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Abstract
The contamination of environmental waters with heavy metals and radionuclides is increasing because of rapid industrial and 
population growth. The removal of these contaminants from water via adsorption onto metal nanoparticles is an efficient and 
promising technique to abate the toxic effects associated with these pollutants. Among metal nanoparticle adsorbents, zinc 
oxide nanoparticles (ZnONPs) have received tremendous attention owing to their biocompatibility, affordability, long-term 
stability, surface characteristics, nontoxicity, and powerful antibacterial activity against microbes found in water. In this 
review, we considered the adsorption of heavy metals and radionuclides onto ZnONPs. We examined the isotherm, kinetic, 
and thermodynamic modeling of the process as well as the adsorption mechanism to provide significant insights into the 
interactions between the pollutants and the nanoparticles. The ZnONPs with surface areas (3.93 to 58.0  m2/g) synthesized 
by different methods exhibited different adsorption capacities (0.30 to 1500 mg/g) for the pollutants. The Langmuir and 
Freundlich isotherms were most suitable for the adsorption process. The Langmuir separation factor indicated favorable 
adsorption of all the pollutants on ZnONPs. The pseudo-second-order kinetics presented the best for the adsorption of the 
adsorbates with regression values in the range of 0.986–1.000. Spontaneous adsorption was obtained in most of the studies 
involving endothermic and exothermic processes. The complexation, precipitation, ion exchange, and electrostatic interac-
tions are the probable mechanisms in the adsorption onto ZnONPs with a predominance of complexation. The desorption 
process, reusability of ZnONPs as well as direction for future investigations were also presented.
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Abbreviations
A  Equilibrium binding energy (L/mg)
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B  Temkin’s constant (mg/g)

β  Dubinin–Radushkevich energy constant 
 (mol2/J2)

C  Intercept of intraparticle diffusion
Ce  Equilibrium concentration (mg/L)
ΔG°  Standard Gibbs free energy change (kJ/mol)
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ΔH°  Standard enthalpy change (kJ/mol)
ΔS°  Standard entropy change (J/mol K)
ε  Polanyi potential
FTIR  Fourier transform infrared
K1  Pseudo-first-order rate constant  (min−1)
K2  Pseudo-second-order rate constant (g/mg 

min)
Kd  Intraparticle diffusion rate constant (mg/g 

 min1/2)
KF  Freundlich adsorption capacity (mg/g)
KL  Langmuir adsorption constant (L/mg)
n  Freundlich adsorption intensity
qe  Adsorption capacity (mg/g)
qL  Maximum monolayer adsorption capacity 

(mg/g)
qm  Theoretical saturation capacity (mg/g)
qt  Adsorption capacity at a given time (mg/g)
R2  Coefficient of determination
RL  Separation factor
SEM  Scanning electron microscopy
t  Adsorption time (min)
USEPA  United States Environmental Protection 

Agency
XPS  X-ray photoelectron spectroscopy
XRD  X-ray diffraction
ZnONPs  Zinc oxide nanoparticles

Introduction

Clean water is needed all over the world for the health and 
well-being of living things (Tortajada and Biswas 2018). 
Clean water scarcity has become a serious problem in most 
developing, as well as some developed countries (Falk-
enmark 2022). This is due to rapid technological growth, 
industrial effluent pollution, a fast increase in human popu-
lation, and irregular rainfall, affecting water quality (Bello 
et al. 2018). Regular use of modern facilities and products in 
our day-to-day activities, such as petrol in cars, plastics, tex-
tile clothing, food products, and drugs, just to mention a few, 
have generated large amounts of waste products, which have 
significantly contaminated pristine water bodies (Ahmad and 
Danish 2018; Ogbu et al. 2019). The use of polluted waters 
has resulted in severe adverse effects on plants, humans, and 
living organisms in general (Ezemonye et al. 2019; Lellis 
et al. 2019). Groundwater which is the most reliable source 
of clean water for use by the local population in develop-
ing countries is rapidly being polluted from the agricultural 
application of pesticides and fertilizers, as well as from 
organic and inorganic effluent discharge from industries 
(Edokpayi et al. 2018; Kiwaan et al. 2020; Asiwaju-Bello 
et al. 2020). In recent years, toxic pollutants were found 
to be present in unacceptable quantities in water in some 

developing countries, which poses a serious health threat to 
the local population (Ahmad and Danish 2018; Imran et al. 
2020). Previously, when pollutant discharge to the environ-
ment was still low, contaminated waters were easily remedi-
ated by the adsorption process of soil, allowing clean water 
to penetrate, filter through, and get accumulated in under-
ground water sources. Recently, due to the sharp increase in 
the release and concentration of pollutants, the soil uptake 
capacities have become saturated, thus also allowing the 
penetration of pollutants to underground sources.

Heavy metals are one of the most dangerous contaminants 
damaging the environment (Vardhan et al. 2019). Metals are 
natural elements that have been mined from the soil and used 
for human industry and products for millennia, making them 
a prominent source of worldwide distributed pollution. The 
massive growth in heavy metals use over the last few decades 
has undoubtedly resulted in an increase in metallic substance 
flux in the aquatic and terrestrial environment (Gautam et al. 
2016). Due to their toxicity, longevity in the environment, 
non-biodegradability, and accumulation in the food chain, 
heavy metal contamination in aqueous media and industrial 
effluents is a serious ecological hazard (Chukwuemeka-
Okorie et al. 2018; Mitra et al. 2022). At certain amounts, 
most heavy metals are carcinogenic. Zinc, copper, nickel, 
mercury, cadmium, lead, cobalt, arsenic, and chromium 
are toxic heavy metals of particular concern in the envi-
ronment (Uddin 2017; Chakraborty et al. 2022). Similarly, 
the rising usage of radioactive materials in nuclear power 
plants, nuclear medicine, research, industry, and agriculture 
has raised the likelihood of radioactive water pollution (Yu 
et al. 2015). There have been various nuclear incidents in 
the past that have resulted in direct radioactive poisoning of 
water. These include the Fukushima Daiichi nuclear power 
plant accident in Japan in 2011, the Chernobyl disaster in 
Russia in 1986, the Three Mile Island nuclear power plant 
accident in the United States in 1979, the Kyshtym nuclear 
power plant explosion in Russia in 1975, and the K-19 
nuclear power plant explosion in the North Atlantic in 1961 
(Wang and Zhuang 2019; Kumar et al. 2020). The pollution 
of environmental waters with radionuclides such as uranium, 
thorium, selenium, lanthanum, cerium, ruthenium, and vana-
dium can also be associated with some toxic effects at a 
certain concentration (Gendy et al. 2021; Hassan et al. 2022; 
Akl 2022; Niu et al. 2022; Ji and Zhang 2022). The sources, 
harmful effects, and the United States Environmental Protec-
tion Agency’s (USEPA) permissible limits of heavy metals 
and radionuclides in drinking water are presented in Table 1.

As a result of the hazardous effects associated with heavy 
metal and radionuclide pollution of environmental waters, 
numerous strategies for treating contaminated waters have 
been developed. Electrochemical treatment, forward osmo-
sis, flotation, reverse osmosis, lime softening, ion exchange, 
filtration, adsorption, solvent extraction, electrodialysis, 
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photocatalysis, precipitation, and coagulation/flocculation 
are just a few of the processes available (Ibeji et al. 2020; 
Qasem et al. 2021; Karimi et al. 2022; Xu et al. 2022b). 
Most of these systems, however, cannot be deployed on a 
large scale because of high capital costs, hazardous inter-
mediate production, and the inability to regenerate and self-
clean (Crini and Lichtfouse 2019; Ghamry and Abdelmonem 
2022). Adsorption, on the other hand, is an efficient and 
cost-effective method for removing heavy metals and radio-
nuclides from water at very low concentrations due to the 
low risk of secondary contamination, cheap cost, simplicity, 
ease of operation, and simple adsorbent regeneration (Lee 
and Shin 2021; Liu et al. 2022; Xu et al. 2022a; Ankrah 
et al. 2022). As a result, adsorbents like agricultural waste, 
biochar, activated carbon, clay, polymer, nanoparticles, 
metal–organic framework, graphene, chitosan, and zeolite 
have been used to treat heavy metal and radionuclide-con-
taminated water (Yu et al. 2015; Renu et al. 2017; Gupta 
et al. 2021; Xu et al. 2022b).

