
1

COOPERATIVE CONTROL AND OPTIMIZATION OF

ROBOTIC AGENTS

By

OBADAN SAMUEL OHIFEMEN

Submitted in accordance with the requirements

for the degree of

DOCTOR PHILOSOPHIAE

in the subject

COMPUTER SCIENCE

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: PROF. ZENGHUI WANG

JUNE 2022

2

ABSTRACT

The cooperate behavior that emerges from the interactions among simple multi-agent robots along

with the solution possibilities these interactions provide, has formed part of the growing research

areas in recent years within the confines of artificial intelligence. In this thesis, we explore these

possibilities leveraging single and multi-objective optimization on a machine-learning algorithm:

the artificial neural network. The rationale is to achieve goal oriented collaborative control (group

behavior) with regard to localizing multiple gradient sources during search operations. With a view

to solving the multisource localization problem, we develop an ingenious hybrid metaheuristics

algorithm for optimizing exploration (search-oriented) and exploitation (goal-oriented) in both

fully observable and partially observable domains. We compared the performance of our model

with the existing state of the art metaheuristic algorithms such as Simulated Annealing (SA),

Cuckoo-search (CK), Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) using 30

standard benchmark complex objective functions. Results showed significant improvement. The

homing (goal-oriented) operation introduced novel concepts for accelerating off-policy

reinforcement learning algorithm for Partially Observable Markov Decision Processes (POMDP)

via dynamic programming on a multi-agent framework. Finally, we demonstrated an ingenious

approach to the resampling phase of Monte Carlo’s particle filter (for robot localization) which

showed relatively significant improvement in the belief state estimation accuracy with respect to

ground truth within POMDP domains. The contribution of this research is twofold: firstly, it

presents a framework for search optimization while localizing multiple emission sources.

Secondly, it presents ingenious concepts for foraging, gradient source localization along with the

potential for search and rescue operations within POMDP environments.

Key terms: Genetic algorithm, Dynamic programming, Evolutionary Neural networks,

Cooperation, Search optimization, Hybridization, Reinforcement Learning, Particle filters,

Markov decision processes, POMDPs.

3

DECLARATION

Name: __Obadan Samuel Ohifemen_____________________________

Student number: __ 55769438___

Degree: __PhD (Computer Science)___________________________________

Exact wording of the title of the dissertation or thesis as appearing on the copies submitted for

examination:

Cooperative control and optimization of Robotic agents

I declare that the above dissertation/thesis is my own work and that all the sources that I have

used or quoted have been indicated and acknowledged by means of complete references.

_______________ _____30/3/2022__________
SIGNATURE DATE

4

ACKNOWLEDGEMENTS

My sincere gratitude goes to God Almighty, the giver of life and health, the only wise God, without

whom I am nothing.

To my darling spouse Diana whom encouraged and supported me all the way, and my loving

daughters Sapphire, Sharon, and Shiloh from whom I draw strength.

To my mother and Siblings for your support and prayers which I consider priceless.

To the best supervisor in the world, Prof. Zenghui Wang. For your fatherly role and mentorship,

professionalism and dedication, all I can say is THANK YOU!

5

LIST OF PUBLICATIONS

1. Samuel Obadan, Zenghui Wang, A HYBRID OPTIMIZATION APPROACH FOR

COMPLEX NONLINEAR OBJECTIVE FUNCTIONS. International Journal of

Computing, 17(2), pp. 102-112, 2018.

2. Samuel Obadan, Zenghui Wang, A MULTI-OBJECTIVE OPTIMIZATION APPROACH

TO ROBOT LOCALIZATION OF SINGLE AND MULTIPLE EMISSION SOURCES.

Procedia Manufacturing, 35, pp. 755-761, 2019.

3. Samuel Obadan, Zenghui Wang A MULTI-AGENT APPROACH TO POMDPS USING

OFF-POLICY REINFORCEMENT LEARNING AND GENETIC ALGORITHMS.

International Journal of Computing, 19(3), pp. 377-386, 2020.

6

TABLE OF CONTENTS

1 INTRODUCTION

1.1 Overview --14

1.2 Problem Statement ---15

1.3 Solution Approach ---16

1.4 Research Context ---16

1.5 Scope of Study --17

1.6 Synopsis ---18

2 LITERATURE REVIEW

2.1 Introduction ---19

2.2 Hill Climbing Algorithm (The successful single source localization) -------------------20

2.3 Biologically Inspired Algorithms --21

2.3.1 Glowworm Swarm Optimization (GSO) --21

2.3.2 Biasing Expansion Swarm Approach (BESA) ----------------------------------22

2.3.3 Particle Swarm Optimization (PSO) --24

2.3.4 Biased Random Walk Algorithm (BRW) --25

2.3.5 Attractant-Repellent Swarm ---26

2.4 Probabilistic Algorithms --27

2.4.1 Occupancy Grid Mapping using Bayesian Techniques ------------------------27

2.5 Comparative Analysis ---30

2.6 Conclusion --34

7

3 FORMAL BACKGROUND

3.1 Introduction ---35

3.2 Metaheuristic Algorithms ---40

3.2.1 Evolution computation ---41

3.2.2 Simulated Annealing (SA) ---41

3.2.3 Particle Swam Optimization (PSO) ---42

3.2.4 Cuckoos Search algorithm (CS) ---43

3.2.5 Hybrid Optimization --44

3.2.6 Evolution Neural Networks --44

3.3 Multi-Objective Optimization --46

3.3.1 Multi-Objective domination -- 46

3.3.2 The Non-dominated Sorting Genetic Algorithm (NSGA-II) -----------------47

3.4 Reinforcement Learning --47

3.5 MDP and POMDPs --48

3.6 Particle Filters algorithm --50

3.7 Conclusion --52

4 A HYBRID METAHEURISTIC OPTIMIZATION PARADIGM

4.1 Introduction ---53

4.2 Hybrid Frame Work Methodology ---53

4.3 Polygamy as an Exploitative Strategy for GAs ---56

4.4 Experiments ---57

4.5 Summary of Results --62

4.5.1 Hypothesis 1 (H1) ---66

4.5.2 Hypothesis 2 (H2) ---66

4.6 Discussion --70

4.7 Conclusion --71

8

5 MULTI-OBJECTIVE OPTIMIZATION APPROACH TO LOCALIZING MULTIPLE

EMISSION SOURCES

5.1 Introduction ---72

5.2 Methodology --73

5.2.1 ENNs (Evolutional Neural Networks) using Discrete Variables -------------74

5.2.2 Discrete variable encoding and decoding --74

5.2.3 Objective Function ---74

5.2.4 The population --75

5.2.5 Constraints ---75

5.2.6 Natural selection --76

5.2.7 Crossover (Mating) ---77

5.2.8 Mutation: ---77

5.2.9 The next Generation --78

5.3 ENNs (Evolutional Neural Networks) using Continuous Variables ---------------------80

5.3.1 Polygamy: a Mating Strategy --80

5.3.2 Choosing Best Practice ---82

5.3.3 Impact of hydrodynamics on the Robot’s search performance ---------------85

5.3.4 Experiment and results ---86

5.3.5 Implementing Particle filters: based on TDOA ---------------------------------90

5.4 Multi-Objective Optimization Approach to Multi-Source Localization ----------------92

5.4.1 Sensory feed backs ---93

5.4.2 Dynamic programming (DP) for modeling multiple gradient sources -------94

5.4.3 Calculating Fitness values (F1 and F2) ---95

5.5 Multi-Objective Results ---97

5.6 A Comparative Analysis with two Existing Models --------------------------------------100

5.7 Conclusion ---102

9

6 AGENT AND SOURCE LOCALIZATION IN POMDP ENVIRONMENTS

6.1 Introduction ---103

6.2 Methodology --104

6.3 Experiments and Results ---106

6.4 Monte Carlos Resampling Model --109

6.5 The AMCL (Adaptive Monte Carlos Localization) approach --------------------------113

6.6 Discussion of Results --115

6.7 Conclusion ---115

7 SUMMARY AND FUTURE WORK

7.1 Introduction ---117

7.2 Adapted hybrid model ---117

7.3 A Comparative Analysis with Existing Models --120

7.4 Conclusion ---122

7.5 Practical implementations ---123

7.6 Future research --123

REFERENCES 125

ADDENDUM A 136

ADDENDUM B 169

10

 LIST OF FIGURES

Fig. 2.1 the Biasing Expansion Swarm Approach. --22

Fig. 3.1 Flowchart for genetic algorithm. --41

Fig. 3.2 A two input multi-layer evolutionary neural network structure -----------------------------45

Fig. 3.3 Schematic for NSGA-II algorithm ---47

Fig. 4.1 High level abstraction of the hybrid frame work --54

Fig. 4.2. Hybrid frame work performance chart for all objective functions evaluations. ---------57

Fig. 5.1 Instantiation of a spool of 100 evolving robots within the obstacle oriented grid map --75

Fig. 5.2 Double brain feed forward neural network. --78

Fig. 5.3 comparing fitness performances for the traditional ENNs with Double Brain ------------79

Fig. 5.4 comparing fitness performances for the traditional ENNs with Double Brain ENNs ----80

Fig. 5.5 comparing fitness performances for the polygamy enhanced ENNs Roulette wheel ---- 82

Fig. 5.6 comparing performances of polygamy with double brain ENN (db poly 5:5), Boltzmann

Scaling --83

Fig, 5.7 Graphical representations of fitness scores --85

Fig. 5.8 Revised neural network architecture for maneuvering in a hydrodynamic environment.-85

Fig. 5.9 (a) Flows emanating from different directions: North->South, West -> East, East-> West,

South->North, and South-west ->North-East at a 450 angle. (b) Robot equipped with 5 sensors

separated at 45 degrees interval ---86

Fig. 5.10 Graphical representation of fitness scores of the best evolving robot for low, medium,

high, and random tide, over 50 generations in a hydrodynamic environment -----------------------88

Fig. 5.11 Graphical representation of fitness scores of the best evolving robot for diagonal low,

medium, high, and random tide, over 50 generations in a hydrodynamic environment -----------90

Fig. 5.12 Scenario 1 the robotic agent equipped with 5 sensor inputs into its feed-forward neural

network (brain) with 2 gradient sources in RED --92

Fig. 5.13 Optimization architecture pipeline ---93

Fig. 5.14 Scenario 2 the robotic agent equipped with 5 sensor inputs into its feed-forward neural

network (brain) with 2 gradient sources in RED. ---94

Fig. 5.15 modeling multiple emission sources on a grid world. --------------------------------------95

11

Fig. 5.16 Scenario 3 the robotic agent equipped with 5 sensor inputs into its feed-forward neural

network (brain) with 2 gradient sources in RED. --96

Fig. 5.17 Scenario 4 the robotic agent equipped with 5 sensor inputs into its feed-forward neural

network (brain) with 2 gradient sources in RED. --97

Fig. 5.18 the Pareto-optimal front for Scenario 1 ---97

Fig 5.19 the Pareto-optimal front for Scenario 2 --98

Fig. 5.20 the Pareto-optimal front for Scenario 3 ---98

Fig.5.21 the Pareto-optimal front for Scenario 4 --99

Fig. 6.1 Multi-agent RL environment. With walls (white cells), absorbing states (red cells),

dynamic door (blue cell) and goal node (green cell). --106

Fig. 6.2 Single agent reinforcement learning graph with respect to CPU-time ---------------------107

Fig. 6.3 Multi-agent (size of 4) reinforcement learning graph with respect to CPU-time --------107

Fig. 6.4 Multi-agent (size of 5) reinforcement learning graph with respect to CPU-time --------108

Fig. 6.5 Multi-agent (size of 4) feedforward neural network (with GA) learning graph with respect

to CPU-time, and Epochs. --109

Fig. 6.6 Agent motion model for POMDPs ---109

Fig. 6.7 Process flow diagram for traditional resampling and localization of belief state using

particle filters. Capital ‘A’ (Initial Random sample), Lowercase ‘a’ (resampled) ----------------110

Fig. 6.8 Agent belief state (particle filter) and actual state transition from start position (upper left)

to goal position (lower right) for traditional resampling. ---110

Fig. 6.9 Extended Process flow diagram for traditional resampling and localization of belief state

using particle filters --111

Fig. 6.10 Agent belief state (particle filter) and actual state transition from start position (upper

left) to goal position (lower right) for double phased resampling. ----------------------------------111

Fig. 6.11 Extended Process flow diagram for traditional resampling and localization of belief state

using particle filters. ---111

 Fig. 6.12 Agent belief state (particle filter) and actual state transition from start position (upper

left) to goal position (lower right) for triple phased resampling -------------------------------------112

Fig. 6.13 Modified Process flow diagram for traditional resampling and localization of belief state

using particle filters. Capital ‘(A, B, C D)’ (Initial Random sample), Capital A (selected sample),

Lowercase ‘a, b, c’ (resampled) with triple phased resampling. --------------------------------------112

12

Fig. 6.14 Agent belief state (particle filter) and actual state transition from start position (upper

left) to goal position (lower right) for preprocessed initialization with triple phased resampling. -

--113

Fig. 6.15 Agent belief state (particle filter) and actual state transition from start position (upper

left) to goal position (lower right) for the AMCL (KLD) --114

Fig. 6.16 (a) True negatives (the agent believes it’s in a wall (belief in RED) when it’s actually

not), (b) False positives (the agent believes it’s not in a wall, when it actually is). (c) True positives

(agents position and belief are approximately same). --114

Fig. 7.1 Adapted hybrid model ---119

13

LIST OF TABLES

Table 2.1 Multisource algorithms summary --30

Table 2.2. Other comparisons on odor-source localization --31

Table 4.1. Algorithm for Hybridized optimization Model ---55

Table 4.2 Minimum optimal values for each meta-heuristic f(X*) = cross validating global optimal

Values. --59

Table 4.3 ANOVA analysis of mean function calls of each meta-heuristic for all objective

functions. (* indicates “no significant difference”) ---60

Table 4.4. ANOVA analysis of mean global optimal values of each meta-heuristic for all objective

functions (* indicates “no significant difference”) --61

Table 4.5. (a) Box plot representation of ANOVA on the mean number of function calls (H1).

ANOVA on hypothesis 1(H1)- the mean number of function calls ----------------------------------67

4.5. (b.) ANOVA on hypothesis 2(H2)- the mean best optimal value obtained for each meta-

heuristic algorithm. ---67

Table 5.1 Effect of polygamy on ENN using Roulette wheel (R001 and R01) Tournament selection

(T001 and T01). Were 001 represents a mutation rate of 0.001 and 01 a mutation rate of 0.01.--81

Table 5.2 Comparing performances of polygamy on double brain ENN, Boltzmann Scaling,

polygamy on ENN with tournament selection method and a fixed mutation rate of 0.01 ---------83

Table 5.3 Comparing performances of polygamy with double brain ENN (db poly 5:5), Boltzmann

Scaling (Boltzmann), with four other meta-heuristic optimizers. -------------------------------------84

Table 5.4 Summary Results for Trial 1 to 4 --87

Table 5.5 Results for Trial 5 --89

Table 5.6 Adapted Summary of multi-search options and their characteristics. --------------------100

Table 7.1 Algorithm for the adapted hybrid model --118

Table 7.2 (a) Adapted Summary of multi-search options and proposed model --------------------121

Table 7.2 (b) Adapted Summary of multi-search options and proposed model --------------------122

14

CHAPTER 1

INTRODUCTION

1.1 Overview

Early implementations of collaborative robotics date back to the robot soccer tournaments where

teams of robots equipped with sensors, cameras, and internal processors, simultaneously recognize

the ball, sidelines, goal post as well as differentiate between team mates. Most of the components

that were originally designed for robot soccer tournaments have made their way into other

applications, such as localization, search and rescue operations, reconnaissance, lawn mowing and

domestic vacuum cleaners. The same concept used in Robot soccer are present even in more

advanced applications of autonomous robots. Roboticists are constantly in the art and science of

evolving algorithms to improve robots perception and navigation within disparate environments.

Some robot designs are constrained to operate within familiar environments such as can be found

with the lawn mowing robots, however on the flip side, an office-mowing robot may require a

more complex map building algorithm to aid navigation. More advanced models could analyze

and adapt to new environments via simultaneous mapping and localization algorithms even within

complex terrains. An example can be seen with the Rover Robot which builds a map using its

onboard sensors there by guiding the trajectory of the robot by avoiding unpleasant locations or

terrains. This is the underlying principle for the planet Mars exploratory robot.

Cooperation among robotic agents could emerge for the purpose of accomplishing a given goal.

There exist two types of cooperation: active and the non-active. In the former, robotic agents

exhibit collaborative behavior via an acknowledgement of each other, while in the later, cooperate

behavior emerges as each robotic agent embarks on its immediate goal. The phenomenon is also

referred to as oblivious cooperation.

The little or no sensing requirement for the design of robotics agents [1-4] in order to achieve

cooperate behavior has made this field a focal point of interest within the robotic research

community. In this thesis, we investigate the potentials of cooperate behavior among multiple

robotic agents for localizing multiple emission sources. In addition, we identify important areas

within the enclave of cooperative robots in order to propose a methodology for oblivious

collaboration among robotic agents when simultaneously localizing multiple gradient sources.

15

With recent advances in the field of artificial intelligence (AI), there has emerged a wide range of

efficient algorithms [5] which when skillfully hybridized could result in a plausible model for

solving some of the problems in the field. This thesis also leverages on some of the existing AI

optimization techniques such as Genetic Algorithms, Particle Swarm Optimization (PSO),

Cuckoos Search algorithm (CS), and Simulated Annealing (SA) [6-9]. The learning paradigm

leveraged on models such as ANNs (artificial Neural Networks) and RL (Reinforcement learning),

and finally for state estimation; the Particle filter algorithm. Since Markov Decision Processes

(MDPs) do not provide an accurate representation of the real world domain [10-12], due to the

uncertainty or rather incomplete knowledge of the state of the environment, we adopted the

POMDPs- Partially Observable Markov Decision Processes model for our final simulation.

1.2 Problem Statement

Among the existing algorithms for multisource localization, we do not find clear recommended

techniques for robotic agents to proceed with a search after a source is found. The missing piece

for the multisource localization problem is to find theoretic frameworks that would guarantee

progress (after a source has been localized), while driving the algorithm towards convergence, and

a proper termination of the search algorithm. Gazi and Passino [4] works on “attractant/repellent

swarm” has come close to solving this problem but however, the work was limited to single-source

searches.

When solving the multisource localization problems, some factors are taken into consideration;

such as: the complexity of the solution, the type of source/target and the predictability of the

environmental variables. The Bayesian Occupancy grid algorithm [13] is one commendable

attempt in providing solution to the above stated factors. Although this algorithm provides a near

optimal solution to the multisource problems, it however does not provide a clear path towards

progress after a gradient source has been localized. In addition, the literature lacked adequate

comparative analysis with other biological models/algorithms.

Finally, the question on the modalities for choosing the dependent and independent variables for

the purpose of a standardized comparative analysis has been left unanswered. Consequently, there

is a need for the validation of a variables such as: the initial distribution of gradient sources, the

16

location and presence of obstacles, etc. Such standards could help in comparing and contrasting

different models and algorithms against the back drop of their merits and demerits for disparate

domains. In this thesis, we provide an array of groundbreaking paradigms while addressing the

problems of the multisource localization.

1.3 Aim and Research Objectives

The objective of this study is to propose a framework for optimizing the exploration and

exploitation of multiple agents using a combination of algorithms to achieve oblivious

collaboration for solving the multisource localization problem. There have been campaigns in

recent years toward creating robots whose primary goal revolves around the need for robotic agents

to sample the distribution of gradient sources in order to localize them. These sources could be in

any of the following forms: physical, chemical, biological, and sometimes electromagnetic.

Although localizing single gradient sources have received great attention by researchers, the use

of multi-agent for localizing multiple gradient sources is still a very potent research axis which has

received far less attention comparatively. The challenges of the multi-source localization using

multiple agents are in 3 folds: Firstly, there exist the challenge of partitioning the robots during a

search in order to optimize the search duration, Secondly is the need for obstacle avoidance along

with the avoidance of other robots during the procedure, and Thirdly, the ability to proceed after

each source is found. In addition to these primary challenges, there is the quest for a theoretical

foundation with a guarantee for progress, convergence and termination of the search procedure.

Our objective is to propose a framework that leverages novel machine learning and optimization

paradigms to proffer solution to the above mentioned multisource localization problems

The research methodologies involved, literature reviews, [14-17] propositions, simulations, and

evaluations. Using a case study of multiple emission source localization problem, our research

encapsulated single objective optimization, multi-objective optimization, robot localization, swam

intelligence, POMDP domains, dynamic programming, genetic algorithm with other related meta-

heuristics algorithms, particle filters, reinforcement learning and artificial neural networks.

1.4 Research methodology

It is important to note that localization of multiple emission sources differs from that of observation

of multiple sources (often referred to as target locations). While the later involves the tracking

17

multiple target locations simultaneously [18], [19] with locations that are known prior to the

mission, the former on the contrary is involved with finding targets with unknown prior locations.

The general approach used in this thesis was both quantitative and experimental. Data were

collected via simulated iterations on complex multimodal objective functions. In keeping with the

tradition of existing literature for optimization problems, Analysis of Variance (ANOVA) was

adopted for the statistical evaluation. Computer programs such as C++ for windows 7 and higher,

was used for our simulation.

The proposed framework towards the multi-source localization utilized standard measurement

matrices in literature such as Swarm size, Source Number, Source type, Source mobility, Variable

source intensity, Dead space, Communication range, Agent deployment, Computational

complexity, Obstacle avoidance, Sensing requirement etc. for measuring the performance of the

proposed algorithm. The overall methodology was aimed at sustaining best practices in answering

our research questions and satisfying our research objectives.

Consequently, we adapt a model for the multisource localization problem which leverages on

ingenious artificial intelligence techniques such as; a novel hybrid optimization, MDPs and

POMDPs, particle filter, dynamic programming, and the multi-objective optimization. The multi-

objective optimization uses the machine learning qualities of the artificial neural networks

(ANNs) for a group of robots by leveraging on their basic yaw and thrust actuators in order to

achieve collaborative control (group behavior) amidst localization of multiple emission sources.

The final model incorporates an additional agent which we refer to in this context as the MDP-

agent. While the preliminary test utilized only two agents, the incorporation of the third agent

(MDP-agent) brought robustness and a relatively stable solution to the multisource localization

problem.

1.5 Scope of the Study

This thesis demonstrates via software simulations the dynamics of Multi-objective evolutionary

algorithms combined with artificial neural networks in solving the multisource localization

problems of progress (after a source is found), convergence, and termination of the search

operation. Consequently, the hardware dynamics and physics of a typical robotic agent in the real

world were not accounted for. In addition, we assumed the emission sources were fixed for both

18

fully and partially observable 2 Dimensional worlds. Finally, the robot motion dynamics were

restricted to oblivious collaboration among multiple agents towards a predefined goal.

1.6 Structure of the thesis

• Chapter 2 presents a background theory on which the paradigm for optimizing control of

multi-agents is based.

• Chapter 3 covers different implementations proposed by researchers for multi-source

localization, along with their merits and demerits.

• Chapter 4 provides a novel optimization metaheuristic algorithm with a comparative

analysis of 30 different benchmark multi-modal objective functions.

• In chapter 5, the performance of metaheuristic optimization on artificial neural networks

for single and multiple objectives are investigated.

• Novel concepts for localization in a POMDP environment are considered in chapter 6.

• In chapter 7 (summary and future work) we piece together the innovations and algorithms

from previous chapters into a holistic model for resolving the multisource problem along

with the results from experiments, and thereafter concluded with our recommendations

and future directions.

19

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

There have been campaigns in recent years toward creating robots that can replace humans in a

vast domain of applications [20], especially in fields that place humans in harm’s way. Voinov and

Nosikov [21] demonstrated a typical example of such domains in the handling of nuclear waste.

Algorithms investigated in these domains incorporate applications in reconnaissance and

surveillance, object identification and localization, localization of chemical, biological, and

radiological materials [22, 23]. In cases of natural disasters, search and rescue operations have also

gained popularity. Nanorobotics has not been left out of the campaign as interest in detecting

infectious cells in human tissue has gained momentum [24].

The primary focus in these applications revolves around the need for robotic agents to sample the

distribution of gradient sources in order to localize them. These sources could be in any of the

following forms: physical, chemical, biological, and sometimes electromagnetic.

 Although localizing single gradient sources has received great attention by researchers, the use of

multi-agent for localizing multiple gradient sources is still a very potent research axis which has

received far less attention comparatively. The challenges of the multi-source localization using

multiple agents are in 3 folds: Firstly, there exists the challenge of partitioning the robots during a

Search in order to optimize the search duration; Secondly is the need for obstacle avoidance along

with the avoidance of other robots during the procedure [25] and Thirdly, the ability to proceed

after each source is found. In addition to these primary challenges, there is the quest for a

theoretical foundation with a guarantee for progress, convergence, and termination of the search

procedure.

There exist three main paradigms that have attempted to provide general solutions to the multi-

source localization problem. The least complicated of them was derived from the gradient ascent

techniques that Rozas et al. [26] referred to as hill climbing. The other paradigm which is relatively

more complicated is inspired by biological systems such as the biological swarms by Krishnanand

and Ghose [27]: Gazi and Passino [3] and the E.coli bacteria proposed by Dhariwal et al. [28].

20

The third paradigm utilizes probabilistic methods such as Bayesian occupancy grids, proposed by

Pang and Farrell [29], and was squealed the following year by Ferri et al. [30].

This chapter investigates the contributions of each of these paradigms along with their merits and

demerits in solving the multi-source localization problem.

 2.2 HILL CLIMBING ALGORITHM (Single source localization)

Some of the earliest success stories for single-source localization can be attributed to the works of

Rozas et al. [26] which involved robots that could trace a gas concentration gradient to its source

using an electronic nose. Subsequent researches showed that localizing a single gradient source

could be optimized when more robots are deployed [31]. Some other successful stories involve

burrowing robots tracing an underground chemical concentration up its gradient to the source

location. The use of mobile sensors has not been left out in the pursuit of the solution to the source

localization problem. Bachmayer and Leonard [32], demonstrated a hill-climbing algorithm for a

vehicle network that could localize a gradient source via its artificial inter-vehicle ability.

The domain of Nanorobotics finds expression in the hill-climbing algorithm. Hogg [33]

implemented a technique such that with the aid of short-range acoustic sensors, Nanorobots could

detect and communicate chemical signals produced by the injured cells while migrating towards

the cell or tissue. The success of this model can be attributed to a large amount of Nanorobots that

are deployed into the bloodstream which aids a downstream communication among the robots.

The success of the hill-climbing so far has been limited to the single source localization. This

underpins one of its major drawbacks. The algorithms based on hill-climbing lacks the capacity to

guarantee multi-source localization. This is as a result of the algorithm getting stuck at local

optima. Several modifications have been adapted in an attempt to circumvent this drawback such

as the incorporation of a random walk, a collaborative swarm, or a probabilistic technique.

Although simulated annealing has been shown to be a decent and classical method for escaping

local optima, [34] it still lacks the capacity for localizing multiple emission sources.

2.3 BIOLOGICALLY INSPIRED ALGORITHMS

Organisms in nature have inspired a couple of algorithms that leverage on concentration gradients

as depicted in the hill-climbing approach discussed previously. The behavior of an organism such

21

as the male silkworm moth as demonstrated by Lilienthal et al. [35] used pheromone signal to

localize a mate. Almost concurrently, Hayes et al., [36] implemented a similar algorithm with the

advantage of a distributed and cooperative search based on background flow of odor and wind

measurements.

The most promising biological models have come from swarming algorithms. Racy swarming

algorithms have been inspired by the foraging behavior of the E.coli bacteria in the presence of

multiple gradient sources. In the same vein, there exists a swarm algorithm called "fluxtaxis" which

combines fluid dynamics with swarm control to trace chemical plume [37]. The ability of this

swarm to converge and diverge based on the local chemical concentration makes it a promising

paradigm for swarm algorithms. In the subsequent sections, we discuss some of these biological

models in nature that attempt to solve some of the multi-source localization problems.

 2.3.1 Glowworm Swarm Optimization (GSO)

The glowworm swarm optimization (GSO) makes use of an adaptive domain which helps in the

creation of subgroups in the swarm while localizing multiple gradient sources simultaneously

[38]. The algorithm begins with a uniform distribution of the robotic agents in the search space.

Having each agent equipped with a local sensory range, the agent closest to an emission source

would have the brightest glow. Neighboring agents with a relatively high probability choose this

agent as their leader and navigates towards them as the search progresses.

This local decision domain among neighboring agents is largely responsible for the swarm

partitioning during the search phase [39]. Central to this algorithm is the separation of the local

decision domain from the sensory domain for each agent. This ingenuity helps create a decision

domain that is smaller than its sensor range. Since the algorithm is initialized with a uniform

distribution, local decision triggers the formation of a swarm which separates into smaller clusters

that migrate towards the closest peak, rather than a global optima. It is important to note that the

agent is also equipped with low-level collision avoidance sensors.

The GSO algorithm has been tested extensively on multimodal environments of about 100 gradient

sources. Three Gaussian odor sources have also been demonstrated as a testbed for the algorithm.

In order to avoid bias towards a particular source, the agents were initialized in the middle of the

3 gradient sources. In 15 trials, each source was localized with an average of 7 agents converging

22

on the source. However, when repeated with random initial states, only 2 of the 3 gradient sources

were localized in 9 out of the 15 trials. One notable contribution of the GSO to the multi-source

localization challenge; is the clever partitioning of the swarm. However, the algorithm does not

address the problem of progress after a source is localized.

 2.3.2 Biasing Expansion Swarm Approach (BESA)

The BESA algorithm was developed by Cui et al. [1]. The algorithm simulates the localization of

an unspecified number of chemical gradient sources. Like the GSO algorithm, the model forms a

global ad hoc network while maintaining local communication. With this algorithm, agents are

able to disperse, cohere, and form a kind of alignment while migrating towards chemical gradient

sources.

The algorithm implements an occupancy grid map with which each agent is capable of storing and

sharing information about their sensed concentrations and locations. It is important to note that the

local communication range is restricted to the adjacent occupancy grid cells. When an agent gets

out of communication range, a broadcast is sent throughout the swarm via a mechanism referred

to as “multi-hop” which helps to reconnect drifting agents.

Fig. 2.1 the Biasing Expansion Swarm Approach

Source: (Cui et al. [1]).

With reference to fig 2.1, the algorithm restricts the agents’ motion to unexplored, and unoccupied

cells, along with the existence of an adjacent cell with at least one agent member of the swarm.

23

This unique property helps the swarm to maintain cohesion in tandem with the ad hoc network

connection requirement for local communication.

Consequently, steering the swarm towards an emission source requires the assignment of a biasing

parameter given by the equation (2.1). The rationale is to make each agent pick a cell with the

highest concentration (bias) as the next location to occupy as long as the cell is empty while

obeying the rules of motion. This algorithm also obeys the rules of obstacle avoidance.

𝐵(𝑥, 𝑦) =
𝐾

𝑛
 × ∑

𝐶𝑖

𝑟𝑖
2

𝑛

𝑖=0

 (2.1)

From the above equation (2.1), n is the total number of agents that communicate their sensed

concentrations, Ci is the concentration sensed by agent i, K is a constant, and ri is the distance

between expansion cell (x, y) and the cell in which agent i is located.

One notable uniqueness of the BESA algorithm is the utilization of the occupancy grid as a control

mechanism for the swarm. However, it does not encourage swarm partitioning as they tend to

migrate as a single whole in the direction of the gradient source.

A major problem of the multi-source localization is addressed by the BESA which is demonstrated

by its ability to avoid other agents during search via swarm separation and progressive expansion.

The drawback, however, is in its inability to progress after a source is found such that other

gradient sources are efficiently localized. The authors modeled the BESA algorithm on a swarm

of 20 robots using inverse square law for source distribution on two gradient sources. When

simulated under certain conditions, the BESA algorithm converged on both sources approximately

one half the time it takes the hill-climbing algorithm.

24

2.3.3 Particle Swarm Robots

The PSO (Particle Swarm Optimization) was first introduced by Kennedy and Eberhart in 1995

[7]. The PSO is a swarm-based model for migrating agents within a virtual environment towards

a global optima. Just like in evolutionary algorithms, the performance of a swarm is determined

via a fitness value or score. This fitness value is dependent on how close the swarm is to the source

location [40].

The algorithm assumes communication among neighboring agents in the swarm while evaluating

the fitness of each agent in the swarm.

𝑣𝑖 = 𝜑𝑣𝑖(𝑡 − 1) + 𝑝1(𝑥𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡 − 1)) + 𝑝2(𝑥𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡 − 1)) (2.2)

𝑥𝑖 = 𝑥𝑖(𝑡 − 1) + 𝑣𝑖(𝑡) (2.3)

In Equations (2.2) and (2.3), vi(t) and xi(t) are the velocity and position vectors of agent i at

time t, respectively.

xpbesti is the previous position at which agent i had the best value of fitness,

xgbest is the previous position of the best value of any neighbor of agent i.

 ρ1 and ρ2 are vectors containing random positive values for each dimension of the state space

 φ is a constant that controls the magnitude of velocity [13] .

Using the Equation (2.2), the algorithm steers the swarm in the direction of the agent with the best

previous position by treating the amount of concentration perceived from gradient sources as

fitness. The algorithm has been implemented in the localization of multiple emission sources.

A distributed PSO-based algorithm proposed by Marques et al. [2] demonstrated the most

promising solution. This modification divided the search into 2 phases: the global and local search.

During the global search, the absence of any form of chemical information forces the swarm to

explore the search space, during which a field-based model is used to control the motion of the

swarm. Once a chemical source is detected, the algorithm switches to a local search using the PSO

25

algorithm. A simulation test with a swarm of 10 robots and 5 plums (gradient sources) in 3 different

environments performed comparatively well when analyzed along with other related algorithms.

Two major contributions of the PSO algorithm to the multi-source localization problem are: the

use of sensory-based model for collision avoidance, and also proceeding with the search for other

sources after a source is found.

Proceeding with a search is however with the assumption that the source is collected from the

environment after it has been found. This concept was inspired by biological foraging behavior

found among biological agents. The approach removes the impact of the source on the local field

concentration thereby speeding up the localization of the other sources.

2.3.4 Biased Random Walk Algorithm (BRW)

Dhariwal et al., [28] implemented the Biased Random Walk (BRW) algorithm, inspired by the

chemotaxis of E. coli bacteria. On a large network, the algorithm was used to localize multiple

generic gradient sources. The algorithm implements 2 basic actions: the run action and the tumble

action. During the run action phase, the robot executes a linear motion in its current orientation,

while the tumbling phase alters the robot's orientation in a randomized pattern. The algorithm

extends the length of the run if the run is in the orientation of a gradient source using a source bias.

