Naive Bayesian Classifier, Gradient Boost Machine,

Random Forest, and General Linear Model as implemented in Scikit-Learn [177] as the

meta-ensemble candidate models. Due to the diversity of suitable scenarios of these mod-

els, we argue that our meta-ensemble module is capable of dynamically adapting to the

unknown feedback dataset by selecting the best ensemble model according to the meta-

valid data.

3.4.3 Feature extractor

We select a pre-trained backbones, fine-tune, and train a feature extractor fθ with parame-

ters θ on the base setDbase that encodes the input data to a 512-dimensional feature vector

suitable for comparison. Here, we employ ResNet-152 backbone to learn a classifier on

all base categories and remove the last fully connected layer to get f(θ). Before feeding

to the network, all input images in Dbase are resized to 80× 80. The architectural setting

of ResNet-152 (see Figure 3.6).

Figure 3.5: The feature extractor trained on the base dataset by removing the fully-

connected layers, and generating the feature encoder fθ
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Figure 3.6: ResNet-152 Model.

3.4.4 Meta-training stage

We adopt theN -wayK-shot setting few-shot meta-training [203] to extract meta-knowledge

from the set of episodes. The goal is to train a meta-learning model M(.|S) that mini-

mizes the N -way prediction loss. This is accomplished by sampling many episodes from

the meta-training data in base categories. Each one of the episodes has K input sam-

ples and the same number of output samples. The parameters of classifier M are shared

across all the episodes resulting in reduced requirement for large samples during model

training. The samples are randomly selected from each category, i.e., a total of N × K

samples for N-way classification training and N × Q query samples for meta-testing. A

meta-validation set is held out for the purposed of choosing the hyper-parameters of the

model M(.|S) during meta-training. Figure 3.7 illustrates the workflow of the proposed

meta-training stage. With each episode with the support-set S, we denote Sc as a subset

of S with all samples in category c defined a prototype wc as the mean vector over embed-
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dings, or representations belonging to Sc (the centroid of category c). An embedding is

generated by the pre-trained feature extractor fθ with learnable parameters θ we described

in 3.4.3. We write down the wc as follows:

wc =
1

|Sc|
∑
xi∈Sc

fθ(xi) (3.1)

Figure 3.7: Proposed meta-training stage for a N-way K-shot classification.

We predict the probability that a query sample x belongs to category c. We compare

the distance between the feature embedding fθ(x) and the centroid wc of category c, using

the cosine similarity, and thus the prediction can be formalized as follows:

p(y = c/x) =
exp(cos(fθ(x), ωc))∑

ci
exp(cos(fθ(x), ω

′
c))

(3.2)

Inspired by metric learning few-shot learning methods [91, 105, 110, 172] , we intro-

duce α, a learnable scalar parameter to adjust the original value range [−1, 1] of cosine

similarity. In our experiments, α is initialized to 10 following the work by [31]. We
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observe that the scaling similarity metric is more appropriate for the following softmax

layer. Thus, the predictive probability becomes:

p(y = c|x) = exp(α · cos(fθ(x), ωc))∑
ci
exp(α · cos(fθ(x), ω′

c))
(3.3)

3.4.5 Meta-testing stage

After meta-training, and the meta-learning model M(·|Sbase) is learned, we evaluate its

generalization ability on a held-out novel setDnovel that has been unseen during the meta-

training stage. At this stage, we are given new episodes sampled from Dnovel, often re-

ferred to as a meta-test set Dtest
T , T = {(Snovel, Qnovel)}. The learned model is therefore,

at this stage adapted to predict novel categories with the new support set Snovel.

3.5 Experimental Results

We present some implementation details and dataset description in this section. Then,

we compare our method with some state-of-the-art few-shot classification methods. Fur-

thermore, we carry out experiments on three public benchmark datasets to demonstrate

the effectiveness of the proposed method for few-shot object classification. In this work,

we also selected support and query images of ten animals of each of the antelope, the

sloth, the moose, the jackal, the squirrel, the hedgehog, the penguin, the wild dog, the

kori bustard, and the meerkat from the Internet. The idea was to include animals that are

not well-represented in the MiniImageNet dataset, and use these for few-shot training to

gauge the performance of our model.
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3.5.1 Datasets

We evaluate our proposed method on three public datasets, Omniglot [122], MiniIm-

ageNet [239] and Oxford Flowers102 [166]. For the Oxford Flowers102 dataset, we

randomly partitioned the dataset classes into meta-training, meta-validation, and meta-

testing according to the approximate ratio of 7:1:2 (see Table 3.1). Each of the three

datasets is divided into three sets: meta-train-support, meta-train-validation held-out for

hyper-parameter selection of the meta-training stage, and meta-train-query. The set split

for meta-training are the 7 out of 10 categories of Dbase. For instance, the Oxford Flow-

ers102 dataset with overall 102 categories of flowers in the United Kingdom has approx-

imately 71 categories for meta-training, 21 categories for meta-validation; and 10 classes

for meta-testing. For the Oxford Flowers102 dataset, the number of images in each cate-

gory is shown in Table 3.2.

Omniglot is a dataset of “hand-written characters with 1623 characters and 20 exam-

ples of size 150× 150 ” [122, p. 1] for each character, collected based upon 50 alphabets

from different countries. The miniImageNet dataset contains 100 classes randomly cho-

sen from ImageNet ILSVRC-2012 challenge with 600 images of size 84 × 84 pixels per

class. It is split into “64 base classes, 16 validation classes and 20 novel classes” [239,

p. 1]. The Omniglot and MiniImageNet are already designed for few-shot learning. All

the three datasets are publicly available. We follow the same split for the MiniImageNet

dataset; the only change is the number of images in each category. For our purposes, we

select only up to 10 training images from each category depending on whether we are

testing for 1-shot, 5-shot or 10-shot.
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Table 3.1: Approximate datasets split

Dataset Meta-train Meta-validation Meta-testing

Omniglot 35 5 10

MiniImageNet 64 20 16

Oxford Flowers102 71 21 10

Figure 3.8: Omniglot 5-way 5-shot, and 5-way 10-shot tasks.

3.5.2 Implementation details

We follow the N-way classification with K-shots [239] few-shot experimental protocol.

In other words, we create a data loader that evenly distributes the images (see Figure 3.8

in case of Omniglot) between the given number of classes from each of the Omniglot,

Oxford Flowers102 and the MiniImageNet datasets, and always split them between sup-

port and query sets before feeding the few-shot classification tasks. The Omniglot and

MiniImageNet have already been split. The N-way dataset classes is sampled into N-shot

and N-query images for each class in each batch. Each batch which is fed into the task is
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Table 3.2: Oxford Flowers102 dataset split

Dataset

Split

Number of

Categories

Images per

Category

base train-support 102 1020

train-validation 102 204

train-query 102 102

validation meta-validation 102 102

novel meta-test 102 204

a combination of the support images, support labels between 0 and N-way, query images

(also between 0 and N-way), and a mapping of each label between 0 and N-way to its

class label in the dataset.

Here N = 5, K = 10, i.e., the meta-training stage consists of several episodes, with each

episode being a selection of 5 randomly categories drawn from Dbase in the meta-training

stage. Following episodic training, we set 4 episodes per batch to compute the average

loss for the batch size of 4. The support set in each training episode is expected to match

the same number of shots as in the meta-test stage. During the meta-testing stage, we

perform 5-way 1-shot classification at meta-testing time, then the training episodes could

be constituted of N = 5, K = 1. Each category contains K query samples with 15 query

samples. There is a limited number of samples for meta-training in each episode, but

the number of episodes is large enough, with an epoch that contains up to 1000 episodes

depending on the dataset size and steps per epoch. We ensure that there are at least 50

epochs for training. We can therefore, assume that the entire datasets have largely been

traversed.
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3.5.3 Baselines

Some representations of optimisation-based and metric-based meta-learning methods are

adopted as our baselines. These two have provided some of the best results in few-shot

classification. MAML [60] and its enhancements transforms the inner-update gradients

to improve generalisation capacity. ProtoNet [214] is chosen because it applies episodic

training rather than batch-training. RelatioNet [224] is a relational network that learns a

distance metric to compare images within episodes in few-shot settings, while TADAM

[172] utilises a task-adaptive metric. Our model adopts ResNet-152 that is pre-trained

on the ImageNet dataset. We have re-implemented their versions with a ResNet-152

backbone for a fair comparisons. ProtoNet, RelationNet and TADAM are metric-based

methods. ProtoNet uses Euclidean distance while RelationNet compares an embedding

fφ and query samples using an additional parametrised CNN-based methods. TADAM

assumes a task-conditioned feature extractor should be more discriminative for a given

task. They presented a dynamic feature extractor that can be optimized by a given support

set S.

3.5.4 Results and comparison

We conduct experiments to evaluate the effectiveness of our method following the 5-way

10-shot, and 5-way 5-shot, and 5-way 1-shot (see Figure 3.13). The proposed method

is compared with various state-of-the-art few-shot learning methods. For 5-way 10-shot

experiment, ten labelled support samples per category is randomly selected as the super-

vised sample at the test time. For 5-way 1-shot experiment, one labelled support sample

per category is randomly selected as the supervised sample at the test time. Likewise, 5

support samples per category are provided for 5-shot setting. Query images are selected

according to individual categories, and are batched in each episode for evaluation. We

computed the mean classification accuracy of the randomly generated episodes from the

novel meta-test set for each N-way K-shot.
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RelationNet, and ProtoNet were all originally implemented on a Conv-4. We decided

to re-implement them with a ResNet-152 backbone for a fair comparison. For MAML, we

adopt the first-order version for the experiments re-implemented with ResNet-152. The

original paper reported identical results to the version with second order derivatives. On

the three datasets, the results of average 5-way accuracy (%) with 95% confidence interval

of 1-shot and 5-shot are reported in Tables 3.3, 3.4, and 3.5 respectively. As can be seen,

our method performs comparatively with the other models under both 5-way 10-shot and

5-way 5-shot settings.

The figures below show training and validation metrics for training the three datasets

that were used for the experiments. Our model achieves 69.5% top-1 accuracy on Om-

niglot, 62.4% on Oxford Flowers102, and 60.3% on the MiniImageNet, and a top-5 accu-

racy of 73.72% on Omniglot, 63.38% on Oxford Flowers102, and 65.72% on the Mini-

ImageNet. The model consistently achieves higher accuracy levels with 10 shots. With

more epochs of training, it can achieve a better performance.

Figure 3.9: Few-shot training progress for the Omniglot dataset.
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Figure 3.10: Few-shot training progress for the Oxford Flowers102 dataset.

Figure 3.11: Few-shot training progress for the MiniImageNet dataset.

We also evaluate our model using a completely new, simple animal image dataset

downloaded from the Internet consisting of 100 images divided into 10 animals of each

type (see Figure 3.12). The results were normalised with a threshold > 0.5. The Con-

fusion Matrix in Figure 3.12 show the results after running the tests. After testing the

model with 10 of each animals after few-shot classification training, between 50% and
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80% of each of the animals was correctly classified, indicating that the model effectively

separated among the different representations of each of the animals.

Figure 3.12: The Confusion Matrix for multi-class (10) few-shot classification after train-

ing on the MiniImageNet base dataset and 10-shot classification on few examples. The

selected 10 classes used are ‘Antelope’, ‘Sloth’, ‘Moose’, ‘Jackal’, ‘Squirrel’, ‘Hedge-

hog’, ‘Penguin’, ‘WildDog’, ‘KoriBustard’, and ‘Meerkat’.
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Figure 3.13: Omniglot 5-way 5-shot tasks example predictions.

The Tables 3.3, 3.4, and 3.5 show the reported averaged results of the selected base-

lines, and those of our re-implementation (with a *) of MAML, ProtoNet, and Relation-

Net with ResNet-152 backbone. We observed that a deeper backbone such as Resnet-152

slightly improves MAML and RelationNet. Moreover, all the implementations seem to

get better in the 10-shot case for the three datasets when implemented with ResNet-152.

Typically, CNN-based methods most likely lead to over-fitting when there are only a few

labelled examples contrary to what has been achieved by meta-learning methods. On the

other hand, ProtoNet is improved by a large margin when the backbone architecture is

replaced with Resnet-152, which shows that ProtoNet is a powerful and robust approach.

Basing on the results, we conclude that our model compares favourably against the se-

lected methods in both shallow and deeper backbone settings.
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Table 3.3: Comparisons of few-shot classification on Omniglot using various models and

backbones, and our model. Bold indicates the best model for each shot category. ResNet

backbones load the pre-trained weights from ImageNet. * indicates re-implementation

with ResNet-152.