Nanomaterials have recently acquired popularity as 
potential adsorbents for pollutant removal in wastewater 
treatment. This is because nanostructured adsorbents have 
substantially greater efficiencies and faster adsorption rates 
in water treatment than traditional materials, owing to their 
high surface area (Sadegh et al. 2017; Tee et al. 2022). Zinc 
oxide nanoparticles (ZnONPs) in particular have attracted 
a lot of attention among nanoparticle adsorbents because of 
their biocompatibility, affordable price, long-term stability, 
surface characteristics, photocatalytic activity, nontoxicity, 
and powerful antibacterial activity against microbes often 
found in water (Akbar et al. 2019; Gu et al. 2020; Akpomie 
et al. 2021). As a result, various studies on the adsorption 
of heavy metals and radionuclides onto ZnONPs have been 
conducted (Kumar et al. 2013; Kaynar et al. 2014; Azizi 
et al. 2017; Lagashetty et al. 2020; Gu et al. 2020; Alqahtany 
and Khalil 2021; Davarnejad and Nikandam 2022). Due to 
the importance of ZnONPs in water treatment, a review of 
their capability as a water decontaminating agent via adsorp-
tion and photocatalysis was written (Bharti et al. 2022). 
Another review recorded the synthetic parameters influenc-
ing the characteristics of ZnONPs and their use in wastewa-
ter treatment (Shaba et al. 2021). Likewise, the synthesis and 
characterization of ZnONPs were also documented (Agarwal 
et al. 2017; Rl et al. 2019). However, the existing reviews 
lacked information on the isotherms, kinetics, and thermody-
namics of adsorption onto ZnONPs, which is essential for a 
thorough knowledge of any adsorption process. Only a basic 
sectional description of heavy metal polluted water treat-
ment was provided in the reviews. This review addresses this 
shortcoming by offering valuable insight into these model 
interpretations as they pertain to heavy metal and radioactive 
adsorption onto ZnO nanoparticles. The equilibrium adsorp-
tion capacities obtained for the adsorption of heavy metals Ta
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and radionuclides under different experimental conditions 
were examined. The isotherms, kinetics and thermodynam-
ics were evaluated in addition to the regeneration and reuse 
of ZnONPs. Moreover, the mechanism of adsorption of 
the heavy metals and radionuclides onto ZnONPs was also 
considered.

Adsorption capacity of ZnONPs

The adsorption of heavy metals and radionuclides on 
ZnONPs can be expressed in terms of the adsorption capac-
ity. Unlike the percentage removal, which is a representation 
of the adsorbate (heavy metals and radionuclides) removed 
from the solution, the adsorption capacity is a characteristic 
of the adsorbent (ZnONPs). The percentage removal only 
expresses the amount of adsorbate removed from the solution 
at equilibrium but does not give an adequate representation of 
the amount of adsorbate present on the adsorbent (Gu et al. 
2020; Rezaei-Aghdam et al. 2021). Thus, the affinity of an 
adsorbent for different adsorbates is effectively compared 
by considering the adsorption capacity of the adsorbent for 
the pollutants in solution. Moreover, certain experimental 
factors such as solution pH, contact time, adsorbent dose, 
temperature, and adsorbate concentration could influence 
the adsorption capacity of an adsorbent material (Hegazy 
et al. 2021; Yadav and Dasgupta 2022). Therefore, such 
experimental conditions must also be provided alongside the 

adsorption capacity for a holistic and reliable comparison. 
Several studies on the adsorption of heavy metals and radio-
nuclides onto ZnONPs presented a wide range of adsorption 
capacities for the various pollutants. For example, in 2015, 
the adsorption of thorium (IV) onto ZnONPs was performed 
and a high adsorption capacity of 1500 mg/g was obtained, 
which indicated the potency of ZnONPs for the decontamina-
tion of thorium-contaminated water (Kaynar et al. 2015). In 
2017, the green synthesis of ZnONPs using zerumbone was 
conducted and applied for the adsorption of lead (II) ions 
as shown in Fig. 1. The zerumbone-mediated green synthe-
sized ZnONPs were found to be efficient in the uptake of 
Pb(II) with an adsorption capacity of 15.65 mg/g at 300 K 
and pH 5.0 (Azizi et al. 2017). The following year, a much 
higher adsorption capacity of 434.8 mg/g was obtained for 
commercially ZnONPs for Pb(II) ions at pH 6.5 and a tem-
perature of 298 K (Yin et al. 2018). This indicates that the 
method of preparation or source of the nanoparticle as well 
as the experimental conditions could significantly influence 
the adsorption capacity for a particular pollutant. In another 
report, solvothermal synthesized ZnONPs exhibited adsorp-
tion capacities of 5.084 mg/g, 2.248 mg,/g, and 1.761 mg/g 
for Cu(II), Cd(II) and Ni(II) ions, respectively, after appro-
priate conversions from mmol/g (Wang et al. 2018). The 
enhanced adsorption ability of ZnONPs toward Cu(II) 
revealed a relatively stronger selective adsorption. The bind-
ing force between heavy metal ions and ZnONPs accounts 
for such selectivity. The adsorption of heavy metal ions is 

Fig. 1  The schematic represen-
tation of the green synthesis of 
zinc oxide nanoparticles using 
zerumbone and its applica-
tion in the adsorption of Pb(II) 
ions from solution (Azizi et al. 
2017). Zerumbone crystals were 
dissolved in 100 mL ethanol at 
room temperature with gentle 
stirring. After complete dis-
solution, 2.19 g of zinc acetate 
dihydrate was added to the 
zerumbone solution to react 
for 2 h at 70 °C with constant 
magnetic stirring. The white 
solid was recovered by centrifu-
gation at 8000 rpm for 15 min, 
washed with ethanol to remove 
excess zerumbone, and dried 
for 2 h at 100 °C. The obtained 
ZnONPs were used for Pb(II) 
ions adsorption and showed 
the occurrence of a chelating 
mechanism via the zerumbone 
moiety
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based on the electronegativity of the metal ions and the sur-
face hydroxyl groups of ZnONPs (Wang et al. 2013). Cu(II), 
Ni(II), and Cd(II) have electronegativities of 2.00, 1.91, and 
1.69, respectively, resulting in the strongest copper-OH bond 
among these three heavy metals (Wang et al. 2018). The 
hydrolyzable characteristics of heavy metals also alter the 
affinity between the heavy metals and the surface of ZnONPs. 
Metal ions that are easily hydrolyzed have a strong affinity 
for the surface (Mustafa et al. 2002). The obtained adsorption 
capacities followed the order Cu(II) > Ni(II) > Cd(II), which 
corresponds to the electronegativity order. The induced 
selectivity of the hydroxyl group of ZnONPs for the metal 
ions was verified by the attenuated total reflection-Fourier 
transform infrared (ATR-FTIR) before and after adsorp-
tion as shown in Fig. 2. The ATR-FTIR hydroxyl shifts at 
3400   cm−1 and the increased metal–oxygen absorptions 
supported the higher uptake of Cu(II) ions onto ZnONPs. 
Recently, hydrothermal synthesized ZnONPs were prepared 
and characterized with the X-ray diffraction (XRD) as shown 
in Fig. 3. The hydrothermal synthesized ZnONPs revealed 
crystalline phases corresponding to the wurtzite hexagonal 
form of ZnONPs with an adsorption capacity of 64.6 mg/g 
for Ba(II) ions (Abdulkhair et al. 2021). The result showed 

the potency of ZnONPs in the treatment of barium-polluted 
water via adsorption technique.

A summary of the adsorption capacity of ZnONPs for 
heavy metals and radionuclides uptake from solution is 
presented in Table 2. It is observed that the ZnONPs used 
so far in the adsorption of heavy metals and radionuclides 
apart from the commercial ones are prepared by the green, 
sol–gel, precipitation, solvothermal, co-precipitation, 
chemical reduction, hydrothermal, and the combustion 
methods. Moreover, the surface areas presented by the 
ZnONPs were in the range of 3.93–58.0  m2/g, with the 
highest value obtained from the hydrothermal synthe-
sis. The surface area was much lower than other potent 
adsorbents with high surface areas such as activated car-
bon (200–2640  m2/g) (Pui et al. 2019) and metal–organic 
frameworks (1000–10,000  m2/g)(Li et al. 2019). Despite 
the comparably low surface area presented by the ZnONPs, 
they exhibited significantly high adsorption capacities of 
380–1500 mg/g for Pb(II), Cd(II), Hg(II), V(V), Th(IV), 
and U(VI) ions. This indicates that a low surface area of 
an adsorbent does not imply a low adsorption capacity 
of the material (Akpomie and Conradie 2020a) and that 
the adsorption efficiency of an adsorbent is not solely 
dependent on the surface area. This deduction was cor-
roborated by the high adsorption capacity of 1111 mg/g 
obtained in the adsorption of U(VI) onto ZnONPs with 
low surface areas of 3.93–8.72   m2/g (Kaynar et  al. 
2014). In general, the adsorption capacities in the range 
of 0.30–1500 mg/g were obtained for the adsorption of 
heavy metals and radionuclides onto ZnONPs except for 

Fig. 2  The attenuated total reflection-Fourier transform infrared spec-
tra of a ZnONPs before adsorption and after adsorption of b Ni(II) c 
Cd(II) and d Cu(II) ions from solution. Reproduced from (Wang et al. 
2018) with permission from Elsevier. The peaks of hydroxyl groups 
(3400   cm−1) migrated to lower wavenumbers after the adsorption of 
Ni, Cd, and Cu ions, showing that the adsorption might be attrib-
uted to the interaction between the metal ions and hydroxyl groups. 
Meanwhile, when compared to pure ZnONPs, the absorption peaks 
of metal-O located around 546  cm−1 of the Zn–O stretching enhanced 
after adsorption, suggesting that metal-O bonding was created after 
engaging with hydroxyl groups, particularly significant for the Cu–O 
bond. The hydroxyl group shift of ZnO (30.2  cm−1) following Cu ion 
adsorption is larger than that of Ni (8.9   cm−1) and Cd (2.2   cm−1), 
indicating that ZnO and Cu have the strongest binding contact