This clever approach helps propagate the robot towards the source location.

The BRW algorithm was simulated using 100 robots within an environment with gradient sources

modeled with inverse square law and exponential profiles. With the random deployment of the

robots in the presence of multiple gradient sources, it was observed that, even though all sources

were tracked, the majority of robots were biased towards sources with higher gradient intensities.

This behavior caused an emergent behavior of robots switching from tracing a particular source to

another in the presence of a higher gradient.

A major contribution of the BRW algorithm to the multisource problem is the ability to track all

gradient sources simultaneously. However, with the absence of local communication among the

robots, it becomes difficult to prove that a situation where all agents would converge to a particular

26

gradient source and thereafter terminating the search process would ever occur. Furthermore, the

algorithm lacks the ability to progress after converging on a gradient source.

2.3.5 Attractant-Repellent Swarm

The attractant -repellent swarm algorithm which was developed by Gazi and Passino [3] models

each agent in a swarm such that the swarm moves in a centralized order. Each agent can sense the

relative position of other agents. The model owes its name to the motion pattern which has the

ability to attract agents further away to a central point and at the same time repel the agents in

order to prevent the agents from converging on top of each other thereby maintaining a safe

distance while migrating the swarm towards a gradient source. The equation below shows the

motion model for M agents in the swarm.

𝑥̇𝑖 = −∇𝑥𝑖 𝜎𝑥𝑖 + ∑ 𝑔(𝑥𝑖 − 𝑥𝑗

𝑀

𝑗=1,𝑗 ≠𝑖

) 𝑖 = 1, … . 𝑀

 (2.4)

In equation (2.4), 𝑥𝑖 and ˙ 𝑥̇𝑖 are the position and velocity of agent i, respectively. The term

−∇𝑥𝑖 𝜎𝑥𝑖 represents motion toward areas of higher concentration, and 𝑔(𝑥𝑖 − 𝑥𝑗) represents a

function of long-range attraction and short-range repulsion between individual agents.

The attractant-repellent was metaphorically modeled using nutrient-rich areas of the search space

to represent local minima. By modeling the search space as a potential field, the motion model

attempts to minimize this potential energy. The velocity center of the swarm is used for the analysis

of the group behavior, thus moving the center of the swarm in the direction of the negative gradient

source.

When implemented on a multi-source problem with the environment being modeled using a non-

uniform Multi-Gaussian profile, it was observed that the algorithm was limited to convergence in

areas of minimum gradient or divergence away from the regions gradient maxima. Consequently,

swarm convergence ability remained inconclusive.

27

2.4 Probabilistic Algorithms

Probabilistic algorithms belong to the class of algorithms enshrined in mathematical models. These

families of algorithms address the problem of source localization via probabilistic methods. Pang

and Farrell [29] have used probabilistic models such as Hidden Markov Methods (HMM) coupled

with chemical gradients and the dynamics of fluid particles for the prediction of the likelihood of

odor presence in a given location. These methods were successfully implemented in single-source

localization and tracking.

The probabilistic model is no different from most mathematical models whose contributions may

seem less intuitive yet very relevant to the solution of the multi-source problem. In biological

models, contributions are explicit mechanisms that address swarm partitioning, obstacle

avoidance, and proceeding after a source has been localized. In contrast, probabilistic models

integrate multiple sources into a probability distribution grid map which results in an iterative

optimization process.

Using these distribution maps, robots then decide on paths that would maximize the progress of

the swarm. A significant contribution of probabilistic models can be attributed to the dexterous

integration of multiple sources into the robots' world for the prediction of source locations.

2.4.1 Occupancy Grid Mapping using Bayesian Techniques

The Bayes theorem which calculates the probability of a hypothesis from a given fact and

observation data has become pivotal to modern practices in artificial intelligence. Below is the

equation for the theorem:

𝑝(ℎ 𝐷⁄) =
𝑝(𝐷 ℎ⁄)𝑃(ℎ)

𝑝(𝐷)

(2.5)

Where ℎ is the hypothesis,

 𝐷 is a set of observed data

 𝑝(𝐷) is the probability of observing a set of data 𝐷

28

𝑃(ℎ) is the prior probability that hypothesis h is true prior to observance of any data

 𝑝(𝐷 ℎ⁄) is the probability of observing 𝐷 given hypothesis ℎ is true

 𝑝(ℎ 𝐷⁄) is the posterior probability of ℎ being true given the observed data 𝐷.

It is important to note that an occupancy grid is often used for simulating multi-source search

problems. This occupancy grid represents a probability distribution of likely positions of an

emission source. The distribution is usually uniform prior to any observation. The likelihood that

a cell i is occupied by a gradient source e at a given time t, is expressed in log odds as shown

below:

𝑙𝑡,𝑖 = 𝑙𝑜𝑔
𝑝(𝑒𝑖 𝑧1 … . . 𝑧𝑡)⁄

1 − 𝑝(𝑒𝑖 𝑧1 … . . 𝑧𝑡)⁄

(2.6)

In Equation (2.6), 𝑙𝑡,𝑖 is the log odds of occupancy and 𝑝(𝑒𝑖 𝑧1 … . . 𝑧𝑡)⁄ is the posterior probability

that cell i contains an emitter given sensor measurements at each time step, z1. . . zt [41]

with a time step update given by the equation:

𝑙𝑡,𝑖 = 𝑙𝑡−1,𝑖 + 𝑙𝑜𝑔
𝑝(𝑒𝑖 𝑧1 … . . 𝑧𝑡)⁄

1 − 𝑝(𝑒𝑖 𝑧1 … . . 𝑧𝑡)⁄
− 𝑙𝑡,0

(2.7)

Consequently, through an iterative process, robots are capable of deciding on the next most

promising cell to advance to via the updated output of the occupancy probability at the previous

time step, the current sensor reading, and the prior probability.

One of the raciest and most promising implementations of the probabilistic model was proposed

by Scerri et al. [42]. The model was implemented on a team of unmanned aerial vehicles which

use received signal strength indicator (RSSI) to localize multiple radio frequency (RF) signals

emitters over a large distributed Bayesian Binary Filter Grid (BBFG).

The algorithm permits each UAV to maintain a uniquely assigned BBFG while sharing sensor data

with other vehicles. Each BBFG is thereafter converted into a map and then to a decision tree with

which all UAVs leverage for path planning via regions of maximum information gain. The

29

planning phase is implemented with an RRT (Rapidly expanding Random Tree) planner which

integrates the information gain along with the planned paths of the other vehicles and converts it

into a cost map.

The algorithm is instantiated with an initial prior probability distribution which is equal across all

grid cells. This standard procedure depicts an unexplored environment. Using sensor readings from

the emitter, each UAV is able to maintain a posterior distribution of emitters in the grid. The goal,

therefore, is to explore the grid in order to localize an unknown number of emitters.

It is noteworthy that occupancy probabilities in an unexplored area is based on the prior

distribution due to the fact that such area may contain an additional emitter. Consequently, each

UAV is required to explore the occupancy grid in a deliberate attempt to maximize information

gain. The algorithm measures optimal performance by minimizing the following factors: the cost

of vehicle flight routes, the difference between the predicted and actual states of the emitters, and

finally the overhead in the amount of message sharing among robots.

The implementation of the RRT planner and cost function are very significant to the solution of

the multisource problem. The RTT decides the path for each UAV and thus maximizes information

gain. By keeping a priority list, the RRT selects nodes with the highest priority and expands them

in random directions, to determine a new target node (the best node) with minimal cost via node

expansion. The UAV path is then set in the direction of the best target node. Through simulation

and live flight tests, the authors demonstrated the localization of 3 emitter sources using a testbed

of 20 UAVs.

When an emitter source has been localized during the search, the entropy map is immediately

updated. Consequently, UAVs tend to avoid traveling in the direction of the localized emitters

during the remaining part of the search.

While this approach does not explicitly partition the swarm, it successfully caters for the

localization of multiple emitter sources. However, there exist no theoretical foundations that

guarantee progress, convergence, and termination.

30

2.5 COMPARATIVE ANALYSIS

Table 2.1, shows a summary of the different algorithms discussed in this chapter along with how

they attempt to solve the multisource localization problem.

Table 2.1 Multisource algorithms summary Source: Kathleen Mcgill, Stephen Taylor 2011 [13]

 BESA Bayesian

occupancy

BRW PSO Attractant/repellant GSO

Swarm size 20 20 100 10 11 1000

Source number 2 3 2 5 5 100

Type of source Chemical RF Generic Chemical Chemical Generic

Source Model Inverse

square law

Inverse

square law

Inverse

square law,

exponential

, etc.

Plume model Gaussian,

quadratic, planar

Gaussian,

Rastrigin,

etc.

Source

Mobility

Fixed Mobile Fixed Fixed Fixed Mobile

Source time

variance

Constant Intermitten

t

Constant,

decaying

Constant Constant Constant

Variable

source

configuration

Yes Yes Yes No No Yes

Variable

source

intensity

__ __ Yes No Yes Yes

Dead space No -- No Yes No No

Sensing

requirements

Concentration

, location

RF signal

strength,

location

Signal

intensity

Concentratio

n, wind,

location of

all robots and

obstacles

Concentration,

location

Signal

intensity

Communication

range

Local Local None Local Global Local

Robot

deployment

Near each

other

__ Random,

single

location

Corner __ Random,

center,

corners,

right edge

Implementatio

n

Simulation

only

Simulation

and tests

Simulation

and tests

Simulation

only

Simulation only Simulatio

n and tests

Robust to

signal noise

Yes Yes Yes Yes __ Yes

Computational

complexity

Medium High Low Medium Medium Low

Obstacle

avoidance

Swarm

control

Minimum

path cost

None Artificial

repulsion

Artificial repulsion Sensory

based

Partitioning None Maximum

entropy

Random None None Local

subgroups

Mechanism to

proceed after

source found

None None None Source

“collection”

None None

Theoretical

foundations

None None None None Single source

profiles

Clustering

behavior

31

Table 2.2 Other comparisons on odor-source localization [43, 44, 49]. The ‘/’ symbol means “or” and 'N' means

more than one gradient source.

Gradient-based Bio-inspired Multi-robot Probabilistic & Map-

based

C
h

em
o
tax

is

B
iased

 R
an

d
o
m

 w
alk

S
u

rg
e-cast

S
u

rg
e-S

p
iral

P
u

re C
astin

g

F
o

rm
atio

n
-b

ased

P
S

O
-b

ased

K
ern

el m
eth

o
d

s

In
fo

tax
is

P
ro

b
ab

ility
 m

ap
p

in
g

Environment

Laminar flow YES YES YES YES YES YES YES YES YES YES

Turbulent

flow

NO NO NO YES NO NO YES YES YES YES

Number of

sources

1 1 1 1 /N 1 1/N 1/N

Information

Required

Explicit plume

model

NO NO NO NO NO NO NO NO NO NO

Odor
concentration

YES YES YES YES YES YES YES YES YES YES

Wind

direction

BOTH NO YES YES YES YES YES YES YES YES

Performance

Computational

load

LOW LOW LOW FAIR HIGH

Cost LOW

LOW

HIGH FAIR/HIGH

Distance

overhead

LARGE FAIR FAIR FAIR LARGE SMALL SMALL SMALL SMALL SMALL

Time to find

the source(s)

LONG FAIR FAIR LONG SHORT SHORT

From table 2.1, the swarm sizes and the source numbers depict the maximum number of agents

and gradient sources used in the simulation. The variable source configurations tells if source

positions were altered during the simulations. Variable source intensities were indicated if sources

had different magnitudes at various locations.

Dead space indicated whether simulations had locations in the environment without any gradient

signal. Wherever empty cells exist on the table, it indicates missing details from literature.

32

Cells with "simulations" indicates that software only was used for the experiments. The columns

with "test" depict live demonstrations with robotic artifacts, while those with "experiments"

indicates the combination of both tests and simulations.

The models used for gradient sources range from plume models usually suited for chemical sources

to generic Gaussian models and RF emission models that conforms to the inverse square law

model. Whatever the model adopted, they all show robustness to signal noises. Introducing noise

into the sensor signal is a crucial step in simulated models to demonstrate the algorithm’s potential

of adapting to the real world. Noises used in simulations for the emission profiles were either

random or Gaussian.

The computational complexity represents the amount of CPU processing overhead needed to

implement the algorithms. The measures for complexity include: amount of data storage required,

local or global communication overhead and algorithmic computation.

Table 2.2 shows a more recent comparison of algorithms, based on multiple odor source

localization. This time, a closer attention is given to probabilistic models. The first three algorithms

rely on gradient source information. The effectiveness of these algorithms depends on the intensity

of these gradient sources. The concept of infotaxis (a typical Bayes inference model) as a

probability based odor source localization algorithm was first proposed by Vergassola et al., [44].

The algorithm guides a robot to the source location using plume distribution, and continuous

distribution update on a grid world.

An improvement on the Infotaxis proposed by E.M. Moraud, D. Martinez [45], considers the fact

that odor plume could consist of sporadic odor patches rather than a continuous distribution. In

such scenario, the authors recommended the explorative and exploitative methodology.

Bayesian Inference Methods, where also implemented [46-48] on the assumption that the chemical

plume is spread along a down flow temperature change. By leveraging on the wind filed, the robot

is able to predict the best path toward the odor source.

Farrell et al.,]49] proposed a model based on the Hidden Markov Models (HMM). This model

builds an HMM: λ = [π, A (t), b], where ‘π’ is the source probability vector and set to be equally

distributed over the grid; the matrix ‘A(t)’ represents the transition probabilities (of odor from one

cell to another) which was calculated using the measured flow velocity; ‘b’ is the detection

33

probability vector. Consequently, the robot could plan its path using the source likelihood map,

constructed with the HMM algorithm.

The BRW can be considered the simplest of all algorithms due to the simplicity of its behavior of

run and tumble, along with the absence of local nor global communication among agents. In

contrast, the Bayesian algorithm, in exchange for robustness paid a great price in the computational

complexity via mappings, sensor readings, and path planning. Most of the algorithms employed

sensor models for robot and obstacle avoidance. The greatest contributor to swarm partitioning

was the GSO algorithm which formed clusters via local decision techniques. The BRW exhibited

partitioning via independent random search, which caused the robots to spread in different

directions. In the same vein, the Bayesian algorithm partitioning technique was attributed to the

UAVs selection of different paths due to the quest to maximize information gain.

To date, the Kalman and particle filtering techniques have not been applied to the robotic

multisource localization problem, thus the authors in this research thesis investigate some of the

contributions such a filtering algorithm could bring to the multisource localization problem. The

authors focused on the multimodal particle filters algorithm due to the robustness of the algorithm.

We find this research significant due to the fact that some of the questions posed by the multisource

localization problem remain largely unanswered. Questions such as the mechanism to proceed

with a search after a target are found. The PSO suggested absorbing or removing the located source

from the scene (such as would be appropriate for foraging or rescue operations) before

commencing on a global search. While this approach seems reasonable, it cannot be adapted to all

multisource models.

Furthermore, theoretical foundations for progress, convergence, and termination are not clearly

stated. Although the attractant-repellant model provided a theoretical foundation for convergence,

it was only limited to a single-source localization searches.

34

2.6 Conclusion

This chapter surveys the major challenges associated with multisource localization and

distinguished three principal families of algorithms that have been implemented in the literature to

resolving the multisource problems. The algorithms include; hill-climbing algorithm, biologically

inspired algorithm, and probabilistic algorithms.

While the localization of a single gradient source has been addressed elaborately in the literature,

there has been comparatively low emphasis on the localization of multiple emission sources. In

view of the challenges faced by the multi-source localization, we attempt to provide solutions to

the major challenges of the multisource problem while presenting an axis for future directions.

35

CHAPTER 3

FORMAL BACKGROUND

3.1 Introduction

Some of the famous meta-heuristic algorithms include: Genetic algorithm (GA), Particle Swarm

Optimization (PSO), Simulated Annealing (SA), Differential Evolution Algorithm (DE), Cuckoo

Search Algorithm (CK), etc. [50], [51]. These algorithms leverage on a model matrix that evolves

random solutions to the predefined objective function. In addition, some of these meta-heuristic

algorithms use the variant of the basic genetic algorithm schema (selection, Mutation, and

crossover) while evolving solutions [52], [53]. These variants can be summarized into two basic

strategies namely; exploration and exploitation. While exploitation targets the best local solution

within the search space, exploration attempts to leverage diversification in an attempt to incur the

best solution which in most cases lies around one of the local solutions. A good meta-heuristic

algorithm can be characterized by the rate at which it finds the global optimal solution to the

objective function.

In this chapter, we present a background theory on which our proposed paradigm for optimizing

control of multi-agents is based, thereby revealing the intricate parts of the model adapted for

corporative control of multi-agents. Consequently, we develop a framework for the hybridization

of multiple meta-heuristic algorithms. This framework leverages the strengths of each meta-

heuristic algorithm in order to rapidly converge a search process to an optimal or suboptimal

solution with minimal computational complexity.

Some artificial multifarious problems also referred to as test functions were chosen to evaluate the

robustness of our proposed optimization algorithm. These artificial problems have the advantage

of ease in the modification and manipulation of the test algorithm within diverse scenarios.

The objective functions could be qualified or grouped into categories such that they are either

continuous functions or discontinuous functions, linear functions or polynomial, differentiable or

non-differentiable, [54] uni-modal or multi-modal, separable, or non-separable. These objective

functions can be sorted or grouped by their modality, basins, valleys, separability, and

dimensionality.

36

Modality: This represents the number of peaks in the function’s topology. When an algorithm

comes across such peaks during a search cycle, there exists the likelihood of the algorithm to

asymptote at local optima or minima depending on the predefined search criteria.

Basins: unlike peaks, these are steep decline around a large area. The presence of basins could

have a significant impact on the success of an algorithm due to insufficient information to guide

the algorithm towards the global minima.

Valleys: These occur when narrow domains of minimal difference are surrounded by multiple

basins. The floor of a valley could have a significant impact on the success of a search algorithm.

Separable: This measures the difficulty of a function. It is easier for a search algorithm to

transverse a separable function than a non-separable function. When the variables of a function are

independent of each other, the derivative of the function can be decomposed into sub-functions.

This separable feature makes it easier for an algorithm to solve. On the other hand, if the variables

are dependent on each other, the function becomes non-separable thus making it more difficult for

an algorithm to solve.

Dimensionality: the magnitude of the parametric variables defines the dimensionality of the

objective function. Every one-step increase in the number of parameters has an exponential

overhead in the amount of computational search space. Almost every meta-heuristic algorithm has

dimensionality as a major bottleneck.

Other intricate segments of our model discussed in subsequent chapters include the multi-objective

optimization, evolutional neural networks, reinforcement learning, Markov decision processes

(MDPs) and the partially Observable Markov decision processes (POMDPs).

The following is a collection of 30 optimization test objective functions we used to compare,

analyze and validate the performance of our hybrid optimization algorithm:

i. Ackleys 2 function [55]

𝑓(𝑥) = −200𝑒
−0.02√𝑥1

2+𝑥2
2

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 32 ≤ 𝑥𝑖 ≤ 32 (3.1)

ii. Bartels Conn Function [54]

𝑓(𝑥) = |𝑥1
2 + 𝑥2

2 + 𝑥1𝑥2| + |sin(𝑥1)| + |cos(𝑥2)| 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 500 ≤ 𝑥𝑖 ≤ 500 (3.2)

37

iii. Beale Function [54]

𝑓(𝑥) = (1.5 − 𝑥1 + 𝑥1𝑥2)2 + (2.25 − 𝑥1 + 𝑥1𝑥2
2)2 + (2.625 − 𝑥1 + 𝑥2

2)2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 −

4.5 ≤ 𝑥𝑖 ≤ 4.5 (3.3)

iv. Bird function [54]

𝑓(𝑥) = sin(𝑥1) 𝑒(1−cos(𝑥2))2
+ cos(𝑥2) 𝑒(1−sin(𝑥1))2

+ (𝑥1 − 𝑥2)2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 2𝜋 ≤ 𝑥𝑖 ≤ 2𝜋

 (3.4)

v. Bohachevsky 1 Function [54]

𝑓(𝑥) = 𝑥1

2 + 2𝑥2
2 − 0.3 cos(3𝜋𝑥1) − 0.4 cos(4𝜋𝑥2) + 0.7 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 100 ≤ 𝑥𝑖 ≤ 100 (3.5)

vi. Bohachevsky 3 Function [56]

𝑓(𝑥) = 𝑥1

2 + 2𝑥2
2 − 0.3 cos(3𝜋𝑥1 + 4𝜋𝑥2) + 0.3 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 100 ≤ 𝑥𝑖 ≤ 100 (3.6)

vii. Booth Function [54]

𝑓(𝑥) = (𝑥1 + 2𝑥2 − 7)2 + (2𝑥1 + 𝑥2 − 5)2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 10 ≤ 𝑥𝑖 ≤ 10 (3.7)

viii. Branin RCOS-2 Function [58]

𝑓(𝑥) = (𝑥2 −
5.1𝑥1

2

4𝜋2 +
5𝑥1

𝜋
− 6)2 + 10 (1 −

1

8𝜋
) cos(𝑥1) cos (𝑥2)ln (𝑥1 + 𝑥2 + 1) +

10 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 5 ≤ 𝑥𝑖 ≤ 15 (3.8)

ix. Brent Function [58]

𝑓(𝑥) = (𝑥1 + 10)2 + (𝑥2 + 10)2 + 𝑒−𝑥1
2−𝑥2

2
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 10 ≤ 𝑥𝑖 ≤ 10 (3.9)

x. Camel Function – Six Hump [58]

𝑓(𝑥) = (4 − 2.1𝑥1
2 +

𝑥1
4

3
) 𝑥1

2 + 𝑥1𝑥2 + (4𝑥2
2 − 4)𝑥2

2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 5 ≤ 𝑥𝑖 ≤ 5 (3.10)

38

xi. Camel Function – Three Hump [58]

𝑓(𝑥) = 2𝑥1
2 − 1.05𝑥1

4 +
𝑥1

6

6
+ 𝑥1𝑥2 + 𝑥2

2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 5 ≤ 𝑥𝑖 ≤ 5 (3.11)

xii. Chichinadze Function [54]

𝑓(𝑥) = 𝑥1
2 − 12𝑥1 + 11 + 10 cos (

𝜋𝑥1

2
) + 8 (

5𝜋𝑥1

2
) − (

1

5
)

0.5

exp(−0.5(𝑥2 −

0.5)2) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 30 ≤ 𝑥𝑖 ≤ 30 (3.12)

xiii. Cube Function [59]

𝑓(𝑥) = 100(𝑥2 − 𝑥1
3)2 + (1 − 𝑥1)2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 10 ≤ 𝑥𝑖 ≤ 10 (3.13)

xiv. Deckkers-Aarts Function [60]

𝑓(𝑥) = 105𝑥1
2 + 𝑥2

2 − (𝑥1
2 + 𝑥2

2)2 + 10−5(𝑥1
2 + 𝑥2

2)4 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 20 ≤ 𝑥𝑖 ≤ 20 (3.14)

xv. Easom Function [61]

𝑓(𝑥) = − cos(𝑥1) cos(𝑥2) exp[−(𝑥1 − 𝜋)2 − (𝑥2 − 𝜋)2] 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 100 ≤ 𝑥𝑖 ≤ 100 (3.15)

xvi. Freudenstein Roth Function [62]

𝑓(𝑥) = (𝑥1 − 13 + ((5 − 𝑥2)𝑥2 − 2)𝑥2)2 + (𝑥1 − 29 + ((𝑥2 + 1)𝑥2 − 2)𝑥2)2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 −
10 ≤ 𝑥𝑖 ≤ 10 (3.16)

xvii. Haupt Function 16 [63]

𝑓(𝑥) = −𝑥1sin (√|𝑥1 − (𝑥2 + 9)| − (𝑥2 +

9)𝑠𝑖𝑛(√|𝑥2 + (0.5𝑥1 + 9)| 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 20 ≤ 𝑥𝑖 ≤ 20 (3.17)

xviii. Haupt Function 7 [63]

𝑓(𝑥) = 𝑥1 sin(4𝑥1) + 1.1𝑥2 sin(2𝑥2) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 ≤ 𝑥𝑖 ≤ 10 (3.18)

39

xix. Haupt Function 15 [63]

𝑓(𝑥) = −exp [−0.2√𝑥1
2 + 𝑥2

2 + 3(𝑐𝑜𝑠2𝑥1 + 𝑠𝑖𝑛2𝑥2)] 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 5 ≤ 𝑥𝑖 ≤ 5 (3.19)

xx. Egg Crate Function [54]

𝑓(𝑥) = 𝑥1
2 + 𝑥2

2 + 25(𝑠𝑖𝑛2(𝑥1) + 𝑠𝑖𝑛2(𝑥2)) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 5 ≤ 𝑥𝑖 ≤ 5 (3.20)

xxi. Goldstein Price Function [64]

𝑓(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥1 + 6𝑥1𝑥2 + 3𝑥2

2)] × [30 +

(2𝑥1 − 3𝑥2)2(18 − 32𝑥1 + 12𝑥1
2 − 48𝑥2 + 36𝑥1𝑥2 + 27𝑥2

2)]𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 5 ≤ 𝑥𝑖 ≤ 5 (3.21)

xxii. Rosenbrock Modified Function [65]

𝑓(𝑥) = 74 + 100(𝑥2 − 𝑥1
2)2 + (1 − 𝑥1)2 − 400 exp [−

(𝑥1+1)2+(𝑥2+1)2

0.1
] 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 2 ≤ 𝑥𝑖 ≤

2 (3.22)

xxiii. Rotated Ellipse Function [54]

𝑓(𝑥) = 7𝑥1
2 − 6√3𝑥1𝑥2 + 13𝑥2

2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 500 ≤ 𝑥𝑖 ≤ 500 (3.23)

xxiv. Scahffer-1 Function [66]

𝑓(𝑥) = 0.5 +
𝑠𝑖𝑛2(𝑥1

2+𝑥2
2)2−0.5

1+0.001(𝑥1
2+𝑥2

2)2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 100 ≤ 𝑥𝑖 ≤ 100 (3.24)

xxv. Test-tube Holder Function [67]

𝑓(𝑥) = −4[(sin(𝑥1) 𝑒cos(𝑥1
2+𝑥2

2)/200))] 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 10 ≤ 𝑥𝑖 ≤ 10 (3.25)

xxvi. Pen-Holder Function [67]

𝑓(𝑥) = −exp [|cos(𝑥1) cos(𝑥2)𝑒|1−[(𝑥1
2+𝑥2

2)]0.5/𝜋 |−1] 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 11 ≤ 𝑥𝑖 ≤ 11 (3.26)

xxvii. Trefethen Function [68]

𝑓(𝑥) = 𝑒𝑠𝑖𝑛 (50𝑥1) + sin(60𝑒𝑥2) + sin(70 sin(𝑥1)) + sin(sin(80𝑥2)) − sin (10(𝑥1 + 𝑥2) +
1

4
(𝑥1

2 + 𝑥2
2) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 10 ≤ 𝑥𝑖 ≤ 10 (3.27)

40

xxviii. Adjiman Function [69]

𝑓(𝑥) = cos(𝑥1) sin(𝑥2) −
𝑥1

(𝑥2
2+1)

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 1 ≤ 𝑥1 ≤ 2 , −1 ≤ 𝑥2 ≤ 1 (3.28)

xxix. Cross-in-Tray Function [67]

𝑓(𝑥) = −0.0001 [|sin(𝑥1) sin(𝑥2)𝑒|
100−[(𝑥1

2+𝑥2
2)]

0.5

𝜋 + 1 |0.1] 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 10 ≤ 𝑥𝑖 ≤ 10

(3.29)

xxx. Damavandi Function [69]

𝑓(𝑥) = [1 − |
sin[𝜋(𝑥1−2)] sin[𝜋(𝑥2−2)]

𝜋2(𝑥1−2)(𝑥2−2)
|

5

] [2 + (𝑥1 − 7)2 + 2(𝑥2 − 7)2] 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 ≤ 𝑥𝑖 ≤ 14

(3.30)

3.2 METAHEURISTIC ALGORITHMS

3.2.1 Evolution computation

Evolution computation is a family of population based optimization algorithms which encapsulates

genetic programming, evolution strategies and genetic algorithm. These algorithms incorporates

models such as selection and mutation which forms the core of the entire evolution computation

algorithm.

Genetic algorithm (GA) is a classical optimization meta-heuristic based on the biological model

of natural selection. The algorithm involves a clever manipulation of an objective function, a vector

or matrix of objective variables, definition of variable constraints, selection, crossover, and

mutation. The total number of iterations (epochs) usually depends on the chosen termination

criteria which could either be a predetermined number of epochs or the convergence of the

algorithm. The GA is said to have converged when little or no significant improvement is observed

in the population.

Two key processes guide the GA towards an optimal solution: the selection and the crossover. The

roulette wheel selection model is a typical and intuitive probabilistic approach that favors the best

41

pair of objective variables (variables with high fitness scores) for participating in the mating

process.

Fig. 3.1 Flowchart for genetic algorithm.

The mating process is implemented by the crossover model. A typical procedure is binary fission

of binary encoded objective variables [70-72]. A random split point is chosen for both selected

string of binary coded bits, thereafter an exchange (crossover) is conducted.

A subtle but very efficient model is the mutation process. Given a predetermined probabilistic

mutation rate, the resulting string from the crossover process may undergo an alteration in one or

more of its bits. This procedure helps the algorithm’s converging process to progress towards the

global optima.

3.2.2 Simulated Annealing (SA)

The simulated annealing algorithm as a meta-heuristic optimizer was the ‘brainchild’ of

Kirkpatrick et. al., in the year 1983 [6]. The algorithm mimic’s the process of a crystal-like lattice

via a quick heating and slow cooling process. Like other standard procedures, the algorithm begins

with generating a random number of objective variables that are modified via some parametric

turning before assigning them to a fitness function which them outputs a fitness score for each

pair/ vector of variables.

FITNESS FUNCTION DEFINITION

INIT. POPULATION

DECODE CHROMOSOME

SELECT MATE

CROSS BREED

MUTATE

CHECK FOR CONVERGENCE

42

𝑣(𝑛𝑒𝑤) = 𝑑. 𝑣(𝑜𝑙𝑑) (3.31)

where,

 v(new) = new variables

 v(old) = old variables

 d = control variable

It’s important to note that most literature refers to a set of objective variables as a chromosome. In

the Simulated annealing iterative algorithm, a new set of objective values replaces the old ones if

there was an improvement in their corresponding fitness scores, however some of the less fit pairs

may proceed to the next generation even if their fitness scores worsened as long as they satisfy the

following conditions:

𝑟 ≤ 𝑒
[𝑓(𝑜𝑙𝑑)−𝑓(𝑛𝑒𝑤)]

𝑇 (3.32)

Otherwise, they are rejected.

where,

r = uniform stochastic variable

T= temperature

The algorithm slowly reduces the T value until it gets close to zero before terminating. During this

cooling process, the algorithm does a percentage-wise reduction of the d value in an attempt to

enhance the fitness scores of the population.

 3.2.3 Particle Swarm Optimization (PSO)

The PSO algorithm is a relatively less involved algorithm with few parameters to manipulate, first

proposed by Kennedy and Eberhart [7]. Like the Genetic algorithm, the PSO meta-heuristic

mimic’s a biological model. However, it exempts the crossover and mutation procedures of the

Genetic algorithm.

The PSO algorithm iteratively updates the objective variables via a velocity vector. For brevity,

the algorithm modifies each set of objective values updating their vector velocities via a clever

manipulation of the global best and local best solutions. While the global best is indicative of the

best fitness score so far in the iterative process, the local best is indicative of the best fitness score

within the current run. The equation below shows the simplicity of this elegant algorithm:

43

𝑣𝑒𝑙𝑛𝑒𝑤 = 𝑣𝑒𝑙𝑜𝑙𝑑 + 𝛾 . 𝑟1 . (𝑃𝑙𝑜𝑐𝑎𝑙 𝑏𝑒𝑠𝑡 − 𝑃𝑜𝑙𝑑) + 𝛾 . 𝑟2 . (𝑃𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 − 𝑃𝑜𝑙𝑑) (3.33)

 𝑃𝑛𝑒𝑤 = 𝑃𝑜𝑙𝑑 + 𝑣𝑒𝑙𝑛𝑒𝑤 (3.34)

where,

vel = velocity of each particle

P = particle variables

Plocal best = best local fitness for each particle

Pglobal best = global local fitness for each particle

γ = learning rate (constant)

r1, r2 = stochastic variables

The ease of implementation is another significant advantage of this algorithm.

3.2.4 Cuckoos Search algorithm (CS)

The cuckoos search meta-heuristic algorithm was first proposed by Deb and yang [8]. The

algorithm was inspired by the interesting reproductive characteristics of the cuckoos’ bird. The

cuckoos’ is an opportunistic bird that lays its eggs among other eggs in a host nest. On the return

of the host bird, the host bird may or may not detect the presence of the cuckoos’ egg. If the cuckoo

egg is undetected, all eggs are hatched otherwise, the nest is completely abandoned or ruined.

The CS meta-heuristic combines the behavior of the host bird and the cuckoos’ bird. Intuitively,

each nest is a representation of a set of objective variables [73]. The algorithm first generates an

N – population pair or vector of objective variables usually referred to as candidate solutions in

the literature. Next, the cuckoos’ egg is laid in a randomly chosen nest using a typical random walk

‘levy flight’ approach:

𝑥𝑘′ = 𝑥𝑘 + 𝑟𝑎𝑛𝑑 . (𝑙𝑒𝑣𝑦 𝑓𝑙𝑖𝑔ℎ𝑡)𝑥𝑘 (3.35)

 𝑦𝑘′ = 𝑦𝑘 + 𝑟𝑎𝑛𝑑 . (𝑙𝑒𝑣𝑦 𝑓𝑙𝑖𝑔ℎ𝑡)𝑦𝑘 (3.36)

44

Next, the fitness of the nest with the cuckoos’ egg is compared with the host nest. The host nest is

replaced if it has a worse fitness score when compared with the cuckoo’s nest. However, if the

host bird notices the presence of the cuckoo’s egg, the nest is discarded usually with a probability

p < 0.25 consequently creating a new nest.

3.2.5 Hybrid Optimization

A typical hybrid algorithm blends the strengths of genetic algorithms with the converging speed

of any local optimizer [74]. A couple of authors such as Kazarlis et al. [9] implemented a scaled-

down genetic algorithm with a relatively small population size as a local optimizing strategy. The

rationale is to optimize the delicate balance between explorative and exploitative paradigm of the

model. When the GA seems to gradually asymptote, it is assumed to at least be in the domain of

the global solution, thereafter the local optimizing algorithm seizes the search process in an attempt

to obtain an optimal solution. Hybridization could be in any of the forms below:

(1) Beginning with a GA until it decelerates before seeding a local optimizer

(2) Start the GA with some local minima obtained from random starting points in the

population

 (3) After a predefined number of iterations, seed a local optimizer on a selected elite population

using elitism and incorporate the resulting chromosome into the population. Haupt [63]

demonstrated finding the global optima by combining a continuous GA with Nelder-Mead

downhill simplex algorithm.