Method Backbone 1-Shot 5-Shot 10-Shot

ProtoNet [214] Conv4 45.6 77.65 94.58

ProtoNet* [214] ResNet-152 70.8 79.17 97.67

MAML [60] Conv4 56.8 73.52 89.48

MAML* [60] ResNet-152 73.6 83.52 96.74

RelationNet [224] Conv4 56.7 72.10 67.67

RelationNet* [224] Resnet-152 65.9 76.56 93.55

TADAM [172] Conv4 54.4 72.25 97.46

TADAM* [172] Resnet-152 74.3 82.72 96.41

Ours Resnet-152 64.1 73.72 97.52

3.6 Qualitative Results

We present some qualitative results on Omniglot, MiniImageNet and Oxford Flowers102

datasets in Figure 3.14 to Figure 3.20. Most of the images were correctly classified with a

probability close to 1. The classification percentage was highest for the Omniglot dataset,

followed by the Oxford Flowers 102 and the ImageNet datasets. For the dataset of images

downloaded from the internet, the probabilities indicated for the animals on the image

were high, indicating that our model correctly classified the images in most instances,

and this confirms our results on the Confusion Matrix (see Figure 3.12). There are a few

other animal images that were misclassified, for instance, one moose image on Figure

3.19 was misclassified as most likely to be a warthog.
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Table 3.4: Comparisons of few-shot classification on MiniImageNet using various mod-

els and backbones, and our model. Bold indicates the best model for each shot cate-

gory. ResNet backbones load the pre-trained weights from ImageNet. * indicates re-

implementation with ResNet-152.

Method Backbone 1-Shot 5-Shot 10-Shot

ProtoNet Conv4 43.1 52.57 71.95

ProtoNet* Resnet-152 52.57 64.3 81.58

MAML Conv4 52.73 55.6 69.28

MAML* Resnet-152 50.9 57.76 79.81

RelationNet Conv4 46.4 53.73 78.86

RelationNet* Resnet-152 54.5 63.70 88.86

TADAM Conv4 50.4 65.84 82.79

TADAM* Resnet-152 59.5 72.05 87.60

Ours Resnet-152 54.6 65.72 81.62

Figure 3.14: Predicted result on few-shot classification on flower images.
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Table 3.5: Comparisons of few-shot classification on Oxford Flowers102 dataset using

various models and backbones, and our model. Bold indicates the best model for each

shot category. ResNet backbones load the pre-trained weights from ImageNet. * indicates

re-implementation with ResNet-152.

Method Backbone 1-Shot 5-Shot 10-Shot

ProtoNet Conv4 51.65 69.58 87.4

ProtoNet* ResNet-152 57.17 79.18 91.8

MAML Conv4 53.52 70.94 88.5

MAML* ResNet-152 57.52 77.94 93.3

RelationNet Conv4 58.10 72.55 87.7

RelationNet* Resnet-152 53.10 79.87 93.6

TADAM Conv4 62.25 79.36 86.7

TADAM* Resnet-152 66.72 84.41 95.2

Ours Resnet-152 63.68 79.52 93.4

Figure 3.15: Predicted result on few-shot classification on beetle and coyote images.
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Figure 3.16: Predicted result on few-shot classification on mushroom images.

Figure 3.17: Predicted result on few-shot classification on a penguin and kori bustard

image.
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Figure 3.18: Predicted result on few-shot classification on a sloth and the squirrel image.

Figure 3.19: Predicted result on few-shot classification on a wild dog and moose image.
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Figure 3.20: Predicted result on few-shot classification on a meerkat and a hedgehog

image.

3.6.1 Ablation studies

We further conduct some ablation studies to demonstrate the functionality of backbones

and decoders. We implement single meta-learners with ResNet-50, ResNet-101, and Mo-

bileNet, and applied decoders of ProtoNet.

Table 3.6: Comparisons of few-shot classification using different backbones. Bold indi-

cates highest among the backbones for each selected dataset.

Backbone Omniglot MiniImageNet Oxford Flowers102

ResNet-50 97.54 78.67 74.58

ResNet-101 98.63 77.76 76.23

MobileNet V2 95.78 76.04 78.94
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We also investigate the impact of the use of either the Euclidean distance or cosine

similarity distance metrics for the few-shot classification. The two choices are compared

in (see Table 3.7). As shown in Table 3.7, the performance improves to 81.86% and

79.52%, respectively, in the 5-way 10-shot case, a gain of more than 5 % each.

Table 3.7: Comparisons of 5-shot few-shot classification accuracies between Euclidean

distance and cosine similarity on MiniImageNet and Oxford Flowers102

Metric Omniglot MiniImageNet Oxford Flowers102

Euclidean 67.01 60.3 65

Cosine 73.72 65.72 79.52

3.7 Conclusion

The meta-learning framework in few-shot learning has attracted much attention in re-

cent years. In this chapter, we bring dual meta-learners and a meta-ensemble module to

meta-learning, and demonstrate that useful information may be learnt from a few image

instances. The proposed model generalises well to unseen categories after training on a

few samples. We have employed a pre-trained ResNet-152 to learn vector representations

on the base set, and the classifier is optimised by the cosine distance. Our experiments,

conducted on the Omniglot, MiniImageNet, and Oxford Flowers102 datasets, and few, se-

lected images from the Internet achieve a general classification performance above 70%

for a novel categories on 5-shot, and more than 80% classification accuracies for 10-shot

settings. Furthermore, we conducted some ablation experiments to investigate the effects

of different other network backbones, and the impact of the use of different distance func-

tions with dual meta-learners. We conclude that the cosine distance generally has a better

performance.
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In the next chapter a novel approach for few-shot object detection that meta-learns

object localisation and instance categorisation is proposed. In line with few-shot learning

settings, and using the Transformer decoder-encoder architecture, support set images and

query set images are simultaneously encoded into class-specific features that are input

into a class-agnostic decoder to generate predictions for the specific instances. A module

is designed that aligns semantics of high-level and low-level features representations, and

all the modules are designed in multi-scale end-to-end architecture.



Chapter 4

Few-shot Object Detection through

Image Object Localisation using The

Transformer

The previous chapter introduced a novel meta-learning model for few-shot image classifi-

cation that consists of dual meta-learners supervised by a central controller for integrated

inference and generalisation with more effective initialisations and adaptations to novel

data using a pre-trained feature encoder. In this chapter, we propose an approach for

few-shot object detection that, instead of region-wise predictions, meta-learns “object

localisation and classification” [278, p. 1] in a “end-to-end” [142, p. 1] manner, and en-

codes input images into feature embeddings that are entered into a class-agnostic decoder

to output predictions for the identified object classes.

4.1 Introduction

Object detection (see Chapter 2) has been a long-standing problem in computer vision

fields. It generally deals with identifying the location of target objects in the input image

105
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as well as recognizing the object categories, with many real-world applications, such as

in remote sensing, change detection, environmental monitoring, and urban planning. A

large number of methods have been developed for the detection of both artificial objects

such as buildings, vehicles, and airports; and natural objects such as shorelines, lakes,

and forests in remote sensing images. Among the object detection methods, object-based

image analysis (OBIA)–based methods and deep learning–based methods have recently

been used. The deep learning-based methods, especially convolutional neural networks

(CNNs) have powerful abilities for robust feature extraction and object classification and

are extensively studied by many recent approaches [74, 75, 146, 191, 194, 235].

Remarkable achievements in object detection from images have previously been re-

ported with CNN-based methods such as Region-Based Convolutional Neural Networks

(R-CNN) [74], “You only Look Once (YOLO)” [194, p. 1] and “Single Shot Detectors

(SSD)” [146, p. 1]. Despite the breakthrough achieved by these methods, they require a

large-scale, diverse annotated datasets in supervised settings to successfully train a deep

neural network learning model. Any adjustment on the candidate identifiable classes will

be expensive for existing methods because collecting a new dataset with a large number

of manual annotations is costly [239]. Additionally, these methods require a lot of time to

re-train their parameters on the new unseen dataset. They also tend to have limited gener-

alisation abilities for unseen object categories. On the other hand, training these models

with only a few samples from the new classes tend to suffer from the over-fitting problem

and the generalization errors [213]. Therefore, a novel methods of learning and/or select-

ing the most robust and desirable features from a few samples during training is desired

for object detection.

The goal for few-shot object detection is to detect objects from images given a few

support images of novel target object. A pre-trained object detection backbone model is

usually used first for general feature extraction. Few-shot learning is a challenging prob-

lem given large variance of objects’ illumination, shape, and texture in images. Central to
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few-shot object detection is how to localize an unseen object in a background given only

a few image samples. Also, there could be more than one object instance on the image,

and the object detection systems have to locate all of them, and say what they are, a more

difficult task than in image classification where the task is just to identify the class of the

image.

In this chapter, we address the problem of few-shot object detection (see Figure 4.1).

We introduce a novel approach for few-shot object detection. Our approach uses meta-

learning specifically for object localisation and categorisation in an end-to-end manner

by eliminating region-wise prediction. Our method, based on DETR [20], encodes input

images into feature embeddings that are finally input into a class-agnostic decoder to

produce class predictions for the identified object categories. To facilitate meta-learning,

a module is designed that aligns semantics of “high-level and low-level features” [127,

p. 3] representations. All the modules are designed in “multi-scale architecture to enable

multi-scale object detection” [44, p. 3].

Figure 4.1: Illustration of object detection. For few-shot object detection, the training

images are evenly distributed among a given number of classes, and they are split between

annotated samples of the support set and query set.
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We can state the main contributions of this chapter as:

• We introduce a novel approach for object detection in few-shot settings that im-

plements meta-learning for object localisation and categorisation by eliminating

region-wise prediction. Support set images and query set images are simultane-

ously encoded into class-specific features that is subsequently entered into a class-

agnostic decoder to output class predictions for the identified classes of images. To

facilitate meta-learning, a module is designed that aligns “semantics of high-level

and low-level features” [127, p. 3] representations. All the modules are designed in

“multi-scale architecture to enable multi-scale object detection” [44, p. 3].

• Experiments on two public benchmark datasets, COCO-20i and Pascal 5i demon-

strate the effectiveness of the proposed method for “few-shot object detection” [55,

p. 1] on a variety of images.

Our method pursues meta-learning approaches. Unlike prior work that has been done

in few-shot learning, the model discards region-wise prediction. It works by unifying

the learning of object localisation and categorisation at image level with a image class-

agnostic decoder, thereby combining the relationship of the two sub-tasks to achieve ob-

ject detection performance.

The remainder of this chapter is organized as follows. In Section 4.2, we discuss the

related work on the various state-of-the-art few-shot object detection [55] approaches that

were developed recently, and are related to our method. The proposed object detection

meta-learning based method is described in Section 4.3. We illustrate the datasets used

for the experimental results in this chapter and discuss experimental results in Section 4.4.

Finally, Section 4.6 concludes the chapter with a summary and an outlook.



4.2. RELATED WORK 109

4.2 Related Work

Two paradigms that have primarily been used to formulate models on few-shot object

detection [55] are transfer-learning-based, e.g. LSTD [24], TFA [248], MPSR [256],

whereby new concepts are acquired via fine-tuning; and meta-learning-based methods,

e.g. Meta-YOLO [101], Meta R-CNN [263], ONCE [178], and FSOD [55], that acquire

meta-level representations to adjust to new classes of objects by learning on other auxil-

iary tasks. The output instance classes are programmatically controlled on the support set

from the dataset. Meta-YOLO, for instance, and ONCE are based on single-stage object

detectors. Others, such as Meta R-CNN and its various variations such as [136, 256, 258]

are built upon Faster R-CNN [84]. Their only limitation is that well-located regions for

new instance objects are generally difficult to get with shape priors that are non-learnable

when training samples are scarce, and where there is need for “per-region classification

and location fine-tuning. Attempts to limit the effects with this issue by meta-learning an

Attention-RPN in FSOD which is innately region-based has not solved the problem.

Our work in this chapter is related to meta-learning methods [55, 178, 248, 258, 259,

278] that have proved promising to few-shot object detection [55]. These generally ad-

dress object detection by meta-learning over image regions. They include anchors [101]

and region proposals [258, 259] for object identification, classification and fine-tuning.

Most existing meta-detectors depend entirely on the initial region proposal for region-

wise predictions. This cannot be guaranteed in few-shot learning settings. This chapter

presents a framework that meta-learns image-level localisation in an end-to-end man-

ner, facilitated by the emergence of end-to-end transformer frameworks [20, 139, 243,

278, 293]. Our work incorporates meta-learning into DEtection TRansformer (DETR)

[20, 294] by encoding input images into feature embeddings, and feeding them into a de-

coder for detecting target object categories. DETR is based on the architecture of Trans-

former [237] and assign a unique query for each ground truth through bipartite matching.