Fig. 3  The X-ray diffraction of ZnO nanoparticles prepared by 
hydrothermal synthesis. Reproduced from (Abdulkhair et  al. 2021) 
with permission from Elsevier. The peaks at 31.71°, 34.38°, 36.30°, 
47.52°, 56.56°, 62.91°, and 67.93° correspond to the (10 0), (0 02), 
(101), (102), (110), (103), and (112) planes of zinc oxide nanopar-
ticles, respectively. The diffractions are consistent with the wurtzite 
hexagonal structure of zinc oxide nanoparticles (JCPDS 36-1451)
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Table 2  Adsorption of heavy metals and radionuclides onto zinc oxide nanoparticles

Pollutant ZnONPs prepa-
ration method

qe (mg/g) Method of  qe 
determination

SA  (m2/g) Time (min) pH Temp (K) Conc (mg/L) References

Lead(II) Green synthesis 15.65 Langmuir – 60 5.0 303 10 (Azizi et al. 
2017)

Lead(II) Commercial 434.8 Langmuir – 30 6.5 298 50 (Yin et al. 2018)
Lead(II) Sol–gel 27.4 Experimental 48.8 – – 328 – (Abbasi-Chianeh 

et al. 2019)
Lead(II) Microwave-

assisted green 
synthesis

595.6 Experimental 11.44 30 5.6 298 500 (Alharthi et al. 
2021)

Lead(II) Microwave-
assisted green 
synthesis

– – – 60 – – 300 (Lagashetty et al. 
2020)

Lead(II) Microwave-
assisted 
biogenic 
synthesis

166.7 Langmuir - – 5.5 Room temp 100–200 (Radhakrishnan 
et al. 2016)

Lead(II) Commercial 112.7 Experimental 31.2 120–180 6.0 298 10–300 (Mahdavi et al. 
2012)

Cadmium(II) Co-precipita-
tion

– – – 120 10 – – (Bharti et al. 
2021)

Cadmium(II) Solvothermal 2.248 Experimental – 600 6.0 Room temp 0.19 mmol/L (Wang et al. 
2018)

Cadmium(II) Modified Sol–
gel

217.4 Langmuir 8.25 120 7.0 328 50 (Khezami et al. 
2017a)

Cadmium(II) Microwave-
assisted 
biogenic 
synthesis

149.6 Langmuir – – 5.5 Room temp 100–200 (Radhakrishnan 
et al. 2016)

Cadmium(II) Commercial 119.1 Experimental 31.2 120–180 6.0 298 10–300 (Mahdavi et al. 
2012)

Cadmium(II) Precipitation 384 Langmuir – 120 5.5 303 100 (Sheela et al. 
2012)

Mercury(II) Precipitation 714 Langmuir – 120 5.5 303 100 (Sheela et al. 
2012)

Mercury(II) Microwave-
assisted green 
synthesis

– – – 60 – – 300 (Lagashetty et al. 
2020)

Cobalt(II) Sol–gel 102.1 Langmuir 8.25 720 7.0 300 50 (Khezami et al. 
2017b)

Arsenic Co-precipita-
tion

– – – 15 2.0 – – (Bharti et al. 
2021)

Arsenic(V) Sol–gel method 1.903 Experimental – 120 – – 20 (Hassan et al. 
2019)

Arsenic(V) Commercial 0.85 Experimental – 15 6.0 – 2.0 (Muensri and 
Danwittayakul 
2017)

Arsenic(III) Precipitation 52.63 Langmuir – 105 7.0 323 30–90 (Yuvaraja et al. 
2018)

Palladium(II) Green synthesis 83.33 Langmuir – 91 55 Ambient temp 77.5 (Davarnejad 
and Nikandam 
2022)

Copper(II) Commercial  − 18.28 Langmuir 45.58 1200 4.8 Room temp 25 (Leiva et al. 
2021)

Copper(II) Commercial 91.74 Langmuir – 30 6.0 298 20–100 (Ali and Hassan 
2022)
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Cu(II) adsorption reported (Leiva et al. 2021), where a 
negative adsorption capacity was presented. It is rare to 
obtain a negative adsorption capacity for an adsorbent as 
other researchers obtained a positive adsorption capacity 
(5.084–137.5 mg/g) of ZnONPs for Cu(II) ions (Mahdavi 
et al. 2012; Wang et al. 2018; Primo et al. 2020; Ali and 
Hassan 2022). Moreover, from Table 2, several studies 

have been conducted on the adsorption of heavy metals on 
ZnONPs (except for Mn(II) ions) with only a few reports 
on radionuclides adsorption. Therefore, future research on 
adsorption onto ZnONPs should focus on the treatment 
of water contaminated with manganese and radionuclides 
such as radium, ruthenium, and radon.

Table 2  (continued)

Pollutant ZnONPs prepa-
ration method

qe (mg/g) Method of  qe 
determination

SA  (m2/g) Time (min) pH Temp (K) Conc (mg/L) References

Copper(II) Green syn-
thesis and 
gelatinization

10.95–20.43 Langmuir – 240 4.0 298 50 (Primo et al. 
2020)

Copper(II) Solvothermal 5.084 Experimental – 600 6.0 Room temp *0.19 mmol/L (Wang et al. 
2018)

Copper(II) Commercial 137.5 Experimental 31.2 120–180 6.0 298 10–300 (Mahdavi et al. 
2012)

Nickel(II) Commercial 100 Langmuir – 30 6.0 298 20–100 (Ali and Hassan 
2022)

Nickel(II) Solvothermal 1.761 Experimental – 600 6.0 Room temp *0.19 mmol/L (Wang et al. 
2018)

Nickel(II) Commercial 48.6 Experimental 31.2 120–180 6.0 298 10–300 (Mahdavi et al. 
2012)

Chromium(VI) Precipitation 9.38 Langmuir 15.75 35 2.0 303–323 3.0 (Kumar et al. 
2013)

Chromium(VI) Surfactant-
mediated 
chemical 
synthesis

12.2 Langmuir 18.39 90 2.0 323 9.0 (Pandey and 
Tripathi 2017)

Chromium(VI) Chemical 
reduction

– – – 60 5.0 – 100 (Mandal and 
Kumar 2015)

Chromium(VI) Microwave-
assisted 
solvothermal 
synthesis

0.3–5.11 Experimental 32.1 600 4.0 – 10.8 (Zhao and Qi 
2012)

Chromium(III) Hydrothermal 88.57 Langmuir 26.78 20 3.0 – 20 (Gu et al. 2020)
Barium(II) Hydrothermal 64.6 Langmuir 58.0 55 9.0 293 40 (Abdulkhair 

et al. 2021)
Zinc(II) Precipitation 357 Langmuir – 120 5.5 303 100 (Sheela et al. 

2012)
Selenium(IV) Co-precipita-

tion
– – – 120 2.0 – – (Bharti et al. 

2021)
Selenium(IV) Commercial 31.95 Langmuir – 15 4.0 353 50–300 (Huang 2015)
Lanthanum(III) Precipitation 

and green 
synthesis

92.2–113.2 Langmuir – 1440 4.3 298 100 (Alqahtany and 
Khalil 2021)

Cerium(III) Precipitation 
and green 
synthesis

40.3–69.3 Langmuir – 1440 4.3 298 100 (Alqahtany and 
Khalil 2021)

Vanadium(V) Commercial 357.14 Langmuir – 30 6.5 298 50 (Yin et al. 2018)
Thorium(IV) Microwave-

assisted 
combustion

1500 Langmuir – 60 5.0 293 50 (Kaynar et al. 
2015)

Uranium(VI) Microwave-
assisted 
combustion

1111 Langmuir 3.93–8.72 60 5.0 303 50 (Kaynar et al. 
2014)
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Adsorption isotherm modeling

An adsorption isotherm describes the equilibrium perfor-
mance of adsorbents at a constant temperature. The adsor-
bent, adsorbate species, and other physical parameters of 
the solution, such as temperature, ionic strength, and pH, 
all influence the equilibrium isotherm (Yan et al. 2017). 
Adsorption isotherms are established when the adsorbent 
and the adsorbate come into contact at a time when the 
interface concentration is in dynamic balance with the 
adsorbate concentration in the bulk solution. Adsorption 
isotherms are commonly utilized in the design of commer-
cial adsorption processes as well as material characteriza-
tion. The equilibrium isotherm provides the most crucial 
piece of information for a comprehensive understanding of 
an adsorption process (Al-Ghouti and Da’ana 2020). Fur-
thermore, adsorption isotherm models describe the mech-
anistic interactions between contaminants and adsorbent 
materials by taking into account both adsorption param-
eters and equilibrium data.