3.2.6 Evolutional Neural Networks

An evolutionary neural network also referred to as neuro-evolution has its application mainly as a

combination of two powerful AI algorithms: the genetic algorithm and the artificial neural

networks having its application ranging from artificial life, general game playing and evolutionary

robotics.

They are both biologically inspired and are often designed as feed-forward ENNs [75] when

combined. This combination is achieved by evolving the weights in a fixed sized neural network

while providing the network with a set of inputs.

45

Figure 3.2 A two input multi-layer evolutionary neural network structure

While neural networks are inspired by ideas from neuroscience, genetic algorithms are inspired by

the theory of evolution and natural selection. When implementing ENNs, it’s imperative to first of

all represent the problem domain as a chromosome. In other to find an optimal set of

weights[𝑤1, … . 𝑤𝑛], for the feed forward multilayer ENN as shown in Fig. 3.2 above, each set

of weight would represent a chromosome [76-78]. These initial weights are usually chosen

randomly within a minute interval of [-1, 1]. An array of chromosomes could be thought of as a

solution set whose fitness is updated from generation to generation towards an optimal solution.

Artificial neural networks in its simplest form, is a collection of connected neurons with each

connection having a weighted value.

When the network is presented with an input pattern, (e.g. Numbers representing some imagery

features), a pattern of activation (switching on and off) spreads in a forward direction over

weighted connections via the hidden layer to the output layer [79], [80-83]. This process mimics

the way activation spreads through the network of neurons in the human brain.

One way of applying genetic algorithms to neural networks is by evolving weights in a fixed

network. Montana and Davis [82] took this first approach. They implemented network training

using GAs instead of back propagation for finding a good set of weights for a fixed set of

connections. Because back propagation has the tendency of getting stuck in local optima within its

weight space, the use of GAs seemed a desirable approach for overcoming this limitation. They

tested back propagation method against GA technique for classifying underwater sonic

“Lofargrams” in two classes: ‘interesting’ and ‘not interesting’. The results showed that the GA

W1

W2

W4

W3 Wn

W5

W1 W2 W3 W4 W5 Wn

46

optimizer significantly outperformed the back propagation algorithm on this particular task by

obtaining better weight vectors at a faster rate.

3.3 MUTLIOBJECTIVE OPTIMIZATION

Multi-objective optimization attempts to resolve more than one objective function which are either

minimized or maximized. In single objective optimization problems, the goal is to find a single

objective also known as the fitness value [84-86] that optimizes the objective function. However,

in multi-objective problems, the goal is to find a set of solutions as close as possible to the Pareto-

optimal front and also these solutions should be as diverse as possible.

Another significant difference between single and multi-objective optimization is the presence of

two search spaces. In single objective, there is only one search space (the decision variable space)

while in multi-objective, there exist in addition, the objective or criterion space.

Although there exists a relationship between the two search spaces, the mapping between them is

usually nonlinear with their properties being dissimilar.

3.3.1 Multi-objective Domination

Most multi-objective optimization algorithms use the construct of domination. Solutions progress

towards the Pareto-optimal front based on whether one dominates the other solution or not using

the following stated rules:

A solution 𝑥1 is said to dominate another solution 𝑥2 if the following two conditions are true:

(1) The solution 𝑥1 is no worse the 𝑥2 in all objectives and

(2) The solution 𝑥1 is strictly better than 𝑥2 in at least one objective

47

3.3.2 The Non-dominated Sorting Genetic Algorithm (NSGA-II)

The NSGA-II is recognized for its simplicity and elegance in preserving diversity via an explicit

diversity-preserving mechanism while guiding the objective values towards the Pareto-optimal

solution.

Fig. 3.3 Schematic for NSGA-II algorithm

From fig. 3.3 above, the first two populations Pt and Qt are combined into Rt of size 2N. Thereafter,

a Non-dominated sorting procedure is used to classify the entire Rt population. The new population

is then filled with solutions of different non-dominated fronts (F1, F2, F3, etc.) beginning with the

best non-dominated front (F1). With an initial population of 2N, only N (half) is needed for the

new population. Consequently rejecting the rest lower fronts.

A crowding distance methodology is thereafter used to maintain diversity among the new

population (Pt+1) before deploying the tournament selection with an output of 2N. This iterative

cycle gradually guides the algorithm towards a Pareto-optimal solution.

3.4 Reinforcement Learning (RL)

Reinforcement learning is the science of sequential decision making. For grid world agents, it is

characterized by an agent’s ability to maximize long term rewards leveraging on past experiences

obtained via interaction with a stochastic environment. Because the environment is initially

unknown to the agent, the agent has to surmount the challenge of handling the delicate balance

between exploring and exploiting the environment while maximizing the expected long term

reward. Consequently, RL agents usually combine online learning and planning simultaneously

via policy optimization [87-89]. The utilities of each state in RL is often referred to as state-valued

F3

Rejected

Pt

Q

F1

F2

Non-Dominated sorting Crowding distance

Sorting
Pt+1

Rt

48

function. Analogous to this, is the action valued function often referred to as Q-value function.

The process of learning with Q-valued functions is referred to as Q-learning

𝑄(𝑠𝑡, 𝑎)𝑛𝑒𝑤 = 𝑄(𝑠𝑡, 𝑎)+ ∝ (𝑟𝑡+1 + 𝛾 𝑚𝑎𝑥𝑎 𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎)) (3.37)

where,

𝑄(𝑠𝑡, 𝑎) is the current value of the state under a specific action policy 𝑎

𝑟𝑡+1 is the received reward

𝑚𝑎𝑥𝑎 𝑄(𝑠𝑡+1, 𝑎) is the maximum Q-value of the subsequent state under a specific action policy 𝑎

∝ is proportional to the learning rate weighted by 𝛾 the discount factor

In this thesis, we investigate a Q-learning RL for our implementation because it learns considerably

faster than the state value function. However, reinforcement learning is generally slow, thus the

introduction of multi-agents in the training process.

3.5 Markov Decision Processes (MDP) and Partially Observable Markov Decision Processes

(POMDPs)

Markov Decision Processes (MDPs) are best suited for robotic navigations in a known

environment. The environment is assumed to be Markovian (i.e., the effects of an action

stochastically depends on the current state of the world and the executed action). Because the

resulting state from the action is not deterministic, the subsequent state of the agent may be

unintended. Amidst this stochasticity, the robot must navigate from its current location to a goal

location with the minimum possible steps. Thus MDPs create a policy for every possible node in

the grid world that is fully observable and stochastic [90-91]. MDPs are usually defined as a tuple

< S, A, T, R> where:

S- set of environment states (which must encapsulate all relevant information for taking correct

decisions – e.g Map, exact location within the map, state of the world (open or closed door).

A- All actions that the agent can execute. A simplified example would be UP, DOWN, LEFT,

RIGHT

49

T- the stochastic transition function T(S, A, S’) = P(S’
t+1 = So | St =s, At= a) – the probability of

executing an action ‘a’ from state ‘S’ at the time ‘t’ and arriving at state S’ at time ‘t+1’.

R- the reward function which models the utility of the current state as well as the cost of taking a

particular action R(S, a). A negative living reward (non-zero cost) is usually associated with grid

world implementations.

In this thesis, our simulation was tested on planning problems which have a finite and discrete

state and action space. The purpose of planning is to find a policy (set of optimal actions) that

describes the agent’s behavior in order to maximize the sum of expected rewards

𝑈(𝑠) = ∑ 𝐸[𝛾𝑡

∞

𝑡=0

 𝑅(𝑆𝑡)]

 (3.38)

where, 𝛾 is the discounted reward as ‘t’ tends towards infinity 0 ≤ 𝛾 < 1. This keeps the solution

bounded. However, since our horizon is finite, (i.e. has an absorbing or goal state) we set 𝛾 = 1

For every state S, we can compute a utility function with the following equation:

𝑈(𝑠) = 𝑅(𝑠) + 𝛾 ∑ 𝑇(𝑆, 𝑎, 𝑆′

𝑠′

)𝑈(𝑆′)

 (3.39)

The optimal utility for each state is given by the Bellman equation

𝑈(𝑠) = 𝑅(𝑠) + 𝛾 𝑀𝑎𝑥𝑎 ∑ 𝑇(𝑆, 𝑎, 𝑆′

𝑠′

)𝑈(𝑆′)

 (3.40)

The optimal policy is given by the equation.

𝜋∗(𝑠) = 𝑎𝑟𝑔𝑀𝑎𝑥𝑎 ∑ 𝑇(𝑆, 𝑎, 𝑆′

𝑠′

)𝑈(𝑆′)

 (3.41)

In real-world domains, most of the assumptions behind the implementation of MDPs fall apart

because the agent cannot directly observe the state of the environment.

Partially Observable Markov Decision Processes (POMDPs) present us with a more efficient

alternative to modeling real-world problems via probability distribution over states also referred

50

to a belief states. This is because the actual state of the world cannot be fully observed due to

inaccurate sensor readings. Alternatively in POMDP environments, beliefs provides a sufficient

statistic for history [11] thereby availing sufficient information for the optimal policy per state

with the assumption that the underlying MDP is also Markovian.

POMDPs, therefore, can be defined as belief-space MDP with the tuple < B, A, T, RB > such that:

-B is the set of possible states over beliefs over state S

-A is the set of possible actions

-T is the belief transition function T(B, a, B’
o); representing the transition probability of starting a

belief B, take an action a, and arriving at a new belief state B’
o.

-RB is the reward at each belief state.

Just like in the MDP model, we define the Bellman update operator [92] for the Belief-Space MDP

(POMDP) as:

𝑈(𝑏) = 𝑀𝑎𝑥𝑎 (𝑅(𝑏) + 𝛾 ∑ 𝑇(𝑏, 𝑎, 𝑏′

𝑏∈𝐵′

)𝑈(𝑏′))

 (3.42)

Consequently, like in MDPs the goal of POMDPs is to find the policy for action selection that

maximizes the reward (𝑏).

3.6 Particle filters algorithm

The particle filter is an elegant algorithm with the potential of mapping trajectory history into

belief states which consequently aid agents to learn a mapping from belief states to action in

POMDPs [93-95]. Particle filters are an implementation of recursive Bayesian filtering used for

modeling non-Gaussian distributions [96-97]. Using the motion and sensor observation model,

the algorithm iteratively updates the belief-states via a sequence of prediction steps and correction

steps usually referred to as belief updates [98-99].

Predictor step is given by:

51

𝐵𝑒𝑙̅̅ ̅̅̅(𝑥𝑡) = ∫ 𝑃(𝑥𝑡 |𝑈𝑡, 𝑥𝑡−1)𝐵𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1

 (3.43)

While the Correction step is given by:

𝐵𝑒𝑙(𝑥𝑡) = ɳ 𝑃(𝑍𝑡 |𝑥𝑡) 𝐵𝑒𝑙̅̅ ̅̅̅(𝑥𝑡−1) (3.44)

Combining both equations, we get the Bayes particle filter equation as follows:

𝐵𝑒𝑙(𝑥𝑡) = ɳ 𝑃(𝑍𝑡 |𝑥𝑡) ∫ 𝑃(𝑥𝑡 |𝑈𝑡−1, 𝑥𝑡−1)𝐵𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1

 (3.45)

where,

ɳ is the normalization factor

𝐵𝑒𝑙(𝑥𝑡) is the belief of being in state 𝑥 at time t.

𝑃(𝑍𝑡 |𝑥𝑡) is the probability of sensing 𝑍𝑡given a state location 𝑥𝑡 at time t.

𝑈𝑡 is the action or motion step at time t

The particle filter algorithm is given as follows:

{𝑺𝒕−𝟏 = 〈𝒙𝒕−𝟏
𝒋

, 𝒘𝒕−𝟏
𝒊 〉, 𝑼𝒕, 𝒁𝒕}

1. 𝑆𝑡 = ∅, ɳ = 0

2. 𝑓𝑜𝑟 𝑖 𝑖𝑛 1 … 𝑛

3. Sample index 𝑗(𝑖) from discrete distribution given by 𝑤𝑡−1
𝑖

4. Sample 𝑥𝑡
𝑖 from 𝑃(𝑥𝑡|𝑈𝑡, 𝑥𝑡−1) using 𝑥𝑡−1

(𝑗)(𝑖)
 and 𝑈𝑡

5. 𝑤𝑡
𝑖 = 𝑃(𝑍𝑡 |𝑥𝑡

𝑖)

6. ɳ = ɳ + 𝑤𝑡
𝑖

7. 𝑆𝑡 = {𝑆𝑡 ∪ 〈𝑥𝑡
𝑗
, 𝑤𝑡

𝑖〉}

8. 𝑓𝑜𝑟 𝑖 𝑖𝑛 1 … 𝑛

 𝑤𝑡
𝑖 =

𝑤𝑡
𝑖

ɳ

52

Step (1) initializes an empty set of particles with the normalization factor set to zero, step (2-3)

generates a probabilistic distribution of particles indexed by 𝑗(𝑖) and weighted by 𝑤𝑖 .step (4)

generates a sample of posterior probabilities characterized by action step 𝑈𝑡 . Step (5, 6, & 7)

computes the important weights of each particle at a position 𝑥𝑡
𝑗
 characterized by sensor readings,

updates the normalization factor and generates a new set of particles 𝑆𝑡 via a resampling algorithm.

Finally, the weights are normalized using the normalization factor in step (8).

3.7 Conclusion

This chapter described the background theory on which our proposed paradigm for optimizing

control of multi-agents is based, thereby revealing the intricate parts of the model adapted for

investigating corporative control of multi-agents. In the next chapter, we take the first step towards

our proposed model by demonstrating the superiority of a novel hybrid optimization metaheuristic

algorithm using 30 different benchmark multi-modal objective functions.

53

CHAPTER 4

A HYBRID METAHEURISTIC OPTIMIZATION PARADIGM

4.1 Introduction

The popular 'no free launch' theorem suggest that all algorithms' performance are at par when

averaged across all possible objective functions. Consequently, choosing the most appropriate

algorithm is often more of an art than science. There exist certain features such as the modality,

the basins, the valleys, the separability, and the dimensionality which contributes to the complexity

of an objective function. While the separability and modality could affect the complexity of the

function, the dimensionality and the domain range of the function has an exponential impact on

function’s search space. These features poses a great problem to every meta-heuristic optimizer.

Consequently, we leverage the concept of hybridization such that the strengths and peculiarity of

each meta-heuristic are harmonized and synergized into a more powerful and robust optimizer.

Hybrid algorithms usually combines the strengths of genetic algorithms along with the converging

speed of any local optimizer. A couple of authors such as Kazarlis et al., [9] implemented a scaled

down genetic algorithm with a minute population size as a local optimizing strategy. The rationale

behind hybridization is often to combine the explorative capabilities of a meta-heuristic algorithm

such as GA with the speed at which a local optimizer converges. When the GA seem to gradually

asymptotes, its assumed to at least be in the domain of the global solution, thereafter the local

optimizing algorithm seizes the search process in an attempt to obtain an optimal solution.

Hybridization processes could begin with a Genetic algorithm until it decelerates before seeding a

local optimizer. Alternatively, the genetic algorithm could begin with some local minima obtained

from random starting points in the population and thereafter seed a local optimizer on a selected

elite population in response to a predefined number of iterations. The resulting chromosome is

then incorporated into the next generation.

4.2 Hybrid Framework Methodology

Preliminary analysis of the reviewed meta-heuristic algorithms (appendix A) revealed the strengths

of each algorithm on the 30 different benchmark objective functions. The classical GA employs a

moderately balanced explorative and exploitative strategy while the cuckoos search algorithm is

highly explorative. This quality of the cuckoo’s algorithm gives it an edge over the classical GA

when deployed on complex objective functions. The polygamy induced GA provides a highly

54

exploitative strategy. These diverse capabilities informed our choice of algorithms for the creation

of the hybridized model.

The proposed model leverages on three different meta-heuristics combinations for solving the

optimization problem. The three meta-heuristic of choice are the GA, CK, and POLY (i.e. GA-

with polygamy). Using 3 meta-heuristics avails us with 3 factorial (3!) possible unique

combinations of the meta-heuristics. For example [CK, GA, POLY] with [CK2, GA4, POLY5]

where the superscripts represent the duration of sub epoch assigned to each meta-heuristic.

The algorithm (Table 4.1) begins by first sampling a random population of 50 (𝑀) chromosomes

with scalable dimension size of 2 (𝑥1, 𝑥2) continuous variables. Simultaneously, a subpopulation

(𝑝 ≤ 𝑀) of random combinations of meta-heuristics are spurned to evolve or optimize the matrix

of chromosomes towards an optimal solution to the given objective function. It is important to note

that each meta-heuristic randomly obtains a duration (𝑓𝑖
𝑘(𝑖)

) of range [0, 5]. Thus the maximum

number of sub epoch for each 𝑝 ≤ 𝑁(max) 𝑤ℎ𝑒𝑟𝑒 𝑁(max) =15.

Fig. 4.1 High level abstraction of the hybrid frame work

(x1, x2)

Population Matrix

 COMa INTa INTb INTc

COMb INTb

INTd

INTa

COMc INTc

INTe

INTk

FITNESS 1

FITNESS 2

FITNESS 3

55

From Fig. 4.1, the COMa represents the stochastic combination or order of meta-heuristic

implementation. A typical initial order for COMa = 0, could be [CK2, GA4,POLY5], for [INTa,

INTb, INTc] respectively, with the supper scripts representing the number of sub epochs (duration)

each algorithm is permitted to run.

At the end of the first main epoch, a typical GA style algorithm (without the crossover operator)

is used to select and mutate the 𝑝 chromosomes. Exempting the crossover operator reduces the

computational complexity and helps the hybrid algorithm evolve faster.

Table 4.1. Algorithm for Hybridized optimization Model

𝑋*-> 0 , 𝑀 ->population size, 𝑁-> duration of sub epochs

𝑘 = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑟𝑎𝑛𝑑𝑖𝑛𝑡[0 5])

𝑝 = {𝑓1
𝑘(1)

, 𝑓2
𝑘(2)

, … … 𝑓𝑛
𝑘(𝑛)

} ≤ 𝑀

𝑓𝑖
𝑘(𝑖)

= 𝑚𝑒𝑡𝑎ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐(𝑖) 𝑤𝑖𝑡ℎ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑘(𝑖))

𝑁 = ∑ 𝑓𝑖
𝑘(𝑖)𝑛

𝑖=0 ∀ 𝑓𝑖 ∈ 𝑃, 𝑠. 𝑡 𝑛 ≤ 𝑁(max)

1. Sample New Random population (𝑝) of size 𝑀

2. While (𝑀)

3. For each (𝑝(𝑖) < 𝑁)

4. Evaluate 𝑝(𝑖) = {𝑓1
𝑘(1)

, 𝑓2
𝑘(2)

, … … 𝑓𝑛
𝑘(𝑛)

}

5. 𝑋* <- update best local optima for each 𝑝(𝑖)

6. End (for loop)

7. Preserve elite schema

8. Evaluate mutation condition = (TRUE)

9. Mutate (𝑓𝑖
𝑘(𝑖)

) order of combinations, mutate (𝑘(𝑖)) 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

10. Return best 𝑝(𝑖) schema order, 𝑋best->parameters, 𝑋best-> global optima

56

Elitism is used to preserve the best 5 performing chromosomes to the next generation. The

mutation process alters the combination (or order) of meta-heuristics along with their respective

superscript durations.

Leveraging tournament selection, as a selection strategy, the fittest chromosomes are passed to the

next generation. The 𝑋* (global minima) is updated at the end of each main epoch. For the research,

the termination criteria was set at 50 epochs (MAX) or when the optimal solution has been found.

4.3 Polygamy (POLY) as an Exploitative Strategy for GAs

The concept of diversity and exploitation are two paradigms that have contributed immensely to

the success of the GA. While diversity attempts to prevent the algorithm from stagnating within a

local optimum, exploitation on the other hand attempts to achieve faster convergence of the

algorithm.

One approach towards maintaining diversity within a population is by replacing existing identical

solution strains with newly formed strains especially in cases where they exist multiple similar

strains in the population [100].

Other methods include a mechanism for favoring dissimilar strains while similar ones are

discouraged leading to convergence on multiple peaks [101]. Another related approach is to

restrict mating among similar strains while encouraging mating among dissimilar ones thereby

increasing diversity [102]. Similarly, a tag stamping mechanism has been used to indicate strains

that are eligible to mate as they pass from one generation to another [103].

Polygamy on the other hand attempts to explore the power of exploitation. Using this approach,

every strain within the population is forced to mate with the fittest strain within each generation.

A clever implementation of this strategy helped the algorithm converge faster to the global

optima. Polygamy behavior was allowed when only little improvement was observed within five

57

consecutive generations’ thus fine-tuning the population towards the global optima.

Fig. 4.2. Hybrid frame work performance chart for all objective functions evaluations. (Height indicative of the

number of times each combination was responsible for the optimal solution.)

4.4 Experiments

On the basis of ANOVA, we reject the NULL Hypothesis (H0) on the premise of a significant

difference between the mean optimal values of our tested meta-heuristics. Consequently, we

proceed with our analysis to discover the pairs of meta-heuristics that differ significantly. For this

purpose, we use SHEFFE’s test. The test states that “the critical difference (CD) for each pair of

meta-heuristic can be obtained using the equation below:”

𝐶𝐷𝑖𝑡ℎ,𝐽𝑡ℎ = √𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛 (
1

𝑛𝑖
+

1

𝑛𝑗
) ∗ (𝑘 − 1) ∗ 𝑓𝑘−1,𝑛−𝑘 ∗∝ 𝑛 (4.1)

where,

 ∝ = critical value at 5% significance;

𝑘 = number of meta-heuristics;

𝑛 = number of test bench mark functions;

58

𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛 = ANOVA mean square within samples.

In this research, we used 30 benchmark functions to test the success of the CK, PSO, SA, POLY

(a proposed exploitative strategy), and HYB (our proposed hybrid framework). Table 4.2 Shows

the best optimal values for each meta-heuristic on the benchmark functions compared against

standard expected optimal solutions f(x*). A fixed dimension size of 2 was implemented for all

benchmark functions. The population size was preset at 50 while the maximum number of function

evaluations for each iteration was set to 500. For the purpose of cohesion, the global minimal

values below -10-15 were considered as zero (0) in all experiments.

The global optima (minima (Xbest)) of each benchmark function was evaluated 20 times using

random initial population at every instance (see addendum A for detailed tables). The mean

performance of optimal solutions and durations (number of function calls) during each phase of

the experiments were recorded for further analysis.

Also, two ANOVA tests were conducted for multiple comparisons of the performance of each

meta-heuristic algorithm.

Hypothesis 1 (H1)

The Null hypothesis for the first ANOVA test is stated as follows: “There is no difference in the

speed of convergence to the global optima among test meta-heuristic algorithms” (Table 4.3)

 Hypothesis 2 (H2)

The Null hypothesis for the second ANOVA test is stated as follows: “There is no difference in

the mean global solutions between the tested meta-heuristics” (Table 4.4)

Both hypothesis were tested with 95% confidence (α = 0.05).

Considering the relative complexity of the Hybrid framework, the algorithm was allowed to run

for 1/10th of the max allowed epoch of 500. The rationale was to give all algorithms a level playing

ground as each one ran for approximately equal CPU time. Fig. 4.2 shows the Hybrid framework

performance chart for all objective functions evaluations. The height of the bar chart is indicative

of the number of times each combination was responsible for the optimal solution.

59

Table 4.2 Minimum optimal values for each meta-heuristic f(X*) = cross validating global optimal Values.

 CK SA GA PSO POLY HYB f(X*)

F1
-199.445 -198.373 -199.95 -192.542 -199.934 -199.99985 -200

F2
12.41074 15.92034 1.698666 1153.498 2.91809 1.0000125 1

F3
0.004353 0.005751 0.038877 1.553515 0.137703 0.00000445 0

F4 -106.459 -106.357 -106.725 -78.6656 -106.746 -106.7638 -106.765

F5 1.122465 1.652505 0.071357 42.05747 0.097529 1E-10 0

F6 0.658878 1.619049 0.092741 43.84189 0.067781 3.7165E-06 0

F7 0.013956 0.034721 0.037903 2.301233 0.022482 1.9705E-06 0

F8 -37.6089 -32.8167 -33.1681 -25.4354 -29.5683 -39.189025 -39.1956

F9
0 0 6.066888 9.16517 4.978992 0 0

F10 -1.02875 -1.02601 -1.03125 -0.81944 -1.0314 -1.03163 -1.03163

F11 0.001254 0.003813 6.42E-05 0.277253 0.00022 5.02E-08 0

F12 -42.716 -42.6382 -42.8708 -38.6017 -42.938 -42.9444 -42.9444

F13
0.035444 0.108808 0.230391 3.343998 0.220859 2.7823E-05 0

F14
-24565.6 -24381.5 -24743.6 -17984.4 -24730.8 -24776.5 -24776.5

F15
-0.74984 -0.4442 -0.80794 -1.8E-05 -0.85862 -1 -1

F16 0.449115 0.528326 1.094281 13.30241 1.731257 0.0002405 0

F17 -25.1967 -25.2065 -25.1565 -22.9869 -25.045 -25.2305 -25.2305

F18 -18.4309 -14.8903 -18.1753 -12.6669 -18.2862 -18.5547 -18.5547

F19 -343.423 -337.944 -345.357 -256.668 -345.313 -345.35985 -345.36

F20 0.020221 0.070733 4.35E-05 1.820651 0.000651 3.208E-07 0

F21 3.065329 3.082658 3.018892 4.676115 3.057481 3.0000135 3

F22 34.76376 36.27151 68.25507 75.53155 72.95737 34.086535 34.0412

F23 65.07671 81.28288 2.818507 3631.894 11.20961 3.8552E-05 0

F24 0.010749 0.065113 0.00069 0.45203 0.004565 0 0

F25
-10.8489 -10.837 -10.8603 -10.3874 -10.8607 -10.8723 -10.8723

F26
-0.96325 -0.96342 -0.95512 -0.86909 -0.9603 -0.963535 -0.963535

F27
-2.82207 -2.69868 -3.17427 -1.65882 -3.08633 -3.381076 -3.38814

F28 -2.02177 -2.00677 -1.77877 -1.44159 -1.78244 -2.02181 -2.02181

F29 -2.06159 -2.06093 -2.06261 -1.93824 -2.06228 -2.06261 -2.06261

F30
1.518037 2.736039 2.000005 3.508812 2.000301 0.21866506 0

60

Table 4.3 ANOVA analysis of mean function calls of each meta-heuristic for all objective functions. (* indicates “no

significant difference”)

The significantly different algorithms based on Mean Function calls ≤ (500 EPOCHS)

Function P-value Algorithms

 CK SA GA PSO POLY HYB

F1 1.82898E-17 * *

CK,SA,

POLY, PSO * * CK, SA, PSO, POLY

F2 1.07148E-10 * * CK * * CK, POLY

F3 2.08378E-43 * * * * * CK, SA, PSO, POLY,GA

F4 2.49674E-29 * * CK * CK CK, SA, PSO, POLY,GA

F5 2.20353E-16 * * CK,POLY * CK CK, POLY

F6 1.73217E-14 * * * * * CK, SA, PSO, POLY,GA

F7 3.20673E-09 * * * * * CK, SA, PSO, POLY,GA

F8 1.23486E-29 * * * * * CK, SA, PSO, POLY,GA

F9 2.75464E-98

GA,PSO,

POLY * * * * GA, PSO, POLY

F10 9.70E-27 * *

CK, SA,

PSO * * CK, SA, PSO, POLY,GA

F11 1.6558E-07 * *

CK, SA,

PSO, POLY * * CK, SA, PSO

F12 1.0131E-27 * *

CK, SA,

PSO, POLY * * CK, SA, PSO, POLY,GA

F13 -------- * * * * * *

F14 9.59387E-26 * *

CK, SA,

PSO * * CK, SA, PSO, POLY,GA

F15 1.59751E-16 * *

CK, SA,

PSO * * CK, SA, PSO, POLY,GA

F16 -------- * * * * * *

F17 2.50691E-48 * * * * * CK, SA, PSO, POLY,GA

F18 9.84919E-28 * * * * * CK, SA, PSO, POLY,GA

F19 7.07297E-21 * *

CK, SA,

PSO * * CK, SA, PSO, POLY

F20 5.20026E-08 * *

CK, SA,

PSO, POLY * * *

F21 1.48091E-11 * * * * * CK, SA, PSO, POLY,GA

F22 -------- * * * * * *

F23 -------- * * * * * *

F24 1.8132E-15 * *

CK, SA,

PSO, POLY * * CK, SA, PSO, POLY

F25 4.61192E-27 * *

CK, SA,

PSO * * CK, SA, PSO, POLY,GA

F26 1.65387E-32 * * * * * CK, SA, PSO, POLY,GA

F27 -------- * * * * * *

F28 1.34422E-45

GA, PSO,

POLY * * * * CK, SA, PSO, POLY,GA

F29 1.52471E-39 * *

CK, SA,

PSO, POLY * * CK, SA, PSO, POLY

F30 -------- * * * * * *

61

Table 4.4. ANOVA analysis of mean global optimal values of each meta-heuristic for all objective functions (*

indicates “no significant difference”)

The significantly different algorithms based on minimum optimal values (X*) @ 500 EPOCHS

Function P-value Algorithms

 CK SA GA PSO POLY HYB

F1 4.42439E-45 PSO PSO SA, PSO * PSO SA, PSO

F2 5.73609E-20 PSO PSO PSO * PSO PSO

F3 4.2247E-13 PSO PSO PSO * PSO PSO

F4 5.09685E-19 PSO PSO PSO * PSO PSO

F5 9.08241E-22 PSO PSO PSO * PSO PSO

F6 7.49381E-37 PSO PSO PSO * PSO PSO

F7 3.49218E-15 PSO PSO PSO * PSO PSO

F8 3.2879E-33
GA, SA,
POLY,PSO POLY, PSO POLY, PSO * PSO

GA, SA, POLY,
PSO

F9 1.10236E-14 POLY, PSO
 POLY,
PSO SA, CK * PSO GA, POLY, PSO

F10 1.51277E-22 PSO PSO PSO * PSO PSO

F11 9.35908E-16 PSO PSO PSO * PSO PSO

F12 1.68892E-14 PSO PSO PSO * PSO PSO

F13 1.62595E-19 PSO PSO PSO * PSO PSO

F14 9.59387E-26 PSO PSO PSO * PSO PSO

F15 1.39766E-26 SA, PSO PSO SA, PSO * PSO,SA CK,SA,PSO

F16 4.45976E-18 PSO PSO PSO * PSO PSO

F17 1.26316E-19 PSO PSO PSO * PSO PSO

F18 9.84919E-28 SA, PSO PSO SA, PSO * PSO,SA SA, PSO

F19 3.62808E-37 PSO PSO PSO * PSO PSO

F20 1.55505E-10 PSO PSO PSO * PSO PSO

F21 2.68003E-11 PSO PSO PSO * PSO PSO

F22 1.30234E-57
GA, POLY,
PSO

GA, POLY,
PSO PSO * * GA,POLY,PSO

F23 2.8735E-16 PSO PSO PSO * PSO PSO

F24 4.33902E-60 SA,PSO PSO SA, PSO * SA,PSO SA, PSO

F25 1.47518E-34 PSO PSO PSO * PSO PSO

F26 3.7071E-35 PSO PSO PSO * PSO PSO

F27 3.70578E-41 PSO PSO
CK, SA,
PSO *

CK, SA,
PSO

CK,SA,POLY,
PSO

F28 2.02948E-40
GA, POLY,
PSO

GA, POLY,
PSO PSO * PSO GA, POLY, PSO

F29 6.21067E-30 PSO PSO PSO * PSO PSO

F30 1.0275E-27 SA, PSO PSO SA,PSO * SA, PSO
GA, CK, SA,
POLY,PSO

62

4.5 Summary of Results

4.5.1 Hypothesis 1 (H1)

The success of the proposed Hybrid model, CK, GA, SA, and a modified GA (polygamy induced)

has been statistically compared. When compared over hypothesis 1 (Table 4.5(a.)) which is based

on the mean function calls (speed of convergence), the proposed hybrid framework displayed

superiority over all other models. Next to the Hybridized model was the GA algorithm, thereafter

the CK search algorithm. It was observed that the CK model outperformed the GA (with a

statistically significant difference) in just 2 out of the 30 benchmark functions (the F9 – ‘brent

function’ and the F28- ‘Adjiman Function’) which are relatively complex functions in terms of

their differentiability, modality, separability, and modality. The PSO owes its performance to its

stability problem and also, the amount of permitted epochs for evaluation used in most PSO

implementations is usually high (approx. 2 million) [36], [37], [38] for each benchmark function,

as against the 500 epochs used in this research. There exists no significant difference in the speed

of convergence (in cases where convergence occurred) between the SA, PSO, and the polygamy

induced GA. However, the polygamy induced GA performed better than the CK in two of the

benchmark functions (F4-bird Function, F5- Bohachevsky 1 Function).

Table 4.5. (a) Box plot representation of Anova on the mean number of function calls (H1). Anova on hypothesis

1(H1)- the mean number of function calls

H1 ANOVA analysis for F1

H1 ANOVA analysis for F2

63

H1 ANOVA analysis for F3

H1 ANOVA analysis for F4

H1 ANOVA analysis for F5

H1 ANOVA analysis for F6

H1 ANOVA analysis for F7

H1 ANOVA analysis for F8

H1 ANOVA analysis for F9

H1 ANOVA analysis for F10

64

H1 ANOVA analysis for F11

H1 ANOVA analysis for F12

H1 ANOVA analysis for F13

H1 ANOVA analysis for F14

H1 ANOVA analysis for F15

H1 ANOVA analysis for F16

H1 ANOVA analysis for F17

H1 ANOVA analysis for F18

65

H1 ANOVA analysis for F19

H1 ANOVA analysis for F20

H1 ANOVA analysis for F21

H1 ANOVA analysis for F22

H1 ANOVA analysis for F23

H1 ANOVA analysis for F24

H1 ANOVA analysis for F25

H1 ANOVA analysis for F26

66

H1 ANOVA analysis for F27

H1 ANOVA analysis for F28

H1 ANOVA analysis for F29

H1 ANOVA analysis for F30

4.5.2 Hypothesis 2 (H2)

The success of the proposed Hybrid model can also be seen from the mean global optimal value

as shown from the ANOVA analysis (Table 4.5(b.)) In addition to the convergence speed

advantage, the proposed hybrid model has a significantly better performance when compared with

the other meta-heuristics with an impressive advantage over the traditional GA in (F8- ‘Branin

RCOS-2 Function’, F9-‘Brent function’, F22- ‘Rosenbrock Modified Function’ F28-‘Adjiman

Function’ and F30- ‘Damavandi Function’). These functions are recognized for their complexity

in terms of their differentiability, modality, separability, and modality. We can infer from statistical

results that the speed of convergence is a major advantage of our proposed model while its ability

to consistently converge at the global optima within a short period is an added advantage.