The idea of using a transformer here is that it can use its self-attention mechanism to per-
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form global reasoning on the image as well as on the specific objects that are predicted,

and also get rid of duplicate predictions. The model gets rid of region-wise prediction and

merges the meta-learning of localisation and categorisation at image level with a class-

agnostic decoder. All objects are predicted in parallel rather than having a sequential

prediction. The model may look at other regions of the image to help make a decision

about the object in a bounding box, and makes predictions based on relationships between

objects in an image. In contrast, other detection models such as Faster R-CNN predict

each object in isolation.

4.3 Proposed Method

The problem of few-shot object detection aims at learning a detection model from the base

classes with adequate samples for model training that can conduct object detection on im-

ages from novel classes with only a few annotated samples. Our method for few-shot

object detection extends DETR by incorporating meta-learning. In contrast to Faster R-

CNN [198], DETR [20] achieves fully end-to-end detection by employing a “transformer

encoder-decoder architecture” [237, p. 1] merged with a loss founded on the Hungarian

algorithm [118] that strengthened by distinctive output predictions for each instance im-

age object via “bipartite matching” [20, p. 1]. In this work, we use episodic training for

meta-training.

4.3.1 Method overview

Figure 4.2 illustrates the pipeline of the proposed method. Our method is designed to

leverage the meta-knowledge from the dataset of base classes. To achieve this goal, it

implements meta-learning in DETR [20] built upon the transformer encoder-decoder ar-

chitecture. The method consists of a shared transformer encoder for the support and query

images, and a transformer decoder to output the class prediction of objects of the the in-



4.3. PROPOSED METHOD 111

put support set classes. Support and the query encoders receive the query and support

images respectively from a dataset, and extract support and query feature image embed-

dings. The transformer decoder first sums them into image instance class-specific feature

embeddings. An instance class-agnostic transformer decoder is then applied (see Figure

4.2.

Figure 4.2: The design of the proposed method. It is composed of a shared transformer

encoder for receiving the query and support images respectively and extract support and

query feature image embeddings through the image feature extractor and the image trans-

former encoder, and a transformer decoder that first aggregates the images into class-

specific feature embeddings. It then applies a transformer decoder for output of the re-

sults.

4.3.2 Model description

Our model consists of an encoder-decoder architecture that supports the input of annotated

support images and a query image. The encoder for support images and that for the

query image share all the learnable parameters following the architecture of the Siamese
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networks [113]. The encoder consists of a feature extractor based on ResNet-101 [83]

and a transformer encoder. The feature extractor generates its feature maps and then

adopts a 1 × 1 convolution for compatibility with downstream modules. The feature

maps are then fed into a transformer encoder to output the query features. The support

and the query encoder encodes them into category feature codes and query feature codes

respectively. The support encoder, therefore, extract class instance codes belonging to

certain object instances, and to filter out irrelevant information, including in the case

of many support images belonging to one class. The decoder takes input of the image

query features and the class feature codes, and predicts the results over the corresponding

support classes. It sums up, following previous work by [258], the query features and

category codes into a set of class-specific features (see Figure 4.3 ). A transformer decoder

then takes the features, and a fixed number of object queries and produces detection results

over the corresponding categories which enables joint meta-training of object localisation

and classification. This, therefore, eliminates region-wise prediction and address object

detection at image level, also being category-agnostic like in DETR.

Figure 4.3: Illustration of aggregation between category query codes and the positions of

query features in the decoder.
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To mitigate against relying on category-specific semantics for object detection, we

adopt the “Semantic Alignment Mechanism” (see [278, p. 4]) as a self-regularisation

mechanism. This will assists as a guiding template for the feature semantics from the

transformer encoder to orient with the fed input feature semantics with better generalisa-

tion by using a residual connection that bypasses the entire transformer encoder.

4.3.3 Training

The training procedure consists of two stages, 1) base training stage, and 2) few-shot

fine-tuning stage. During base training, the model is trained on the base dataset Dbase

with large quantities of support set and query set samples for each base class. During the

second stage, it is trained the base and novel class categories simultaneously but with a

few training image data. Following [258, 263], we include several object instances for

each base category. The network is optimised in an end-to-end manner with episodic

training, with each episode containing 5 or 10 support images, and one query image.

Support images are randomly selected from the training dataset, and the target categories

include both positive samples. The support encoder obtains all the category codes.

Our model infers only a fixed number of object queries N in a single pass through

the decoder. If the query image xquery, and yi = (ci, bi)
N
i=1 is the ground truth of images

acquired from the query set, then yi indicates an object yi = (ai, bi), with ai being the

target category label, and bi, the bounding box. yi = (∅,∅) indicates no object. For

the support image Ssupp and its annotation, the detection targets are yi = ψ(yi, csupp)
N
i=1,

where ψ(yi, csupp) acts to filter irrelevant object annotations.

We adopt a pair-wise, or set matching, matching set loss function:

Lmatch(y
′
i, ŷ(σi))

to search for a bipartite matching (see equation 4.1) separating ŷ and y′ against the

minimum cost σ̂,
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σ̂ = argmin
N∑
i=1

Lmatch(y′

i, ŷσi) (4.1)

with σ the order, or group combination of N image objects, and σ̂ the best assignment

linking outputs and the predictions. We also adopt a cross-entropy loss to categorise the

codes produced by support encoder to distinguish between category feature embeddings

that belong to different categories.

For the fine-tuning stage, only the maximum epochs set fro training and the learning

rate decay epochs were differentiated from the base training. These numbers are em-

pirically set solely based on the training loss trajectory. The setup is presented in Table

4.1.

Table 4.1: Number of epochs and learning rate decay epochs.

Pascal VOC MS COCO

2 shots 5 shots 10 shots 5 shots 10 shots

Total epochs 600 500 500 500 500

Decay epochs 500 380 420 380 420

Inference. With a specified query image, our model produces 100 predictions for

each support/query class at inference. We select the best scores predicted throughout all

the classes as the eventual predictions.

4.4 Implementation Details

ResNet-101 is selected as a model for the extraction of features for both the support

encoder and the query encoders. The model architecture and hyperparameters of the en-

coder and the decoder remain the same as DETR [20]. After the transformer decoder,

we include a feed-forward network (see Figure 4.4). This consists of a 3-layer multilayer
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perceptrons (MLP) for box prediction and one layer MLP for object confidence predic-

tion. The model was trained using ADAM optimiser with initial learning rate of 2× 10−5

and a decay of 1 × 10−5, batch size of 32. We experimented with 2, and both 5 and 10

images for each query image. We report performance results on both 5 and 10 images.

Various data augmentations were adopted during training, including rotation, shifting,

and scaling. We follow the existing settings in previous methods [248, 252, 263] methods

to evaluate our model on the Pascal-5i and COCO-20i datasets. Following [278, 293], the

model was trained for 100 epochs for both Pascal-5i and COCO-20i. In few-shot settings,

the same settings are applied to train the model until convergence. For a fair comparison,

we use the same 3 different base/novel splits and a fixed list of novel samples as provided

by [101].

Figure 4.4: The shared decoder feed-forward network (FFN) to produce final predictions.

FFN is shared for all the embeddings generated from the transformer decoder.

4.4.1 Model evaluation

We use Pascal-5i and COCO-20i datasets for training and inference purposes. For Pascal-

5i, mean average precision (mAP) [173] at IoU threshold 0.5, 0.75 and 0.95 used for

Pascal VOC is also used as the evaluation metric. MS COCO’s standard metrics, that
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include mAP IoU=0.5, mAP IoU=.75, mAPmedium and mAP large are used for evaluation

for COCO-20i, in addition to average precision (AP) and average recall (AR) that measure

the percentage of detected objects among all ground truth objects. The AP and AR (see

Figures 4.6 and 4.7) are reported for each of the images used, and it is impossible to

report all of them in this chapter. The MS COCO metrics also evaluate the performance

for objects of different sizes (small, medium, and large). Following [178, 248, 258, 278,

293], who realized that the model performance often relies heavily on the quality of the

training samples for novel categories , and that the results come with a large variance, our

results are averaged over multiple repeated runs with different randomly sampled support

datasets on both Pascal-5i and COCO-20i.

Figure 4.5: Few-shot model object detection performance on PASCAL-5i. The results

shown here indicate the performance of the model when evaluated with the groundtruth.

The Pascal VOC dataset has object annotations of 20 categories of images. Following

[258, 263], we use Pascal-5i for training and to perform evaluations. We use “3 novel

/ base category splits, i.e., (“bird”, “bus”, “cow”, “motorbike”, “sofa” / others); (“aero-

plane”, “bottle”,“cow”,“horse”,“sofa” / others) and (“boat”, “cat”, “motorbike”,“sheep”,

“sofa” / others)” [263, p. 1] as in [263]. The number of shots is set to 5 and 10. Mean

average precision (mAP) at IoU threshold 0.5 is used as the minimum evaluation metric.

Results are averaged over 10 randomly sampled support datasets. MS COCO [263] con-

tains 80 categories including those 20 categories in Pascal VOC. We adopt the 20 shared

categories as novel categories, and adopt the remaining 60 categories used in COCO-20i

dataset as base categories for training, and performing evaluations. Standard evaluation

metrics for MS COCO, i.e. the COCO Challenge are adopted. Results are averaged over

5 randomly sampled support datasets.
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Table 4.2: Summary of object categories used in each fold for the COCO-20i benchmark

datasets.

Dataset Test categories

COCO-200 Person, Airplane, Boat, Park Meter, Dog, Elephant, Back-

pack, Suitcase, Sports Ball, Skateboard, Wine Glass, Spoon,

Sandwich, Hot Dog, Chair, Dining Table, Mouse, Microwave,

Fridge, Scissors

COCO-201 Bicycle, Bus, Traffic Light, Bench, Horse, Bear, Umbrella,

Frisbee, Kite, Surfboard, Cup, Bowl, Orange, Pizza, Couch,

Toilet, Remote, Oven, Book, Teddy

COCO-202 Car, Train, Fire Hydrant, Bird, Sheep, Zebra, Handbag, Skis,

Baseball Bat, Tennis Racket, Fork, Banana, Broccoli, Donut,

Potted Plant, TV, Keyboard, Toaster, Clock, Hairdrier

COCO-203 Motorcycle, Truck, Stop Sign, Cat, Cow, Giraffe, Tie, Snow-

board, Baseball Glove, Bottle, Knife, Apple, Carrot, Cake,

Bed, Laptop, Cellphone, Sink, Vase, Toothbrush

Figure 4.6: Few-shot model object detection runs on COCO-20i.
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Table 4.3: Few-shot model detection evaluation on Pascal-5i. We report the standard

mAP with IoU threshold 0.5 (mAP50) under 3 different sets of 2 category splits with 5

shots and 10 shots. The results are averaged over multiple repeated runs with different

randomly sampled support datasets. Bold indicates the highest model for the 5 shot and

10 shot for each category split.

Category

Split 1

Category

Split 2

Category

Split 3

Method

Multi-

scale 5 10 5 10 5 10

LSTD [24] Yes 29.1 38.5 15.7 31.0 27.3 36.3

RepMet [103] Yes 38.6 41.3 28.3 35.8 34.4 37.2

TFA [248] Yes 47.9 52.8 34.1 39.5 40.8 45.6

MPSR [247] Yes 49.4 56.7 36.7 43.3 44.6 50.0

MetaYOLO [251] No 33.9 47.2 30.1 40.5 42.8 45.9

MetaDet [101] No 36.8 49.6 31.7 43.0 43.9 44.1

Meta R-CNN [263] No 45.7 51.5 34.8 45.4 41.2 48.1

Meta-DETR [278] Yes 52.2 57.8 44.0 52.6 50.2 54.9

Ours Yes 51.6 54.7 44.6 52.1 50.1 53.8

Figure 4.7: Few-shot model object detection performance on COCO-20i. The results

shown here indicate the performance of the model when evaluated with the ground truth.
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We report the mAP50 of the novel classes on Pascal-5i with 3 splits in Table 4.3, and

compare with the state of the art. In the context of few-shot object detection, mAP is

averaged over all novel categories. The table shows the performance for novel categories

of Pascal-5i. Our method performs comparatively with existing methods for most cases.

The object detection performance increases with the number of shots, largely attributed to

the large search space with image-level predictions. The experimental results demonstrate

comparable generalisation ability of our method. Results with base classes not included in

this work indicate a far higher performance than that with novel classes. These have been

excluded since they are obtained more like using conventional detectors with fine-tuning.