The Langmuir, Freundlich, Temkin, and Dubinin–Radu-
shkevich isotherm models are the most used isotherm 
models applied in the adsorption of pollutants from solu-
tion onto various adsorbents. The Langmuir isotherm is 
based on a monolayer surface coverage with identical and 
equivalent definite localized sites for adsorption. There 
should be no steric hindrance or lateral contact between 
the adsorbed molecules, even on nearby sites. The Lang-
muir isotherm model implies that adsorption is homogene-
ous, with each molecule having the same constant enthalp-
ies and sorption activation energy. The isotherm involves 
no adsorbate transmigration in the surface plane, and all 
sites should have the same affinity for the adsorbate (Gupta 
et al. 2021; Hamidon et al. 2022). The Langmuir model 
equation is written in linear form as (Umeh et al. 2021):

The appropriateness of the Langmuir isotherm to the 
adsorption process is indicated by a straight line obtained 
from plotting Ce/qe against Ce. On the other hand, a revers-
ible and non-ideal adsorption process is described by the 
Freundlich isotherm model. The Freundlich model, unlike 
the Langmuir isotherm model, is not bound to monolayer 
formation and can be applied to multilayer adsorption. 
Adsorption heat and affinities do not need to be evenly 
distributed across the heterogeneous surface in this model. 
The surface heterogeneity, as well as the exponential dis-
tribution of active sites and their energies, is defined by the 
Freundlich isotherm model (Al-Ghouti and Da’ana 2020). 
The linear expression of the Freundlich isotherm model is 
written as (David et al. 2020):

(1)
Ce

qe
=

1

qLKL

+
Ce

qL

A straight line obtained from the plot of log qe ver-
sus log Ce confirms the applicability of the Freundlich 
isotherm. Furthermore, by neglecting extremely low and 
high concentrations, the Temkin model assumes that the 
heat of adsorption of all molecules in the adsorbent layer 
decreases linearly rather than logarithmically with cover-
age. It is characterized by a uniform distribution of bind-
ing energies until maximum binding energy. The Temkin 
equation is good for forecasting gas-phase equilibrium, but 
it rarely fits complex adsorption systems involving liquid-
phase adsorption (Foo and Hameed 2010). The Temkin 
isotherm equation is written in its linearized form as:

A straight line formed by plotting qe versus ln Ce indi-
cates the Temkin isotherm’s suitability for the adsorption 
process. Moreover, the Dubinin–Radushkevich isotherm 
model does not presuppose a homogeneous surface or a 
constant adsorption potential of the Langmuir model. The 
distribution of Gaussian energy onto heterogeneous sur-
faces is generally connected to this adsorption isotherm. 
This model, unlike the Langmuir and Freundlich iso-
therms, is a semiempirical equation using the pore-filling 
mechanism. Multilayer adsorption with Van der Waal's 
forces is also assumed in this model (Al-Ghouti and 
Da’ana 2020). The Dubinin–Radushkevich isotherm equa-
tion is written in linear form as (Dawodu and Akpomie 
2014):

Applicability of the Dubinin–Radushkevich isotherm to 
the adsorption is verified by a linear plot of ln qe versus ε2.

Table 3 shows the applied isotherm and best fit mod-
els for the adsorption of heavy metals and radionuclides 
onto ZnONPs. It is observed that the Freundlich. Lang-
muir, Temkin, Dubinin–Radushkevich, Sips, and Halsey 
isotherm models have been applied so far in adsorption. 
Moreover, the Langmuir model was found to give the 
best fit to the adsorption of Pb(II), Hg(II), Co(II), As(III), 
Cr(III), Ba(II), Zn(II), Se(IV) and V(V) with coefficients 
of determination (R2) in the range 0.988–1.000. However, 
in one of the studies, the Sips isotherm also provided the 
best fit alongside the Langmuir model in the adsorption of 
Pb(II) ions (Radhakrishnan et al. 2016). The implication 
of the good fit of the Langmuir model to the adsorption of 
these metal ions on ZnONPs is that process is restricted 
to monolayer adsorption onto a homogenous surface. On 
the other hand, the Freundlich model presented the best 
fit to the radionuclide adsorption of Pd(II), La(III),and 

(2)logqe = logKF +
(

1

n

)

logCe

(3)qe = BlnA + BlnCe

(4)ln qe = ln qm + ��2
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Table 3  The isotherm modeling of heavy metals and radionuclides adsorption onto ZnO nanoparticles

Adsorbate Isotherm models 
applied

Best-fitted model Coefficient of 
determination 
(R2)

Constants for the 
best-fitted model

Freundlich n value References

Lead(II) Langmuir, Freun-
dlich, Temkin

Langmuir 0.9970 KL = 0.3898 2.504 (Yin et al. 2018)

Lead(II) Langmuir, Freun-
dlich

Langmuir 0.9957 KL = 0.042 20.64 (Somu and Paul 2018)

Lead(II) Langmuir, Freun-
dlich

Langmuir 0.988 KL = 0.059 2.34 (Azizi et al. 2017)

Lead(II) Langmuir, Freun-
dlich, Sips

Langmuir, Sips 0.9900 KL = 0.19 3.704 (Radhakrishnan et al. 
2016)QS = 169.23

KS = 0.10
nS = 1.369

Lead(II) Langmuir, Freun-
dlich

None – – – (Mahdavi et al. 2012)

Cadmium(II) Langmuir, Freun-
dlich

Langmuir 0.9945 KL = 0.026 2.10 (Somu and Paul 2018)

Cadmium(II) Langmuir, Freun-
dlich

Langmuir 0.9956 KL = 5.2 1.818 (Khezami et al. 2017a)

Cadmium(II) Langmuir, Freun-
dlich, Sips

Sips 0.9500 QS = 157.2 1.695 (Radhakrishnan et al. 
2016)KS = 0.005

nS = 0.493
Cadmium(II) Langmuir, Freun-

dlich
Freundlich 0.9920 KF = 3.03 1.130 (Mahdavi et al. 2012)

Cadmium(II) Langmuir, Freun-
dlich

Langmuir 0.9962 KL = 1.814 1.179 (Sheela et al. 2012)

Mercury(II) Langmuir, Freun-
dlich

Langmuir 0.9979 KL = 4.686 1.676 (Sheela et al. 2012)

Cobalt(II) Langmuir, Freun-
dlich

Langmuir 0.9931 KL = 0.028 3.31 (Somu and Paul 2018)

Cobalt(II) Langmuir, Freun-
dlich

Langmuir 0.9999 KL = 0.105 3.00 (Khezami et al. 2017b)

Arsenic(III) Langmuir, Freun-
dlich

Langmuir 0.9990 KL = 5.42 1.621 (Yuvaraja et al. 2018)

Palladium(II) Langmuir, Freun-
dlich, Temkin

Freundlich 1.000 KF = 5.89 0.5 (Davarnejad and 
Nikandam 2022)

Copper(II) Langmuir, Freun-
dlich, Halsey

Halsey 0.9909 nH = 1.3303 1.329 (Ali and Hassan 2022)

Copper(II) Langmuir, Freun-
dlich, Temkin

Freundlich 0.9880 KF = 264.9 0.56 (Leiva et al. 2021)

Copper(II) Langmuir, Freun-
dlich

None – – – (Mahdavi et al. 2012)

Copper(II) Langmuir, Freun-
dlich

Langmuir 0.9920 KL = 0.447 0.946 (Primo et al. 2020)

Nickel(II) Langmuir, Freun-
dlich, Halsey

Freundlich, Halsey 0.9942 KF = 4.825 1.2802 (Ali and Hassan 2022)
nH = 1.28
KH = 3.768

Nickel(II) Langmuir, Freun-
dlich

Freundlich 0.991 KF = 0.319 1.086 (Mahdavi et al. 2012)

Chromium(VI) Langmuir, Freun-
dlich

Langmuir, Freun-
dlich

0.9900 KF = 5.37 1.622 (Kumar et al. 2013)

Chromium(VI) Langmuir, Freun-
dlich

Freundlich 1.000 KF = 0.25 1.0 (Pandey and Tripathi 
2017)

Chromium(III) Langmuir, Freun-
dlich, Temkin

Langmuir 0.9951 KL = 0.4912 4.167 (Gu et al. 2020)
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U(VI) on ZnONPs attributed to a multilayer heterogene-
ous uptake. However, more than one isotherm model was 
found to be applicable in the adsorption of Cd(II), Cu(II), 
Ni(II), Cr(VI,) and Ce(III) indicating complex adsorp-
tion involving multiple mechanisms occurring simultane-
ously. Chemisorption usually includes the formation of a 
monolayer (Langmuir isotherm), whereas physisorption 
entails the formation of a multilayer (Freundlich isotherm) 
(Al-Ghouti and Da’ana 2020). However, it is not recom-
mended to conclude on the chemical or physical nature 
of adsorption based on the good fit of the Langmuir or 
Freundlich model alone, rather a reliable conclusion would 
involve a holistic consideration of the isotherm, kinetics 
thermodynamics, desorption, and mechanistic interpre-
tations. Furthermore, the favorability of the adsorption 
process or efficient interaction between the metal ions in 
solution and ZnONPs can be deduced from the Freundlich 
n value in the range of 1–10 (Chukwuemeka-Okorie et al. 
2021). As shown in Table 3, it is observed that the values 
of n obtained for heavy metals and radionuclides adsorp-
tion were all in the favorable range except for a few stud-
ies involving the adsorption of Cu(II), Pb(II) and Pd(II) 
(Somu and Paul 2018; Primo et al. 2020; Leiva et al. 2021; 
Davarnejad and Nikandam 2022). This shows that metal 
contaminants in water and ZnONPs have a good affin-
ity for efficient water decontamination. Besides, efficient 
interaction between the metal ions and ZnONPs (favora-
ble adsorption) can also be obtained from the Langmuir 
separation factor (RL = 1/(1 + KLCo). The separation fac-
tor indicates whether the adsorption is linear (RL = 1), 

irreversible (RL = 0), unfavorable (RL > 1), or favorable 
(0 < RL < 1) (David et al. 2020). Again, the calculated RL 
values (not shown) in all the studies were in the favora-
ble range which confirms the suitability of ZnONPs in 
the decontamination of wastewater polluted with heavy 
metals and radionuclides. Other isotherms, such as Hills, 
Flory–Huggins, Scatchard, Redlich–Peterson, Toth, and 
Jovanovich models, should be included in future studies 
on adsorption onto ZnONPs to provide more insight into 
the adsorption process.