67

4.5 (b) Anova on hypothesis 2(H2)- the mean best optimal value obtained for each meta-heuristic algorithm.

H2 ANOVA analysis for F1

H2 ANOVA analysis for F2

H2 ANOVA analysis for F3

H2 ANOVA analysis for F4

H2 ANOVA analysis for F5

H2 ANOVA analysis for F6

H2 ANOVA analysis for F7

H2 ANOVA analysis for F8

68

H2 ANOVA analysis for F9

H2 ANOVA analysis for F10

H2 ANOVA analysis for F11

H2 ANOVA analysis for F12

H2 ANOVA analysis for F13

H2 ANOVA analysis for F14

H2 ANOVA analysis for F15

H2 ANOVA analysis for F16

69

H2 ANOVA analysis for F17

H2 ANOVA analysis for F18

H2 ANOVA analysis for F19

H2 ANOVA analysis for F20

H2 ANOVA analysis for F21

H2 ANOVA analysis for F22

H2 ANOVA analysis for F23

H2 ANOVA analysis for F24

70

H2 ANOVA analysis for F25

H2 ANOVA analysis for F26

H2 ANOVA analysis for F27

H2 ANOVA analysis for F28

H2 ANOVA analysis for F29

H2 ANOVA analysis for F30

4.6 Discussion

The global minimum values of each of the benchmark functions used in this research has been

solved 20 times with the CA, GA, PSO, SA, and the hybrid model algorithms using the same initial

population at every turn. The run-time and the minimum function calls of the best solution, and

the final global optimal values (table 4.2) has been documented during experiments and used for

further statistical analysis. Subsequently, the ANOVA analysis of mean function calls of each

meta-heuristic for all objective functions has been computed along with the ANOVA analysis of

mean global optimal values of each meta-heuristic for all objective functions.

71

As it is seen from Table 4.3, the performances of the Hybrid algorithm discovers the optimal values

in all functions, faster than the GA, CK, SA, algorithms. The "*" indicates “no significant

difference”. The CK displayed statistical advantage over GA, PSO, and POLY in F9 and F28

benchmark functions. The GA outperformed the CK with a statistical advantage over CK, PSO,

SA, and POLY in 14 benchmark functions out of the 30 benchmark functions. Our hybrid model

outperformed all metaheuristics used for our experiment in 22 out of the 30 benchmark functions.

It’s important to note that none of the metaheuristics performed significantly better (faster) than

our proposed hybrid model of benchmark functions.

Similarly, in Table 4.4, we show the minimum mean optimal values for the 30 benchmark

functions. Again, we see our proposed hybrid model display superior performance over the

metaheuristic algorithms with statistical significance in more than 9 benchmark functions.

Table 4.5(a) and 4.5(b) shows a boxplot ANOVA which reveals the median and spread of the

number of functions calls (epochs) and the minimum optimal values respectively, on the

metaheuristics and the hybrid model over the 30 benchmark functions.

4.7 Conclusion

In this chapter, we present a superior metaheuristic hybrid model when compared empirically with

the CK, SA, GA, PSO, and a modified GA in solving optimization problems. The hybrid

framework systematically combines the strengths of multiple meta-heuristics leveraging on the

traditional GA mutation strategy. The empirical analysis revealed faster convergence to a global

optimum with minimal computational complexity. The framework provides an axis for further

research work on the scalability (max number of meta-heuristics) and also the efficiency of the

algorithm when combined with other meta-heuristics apart from those used in this research such

as ABC (artificial bee colony), DE (Differential Evolution), Ant Colony, etc. In the next chapter,

we investigate the success of such a framework, on multi-objective optimization problems with

respect to proffering solutions to the multisource localization problem.

72

CHAPTER 5

MULTI-OBJECTIVE OPTIMIZATION APPROACH TO LOCALIZING MULTIPLE

EMISSION SOURCES

5.1 Introduction

Among the existing algorithms for multisource localization, we do not find clear recommended

techniques for robotic agents to proceed with a search after a source is found. The missing piece

for the multisource localization problem is to find theoretic frameworks that would guarantee

progress (after a source has been localized), while driving the algorithm towards convergence, and

a proper termination of the search algorithm. Gazi and Passino [4] works on “attractant/repellent

swarm” has come close to solving this problem but however, the work was limited to single-source

searches [104].

When solving the multisource localization problems, some factors are taken into consideration;

such as: the complexity of the solution, the type of source/target and the predictability of the

environmental variables. The Bayesian Occupancy grid algorithm [13] is one commendable

attempt in providing solution to the above stated factors. Although this algorithm provides a near

optimal solution to the multisource problems, it however does not provide a clear path towards

progress after a gradient source has been localized. In addition, the literature lacked adequate

comparative analysis with other biological models/algorithms.

Finally, the question on the modalities for choosing the dependent and independent variables for

the purpose of a standardized comparative analysis has been left unanswered. Consequently, there

is a need for the validation of a variables such as: the initial distribution of gradient sources, the

location and presence of obstacles, etc. Such standards could help in comparing and contrasting

different models and algorithms against the back drop of their merits and demerits for disparate

domains. In this thesis, we provide an array of groundbreaking paradigms while addressing the

problems of the multisource localization.

In this chapter, we present an algorithm which combines dynamic programming, NSGA-II

optimizer on a feedforward artificial neural network model, for a pair of robots simulated with

simple yaw and thrust motions in an attempt to achieve oblivious collaboration and control while

73

localizing multiple gradient sources. This methodology unveiled a potential solution to the

problem of progress and termination of multiple emission source localization.

5.2 METHODOLOGY

The missing piece of the multisource search puzzle is the absence of theoretical foundations for

progress (after a source is found), convergence, and termination of the search operation algorithm.

Motivated by this problem we commence our journey towards a solution to the multi-source

localization problems by adapting biological inspired algorithm for optimizing robot trajectory

within the search environment based on evolutionary neural networks (ENN) with respect to

predefined objective functions. Cooperation among multi-agents could be active (agents

acknowledging each other) or inactive (agents oblivious of each other). Motivated by the

simplicity and independence of oblivious agents, we propose a solution to the multi-source

localization problems by leveraging inactive cooperation amongst robots, with respect to unveiling

a “methodology for oblivious collaboration” among agents while localizing multiple gradient

sources simultaneously.

5.2.1 ENNs (Evolutional Neural Networks) using Discrete Variables

We introduce the section with preliminary experiments based on a grid world which has fixed

obstacles within the search space. The GA begins by defining a chromosome or an array of variable

values to be optimized. Each chromosome is an array of possible actions the robot can take such

as: [Rotate Left (RL), Rotate right (RR), Thrust (T), Back-up (B), Pause (P)]

Consequently, if the chromosome has N variables, then the chromosome could be written as an N

element Variable vector: chromosome = [RL, RL, RR, P, B, T, T, T, T, RL, RR, RR, RR,…Nth]

Each chromosome has a fitness score derived by evaluating the fitness function f of each

chromosome.

Fitness = f(chromosome) = f(RL, RL, RR,P, B, T, T, T, T, RL, RR, RR, RR,…Nth).

Since we are trying to find the chromosome with a maximum number of explored cells, the fitness

score is thus adapted from a maximization function. Consequently, the optimization algorithm

searches for the global maxima. The total number of explored cells by each robot (chromosome)

forms the fitness of that specie or instance of the robot.

74

 5.2.2 Discrete variable encoding and decoding

The discretized GA implementation works with action encodings. Whenever the fitness function

is evaluated, the chromosome must first encode and then decode the variables into a vector of

actions.

A chromosome is an array of genes. Each gene is encoded by randomly generating an action from

the fixed range of possible actions and also randomly generating a duration ‘d’ from a clamped

range of durations such that (0 < d <=30).

Thus, for action = [RL, RR, T, P],

The chromosome = ([RL][d1], [RR][d2], [P][d3], [T][d4],…..[action]th[d]th) such

that [RL][d1] is a represents a typical example of an encoded gene.

Decoding the gene:

A two-gene chromosome for example ([RR][4] , [T][2]), would cumulate into a chromosome of

six vector actions as shown below:

Chromosome = [RR, RR, RR, RR, T, T]

5.2.3 Objective Function

The objective function (in this case, the grid world) determines the fitness score. The GA attempts

to optimize an exhaustive search of the entire search space. The algorithm randomly generates a

set of a hundred chromosomes for a hundred robots with an initial fitness score of zero. At the

end of the first generation, the set of a discrete variable (chromosomes) that can navigate the

robot through the highest number of grid cells becomes the fittest chromosome (highest fitness

score). The fitness score is directly proportional to the total number of explored cells by the robot

at the end of each run.

5.2.4 The population

The GA starts with a group of chromosomes known as the population. Each chromosome

corresponds to a set of discrete action vectors for navigating the grid map (fitness function).

Because each chromosome also corresponds to an instance of a robot, a population of 100

75

robots/chromosomes was randomly generated with each robot starting with a fitness score =

0. After the first epoch, where each robot’s vector of actions is tested against the fitness function,

the best-fit chromosome would have the highest fitness score while the worst fit chromosome

would have the lowest fitness score.

Fig. 5.1 Instantiation of a spool of 100 evolving robots within the obstacle oriented grid map

5.2.5 Constraints

In our implementation, the motion of the robot is constrained to forward thrust, backward thrust,

and yaw (rotation). Obstacle avoidance is programmed into the robot's motion. In essence, the

robot does not need to learn the presence of obstacles but rather mimicking an onboard sensor

deployment (in a real-life scenario) the robot is capable of aborting an action that would lead into

a brick wall or obstacle within the grid world.

5.2.6 Natural selection:

Two chromosomes are selected from the mating pool of 100 chromosomes to produce two new

offspring. Before the mating takes place, the best four chromosomes from the population are

preserved. This process is known as elitism [105], [106]. This procedure helps with better

convergence. The pairing continues until:

 New population = initial population – number of elites.

76

This brings the total number of new offspring to 100 which is the number of the initial population.

Unlike the natural biological model, GA maintains a fixed number of chromosomes after each

epoch (generation).

One epoch iterates through the entire population of chromosomes while carrying out Selection,

crossover, the mutation for each pair of chromosome based on some probability constraints.

The Roulette wheel and tournament selection are standards for most genetic algorithm

applications. For this research, we compare both selection methods and analyze their convergence

against varying crossover and mutations rates.

5.2.7 Crossover (Mating):

Using roulette wheel as the selection method, the GA randomly selects two chromosomes for

mating. The chromosomes with higher fitness scores stand the better chance of being selected for

mating than those with lower scores.

With the tournament selection method, the GA randomly picks a small subset of chromosomes (3-

5) from the mating pool. The chromosome with the highest fitness from this pool is then chosen

as a parent.

Mating is the creation of one or more offspring from the parents selected in the pairing process.

Two parents mate to produce offspring, and the resulting offspring is then placed into the

population.

Because each action (bit) on the string of chromosomes could make a significant difference in

fitness, a multi-point crossover on the chromosome was implemented. That is, for each

chromosome where the crossover is to be performed, we determine a swap rate and then swap

over individual bits where appropriate as we iterate through each chromosome.

 Swap rate = [random number (x) such that (0<x<1)] × [Chromosome length (before decoding)]

Thus crossover would happen at any point within the decoded chromosome where the swap rate

is greater than a randomly generated variable between 0 and 1 (Crossover criteria is satisfied).

Example:

Parent 1: [RR][4], [RR][10], [RL][6], [T][3], [T][10], [T][4], [T][8], [B][5], [B][2]

77

Parent 2: [RL][6], [RL][5], [RL][15], [B][7], [B][9], [T][2], [T][12], [P][16], [P][4]

Crossover criteria satisfied at the gene positions 2, 4, and 8 (in bold)

Child 1: [RR][4], [RL][5], [RL][6], [B][7], [T][10], [T][4], [T][8], [P][16], [B][2]

Child 2: [RL][6], [RR][10], [RL][15], [T][3], [B][9], [T][2], [T][12], [B][5], [P][4]

5.2.8 Mutation:

The mutation is central to the reason why GAs would almost always find an optimal solution. It

introduces traits, not in the original population and keeps the GA from converging too fast before

sampling the entire objective space. A single point mutation toggles a bit. Just like crossover,

mutation points are randomly selected from a string of chromosomes.

The mutation is the last phase of the GA process before the emergence of a new generation. This

slight perturbation has the potential of enhancing or degrading the fitness of the individual

chromosome but on another hand, enhances the overall robustness of the genetic algorithm.

In our implementation, a multipoint mutation enabled the GA makes significant progress towards

global optima. Consider the example below:

With a mutation rate of 0.001 for action and duration

Child 1: [RR][4], [RL][5], [RL][6], [B][7], [T][10], [T][4], [T][8], [P][16], [B][2]

Child 2: [RL][6], [RR][10], [RL][15], [T][3], [B][9], [T][2], [T][12], [B][5], [P][4]

The mutated bit in italics:

Child 1: [RR][4], [RL][5], [RL][6], [B][7], [B][5], [T][4], [T][8], [T][16], [B][2]

Child 2: [B][6], [RR][10], [RL][15], [T][3], [B][9], [T][2], [T][12], [B][5], [T][14]

78

5.2.9 The Next Generation:

After the mutation, the next generation is tested on the fitness function which in our case is an

experimental grid world with obstacles. The chromosome is decoded into a string of actions only.

The duration determines the number of times the action is carried out. By feeding these strings of

actions to the actuators of our robot, motion is exhibited and the amount of grid space covered is

calculated as fitness for each instance of our robot. This entire process is iterated from generation

to generation until the average fitness of the population is equal or near equal to the fitness of the

overall best-fit chromosome.

At this point, we can terminate the iterative process and adopt the current status (our best fit

chromosome) as our optimal solution. Moreover, subsequent generations would witness little or

no improvement in their average fitness score.

The rationale behind choosing the best fit is to maximize the transversal of the search space under

discrete variable implementation [107].

5.3 ENNs (Evolutional Neural Networks) using Continuous Variables

Figure 5.2 Double brain feed forward neural network. a= thrust forward b= left turn, c=right turn

79

The rationale behind this implementation was to improve the robot's trajectory capability by

training the robot to learn the preferred turn (left or right) and also investigate if this would result

in a significant improvement in the robot’s performance. This time, if output ‘a’ is the highest, the

robot thrust forward one step else the second neural network determines the direction of the turn.

If output ‘b’ is highest, the robot turns left else it turns right by 0. 1 radians. The same procedures

for crossover and mutation are carried out on both networks simultaneously by keeping the

selection, crossover, mutation, and turning rate constant for both networks [108]. When compared

with the traditional neural network strategy, the brain expansion technique performed better with

tournament selection but was outperformed by the traditional method when tested using the

roulette wheel as a selection technique.

Fig. 5.3 comparing fitness performances for the traditional ENNs (blue R001) with Double Brain ENNs (red DB

R001) using roulette wheel selection with mutation rate of 0.001

80

Fig. 5.4 comparing fitness performances for the traditional ENNs (blue T001) with Double Brain ENNs (red DB T001)

using Tournament selection with mutation rate of 0.001

5.3.1 Polygamy: a Mating Strategy

A couple of strategies for applying crossover and mutation have been explored in most GA

literature. For example, De Jong’s [98] experiment prevented too many similar individuals from

being in the population at the same time. This feat was achieved by enforcing newly formed

offspring replacing the existing individual most identical to it. Goldberg and Richardson [99]

achieved something similar using a proportional “fitness sharing function”. Using this feature,

similar individuals were punished while dissimilar ones were rewarded, thus allowing convergence

on diverse peaks rather than all converging on the same peak.

Eshelman and Schaffer promoted diversity, putting a restriction on mating by disallowing mating

between similar individuals (incest). The rationale was to keep the population as diverse as

possible. Holland suggested the use of ‘matching tags’ as a mating selection strategy. These tags

provide restrictions on mating as only those with matching tags are allowed to mate across

generations.

The concept of polygamy, on the contrary, does not intend to promote diversity but rather

similarity. With polygamy, every other member of the population is forced to mate with the fittest

81

of that generation. This implementation was effective in finding the global optima (best solution)

when hybridized with the traditional selection method. The GA is allowed to run until it slows

down and then polygamy sets in thereby fine-tuning the fittest chromosomes towards an optimal

or best solution.

In our implementation, the GA slowed down after 30 generations before triggering polygamy.

After a total of 50 generations, results show significant improvement for both roulette wheel

selection and tournament selection with a mutation rate of 0.01. However, reducing the mutation

rate to 0.001 shows little or no improvement in the overall fitness of the population. All

experiments were conducted using a fixed standard 0.7 probability to determine the crossover rate.

Table 5.1 Effect of polygamy on ENN using Roulette wheel (R001 and R01) Tournament selection (T001 and T01).

Were 001 represents a mutation rate of 0.001 and 01 a mutation rate of 0.01.

Epoch R001 R01 T001 T01

5 76 74 72 159

10 248 239 139 229

15 248 254 180 240

20 248 255 213 246

25 248 258 213 249

30 252 267 213 262

35 252 270 213 263

40 253 277 213 271

45 253 278 213 272

50 253 278 213 272

82

Fig. 5.5 comparing fitness performances for the polygamy enhanced ENNs using Roulette wheel (R001 and R01)

Tournament selection (T001 and T01). Were 001 represents a mutation rate of 0.001 and 01 a mutation rate of 0.01.

5.3.2 Choosing Best Practice

The Boltzmann scaling method is a popular technique for optimizing GAs. This technique is used

when the selection pressure is required to be low at the beginning of the run in order to maintain

diversity but as the GA converges toward a solution, the fitter individuals are selected for mating.

This method uses a continuously varying temperature to control the selection rate.

The best and most consistent solution was achieved when the concept of polygamy was applied to

the double brain technique. When implemented with a 5 ratio 5 (5:5) generation switching the

technique (looping the first 5 generations using traditional technique while subsequent 5

generations use polygamy), the resulting fitness score of 278 (90% of the grid environment

searched) after 50 epochs provide satisfactory performance. After, multiple trials, the result

remain consistent using tournament selection and a mutation rate of 0.01.

83

Table 5.2 Comparing performances of polygamy on double brain ENN, Boltzmann Scaling, polygamy on ENN with

tournament selection method and a fixed mutation rate of 0.01

However, the implementation of polygamy on ENNs after (30 epochs – 50 epochs) and the

Boltzmann’s scaling method (for 50 epochs) shows identical performance. This result may suggest

the inclusion of polygamy to the ENNs as an alternative approach to the Boltzmann’s scaling

method for ENNs.

Fig. 5.6 Comparing performances of polygamy with double brain ENN (db poly 5:5), Boltzmann Scaling (Boltzmann),

polygamy on ENN (neural poly) using tournament selection method and a fixed mutation rate of 0.01

Epoch neural poly boltzmann db poly 5:5

5 103 144 23

10 114 162 49

15 226 197 60

20 247 235 187

25 248 254 214

30 249 257 220

35 250 262 239

40 253 266 251

45 270 271 278

50 270 271 278

84

Choosing the optimization technique that works best for a particular objective function sometimes

could be more of an art than science as not all optimization algorithms may perfectly fit into an

implementation. Table 5.3 shows results (which is an average over 20 iterations) of the

performance of four other natural meta-heuristic algorithms (PSO, SA, Cuckoos search, and the

hybrid cuckoo/GA) on our objective function. Among these algorithms, the PSO performed best

with a fitness score of 255. Not surprisingly, the hybridized cuckoos/GA was an improvement over

the cuckoo’s search algorithm with an addition of 28 grid cells. However, the DB-poly (5:5)

methodology outperforms all algorithms with a fitness score of 278 which turns out to be about

90% of the entire searchable (obstacle-free) section of the grid world.

Table 5.3 Comparing performances of polygamy with double brain ENN (db poly 5:5), Boltzmann Scaling

(Boltzmann), with four other meta-heuristic optimizers.

Epoch PSO SA Cuckoos

hybrid

Cuckoos/

GA boltzmann

db poly

5:5

5 62 43 102 93 144 23

10 100 123 120 104 162 49

15 133 133 159 114 197 60

20 168 195 177 124 235 187

25 175 226 196 214 254 214

30 225 226 210 214 257 220

35 255 232 210 214 262 239

40 255 245 217 241 266 251

45 255 245 217 241 271 278

50 255 245 217 241 271 278

85

Fig. 5.7 Graphical representations of fitness scores over 50 generations for polygamy with double brain ENN (db poly

5:5), Boltzmann Scaling (Boltzmann), Simulated Annealing (SA), particle swarm optimization (PSO), cuckoos search,

and the hybrid cuckoos/GA.

5.3.3 Impact of hydrodynamics on the Robot’s search performance

Fig. 5.8 Revised neural network architecture for maneuvering in a hydrodynamic environment.

ENN

 Inputs

X1

X2

Xn

Thrust

1

Thrust

2
Yaw

86

In this research, we also investigated the impact of hydrodynamic drag into the simulation

environment [109]. A constant drag coefficient is applied to the environment which could act in

opposition to the linear velocity of the robot depending on the orientation of the robot. Using this

method, the robot only experiences drag when traveling in the opposite direction of the current

flow. Consequently, the robot experiences increased velocity when traveling in the same direction

as the current flow. From figure 5.8, the propulsion of the robot is a function of the output of the

evolutional neural network (ENN). The network is further modified for hydrodynamic

environments such that the robot is capable of switching between two linear velocities: thrust 1

and thrust 2, along with a yaw action used for altering the robot’s orientation. In our simulation

(leveraging C++ for windows), thrust 2 propels the robot with a velocity 3 times the velocity of

thrust 1. A more accurate fluid dynamic simulator may provide better accuracy with respect to a

real-world scenario, however not without significant computation complexity.

Also, in this initial phase of our experiment, we are more interested in the general behavior of the

evolved robots with respect to their fitness scores. An exhaustive search in an aquatic like

environment could be challenging due to the environmental dynamics which could make it difficult

(or easier as the case may be) for the robot to conduct an exhaustive search on the environment.

Since intelligence can also be defined as the ability to recognize the advantage, the robot must

learn to take advantage of the conditions of the environment in accomplishing its goal (exhaustive

search).

5.3.4 Experiment and results

(a)

(b)

Trial 1

Trial 2
Trial 3

Trial 4

Trial 5

87

Fig. 5.9 (a)Flows emanating from different directions: North->South, West -> East, East-> West, South->North, and

South-west ->North-East at a 450 angle. (b) Robot equipped with 5 sensors separated at 45 degrees interval

Five separate trials, as shown in Figure 5.9, were conducted to evolve robots search performance

for environments with flows emanating from different directions. Trial 1 simulates a flow

from North->South, Trial 2 from West -> East, Trail 3 from East-> West, Trial 4 from South-

>North, and finally Trial 5 from South-west ->North-East at a 450 angle.

The simulation was conducted with 3 categories of tidal flow: Low, Medium, and High. In the

Low tide category, the robot propels forward with half of thrust 1 velocity when in opposition to

the flow. In the Medium tide category, thrust 1 propels the robot forward with the same velocity

as that of the tidal flow, thus the robot should remain stationary when in opposition to the flow. In

the High tide category, the robot propels forward with half the velocity of thrust 2 when in

opposition to the flow. The trials consist of an averaged summary of 20 replicate runs evolved over

50 generations with a population of 100 robots.

Table 5.4 Summary Results for Trial 1 to 4

Table 5.4 shows the fitness scores of the best Evolving robot for direct low, medium, high, and

random tide, over 50 generations in a hydrodynamic environment for trails 1-4. Trials 1->4

Epoch low tide

medium

tide high tide

Random

tide

5 231 122 102 142

10 279 154 165 282

15 286 205 193 299

20 287 213 203 290

25 299 242 208 291

30 302 247 211 306

35 302 269 219 308

40 302 284 225 301

45 302 299 232 300

50 302 300 232 296

Avg. Fitness 210.81 197.6 121 215.85

88

exhibits similar results for low, medium, high, and random tides as shown in the table above. In

the random tide mode, the flow rate switches between Low, Medium, High, and No tide in each

time frame while keeping the direction of the flow constant.

Fig. 5.10 Graphical representation of fitness scores of the best evolving robot for low, medium, high, and random

tide, over 50 generations in a hydrodynamic environment for trails 1 - 4

Not surprisingly, the robot was able to perform faster and better in accomplishing its goal by taking

advantage of the environment [109-111]. It was observed that the robot performed better in

environments with lower tidal flows than the higher ones. Similarly, the robot was able to adjust

to the switching flow rates. The best fittest score fluctuated throughout the run but stabilized at the

range (295, 308) fitness score, which is a very satisfactory performance covering 95% of the entire

search space. The fluctuations were as a result of the stochastic nature of the environment.

89

Table 5.5 Results for Trial 5

.

The summary table above shows the fitness scores of the best Evolving robot for diagonal low,

medium, high, and random tide, over 50 generations in a hydrodynamic environment for trial 5

In trial 5, a subtle but significant difference from trials 1- 4 was observed. Apparently, the diagonal

tidal flow poses a greater restraint on the fittest robot’s trajectory. The robot performed better

(with respect to the objective function) in a medium tide environment than in the high and low tide

environment. This could be as a result of the increased constraint of a diagonal collision avoidance

mechanism preprogrammed into the robot’s motion model, consequently making the robot to be

less adventurous at the lower diagonal tides conditions and also too careful at higher diagonal tide

conditions thereby making the medium diagonal tides a more favorable condition while attempting

an exhaustive search of the environment.

Epoch low tide

medium

tide high tide

Random

tide

5 75 214 122 50

10 129 245 220 107

15 129 245 220 109

20 134 249 220 117

25 148 252 221 173

30 164 252 221 173

35 212 254 221 163

40 232 255 226 171

45 232 255 226 197

50 232 255 226 204

Avg. Fitness 67.9 167.53 98.99 63.17

90

Fig. 5.11 Graphical representation of fitness scores of the best evolving robot for diagonal low, medium, high, and

random tide, over 50 generations in a hydrodynamic environment for trail 5

Form the above graph (fig. 5.11), it obvious that randomizing the diagonal tide makes the

environment more arduous for the robot to meet up with its objective function. At the end of 50

generations, the fittest robot is barely able to cover about 65% of the entire search space.

5.3.5 Implementing Particle filters: based on Time difference of arrival (TDoA)

In a deliberate attempt to demonstrate the practicability of our algorithm in a real-world scenario,

we introduce the particle filter algorithm to our dynamic programmed (clean-up robot) for

localizing itself within the search environment [112-115]. In a non-deterministic (hydrodynamic)

but fully observable environment (grid map), it becomes imperative for a robot to localize itself

while simultaneously planning its path to the desired goal node using dynamic programming (DP).

The presence of ambient noise and reverberations using acoustic sensors in underwater localization

applications pose a hindrance to a single point intersection of acoustic signals [116]. As a result,

traditional methods used for acoustic localization rarely succeed even at low reverberation levels.

Prior experiments comparing Kalman filters and particle filters in an underwater environment

91

showed better performance leveraging particle filters with smoother and more robust trajectory

estimation [39]. In addition, X.U. Yaosong et al., [116] demonstrated the accuracy and

practicability of particle filter implementation in underwater applications with a low RMSE bias

of 0.0732.

 The particle filter technique for localization involves a representation of a random collection of

particles, each of which represents a hypothesis of where the robot might be. Each particle is an

abstract replica of the actual robot with 3 or more vector values (xi, yi, θi) representing their

positions (within Cartesian coordinates) and orientations [117-120] within the belief space (search

environment). Thus, each particle is a possible state of the actual robot.

Over an iterative cycle of motion and measurements by both the actual robot and particles, the

particles with measurements that are more consistent with the actual robot measurements are given

higher weights (importance) thereby increasing their re-sampling likelihood. These particles

survive in proportion to their measurement probability. The point estimate of the actual robot’s

location and pose is then computed based on the new weighted re-sampled particles using their

mean or median values. Particle filter which turns out to be very effective in handling non-

Gaussian and non-linear problems were formulated on the concepts of Bayesian theory.

We simulated a search and rescue operation using 4 acoustic sensors, modeled at the corners of

the grid world. During the search and rescue procedure, 3 robots were randomly deployed within

the search environment along with a certain (pre-determined) number of simulated victims whose

locations are unknown.

It’s important to note that two of the robots have been trained and optimized on navigating the grid

world while the third robot navigated via dynamic programming (path planning) which we

hereafter refer to as the DP-robot. In our algorithm, each robot possesses a prior knowledge of the

map along with the map’s state and subsequently the updated state of the map as the grid cells get

visited. As a result, oblivious collaboration emerges as they cooperate in the search and rescue

operation while conducting an exhaustive search of the environment. Each robot is assumed to be

capable of picking up a located victim within the search space while navigating the environment.

The same technique used in foraging robots. It's important to note the algorithm possesses no

heuristics with respect to the location of the victims. The success of the algorithm is strictly based

on the ability to exhaustively search the entire grid world. This definitely exposes a major

92

weakness in the algorithm but however opens a gateway for better algorithms as revealed in

subsequent sections.

5.4 Multi-Objective Optimization Approach to Multi-Source Localization

Collision avoidance is a very important feature design for mobile robots. With the introduction of

ENNs, the robot was simulated to have on board sensors with which it could maintain tags on the

intensity of each gradient source. This feature makes the robot capable of perceiving his

environment via its input sensors.

Fig. 5.12 Scenario 1 the robotic agent equipped with 5 sensor inputs into its feed-forward neural network (brain) with

2 gradient sources in RED

The artificial neural network was modeled using 5 sensors inputs, 2 output neurons with the

sigmoid activation function along with 20 neurons for the hidden layer. The trajectory of the robot

is determined by the neural network outputs (fig. 5.12). Both outputs were used for the controls of

the robot. While one output was used for the thrust motion, the other was used for the yaw with a

turning radius of 0.1 radians. The neural network weights were stochastically determined within

the bounds of [-1, 1].

93

Each Epoch was determined using CPU clock cycles precisely 7500 frames after which the NSGA-

II algorithm the best performing robots are preserved via its selection, mutation and crossover

model as shown in (fig. 5.13) below.

Fig. 5.13 Optimization architecture pipeline

The above figure shows the processes for each clock cycle of about 7500 frames. A single artificial

neural network model is used for the training of a hundred pairs of robotic agents. Weights are

filtered and returned into the neural network at the beginning of each epoch.

The process is terminated based on any of the following criteria: either there is convergence such

that subsequent epochs do not produce better results or the stipulated number of epochs for the

training process has been attained.

5.4.1 Sensory feedback

The values returned by each sensor is bounded between [-1, 1] depending on the location of the

end nodes of each input sensor (fig 5.9b). While the return value for an obstacle is -1, a float

variable value is returned for other cell nodes. These values varies based on the distance from the

gradient source nodes.

The multi-objective optimization model was adopted as a result of the dual conflicting properties

of the robots characterized by exploration and homing. A robot biased towards exploration may

consequently pay less attention to homing on the target source while on the other hand, a robot

biased towards homing may ignore other available emission sources thereby failing to progress

N

Population

Start

GA- mutation

& crossover

NSGA-II

Selection

NSGA-II

Tournament

selection

Objective

Function

N(½)

Population/

crowding

distance

94

after a gradient sources has been localized. As a result, the NSGA-II model was adopted to find

the Pareto-optimal front that best satisfies both objectives by finding the most appropriate balance

between exploration and homing.

Fig. 5.14 Scenario 2 the robotic agent equipped with 5 sensor inputs into its feed-forward neural network (brain) with

2 gradient sources in RED.

5.4.2 Dynamic programming (DP) approach for modeling multiple gradient sources

We found the Dynamic programming (DP) model most appropriate for simulating multiple

gradient sources. Although DP is often implemented for path planning by providing policies for

each valid node, adapting this same strategy to gradient sources mimics real world scenarios

adequately. From the fig. 5.15 below, we see a square grid model. The zero points are used to

indicate regions of maximum gradient concentration. Consequently, as we move away for the zero

points, we begin to migrate towards regions of lower concentration which is represented by higher

values. It is important to note that this model by default assumes no regions with dead space exists.

95

3 2 1 2 ////// 5

4 ///// 0 1 //////// 4

5 ///// 1 2 ///////// 3

4 3 2 2 1 2

5 /////// //////// 1 0 1

5 4 3 2 ////////// 2

Fig. 5.15 modeling multiple emission sources on a grid world.

5.4.3 Calculating Fitness values (F1 and F2)

The following equations were used for calculating the homing (F1) and explorative fitness score

(F2) respectively. It’s important to note that in robotic applications, it is intuitive to view the grid

world and the task as the objective function. However, the decision space constraints for the

weighted values are within the [-1, +1] range.

𝑓1 = ∑ ∑
1

𝐶𝑗 + 1
 (𝐾)

𝑛

𝑗=1

𝑁

𝑖=1

 (5.1)

𝑓2 = ∑ ∑(𝑉𝑗)

𝑛

𝑗=1

𝑁

𝑖=1

 (5.2)

where,

96

𝐶𝑗 is the estimated Euclidian distance from source location derived from the sum of all sensor

readings.

𝐾 is a large constant (typical value 1000)

𝑛 is the number of sensor readings

𝑁 is the duration of clock cycles (typical value 7500)

𝑉𝑗 is the sum of all sensor values in visited cells

Fig. 5.16 Scenario 3 the robotic agent equipped with 5 sensor inputs into its feed-forward neural network (brain) with

2 gradient sources in RED.

97

Fig. 5.17 Scenario 4 the robotic agent equipped with 5 sensor inputs into its feed-forward neural network (brain) with

2 gradient sources in RED.

5.5 Multi-Objective Results

Fig. 5.18 the Pareto-optimal front for Scenario 1

The above scenario figure (5.18) shows the localization of both emission sources by both agents.

It was possible to identify best solution via continuous monitoring of the homing score. Both

emission sources were localized by the end of 5000 clock cycles which apparently was also the

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

0.00E+00 5.00E+05 1.00E+06 1.50E+06 2.00E+06

Ex
p

lo
ra

ti
o

n
 f

it
n

e
ss

 (
F2

)

Homing fitness (F1)

Objective Space

98

end of the 3rd generation. The algorithm was terminated by the 5th generation having shown no

significant improvement with the missions best completion time at 1250 clock cycles. The agents

were observed to have localized both emission sources by splitting apart.