Table 4.4: Few-shot detection performance on COCO-20i set for novel categories. Unlike

Pascal-5i, we report the mAP averaged over all support image object categories and 10

IoU thresholds (AP@[.5:.05.95] ) under 3 different sets of 2 category splits with 5 shots

and 10 shots. Results are averaged over multiple repeated runs.

Average

Precision

Average

Recall

Shot Method

Multi

scale AP0.5 AP0.75 APL AR100 ARM ARL

LSTD [24] Yes 8.1 2.1 6.5 10.4 5.6 19.6

TFA [248] Yes 17.1 8.8 - - - -

MPSR [247] Yes 17.9 9.7 16.1 21.2 19.6 34.3

5 MetaYOLO [251] No 12.3 4.6 10.5 14.4 8.4 28.2

MetaDet [101] No 14.6 6.1 12.2 15.5 9.7 30.1

Meta RCNN [263] No 19.1 6.6 14.0 17.9 5.6 27.2

Meta-DETR [278] Yes 28.3 18.9 28.7 33.7 30.1 56.0

Ours Yes 28.5 18.9 26.8 30.9 29.6 53.8
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We also report the performance of our model (see Table 4.4) using some selected

metrics of the more challenging COCO Challenge such as mAP IoU=0.5 (equivalent to

PASCAL VOC metric), mAP IoU=.5, mAPmedium and mAP large of the COCO novel

classes on COCO-20i with 3 splits in Table 4.3, and compare with the state of the art.

In all different base/novel splits, our model achieves a competitive performance for the

Average Precision (AP) that directly measures the performance of a detector. As can

be seen on the reported 5-shot and 10-shot, our performance is competitive compared to

previous state-of-the-art methods, and our results are more inclined to Meta-DETR [278]

than the other methods that depend on region-wise object predictions. This demonstrates

the importance of DETR’s [20] that exploits the effects of global contexts via localisa-

tion and classification, largely attributed to the unified image-level meta-learning in our

method. It should be noted that the standard COCO Challenge also includes results for

mAP IoU=.5:.05:.95 averaged over 10 IoU thresholds, mAP small, and other many of their

variations that have been excluded to simplify the explanation of the results obtained. The

Average Recall (AR) is also an important metric, with higher AR indicating less missed

detection. As shown in Table 4.4, our method performs comparatively with the state-of-

the-art, and outperforms methods based on region-wise prediction such as Faster R-CNN

that rely on region proposals. In contrast, our method eliminates region-wise prediction,

and meta-learns object localisation at image level to achieve comparable results with the

state-of-the-art.

4.5 Qualitative Results

We provide selected qualitative visualizations of our method’s few-shot detection of novel

categories results in Figures 4.8 to Figure 4.12 as the major focus is to detect objects of

novel categories. In addition, we only show results with confidence scores higher than

0.5. It can be observed that the proposed method is capable of detecting novel objects
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even with scarce training samples. In addition, our method performs exceptionally well

on large and small objects.

Figure 4.8: Selected qualitative results 1

Figure 4.9: Selected qualitative results 3
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Figure 4.10: Selected qualitative results 4

Figure 4.11: Selected qualitative results 5
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Figure 4.12: Selected qualitative results 6

4.6 Conclusions

This chapter presents a novel few-shot object detection method that meta-learns object lo-

calization and classification at the image level. This is achieved by encoding support im-

ages and query images into category-specific feature embeddings, and applying a decoder

that generates predictions for specific image level predictions of image regions using the

transformer. Our approach does not incorporate geometric priors such as non-maximum

suppression and anchors, and is fully differentiable. It leverages on the relationship be-

tween localization and classification, thereby overcoming the common weaknesses rooted

in the region-wise prediction methods. An adopted SAM for aligning high-level and low-

level feature embedding semantics is used to improve the generalisation of meta-learned

representations. Results from experiments over Pascal-5i and COCO-20i object detec-

tion benchmarks shows that our method compares favourably with the state-of-the-art in

few-shot model for object detection.

In the following chapter, we propose a novel few-shot end-to-end model for “panop-

tic segmentation” [112, p. 1] that aims to predict and represent foreground objects and

background regions using self-attention. The model infers object masks and classes with-

out surrogate tasks and hand-designed components such as bounding box detection and
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“non-maximum suppression (NMS)” [20, p. 1] using a dual-path transformer that enables

CNNs to read/write a global memory at any layer, and a training objective that optimises

a panoptic quality style loss function through “bipartite matching” [20, p. 1] between

predicted masks and ground truth masks. Experiments on the Mapillary Vistas dataset

demonstrate the effectiveness of the proposed method.



Chapter 5

End-to-End Few-Shot Scene

Understanding with Vision Transformer

The previous chapter introduce a novel encoder-decoder approach for few-shot object

detection that meta-learns object localisation and classification in a end-to-end manner.

Input images from the support and query sets are encoded into feature embeddings that

then feed into a category-agnostic decoder that compares the feature embeddings, and

generates object predictions for the specific object categories. In this chapter, we build

on the previous few-shot object detection chapter, and present a method for scene un-

derstanding using a novel few-shot end-to-end panoptic segmentation model that aims

to predict and represent objects and background regions in a fully-convolutional back-

bone that first extracts multiple features in a shared decoder-encoder transformer network

following few-shot learning conventions. Our approach uses an object detector from sup-

port examples capable of separating target objects from the background thereby resolving

class overlaps for non-overlapping segmentation using masks.

125
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5.1 Introduction

“Panoptic segmentation” [112, p. 1] aims to assign individual pixels with a semantic label

and unique identity, whereby countable objects, i.e, ‘things’ and uncountable instances,

i.e, ‘stuff’, are represented and resolved in a unified workflow. The unified representa-

tion is made difficult due to their conflicting properties requested by ‘things’ and ‘stuff’.

Specifically, countable ‘things’ generally depend on instance-aware features, which vary

with objects, whereas uncountable ‘stuff’ would generally count on semantically consis-

tent image pixels, which ensures consistent predictions for pixels with the same seman-

tic meaning. The key to solving this few-shot segmentation problem lies in effectively

utilizing object information from support examples to separate target objects from the

background in a query image. In the end-to-end process, all of the parameters are trained

jointly rather than step-by-step. Furthermore, the method uses previously gained input in

order to execute its input.

In this chapter, our approach uses an object detector from support examples capable

of separating target objects from the background thereby resolving class overlaps for non-

overlapping segmentation. We encode object instances or ‘stuff’ category into a “specific

kernel weight with the proposed kernel generator” [130, p. 1] and produce the prediction

by convolving the high-resolution feature directly. With this approach, instance-aware

and semantically consistent properties for ‘things’ and ‘stuff’ can be respectively satisfied

in a simple “generate-kernel-then segment workflow” [133, p. 1]. Without extra boxes for

instance separation, the proposed approach compares favourably with previous box-based

approaches on the Mapillary Vistas [161] dataset with single scale input.
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Figure 5.1: We propose end-to-end few-shot panoptic segmentation based on an embed-

dings generator and a Transformer that represents ‘things’ and ‘stuff’ in a unified manner.

The traditional approaches [24, 132, 150, 200] formulate this few-shot segmentation

task as a feature matching problem consisting of a support branch and a query branch

[123] that apply a CNN to “extract feature maps from their corresponding input images

before applying the masked average pooling (MAP)” [283, p. 1] to the support feature

map to generate an “object-level representation by pooling the local features over the

foreground area specified by the support mask” [283, p. 2]. Finally, this object represen-

tation is used to locate target objects in the query image, typically achieved by “pixel-wise

similarity comparison between query local features and the object instance representation

using” [277, p. 1], for instance, metric representations, and generally used for either

instance segmentation, or semantic segmentation.

A drawback is that the object representation produced by the MAP operation might

not be able to represent the object well. Local features for different parts will obviously

appear differently. Simply pooling over the foreground features may result in a noisy

and non-discriminating representation, which further increases the difficulties to locate
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target objects in the query image [270]. To solve this problem, we propose an object

detector module which learns to produce better-quality object representation that can be

integrated into the network and trained end-to-end in few-shot settings. Our qualitative

and quantitative results show that object representations generated using our approach are

more distinguishable and less noisy.

We incorporate this object detector module into an “encoder-decoder transformer”

[20, p. 1] network with several additional modifications to create a powerful and efficient

framework for “end-to-end few-shot panoptic segmentation” [94, p. 1]. In particular,

our framework first produces object embeddings for support and query images, encodes

each instance into a specific kernel and generates the prediction by convolutions directly.

Therefore, the “kernel generator and the feature encoder” [133, p. 1] are respectively

designed for kernel weights generation and for shared feature encoding. Specifically,

in the kernel generator, we draw inspiration from point-based object detectors [292] and

utilize the position head to simultaneously locate and classify background ‘stuff’ by object

centres and ‘stuff’ regions respectively. Then, we select kernel weights with the same

positions from the kernel head to represent corresponding instances. A kernel fusion is

further proposed for instance awareness and semantic-consistency, which merges “kernel

weights that are predicted to have the same identity or semantic category” [133, p. 1].

A feature encoder preserves the high-resolution feature with details. Each prediction

of ‘things’ and ‘stuff’ can be produced by convolving with generated kernels directly.

Thus, both ‘things’ and ‘stuff’ can be predicted together with same resolution. In this

way, instance-aware and semantically consistent properties for ‘things’ and ‘stuff’ can

be respectively satisfied in a unified workflow. The key idea is to represent and predict

‘things’ and ‘stuff’ uniformly with generated kernels in a fully convolutional pipeline. We

evaluate our approach on “Mapillary Vistas” [161, p. 1] benchmarks under both five-shot

and ten-shot settings. Experimental results show that our model performs comparatively

with the state-of-the-art.
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The main contributions of this chapter are:

• We propose a novel few-shot end-to-end model for panoptic segmentation that in-

fers object masks and classes without surrogate tasks and hand-designed compo-

nents such as box detection, anchors, “thing-stuff merging” [128, p. 1] and “non-

maximum suppressions (NMS)” [20, p. 1] using a “dual-path transformer” [243,

p. 1] that enables CNNs to read/write a global memory at any layer, and a training

objective that optimises a “panoptic quality” [112, p. 1] style loss function through

“bipartite matching” [20, p. 1] between predicted masks and annotated masks that

depict the ground truth.

• We show that “self-attention mechanisms” [289, p. 1] can be used for few-shot

image processing in place of CNNs.

• Experiments on the Mapillary Vistas dataset demonstrate the effectiveness of the

proposed method for few-shot panoptic segmentation.

The remainder of this chapter is organized as follows. In Section 5.2, we discuss

the related work on the various state-of-the-art few-shot segmentation approaches that

were developed recently, including in semantic segmentation, instance segmentation and

panoptic segmentation. The proposed few-shot panoptic segmentation method is de-

scribed in Section 5.3, and the implementation details in Section 5.4. We illustrate the

experimental results in Section 5.5. Finally, Section 5.6 concludes the chapter with a

summary and an outlook.

5.2 Related Work

Few-shot panoptic segmentation has not been widely studied. Some notable work is avail-

able that tackle the problem of panoptic segmentation in situations with vast amounts of
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data. Per-pixel classification has been the dominant semantic segmentation since the sem-

inal work of Fully Convolutional Networks (FCN) [150]. For instance, the Atrous Spatial

Pyramid Pooling (ASPP) [25, 270] uses atrous convolutions with different atrous rates.

Also related to our work in this chapter is Panoptic FCN [133], that encodes ‘things’

and ‘stuff’ into a specific “kernel weight using a kernel generator” [133, p. 1], and pro-

duces the prediction by convolving feature embeddings directly. They represent and pre-

dict foreground instances and background ‘stuff’ in a unified fully convolutional pipeline

without extra boxes for localization or instance separation, with instance-aware and se-

mantically consistent properties for ‘things’ and ‘stuff’ that can be respectively resolved

in a simple “generate-kernel-then-segment” [133, p. 1] workflow. DANet [65] uses dif-

ferent variants of non-local blocks for instance and semantic segmentation. Recently,

DETR [20], MaX-DeepLab [243] and Segmenter [219] replace traditional convolutional

backbones with the “Vision Transformer (ViT)” [51, p. 1] that uses self-attention [289],

and that capture long-range context starting from the very first layer.

Mask classification has generally been used for instance segmentation that require a

dynamic number of predictions. Mask R-CNN [84] uses a global classifier to classify

mask proposals for instance segmentation. DETR [20] incorporates a Transformer de-

sign to handle ‘thing’ and ‘stuff’ segmentation simultaneously for panoptic segmentation.