Kinetics of adsorption

Kinetic model assessments are crucial because they aid in 
the design of adsorption systems by assisting with reten-
tion times and reactor dimensions. They also provide crucial 
information on pollutant adsorption mechanisms involving 
diffusion and adsorption on active sites (Akpomie and Con-
radie 2020a). Adsorption is a complicated process that often 
involves a combination of surface adsorption and diffusion 
into the pores (Benjelloun et al. 2021). In the adsorption 
process, there are three basic steps. External mass transfer 
of the adsorbate from the bulk solution to the adsorbent's 
external surface comes first, followed by internal diffusion 
of the adsorbate to the sorption sites, and ultimately sorp-
tion. Some models assume that the rate-limiting stage in 
the adsorption process is sorption, whereas others assume 
that the rate-limiting step is diffusion. As a result of the fit-
ting to the kinetic models, the adsorption mechanism may 

Table 3  (continued)

Adsorbate Isotherm models 
applied

Best-fitted model Coefficient of 
determination 
(R2)

Constants for the 
best-fitted model

Freundlich n value References

Barium(II) Langmuir, Freun-
dlich

Langmuir 0.988 KL = 0.118 4.59 (Abdulkhair et al. 
2021)

Zinc(II) Langmuir, Freun-
dlich

Langmuir 0.9906 KL = 0.753 1.354 (Sheela et al. 2012)

Selenium(IV) Langmuir Langmuir  > 0.9900 – – (Huang 2015)
Lanthanum(III) Langmuir, Freun-

dlich, Temkin, 
Dubinin–Radush-
kevich

Freundlich 0.983 KF = 0.53–1.37 1.274–1.397 (Alqahtany and Khalil 
2021)

Cerium(III) Langmuir, Freun-
dlich, Temkin, 
Dubinin–Radush-
kevich

Langmuir, Freun-
dlich

0.982, 0.991 KL = 0.026 2.481, 2.538 (Alqahtany and Khalil 
2021)KF = 7.26

Vanadium(V) Langmuir, Freun-
dlich, Temkin

Langmuir 1.000 KL = 0.509 4.12 (Yin et al. 2018)

Thorium(IV) Langmuir, Freun-
dlich, Temkin

Langmuir, Freun-
dlich

0.9800 KL = 0.228 1.80 (Kaynar et al. 2015)
KF = 11.9

Uranium(VI) Langmuir, Freun-
dlich

Freundlich 0.9934 KF = 8.875 1.22 (Kaynar et al. 2014)
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be deduced (Largitte and Pasquier 2016). The pseudo-first-
order, pseudo-second-order, and intraparticle diffusion equa-
tions are three kinetic models mostly applied in the adsorp-
tion of pollutants from solution onto various adsorbents. 
According to the pseudo-first-order or Lagergren model, the 
rate of adsorption site occupancy is proportional to the num-
ber of vacant sites (Blázquez et al. 2011). The pseudo-first-
order equation is written in linear form as (Eze et al. 2021):

A linear fit obtained from the plot of log (qe–qt) versus t 
indicates the suitability of the pseudo-first-order model. On 
the other hand, the pseudo-second-order model assumes that 
sorption site occupation is proportional to the square of the 
number of empty sites. The pseudo-second-order equation 
is written in the linear form as (Pang et al. 2022):

A straight line obtained from the plot of t/qt against t con-
firms the applicability of the pseudo-second-order model. 
The pseudo-first-order and pseudo-second-order models do 
not provide information on the diffusion mechanism, and 
thus, information on the mechanism of diffusion can be 
obtained from the intraparticle diffusion model expressed 
as (Umeh et al. 2021; Mogale et al. 2022):

If the plot of qt vs t1/2 is linear and passes through the 
origin (C = 0), intraparticle diffusion is the only rate-deter-
mining step. However, adsorption is regulated by both film 
and intraparticle diffusion mechanisms when C is not equal 
to 0. The bigger the value of C and the greater the plot's 
divergence from linearity, the more substantial the film dif-
fusion (boundary layer diffusion) effect (An et al. 2022).

The kinetic models applied to the adsorption of heavy 
metals and radionuclides onto ZnONPs are presented in 
Table 4. Information on the best-fitted kinetic model, coef-
ficient of determination (R2), and model constants for the 
best-fitted model and diffusion mechanism is also pre-
sented. It is evident that the pseudo-second-order model 
presented the best for the adsorption of all the heavy met-
als and radionuclides onto ZnONPs with R2 values in the 
range 0.986–1.000. Many researchers over the years have 
attributed the best fit of the pseudo-second-order model 
to the chemisorption mechanism (Liu et al. 2022). Such 
a conclusion based on the best fit of the pseudo-second-
order model alone is not recommended as this model 
always presents a good fit to this kinetic adsorption data 
irrespective of the nature of adsorption or the rate-con-
trolling mechanism (Simonin 2016; Akpomie et al. 2017). 

(5)log
(

qe − qt
)

= logqe −
K
1

2.303
t

(6)
t

qt
=

1

K
2
qe

2
+

t

qe

(7)qt = Kdt
1∕2 + C

Rather, the pseudo-second-order model's good fit shows 
that the rate of adsorption is controlled by both the unoc-
cupied active sites in the adsorbent and the concentration 
of metal ions in the solution. It also implies that valence 
forces may be involved in electron exchange and sharing 
between the functional groups of the adsorbent and the 
adsorbate species (Vishan et al. 2019). This was corrobo-
rated by the previous discussion in Fig. 2, where a potent 
interaction between the hydroxyl groups of ZnONPs and 
the metals resulted in the formation of a metal–oxygen 
bond (Wang et al. 2018). Moreover, the pseudo-second-
order rate constant (k2) for the adsorption of different heavy 
metals and radionuclides on ZnONPs was in the range of 
1 ×  10–5–4.42 g/mgmin. The differences in the hydrated 
ionic radii of metal ions influence their rate of adsorption 
onto adsorbents, as metals with smaller ionic radii tend to 
diffuse faster resulting in a faster adsorption rate. In addi-
tion, the differences in other properties of the metals, such 
as electronegativity, acidity strength, and the  pKOH values 
of the metal hydroxides in solution, could also influence 
the rate of adsorption (Barka et al. 2013). Pertaining to 
the diffusion mechanism of adsorption, it is evident from 
Table 4 that a good number of researchers did not consider 
this. However, the investigations available demonstrated 
that both film and intraparticle diffusion play a role in the 
overall adsorption of heavy metals and radionuclides on 
ZnONPs, with varying degrees of contribution. This sug-
gests that the adsorption of the pollutants on ZnONPs is a 
complex process involving several mechanisms. However, 
in order to arrive at a more elaborate conclusion, future 
research on the adsorption of heavy metals and radionu-
clides should also take into consideration the diffusion 
kinetics. Moreover, additional kinetics models, such as the 
Elovich, Bangham, Crank, Boyd, and film diffusion, could 
also be used to gain a better understanding of the kinetics 
of adsorption onto ZnONPs (Qiu et al. 2009; Largitte and 
Pasquier 2016).

Thermodynamics of adsorption

The thermodynamics of adsorption is significant because it 
reveals how temperature influences the adsorption process. 
It also gives useful information about adsorption's feasibil-
ity or spontaneity, the process's exothermic or endothermic 
nature, the system's disorderliness or randomness, and the 
physical or chemical nature of adsorption (Mogale et al. 
2022). The calculation of thermodynamic parameters such 
as Gibbs free energy changes (ΔG°), entropy changes (ΔS°), 
and enthalpy changes (ΔH°) yields this crucial thermody-
namic information. The three thermodynamics parameters 
are calculated from the Gibbs free energy and Van’t Hoff’s 
equations expressed as (Ezekoye et al. 2020):
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Table 4  The kinetic modeling of heavy metals and radionuclides adsorption onto ZnO nanoparticles

Pollutant Kinetic models 
applied

Best fit model R2 Constants for best 
fit model

Diffusion model References

Lead(II) Pseudo-first-order, 
Pseudo-second-
order, Intraparti-
cle diffusion, film 
diffusion

Pseudo-second-
order

0.986 qecal = 637.6
K2 = 0.00025

Both intraparticle 
and film diffusion

(Alharthi et al. 2021)

Lead(II) Pseudo-first-order, 
Pseudo-second-
order, Intraparti-
cle diffusion

Pseudo-second-
order

1.000 qecal = 227.8
K2 = 0.0093

Boundary layer 
diffusion partly 
involves intrapar-
ticle diffusion

(Yin et al. 2018)

Lead(II) Pseudo-first-order, 
Pseudo-second-
order

Pseudo-second-
order

0.9970 (303 K) qecal = 4.5
K2 = 0.048

– (Azizi et al. 2017)

Lead(II) Pseudo-first-order, 
Pseudo-second-
order

Pseudo-second-
order

0.9900 qecal = 149.61
K2 = 0.00001

– (Radhakrishnan et al. 
2016)

Lead(II) Pseudo-first-order, 
Pseudo-second-
order

Pseudo-second-
order

1.000 qecal = 50
K2 = 0.011

– (Mahdavi et al. 2012)

Cadmium(II) Pseudo-first-order, 
Pseudo-second-
order

Pseudo-second-
order

0.9948 qecal = 84.32
K2 = 0.0977

– (Somu and Paul 
2018)