Fig 5.19 the Pareto-optimal front for Scenario 2

The second scenario above (fig. 5.19) also shows the localization of both emission sources by both

agents. Both emission sources were localized by the end of 3300 clock cycles which apparently

was also the end of the 3rd generation. The algorithm was terminated by the 5th generation having

shown no significant improvement with the missions best completion time at 2180 clock cycles.

Once again, the agents were observed to have localized both emission sources by splitting apart.

Fig. 5.20 the Pareto-optimal front for Scenario 3

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

1.40E+07

1.60E+07

0 5000000 10000000 15000000 20000000

Ex
p

lo
ra

ti
o

n
 f

it
n

e
ss

 (
F2

)

Homing fitness (F1)

Objective space

0

1000000

2000000

3000000

4000000

0 500000 1000000 1500000

Ex
p

lo
ra

ti
o

n
 f

it
n

e
ss

 (
F2

)

Homing fitness (F1)

Objective Space

99

The third scenario above (fig.5.20) also shows the localization of both emission sources by both

agents. Both emission sources were localized by the end of 2350 clock cycles which apparently

was also the end of the 3rd generation. Again, the agents were observed to have localized both

emission sources by splitting apart.

 Fig.5.21 the Pareto-optimal front for Scenario 4

In our fourth simulation (scenario 4, fig.5.21), shows the localization of both emission sources by

a single agent. This characteristic behavior presents a potential contribution of this algorithm

towards solving the problem of progress after localizing an emission source. Both emission sources

were localized by the end of 4550 clock cycles which apparently was also the end of the 3rd

generation. The algorithm was terminated by the 5th generation having shown no significant

improvement with the missions best completion time remaining unchanged.

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

0.00E+00 5.00E+05 1.00E+06 1.50E+06 2.00E+06

Ex
p

lo
ra

ti
o

n
 f

it
n

e
ss

 (
F2

)

Homing fitness (F1)

Objective space

100

5.6 A Comparative Analysis with two Existing Models

Table 5.6 Adapted Summary of multi-search options and their characteristics.

Source: Kathleen Mcgill, Stephen Taylor 2011 [13]

 GSO PSO Proposed Model

Swarm size 1000 10 2

Source Number 100 5 2

Source type Generic Chemical Generic

Source mobility Mobile Fixed Fixed

Variable source

intensity

Yes No Yes

Dead space No Yes No

Communication range Local Local Global

Agent deployment Random, center,

corner

Corner Center

Computational

complexity

Low Medium Medium

Obstacle avoidance Sensory based Artificial repulsion Artificial repulsion

Sensing requirement Signal intensity Other Robots,

obstacles

Signal intensity

Proceeding after source

is found

None Source collection Source collection

Theoretical foundations Clustering behavior None Multiple source

profiles

The above table (table 5.6) shows the implementation models for the PSO and the GSO algorithms

along with their implementation approach towards solving the multisource localization problem.

While the 'swarm size' is indicative of the number of robots used for each trial, the 'source number'

is indicates the number of emission sources to b localized by the robotic agents. There are two

main types of gradient sources: the Generic and the chemical. The PSO model was implemented

101

using chemical sources while our proposed model along with the GSO makes use of generic

sources. However, it is important to note that our proposed model did not include dead space in

the simulation. However, this could easily be added by allowing robots that are instantiated on a

dead space to roam until a gradient source is sensed.

Since the PSO was modeled using plume, this made chemical sources for gradient source

simulation most appropriate. These gradient sources as simulated such that robots could

extrapolate via spatial proximity close they may be to a gradient source. The attribute of each

source is defined by the source mobility. Sources could either be fixed or mobile. Our proposed

model was implemented using fixed sources. However the model could be adapted to

accommodate gradient sources that could drift. They are two communication methods that could

be implemented: the local communication and the global communication. The GSO was

implemented using the local communication method such that each robot made decisions based

on the information shared between themselves. However, our proposed model was implemented

using the global communication model. Consequently, each robot updates its inputs from the

changing state of the grid world (triggered by each robot's motion) with which the artificial neural

network learns the most beneficial trajectory.

Furthermore, there are different strategies for instantiating our robots. They could either be

randomly distributed, or centralized, or clustered at the corner of the grid world. This could be

subjective based on the model of the grid world. For our proposed model, all simulations were

instantiated at the center. Computational complexity denotes the magnitude of hardware and

software required with respect to CPU time overhead, Memory consumption and the complexity

of the algorithm. Armed with these indicators, we classified complexity into the following: LOW,

MEDIUM, and HIGH. Consequently, we classified as HIGH if any of the two mentioned

indicators were high, and similarly, we classified as LOW if any of the two indicators were low.

Our proposed model along with the PSO model made use of artificial repulsion for obstacle

avoidance implementation. In contrast, the GSO model implemented obstacle avoidance using

sensory based model. One major contribution of our model to the multisource localization problem

can be traced to the ability of our model to progress with a search after a source is localized and

also progress the search process towards convergence and termination.

It is important to note that our model implemented source collection just as could be found with

the PSO algorithm. However we observed via simulations, the potential for progress even in

102

scenarios with no degrading sources. Finally, partitioning indicates the ability to create sub-group

of robots from a swarm as could be found in the GSO implementation model. We reserve this

paradigm as part of our future research where neural networks could learn to form clusters of

robots amidst localizing multiple gradient sources.

5.7 Conclusion

In this chapter, we have progressed from discrete models to evolving Neural network models in

achieving corporative control in task oriented missions using a group of robots and then climaxed

on the dynamics of Multi-objective evolutionary algorithms combined with artificial neural

networks in addressing a fundamental multisource localization problem of progress after a source

is found. It also unveiled a guaranteed procedure for finding multiple emission sources. In addition,

we witnessed via experiments, the improvements ENNs can bring to optimization of the robot’s

trajectory for the search process taking advantage of sensor feedback as inputs to the neurons rather

than just evolving discrete robot actions. In our implementation, we assumed the emission sources

were fixed and the grid a fully observable 2 Dimensional world.

103

CHAPTER 6

AGENT AND SOURCE LOCALIZATION IN POMDP ENVIRONMENTS

6.1 Introduction

Recent advances in the field of artificial intelligence (AI) has made available a wide range of

efficient algorithms which when skillfully hybridized could result in a plausible model for solving

some of the problems in the field. In this chapter, the authors leverage on some of the existing AI

techniques for optimization, such as genetic algorithms, for learning such as ANNs (artificial

Neural Networks) and RL (Reinforcement learning), and finally for state estimation such as the

Particle filter algorithm. Since Markov Decision Processes (MDPs) do not provide an accurate

representation of the real-world domain, due to the uncertainty or rather incomplete knowledge of

the state of the environment, we adopt the POMDPs- Partially Observable Markov Decision

Processes model for our simulation.

Ever since the introduction of value iteration algorithm for planning [121] in the 1970s, the concept

has undergone a couple of refinement by numerous authors with an attempt to adapt it to solving

more complex real-world problems. The combinational explosion of linear components (also

referred to as the curse of dimensionality in some literature) in the value function is one of the

major reasons POMDPs are impractical for most applications [122], [123]. Another related

problem with value iteration is the exponential growth of distinct action-observation histories (also

referred to as the curse of history). Some ingenious pruning methods have been used to ameliorate

the problem but these pruning methods are in themselves computationally expensive to implement

and only works for small finite horizon problems [124].

Some better strategies have been implemented such as PBVI (Point-Based Value Iteration) which

iteratively updates a subset of representative belief points. Another promising method

implemented for both discrete and continuous belief states is the MCMDP (Monte Carlos Markov

Decision Process). This method attempts to map POMDPs directly to their underlying MDPs using

Bayes Particle filter for belief updates. On a parallel front, the Reinforcement Learning (RL)

algorithm is considerably a slow but elegant approach to learning in an unknown environment.

Although the action-value (Q-learning) is faster than the state-value, the rate of convergence to an

optimal policy or maximum cumulative reward remains a constraint. However, RL has the

advantage of learning an underlying MDP [125-127] for dynamic and stochastic environments.

104

In this section, the authors via experiments investigated the effect, impact or/and contributions of

multi-agents to accelerating the rate (thereby shortening the duration) at which the utilities

converge to an optimal policy for planning within POMDP environments. The agents' leverage on

the greedy strategy for online exploration-exploitation using off-policy model-free algorithm

[128]. We then compared this RL model with an ingenious multi-agent framework equipped with

a feedforward neural network which is optimized offline via an objective function (based on

localization of goal and absorbing nodes) using a genetic algorithm. We then identified the

promises and constraints of both paradigms and thus propose future recommendations.

Furthermore, because every POMDP can be mapped directly to its underlying MDP, we examined

the effect of multi-layered particle filter [129-132] (weighted resampling) mechanism for

minimizing the error between an agent’s belief state and actual state. Results show that this simple

procedure quickly filters out outliers responsible for large errors in the initial approximate belief

state.

6.2 Methodology

At the end of chapter 5, we had developed a model that addressed the theoretical foundations for

progress (after a source is found), however, we are left with a problem of convergence and

termination of the search and localization operation. Motivated by these problems, we introduced

novel concepts for accelerating an off-policy reinforcement learning algorithm for Partially

Observable Markov Decision Processes (POMDP) leveraging the multi-agents frame work.

Motivated by the need to optimize the learning process, we compared our off-policy reinforcement

learning algorithm with an ingenious GA (Genetic Algorithm) approach for multi-agent offline

learning using feedforward neural networks. At the end of the trainings (episodes and epochs) for

reinforcement learning and genetic algorithm respectively, the convergence rate for both

algorithms with respect to creating the underlying MDPs for POMDP problems were compared.

Next, we demonstrated the impact of layered resampling of Monte Carlo’s particle filter for

improving the belief state estimation accuracy with respect to ground truth within POMDP

domains. The adoption of this novel approach provided us with a robust algorithm for the

convergence and termination for the search and localization of multiple gradient sources.

105

Similar to the model used in chapter 5, we adopted a multi-layer artificial neural network with 5

inputs, 2 output neurons, and 20 neurons in the hidden layer for each mobile agent. Choosing the

structure of a neural network is rather more of an art than science. However, certain factors such

as the speed of training the network, could influence the choice on the number of hidden layers

(level of complexity). The higher the complexity, the slower the training process. Since we adapted

a feedforward model for weight adjustment rather than the backpropagation methodology, we tend

to worry less about overfitting the model due to the fact that the network is not presented with a

predefined optimal label. The feedforward network improved by advancing its frontiers via an

objective function. Consequently, a single hidden layer with about 15-20 neurons acceptable

performance with respect to efficiency and minimal complexity for our model design. Each neuron

is activated using the sigmoid activation function. The output of the network determines the robot's

trajectory. If output 1 is the highest, the robot thrust forward one step else it turns (rotate left or

right) by 0.1 radians. The weights of the neurons (chromosome) are stochastically determined at

the instantiation of the first run between [-1, 1] range.

We compared two learning paradigms for a POMDP environment. In the first paradigm, we

simulated the learning phase of a POMDP model using online, off-policy reinforcement Q-learning

with both single and multi-agents. The rationale is for the agents to learn optimal policy within

belief space. In the second paradigm, we simulated an alternative off-line learning approach using

feedforward neural networks for multiple agents (with a size of 4) whose weights were optimized

using genetic algorithm over multiple epochs. The rationale is for the agent to learn the model of

the world by localizing all-absorbing states including the goal node and terminating with an

optimal policy with respect to the goal node using dynamic programming. We then compared their

merits and demerits with respect to practicability within the scope of the multisource localization

problem.

Finally, we investigated via experiments, an ingenious modification to the resampling phase of the

Monte Carlos Particle filter algorithm such that an agent navigates with an improved belief state

estimation accuracy with respect to the agents' actual state (ground truth). Consequently, the agent

would be capable of mapping the POMDP environment to its underlying MDP with high fidelity.

106

6.3 Experiments and Results

The experiments can be divided into two sub sections: section A and Section B.

Fig. 6.1 Multi-agent RL environment. With walls (white cells), absorbing states (red cells), dynamic door (blue cell)

and goal node (green cell).

The experiments were divided into two sections: Section A and Section B. In this section (section

A), we showed how the multi-agent Q-learning RL algorithm [133-137] converges quickly when

compared with a single off-policy agent. It is important to note that the learning algorithm created

an underlying MDP model for the grid world (fig. 6.1) at convergence.

The first simulation had a single RL agent in a 30 X 20 grid world (fig. 6.2) with obstacles (white

cells), absorbing nodes (red cells), a single door (blue cell) which toggles (open/close) between

episodes and a single goal node (in green). In the second simulation (fig.6.3), three more agents

are added to the single agent. In a deliberate attempt to investigate the significance of the addition

of a single agent, we ran a third simulation with 5 agents (fig 6.4).

107

Fig. 6.2 Single agent reinforcement learning graph with respect to CPU-time

The results show a significant difference in the convergence rate. It is interesting to note that multi-

agents displayed some emergent behaviors (outside the scope of this research) during the on-line

training process while migrating the algorithm towards convergence.

Fig. 6.3 Multi-agent (size of 4) reinforcement learning graph with respect to CPU-time

4533.88

272457

0

100000

200000

300000

400000

500000

600000

-6000

-4000

-2000

0

2000

4000

6000

C
P

U
 T

IM
E

R
EW

A
R

D
Single Agent RL Convergence

AVG REWARD CPU TIME

4266.76

52583

0

20000

40000

60000

80000

100000

120000

140000

-6000

-4000

-2000

0

2000

4000

6000

C
P

U
 T

IM
E

R
EW

A
R

D

Muti-Agent RL Convergence

AVG REWARD CPU TIME

108

Fig. 6.4 Multi-agent (size of 5) reinforcement learning graph with respect to CPU-time

In comparison, we simulated an alternate approach to creating an underlying MDP model for a

grid world using multi-agents (4 agents) each equipped with feedforward neural networks, which

are optimized by genetic algorithm. The objective of function of these agents is to learn the model

of the world via exploration. Training is done off-line via epochs over multiple generations. The

fitness function for each generation of the multi-agents is given by:

∑ ∑ 𝑅(𝑠)𝑖.𝑗 + 𝛽𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 (6.1)

where,

R(s) are the living positive reward for each new explored state (i,j) in the grid world,

𝛽𝑖,𝑗 are extra rewards assigned to absorbing and goal nodes.

The iteration terminates after a predefined number of epochs or after a predefined minimum sum

of rewards is obtained. The simulation terminates by creating an underlying MDP (Optimal policy)

using dynamic programming with respect to the goal node. It’s important to note that the entire

learning procedure is considered to be off-line. Each epoch ran for a fixed duration (3750) CPU-

time over 12 epochs (fig. 6.5) before termination.

39708

4228.21

-6000

-4000

-2000

0

2000

4000

6000

0

20000

40000

60000

80000

100000

120000

140000

R
EW

A
R

D

C
P

U
 T

IM
E

Multi-Agent RL Convergence

CPU TIME AVG REWARD

109

Fig. 6.5 Multi-agent (size of 4) feedforward neural network (with GA) learning graph with respect to CPU-time, and

Epochs.

In this section (section B), we simulated the planning phase for a single agent in a POMDP

environment that leverages on the underlying MDP created in section A. Our methodology

incorporated the particle filter algorithm leveraging the roulette wheel selection for the resampling

phase [138].

Fig. 6.6 Agent motion model for POMDPs

6.4 Monte Carlos Resampling Model

In our simulation, four-sensor nodes are strategically placed at the edges of the grid world with

which the agent is able to localize itself with respect to its belief update [139]. Gaussian noise was

added to the sensor inputs. For simplicity, we discretized the agent’s motion within the stochastic

environment. The key idea is to efficiently map the belief state of the agent (particle filter averaged

output) with the actual state of the agent. From fig (6.6), the agent’s policy is mapped directly to

its belief which is based on the underlying MDP. Consequently, an accurate mapping would

ultimately guide the agent to the goal node.

0

10000

20000

30000

40000

50000

0

50

100

150

200

1 2 3 4 5 6 7 8 9 101112

C
p

u
 T

im
e

R
ew

ar
d

Epochs

Reward Cpu-Time

Update

belief

Sense

Resample

Move

110

Fig. 6.7 Process flow diagram for traditional resampling and localization of belief state using particle filters. Capital

‘A’ (Initial Random sample), Lowercase ‘a’ (resampled)

Fig. 6.8 Agent belief state (particle filter) and actual state transition from start position (upper left) to goal position

(lower right) for traditional resampling.

The resampling model depicted in figure (6.7) is the traditional resampling model where particles

are initialized randomly within the entire grid world [140] as depicted with the capital A.

thereafter, a new weighted sample-based on important weights is produced (lower case a) via the

roulette wheel selection algorithm. The x.y coordinates of the belief state are thereafter obtained

by averaging the sum of the particles x.y coordinates. Fig. (6.8) shows the average result of this

model. It’s important to note that the agent motion model (fig 6.7) is iterated about five times with

zero motion at the initialization phase before state transitions commence. The key idea is to

minimize the error between the belief state and actual state before any transition begins. It’s

important to note that the initial state (position) of the agent in the world is unknown. An improved

model (fig. 6.9) attempts to eliminate outliers resulting from the weighted samples via passing

those samples through roulette wheel a second time to produce better-weighted sample fig (6.10)

(lower case b) before averaging.

0

100

200

300

400

0 100 200 300 400

X
-p

o
si

ti
o

n

Y-position

Agent Position and Belief

Particle filter (belief) Agent

a A
∑ 𝑎𝑣𝑔

111

Fig. 6.9 Extended Process flow diagram for traditional resampling and localization of belief state using particle filters.

Capital ‘A’ (Initial Random sample), Lowercase ‘a, b’ (resampled) with double phased resampling.

Fig. 6.10 Agent belief state (particle filter) and actual state transition from start position (upper left) to goal position

(lower right) for double phased resampling.

Introducing a third layer (fig. 6.11) resampling produced even better results on the averages as

shown in fig (6.12).

Fig. 6.11 Extended Process flow diagram for traditional resampling and localization of belief state using particle

filters. Capital ‘A’ (Initial Random sample), Lowercase ‘a, b, c’ (resampled) with triple phased resampling.

0

100

200

300

400

0 100 200 300 400

X
-P

o
si

ti
o

n

Y-Position

Agent Position and Belief

Particle filter (Belief) Agent

a A b
∑ 𝑎𝑣𝑔

a A b c ∑ 𝑎𝑣𝑔

112

Fig. 6.12 Agent belief state (particle filter) and actual state transition from start position (upper left) to goal position

(lower right) for triple phased resampling.

In our final model, we include a preprocessing phase such that N number of particles are randomly

replicated 4 times in batches over the entire world depicted in the A, B, C, and D segments as

shown in figure (6.13 and 6.14)

Fig. 6.13 Modified Process flow diagram for traditional resampling and localization of belief state using particle filters.

Capital ‘(A, B, C D)’ (Initial Random sample), Capital A (selected sample), Lowercase ‘a, b, c’ (resampled) with

triple phased resampling.

0

100

200

300

400

0 100 200 300 400

X
-p

o
si

ti
o

n

Y-Position

Agent Position and Belief

Particle filter (Belief) Agent

a

A B

C D
A b c ∑ ⬚

113

Fig. 6.14 Agent belief state (particle filter) and actual state transition from start position (upper left) to goal position

(lower right) for preprocessed initialization with triple phased resampling.

The agent intuitively attracts the batch of particles with the highest probabilistic weights into the

iterative phase. Thus leaving behind other batches of N particles. This procedure keeps the

computational complexity simple while improving accuracy as shown in fig. (6.14)

6.5 The AMCL (Adaptive Monte Carlos Localization) approach

For the purpose of comparisons, we investigate the AMCL model which is a relatively recent state

of the art localization algorithm. This algorithm randomly adjusts the number of free particles

during the resampling phase based on their weights. By leveraging on the Kullback-Leibler

divergence (KLD) algorithm, [141,142] the AMCL adapts a linear relationship with the number

of particles in non-empty cells of the state space, and an upper bound on the number of resampled

particles throughout the sense and move cycle [143] as shown in fig 6.15.

0

50

100

150

200

250

300

350

400

0 100 200 300 400

X
-P

o
si

ti
o

n

Y-Position

Agent Position and Belief

Particle filter (Belief) Agent

114

Fig. 6.15 Agent belief state (particle filter) and actual state transition from start position (upper left) to goal position

(lower right) for the AMCL (KLD)

Our resampling model clearly shows better performance in comparison. The deployment of our

implementation drastically reduced the frequency of occurrence of true negatives (fig 6.16a) the

agent believes it’s in a wall when it’s actually not), and false positives (fig. 6.16b) the agent

believes it’s not in a wall when it actually is) when observed over multiple runs. The final model

maintained true positives over multiple runs as shown in (fig. 16.6c).

(a) (b) (c)

Fig. 6.16 (a) True negatives (the agent believes it’s in a wall (belief in RED) when it’s actually not), (b) False positives

(the agent believes it’s not in a wall, when it actually is). (c) True positives (agents position and belief are

approximately same.

0

50

100

150

200

250

300

350

400

0 100 200 300 400

X
-P

o
si

ti
o

n

Y-position

AMCL Agent Position and Belief

Particle filter (Belief) Agent

115

6.6 Discussion of Results

We obtained preliminary results in two phases for a typical learning and planning problem within

a POMDP environment. In the first phase, we simulated the learning phase of a POMDP model

using online, off-policy reinforcement Q-learning with both single and multi-agents. The rationale

is for the agents to learn optimal policy within belief space. The simulation results showed a

significant difference in CPU-time over episodes between the single and multi-agent framework.

The multi-agent (with a size of 4) converged much faster. With the addition of an extra agent, we

witnessed even further improvement in CPU-time.

In contrast, we simulated an alternative off-line learning approach using feedforward neural

networks for multiple agents (with a size of 4) whose weights were optimized using genetic

algorithm over multiple epochs. The rationale is for the agent to learn the model of the world by

localizing all the absorbing states including the goal node and terminating with an optimal policy

with respect to the goal node using dynamic programming. This model converged faster than the

Q-learning model however not without some drawbacks. The model is not naturally suited for

dynamic environments (such as open/closed doors) without a major modification to the algorithm

which could impact the computational complexity.

In the second phase (planning phase), results show how segmented initialization of particles

combined with multi-layer resampling improved belief state accuracy with respect to the agents'

actual state estimation. Consequently, the mapping of the POMDP to the underlying MDP was

with high fidelity.

6.7 Conclusion

We have compared two paradigms towards the learning phase and also contributed to the planning

phase via a clever modification to the resampling stage of the particle filter algorithm within a

POMDP environment. The multi-agent Q-learning is more robust for both static and dynamic

environments, however, it asymptotes relatively slower when compared with the multi-agent

feedforward neural network counterpart. In practical scenarios, the complexity of the world could

influence the most appropriate choice of algorithm. Furthermore, we leverage on a classical

resampling method (the roulette wheel) to demonstrate how an ingenious adaptation of the

116

algorithm using particle filters, improved the belief state accuracy with respect to the actual agent

position within POMDP environments.

117

CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Introduction

So far, we have been able to reveal via simulations, how simple multi-agent robots could achieve

cooperate behavior while offering solutions to the multi-source localization problem. Localizing

single emission sources is relatively trivial when compared to localizing multiple emission sources.

While the former has been treated extensively in literature, the latter has comparatively received

little emphasis. In addition, while there exits some incomplete solutions to the multi-source

problem, the solutions lack adhesive synergy along with the absence of lucid techniques for the

agents to proceed with a search after gradient source has been found. The key challenges to the

multi-source localization paradigm are: lack of convergence, lack of a clear procedure for

terminating search and finally, the absence of theoretical foundations for progress (after gradient

source has been localized).

This thesis merges the strengths of multi-objective optimization with artificial neural networks for

a group of non-complex robotic agents in order to achieve collaborative control (group behavior)

while localizing multiple emission sources.

While an online, off-policy reinforcement Q-learning multi-agents paradigm may be effective for

other problem domains, the implementation is not easily adapted to the standards used in literature

for the multi-source localization problem. This is due to the fact that the location of the gradient

sources should be unknown prior to the search. Consequently, we simulated as alternative, an off-

line learning approach using feedforward neural networks for multiple agents whose weights were

optimized using the hybrid optimization approach over multiple epochs. The rationale is for the

agent to learn offline, an optimized way of navigating the grid world, amidst multiple gradient

sources.

7.2 Adapted hybrid model

Our final adapted model for resolving the multisource localization problems leverages on all the

paradigms, algorithms and innovations discussed so far in this thesis. They include: the novel

hybrid optimization, MDPs, and POMDPs, particle filter, dynamic programming, and the multi-

objective optimization. The multi-objective optimization uses machine learning qualities of

the artificial neural networks (ANNs) for a group of robots by leveraging on their basic yaw and

118

thrust actuators in order to achieve collaborative control (group behavior) amidst localization of

multiple emission sources.

The final model incorporates an additional robotic agent that we refer to in this context as the

MDP-agent. While the preliminary test utilized only two agents, the incorporation of the third

agent brought robustness and a relatively stable solution to the multisource localization

problem. The Algorithm is shown in the table below:

Table 7.1 Algorithm for the adapted hybrid model

Innitialize_training();

At convergence, select any best performing team at the pareto optimal front.

Deploy all agents

while (targets_not_found) {

search();

if (target_found){

Activate policy to target location();

move_MDP_agent();

search();

}

}

From the above table, the algorithm begins by initializing the training process. This phase is

implemented with the multi-objective optimization algorithm, leveraging on the hybrid

optimization procedure discussed in chapter 4 for a fast and robust convergence towards the Pareto

optimal front. The fitness of the agents is determined by their objective functions: explorative and

exploitative (homing) capabilities. While the explorative capability encourages the agents search

of the entire grid world, the exploitative capability leverages on the agents bias towards homing in

on gradient sources using the source signal trails. Because these capabilities are inversely related,

119

we opted for a multi-objective optimization algorithmic approach. At convergence, the best

performing generations (at the Pareto optimal front) would have optimized (to a satisfactory level)

the objectives of exploration and exploitation. Thereafter, all agents are deployed in the simulated

world. The explorative and exploitive search (oblivious collaboration) commences and continues

until all gradient sources are localized. It is important to note that there exists no local

communication between agents, however, global communication is achieved via map update. Each

agent keeps in real-time an updated copy of the map.

Fig. 7.1 Adapted hybrid model

Consequently, after a source has been localized, the MDP-agent leverages on a policy-based, path

planning algorithm using dynamic programming to navigate towards the localized source (via

global communication) while the agents unobtrusively proceed with their search. Targets are

approached by the MDP-agent in a first find, first serve procedure. The algorithm terminates when

the entire search space has been explored or rather when all gradient sources have been localized.

By separating the agents for the search tasks from the MDP-agent which is saddled solely with the

homing task (fig. 7.1), we implement a clever and robust algorithm for resolving the multisource

localization problem.

120

This hybridized algorithm solves the fundamental problems of the multisource localization by

providing progress after a source is found, convergence, and termination. In the presence of range,

sensors, the algorithm showed high stability and robustness when simulated in a POMDP

environment. Using a novel resampling technique for the Monte Carlos belief state update

localization of agents, the MDP-agent was able to navigate to all source targets with significant

accuracy over multiple simulated runs.

 7.3 A Comparative Analysis with Existing Models

We put in perspective our proposed model with one of the relatively best (with respect to the

multisource problem) models in literature: the Bayesian occupancy grid model. The swarm size

for the Bayesian model was 20, our hybrid model deploys just 2. The number of target source our

implementation was 2 while the Bayesian used 3. It’s noteworthy that this lack of standardizations

for testing makes it difficult to tell what algorithm is best. However, that is outside the scope of

this research thesis. While our simulation made use of a generic gradient source, the Bayesian

model deployed radio frequency (RF) signal source. Unlike the Bayesian implementation, our

source targets were fixed in real-time, however different source location was used for

simulations. In addition, our implementation had no dead space nevertheless, a Gaussian source

intensity was implemented such that source signals were highest at source locations and signal

attenuation occurred as you move away for source location. While PSO used a foraging technique

for a localized source such that the source impact on the world was removed after it was found,

our implementation allowed for signal degradation such that lower gradient signals from other

non-localized sources are perceivable. This phenomenon helped the search to progress after a

gradient source is found. Just like the Bayesian algorithm, we consider the computation

complexity for our final hybrid to be “high” due to the incorporation of the MDP-agent along with

the training at initialization. We show that our hybrid model possesses a theoretical foundation

based on modern machine learning paradigm (artificial neural networks) on POMDP

environments.

121

Table 7.2 (a) Adapted Summary of multi-search options and proposed model

Source: Kathleen Mcgill, Stephen Taylor 2011 [13].

 BESA BRW Proposed Model

Swarm size 20 100 3

Source Number 2 2 2

Source type Chemical Generic Generic

Source mobility Fixed Fixed Fixed

Variable source

intensity

- Yes Yes

Dead space No No No

Communication range Local None Global

Agent deployment Near each other Random, single

location

Center

Computational

complexity

Medium Low High

Obstacle avoidance Swarm control None Artificial repulsion

Sensing requirement Concentration

location

Signal intensity Signal intensity

Proceeding after source

is found

None None Gradient attenuation

Theoretical foundations None None ML/ POMDPs

122

Table 7.2 (b) Adapted Summary of multi-search options and proposed model

Source: Kathleen Mcgill, Stephen Taylor 2011 [13].

 Bayesian

occupancy

Attractant/repellant Proposed Model

Swarm size 20 11 3

Source Number 3 5 2

Source type RF Gaussian quadratic,

planar

Generic

Source mobility Mobile Fixed Fixed

Variable source

intensity

- Yes Yes

Dead space - No No

Communication range Local Global Global

Agent deployment - - Center

Computational

complexity

High Medium High

Obstacle avoidance Minimum path

cost

Artificial repulsion Artificial repulsion

Sensing requirement RF signal strength,

location

Concentration

location

Signal intensity

Proceeding after source

is found

None None Gradient attenuation

Theoretical foundations None Single source profiles ML/POMDPs

7.4 Summary and conclusion

Our research began with the hybridization of 3 metaheuristic algorithms and compared the hybrid

combination of these algorithms in terms of different performance metrics. These include the

number of times each of the hybrid combinations has produced an optimal solution and different

other metrics such as the computational complexity and convergence to the global optima.

123

This contribution to the field of robotic optimization reveal that by leveraging the strengths of

multiple metaheuristic algorithms, hybridization can lead to more optimal results.

Building upon the positive results obtained on the hybridization (chapter 4) with the 30 benchmark

objective functions, we went further with the hybridization paradigm using dynamic programming,

NSGA-II and feedforward artificial neural network to simulate multi-robot collaboration and

control in a multi-source localization setting. The objective was to present a more practicable

model for proceeding with a search after a gradient source has been localized.

In addition, reinforcement learning was addressed with two paradigms towards the learning phase

being compared and a modification to the resampling stage of the particle filter algorithm in order

to resolve the convergence and termination of the search algorithm within a partially observable

environment.

The hybrid optimizer also provided a scalable framework on which other meta-heuristics (apart

from those used in this research) can be tested such as: ABC (artificial bee colony), DE

(Differential Evolution), Ant Colony, etc.

Finally, we brought all these concepts together into a unified framework which implements

oblivious, yet optimized cooperative control of robotic agents and was demonstrated in resolving

the multisource localization problem. Empirical results revealed superior performance over

existing counterparts.

7.5 Practical implementations

Our proposed algorithm finds practical value in swarm robotics, mission-oriented operations,

reconnaissance, search and rescue operations, foraging, and Nanorobotics. With minor

modifications, the failure of one agent doesn’t jeopardize the entire operation. Where the cost of

producing one robot is significant, optimization of the robot’s motions becomes pertinent. This

underpins the rationale or significance of an optimized swarm algorithm

7.6 Future direction

In our implementation, we assumed the targets are fixed in a 2-dimensional grid world which could

be fully observable or partially observable. Unlike the Bayesian algorithm, our research finding

was based strictly on simulations. A practical test may uncover more interesting axis for further

124

investigations. Furthermore, where targets are mobile, the dynamics of our MDP-robot

implementation may scale significantly to include localization of the drifting targets. It would be

interesting to know how mobile sources would affect the dynamics of our implementation. Another

exciting axis would be the investigation of how our proposed algorithm could learn to partition a

larger school or swarm into subgroups as they progress with the search process.

125

REFERENCES

1. X. Cui, R. K. Ragade, and A. S. Elmaghraby, “A collaborative search and engage strategy for

multiple mobile robots with local communication in largescale hostile area”, International

Symposium on Collaborative Technologies and Systems, pp 244 –249, San Diego, California,

January, 2004.

2. L. Marques, U. Nunes, and A. T. De Almeida, “Particle swarm-based olfactory guided search”,

Auton. Robot, 20, pp. 277–287, 2006.

3. V. Gazi, K.M. Passino, “Stability analysis of social foraging swarms. IEEE Trans. Syst.Man

Cybernet- Cybernetics”, 34, 1, pp. 539–557, 2004.

4. K.M. Passino, “Biomimicry of bacterial foraging for distributed optimization and control”,

IEEE Contr. Syst. Mag., 22, 3, pp.52–67, 2002.

5. S. Pouyanfar, ‘‘A survey on deep learning: Algorithms, techniques, and applications,’’ ACM

Comput. Surv., 51,5, pp. 92, 2018.

6. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, "Optimization by Simulated Annealing," Science,

220, 671–680, 1983.

7. J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int. Conf. Neural

Networks, Perth, Australia, pp.1942–1948, Nov. 1995.

8. X.S. Yang, S. Deb, “Cuckoo search via L´evy ?ights”, in: Proc. Of World Congress on Nature

& Biologically Inspired Computing, India. IEEE Publications, USA, pp. 210-214, 2009.

9. S. A. Kazarlis, S. E. Papadakis, J. B. Theocharis, and V. Petridis,“Microgenetic algorithms as

generalized hill-climbing operators for GA optimization,” IEEE Trans. Evol. Comput., 5, pp.204-

217, 2001.

10. S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo localization for mobile

robots,” Artificial Intelligence, 128(1-2), 2000.

11. J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An anytime algorithm for

POMDPs,” in Proc. Int. Jnt. Conf. on ArtificialIntelligence, pp. 477–484, 2003.

12. N. Roy, G. Gordon, and S. Thrun, “Finding aproximate POMDP solutions through belief

compression,” J. Artificial Intelligence Research, 23, pp. 1–40, 2005.

13. K. Mcgill, S. Taylor, “Robot algorithms for localization of multiple emission sources,” ACM

Comput. Surv, 43(3), pp. 1-15, 2011.