However, these mask classification methods require predictions of bounding boxes, which

may limit their usage in semantic segmentation. The recently proposed Max-DeepLab

[243] requires multiple auxiliary losses, and removes the dependence on box predictions

for panoptic segmentation with conditional convolutions. MaskTransformer [219] pro-

poses a single mask classification model which predicts a set of binary masks, each as-

sociated with a single global class label prediction to solve both “semantic segmentation

and instance segmentation” [41, p. 1] tasks.

Our pipeline is similar to MaX-DeepLab [243] and DETR [20] that employ a Trans-

former decoder to compute a set of pairs, each consisting of a mask embedding layer,
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and object instance predictions. They also first predict an attention map as raw prediction

and use a deep decoder to generate the final prediction and mask results. However, our

few-shot learning approach is essentially different from these methods in the way of pro-

ducing this “similarity attention map” [270, p. 1], and the number of images used during

learning. The other main difference is that their methods do not produce “object-level

representations” [270, p. 1] from local feature pairs between support and query images.

They do not use pair-wise similarity matrix to locate the target object instances in the

query image. However, we argue that local features matching are less effective in the

few-shot segmentation setting, in which the query and support images are not from the

same image and typically look very different. In contrast, our approach focuses on first

identification of object instance predictions, and therefore generating better “object-level

representations” [270, p. 1] through masks, then using these high-quality object represen-

tations to find the target object instances in the query image.

5.3 Proposed Method

5.3.1 Problem definition

Panoptic segmentation segments the image I ∈ RH×W×3, H = image height, and W =

width, into a cluster of categorised masks for the whole:

{yi}Ki=1 = {(mi, ci)}Ki=1,

where K represents the ground truth masks mi ∈ {0, 1}H×W , and do not coincide or

encroach into each other, and ci denotes the prior terrestrial observations that have been

made into ground truth class labels of mask mi.

In few-shot settings, given Cbase, a dataset of base image categories, and Cnovel, a

set of new categories, few-shot panoptic segmentation aims at detecting objects masks

‘stuff’ and ‘things’ ofCbase by learning from a base datasetDbase with abundant annotated

instances of Cbase and a novel dataset Dnovel with very few instances of Cnovel. In the
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task of K-shot panoptic segmentation, there are K annotated examples from each novel

category in Dnovel.

Inspired by MaX-DeepLab [243] and Meta-DETR [20] on panoptic segmentation,

our proposed architecture for few-shot panoptic segmentation includes a dual-path trans-

former, a stack of decoders, and prediction heads for the masks and the classes.

Figure 5.2: Overview of MaX-DeepLab architecture. Image source [243]

Just like in [243, 244], we fuse the transformer and a two-dimensional pixel-based

artificial neural network in a dual-path fashion with communication in both directions be-

tween the two paths. A two-dimensional CNN combined with a one-dimensional global

memory of size N , representing the total number of predictions is augmented to the net-

work model. We also add-on a transformer block for a pre-trained CNN block. The trans-

former is designed to enable four types of communication between the two-dimensional

CNN and the memory path, where each time the query of one is applied to the keys and
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values of the other to update either the pixel or memory features conditioned on the other:

• a M2P (“memory to pixel” [243, p. 1]) attention,

• a M2M (“memory-to-memory” [243, p. 1]) self-attention,

• a P2M (“pixel-to-memory” [243, p. 1] feedback attention) that makes it possible

for pixels to read from the memory,

• a P2P (“pixel-to-pixel” [243, p. 1] self-attention, will be executed as axial-attention

blocks [242, 244], selected instead of the global 2D attention for effectiveness in

dealing with the high resolution features.

This transformer design together with a memory path beside the main CNN path is

commonly known as dual-path transformer [243]. Consequently, the P2M attention al-

lows the pixel-path CNN to refine its feature given the memory-path features for encoding

mask learning and training.

We follow the method used by [243]. We have a two-dimensional input feature xp ∈

RH×W×3, height H , width W , and 3 channels; and a one-dimensional global memory

feature xm ∈ RN×3, N the size of the prediction set. We compute pixel-path queries qp,

keys kp, and values vp by “learnable linear projections” [51, p. 1] of the pixel-path feature

map xp at each pixel. Similarly, qm, km and vm are computed from xm with another set

of projection matrices [243]. The query, key and value channels are dp, and dv for both

paths in the support set, and in the query set. The output of the feedback attention P2M,

ypa ∈ Rdout , at position a [243], is computed as:

ypa =
n∑

i=1

softmax(n)(q
p
a.k

m
n )v

m
n ,

where softmax(n) denotes a softmax function applied to the whole memoryN . Sim-

ilarly, the output of memory-to-pixel (M2P) and memory-to-memory attention (M2M)

attention ymb ∈ Rdout at memory position b is

ymb =
HW+N∑

i=1

softmax(n)(q
m
b .k

pm
n )vpmn , with
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kpm =
[
km

kp

]
, vpm =

[
vm

vp

]
,

where a single Softmax is performed over the concatenated dimension of size (HW,N).

We use hourglass-style stacked decoders (see Figure 5.3) [200], stacked L times,

traversing output strides 4, 8 and 16 multiple times [25] to aggregate multiple scale fea-

tures. At each decoding resolution, features are joined by some mathematical operation,

e.g. summation after resizing, before applying the transformer blocks before the decoded

feature is ready for the next resolution.

Figure 5.3: Stacked encoders and stacked decoders for used with the transformer.

To predict the masks classes p̂(c) ∈ RN×|C|, we use the memory feature of length

N with two FC layers and a softmax, with the other FC head predicting mask features

f ∈ RN×D. We employ two convolutions to produce a normalised feature g ∈ RD×H
4
×W

4

from the decoder input at stride 4. Our mask prediction m̂ is the multiplication of the

transformer feature f and the decoder feature g, i.e.

m̂ = softmaxN(f.g) ∈ RD×H
4
×W

4 .

The combination (m̂i, p̂i(c))
N
i=1 is our mask transformer output to generate panoptic

results.
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The mask-prediction head is based on the dynamic and compact instance-aware CondIst

[231], conditioned on the instances to be predicted, thereby eliminating the need for ROI

cropping and feature alignment.

5.3.2 Losses

We first define a Panoptic Quality (PQ) [112]-style similarity metric between a class-

labelled annotated ground truth mask on the image and a model-predicted mask. Then,

we demonstrate how we match the predicted mask to each known mask with this metric

which is also utilised for optimisation of the model. To demonstrate similarity, we use

a metric calculated between the annotated terrestrial mask yi = mi, ci, and a prediction

mask ŷj = (m̂j, p̂j(c)), defined as sim(yi, ŷi) = p̂j(ci) × Dice(mi, m̂j), equivalent to

the multiplication of RQ and SQ, where p̂j(ci) ∈ [0, 1] is the probability of predicting

the correct class, and Dice(mi, m̂j) ∈ [0, 1] is the Dice coefficient between a predicted

mask m̂j and a ground truth mi segmentation quality [243]. The mathematics operation

AND gate serves optimises for both model training and mask matching. Zero (0) indicates

incorrect prediction of the class, and that the ground truth and the predicted masks do not

overlap with each other. One (1) is only achieved when the class prediction is correct, and

the ground truth and the mask are the same.

The mask similarity metric we used and the mask matching process is built-based on

the PQ-style similarity metric by Max-DeepLab [243]. We optimize model parameters θ

by maximizing this same similarity metric over matched (or, positive) masks, i.e.

maxθ
∑K

i=1 sim(yi, ŷσ̂(i)) ⇔ maxθ,σ∈SN

∑K
i=1 sim(yi, ŷσ̂(i))

Substituting the similarity metric gives our PQ-style objective:

OPOS
PQ =

∑K
i=1 p̂σ̂i(Ci)xDice(mi, m̂σ̂(i)),

Where RQ = p̂σ̂i(Ci), and SQ = Dice(mi, m̂σ̂(i))

We apply the mathematical product rule and redefine OPOS
PQ into two loss terms,of

gradient, and then changing the probability p̂ to a log probability logp̂ which aligns with
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the cross-entropy loss and scales gradient better for model efficiency.

LPOS
PQ =

∑K
i=1 p̂σ̂i(Ci).[−Dice(mi, m̂σ̂(i))] +

∑K
i=1Dice(mi, m̂σ̂(i)).[−logp̂σ̂i(Ci)],

where, [−logp̂σ̂i(Ci)] is the cross-entropy loss,

Dice(mi, m̂σ̂(i)) and p̂σ̂i(Ci) are the weights, and

[−Dice(mi, m̂σ̂(i))] the Dice loss, and

where the loss weights are constants. Here, the PQ-style loss is equivalent to opti-

mizing a dice loss weighted by the class correctness and optimizing a cross-entropy loss

weighted by the mask correctness [243] so that both of the predicted mask and object class

are correct simultaneously. For instance, if the mask is missed, the model must ignore its

class since it is a false negative, and vice versa.

Apart from the LPOS
PQ for positive masks, we define a cross-entropy term LNEG

PQ for

negative unmatched masks:

LNEG
PQ =

∑N
I=K+1[−logp̂σi(∅)]

This term trains the model to predict ∅ for negative masks. We balance the two terms

by α, as a common practice to weight positive and negative samples [141].

LPQ = αLPOS
PQ + (1− α)LNEG

PQ , where LPQ denotes our final PQ-loss style loss.

We also incorporate “auxiliary losses” [94, p. 3] in training. We use a “pixel-wise

instance discrimination loss” [243, p. 3] that helps cluster decoder features into instances.

We also use a “per-pixel mask-ID cross-entropy loss” [243, p. 3] that classifies each pixel

into N masks, and a semantic segmentation loss. Our total loss function thus consists of

the PQ-style loss PQ and these three auxiliary losses as used in [243].

5.3.3 Instance discrimination

We also implement a per-pixel instance discrimination loss as used in [27, 35, 108, 150,

257] that discriminate in an unsupervised fashion or with image classes. It is applied to

all pixels in the image, to help the “learning of the feature map” [158, p. 8] g ∈ RD×h
4
×w

4 .
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This encourages features from the same pixel to be similar, and those from different

instances to be distinct in a contrastive fashion, a requirement for instance segmenta-

tion. We compute a normalized feature embedding ii,: ∈ RD, given a ground truth mask

mi ∈ {0, 1}H
4
+W

4 for each “annotated mask by averaging the feature vectors inside the

mask mi” [243, p. 6]:

ti,: =
Σn=1mi,h,w.g:,h,w

∥Σn=1mi,h,w.g:,h,w∥ , i = 1, 2, ..., K.

We get K instance embeddings {ti, :}KI=1 representing ground truth masks. Then, we

let each pixel feature perform an instance discrimination task by identifying which mask

embedding it belongs to, as annotated by the ground truth masks. At each pixel, the

contrastive loss is:

LInstDis
h,w = −log

∑K
i=1 mi,h,wexp(ti,:.g:,h,w/T )∑K

i=1exp(ti,:.g:,h,w/T )
,

where T denotes the temperature. mi,h,w is non-zero only when pixel (h,w) belongs

to the ground truth mask mi.

Inspired by [20, 243], we use cross-entropy loss together with a dice loss to learn

better segmentation masks to train this per-pixel classification to infer mask-ID maps

given by our mask prediction. An auxiliary semantic segmentation loss [243] is used to

help capture per pixel semantic features. We apply a semantic head as used in [34] on top

of the backbone if no stacked decoder is used, or connect the semantic head to the first

decoder output at stride 4.

5.3.4 Mask matching

We solve a “bipartite matching problem” [20, p. 1] between the prediction set (ŷi)
N
i=1

and the ground truth {yi}Ki=1 to assign a predicted mask to each ground truth. We search

for a permutation of N elements σ ∈ SN that best assigns the predictions to achieve the

“maximum total similarity to the ground truth” [243, p. 7]:
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σ̂ = argmaxσ∈S
∑K

i=1 sim(yi, ŷσ(i)).

Following prior work [20, 243], the optimal assignment is computed efficiently with

the Hungarian algorithm [20, 118]. K matched predictions will be optimized to predict

the corresponding ground truth masks and classes, while the remaining N–K masks pre-

dicts the absence of an object. Only one predicted mask can be matched, with an IoU

over 0.5 with each ground truth mask.

5.3.5 Network description

In few-shot learning, the goal of training is to learn the similarities and differences be-

tween objects. Our few-shot end-to-end model for panoptic segmentation infers “instance

object masks and classes without surrogate tasks such as box detection, anchors, thing-

stuff merging” [243, p. 1] and “non-maximum suppressions (NMS)” [20, p. 1] that are

designed by hand. MaX-Deeplab [243] utilises “dual-path transformer” [243, p. 1] that

enables CNNs to read/write a model’s global memory for all the CNN layers, and a train-

ing objective that optimises a PQ-style loss function through “bipartite matching” [20, p.