Cadmium(II) Pseudo-second-
order

Pseudo-second-
order

0.9980 qecal = 0.015
K2 = 3.69

– (Wang et al. 2018)

Cadmium(II) Pseudo-first-order, 
Pseudo-second-
order

Pseudo-second-
order

0.9996 qecal = 121.95
K2 = 0.0096

– (Khezami et al. 
2017a)

Cadmium(II) Pseudo-first-order, 
Pseudo-second-
order

Pseudo-second-
order

0.9900 qecal = 121.81
K2 = 0.00001

– (Radhakrishnan et al. 
2016)

Cadmium(II) Pseudo-first-order, 
Pseudo-second-
order

Pseudo-second-
order

0.999 qecal = 19.23
K2 = 0.006

– (Mahdavi et al. 2012)

Cadmium(II) Pseudo-first-order, 
Pseudo-second-
order, Intraparti-
cle diffusion

Pseudo-second-
order

0.9994 qecal = 94.38
K2 = 0.00269

Both film diffusion 
and intraparticle 
diffusion

(Sheela et al. 2012)

Mercury(II) Pseudo-first-order, 
Pseudo-second-
order

Pseudo-second-
order

0.9989 qecal = 133.5
K2 = 0.0025

Both intraparticle 
and film diffusion

(Sheela et al. 2012)

Cobalt(II) Pseudo-first-order, 
Pseudo-second-
order

Pseudo-second-
order

0.9973 qecal = 71.78
K2 = 0.029

– (Somu and Paul 
2018)

Cobalt(II) Pseudo-first-order, 
Pseudo-second-
order, Intrapar-
ticle diffusion, 
Boyd

Pseudo-second-
order

0.9983 qecal = 78.74
K2 = 5.62

Both pore and film 
diffusion

(Khezami et al. 
2017b)

Arsenic(III) Pseudo-first-order, 
Pseudo-second-
order, Intraparti-
cle diffusion

Pseudo-second-
order

0.9890–0.9990 K2 = 0.0058–0.0091 Intraparticle dif-
fusion (but not 
solely)

(Yuvaraja et al. 2018)

Palladium(II) Pseudo-first-order, 
Pseudo-second-
order

Pseudo-second-
order

1.000 qecal = 11.7
K2 = 0.58

– (Davarnejad and 
Nikandam 2022)

Copper(II) Pseudo-first-order, 
Pseudo-second-
order

Pseudo-second-
order

0.9990 qecal = 51.28
K2 = 0.0054

– (Leiva et al. 2021)
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Table 4  (continued)

Pollutant Kinetic models 
applied

Best fit model R2 Constants for best 
fit model

Diffusion model References

Copper(II) Pseudo-second-
order

Pseudo-second-
order

0.9970 qecal = 0.13
K2 = 0.12

– (Wang et al. 2018)

Copper(II) Pseudo-first-order, 
Pseudo-second-
order

Pseudo-second-
order

1.000 qecal = 50
K2 = 0.011

– (Mahdavi et al. 2012)

Copper(II) Pseudo-first-order, 
Pseudo-second-
order

Pseudo-second-
order

0.9991 qecal = 9.67
K2 = 4.42

Both film diffusion 
and intraparticle 
diffusion

(Primo et al. 2020)

Nickel(II) Pseudo-second-
order

Pseudo-second-
order

0.9980 qecal = 0.028
K2 = 1.09

– (Wang et al. 2018)

Nickel(II) Pseudo-first-order, 
Pseudo-second-
order

Pseudo-second-
order

0.9980 qecal = 7.87
K2 = 0.002

– (Mahdavi et al. 2012)

Chromium(VI) Pseudo-first-order, 
Pseudo-second-
order, Intraparti-
cle diffusion,

Pseudo-second-
order

0.9900 qecal = 1.42 
(Co = 3 mg/L)

Intraparticle diffu-
sion but not solely

(Kumar et al. 2013)

Chromium(VI) Pseudo-first-order, 
Pseudo-second-
order, Intraparti-
cle diffusion,

Pseudo-second-
order

0.9980 (303 K) qecal = 21.63
K2 = 0.015

Mainly boundary 
layer diffusion, 
intraparticle dif-
fusion is not the 
rate-limiting step

(Pandey and Tripathi 
2017)

Chromium(III) Pseudo-first-order, 
Pseudo-second-
order, Intraparti-
cle diffusion,

Pseudo-second-
order

1.000 qecal = 19.95
K2 = 0.003

Boundary layer dif-
fusion but partly 
involves intrapar-
ticle diffusion

(Gu et al. 2020)

Barium(II) Pseudo-first-order, 
Pseudo-second-
order, Intraparti-
cle diffusion, film 
diffusion

Pseudo-second-
order

0.9990 qecal = 62.2
K2 = 0.62

Film diffusion but 
partly involves 
intraparticle dif-
fusion

(Abdulkhair et al. 
2021)

Zinc(II) Pseudo-first-order, 
Pseudo-second-
order, Intraparti-
cle diffusion,

Pseudo-second-
order

0.9945 qecal = 59.89
K2 = 0.00187

Both intraparticle 
and film diffusion

(Sheela et al. 2012)

Lanthanum(III) Pseudo-first-order, 
Pseudo-second-
order, Intrapar-
ticle diffusion, 
Elovich

Pseudo-second-
order

0.9980–0.9990 qecal = 18.70–24.78
K2 = 0.0011

Both boundary 
layer and intrapar-
ticle diffusion

(Alqahtany and 
Khalil 2021)

Cerium(III) Pseudo-first-order, 
Pseudo-second-
order, Intrapar-
ticle diffusion, 
Elovich

Pseudo-second-
order

0.9920–0.9970 qecal = 28.89–30.41
K2 = 0.00018–

0.00028

Both boundary 
layer and intrapar-
ticle diffusion

(Alqahtany and 
Khalil 2021)

Vanadium(V) Pseudo-first-order, 
Pseudo-second-
order, Intraparti-
cle diffusion,

Pseudo-second-
order

1.000 qecal = 322.58
K2 = 0.0034

Boundary layer 
diffusion (but not 
solely)

(Yin et al. 2018)

Thorium(IV) Pseudo-first-order, 
Pseudo-second-
order, Intrapar-
ticle diffusion, 
Elovich

Pseudo-second-
order

1.000 qecal = 11.88
K2 = 0.42

– (Kaynar et al. 2015)



Applied Water Science           (2023) 13:20  

1 3

Page 15 of 24    20 

A linear plot of ln  Kc versus 1/T allows for the determina-
tion of ΔH° and ΔS° from the slope and intercept of the plot, 
respectively. Generally, negative and positive values of ΔG° 
correspond to a spontaneous and non-spontaneous adsorp-
tion process, respectively (Eze et al. 2021). Similarly, posi-
tive and negative values of ΔS° are ascribed to an increase 
and decrease in randomness at the adsorbent/adsorbate inter-
face, respectively (Singh et al. 2022). Furthermore, positive 
ΔH° is indicative of endothermic adsorption, while negative 
ΔH° values correspond to an exothermic process. Moreover, 
the magnitude of ΔH° in the range of 21.0–418.4 kJ/mol 
or less than 21.0 kJ/mol indicates the dominance of chem-
isorption or physisorption in the overall adsorption process, 
respectively (Nanthamathee and Dechatiwongse 2021). The 
thermodynamic parameters obtained for the adsorption of 
heavy metals and radionuclides onto ZnONPs are shown 
in Table 5. It is evident that spontaneous adsorption of the 
pollutants on ZnONPs was achieved in many studies due 
to the negative ΔHo values obtained. This suggests favora-
ble interaction between the heavy metals and radionuclides 
in solution and the ZnONPs adsorbent. However, a non-
spontaneous removal was obtained for the adsorption of 
Ba(II) at a higher concentration (100 mg/L) (Abdulkhair 
et al. 2021), which indicates that the higher concentration 
was not favorable for the adsorption. This was corroborated 
by the decrease in the magnitude of ΔH° from 79.22 to 
17.06 kJ/mol with an increase in concentration from 10 to 
100 mg/L showing a shift from stronger chemical interac-
tions to weaker physical bonding. In addition, non-sponta-
neous adsorption was also obtained at a higher temperature 
for Cd(II), Hg(II), Zn(II), and Ba(II) in some investigations 
(Sheela et al. 2012; Abdulkhair et al. 2021). This indicates 
that higher temperature was not supportive of the adsorp-
tion process as corroborated by the negative ΔH° obtained 
in these studies attributed to exothermic adsorption. For 
the ΔS°, both increase and decrease in the randomness at 
the ZnONPs/metal interfaces were observed in the studies, 
which was strongly influenced by the exothermic or exother-
mic nature of the process. Moreover, the uptake of some of 
the metals from the solution was endothermic, while others 
were exothermic, suggesting the suitability of ZnONPs in 
the adsorption of heavy metals and radionuclides at vari-
ous temperatures under tropical and temperate conditions 
(Akpomie and Conradie 2020a). According to the magni-
tude of ΔHo, the adsorption of Hg(II), Zn(II), Th(IV), and 
U(VI) is dominated by chemical forces, while the uptake of 
Co(II), As(III), Cu(II) and Ni(II) corresponds to a physi-
cal adsorption process. Recall from the kinetic analysis that 

(8)ΔG◦ = −RT lnKc

(9)lnKC = −
(

ΔH◦

RT

)

+
(

ΔS◦

R

)

the pseudo-second-order equation presented the best fit for 
all the metal ions and radionuclides. Therefore, as stated 
earlier, it would be misleading to conclude that an adsorp-
tion process is a chemisorption based on the good fit of the 
pseudo-second-order model alone. Therefore, a holistic 
consideration of the isotherm, kinetic, thermodynamic, and 
mechanism would be beneficial to arrive at a reliable clas-
sification of a process as physisorption or chemisorption.