126

14. T. Kubota, Y. Kuroda, Y. Kunii, I. Natakani, “Micro-planetary rover Micro5,” in: Proceedings

of the Fifth International Symposium on Artificial Intelligence, Robotics and Automation in Space

(ESA SP-440), Noordwijk, Netherlands, pp. 373–378, 1999.

15. R.R. Murphy, “A decade of rescue robots,” In Proceedings of the 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems,” Vilamoura, Portugal, pp. 5448–5449, 2012.

16. L. Dunbabin, and M. Marques, “Robotics for environmental monitoring,” IEEE Robotics &

Automation Magazine, 19 (1), pp. 20-23, 2012.

17. Couceiro, M.S., Portugal, D., Rocha, R.P., “A collective robotic architecture in search and

rescue scenarios,” In: Proc. of 28th Symposium on Applied Computing (SAC 2013), pp. 64–69,

2013.

18. Barlow, G. J., Choong, K. O., and Smith, S. F., “Evolving cooperative control on sparsely

distributed tasks for UAV teams without global communication,” In Proceedings of the Genetic

and Evolutionary Computation Conference, pp. 177–184, 2008.

19. Luke, S., Sullivan, K., Panait, L., and Balan, G. T., “Decentralized algorithms for cooperative

target observation,” In Proceedings of the International Conference of Autonomous Agents and

Multiagent Systems, pp. 911–917, 2005.

20. H. Bach, I. G. McLean, C. Akerblom, and R. Sargisson, “Improving mine detection dogs: an

overview of the GICHD dog program,” in Proc. EUDEM2-SCOT conference on requirements and

technologies for the detection, removal and neutralization of landmines and UXO, pp.15–18, 2003.

21. I. Voinov, M. Nosikov, “Automatic and Manual Control Algorithms of Radiation-Proof

Manipulators.” In Proceedings of the IEEE 2018 Global Smart Industry Conference (GloSIC),

Chelyabinsk, Russia, pp. 1–6, 2018.

22. M.H. E. Larcombe, J.R. Andhelsall, “Robotics in Nuclear Engineering: Computer Assisted

Teleoperation in Hazardous Environments with Particular Reference to Radiation Fields,” Kluwer

Academic Publishers, Norwell, MA. 1984

23. B. Tribelhorn and Z. Dodds, “Evaluating the roomba: A low-cost, ubiquitous platform for

robotics research and education,” In Robotics and Automation, 2007 IEEE International

Conference on, pp.1393 –1399, 2007.

24. R. A. Freitas, “Current Status of Nanomedicine and Medical Nanorobotics,” J. Computational

and Theoretical Nanoscience, 2, pp. 1–25, 2005.

25. H. Q. Min, J. H. Zhu, and X. J. Zheng, "Obstacle Avoidance", In Proc. Int. Conf. on Machine

Learning and Cyber-netics, pp. 2950-2956, 2005.

127

26. R. Rozas, J. Morales, D. Vega, “Artificial smell detection for robotic navigation,” In

Proceedings of the 5th International Conference on Advanced Robotics, pp. 1730–1733, 1991.

27. K. N. Krishnanand and D. Ghose, “A glowworm swarm optimization based multi-robot system

for signal source localization,” In Design and Control of Intelligent Robotic Systems: SCI 177. D.

Liu, L.Wang, and K. C. Tan, Eds. Springer Verlag, Berlin, Germany, pp. 49–68, 2009a.

28. A. Dhariwal, G. S Suhkatme, A. A. G. Requicha, “Bacterium-inspired robots for environmental

monitoring,” In Proceedings of the International conference on Robotics and Automation, pp.

1436–1443, 2004.

29. S. Pang, and J.A Farrell, “Chemical plume source localization,” IEEE Trans. Syst.Man

Cybernet.—PartB: Cybernet. 36, 5, pp. 1068–1080, 2006.

30. G. Ferri, M,V Jakuba, E. Caselli, V. Mattoli, B. Mazzolai, D.R. Yoerger, and P. Dario,

“Localizing multiple gas/odor sources in an indoor environment using Bayesian occupancy grid

mapping,” In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, pp. 566–571, 2007.

31.G. Sandini, G. Lucarini, and M. Varoli, “Gradient driven self-organized systems,” In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.

429–432. 1993.

32. R. Bachmayer, and N.E. Leonard, “Vehicle networks for gradient descent in a sampled

environment,” In Proceedings of the 41st IEEE Conference on Decision and Control, pp.1–6, 2002.

33. T. Hogg, “Coordinating microscopic robots in viscous fluids,” Auton. Agent Multi-Agent

Syst., 14, pp. 217–305, 2007.

34. D. Borah, and A. Balagopal, “Localization and tracking of multiple near-field sources using

randomly distributed sensors,” In Proceedings of the 38th Asilomar Conference on Signals,

Systems, and Computers, pp. 1323–1327, 2004.

35. A. Lilienthal, D. Reimann, and A. Zell, “Gas source tracing with a mobile robot using an

adapted moth strategy,” In Proceedings of the IEEE International Conference on Robotics and

Automation, pp. 150–160, 2003.

36. A.T. Hayes, A. Martinoli, and R.M. Goodman, “Distributed odor source Localization," IEEE

Sens. J. , 2(3), pp. 260–271, 2002.

37. D. Zarzhitsky, D. Spears, and W. Spears, “Swarms for chemical plume tracing,” In Proceedings

of the Swarm Intelligence Symposium, pp. 249–256, 2005.

38. K.N. Krishnanand, and D. Ghose, “Glowworm swarm optimization for simultaneous capture

of multiple local optima of multimodal functions,” Swarm Intell, 3(2), pp. 87–124, 2009b.

128

39. R. Parpinelli, H. Lopes, “New inspirations in swarm intelligence: a survey,” International

Journal of Bio-Inspired Computation, 3(1), pp. 1–16, 2011.

40. J. Pugh and A. Martinoli, "Multi-Robot Learning with Particle Swarm Optimization", In Proc.

of the 5th Int. Joint Conf. on Autonomous Agents and Multi-agent Systems, pp. 441–448, 2006.

41. F. H. Branin Jr., “Widely Convergent Method of Finding Multiple Solutions of Simultaneous

Nonlinear Equations,” IBM Journal of Research and Development, 16(5), pp. 504-522, 1972.

42. P. Scerri, T. Von Gonten, G. Fudge, S. Owens, and K. Sycara, “Transitioning multi-agent

technology to UAV applications,” In Proceedings of 7th International Conference on Autonomous

Agents and Multi-agent Systems, pp. 89–96. 2008.

43. X.X. Chen, J. Huang, “Odor source localization algorithms on mobile robots: A review and

future outlook,” Robot. Auton. Syst., 112, pp.123-136, 2019.

44. M. Vergassola, E. Villermaux, B.I. Shraiman, “Infotaxis' as a strategy for searching without

gradients,” Nature, 445(7126), pp. 406-409, 2007.

45. E.M. Moraud, D. Martinez, “Effectiveness and robustness of robot infotaxis for searching in

dilute conditions,” Frontiers in neurorobotics, 4, pp. 1, 2010.

46. J. L. Blanco, J. G. Monroy, A. Lilienthal, J. Gonzalez-Jimenez, “A kalman filter based

approach to probabilistic gas distribution mapping, in: Proceedings of the 28th Annual ACM

Symposium on Applied Computing, ACM, pp. 217–222, 2013.

47. D. Gr¨unbaum, M.A. Willis, “Spatial memory-based behaviors for locating sources of odor

plumes,” Movement ecology, 3, pp.11, 2015.

48. H. Hajieghrary, M.A. Hsieh, I.B. Schwartz, “Multi-agent search for source localization in a

turbulent medium,” Physics Letters A380, pp.1698-1705, 2016.

49. J.A. Farrell, S. Pang, W. Li, “Plume mapping via hidden Markov methods,” IEEE Transactions

on Systems, Man, and Cybernetics, Part B (Cybernetics), 33(6), pp. 850- 863, 2003.

50. P. Civicioglu and E. Besdok, “A conceptual comparison of the cuckoo search, particle swarm

optimization, differential evolution and artificial bee colony algorithms,” Artificial intelligence

review, pp.1–32, 2013.

51. A. Pr¨ugel-Bennett, “Benefits of a population: five mechanisms that advantage population-

based algorithms,” IEEE Trans. Evol. Comput., 14(4), pp. 500-517, 2010.

52. J. Suarez and R. Murphy, "A Survey of Animal Foraging for Directed, Persistent Search by

Rescue Robotics," In Proc. of the 2011 IEEE International Symposium on Safety, Security and

Rescue Robotics, Kyoto, Japan, pp. 314-320, 2011.

129

53. M. Mitchell, “An introduction to Genetic algorithms,” MIT press, fifth edition, 1999.

54. M. Jamil and X.S. Yang, “A literature survey of benchmark functions for global optimization

problems,” Int. Journal of Mathematical Modelling and Numerical Optimisation, 4(2), pp. 150–

194, 2013.

55. D. H. Ackley, “A Connectionist Machine for Genetic Hill-Climbing,” Kluwer Dordrecht,

Academic Publishers, 1987.

56. I. O. Bohachevsky, M. E. Johnson, M. L. Stein, “General Simulated Annealing for Function

Optimization,” Technometrics, 28(3), pp. 209-217, 1986.

57. C. Munteanu and V. Lazarescu, “Improving mutation capabilities in a real-coded genetic

algorithm,” In Proceedings of the First European Workshops, pages 138–149, Goteburg, Sweden,

pp. 26.-27, May 1999.

58. F. H. Branin Jr., “Widely Convergent Method of Finding Multiple Solutions of Simultaneous

Nonlinear Equations,” IBM Journal of Research and Development, 16(5), pp. 504-522, 1972.

59. A. Lavi, T. P. Vogel (eds), “Recent Advances in Optimization Techniques,” JohnWliley &

Sons, 1966.

.60. M. M. Ali, C. Khompatraporn, Z. B. Zabinsky, “A Numerical Evaluation of Several

Stochastic Algorithms on Selected Continuous Global Optimization Test Problems,” Journal of

Global Optimization, vol. 31, pp. 635-672, 2005.

61. C. J. Chung, R. G. Reynolds, “CAEP: An Evolution-Based Tool for Real-Valued Function

Optimization Using Cultural Algorithms,” International Journal on Artificial Intelligence Tool,

vol. 7, no. 3, pp. 239-291, 1998.

62. S. S. Rao, “Engineering Optimization: Theory and Practice,” John Wiley & Sons, 2009.

63. R. L. Haupt, S. E. Haupt, Practical genetic Algorithms, John Wiley and sons Inc, 2004.

64. A. A. Goldstein, J. F. Price, “On Descent from Local Minima,” Mathematics and Comptutaion,

vol. 25, no. 115, pp. 569-574, 1971.

 65. H. H. Rosenbrock, “An Automatic Method for Finding the Greatest or least Value of a

Function,” Computer Journal, vol. 3, no. 3, pp. 175-184, 1960.

66. S.K. Mishra, “Some New Test Functions for Global Optimization and Performance of

Repulsive Particle Swarm Method”, Social Science Research Network (SSRN) Working Papers

Series, http://ssrn.com/abstract=927134, 2006

130

67. S.K. Mishra, “Global Optimization by Differential Evolution and Particle Swarm Methods:

Evaluation on Some Benchmark Functions”. SSRN: http://ssrn.com/abstract=933827, 2006

68. E. P. Adorio, “MVF – multivariate test functions library in C for unconstrained global

optimization,” 2005. available from http://geocities.com/eadorio/mvf.pdf

69. C. S. Adjiman, S. Sallwig, C. A. Flouda, A. Neumaier, “A Global Optimization Method, aBB

for General Twice-Differentiable NLPs-1, Theoretical Advances,” Computers Chemical

Engineering, 22(9), pp. 1137-1158, 1998.

70. J.R. Koza, “Genetic programming: on the programming of computers by means of natural

selection,” MIT Press, Cambridge, 1992.

71. L. Davis, “Genetic Algorithms and Simulated Annealing,” Pitman, London, 1987.

72. G. Syswerda and J. Palmucci, “The Application of Genetic Algorithms to Resource

Scheduling,” In R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth International

Conference on Genetic Algorithms, San Mateo, California, pp. 502–508, 1991.

73. X.S. Yang and S. Deb, “Cuckoo search via l´evy flights,” In Nature &Biologically Inspired

Computing, 2009. NaBIC 2009 World Congress on, pp. 210–214, 2009.

74. N. Damavandi, S. Safavi-Naeini, “A Hybrid Evolutionary Programming Method for Circuit

Optimization,” IEEE Transaction on Circuit and Systems I, 52(5), pp. 902-910, 2005.

75. M. Negnevitsky, “Artificial intelligence: a guide to intelligent systems second edition,”

Pearson Education Limited, Edinburgh Gate, Harlow, 2005

76. R. Rozas, J. Morales, and D. Vega, “Artificial smell detection for robotic navigation,” In

Proceedings of the 5th International Conference on Advanced Robotics, pp. 1730–1733, 1991.

77. Z. Li, Z. Shang, B. Y. Qu, and J. J. Liang, “Feature selection based on manifold-learning with

dynamic constraint handling differential evolution,” in Proc. IEEE Congr. Evol. Comput., Beijing,

China, pp. 332–337, 2014.

78. J. H. Holland, K. J. Holyoak, R. E. Nisbett and P. R. Thagard, “INDUCTION: Processes of

Inference, Learning, and Discovery,” MIT Press, 1986.

79. J. H. Holland, “Adaptation in Natural and Artificial Systems,” MIT Press, 1992.

80. J. Hertz, A. Krogh, and R. G. Palmer, “Introduction to the Theory of Neural Computation,”

Santa Fe Institute Studies in the Sciences of Complexity lecture notes. AddisonWesley Longman

Publ. Co., Inc., Reading, MA, 1991.

81. J. H. Holland, “COMPLEX ADAPTIVE SYSTEMS,” 121(1), pp. 17-30, winter 1992.

http://geocities.com/eadorio/mvf.pdf

131

82. Montana, D. J and L. D. Davis “Training feed forward networks using genetic algorithms,”

In Proceedings of 11th Intl. Joint Conf. in Artificial Intelligence (IJCAI), Detroit, MI, Morgan

Kaufmann, San Mateo, CA, pp. 762-767, 1989.

83. P.W. Tsai, T.T. Nguyen, T.K. Dao “Robot path planning optimization based on multi-

objective grey wolf optimizer,” In: International conference on genetic and evolutionary

computing, Springer, 536, pp. 166–173, 2017.

84. D. C. Dang, T. Friedrich, T. Kotzing, M. Krejca, P. K.Lehre, P. Oliveto, D. Sudholt and A.

Sutton, ‘Emergenceof diversity and its benefits for crossover in genetic algorithms’, in Proc. of

PPSN XIV, pp. 890–900, 2016.

85. H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima, “Modified Distance Calculation in

Generational Distance and Inverted Generational Distance,” in Evolutionary Multi-Criterion

Optimization. Guimaraes, Portugal: Springer International Publishing, pp. 110–125, 2015.

86. E, Shelhamer, P. Mahmoudieh, M. Argus, and T. Darrell, “Loss is its own reward: Self-

supervision for reinforcement learning,” arXiv preprint arXiv:1612.07307, 2016.

87. D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic policy

gradient algorithms,” In International Conference on Machine Learning, pp. 387–395, 2014.

88. M. Otsuka, J. Yoshimoto, and K. Doya, “Free-energy-based reinforcement learning in a

partially observable environment.,” ESANN 2010 proceedings, European Symposium on

Artificial Neural Networks – Computational Intelligence and Machine Learning, 2010.

89. D. Silver and J. Veness, “Monte-Carlo Planning in Large POMDPs,” in Proc. Neur. Inform.

Process. Sys. Vancouver, Canada, pp. 1–9, 2010.

90. H. Kurniawati and V. Yadav, “An online POMDP solver for uncertainty planning in dynamic

environment,” In Robotics Research, Springer, pp. 611–629, 2016.

91. S. Omidshafiei, A.A. Agha-Mohammadi, C. Amato, S.Y. Liu, J.P. How, and J. Vian,

“Decentralized control of multi-robot partially observable Markov decision processes using belief

space macro-actions,” The International Journal of Robotics Research, 36(2), pp.231–258, 2017.

92. T. Li, H. Fan, S. Sun, “Particle filtering: Theory, approach, and application for multitarget

tracking,” Acta Autom. Sin., 41, pp. 1981–2002, 2015.

93. L. Martino, V. Elvira, G. Camps-Valls, “Group importance sampling for particle filtering and

mcmc.” arXiv, arXiv:1704.0277, 2017

94. S. Thrun, W. Burgard, and D. Fox, “Probabilistic Robotics,” Cambridge, MA: MIT Press,

2005.

132

95. G. Best, J. Faigl and R. Fitch, “Online planning for multi-robot active perception with self-

organizing maps,” Autonomous Robots doi: 10.1007/s10514-017-9691-4, 2018.

96. J. Asmuth and M. Littman, “Approaching Bayes-optimality using Monte-Carlo tree search,”

In Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, pages 19–26,

2011.

97. M. Toussaint, “Robot trajectory optimization using approximate inference,” In Int. Conf. on

Machine Learning, ACM, pp. 1049–1056, 2009.

98. K. A. De Jong, “An analysis of a class of genetic adaptive systems,” Ph.D. thesis, University

of Michigan, 1975.

99. D. E. Goldberg, and J. Richardson, “Genetic algorithm with sharing for multimodal function

optimization,” In Proceedings of the second international conference on genetic algorithms and

their applications, Cambridge, Massachusetts, USA, pp. 41-49, 1987.

100. I. J. Eshelman, and J. D. Schaffer, “Preventing premature convergence in genetic algorithms

by preventing incest,” In: R.Belew, L.B. Booker, (eds) Proc. of the Fourth Int. Conf. on Genetic

Algorithms. Morgan Kaufmann, San Mateo, CA, pp. 115-122, 1991.

101. J. H Holland, “Adaptation in neural and artificial systems,” University of Michigan press

second edition, 1975.

102. Y. Liu, and K.M. Passino, “Biomimicry of social foraging bacteria for distributed

optimization: Models, principles, and emergent behaviors,” In J. Opt. Theor. Appl., 115, 3,

pp.603–628, 2002.

103. N. Barton and T. Paix˜ao, “Can quantitative and population genetics help us understand

evolutionary computation?,” in Proc. of GECCO, 13, pp. 1573–1580, 2013.

104. B. Doerr, C. Doerr and F. Ebel, “From black-box complexity to designing new genetic

algorithms,” Theor. Comput. Sci., 567, pp. 87–104, 2015.

105. R.R. Murphy, “An Introduction to AI Robotics (Intelligent Robotics and Autonomous

Agents),” Chapters 3-6, MIT Press, 2000.

106. C. Bishop, M. Svens_en, & C. Williams, “GTM: the generative topographic mapping,”

Neural Computation, 10 (1), 215-234. 1998.

107. J. M. Moore, A. J. Clark, and P. K. McKinley. Evolution of station keeping as a response to

flows in an aquatic robot. In Proceedings of the 15th Genetic and Evolutionary Computation

Conference, ACM Press, New York, NY, pp. 239–246, 2013.

133

108. R. Olfati-Saber, “Distributed tracking for mobile sensor networks with information-driven

mobility,” In Proceedings of the American Control Conference, pp. 4606–4612, 2007.

109. V. Chandrasekhar, W.K.G. Seah, Y.S. Choo, H.V. Ee, "Localization in Underwater Sensor

Networks - Surveys and Challenges," In Proc. of the WUWNet, pp.33–40, 2006.

110. M. Hahn and J. Rice, “Undersea Navigation via a Distributed Acoustic Communication

Network”, Proceedings of the Turkish International Conference on Acoustics, pp.4-8, 2005.

111. N.Y. Ko, T.G. Kim, "Comparison of kalman filter and particle filter used for localization of

an underwater vehicle," In: 2012 9th international conference on ubiquitous robots and ambient

intelligence (URAI), pp.350–352, 2012.

112. A. Savvides, C.-C. Han, and M. Srivastava, “Dynamic Fine-Grained Localization in Ad-Hoc

Networks of Sensors,” Proc. 7th ACM MobiCom, pp. 166–79, 2001.

113. A. Boukerche, H. Oliveira, E. Nakamura, and A. Loureiro, “Localization systems for wireless

sensor networks,” IEEE Wireless Commun. Mag., 14(6), pp. 6–12, 2007.

114. J.N. Ash and R.L. Moses, “Acoustic time delay estimation and sensor network self-

localization: Experimental results,” The journal of acoustical society of America, 118, pp.841,

2006.

115. Y. T. Chan and K. C. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE

Trans. Signal Process., 42(8), pp. 1905–1915, 1994.

116. X.U. Yaosong, W. Dandan, F. Hua, "Underwater acoustic source localization method based

on TDOA with particle filtering," In Proceedings of the 26th Chinese Control and Decision

Conference (2014 CCDC), Changsha, China, pp.4634–4637, 2014.

117. K.V. MacKenzie, “Nice-term equation of sound speed in the oceans,” Journal of the acoustic

society of America, 70, pp. 807, 1981.

118. A. Martins, A. Dias, J. Almeida, H. Ferreira, C. Almeida, G. Amaral,D. Machado,J. Sousa,

P. Pereira, A. Matos, V. Lobo, E. Silva, "Field experiments for marine casualty detection with

autonomous surface vehicles," In Proceedings of the 2013 OCEANS, San Diego, CA, USA, pp.

1-5, 2013.

119. R. Murphy, E. Steimle, M. Lindemuth, D. Trejo, M. Hall, D. Slocum, S. Hurlebaus, Z.

Medina-Cetina, "Use of unmanned marine vehicles for hurricane damage inspection," In

Proceedings of the OCEANS 2009, Biloxi, MS, USA, 2, pp. 783–790, 2009.

120. J. A. Bagnell, & J. Schneider, “Autonomous helicopter control using reinforcement learning

policy search methods,” In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), , Seoul, South Korea. IEEE Press, pp. 1615-1620, 2001.

134

121. C. Boutilier, & D. Poole, “Computing optimal policies for partially observable Markov

decision processes using compact representations,” In Proceedings of the 13th National

Conference on Arti_cial Intelligence (AAAI-96), pp. 1168-1175, 1996.

122. E. Hansen, and Z. Feng, "Dynamic programming for POMDPs using a factored state

representation," In Proceedings of the 5th International Conference on Artificial Intelligence

Planning and Scheduling, pp.130–139, 2000.

123. Z.N. Sunberg and M. J. Kochenderfer, “Online algorithms for POMDPs with continuous

state, action, and observation spaces,” in Proceedings of the Twenty-Eighth International

Conference on Automated Planning and Scheduling (ICAPS), pp. 259–263, 2018.

124. M. Corah, and N. Michael, “Efficient online multi-robot exploration via distributed sequential

greedy assignment,” In: Proceedings of Robotics: Science and Systems, 2017.

125. R.S. Sutton, and A.G. Barto, “Reinforcement learning: An introduction,” volume 1. MIT

press Cambridge, 1998.

126. P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep

reinforcement learning that matters,” arXiv:1709.06560, 2017.

127. J. Schulman, P. Abbeel, and X. Chen, “Equivalence between policy gradients and soft Q-

learning,” arXiv preprint arXiv:1704.06440, 2017.

128. J.S. Gutmann and D. Fox, “An experimental comparison of localization methods continued,”

In Proceedings of International Conference on Intelligent Robots and Systems, pp.454-459, 2002.

129. T. Patten, W. Martens, & R. Fitch, “Monte Carlo planning for active object classification,”

Autonomous Robots. 2017. https://doi.org/10.1007/s10514-017-9626-0. Retrieved 2021

130. N. Cao, K.H. Low, & J.M. Dolan,“ Multi-robot informative path planning for active sensing

of environmental phenomena: A tale of two algorithms,” In Proceedings of AAMAS, pp. 7–14,

2013.

131. G. Best, M. Forrai, R. R. Mettu, and R. Fitch, “Planning-aware communication for

decentralised multi-robot coordination,” in 2018 IEEE International Conference on Robotics and

Automation, Brisbane, Australia, pp. 1050–1057, 2018.

132. H. Li, H. Gao, T. Lv, and Y. Lu, “Deep q-learning based dynamic resource allocation for

self-powered ultra-dense networks,” in IEEE ICC (ICC Workshops), pp. 1–6, 2018.

133. N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. Liang, and D. I. Kim,

“Applications of deep reinforcement learning in communications and networking: A survey,”

CoRR, vol. abs/1810.07862, 2018.

https://doi.org/10.1007/s10514-017-9626-0

135

134. Y. Lin, X. Dai, L. Li, and F.-Y. Wang, “An efficient deep reinforcement learning model for

urban traffic control,” arXiv preprint arXiv:1808.01876, 2018

135. N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, M. Wu, and Y. Jiang, “Deep reinforcement learning

for user association and resource allocation in heterogeneous networks,” in IEEE GLOBECOM,

Abu Dhabi, UAE,Dec., pp. 1–6, 2018

136. M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B.

Piot, M. Azar, and D. Silver, “Rainbow: Combining improvements in deep reinforcement

learning,” in The Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

137. P. Vadakkepat, K. C. Tan, and W. Ming-Liang, “Evolutionary artificial potential fields and

their application in real time robot path planning,” in Proceedings of the 2000 Congress on

Evolutionary Computation, 1, pp. 256–263, 2000.

138. W. Wang, J. Hao, Y. Wang, and M. Taylor, “Towards cooperation in sequential prisoner’s

dilemmas: a deep multiagent reinforcement learning approach,” arXiv preprint arXiv:1803.00162,

2018.

139. Li, T.; Corchado, J.M.; Sun, S.; Fan, H. Multi-EAP, “Extended EAP for multi-estimate

extraction for SMC-PHD filter,” Chin. J. Aeronaut, 30, pp. 368–379, 2017.

140. D. Sun, F. Geißer, and B. Nebel, “Towards effective localization in dynamic environments,”

in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon,

Korea, pp. 4517–4523, 2016.

141. S. Sun, T. Li, and T. P. Sattar, “Adapting sample size in particle filters through KLD-

resampling,” Electronics Letters, 49(12), pp. 740–742, 2013.

142. G. Peng, W. Zheng, Z. Lu, J. Liao, L. Hu, G. Zhang, and D. He, "An improved AMCL

algorithm based on laser scanning match in a complex and unstructured environment," Complexity

2018, vol. 11, Article ID 2327637, 2018. https://doi.org/10.1155/2018/2327637. Retrieved 2021

143. Y. Li, C. hi, "Localization and Navigation for Indoor Mobile Robot Based on ROS," Chinese

Automation Congress (CAC), Xi’an, China, IEEE, 2018, doi: 10.1109/CAC.2018.8623225, pp.

1135–1139, 2018.

https://doi.org/10.1155/2018/2327637

136

ADDENDUM A

Label Function name Function Plot F(x)*

F1 Ackley2 Function

-200

F2 Bartels Conn Function

1

F3 Beale Function

0

F4 Bird Function

−106.76

F5 Bohachevsky 1 Function

0

F6 Bohachevsky 3 Function

0

F7 Booth Function

0

F8 Branin RCOS-2 Function

-39.195

F9 Brent Function

0

F10 Camel Function – Six Hump

−1.0316

F11 Camel Function – Three
Hump

0

137

F12 Chichinadze Function

-42.9444

F13 Cube Function

0

F14 Deckkers-Aarts Function

-24776.5

F15 Easom Function

-1

F16 Freudenstein Roth Function

0

F17 Haupt Function 16

-25.2305

F18 Haupt Function 07

-18.5547

F19 Haupt Function 15

-345.36

F20 Egg Crate Function

0

138

F21 Goldstein Price Function

3

F22 Rosenbrock Modified
Function

34.0412

F23 Rotated Ellipse Function

0

F24 Scahffer-1 Function

0

F25 Test-tube Holder Function

−10.872

F26 Pen-Holder Function

−0.9635

F27 Trefethen Function

-3.388

F28 Adjiman Function

-2.02181

F29 Cross-in-Tray Function

-2.06261

F30 Damavandi Function

0

139

Ackley 2 Objective function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 4318 215.9 56649.25263

PSO 20 10000 500 0

POLY 20 8360 418 30275.89474

HYB 20 3592 179.6 15848.25263

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 2230919 5 446183.7133 26.04859117 1.82898E-17 2.293911156

Within Groups 1952695 114 17128.9

Total 4183613 119

SCHEFFE'S TEST 140.1645

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance STD

CK 20 -3988.9 -199.445 0.118271263 0.343905893

SA 20 -3967.465 -198.37325 0.913960724 0.956012931

GA 20 -3998.991 -199.94955 0.019270892 0.138819639

PSO 20 -3850.843 -192.54215 6.943544766 2.635060676

POLY 20 -3998.679 -199.93395 0.011629103 0.107838317

HYB 20 -3999.997 -199.99985 1.34211E-07 0.000366348

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 854.3341 5 170.866824 128.0432518 4.42439E-45 2.293911156

Within Groups 152.1269 114 1.334446147

Total 1006.461 119

SCHEFFE'S TEST 1.237154

140

Adjiman Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 -40.43548 -2.021774 2.29895E-09

SA 20 -40.13538 -2.006769 0.001939014

GA 20 -35.57537 -1.7787685 0.006532401

PSO 20 -28.83175 -1.4415875 0.045489191

POLY 20 -35.64871 -1.7824355 0.007121065

HYB 20 -40.4362 -2.02181 0

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 5.193505093 5 1.038701019 102.030705 2.02948E-40 2.293911156

Within Groups 1.160551778 114 0.010180279

Total 6.35405687 119

SCHEFFE'S TEST 0.108057057

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 8520 426 19991.05263

SA 20 9590 479.5 8405

GA 20 10000 500 0

PSO 20 10000 500 0

POLY 20 10000 500 0

HYB 20 1040 52 414.3157895

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 3150984.167 5 630196.8333 131.2437573 1.34422E-45 2.293911156

Within Groups 547397 114 4801.72807

Total 3698381.167 119

SCHEFFE'S TEST 74.21164864

141

Bartels Conn Objective Tunction

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance STD

CK 20 248.21488 12.410744 148.7868805 12.19782278

SA 20 318.40678 15.920339 196.9263221 14.03304393

GA 20 33.97332 1.698666 2.624100498 1.619907559

PSO 20 23069.9544 1153.49772 838371.3859 915.6262261

POLY 20 58.3618 2.91809 6.619946637 2.572925696

HYB 20 20.00025 1.0000125 2.63026E-09 5.12861E-05

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 21919448 5 4383889.508 31.36104793 5.73609E-20 2.293911156

Within Groups 15935801 114 139787.7239

Total 37855248 119

SCHEFFE'S TEST 400.4127

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance STD

CK 20 10000 500 0 0

SA 20 10000 500 0 0

GA 20 6317 315.85 53646.13421 231.6164

PSO 20 10000 500 0 0

POLY 20 8628 431.4 22895.51579 151.3126

HYB 20 5544 277.2 9837.642105 99.18489

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 1011314.442 5 202262.8883 14.0494012 1.07E-10 2.293911156

Within Groups 1641206.55 114 14396.54868

Total 2652520.992 119

SCHEFFE'S TEST 128.4998125

142

The BEALE Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance STD

CK 20 0.08706108 0.004353054 2.64591E-05 0.005143836

SA 20 0.1150291 0.005751455 3.55581E-05 0.005963062

GA 20 0.777546 0.0388773 0.002022793 0.044975476

PSO 20 31.0703028 1.55351514 2.484417358 1.576203463

POLY 20 2.754056 0.1377028 0.092070831 0.303431757

HYB 20 0.000089 0.00000445 9.29974E-11 9.64351E-06

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 38.58432764 5 7.716865527 17.95613045 4.2247E-13 2.293911156

Within Groups 48.992887 114 0.429762167

Total 87.57721463 119

SCHEFFE'S TEST 0.702081273

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance STD

CK 20 10000 500 0 0

SA 20 10000 500 0 0

GA 20 10000 500 0 0

PSO 20 10000 500 0 0

POLY 20 10000 500 0 0

HYB 20 3256 162.8 19249.01053 138.7408

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 1895064 5 379012.8 118.1399323 2.08E-43 2.293911156

Within Groups 365731.2 114 3208.168421

Total 2260795 119

SCHEFFE'S TEST 60.65993

143

The BIRD Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance STD

CK 20 -2129.187 -106.45935 0.088339187 0.297219089

SA 20 -2127.148 -106.3574 0.140063305 0.374250324

GA 20 -2134.5 -106.725 0.008304316 0.091128019

PSO 20 -1573.3125 -78.665625 533.1795981 23.09068206

POLY 20 -2134.917 -106.74585 0.002407503 0.049066309

HYB 20 -2135.276 -106.7638 1.01053E-06 0.001005249

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 13017.9 5 2603.579823 29.28558474 5.09685E-19 2.293911156

Within Groups 10134.96 114 88.90311891

Total 23152.85 119

SCHEFFE'S TEST 10.09792

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance STD

CK 20 10000 500 0 0

SA 20 10000 500 0 0

GA 20 3463 173.15 41401.08 203.4726

PSO 20 10000 500 0 0

POLY 20 4725 236.25 49225.14 221.8674

HYB 20 456 22.8 28.8 5.366563

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 4281640 5 856328.1 56.67605 2.5E-29 2.293911156

Within Groups 1722446 114 15109.17

Total 6004086 119

SCHEFFE'S TEST 131.6417

144

Bohachevsky 1 Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance STD

CK 20 22.449307 1.12246535 0.51041125 0.714430717

SA 20 33.050106 1.6525053 1.198825436 1.094908871

GA 20 1.42714022 0.071357011 0.024381045 0.156144307

PSO 20 841.14948 42.057474 967.9726211 31.11225837

POLY 20 1.95057286 0.097528643 0.039640905 0.199100238

HYB 20 0.000000002 1E-10 2E-19 4.47214E-10

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 28706.33 5 5741.265881 35.52229095 9.08241E-22 2.293911156

Within Groups 18425.17 114 161.6243133

Total 47131.5 119

SCHEFFE'S TEST 13.61528

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance STD

CK 20 10000 500 0 0

SA 20 10000 500 0 0

GA 20 6082 304.1 41333.98947 203.3076228

PSO 20 10000 500 0 0

POLY 20 10000 500 0 0

HYB 20 5976 298.8 11434.27368 106.9311633

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 1051537 5 210307.3933 23.91294093 2.20353E-16 2.293911156

Within Groups 1002597 114 8794.710526

Total 2054134 119

SCHEFFE'S TEST 100.4348

145

 Bohachevsky 3 Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance STD

CK 20 13.1775651 0.658878255 0.241792246 0.49172375

SA 20 32.380988 1.6190494 3.280491338 1.811212671

GA 20 1.854823335 0.092741167 0.05750863 0.23980957

PSO 20 876.8378 43.84189 438.2693257 20.93488299

POLY 20 1.355626115 0.067781306 0.005949545 0.077133291

HYB 20 0.000074329 3.71645E-06 3.6991E-11 6.08202E-06

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 31364.03 5 6272.806338 85.17914765 7.49381E-37 2.293911156