1] between predicted masks and ground truth masks. We employ a shared support branch

and a query branch following the philosophy of the “Siamese network” [113, p. 1], and

a decoder branch. Following few-shot learning conventions, the support branch handles

images in the support set, while the query branch handles images in the query set during

training.
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Figure 5.4: Overview of the proposed model for few-shot panoptic segmentation using a

ViT.

5.3.6 The Transformer decoder

The decoder follows the standard architecture of the transformer [237], transforming N

embeddings of size d using multi-headed self- and encoder-decoder attention mechanisms

in parallel. Using the set prediction mechanism proposed in DETR [20], we employ a

decoder to compute a set of pairs each consisting of a mask embedding vector to get the

binary mask prediction via a dot product with the per-pixel embedding obtained from

an underlying fully-convolutional network, and object instance predictions to solve both

few-shot semantic segmentation and instance segmentation tasks in a unified manner.

5.3.7 Training and inference

Panoptic segmentation is a challenging task. We train the model first (see Figure 5.4 for

the model) on the categories on COCO-20i few-shot learning dataset. We then train it on

the Mapillary Vistas for scene understanding. We only evaluate the model on the Map-

illary Vistas dataset. The COCO-20i dataset include several object instances and ‘stuff’
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categories. During training, a few images from the support set with instance annotations,

and the query image are provided during each episode. The Support branch extract cate-

gory codes that mostly relate to instance object predictions and mask predictions within

the support set images. The Query branch, which aggregates the query features and cate-

gory codes of the query set into a set of category-specific features, shares all the learning

parameters with the Support branch. This Support branch aims at extracting the cate-

gory codes of objects in the image. Pixels which are not occupied by object categories

are labelled as ‘stuff’. Both the Query branch and the Support branch first infers masks

and classes using the attention mechanism, and encode them into query features and in-

stance object category codes, respectively, using a shared Transformer network. In both

branches, we optimize the network in an end-to-end manner using the loss functions de-

scribed in Section 5.3.2, with other important parameters described in 5.4. The Decoder

branch then takes the query features and the instance category codes as input and pre-

dicts segmentation masks and the instance object detection predictions results over the

corresponding support image masks and instance object categories. The instance target

categories to detect are dynamically conditioned on the provided support images. We

do not adopt the atrous spatial pyramid pooling module (ASPP) [25], since our attention

block could also efficiently encode the multi-scale or global information. In this way,

our method is designed to extract category-agnostic meta-level knowledge that can easily

adapt to novel image categories.

5.4 Implementation Details

Following Axial-DeepLab [244], MaX-DeepLab [243] and DETR [20] settings, we use

a learning rate of 0.1, and a weight decay of 10−4, and a drop-path rate of 0.2. The

images are resized to 640 × 640 for inference and calculations. We adopt a batch size

of 64 and each query image is associated with 10 support images to form an episode.
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Conventional data augmentation as used in [20, 294] is adopted during training. We set

masks with class confidence of 0.70 to void and filter pixels with mask-ID confidence

below 0.4. We limit ‘stuff’ masks to a maximum of 4096 pixels, and ‘thing’ masks to

256. In training, we set our PQ-style loss weight normalized by N to 3.0, with α = 0.75.

Instance segmentation uses τ = 0.3, and weight 1.0, mask-ID cross entropy weight to 0.3,

and semantic segmentation weight to 1.0. We use an output size N = 128 and D = 128

channels. We fill the initial memory with learnable weights same as DETR.

5.4.1 Panoptic segmentation datasets

Dataset. We use Mapillary Vistas [161] dataset for traffic-related environments which has

resolutions ranging from 1024× 2048 to 4000× 6000. This dataset contains images from

all around the world that have been captured at various conditions regarding weather, sea-

son and daytime. Images come from different imaging devices, including mobile phones,

action cameras, and professional capturing rigs by differently experienced photographers.

It has 25,000 images pixel-accurately labelled into 66/124 object categories of which

37/70 classes are instance-specific labels with 37 ‘thing’ classes and 28 ‘stuff’ classes.

Annotation is performed in a dense and fine-grained style by using polygons for delineat-

ing individual objects.

5.5 Experimental Results

Our experiments were conducted on the Mapillary Vistas dataset for traffic-related en-

vironments. We compare our panoptic segmentation results with other box-based and

box-free methods in Table 5.1. Our model compares favourably with the state-of-the-art,

and can be improved with simple enhancements. It attains a PQ of approximately 43%

(see Figure 5.5).
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Figure 5.5: Panoptic quality for Mapillary Vistas.

5.5.1 Qualitative Results

We provide qualitative results of our few-shot panoptic segmentation of novel object cat-

egories (‘things’, ‘stuff’) in Figures 5.6 to Figure 5.10. These visualisations indicate that

our proposed method is capable of detecting novel ‘things’ and ‘stuff’ of novel categories

objects even with scarce (n=5) training samples, and even performs exceptionally well on

both small and large objects.
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Table 5.1: Few-shot panoptic segmentation experiments on the Mapillary Vistas dataset.

All our results are achieved with single scale input. Some results courtesy of [131]

Method Backbone PQ PQth PQst

UPSNet [261] box-based DCN101-FPN 46.6 53.2 36.7

SpiNet [94] box-based DCN101-FPN 42.2 49.3 31.4

Panoptic FPN [111] box-based Xception-71 40.9 48.3 29.7

SOGNet [265] box-based DCN101-FPN 60.0 56.7 62.5

CIAE [69] box-based DCN101-FPN 44.5 49.7 36.8

BANet [30] box-based DCN101-FPN 47.3 54.9 35.9

Panoptic FCN [133] box-based ResNet101-FPN 45.5 51.4 36.4

DeeperLab [264] box-free Xception-71 34.3 37.5 29.6

Axial-Deeplab [244] box-free Axial-ResNet-L 43.6 48.9 35.6

Panoptic DeepLab [34] box-free Xception-71 39.7 43.9 33.2

DetectoRS [184] box-free ResNet101 49.6 57.8 37.1

Detectron2 [256] box-free ResNet101 43.0 – –

DETR [20] box-based CNN 45.1 50.5 37.0

Ours box-free ResNet 101 44.1 45.3 34.6

Figure 5.6: Panoptic segmentation qualitative results 1.



5.5. EXPERIMENTAL RESULTS 144

Figure 5.7: Panoptic segmentation qualitative results 2.

Figure 5.8: Panoptic segmentation qualitative results 3.

Figure 5.9: Panoptic segmentation qualitative results 4.
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Figure 5.10: Panoptic segmentation qualitative results 5.

5.6 Conclusion

We have presented novel few-shot end-to-end panoptic segmentation method that aims

to predict and represent objects and background regions in a fully-convolutional back-

bone based on Max-DeepLab in this chapter. The model first extracts multiple features

in a shared decoder-encoder, and uses an object detector from support examples capa-

ble of separating target objects from the background thereby resolving class overlaps for

non-overlapping segmentation using masks. In the following chapter, we propose a two-

stage training regime in few-shot knowledge distillation that utilises self-supervised con-

trastive learning to enforce diversification limitations on output space. We use supervised

contrastive learning for learning the image feature embeddings that will be used in the

second stage to leverage the label information to further fine-tune the model to perform

classification using a distillation loss.



Chapter 6

Contrastive Self-supervised learning

with Knowledge Distillation for

Few-shot Image Classification

The previous chapter presents a few-shot end-to-end panoptic segmentation method that

aims to predict and represent objects and background regions in a fully-convolutional

backbone using a Transformer encoder-decoder. This chapter contributes to improve the

representation capabilities of few-shot learning models using self-supervised learning.

We follow a two-stage training regime in few-shot knowledge distillation that utilises

self-supervised contrastive learning to enforce multiplicity constraints in the image output

space. We use supervised contrastive learning for learning the image feature embeddings

that will be used in the second stage to leverage the label information to further fine-tune

the model to perform classification using a distillation loss.

146
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6.1 Introduction

Although CNNs have achieved breakthroughs using supervised learning on large-scale

datasets such as ImageNet, they often fail to generalise when the dataset is small, result-

ing in over-fitting. The world has overwhelmingly large number of object classes and

varying levels of abundance that makes them impossible to annotate enough examples,

and to learn at once, making few-shot learning mandatory in most practical situations.

Regularisation approaches such as dropout, batch normalisation [95], and augmentation

involving diverse transformation strategies that have previously been proposed have not

entirely solved over-fitting problems in situations with limited data. Self-supervised learn-

ing has shown potential of learning useful representations from data without external la-

bel information. In particular, the contrastive learning methods [38, 85, 93, 229] have

demonstrated potential in self-supervised learning methods. They learn better, unbiased,

transferable representations for downstream tasks which can effectively prevent the model

from over-fitting.

Self-supervised learning focusses on obtaining good representations of data where

human interaction is eliminated, and data labelling is automated[168, 169, 170]. For

instance, in computer vision, “representations can be learned from predicting transfor-

mations” [26, p. 1] , generative modelling [75], and other techniques. Recently, self-

supervised representation learning algorithms, e.g. by [81, 85, 86] with contrastive loss

have performed well in extracting useful representations. The key idea of contrastive

learning is to contrast semantically positive and negative pairs of images, encouraging the

representations f of similar pairs (x, x+) to be close, and those of dissimilar pairs (x, x–)

to be more orthogonal [38].

Knowledge distillation (see Chapter 2), proposed by [89] trains a smaller network

known as the student using the supervision signals from both ground truth labels and

either an ensemble of models or well-learned larger model called the teacher by using the

predicted logits for the transfer of knowledge. The student model is trained to mimic the



6.1. INTRODUCTION 148

prediction capabilities of the teacher. It is the one which is used during testing, prediction

and deployment. In self-distillation [125], the same model is used both for teacher and

student as a regulation term to prevent the model from over-fitting.

In this chapter, we build on this insight and explore the capability of contrastive learn-

ing to make better the metric representation potential of CNNs for few-shot learning in

two stages. During Stage One, we utilise self-supervised contrastive learning for learn-

ing image feature embeddings before using the image labels to train a model in a self-

supervised manner. Stage Two uses the weights obtained from the Stage One and lever-

age the label information to fine-tune the model for better classification. Our method

basically uses a self-supervised loss to train a CNN to augment the entropy of the feature

embedding. This results in lowering the entropy on feature representations by driving

self-supervised pairs closer, and simultaneously compel the manifold with student-teacher

knowledge distillation [188] in Stage Two. Our work is related to knowledge distillation

methods [210, 215, 262, 280, 295] that distils the knowledge of an ensemble of a large

teacher model to a smaller student neural network at the classifier.

The main contributions of this chapter are:

• We propose a training regime in few-shot knowledge distillation that utilises self-

supervised contrastive learning to enforce multiplicity restrictions during the output

space. We use supervised contrastive learning for learning the image feature em-

beddings that will be used in the second stage to leverage the label information to

further fine-tune the model to perform classification using a distillation loss.

• Experimental results show that our model achieves comparable few-shot classifica-

tion performance compared to existing state-of-the-art methods on both MiniIma-

geNet and CIFAR-FS benchmarks.
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Figure 6.1: Self-supervised learning with knowledge distillation. The true prediction

manifold is estimated using self-supervision during Stage One which is equivariant to

input transformations by enforcing the model to foretell the number of augmentations

utilising the produced logits. In Stage Two, the existing sample outputs are enforced to

be identical to those in Stage One, while minimising the distance with the augmentations.

The remainder of this chapter is organized as follows. In Section 6.2, we discuss the

related work on the various state-of-the-art in self-supervised few-shot knowledge distil-

lation approaches that were developed recently. The proposed two-stage self-supervised

knowledge distillation for few-shot learning is described in Section 6.3. We illustrate the

datasets and discuss experimental results in Section 6.5. Finally, Section 6.7 concludes

the chapter with a summary and an outlook.

6.2 Related Work

6.2.1 Self-supervised learning for few-shot learning

Self-supervised learning is a paradigm for unsupervised learning that aims to learn robust

representations from the data itself without any manual class annotations, or labels. The

main challenge here is how to design the annotation-free pretext tasks, including rota-
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tions [71, 199], relative patch locations [32, 71], and colourisations [125, 281] that are

complex enough to exploit high-level semantic visual representations useful for solving

downstream tasks.