Reusability of ZnO nanoparticles

When considering the costs of resources, adsorbent prepara-
tion, and secondary waste management, the performance of 
an adsorbent in reuse trials is critical for life-cycle assess-
ment. As a result, adsorbents' chemical and physical stabil-
ity must be maintained over a long period for them to be 
used on a large scale (Maia et al. 2021). Besides, desorp-
tion and reusability studies can also be used to determine 
the nature of the adsorbent–adsorbate interaction (physical 
or chemical adsorption) throughout the adsorption process. 
The adsorbate molecules are weakly bound to the adsorbent 
surface (physisorption), as evidenced by desorption through 
a neutral pH solution or water. If the desorption was carried 
out using a strong solvent, very acidic or basic solution, it 
is reasonable to assume that adsorbate molecules occupied 
the adsorbent surface via an ion-exchange mechanism or 
chemisorption (Akpomie et al. 2015). Although, this is 
not conclusive (Iwuozor et al. 2022). The usage of organic 
acid as a desorption solvent implies that a chemisorption 
mechanism was involved. A successful desorption process 
is entirely reliant on solvents that have been carefully cho-
sen. The solvent for the desorption process should be cho-
sen based on the adsorption mechanism. However, over the 
years, researchers have used desorbing solvents at random, 
without considering these factors (Ahmad and Danish 2022). 
Furthermore, an adsorbent must not only have a high adsorp-
tion capacity and quick removal kinetics, but it must also be 
able to be regenerated and reused over time to be designated 
as efficient for commercial application. Despite the impor-
tance of the reuse of adsorbents, only a few of the publica-
tions on the adsorption of heavy metals and radionuclides 
on ZnONPs conducted desorption and reusability experi-
ments as shown in Table 6. So far, hydrochloric acid, sodium 
hydroxide, nitric acid, methanol, water, calcium chloride, 
and ethyl acetate have been utilized as eluents, with hydro-
chloric acid solution predominating. The predominance of 
acid solution in the desorption of metal ions could be due 
to the reduced adsorption of these species at low pH values 
due to the increased competition or replacement with hydro-
gen ions on the surface of the adsorbent. It is also observed 
that the ZnONPs were successfully regenerated and reused 
from 2 to 10 adsorption–desorption cycles. Moreover, the 
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Table 5  Thermodynamic investigations on the adsorption of heavy metals and radionuclides onto ZnO nanoparticles

Pollutant Temp (K) ΔG° (kJ/mol) ΔS° (J/molK) ΔH° (kJ/mol) Comments References

Lead(II) 298  − 23.3  − 191.0  − 80.30 Spontaneous, exothermic, and a 
decrease in randomness at ZnONP/Pb 
interface

(Alharthi et al. 2021)

Lead(II) 303  − 16.19 0.70 11.13 Spontaneous, endothermic, and increase 
in randomness at ZnONP/Pb interface

(Azizi et al. 2017)
323  − 18.40
343  − 19.91

Cadmium(II) 298  − 0.365 32.3 9.334 Spontaneous, endothermic, and increase 
in randomness at ZnONP/Cd interface

(Khezami et al. 2017a)
306  − 0.775
313  − 1.271

Cadmium(II) 303  − 1.662  − 82.07  − 26.11 Spontaneous at lower temperatures, 
non-spontaneous at higher tempera-
tures, exothermic, and a decrease in 
randomness at ZnONP/Cd interface

(Sheela et al. 2012)
313  − 0.822
323  − 0.143
333 0.499
343 0.172

Mercury(II) 303  − 2.915  − 117.5  − 38.75 Spontaneous but non-spontaneous at a 
higher temperature of 343 K, exother-
mic, and a decrease in randomness at 
the ZnONP/Hg interface

(Sheela et al. 2012)
313  − 2.028
323  − 0.890
333  − 0.456
343 2.261

Cobalt(II) 298  − 60.83 28.0 6.075 Spontaneous, endothermic, and increase 
in randomness at ZnONP/Co interface

(Somu and Paul 2018)
303  − 537.7
308  − 596.8
313  − 652.7

Arsenic(III) 303  − 5.741 0.062 13.75 Spontaneous, endothermic, and increase 
in randomness at ZnONP/As interface

(Yuvaraja et al. 2018)
313  − 5.342
323  − 4.538

Copper(II) 298  − 6.704  − 9.11  − 12.25 Spontaneous, exothermic, and a 
decrease in randomness at ZnONP/Cu 
interface

(Ali and Hassan 2022)
308  − 6.143
318  − 5.999
328  − 6.130

Nickel(II) 298  − 7.802  − 32.83  − 17.77 Spontaneous, exothermic, and a 
decrease in randomness at ZnONP/Ni 
interface

(Ali and Hassan 2022)
308  − 7.91
318  − 7.223
328  − 6.899

Chromium(VI) 303  − 7.58 0.027  − 0.831 Spontaneous, exothermic, and increase 
in randomness at ZnONP/Cr interface

(Kumar et al. 2013)
313  − 7.87
323  − 8.14

Chromium(VI) 303  − 20.50 270 61.83 Spontaneous, endothermic, and increase 
in randomness at ZnONP/Cr interface

(Pandey and Tripathi 2017)
313  − 21.65
323  − 25.96

Barium(II) 293  − 5.259  − 0.252  − 79.22 Spontaneous, exothermic, non-spon-
taneous at 333 K, and decrease in 
randomness at ZnONP/Ba interface

(Abdulkhair et al. 2021)
I0 mg/L 313  − 0.213

333 4.838
Barium(II) 293 3.451  − 0.070  − 17.06 Non-spontaneous, exothermic, and 

decrease in randomness at ZnONP/Ba 
interface

(Abdulkhair et al. 2021)
100 mg/L 313 4.851

333 6.251



Applied Water Science           (2023) 13:20  

1 3

Page 17 of 24    20 

regeneration performance showed that ZnONPs were effi-
cient in the uptake of Pb(II), Cd(II), Co(II), Pd(II), Ba(II), 
and Se(IV) ions from the solution. This proves the viabil-
ity of ZnONPs for practical applications in the treatment 
of wastewater contaminated with these metals. However, 
poor regeneration and reuse were obtained in the adsorp-
tion of Cu(II) and Cr(VI) ions probably due to the poor 
performance of the eluent used. Therefore, other desorbing 
agents should be considered to achieve efficient desorption 
and reuse, which should be selected based on the mechanism 
of adsorption. Furthermore, because there are few data on 
the regeneration and reuse of ZnONPs in the adsorption of 
heavy metals and radionuclides, more research is needed.

Mechanism of adsorption onto ZnO 
nanoparticle

The mechanism of adsorption of heavy metals on adsor-
bents is usually via electrostatic interaction, hydrophobic 
interaction, chelation, ion exchange, hydrogen bonding, 
precipitation, reduction, complexation, π-π interaction, 
or weak Van der Waals interaction (Singh et al. 2020; 
Akpomie and Conradie 2020b). The adsorption process 
proceeds via one or a combination of two or more of 
these interactions. Several factors influence the mech-
anism, including the pH of the solution, the textural 
qualities of the adsorbent, and the chemical structure 
of the target molecules. Although pinpointing the spe-
cific interactions at work is difficult, many researchers 
find the Fourier transform infrared spectroscopy to be 
a useful technique for investigating solute–adsorbent 
interactions (Qureshi et al. 2020). The process might be 
predicted arbitrarily based on FTIR and surface charge 
since the adsorption mechanism is heavily influenced 
by surface functional groups (Ahmad and Danish 2022). 