Within Groups 8395.246 114 73.64251124

Total 39759.28 119

SCHEFFE'S TEST 9.190467

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance STD

CK 20 10000 500 0 0

SA 20 10000 500 0 0

GA 20 9559 477.95 9724.05 98.6106

PSO 20 10000 500 0 0

POLY 20 10000 500 0 0

HYB 20 7960 398 80 8.944272

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 166509.4 5 33301.875 20.38048052 1.73E-14 2.293911156

Within Groups 186277 114 1634.008333

Total 352786.3 119

SCHEFFE'S TEST 43.29128

146

The BOOTH Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 0.2791125 0.013955625 0.000246978

SA 20 0.6944204 0.03472102 0.00172919

GA 20 0.758061158 0.037903058 0.020742254

PSO 20 46.024655 2.30123275 4.777250376

POLY 20 0.449638197 0.02248191 0.001713

HYB 20 0.00003941 1.9705E-06 4.82269E-12

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 86.6152 5 17.32303928 21.64621483 3.49218E-15 2.293911156

Within Groups 91.23195 114 0.800280299

Total 177.8472 119

SCHEFFE'S TEST 0.958064

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 9152 457.6 17092.04211

PSO 20 10000 500 0

POLY 20 10000 500 0

HYB 20 8000 400 0

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 168362.6667 5 33672.53333 11.82042489 3.21E-09 2.293911

Within Groups 324748.8 114 2848.673684

Total 493111.4667 119

SCHEFFE'S TEST 57.16031991

147

The Branin RCOS 2 Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance STD

CK 20 -752.1784 -37.60892 2.595382701 1.61101915

SA 20 -656.3342 -32.81671 1.385618784 1.1771231

GA 20 -663.3616 -33.16808 12.64434158 3.5558883

PSO 20 -508.7088 -25.43544 17.57675793 4.19246442

POLY 20 -591.3664 -29.56832 9.700322721 3.11453411

HYB 20 -783.7805 -39.189025 0.000223472 0.014949

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 2571.988367 5 514.3976734 70.30068203 3.2879E-33 2.293911156

Within Groups 834.1502966 114 7.317107865

Total 3406.138664 119

SCHEFFE'S TEST 2.896963528

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 10000 500 0

PSO 20 10000 500 0

POLY 20 10000 500 0

HYB 20 7336 366.8 6152.589474

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 295704 5 59140.8 57.67405765 1.23E-29 2.293911156

Within Groups 116899.2 114 1025.431579

Total 412603.2 119

SCHEFFE'S TEST 34.29467 HYB &ALL

148

The BRENT Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 0 0 0

SA 20 0 0 0

GA 20 121.33776 6.066888 5.187505916

PSO 20 183.3034 9.16517 81.56954893

POLY 20 99.57983 4.9789915 2.969227128

HYB 20 0 0 0

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 1550.33481 5 310.066962 20.73418993 1.10236E-14 2.293911156

Within Groups 1704.799357 114 14.95438033

Total 3255.134168 119

SCHEFFE'S TEST 4.141498513

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 938 46.9 1178.2

SA 20 321 16.05 27.83947368

GA 20 10000 500 0

PSO 20 9675 483.75 4917.671053

POLY 20 10000 500 0

HYB 20 456 22.8 15.32631579

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 6528721.467 5 1305744.293 1276.17181 2.75464E-98 2.293911156

Within Groups 116641.7 114 1023.172807

Total 6645363.167 119

SCHEFFE'S TEST 34.25687899

149

The Camel 3 Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 0.02507991 0.001253996 1.32163E-06

SA 20 0.0762615 0.003813075 1.28594E-05

GA 20 0.001284207 6.42104E-05 1.54594E-08

PSO 20 5.5450521 0.277252605 0.067162084

POLY 20 0.004391179 0.000219559 1.10038E-07

HYB 20 0.000001004 5.02E-08 3.74912E-15

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 1.271487642 5 0.254297528 22.71311625 9.35908E-16 2.293911156

Within Groups 1.276351423 114 0.011196065

Total 2.547839065 119

SCHEFFE'S TEST 0.113319854

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 7005 350.25 44032.82895

PSO 20 10000 500 0

POLY 20 9550 477.5 10125

HYB 20 7456 372.8 7682.694737

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 483322.0417 5 96664.40833 9.378744154 1.6558E-07 2.293911156

Within Groups 1174969.95 114 10306.75395

Total 1658291.992 119

SCHEFFE'S TEST 108.7262109

150

The Camel 6 Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 -20.575 -1.02875 1.02691E-05

SA 20 -20.5202 -1.02601 3.38176E-05

GA 20 -20.62509 -1.0312545 2.36904E-06

PSO 20 -16.38875 -0.8194375 0.023624432

POLY 20 -20.62802 -1.031401 3.63736E-07

HYB 20 -20.6326 -1.03163 0

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.738073379 5 0.147614676 37.41618988 1.51277E-22 2.293911156

Within Groups 0.449753785 114 0.003945209

Total 1.187827164 119

SCHEFFE'S TEST 0.067267965

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 3435 171.75 48308.51316

PSO 20 10000 500 0

POLY 20 6066 303.3 51609.48421

HYB 20 568 28.4 286.1473684

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 4066537.242 5 813307.4483 48.69903039 9.69512E-27 2.293911156

Within Groups 1903878.75 114 16700.69079

Total 5970415.992 119

SCHEFFE'S TEST 138.4014106

151

The Chichinadze Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 -854.3203 -42.716015 0.034757686

SA 20 -852.7634 -42.63817 0.022081309

GA 20 -857.4154 -42.87077 0.046660257

PSO 20 -772.034 -38.6017 17.44265872

POLY 20 -858.76 -42.938 0.000217371

HYB 20 -858.888 -42.9444 2.12577E-28

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 298.2912781 5 59.65825563 20.40019815 1.68892E-14 2.293911156

Within Groups 333.3811315 114 2.92439589

Total 631.6724096 119

SCHEFFE'S TEST 1.831434459

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 4264 213.2 57724.48421

PSO 20 10000 500 0

POLY 20 8370 418.5 20984.47368

HYB 20 1240 62 1434.105263

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 3447744.167 5 689548.8333 51.62384412 1.0131E-27 2.293911156

Within Groups 1522718.2 114 13357.17719

Total 4970462.367 119

SCHEFFE'S TEST 123.7743466

152

The Cross-in-Tray Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 -41.23184 -2.061592 4.61438E-07

SA 20 -41.21868 -2.060934 3.68666E-06

GA 20 -41.2522 -2.06261 0

PSO 20 -38.76471 -1.9382355 0.005218201

POLY 20 -41.24562 -2.062281 1.47576E-06

HYB 20 -41.2522 -2.06261 0

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.255358986 5 0.051071797 58.6602294 6.21067E-30 2.293911156

Within Groups 0.099252678 114 0.000870638

Total 0.354611664 119

SCHEFFE'S TEST 0.031600357

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 9650 482.5 6125

GA 20 2038 101.9 6797.568421

PSO 20 10000 500 0

POLY 20 6770 338.5 33924.68421

HYB 20 1256 62.8 3417.431579

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 4090970.7 5 818194.14 97.66628234 1.52471E-39 2.293911156

Within Groups 955029 114 8377.447368

Total 5045999.7 119

SCHEFFE'S TEST 98.023262

153

The Cube Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 0.708874 0.0354437 0.00115818

SA 20 2.176152 0.1088076 0.012527446

GA 20 4.6078116 0.23039058 0.043157828

PSO 20 66.87996 3.343998 6.78616384

POLY 20 4.417183 0.22085915 0.042561687

HYB 20 0.00055645 2.78225E-05 1.15149E-09

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 174.2126251 5 34.84252502 30.36134714 1.62595E-19 2.293911156

Within Groups 130.8258106 114 1.14759483

Total 305.0384357 119

SCHEFFE'S TEST 1.14727516

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 10000 500 0

PSO 20 10000 500 0

POLY 20 10000 500 0

HYB 20 8000 400 0

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 166666.6667 5 33333.33333 65535 #NUM! 2.293911156

Within Groups 0 114 0

Total 166666.6667 119

SCHEFFE'S TEST 0

154

The Damavandi Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 30.360738 1.5180369 0.540883502

SA 20 54.72077 2.7360385 1.052938267

GA 20 40.00009 2.0000045 1.52368E-10

PSO 20 70.17623 3.5088115 1.259215246

POLY 20 40.00602 2.000301 9.29409E-07

HYB 20 4.37330122 0.218665061 0.041391927

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 124.4730529 5 24.89461057 51.60521072 1.0275E-27 2.293911156

Within Groups 54.99416755 114 0.482404979

Total 179.4672204 119

SCHEFFE'S TEST 0.743839419

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 10000 500 0

PSO 20 10000 500 0

POLY 20 10000 500 0

HYB 20 8000 400 0

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 166666.6667 5 33333.33333 65535 #NUM! 2.293911156

Within Groups 0 114 0

Total 166666.6667 119

SCHEFFE'S TEST 0

155

The Deckkers Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 -491312.6 -24565.63 37559.62958

SA 20 -487629.7 -24381.485 116521.0319

GA 20 -494872.7 -24743.635 5047.242395

PSO 20 -359688.2 -17984.41 19211429.33

POLY 20 -494615.3 -24730.765 8765.293974

HYB 20 -495530 -24776.5 0

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 740392648.4 5 148078529.7 45.8463487 9.59387E-26 2.293911156

Within Groups 368207128 114 3229887.088

Total 1108599776 119

SCHEFFE'S TEST 1924.717385

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 5888 294.4 43008.98947

PSO 20 10000 500 0

POLY 20 7542 377.1 35502.93684

HYB 20 1568 78.4 3473.515789

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 2826946.567 5 565389.3133 41.37729569 4.22754E-24 2.293911156

Within Groups 1557723.4 114 13664.24035

Total 4384669.967 119

SCHEFFE'S TEST 125.1889639

156

The Easom Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 -14.996741 -0.74983705 0.032922883

SA 20 -8.883957 -0.44419785 0.095688493

GA 20 -16.158748 -0.8079374 0.128700008

PSO 20 -0.00036 -0.000018 4.58526E-09

POLY 20 -17.1723474 -0.85861737 0.073812373

HYB 20 -20 -1 0

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 13.31010731 5 2.662021461 48.23612988 1.39766E-26 2.293911156

Within Groups 6.291351469 114 0.055187294

Total 19.60145877 119

SCHEFFE'S TEST 0.251589694

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 6851 342.55 43176.57632

PSO 20 10000 500 0

POLY 20 8083 404.15 38684.55526

HYB 20 3288 164.4 6268.463158

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 1776091 5 355218.2 24.18380802 1.6E-16 2.293911156

Within Groups 1674462.3 114 14688.26579

Total 3450553.3 119

SCHEFFE'S TEST 129.79518

157

The EggCrate Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance STD

CK 20 0.4044233 0.020221165 0.000649855 0.025492251

SA 20 1.414664 0.0707332 0.00188674 0.043436616

GA 20 0.000869089 4.34545E-05 7.5331E-09 8.67935E-05

PSO 20 36.41302 1.820651 4.712023609 2.170719606

POLY 20 0.013013349 0.000650667 2.13567E-06 0.001461395

HYB 20 0.000006416 3.208E-07 1.80635E-13 4.25012E-07

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 54.21401622 5 10.84280324 13.79912168 1.55505E-10 2.293911156

Within Groups 89.57668458 114 0.785760391

Total 143.7907008 119

SCHEFFE'S TEST 0.949332536

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 6100 305 49121.05263

PSO 20 10000 500 0

POLY 20 8740 437 23811.57895

HYB 20 8000 400 0

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 612666.6667 5 122533.3333 10.08053575 5.20026E-08 2.293911156

Within Groups 1385720 114 12155.4386

Total 1998386.667 119

SCHEFFE'S TEST 118.0751799

158

The F-stein Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance STD

CK 20 8.9822934 0.44911467 0.248755201 0.498753648

SA 20 10.566518 0.5283259 0.257907203 0.507845649

GA 20 21.8856253 1.094281265 4.563204661 2.136165879

PSO 20 266.04813 13.3024065 98.75035892 9.937321516

POLY 20 34.62513049 1.731256525 12.97881797 3.602612659

HYB 20 0.00481006 0.000240503 9.46513E-08 0.000307654

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 2657.249636 5 531.4499272 27.3007334 4.45976E-18 2.293911156

Within Groups 2219.181837 114 19.46650734

Total 4876.431473 119

SCHEFFE'S TEST 4.725168693

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 10000 500 0

PSO 20 10000 500 0

POLY 20 10000 500 0

HYB 20 8000 400 0

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 166666.6667 5 33333.33333 65535 #NUM! 2.293911156

Within Groups 0 114 0

Total 166666.6667 119

SCHEFFE'S TEST 0

159

The Goldstien Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance STD

CK 20 61.30657 3.0653285 0.00438984 0.06625587

SA 20 61.65316 3.082658 0.006136956 0.078338723

GA 20 60.377837 3.01889185 0.000989981 0.031463965

PSO 20 93.5223 4.676115 3.536544004 1.880570127

POLY 20 61.14961 3.0574805 0.008780943 0.093706686

HYB 20 60.00027 3.0000135 2.34474E-10 1.53125E-05

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 44.442944 5 8.8885888 14.99406972 2.68003E-11 2.293911156

Within Groups 67.57999275 114 0.592806954

Total 112.0229368 119

SCHEFFE'S TEST 0.824574583

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 8571 428.55 30451.73421

PSO 20 10000 500 0

POLY 20 10000 500 0

HYB 20 5920 296 22635.78947

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 681513.0417 5 136302.6083 15.40504422 1.48091E-11 2.293911156

Within Groups 1008662.95 114 8847.920614

Total 1690175.992 119

SCHEFFE'S TEST 100.7381353

160

The Haupt07 Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 -368.6178 -18.43089 0.013100481

SA 20 -297.8059 -14.890295 2.934066536

GA 20 -363.5067 -18.175335 0.218930458

PSO 20 -253.3386 -12.66693 4.151312353

POLY 20 -365.7245 -18.286225 0.110389805

HYB 20 -371.094 -18.5547 5.31443E-29

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 611.2292937 5 122.2458587 98.74729915 9.19098E-40 2.293911156

Within Groups 141.128193 114 1.237966606

Total 752.3574867 119

SCHEFFE'S TEST 1.191592507

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 8665 433.25 25233.35526

PSO 20 10000 500 0

POLY 20 8547 427.35 31484.66053

HYB 20 1672 83.6 4436.042105

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 2632738.767 5 526547.7533 51.66111013 9.84919E-28 2.293911156

Within Groups 1161927.1 114 10192.34298

Total 3794665.867 119

SCHEFFE'S TEST 108.1210647

161

The Haupt 15 Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance STD

CK 20 -6868.465 -343.42325 2.877373987 1.696282402

SA 20 -6758.875 -337.94375 17.91420336 4.232517378

GA 20 -6907.137 -345.35685 4.73974E-05 0.006884575

PSO 20 -5133.362 -256.6681 1731.617687 41.61271064

POLY 20 -6906.258 -345.3129 0.005590095 0.074766936

HYB 20 -6907.197 -345.35985 1.34211E-07 0.000366348

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 126424.5161 5 25284.90322 86.57163277 3.62808E-37 2.293911156

Within Groups 33295.88313 114 292.0691502

Total 159720.3992 119

SCHEFFE'S TEST 18.30274135

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 3659 182.95 49156.78684

PSO 20 10000 500 0

POLY 20 5727 286.35 53198.55526

HYB 20 1736 86.8 18568.58947

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 3368201.267 5 673640.2533 33.42466183 7.07297E-21 2.293911156

Within Groups 2297554.7 114 20153.9886

Total 5665755.967 119

SCHEFFE'S TEST 152.0385794

162

The Haupt 16 Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 -503.9332 -25.19666 0.000758701

SA 20 -504.1301 -25.206505 0.000239229

GA 20 -503.1299 -25.156495 0.015789127

PSO 20 -459.7374 -22.98687 3.032267906

POLY 20 -500.8998 -25.04499 0.07418491

HYB 20 -504.61 -25.2305 1.32861E-29

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 79.64768179 5 15.92953636 30.60194605 1.26316E-19 2.293911156

Within Groups 59.34155761 114 0.520539979

Total 138.9892394 119

SCHEFFE'S TEST 0.772681197

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 9574 478.7 9073.8

PSO 20 10000 500 0

POLY 20 9145 457.25 17661.77632

HYB 20 744 37.2 628.3789474

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 3404065.442 5 680813.0883 149.2795355 2.50691E-48 2.293911156

Within Groups 519915.15 114 4560.659211

Total 3923980.592 119

SCHEFFE'S TEST 72.32477805

163

The Penholder Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 -19.265064 -0.9632532 1.45567E-07

SA 20 -19.268495 -0.96342475 1.62005E-08

GA 20 -19.102375 -0.95511875 0.000110112

PSO 20 -17.381878 -0.8690939 0.002027256

POLY 20 -19.206067 -0.96030335 5.08039E-05

HYB 20 -19.2707 -0.963535 0

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.142215749 5 0.02844315 77.98575912 3.7071E-35 2.293911156

Within Groups 0.041578348 114 0.000364722

Total 0.183794097 119

SCHEFFE'S TEST 0.020452881

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 9330 466.5 10760.78947

GA 20 10000 500 0

PSO 20 10000 500 0

POLY 20 8563 428.15 30801.08158

HYB 20 1976 98.8 2582.063158

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 2489612.575 5 497922.515 67.67713715 1.65387E-32 2.293911156

Within Groups 838734.75 114 7357.322368

Total 3328347.325 119

SCHEFFE'S TEST 91.86142786

164

The Rosenbrock Mod Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 695.2752 34.76376 0.424771456

SA 20 725.4301 36.271505 3.734558768

GA 20 1365.1013 68.255065 194.3300008

PSO 20 1510.631 75.53155 1.553354168

POLY 20 1459.14737 72.9573685 21.7784793

HYB 20 681.7307 34.086535 0.002739317

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 42126.315 5 8425.263 227.8905795 1.30234E-57 2.293911156

Within Groups 4214.654173 114 36.97065064

Total 46340.96917 119

SCHEFFE'S TEST 6.51181188

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 10000 500 0

PSO 20 10000 500 0

POLY 20 10000 500 0

HYB 20 8000 400 0

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 166666.6667 5 33333.33333 65535 #NUM! 2.293911156

Within Groups 0 114 0

Total 166666.6667 119

SCHEFFE'S TEST 0

165

The Rotated_ellipes Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance STD

CK 20 1301.53423 65.0767115 3729.749462 61.0716748

SA 20 1625.65761 81.2828805 6027.517374 77.6370876

GA 20 56.37013704 2.818506852 17.94979694 4.23672007

PSO 20 72637.8719 3631.893595 10935960.82 3306.95643

POLY 20 224.192295 11.20961475 156.7529441 12.5201016

HYB 20 0.000771032 3.85516E-05 5.25192E-09 7.247E-05

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 216094538.7 5 43218907.74 23.69047928 2.8735E-16 2.293911156

Within Groups 207971963.1 114 1824315.465

Total 424066501.7 119

SCHEFFE'S TEST 1446.51609

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 10000 500 0

PSO 20 10000 500 0

POLY 20 10000 500 0

HYB 20 8000 400 0

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 166666.6667 5 33333.33333 65535 #NUM! 2.293911156

Within Groups 0 114 0

Total 166666.6667 119

SCHEFFE'S TEST 0

166

The Scahffer1 Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance STD

CK 20 0.21498762 0.010749381 0.000121256 0.011011611

SA 20 1.30225962 0.065112981 0.004062579 0.063738368

GA 20 0.013790696 0.000689535 3.13806E-06 0.001771457

PSO 20 9.040595 0.45202975 0.010977102 0.104771667

POLY 20 0.091304112 0.004565206 5.93482E-05 0.00770378

HYB 20 0 0 0 0

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 3.226663998 5 0.6453328 254.34468 4.33902E-60 2.293911156

Within Groups 0.289245048 114 0.002537237

Total 3.515909046 119

SCHEFFE'S TEST 0.053945328

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 5472 273.6 47086.98947

PSO 20 10000 500 0

POLY 20 9670 483.5 5445

HYB 20 6136 306.8 9332.378947

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 1143164.967 5 228632.9933 22.17428214 1.8132E-15 2.293911156

Within Groups 1175423 114 10310.72807

Total 2318587.967 119

SCHEFFE'S TEST 108.7471704

167

The T- tube holder Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 -216.9775 -10.848875 0.000307542

SA 20 -216.7395 -10.836975 0.000697397

GA 20 -217.2057 -10.860285 9.95129E-05

PSO 20 -207.7473 -10.387365 0.057071407

POLY 20 -217.2133 -10.860665 0.000142716

HYB 20 -217.446 -10.8723 3.32152E-30

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 3.671868804 5 0.734373761 75.55470309 1.47518E-34 2.293911156

Within Groups 1.108052912 114 0.009719762

Total 4.779921716 119

SCHEFFE'S TEST 0.105584732

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 7593 379.65 45739.50263

PSO 20 10000 500 0

POLY 20 8501 425.05 24635.31316

HYB 20 1080 54 2363.789474

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 3009466.867 5 601893.3733 49.64846696 4.61192E-27 2.293911156

Within Groups 1382033.5 114 12123.10088

Total 4391500.367 119

SCHEFFE'S TEST 117.9180146

168

The Trefethen Objective Function

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 -56.44144 -2.822072 0.077400066

SA 20 -53.97352 -2.698676 0.07998127

GA 20 -63.48537 -3.1742685 0.025552876

PSO 20 -33.1763 -1.658815 0.180158923

POLY 20 -61.72655 -3.0863275 0.061547481

HYB 20 -67.62152 -3.381076 3.53545E-05

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 37.45382883 5 7.490765765 105.8326763 3.70578E-41 2.293911156

Within Groups 8.068843451 114 0.070779329

Total 45.52267228 119

SCHEFFE'S TEST 0.28492235

169

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

CK 20 10000 500 0

SA 20 10000 500 0

GA 20 10000 500 0

PSO 20 10000 500 0

POLY 20 10000 500 0

HYB 20 8000 400 0

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 166666.6667 5 33333.33333 65535 #NUM! 2.293911156

Within Groups 0 114 0

Total 166666.6667 119

SCHEFFE'S TEST 0

170

ADDENDUM B

Source Code for the Hybrid Optimization

Model

#ifndef CMAP_H

#define CMAP_H

//

/////////////////////

//

// Author : Obadan Samiel

//

// Special Thanks to: Mat Buckland's Data

//structures syntax in AI for game programming

// 2005

//

//

/////////////////////

#include "stdlib.h"

#include <windows.h>

#include <vector>

#include "utils.h"

#include "defines.h"

using namespace std;

class SMap

{

public:

 SMap()

{}

 //Multiirate input

 double TestFunction(double xin, double

yin);

};

#endif

#include " SMap.h"

double SMap::TestFunction(double xin, double

yin)

{

// double cost = xin * sin(4*xin) + 1.1 * yin

* sin(2* yin);

//McCormick function

 //double cost = sin(xin + yin) + ((xin -

yin)*(xin - yin))- (1.5* xin) + (2.5 *yin) + 1;

 //Easom function -100 -> 100

 // double a = (xin - PI);

 // double b = (yin - PI);

 //double cost = -cos(xin) * cos(yin)* exp(-

((a*a) + (b*b)));

 //Ackley 2 Function

 //double cost = -200 * exp(-0.02 * sqrt(

(xin*xin) + (yin*yin)));

 //Ackley 3 Function

171

 // double cost = -200 * exp(-0.02 * sqrt(

(xin*xin) + (yin*yin))) + 5 * exp(cos(3*xin) +

sin(3*yin));

 //Bartels Conn Function

 /*double a = (xin*xin) + (yin*yin) + (xin *yin);

 double b = sin(xin);

 double c = cos(yin);

 if (a <0)

 { a *= -1;}

 if (b <0)

 { b *= -1;}

 if (c <0)

 { c *= -1;}

 double cost = a + b + c;*/

 // Beale Function -4.5 -> 4.5

 // double cost = ((1.5 - xin + (xin*yin))*(1.5 -

xin + (xin*yin))) + ((2.25 - xin +

(xin*yin*yin))*(2.25 - xin + (xin*yin*yin)))+

((2.625 - xin + (xin*yin*yin*yin))*(2.625 - xin +

(xin*yin*yin*yin)));

 // Birds Function

 // double cost = sin(xin)*exp((1-cos(yin))* (1-

cos(yin))) + cos(yin)*exp((1-sin(xin))* (1-

sin(xin))) + ((xin - yin)*(xin - yin));

 //Bohachevsky 1 Function

 //double cost = (xin *xin) + 2*(yin *yin) - 0.3 *

cos(3*PI*xin)- 0.4 * cos(4*PI*yin) + 0.7;

 //Bohachevsky 3 Function

 //double cost = (xin *xin) + 2*(yin *yin) - 0.3 *

cos((3*PI*xin)+(4*PI*yin)) + 0.3;

 //Booth Function

 // double j = (2 * xin) + yin -5;

 // double k = xin + 2*(yin) - 7;

 //double cost = (k*k) + (j*j);

 //Brent Function

 /* double j = (10 + xin) * (10 + xin);

 double k = (10 + yin) * (10 + yin);

 double a = xin *xin;

 double b = yin * yin;

 double cost = j + k + exp(-a-b); */

 //Bohachevsky 1 Function

 //double cost = (xin *xin) + 2*(yin *yin) - 0.3 *

cos(3*PI*xin)- 0.4 * cos(4*PI*yin) + 0.7;

//Bohachevsky 3 Function

 // double cost = (xin *xin) + 2*(yin *yin) - 0.3 *

cos((3*PI*xin)+(4*PI*yin)) + 0.3;

//Booth Function -10 -> 10

 // double j = (2 * xin) + yin -5;

 // double k = xin + 2*(yin) - 7;

 //double cost = (k*k) + (j*j);

//Branin RCOS 2 Function

 // double a = yin - ((5.1*xin*xin)/(4* PI*PI)) +

((5*xin)/PI) - 6;

172

 // double cost = pow(a,2) + 10*(1 -

(1/(8*PI)))* cos(xin)* cos(yin)* log(pow(xin,2) +

pow(yin,2) +1) +10;

 //Camel Function – Six Hump

 //double cost = ((4- (2.1 * pow(xin,2))

+(pow(xin,4)/3))*pow(xin,2)) + (xin *yin) +

((4*pow(yin,2))-4)*pow(yin,2);

 //Camel Function – Three Hump

//double cost = 2 * pow(xin,2)- 1.05*pow(xin,4)

+ (pow(xin,6)/6) +(xin *yin) + pow(yin,2);

//Chichinadze Function

//double a = yin -0.5;

//double cost = pow(xin,2) - 12*xin +11

+10*cos((PI*xin)/2) +8*sin((5*PI*xin)/2)-

pow(0.2,0.5)*exp(-0.5*pow(a,2));

///cube Function -10 ->10

//double a = yin-pow(xin,3);

//double b = 1-xin;

//double cost = 100* pow(a,2) + pow(b,2);

//..

...

//Deckkers-Aarts Function

double cost = pow(10,5)*pow(xin,2)

+pow(yin,2)-

pow((pow(xin,2)+pow(yin,2)),2)+pow(10,-

5)*pow((pow(xin,2)+pow(yin,2)),4);

//..

..

//Cross-in-Tray Function -10 -> 10

//double a = sin(xin)*sin(yin)*exp(100-

(pow((pow(xin,2)+pow(yin,2)),0.5)/PI));

//double cost = -0.0001*pow((a+1),0.1);

// % Chen Bird Function -500 ->500

// double cost = -

(0.001/(pow(0.001,2)+pow((xin-(0.4*yin)-

0.1),2))) - (0.001/(pow(0.001,2)+pow(((2*xin)-

yin-1.5),2)));

//Branin RCOS 2 Function -5 -> 15

 // double a = yin - ((5.1*xin*xin)/(4* PI*PI)) +

((5*xin)/PI) - 6;

 // double cost = pow(a,2) + 10*(1 -

(1/(8*PI)))* cos(xin)* cos(yin)* log(pow(xin,2) +

pow(yin,2) +1) +10;

//El-Attar-Vidyasagar-Dutta Function -500-> 500

//double cost = pow((pow(xin,2) + yin-10),2) +

pow((xin +pow(yin,2)-7),2) + pow((pow(xin,2) +

pow(yin,3)-1),2);

//Goldstein Price Function -2 -> 2

//double cost = (1 + pow((xin+yin+1),2)*(19-

(14*xin)+(3*pow(xin,2))-

(14*yin)+(6*xin*yin)+3*pow(yin,2))) * (30 +

pow((2*xin-3*yin),2)*(18-

(32*xin)+(12*pow(xin,2))+(48*yin)-

(36*xin*yin)+27*pow(yin,2)));

//Rosenbrock Modified Function -2 to 2

//double cost = 74 + (100* pow((yin-

pow(xin,2)),2)) + pow((1-xin),2) - 400*exp(-

1*((pow((xin+1),2) + pow((yin+1),2))/0.1));

//Camel Function – Six Hump -5 -> 5

// double cost = ((4- (2.1 * pow(xin,2))

+(pow(xin,4)/3))*pow(xin,2)) + (xin *yin) +

((4*pow(yin,2))-4)*pow(yin,2);

173

//Hosaki Function 0 -> 6

//double cost = (1-(8*xin) + 7*pow(xin,2)-

(7/(3*pow(xin,3))) +

(1/(4*pow(xin,4))))*pow(yin,2)*exp(-yin);

//%haupt 15 -5 -> 5

//double cost = -exp(-0.2*sqrt(pow(xin,2) +

pow(yin,2)) + 3*(cos(2*xin) +sin(2*yin)));

//%haupt 16 -20 -> 20

 // double a = xin - (yin+9);

 // double b = yin + (0.5*xin)+9;

 // if (a <0)

 // { a *= -1;}

 // if (b <0)

 // { b *= -1;}

//double cost = -xin* sin(sqrt(a))- (yin +9)*

sin(sqrt(b));

//Ackley 4 orModified -35 -> 35 (summed)

//double cost = exp(-

0.2)*sqrt(pow(xin,2)+pow(yin,2))+ 3*

(cos(2*xin)+sin(2*yin));

// Brown Function -1 -> 4 summed

//double cost = (pow(xin,2)*(pow(yin,2)+1)) +

((pow(yin,2)+1)*(pow(xin,2)+1));

//Egg Holder Function -512 ->512

/*double a = yin + (xin/2) + 47;

double b= xin - (yin+47);

if (a <0)

 { a *= -1;}

 if (b <0)

 { b *= -1;}

double cost = -1*(yin +47)*sin(sqrt(a))-

xin*sin(sqrt(b)); */

//Pathological Function -100 ->100

//double a = sin(sqrt((100*pow(xin,2)) +

pow(yin,2)));

//double b = pow(xin,2)-(2*xin*yin)

+pow(yin,2);

//double cost = 0.5 + ((pow(a,2) -0.5)/

(1+0.001*pow(b,2)));

 // test tube holder -10 -> 10

//double cost = -

4*(sin(xin)*cos(yin)*exp(cos((pow(xin,2)+pow(y

in,2))/200)));

return value = 1

 return cost;

}

#ifndef CGA_H

#define CGA_H

#include <vector>

#include <sstream>

#include "defines.h"

174

#include " SMap.h"

#include "utils.h"

using namespace std;

//---

-

// structure

//---

-

struct SGenome

{

 vector<double> vecBits;

 //.....add

 vector<double> vBits;

 double dFitness;

 double iRank;

 SGenome():dFitness(0), iRank(0){}

 SGenome(const int

num_bits):dFitness(0), iRank(0)

 {

 //create a random bit string

// the struc craetes a single genome

 for (int i=0; i<num_bits; ++i) //

num_bits will be 2 (xin,yin)

 {

 vecBits.push_back(RandomClamped2())

; }

 }

 //...add

 SGenome(const int n_perm, const int

n_ratio):dFitness(0), iRank(0) // n_perm = 4

....COUNTER

 {

 //create a random bit string

// the struc craetes a single genome

 vBits.push_back(RandInt(0,5));

 for (int i=1; i<n_perm; ++i) // num bits will

be 4 (RAND, ratio1, ratio2 ratio3)

 {

 vBits.push_back(RandInt(0,n_ratio)); //

n_ratio = 5for a total of 15 generations max

 }

 }

 //overload '<' used for sorting

 friend bool operator<(const SGenome&

lhs, const SGenome& rhs)

 {

 return (lhs.dFitness <

rhs.dFitness);

 }

175

};

//---

-

// genetic algorithm

//---

--

class Cga

{

private:

 //the population of genomes

 vector<SGenome>

 m_vecGenomes;

 vector<SGenome> m_vecGenomesold;

 //.....add

 vector<SGenome>

m_vecGenomesMajor;

 //size of population

 int m_iPopSize;

 double m_dCrossoverRate;

 double m_dMutationRate;

 //how many bits per chromosome

 int m_iChromoLength;

 //how many bits per gene

 int m_iGeneLength;

 int m_iFittestGenome;

 double m_dBestFitnessScore;

 double m_dbestRank;

 double m_dGlobal_best;

 double m_dDisplaymin;

 double m_dDisplaymin2;

 double m_xinbest;

 double m_yinbest;

 double m_dTotalFitnessScore;

 double m_dAverageFitnessScore;

 int m_iGeneration;

 int m_iGeneration2;

 vector<double> m_vecAvFitness;

 vector<double> m_vecBestFitness;

 int icount0;

 int icount1;

176

 int icount2;

 int icount3;

 int icount4;

 int icount5;

 SMap m_Map;

 //lets you know if the current run is in

progress.

 bool m_bBusy;

 int m_plength;

 int m_ratio;

 void Mutate(vector<double>

&vecBits);

 //...add

 void Mutate2(vector<double>

&vBits);

 void Crossover(const

vector<double> &mum,

 const vector<double> &dad,

 vector<double> &baby1,

 vector<double> &baby2);

 SGenome&

 RouletteWheelSelection();

 SGenome TournamentSelection(int

N);

 SGenome

TournamentSelection2(int N);

 .

 void UpdateFitnessScores();

 void

UpdateFitnessScores2();

 void

UpdateFitnessScoresMajor();

 bit strings

 void

CreateStartPopulation();

 string m_sequence;

 double m_rat1;

 double m_rat2;

 double m_rat3;

public:

 // rem bracket into variable.