Recently, the potential of self-supervised learning for few-shot learning was explored

in [71, 188, 199, 220]. Gidaris et al. [71] uses self-supervision as an auxiliary task in

few-shot learning for feature extraction to learn richer, more transferable visual repre-

sentations in an attempt to improve transfer learning abilities of few-shot models. They

propose a two-stage learning approach that adds a self-supervised loss to the training loss

that a few-shot model minimises in the first stage. A parallel branch with artificially aug-

mented tasks help the model learn generalizable features and adapt to novel classes with

few training data. Simultaneous equivariance and invariance by [199] allows the model to

learn independent input transformations, as well as the features that encode the structure

of geometric transformations of an image that generalise well to novel classes. Su et al.

[220] also used rotation and permutation of patches as auxiliary tasks and concluded that

self-supervised learning is more effective in low-data regimes, and that performance im-

provements are mainly realised when images used are within the same domain as the base

classes. They, therefore, propose an approach that picks similar-domain unlabelled im-

ages. SimCLR (“Simple Framework for Contrastive Learning of Visual Representations”

[27, p. 1]) presents a framework that learns representations by maximizing agreement

between augmented pairs of data via a contrastive loss in either unsupervised pre-training

or episodic training for few-shot learning. They show that effective representations are

achieved by compositions of data augmentation operations such as “random cropping fol-

lowed by resize back to the original size, random colour distortions, and random Gaussian

blur” [27, p. 2].
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6.2.2 Knowledge distillation

Among the many different forms of distilling knowledge that have been utilised are dis-

tilling knowledge from logits [68, 89, 156], distilling knowledge from intermediate layers

[126, 268], knowledge distillation with meta-learning [109], and knowledge distillation

with self-supervised learning [188].

Notable work in self-supervised “few-shot knowledge distillation” [112, p. 1] includes

who introduce a “dual-stage distillation” [210] scheme that grafts each one of the student

blocks onto the teacher, and learns the parameters of the grafted block intertwined with

those of the other teacher blocks in the first step. In the second step, the trained student

blocks are progressively connected and then together grafted onto the teacher network,

getting to adapt themselves to each other and eventually replace the teacher network.

Bai et al. [8] propose a network-compression layer-wise cross knowledge distillation ap-

proach by interweaving hidden layers of teacher and student network thereby reducing

accumulated estimation errors and improving predictions. Teacher Assistant Knowledge

Distillation (TAKD) [156] introduce “multi-step knowledge distillation” [156, p. 1] which

employs an intermediate-sized teacher assistant network to bridge the gap between the

student and the teacher. They argue that the performance degrades when the gap between

student and teacher is large, that the teacher can only effectively transfer its knowledge

to students up to a certain size. Self-supervised knowledge distillation (SKD) [188] learn

feature embeddings to create various input-output spaces using a “self-supervised auxil-

iary loss” [48, p. 1]. They lower the entropy of the feature representations by guiding

self-supervised pairs jointly all together while limiting the manifold with student-teacher

knowledge distillation.

Existing approaches disregard the importance of intra-class diversity, and instead fo-

cus on inter-class representations. Unlike [199], we argue for equivariant representation

to learn the natural manifold of the class. Major input transformations are desired in

corresponding outputs to ensure diversity. In this work we are interested in knowledge
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distillation with self-supervised learning, which involves a bigger teacher network during

training and fine-tuning on unlabelled data in Stage One. During Stage Two, the big-

ger network can be distilled into a smaller network with little or no loss in accuracy. In

contrast to the existing self-supervised learning approaches for few-shot learning, our ap-

proach employs self-supervision to compel additional constraints in its output space for

the classification. We learn an equivariant representation to learn an object class in few-

shot learning settings. We expect that, in a few-shot setting, where squeezing out “gener-

alizable features from the available data is very important, the use of self-supervision as

an auxiliary task will bring improvements” [19, p. 1].

6.3 Proposed Method

A two-stage approach that employs “self-supervised learning” [147, p. 1] with “knowl-

edge distillation” [18, p. 1] is proposed, 1) self-supervised pre-training Stage One, and 2)

Stage Two that uses the original image as anchors to maintain the acquired manifold. The

Stage One uses self-supervision to learn a broader classification manifold, and that the

acquired representations are equivariant to the augmentations. At this stage, it is impor-

tant that the augmented image samples, together with the original inputs are reinforced to

have similar prediction results to further improve the quality of between-class discrimina-

tion. The learned representations can be considered as visual priors before using the label

information. Stage Two is used to initialize both the teacher and student model used in

the self-distillation process with the pre-trained weight. During this stage, the first self-

supervision stage is used as a teacher, and the original, non-augmented images are used

as anchors to maintain the learned manifold. Augmented image labels are applied to min-

imise intra-class distance representations in the embedding output space to learn robust

image feature representations that can be used for image discriminations. The weight

of the teacher is frozen, and the student is updated using a combination of the classifi-
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cation loss and the overhaul-feature-distillation loss from the teacher. Consequently, the

student model is regularized by the representation from the teacher when performing the

classification task.

The teacher-student knowledge distillation guides the model to develop two inherent

attributes. In the first place, the output class manifold is divergent enough to preserve

major transformations in the input space. This, therefore strengthen the avoidance of

over-fitting, resulting in improving generalization capabilities of the model. Second, the

learned embeddings associations in the output space encode natural associations among

close classes that should have correlated predictions as opposed to different image classes.

Thus, the model portrays the representation space by learning “inter-class relationships

and preserving intra-class diversity” [188, p. 2], thereby learning improved representa-

tions for few-shot learning tasks.

6.3.1 Network description

We have a CNN F with feature representations Φ and weights Θ for classification. The

input image x is mapped to a vector representation v ∈ Rd by a function fΦ : x → v. Fea-

ture vector representations v are then mapped to logits p ∈ Rc by the function fΘ : v → p,

and c represents the quantity of resulting classes. Therefore, F = fΦ◦fΘ, i.e. composition

of the two functions. We introduce fΨ, so that fΨ : p → q, which is mapped to logits p to

an auxiliary set of logits q ∈ Rs for the augmented task of self-supervised. Every input x

produce labels r ∈ 1, . . . , s used for self-supervision. Thus, the entire model network as

employed in [188] is represented as:

FΦ,Θ,Ψ = fΦ ◦ fΘ ◦ fΨ.

The network also has Dbase, a dataset with n image-label pairings {xi, yi}n , whereby

yi ∈ {1, . . . , c}. Following few-shot learning settings (See Chapter 2), we sample episodes
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using (S), i.e. labelled support set, and (Q) the query set. In an n-way, k-shot setting, (S)

has k number of examples for every individual n class.

6.3.2 Stage One

We adopt the training methods used in [155, 188, 199]. A mini-batch {x, y} is selected

randomly from Dbase with m numbers of image-label pairs during Stage One, so that

{x, y} = {xi, yi}m. A transformation function T (.) [47, 125] is applied to images x to

create four suitable augmentations [125, 269, 275], e.g. by colourisation, or/and applying

rotations to the image x. All the augmentations are combined into a single tensor x̂ with

matching class category labels ŷ ∈ R4xm, and one-hot encoded labels r̂ ∈ Rs
{4xm} for the

type of augmentation, where s = 4, a result of the 4 augmentations for self-supervised.

The augmented tensor x̂ is passed via the function fΦ, producing the feature represen-

tations v̂ ∈ Rdx(4xm), that then go past fΘ resulting in matching logits p̂ ∈ Rcx(4xm). The

logits finally go past fΨ, to get the augmentation logits q̂ ∈ Rsx(4xm),

fΦ(x̂) = v̂ fΘ(v̂) = p̂ fΨ(p̂) = q̂

To optimise the model in the Stage One, we employ a categorical cross entropy loss

used in [188] Lce = −log

(
epy∑
j e

pj

)
between the estimated logits p̂ and ŷ, and a self-

supervision loss Lss = −log

(
eqr∑
j e

qj

)
, i.e. a a binary cross entropy loss, between the

augmented logits q̂ and their labels r̂. We also combine the two losses with a weighting

coefficient α to obtain the final loss,

LStageOne = Lce(p, y) + Lss(q, r).

The whole training process for Stage One is stated as the following optimisation prob-
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lem:

minΦ,Θ,Ψ Ex,y∼D[Lce(fΦ,Θ(x̄), ȳ) + α.Lss(fΦ,Θ,Ψ(x̄), r̄)]

Figure 6.2: Illustration of the our self-supervised knowledge distillation model for train-

ing with augmented image versions to predict the class, then using the original version of

the images to maximise the discriminative capability of our model.

6.3.3 Stage Two

During Stage Two, we take the teacher F t model that teaches the student F s learner

model following approaches by [89, 126, 262, 269], the two clones of the model trained

during the Stage One. We freeze the weights of the bigger teacher model, and use it

for the purposes of inference. Our approach starts by sampling a mini-batch (x, y) from

Dbase and create a pair x̄ ∈ x̂ \x from x, such that x̄ is an augmented version of x.

x is employed as a focal point to regulate any changes to the classification manifold

compelled by a knowledge distillation loss between the two clone networks. We also



6.4. EVALUATION 156

employ an auxiliary l2 loss to guide the image embeddings of x and x̄ in conjunction to

enhance feature differentiation, and their discriminability. Following [188], we pass x via

the teacher network F t = f t
Φ,Θ ◦ f t

Ψ and its logits pt are acquired. x and x̄ are then passed

via F s to obtain their logits ps , and p̄s respectively.

f t
Φ,Θ(x) = pt, f s

Φ,Θ({x, x̄}) = {ps, p̄s}, fΦ,Θ = fΘ ◦ fΦ
We minimise the Kullback–Leibler divergence [119], or relative entropy, to measure

the difference between the probability distributions between pt = {pt
i} and ps = {ps

i}

for knowledge distillation, and carry out an L2 loss between ps and p̄s to achieve better

discriminability,

LKD(ps,pt, T ) = KL(σ(ps/T ), σ(pt/T )), Ll2 =∥ ps − p̄s ∥2,

with σ being a softmax function and T is a temperature parameter [89] used to soften

the output distribution. The two losses are combined by a coefficient β as follows,

LStageTwo = LKD + β.Ll2

The overall Stage Two training process can be formalised as the following optimiza-

tion problem:

min{Φ,Θ} Ex,y∼D[LKD(f
s
Φ,Θ(x), (f t

Φ,Θ(x)) + β.Ll2(f
s
Φ,Θ(x), (f s

Φ,Θ(x̄))]

6.4 Evaluation

Following few-shot learning, we evaluate our model for classification only using a support

set Dsupport = {xsupport, ysupport} and a query set Dquery from the held-out part of the

dataset Dbase, while Dquery = xquery. Both are fed to the final trained f s
Φ model to get

vsupport and vquery, i.e. the feature embeddings, respectively. To map the labelsDsupport to

Dquery, a logistic regression classifier [230] is used. We normalise the embeddings onto a

unit sphere [15]. We randomly sample 400 tasks, and report mean classification accuracy

with 95% confidence interval.
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6.5 Experiments and Results

We evaluate our method on the classification of images on two benchmark few-shot learn-

ing datasets, the MiniImageNet [190, 239] and CIFAR-FS [15, 116]. We use the split

proposed in [190], with 64, 16 and 20 classes for training, validation and testing for Mini-

ImageNet. CIFAR-FS is randomly sampled from CIFAR-100 [116] by using the same

criteria with which MiniImageNet has been generated, with a split of 100 classes as well

for training, validation and testing respectively.

ResNet-12 has been used as our backbone to be consistent with previous methods by

[157, 188, 229]. The ResNet-12 architecture contains 4 residual blocks with 64, 160, 320,

640 filters, each with 3 × 3 convolutions. We apply a 2 × 2 max-pooling operation after

the first 3 blocks, and also a global average pooling after the last block. For optimisation,

we use SGD with an initial learning rate of 0.05, momentum of 0.9, and a weight decay of

5e−4. The learning rate is reduced after epoch 60 by a factor of 0.1. Following [188, 199],

the model is trained for 65 epochs on both datasets, with augmentations [14, 204]. Further,

the hyper-parameters α, β are tuned on a validation set, and we use the same value of 4.0

as in [230] for temperature coefficient T during knowledge distillation.

6.6 FSL Classification Results

Our results are shown in Table 6.1 and Table 6.2. The results at Stage One indicate the

state-of-the-art (SOTA) performance on MiniImageNet by approximately 1% on both 5-

shots and 10-shot classification tasks. The same results can be observed on the CIFAR-FS

dataset. Our method shows an improvement of between 0.71% and 20% percentage points

on 5-way 5-shot, and at least 3 percentage points on 5-way 10-shot learning implemented

in this work. Some large percentage margins are due to the backbones used, and the num-

ber of shots. The same trend can be observed on the CIFAR-FS dataset with consistent

percentage gains after Stage One. The percentage gain of our model during Stage One is
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largely attributed to the use of self-supervision which enables the model to learn a more

diverse and generalizable embedding space.