The hydroxyl, amino, and carboxyl moieties are the 
main functional groups that interact with metals (Raja-
paksha et al. 2016). However, the functional groups of 
ZnONPs are mainly the hydroxyl groups, and hence, we 
expect a limited number of mechanisms in the removal 
of metals since metals do not possess adequate func-
tionalities as organic contaminants. Most investigations 
on the adsorption of heavy metals and radionuclides did 
not consider the adsorption mechanism. The few stud-
ies available only presented a cursory interpretation of 
the formation of bonds between the functional groups 
of ZnONPs and the metals (Kumar et al. 2013; Wang 
et al. 2018; Yuvaraja et al. 2018). Some studies proposed 
the complexation mechanism between the ZnONPs and 
metals, which was highly influenced by the solution pH 
(Khezami et al. 2017a; Azizi et al. 2017; Primo et al. 
2020). Yin et al. reported that the surface of ZnONPs 
contains hydroxyl groups due to the adsorption of water 
and partial dissociation of water molecules (Yin et al. 
2018). The abundance of hydroxyl groups affords sites 
for metal adsorption. The percentage of hydroxyl groups 
in ZnONPs dropped with the formation of metal–oxygen 
bonds, according to their FTIR and XPS studies, indicat-
ing that the hydroxyl groups were complexing with V(V) 
and Pb(II) via a complexation mechanism (Yin et  al. 
2018). Another study reported that the dominant mecha-
nism in the adsorption of Cu(II) ions onto ZnONPs was 
complexation and precipitation based on the pH study 
(Mahdavi et al. 2012). An ion-exchange mechanism was 
observed in another work by a drop in pH of the solu-
tion following adsorption of Cd(II) and Pb(II) due to the 
release of hydrogen ions (Radhakrishnan et al. 2016). 
Furthermore, electrostatic interaction was proposed in 
the adsorption of Cr(VI) as a result of the drop in the 
zeta potential of ZnONPs from 32.6 to 19.0 mV after 
adsorption at pH 4.0 due to the uptake of negatively 

Table 5  (continued)

Pollutant Temp (K) ΔG° (kJ/mol) ΔS° (J/molK) ΔH° (kJ/mol) Comments References

Zinc(II) 303  − 0.475  − 70.64  − 22.23 Spontaneous, non-spontaneous at 
higher temperatures, exothermic, and 
decrease in randomness at ZnONP/Zn 
interface

(Sheela et al. 2012)

313  − 0.117

323 0.731

333 1.512

343 2.266
Thorium(IV) 293  − 47.52 162.2 26.4 Spontaneous, endothermic, and increase 

in randomness at ZnONP/Th interface
(Kaynar et al. 2015)

303  − 49.12
313  − 50.74

Uranium(VI) 293  − 46.94 160.3 28.1 Spontaneous, endothermic, and increase 
in randomness at the ZnONP/U 
interface

(Kaynar et al. 2014)
303  − 48.54
313  − 50.15
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charged chromium species (Zhao and Qi 2012). There-
fore, based on these reports, the complexation, precipita-
tion, ion exchange, and electrostatic interactions are the 
probable mechanisms in the adsorption of heavy metals 
and radionuclides on ZnONPs with a predominance of 

complexation. However, due to the limited and superfi-
cial data currently available, future studies should focus 
on and undertake an in-depth analysis of the mechanism 
of adsorption of heavy metals and radionuclides onto 
ZnONPs.

Table 6  The reusability of ZnO nanoparticles in the adsorption of heavy metals and radionuclides

Pollutant Desorbing agent Cycle Regeneration performance References

Lead(II) Methanol and 0.005 M  HNO3 5 Good performance, a decrease from 
90.78% to 70.95% after the 5th 
cycle of reuse

(Alharthi et al. 2021)

Lead(II) 0.1 N HCl 5 Good performance, adsorption 
capacity decreased by 10–13% 
after the 5th cycle of reuse

(Somu and Paul 2018)

Lead(II) 0.1 M HCl 6 Efficient performance, only a slight 
decrease in adsorption after the 
6th cycle

(Radhakrishnan et al. 2016)

Cadmium(II) 0.1 N HCl 5 Good performance, adsorption 
capacity decreased by 10–13% 
after the 5th cycle of reuse

(Somu and Paul 2018)

Cadmium(II) Ethylacetate, methanol, and distilled 
water

3 Efficient performance, decrease per-
centage recovery from 90 to 79% 
after the 3rd cycle

(Khezami et al. 2017a)

Cadmium(II) 0.1 M HCl 6 Efficient performance, no significant 
change in adsorption after the 6th 
cycle

(Radhakrishnan et al. 2016)

Cobalt(II) 0.1 N HCl 5 Good performance, adsorption 
capacity decreased by 10–13% 
after the 5th cycle of reuse

(Somu and Paul 2018)

Palladium(II) HNO3 10 Efficient regeneration performance, 
only a slight decrease in adsorption 
from 99.24% to 93.8% after the 
10th cycle

(Davarnejad and Nikandam 2022)

Copper(II) Acid 3 Poor performance, less than 50% of 
the initial uptake after the  1st cycle 
of reuse

(Wang et al. 2018)

Chromium(VI) 0.1 N NaOH 2 Poor performance, a significant 
decrease in the adsorption of 
Cr(VI) from 93% to 18.6% after 
the 2nd cycle

(Kumar et al. 2013)

Chromium(VI) – – Authors claim the reusability was 
tested and the adsorbent was found 
to be promising but no result on 
the reusability was provided in the 
manuscript

(Mandal and Kumar 2015)

Barium(II) Double-distilled water and calcina-
tion at 400 °C for 2 h

4 Efficient performance, a slight 
decrease from 81 to 74% after the 
4th cycle

(Abdulkhair et al. 2021)

Cadmium(II), 
Copper(II), 
Nickel(II), Lead(II)

Deionized water and 0.01 M CaCl2 – The highest desorption efficiency of 
82.5% was obtained for Cd (II), but 
the other metals had poor desorp-
tion (< 40%). Reusability was not 
performed

(Mahdavi et al. 2012)

Selenium(IV) 0.5 M NaOH 5 Excellent performance, no obvious 
decrease in the uptake of Se (IV) 
after the 5th cycle of reuse

(Huang 2015)
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Conclusions and future recommendations

The poisoning of ambient waters with heavy metals and 
radionuclides is on the rise as a result of rapid technologi-
cal improvement. Humans and the ecosystem are both at 
risk from these toxins. Adsorption onto zinc oxide nano-
particles (ZnONPs) has been proven to be an efficient and 
low-cost method for treating contaminated wastewater. 
As a result, various investigations on the adsorption of 
heavy metals and radionuclides onto ZnONPs have been 
done. In this review, we looked at the isotherm, kinet-
ics, thermodynamics, and mechanism of adsorption of the 
contaminants on ZnONPs to gain a better understanding 
of the adsorption process. The ZnONPs produced using 
various techniques had surface areas ranging from 3.93 to 
58.0  m2/g and adsorption capacities ranging from 0.30 to 
1500 mg/g. In the isotherm analysis, the Langmuir model 
was shown to be the best fit for the adsorption of Pb(II), 
Hg(II), Co(II), As(III), Cr(III), Ba(II), Zn(II), Se(IV), and 
V(V), whereas the Freundlich model was adequate for 
Pd(II), La(III), and U(VI). The Langmuir separation fac-
tor showed favorable adsorption onto ZnONPs in all cases. 
The kinetic evaluation revealed that the pseudo-second-
order model presented the best fit in all reports with the 
occurrence of both film and intraparticle diffusion mecha-
nisms. The pseudo-second-order rate constant (k2) for the 
adsorption on ZnONPs was in the range of 1 ×  10–5–4.42 g/
mgmin. Thermodynamics revealed spontaneous adsorption 
of the heavy metals and radionuclides on ZnONPs (not 
in all cases). Moreover, both endothermic and exother-
mic processes were observed. Desorption investigations 
showed that hydrochloric acid, sodium hydroxide, nitric 
acid, methanol, water, calcium chloride, and ethyl acetate 
have been utilized as eluents with the predominance of 
hydrochloric acid. ZnONPs exhibited potent reusability 
in the uptake of Pb(II), Cd(II), Co(II), Pd(II), Ba(II), and 
Se(IV) ions but displayed poor performance for Cu(II) and 
Cr(VI). The complexation, precipitation, ion exchange and 
electrostatic interactions were the probable mechanisms 
in the adsorption of heavy metals and radionuclides on 
ZnONPs with a predominance of complexation. The over-
view demonstrated the potential of ZnONPs as an effi-
cient adsorbent in the decontamination of heavy metal and 
radionuclide-contaminated wastewater.

The investigations that are now available have some 
flaws or information gaps. Therefore, these flaws must 
be considered to broaden the scope of the application of 
ZnONPs for the adsorption of heavy metals and radio-
nuclides. Since industrial effluents contain various metal 
ions and radionuclides, more research into the competitive 
adsorption of these pollutants from multipollutant systems 
is needed. There are currently no studies on the adsorption 

of manganese and radionuclides such as radium, ruthe-
nium and radon onto ZnONPs, these aspects should also 
be considered. In the isotherm analysis, only the Lang-
muir, Freundlich, Temkin, Dubinin–Radushkevich, Hal-
sey and Sips isotherms have been analyzed. Therefore, 
other isotherms, such as Hills, Flory–Huggins, Scatchard, 
Redlich–Peterson, Toth and Jovanovich models, should be 
incorporated to gain a better understanding of the adsorp-
tion process. Few studies evaluated the diffusion mecha-
nism of adsorption; therefore, future research should also 
consider this. Moreover, additional kinetics models such as 
Bangham, Crank, Boyd and film diffusion could be applied 
to gain a better understanding of the kinetics of adsorption 
onto ZnONPs. Future investigations should consider holis-
tically the isotherm, kinetic, thermodynamic and mecha-
nism of adsorption when determining whether a process is 
a chemisorption or physisorption. This is to prevent draw-
ing erroneous conclusions about a chemisorption mecha-
nism based solely on the good fit of the pseudo-second-
order model. The reusability of ZnONPs in the adsorption 
of heavy metals and radionuclides is currently limited in 
the investigation. Future research should take this into 
account by using highly efficient solvents, selected based 
on the adsorption mechanism to obtain optimum reusabil-
ity. There are currently no comprehensive investigations 
on the mechanism of metal and radionuclide adsorption on 
ZnONPs, which should be examined to fully comprehend 
the treatment process. Considering these aspects will help 
provide significant insights into the design of ZnONPs 
adsorption systems for the treatment of real wastewater 
polluted with heavy metals and radionuclides.
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