 Cga(double cross_rat,

 double mut_rat,

 int pop_size,

 int num_bits,

 int p_len,

 int

r_ratio):m_dCrossoverRate(cross_rat),

 m_dMutationRate(mut_rat),

177

 m_iPopSize(pop_size),

 m_iChromoLength(num_bits),

 m_plength(p_len),

 m_ratio(r_ratio),

 m_dTotalFitnessScore(0.0),

 m_iGeneration(0),

 m_dAverageFitnessScore(0.0),

 m_dBestFitnessScore(0.0),

 m_dbestRank(0.0),

 m_dGlobal_best(99999999.0),

 m_dDisplaymin(0.0),

 m_dDisplaymin2(9999999.0),

 m_xinbest(0.0),

 m_yinbest(0.0),

 m_bBusy(false),

 m_rat1(0),

 m_rat2(0),

 m_rat3(0),

 icount0(0),

 icount1(0),

 icount2(0),

 icount3(0),

 icount4(0),

 icount5(0)

 {

 CreateStartPopulation();

 }

 void Run(HWND

hwnd);

 void Render(int

cxClient, int cyClient, HDC surface);

 void Epoch();

 void Epoch2();

 void Epoch3();

 void Epoch4Major();

 void ResetVariables();

 void GrabNBest(int NBest, const int

NumCopies, vector<SGenome> &vecPop);

 //accessor methods

 int

 Generation(){return m_iGeneration;}

 int

 GetFittest(){return m_iFittestGenome;}

 bool Started(){return m_bBusy;}

 void Stop(){m_bBusy =

false;}

};

#endif

#include " Cga.h"

178

//--------------------------TournamentSelection------

//

//---

SGenome Cga::TournamentSelection(int N)

{

 double BestFitnessSoFar = -999999;

 int ChosenOne = 0;

 for (int i=0; i<N; ++i)

 {

 int ThisTry = RandInt(0, m_iPopSize-1);

 if (m_vecGenomes[ThisTry].iRank >

BestFitnessSoFar)

 {

 ChosenOne = ThisTry;

 BestFitnessSoFar =

m_vecGenomes[ThisTry].iRank;

 }

 }

 return m_vecGenomes[ChosenOne];

}

//................add...................tournament

selection

//...

SGenome Cga::TournamentSelection2(int N)

{

 double BestFitnessSoFar = -999999;

 int ChosenOne = 0;

 for (int i=0; i<N; ++i)

 {

 int ThisTry = RandInt(0, m_iPopSize-1);

 if (m_vecGenomesMajor[ThisTry].iRank >

BestFitnessSoFar)

 {

 ChosenOne = ThisTry;

 BestFitnessSoFar =

m_vecGenomesMajor[ThisTry].iRank;

 }

 }

 return m_vecGenomesMajor[ChosenOne];

}

//--------------------------RouletteWheelSelection---

179

SGenome& Cga::RouletteWheelSelection()

{

 double fSlice = RandFloat() *

m_dTotalFitnessScore;

 double cfTotal = 0.0;

 int SelectedGenome = 0;

 for (int i=0; i<m_iPopSize; ++i)

 {

 cfTotal +=

m_vecGenomes[i].iRank;

 if (cfTotal > fSlice)

 {

 SelectedGenome = i;

 break;

 }

 }

 return

m_vecGenomes[SelectedGenome];

}

//----------------------------Mutate--------------------

// iterates through each genome flipping

the bits acording to the

// mutation rate

void Cga::Mutate(vector<double> &vecBits)

{

 for (int curBit=0; curBit<vecBits.size();

curBit++)

 {

 if (RandFloat() <

m_dMutationRate)

 {

 vecBits[curBit] =

RandomClamped2() * 0.9;

 }

}

void Cga::Mutate2(vector<double> &vBits)

{

 for (int curBit=0; curBit<vBits.size();

curBit++)

 {

 //do we flip this bit?

 double Rand_result =

RandFloat();

 if (Rand_result <

m_dMutationRate)

180

 {

 if (curBit ==0)

 {

 vBits[curBit]=(RandInt(0,5));

 }

 else

 {

vBits[curBit]=(RandInt(0,m_ratio));

 }

 }

 }//next bit

}

//----------------------------Crossover--------------------

void Cga::Crossover(const vector<double>

&mum,

 const vector<double> &dad,

 vector<double> &baby1,

 vector<double> &baby2)

{

 /* if ((RandFloat() > m_dCrossoverRate)

|| (mum == dad))

 {

 baby1 = mum;

 baby2 = dad;

 return;

 } */

 int cp = RandInt(0, m_iChromoLength -

1);

 if (cp ==0)

 {

 double R = RandFloat();

 double mold = mum[0];

 double dold = dad[0];

 double mumNew = mold - R * mold + R *

dold;

 double dadNew = dold + R * mold - R *

dold;

 baby1.push_back(mumNew);

 baby2.push_back(dadNew);

 baby1.push_back(dad[1]);

 baby2.push_back(mum[1]);

 }

 else

 {

181

 double R = RandFloat();

 double mold = mum[1];

 double dold = dad[1];

 double mumNew = mold - R * mold + R *

dold;

 double dadNew = dold + R * mold - R *

dold;

 baby1.push_back(dad[0]);

 baby2.push_back(mum[0]);

 baby1.push_back(mumNew);

 baby2.push_back(dadNew);

 }

}

//-----------------------------------Run---------------------

void Cga::Run(HWND hwnd)

{

 CreateStartPopulation();

 m_bBusy = true;

}

//----------------------CreateStartPopulation---

void Cga::CreateStartPopulation()

{

 //clear existing population

 m_vecGenomes.clear();

 //...add

 m_vecGenomesMajor.clear();

 for (int i=0; i<m_iPopSize; i++)//

m_iPopSize would be from 8-> maybe 20

 {

 m_vecGenomesold.push_back(SGenom

e());

m_vecGenomes.push_back(SGenome(m_iChro

moLength)); // m_iChromoLength will be 2 ie.

(xin, yin)

 }

 //...add

 for (int i=0; i<POP_SIZE2; i++)

 {

m_vecGenomesMajor.push_back(SGenome(m_

plength,m_ratio));

 }

 //reset all variables

 m_iGeneration = 0;

 m_iGeneration2 = 0;

 m_iFittestGenome = 0;

 m_dBestFitnessScore = 0;

 m_dTotalFitnessScore = 0;

182

 m_dAverageFitnessScore = 0;

 m_dbestRank =0;

 m_dDisplaymin =0;

 m_dDisplaymin2 = 9999999.0;

 icount0 =0;

 icount1 =0;

 icount2 =0;

 icount3 =0;

 icount4 =0;

 icount5 =0;

}

void Cga::ResetVariables()

{

 m_vecGenomes.clear();

 for (int i=0; i<m_iPopSize; i++)//

m_iPopSize would be from 8-> maybe 20

 {

 m_vecGenomesold.push_back(SGenom

e());

m_vecGenomes.push_back(SGenome(m_iChro

moLength)); // m_iChromoLength will be 2 ie.

(xin, yin)

 }

// m_dDisplaymin =0;

}

//--------------------------------Epoch------------

void Cga::Epoch()

{

 UpdateFitnessScores();

 if (!(NUM_COPIES_ELITE * NUM_ELITE

% 2))

 {

 GrabNBest(NUM_ELITE,

NUM_COPIES_ELITE, vecBabyGenomes);

 }

 while (vecBabyGenomes.size() <

m_iPopSize)

 {

 SGenome mum =

TournamentSelection(iTournamentCompetitors

);

 SGenome dad =

TournamentSelection(iTournamentCompetitors

);

183

 SGenome baby1, baby2;

 Crossover(mum.vecBits,

dad.vecBits, baby1.vecBits, baby2.vecBits);

 //operator - mutate

 Mutate(baby1.vecBits);

 Mutate(baby2.vecBits);

 //add to new population

 vecBabyGenomes.push_back(baby1);

 vecBabyGenomes.push_back(baby2);

 }

 //copy babies back into starter

population

 m_vecGenomes = vecBabyGenomes;

 //increment the generation counter

 ++m_iGeneration;

}

void Cga::Epoch4Major()

{

 UpdateFitnessScoresMajor();

 vector<SGenome> vecBabyGenomes;

 if (!(NUM_COPIES_ELITE * NUM_ELITE

% 2))

 {

 GrabNBest(NUM_ELITE,

NUM_COPIES_ELITE, vecBabyGenomes);

 }

 while (vecBabyGenomes.size() <

m_iPopSize)

 {

 //select 2 parents

 //SGenome mum =

RouletteWheelSelection();

 //SGenome dad =

RouletteWheelSelection();

 SGenome mum =

TournamentSelection2(iTournamentCompetitor

s);

 SGenome dad =

TournamentSelection2(iTournamentCompetitor

s);

 Mutate2(mum.vBits);

 Mutate2(dad.vBits);

 //add to new population

 vecBabyGenomes.push_back(mum);

184

 vecBabyGenomes.push_back(dad);

 }

 //copy babies back into starter

population

 m_vecGenomesMajor =

vecBabyGenomes;

 //increment the generation counter

 ++m_iGeneration2;

}

//..................................2nd

epoch..................................

//..

..

void Cga::Epoch2()

{

 UpdateFitnessScores();

 vector<SGenome> vecBabyGenomes;

 if (!(NUM_COPIES_ELITE * NUM_ELITE

% 2))

 {

 GrabNBest(NUM_ELITE,

NUM_COPIES_ELITE, vecBabyGenomes);

 }

 while (vecBabyGenomes.size() <

m_iPopSize)

 {

 //select 2 parents

 SGenome mum =

vecBabyGenomes[1];

 //SGenome dad =

RouletteWheelSelection();

 SGenome dad =

TournamentSelection(iTournamentCompetitors

);

 //operator - crossover

 SGenome baby1, baby2;

 Crossover(vecBabyGenomes[1].vecBits,

dad.vecBits, baby1.vecBits, baby2.vecBits);

 //operator - mutate

 Mutate(baby1.vecBits);

 Mutate(baby2.vecBits);

 //add to new population

 vecBabyGenomes.push_back(baby1);

 vecBabyGenomes.push_back(baby2);

 }

 m_vecGenomes = vecBabyGenomes;

 //increment the generation counter

 ++m_iGeneration;

}

void Cga::Epoch3()

185

{ UpdateFitnessScores2();

 vector<SGenome> vecBabyGenomes;

 if (!(NUM_COPIES_ELITE * NUM_ELITE

% 2))

 {

 GrabNBest(NUM_ELITE,

NUM_COPIES_ELITE, vecBabyGenomes);

 }

 int z =2;

 while (vecBabyGenomes.size() <

m_iPopSize)

 {

 if (m_vecGenomes[z].dFitness <

m_vecGenomesold[z].dFitness)

 {

vecBabyGenomes.push_back(m_vecGenomes[z

]);

 }

 else if (RandFloat() > 0.50)// if true, then the

nest is not discovered ..peform randomwalk

 {

vecBabyGenomes.push_back(SGenome());

 for (int j=0; j<m_iChromoLength; ++j)

 {

 double arg =

m_vecGenomesold[z].vecBits[j] +

(RandomClamped2() * 0.9);

vecBabyGenomes[z].vecBits.push_back(Clamp(a

rg,-20,20));// (arg, min, max)

 }

 }

 else

 {

vecBabyGenomes.push_back(SGenome());

 for (int j=0;

j<m_iChromoLength; ++j)

 {

vecBabyGenomes[z].vecBits.push_back(Rando

mClamped2());

 }

 }

 z++;

 }

 m_vecGenomesold = m_vecGenomes;

 m_vecGenomes = vecBabyGenomes;

 //increment the generation counter

 ++m_iGeneration;

}

void Cga::UpdateFitnessScores2()

{

 m_iFittestGenome = 0;

186

 m_dTotalFitnessScore = 0;

 m_dDisplaymin =0;

 double Global_best =0;

 m_dbestRank = 0;

 int counter = 50;

 double total = 0;

 vector<double> vel;

 vel.clear();

 for (int i=0; i<m_iPopSize; ++i)

 {

 //get it's fitness score

 m_vecGenomes[i].dFitness =

m_BobsMap.TestFunction(m_vecGenomes[i].ve

cBits[0], m_vecGenomes[i].vecBits[1]); // for

(xin, yin).. each chromosome

 if (m_vecGenomes[i].dFitness <=

m_dGlobal_best)

 {

 m_xinbest =

m_vecGenomes[i].vecBits[0];

 m_yinbest =

m_vecGenomes[i].vecBits[1];

 m_dBestFitnessScore =

m_vecGenomes[i].dFitness;

 }

 total += m_vecGenomes[i].dFitness;

 }

 sort(m_vecGenomes.begin(),

 m_vecGenomes.end());

 //m_dBestFitnessScore =

m_vecGenomes[0].dFitness;

 m_dAverageFitnessScore = total/m_iPopSize;

double static global= 0;

 if (global == 0)

 {

 global = m_dBestFitnessScore;

 m_dGlobal_best = global;

 m_dDisplaymin = global;

 }

 else if (m_dBestFitnessScore < global)

 {

 global = m_dBestFitnessScore;

 m_dGlobal_best = global;

 m_dDisplaymin = global;

 }

 else

 {

187

 m_dGlobal_best = global;

 m_dDisplaymin = global;

 }

 // make fitnesses gaussian

 for (int k=0; k<m_iPopSize; ++k)

 {

 m_vecGenomes[k].dFitness /= total;

 }

/*

 if (m_dAverageFitnessScore< 0)

 {

 m_dAverageFitnessScore *= -1;

 }

 if (m_dBestFitnessScore< 0)

 {

 m_dBestFitnessScore *= -1;

 }

 m_vecAvFitness.push_back(fabs(m_dAv

erageFitnessScore));

m_vecBestFitness.push_back(fabs(m_dBestFitn

essScore));

 */

}

void Cga::UpdateFitnessScores()

{

 m_iFittestGenome = 0;

// m_dBestFitnessScore = 0;

 m_dTotalFitnessScore = 0;

 // m_dAverageFitnessScore = 0;

 m_dDisplaymin =0;

 m_dbestRank = 0;

 int counter = 50; // set to

chromosize.....................REMEMBER...................

....

 double total = 0;

 for (int i=0; i<m_iPopSize; ++i)

 {

 //get it's fitness score

 m_vecGenomes[i].dFitness =

m_BobsMap.TestFunction(m_vecGenomes[i].ve

cBits[0], m_vecGenomes[i].vecBits[1]); // for

(xin, yin).. each chromosome

 if (m_vecGenomes[i].dFitness <=

m_dGlobal_best)

 {

 m_xinbest =

m_vecGenomes[i].vecBits[0];

 m_yinbest =

m_vecGenomes[i].vecBits[1];

 }

188

 total += m_vecGenomes[i].dFitness;

 //

ResetVariables();

 }

 //sort the population (for scaling and elitism)

 sort(m_vecGenomes.begin(),

 m_vecGenomes.end());

 for (int i=0; i<m_iPopSize; ++i)

 {

 m_vecGenomes[i].iRank = 2*counter--;

 m_dTotalFitnessScore +=

m_vecGenomes[i].iRank;

 }

for (int i=0; i<m_iPopSize; ++i)

 {

 if (m_vecGenomes[i].iRank >= m_dbestRank)

 {

 m_dBestFitnessScore =

m_vecGenomes[i].dFitness;

 m_dbestRank =

m_vecGenomes[i].iRank;// useful if elitism was

used.

 }

 }

 if (m_dBestFitnessScore <=

m_dGlobal_best)// extream large used here

 {

 m_dGlobal_best = m_dBestFitnessScore;

 }

 m_dBestFitnessScore = m_dGlobal_best;

 m_dDisplaymin = m_dGlobal_best;

}

//........................add..................................

void Cga::UpdateFitnessScoresMajor()

{

 vector<SGenome> vecTempGenomes =

m_vecGenomesMajor;

 int iterator=0;

 while (iterator != (POP_SIZE2-1))

 {

 //int duration=

m_vecGenomesMajor[iterator].vBits[1]

+m_vecGenomesMajor[iterator].vBits[2]

+m_vecGenomesMajor[iterator].vBits[3];

 if(vecTempGenomes[iterator].vBits[0] == 0)

 {

 for (int i = 0; i <

vecTempGenomes[iterator].vBits[1]; ++i)

 { Epoch();}

 for (int j = 0; j <

vecTempGenomes[iterator].vBits[2]; ++j)

189

 { Epoch2();}

 for (int k = 0; k <

vecTempGenomes[iterator].vBits[3]; ++k)

 { Epoch3();}

 ResetVariables();

 }

 else if (

vecTempGenomes[iterator].vBits[0] == 1)

 {

 for (int i = 0; i <

vecTempGenomes[iterator].vBits[1]; ++i)

 { Epoch();}

 for (int j = 0; j <

vecTempGenomes[iterator].vBits[2]; ++j)

 { Epoch3();}

 for (int k = 0; k <

vecTempGenomes[iterator].vBits[3]; ++k)

 { Epoch2();}

 ResetVariables();

 } // end if for GA, CK, POLY ---1

 else if (

vecTempGenomes[iterator].vBits[0] == 2)

 {

 for (int i = 0; i <

vecTempGenomes[iterator].vBits[1]; ++i)

 { Epoch2();}

 for (int j = 0; j <

vecTempGenomes[iterator].vBits[2]; ++j)

 { Epoch();}

 for (int k = 0; k <

vecTempGenomes[iterator].vBits[3]; ++k)

 { Epoch3();}

 ResetVariables();

 } // end if for POLY, GA, CK, ---2

 else if (

vecTempGenomes[iterator].vBits[0] == 3)

 {

 for (int i = 0; i <

vecTempGenomes[iterator].vBits[1]; ++i)

 { Epoch2();}

 for (int j = 0; j <

vecTempGenomes[iterator].vBits[2]; ++j)

 { Epoch3();}

 for (int k = 0; k <

vecTempGenomes[iterator].vBits[3]; ++k)

 { Epoch();}

 ResetVariables();

 } // end if for POLY, CK, GA ---3

 else if (

vecTempGenomes[iterator].vBits[0] == 4)

 {

 for (int i = 0; i <

vecTempGenomes[iterator].vBits[1]; ++i)

190

 { Epoch3();}

 for (int j = 0; j <

vecTempGenomes[iterator].vBits[2]; ++j)

 { Epoch();}

 for (int k = 0; k <

vecTempGenomes[iterator].vBits[3]; ++k)

 { Epoch2();}

 ResetVariables();

 } // end if for CK, GA, POLY ---4

 else

 {

 for (int i = 0; i <

vecTempGenomes[iterator].vBits[1]; ++i)

 { Epoch3();}

 for (int j = 0; j <

vecTempGenomes[iterator].vBits[2]; ++j)

 { Epoch2();}

 for (int k = 0; k <

vecTempGenomes[iterator].vBits[3]; ++k)

 { Epoch();}

 ResetVariables();

 } // end if for CK,POLY, GA ---5

 // vecTempGenomes[iterator].dFitness=

m_dDisplaymin;

 vecTempGenomes[iterator].dFitness=

m_dBestFitnessScore;

 iterator++;

 } // close while

 m_vecGenomesMajor = vecTempGenomes;

 //sort the population (for scaling and elitism)

 sort(m_vecGenomesMajor.begin(),

m_vecGenomesMajor.end());

 // if (m_vecGenomesMajor[0].dFitness <

m_dDisplaymin2)

 m_dDisplaymin2 =

m_vecGenomesMajor[0].dFitness;

 if(m_vecGenomesMajor[0].vBits[0] == 0)

 {

 m_sequence = "GA, POLY, CK";

 m_rat1 =

m_vecGenomesMajor[0].vBits[1];

 m_rat2 =

m_vecGenomesMajor[0].vBits[2];

 m_rat3 =

m_vecGenomesMajor[0].vBits[3];

 icount0++;

 }

 else if(m_vecGenomesMajor[0].vBits[0] ==

1)

 {

191

 m_sequence = "GA, CK, POLY";

 m_rat1 =

m_vecGenomesMajor[0].vBits[1];

 m_rat2 =

m_vecGenomesMajor[0].vBits[2];

 m_rat3 =

m_vecGenomesMajor[0].vBits[3];

 icount1++;

 }

 else if(m_vecGenomesMajor[0].vBits[0] ==

2)

 {

 m_sequence = "POLY, GA, CK";

 m_rat1 =

m_vecGenomesMajor[0].vBits[1];

 m_rat2 =

m_vecGenomesMajor[0].vBits[2];

 m_rat3 =

m_vecGenomesMajor[0].vBits[3];

 icount2++;

 }

 else if(m_vecGenomesMajor[0].vBits[0] ==

3)

 {

 m_sequence = "POLY, CK, GA";

 m_rat1 =

m_vecGenomesMajor[0].vBits[1];

 m_rat2 =

m_vecGenomesMajor[0].vBits[2];

 m_rat3 =

m_vecGenomesMajor[0].vBits[3];

 icount3++;

 }

 else if(m_vecGenomesMajor[0].vBits[0] ==

4)

 {

 m_sequence = "CK, GA, POLY";

 m_rat1 =

m_vecGenomesMajor[0].vBits[1];

 m_rat2 =

m_vecGenomesMajor[0].vBits[2];

 m_rat3 =

m_vecGenomesMajor[0].vBits[3];

 icount4++;

 }

 else

 {

 m_sequence = "CK,POLY, GA";

 m_rat1 =

m_vecGenomesMajor[0].vBits[1];

 m_rat2 =

m_vecGenomesMajor[0].vBits[2];

 m_rat3 =

m_vecGenomesMajor[0].vBits[3];

 icount5++;

 }

}

//-------------------------------elitism

192

void Cga::GrabNBest(int NBest, const int

NumCopies, vector<SGenome> &vecPop)

{

 //add the required amount of copies of

the n most fittest

 //to the supplied vector

 while(NBest--)

 {

 for (int i=0; i<NumCopies; ++i)

 {

 vecPop.push_back(m_vecGenomes[(3 -

1) - NBest]);

 }

 }

}

void Cga::Render(int cxClient, int cyClient, HDC

surface)

{

string s = "Best Fitness: " +

ftos(m_dBestFitnessScore);

 TextOut(surface, 5, 20, s.c_str(),

s.size()); // (x, y) arrangement

 s = "Average Fitness: " +

ftos(m_dAverageFitnessScore);

 TextOut(surface, 5, 40, s.c_str(),

s.size());

 s = "Generation: " + itos(m_iGeneration2);

 TextOut(surface, 5, 0, s.c_str(), s.size());

 s = " wining sequence " + m_sequence;

 TextOut(surface, 180, 20, s.c_str(),

s.size());

 s = " ratio 1= " + ftos(m_rat1);

 TextOut(surface, 220, 40, s.c_str(),

s.size());

 s = " ratio 2= " + ftos(m_rat2);

 TextOut(surface, 220, 60, s.c_str(),

s.size());

 s = " ratio 3= " + ftos(m_rat3);

 TextOut(surface, 220, 80, s.c_str(),

s.size());

 s = "Minimun Cost: " +

ftos(m_dDisplaymin2);

 TextOut(surface, 5, 60, s.c_str(),

s.size());

 s = "GA, POLY, CK = " + itos(icount0);

 TextOut(surface, 5, 120, s.c_str(),

s.size());

193

 s = "GA, CK, POLY = " + itos(icount1);

 TextOut(surface, 5, 140, s.c_str(),

s.size());

 s = "POLY, GA, CK = " + itos(icount2);

 TextOut(surface, 5, 160, s.c_str(),

s.size());

 s = "POLY, CK, GA = " + itos(icount3);

 TextOut(surface, 5, 180, s.c_str(),

s.size());

 s = "CK, GA, POLY = " + itos(icount4);

 TextOut(surface, 5, 200, s.c_str(),

s.size());

 s = "CK,POLY, GA = " + itos(icount5);

 TextOut(surface, 5, 220, s.c_str(),

s.size());

 // s = "Simulated activity graph below ";

 // TextOut(surface, 5, 100, s.c_str(),

s.size());

 s = " x = " + ftos(m_xinbest);

 TextOut(surface, 150, 0, s.c_str(),

s.size());

 s = " y = " + ftos(m_yinbest);

 TextOut(surface, 290, 0, s.c_str(),

s.size());

 /* //render the graph

 float HSlice = (float)400/(m_iGeneration+1);

 float VSlice =

(float)400/((m_dBestFitnessScore+1) * 1.5);

 HPEN OldPen;

 HPEN m_RedPen = CreatePen(PS_SOLID, 2,

RGB(255,0,0));

 HPEN m_BluePen = CreatePen(PS_SOLID, 2,

RGB(0,0,255));

 HPEN m_GreenPen = CreatePen(PS_SOLID, 2,

RGB(0,255,0));

 //plot the graph for the best fitness

 float x = 0;

 OldPen = (HPEN)SelectObject(surface,

m_RedPen);

 MoveToEx(surface, (int)0, (int)400, NULL);

 for (int i=0; i<m_vecBestFitness.size(); ++i)

 {

194

 LineTo(surface, (int)x, (int)(400 -

VSlice*m_vecBestFitness[i]));

 x += HSlice;

 }

 //plot the graph for the average fitness

 x = 0;

 SelectObject(surface, m_BluePen);

 MoveToEx(surface, (int)0, (int)400, NULL);

 for (int i=0; i<m_vecAvFitness.size(); ++i)

 {

 LineTo(surface, (int)x, (int)(400 -

VSlice*m_vecAvFitness[i]));

 x += HSlice;

 }

 //replace the old pen

 SelectObject(surface, OldPen);

 DeleteObject(m_BluePen);

 DeleteObject(m_RedPen);

 DeleteObject(m_GreenPen); */

//..

........................

 if (!m_bBusy)

 {

 string Start = "Press Return to

start a new run";

 TextOut(surface, cxClient/2 -

(Start.size() * 3), cyClient - 20, Start.c_str(),

Start.size());

 }

 else

 {

 string Start = "Space to stop";

 TextOut(surface, cxClient/2 -

(Start.size() * 3), cyClient - 20, Start.c_str(),

Start.size());

 }

}

#ifndef UTILS_H

#define UTILS_H

#include <stdlib.h>

#include <math.h>

#include <sstream>

#include <string>

#include <iostream>

//#include <vector>

195

using namespace std;

inline int RandInt(int x,int y) {return

rand()%(y-x+1)+x;}

//returns a random float between zero and 1

inline double RandFloat()

{return (rand())/(RAND_MAX+1.0);}

//returns a random bool

inline bool RandBool()

{

 if (RandInt(0,1)) return true;

 else return false;

}

//returns a random float in the range -1 < n < 1

inline double RandomClamped()

{return RandFloat() - RandFloat();}

//inline double RandomClamped1()

{return RandFloat()*4 -

RandFloat()*1.5;}//........X

inline double RandomClamped2()

{return (RandFloat()*20 - RandFloat()*20);}//

range is(-3 -> 4)........Y

//---

//

// some handy little functions

//---

//converts an integer to a std::string

string itos(int arg);

//converts an float to a std::string

string ftos (float arg);

// clamps the first argument between the

second two

double Clamp(double &arg, float min, float

max);

void Clamp(int &arg, int min, int max);

//---

//

// the structure used to define a vertex

//---

struct SPoint

{

 double x, y;

 SPoint(double a = 0, double b = 0):x(a),y(b){}

};

#endif

#include <windows.h>

#pragma comment(lib, "winmm.lib") //Tools-

>compiler options, type: -lwinmm .for add

linker command

196

MAIN GODE SEGMENT

#include <windows.h>

#include <stdlib.h>

#include <time.h>

#include " Cga.h"

#include "SMap.h"

#include "defines.h"

#include "resource.h"

/* Declare Windows procedure */

LRESULT CALLBACK WindowProcedure (HWND,

UINT, WPARAM, LPARAM);

//pointer to the GA object

 Cga* g_pGA;

/* Make the class name into a global variable

*/

char szClassName[] = "WindowsApp";

int WINAPI WinMain (HINSTANCE

hThisInstance,

 HINSTANCE hPrevInstance,

 LPSTR lpszArgument,

 int nFunsterStil)

{

 HWND hwnd; /* This is the handle for

our window */

 MSG messages; /* Here messages to

the application are saved */

 WNDCLASSEX wincl; /* Data structure for

the windowclass */

//MessageBox(NULL, "hello world","MsgBox",

MB_OK | MB_ICONASTERISK);

//return 0;

 /* The Window structure */

 wincl.hInstance = hThisInstance;

 wincl.lpszClassName = szClassName;

 wincl.lpfnWndProc = WindowProcedure;

/* This function is called by windows */

 wincl.style = CS_DBLCLKS; /* Catch

double-clicks */

 wincl.cbSize = sizeof (WNDCLASSEX);

 /* Use default icon and mouse-pointer */

 wincl.hIcon = LoadIcon(hThisInstance,

MAKEINTRESOURCE(IDI_ICON_LRG));//LoadIcon

(NULL, IDI_APPLICATION);

 wincl.hIconSm = LoadIcon(hThisInstance,

MAKEINTRESOURCE(IDI_ICON_SM));

 wincl.hCursor = LoadCursor (NULL,

IDC_ARROW);

 wincl.lpszMenuName = NULL; /* No

menu */

197

 wincl.cbClsExtra = 0; /* No extra

bytes after the window class */

 wincl.cbWndExtra = 0; /*

structure or the window instance */

 /* Use Windows's default color as the

background of the window */

 wincl.hbrBackground =

(HBRUSH)GetStockObject

(WHITE_BRUSH);//(HBRUSH)

COLOR_BACKGROUND;.

 /* Register the window class, and if it fails

quit the program */

 if (!RegisterClassEx (&wincl))

 return 0;

 /* The class is registered, let's create the

program*/

 if (!(hwnd = CreateWindowEx (

 0, /* Extended possibilites for

variation */

 szClassName, /* Classname */

 "Function-Genetic Algorithm", /* Title

Text */

WS_OVERLAPPED|WS_VISIBLE|WS_CAPTION|

WS_SYSMENU, /* default window ...ADDDED BY

ME */

 CW_USEDEFAULT, /* Windows

decides the position.. innitial x position */

 CW_USEDEFAULT, /* where the

window ends up on the screen..innitial y

position */

 400, /* The programs width

..innitial x size */

 400, /* and height in pixels

..innitial y size*/

 HWND_DESKTOP, /* The window is a

child-window to desktop */

 NULL, /* No menuADDRESSED

later in chapter......hMenu*/

 hThisInstance, /* Program Instance

handler */

 NULL /* No Window Creation

data */

)))

 return 0;

 /* Make the window visible on the screen */

 ShowWindow (hwnd, nFunsterStil);

 /* Run the message loop. It will run until

GetMessage() returns 0 */

// the differnce in creating a looping main

program

 // Enter the message loop

 bool bDone = false;

 while(!bDone)

 {

198

 while(PeekMessage(

&messages, NULL, 0, 0, PM_REMOVE))

 {

 if(messages.message

== WM_QUIT)

 {

 // Stop loop if

it's a quit message

 bDone = true;

 }

 else

 {

TranslateMessage(&messages);

DispatchMessage(&messages);

 }

 }

//if the user has started the run update the GA

and display

 //accordingly

 if (g_pGA->Started())

 {

 //update the gun

 g_pGA->Epoch4Major();

 //this will call

WM_PAINT which will render our scene

 InvalidateRect(hwnd,

NULL, TRUE);

 UpdateWindow(hwnd);

 Sleep(200);

 } //*** your game loop goes here ***//

 }//end while

//*************************************

 // while (GetMessage (&messages, NULL, 0, 0))

 //{

 /* Translate virtual-key messages into

character messages */

 //TranslateMessage(&messages);

 /* Send message to WindowProcedure */

 // DispatchMessage(&messages);

 //}

 /* The program return-value is 0 - The value

that PostQuitMessage() gave */

//*************************************

 return messages.wParam;

}

/* This function is called by the Windows

function DispatchMessage() */

199

LRESULT CALLBACK WindowProcedure (HWND

hwnd, UINT message, WPARAM wParam,

LPARAM lParam)

{

 //device context for our window

 HDC hdc;

 PAINTSTRUCT ps;

 //these hold the dimensions of the

client window area

 static int cxClient, cyClient;

 /*--

--

 //used to create the back buffer

 static HDC hdcBackBuffer;

 static HBITMAP hBitmap;

 static HBITMAP hOldBitmap;

-- */

 switch (message) /* handle the

messages */

 {

 //to get get the size of the client window

first we need to create

 //a RECT and then ask Windows to fill in

our RECT structure with

 //the client window size. Then we assign to

cxClient and cyClient

 //accordingly

 case WM_CREATE:

 {

 //seed the random

number generator

 srand((unsigned)

time(NULL));

 //create the GA class

 g_pGA = new

Cga(CROSSOVER_RATE,

 MUTATION_RATE,

 POP_SIZE,

 CHROMO_LENGTH,

 P_LENGTH,

 R_RATIO);

 //get the size of the

client window

 RECT rect;

 GetClientRect(hwnd,

&rect);

 cxClient = rect.right;

 cyClient = rect.bottom;

200

 }

 break;

 case WM_DESTROY:

 {

 //..SelectObject(hdcBackBuffer,

hOldBitmap);

 //clean up our

backbuffer objects

 //...DeleteDC(hdcBackBuffer);

 //....DeleteObject(hBitmap);

 //delete our GA object

 delete g_pGA;

 // kill the application,

this sends a WM_QUIT message

 PostQuitMessage(0);

 }

 break;

 case WM_PAINT:

 {

 hdc = BeginPaint(hwnd,

&ps);

 //fill our backbuffer

with white

 //....BitBlt(hdcBackBuffer, 0, 0, cxClient,

cyClient, NULL, NULL, NULL, WHITENESS);

 //render the map and

best route

 g_pGA-

>Render(cxClient, cyClient, hdc);

 //now blit backbuffer to

front

 //....BitBlt(hdc, 0, 0,

cxClient, cyClient, hdcBackBuffer, 0, 0,

SRCCOPY);

 ReleaseDC(hwnd, hdc);

 EndPaint(hwnd, &ps);

 }

 break;

 //has the user resized the client area?....all

new appart form the 1st 2 lines

 case WM_SIZE:

 {

 //if so we need to update our variables so

that any drawing

 //we do using cxClient and cyClient is

scaled accordingly

 cxClient =

LOWORD(lParam);

201

 cyClient =

HIWORD(lParam);

 }

 break;

//check key press messages

 case WM_KEYUP:

 {

 switch(wParam)

 {

 case

VK_RETURN:

 {

 g_pGA-

>Run(hwnd);

 }

 break;

 case

VK_ESCAPE:

 {

 PostQuitMessage(0);

 }

 break;

 case VK_SPACE:

 {

 g_pGA->Stop();

 }

 break;

 }//end switch

 }

 break;

 default: /* for messages that

we don't deal with */

 return DefWindowProc (hwnd, message,

wParam, lParam);

 }

 return 0;

}