Stage Two that incorporates knowledge distillation produces even better results com-

pared to Stage One. On MiniImageNet, we achieve 78.93% and 86.54% on 5-shots and

10-shots, respectively. These are gains of 6.7% and 9.0%, for instance, on ProtoNet and

RelationNet, respectively. Similar consistent gains of 2-10% over SOTA results can be

observed on the CIFAR-FS dataset. Other few-shot models that use knowledge distil-

lation, for instance, RFS-distill [230] uses up to four generations for model distillation,

while our model only enforces only a single generation. Our model’s performance can be

attributed to the way we use knowledge distillation to enforce changes in the embedding

space and at the same time minimizing the representation distance between the input im-

ages and their corresponding augmentations pairs, thereby enhancing the representation

capabilities of the model.

Using only the cross-entropy loss during Stage One achieves 79.64% and 72.94% on

5-shot task on CIFAR-FS and MiniImageNet, respectively. With self-supervision, includ-

ing augmentations, the model performance improves to 86.40% and 78.43%, indicating

significant gains. The results in Table 6.1 indicate that self-supervision at Stage One con-

tributes for the performance improvement on Stage Two. Furthermore, during Stage Two,

the advantage of using the Ll2 loss to bring logits of the augmentations closer, is demon-

strated in Table 6.1. We can see that, even for both Stage One models trained on Lce

and Lce + αLss, addition of Ll2 loss during Stage Two gives about ∼ 1% gain compared

with using knowledge distillation only. Varying the contribution of self-supervision over

classification α during Stage One does not change the performance of the model, thus

pointing to the importance of self-supervision. We observe a similar trend as for the case

of α, that the performance first improves for 0 ⩽ β ⩽ 0.1, and then decreases with larger

values of β. However, even if we change β from 0.1 to 0.5, the performance drops only

by a small margin. These results comprehensively establish individual importance of self-
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supervision, knowledge distillation and ensuring the proximity of augmented versions of

the image into the output space.

Table 6.1: Comparisons of few-shot learning results on MiniImageNet using various

models and backbones, and our model. ResNet backbones load the pre-trained weights

from ImageNet. Some results courtesy of [188, 213]. * indicates re-implementation with

ResNet-12.

Method Backbone 5-Shot 10-Shot

ProtoNet [239] Conv4 51.65

ProtoNet* ResNet-12 72.0 77.20

MAML [60] Conv4 53.52

MAML* ResNet-12 71.5 77.94

TAML [98] ResNet-12 57.52 77.94

RelationNet [224] Conv4 58.10

RelationNet* Resnet-12 69.3 79.87

SNAIL [157] Resnet-12 68.88

RFS-distill [230] Resnet-12 64.82 82.14

TADAM [172] Resnet-12 58.50 76.70

Ours-Stage one Resnet-12 72.94 82.12

Ours-Stage Two Resnet-12 78.43 84.73

6.7 Conclusion and Future Work

In this chapter, we explore the capability of contrastive learning via self-supervised learn-

ing to improve the metric representation capacity of few-shot learning models. Our ap-

proach operates in two stages: First, the model learns to classify inputs such that the
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Table 6.2: Few-shot learning results on CIFAR-FS using various models and backbones,

and our model. ResNet backbones load the pre-trained weights from ImageNet. Some

results courtesy of [188, 213]. * indicates re-implementation with ResNet-12.

Method Backbone 5-Shot 10-Shot

ProtoNet Conv4 55.50 71.50

ProtoNet* ResNet-12 57.17 79.18

MAML Conv4 58.90 71.50

MAML* ResNet-12 63.59 79.78

RelationNet Conv4 58.10 72.55

RelationNet* Resnet-12 53.10 79.87

SNAIL Resnet-12 53.10 79.87

RFS-distill Resnet-12 73.90 86.90

TADAM* Resnet-12 66.72 84.41

Ours-Stage One Resnet-12 79.64 84.5

Ours-Stage Two Resnet-12 86.40 89.10

diversity in the outputs is maintained to avoid over-fitting and modelling the natural out-

put manifold structure. Once learned, our approach trains a student model that preserves

the original output manifold structure while jointly maximizing the model’s ability to

differentiate between the learned embeddings. Our empirical results on MiniImageNet

and CIFAR-FS provides some insights, 1) equivariant representations result in retaining

features that work well for novel classes, and 2) self-supervised learning learns general

features that might be useful for other downstream tasks such as image classification and

instance image segmentation that may require expensive annotations, and 3) equivariant

representations perform quite well in few-shot settings where data samples are scarce.

The results in this chapter show the benefit of using self-supervised learning where it
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Table 6.3: Few-shot classification results on MiniImageNet and CIFAR-FS with different

loss functions for Stage One and Stage Two.

MiniImageNet CIFAR-FS

Stage Loss Function 5-Shot 10-Shot 5-Shot 10-Shot

Stage One Lce 79.64 84.73 86.40 89.1

Lce + αLss 85.15 84.18 88.01 91.97

Stage Two Lce → LKD 82.14 83.76 86.91 92.35

Lce → LKD + βLl2 81.84 83.35 87.64 89.21

Lce + αLss → LKD 83.64 86.57 88.73 88.78

Lce+αLss → LKD+βLl2 83.54 87.21 88.91 90.19

compares favourably with the state-of-the-art for few-shot image classification.

The following chapter provides a summary of novel contributions, and a summary of

this thesis.



Chapter 7

Conclusion

7.1 Summary and Novel Contributions

The success of deep learning models has largely been attributed to the availability of large-

scale datasets. However, the acquisition of large amounts of labelled datasets is infeasible

in several real world problems due to the costs of annotations and rarity of some events.

Inspired by how humans learn, FSL targets this problem by learning a model on a set of

base classes and attempts to adapt this to novel classes using limited amounts of data.

Humans, and other animals can learn a new concept from just one example by using

previous knowledge that they already have [57].

FSL has predominantly been solved using optimisation-based meta-learning and met-

ric learning [61, 190, 206, 208, 214, 239]. These approaches explained in Chapter 2,

generally train a base learner that can learn a model using a few examples. Many other

follow-up studies to improve these predominant methods have been explored, making

FSL in image processing a growing area of research in recent years. Strong prior knowl-

edge and experience [20, 28, 42, 62, 71, 221, 231, 241] play a significant role in this

discrepancy between animal and deep neural networks. Similarity learning, therefore

turns out to be a very important strategy in FSL.

162
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Throughout this thesis, we proposed several novel deep learning-based methods specif-

ically designed to solve problems in which image data is scarce. In particular, we con-

sidered four computer vision problems of image classification, object detection, panoptic

segmentation, and self-supervised knowledge distillation in FSL. We believe that several

research directions can arise from this thesis, and particularly from this area of FSL in

computer vision. It is an area in its infancy, with vast, foreseeable applications in deep

learning systems development. The area is developing rapidly, and its applications are be-

coming a staple in our daily lives in homes, education, entertainment and industry. It have

given the computers the power to imagine and create new artefacts, and their development

continues everyday.

In Chapter 3, we introduce a novel meta-learning model for few-shot classification

that consists of dual meta-learners supervised by a central controller responsible for the

control of feature extraction, meta-learning, and meta-ensemble module for integrated

inference and generalisation. Our method is competitive with other state-of-the-art few-

shot classifiers that make use of meta-learners, and those that employ metric-learners.

Each meta-learner is composed of a pre-trained encoder fine-tuned by batch training and

a parameter-free decoder used for prediction. We use ResNet-152 for learning feature

representations fθ of input and ImageNet pre-trained weights. We then optimize the clas-

sifier by using the cosine distance with a learnable scale parameter in the feature space

in the meta-training stage. We provide empirical evaluation on the Omniglot, Oxford

Flowers102 and MiniImageNet datasets. Our approach differs from the widely adopted

meta-learning approaches due to the introduction of the dual meta-learners, and the imple-

mentation of the central controller. This area of meta-learning in few-shot classification

is still being widely studied.

A recent wave of new object detection benchmarks [16, 20, 21, 130, 219, 234, 241,

243] aims at addressing the recognition of object detection inherent in these systems, cou-

pled with identifying the objects’ specific positions in images. The use of the Transformer,
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based on the attention mechanism is widely accredited for improving these object detec-

tion applications. Chapter 4 introduces an approach for few-shot object detection that

meta-learns object localisation and classification in an end-to-end manner based on the

Transformer. Our method, based on DETR [20], encodes input images into feature em-

beddings that then feed into a category-agnostic decoder to generate predictions for the

specific object categories. To facilitate meta-learning, a module is designed that aligns

semantics of high-level and low-level features representations. All the modules are de-

signed in multi-scale architecture to enable multi-scale object detection. By leveraging

these diverse few-shot models, coupled with new few-shot learning datasets, and adopt-

ing benchmarks with stricter evaluation protocols, we believe that the object detection

and vision community will make significant leaps forward.

Chapter 5 contributes to the problem of object recognition and detection, and also adds

image segmentation to instance objects and the background in panoptic segmentation by

producing a mask around objects and the background. The chapter presents a model for

scene understanding using few-shot end-to-end panoptic segmentation model that aims

to predict and represent instance objects and background regions in a fully-convolutional

backbone. The approach, based on MaxDeepLab [243] first extracts multiple features in

a shared decoder-encoder network, and uses an object detector from support examples

capable of separating target objects from the background thereby resolving class overlaps

for non-overlapping segmentation using masks. Due to the difficulty associated with

combining the two separate tasks of instance segmentation and semantic segmentation,

panoptic segmentation has not been widely studied though it represents one of the areas

in computer vision with various application areas.

Cognisant of the fact that deep learning models can easily over-fit on the scarce data

available in FSL settings, Chapter 6 takes a different approach by proposing to learn

robust equivariant representations of image inputs, and corresponding true output clas-

sification manifold via self-supervised learning and knowledge distillation for few-shot
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image classification. Our approach operates in two stages, first, the model learns to clas-

sify inputs such that the diversity in the outputs is not lost in augmented versions, thereby

avoiding over-fitting and modelling the natural output manifold structure. Once this struc-

ture is learned, our approach uses a teacher model that trains a student model through

knowledge distillation to enhance generalizability for image classification.

In this thesis, we adopted problem setups of classification, object detection, and panop-

tic segmentation in few-shot learning using different datasets that have been designed for

different purposes, including for classification, object detection and panoptic segmen-

tation. We focussed on proposing novel techniques in few-shot learning settings, and

left considerations of domain differences and datasets to future work. These datasets

exhibit very distinctive biases as shown by the differences in results, the reason why dif-

ferent datasets have often been considered as being entirely different domains. At the

moment, working on universal representation learning from multiple domains, e.g. by

[130, 186, 241, 287] remains a challenge. It would be valuable to understand if, in a

more challenging scenario in which domains are disjoint, meta-learning methods have

significant edge over similarity-based approaches such as prototypical networks.

7.2 Broader Impact

This work aims to equip computers systems with capabilities to learn new concepts us-

ing only a few examples, an area known as few-shot learning. We believe that several

research directions can arise from this thesis, and particularly from this area of few-shot

learning in computer vision. Developing deep learning models that can generalize to a

large number of object classes using only a few examples is a challenging problem area,

especially with limited computing resources. The area has numerous potential applica-

tions with a positive impact on society. Examples include robotics, augmented reality and

virtual reality, among many others, and can be used in many areas such as manufactur-
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ing, health care, agriculture, transportation and sports. Vision systems allow computer

systems to understand the environment around them and enhance the capabilities of ma-

chines to see, recognise, and identify instances the same way people do. Few-shot learn-

ing takes machines closer to humans by learning from few examples, with the potential to

reduce expensive and laborious data acquisition and expensive annotation effort required

to learn models in domains including image classification, object detection, and panoptic

segmentation.

The approaches used in this thesis compare favourably with the state-of-the-art for

few-shot learning on selected datasets in terms of performance. Many novel computer

vision datasets and algorithms are being developed, and they incorporate such parameters

as ten-fold cross validation; ideal model features, model parameters, and learning curves;

loss functions and metrics; other metrics for classification such as cross-entropy, preci-

sion, recall, f1 Score, and AUC ROC. These developments together with the availability

of free, special-purpose accelerators such as GPUs and TPUs by big enterprises such as

Google have accelerated the processing of deep learning workloads, and the availabil-

ity of these model comparison parameters, and they have been used in this work. Other

parameters such as the ease of training, speed of processing, development-based parame-

ters such as the use of statistical tests, for example ANOVA, Chi-Square; model lifetime,

or production-based parameters such as time and space complexity, offline and online

learning remain as future work.
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