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Abstract 

 

For research in speech processing and analysis of audio content in general, extensive data sets are 

required. Creating such a dataset manually turns out to be time and labour consuming, but it is a 

task very suitable for automation through machine learning. This dissertation describes the 

development of an algorithm for audio content analysis, discriminating between speech and music 

audio classes. To detect the different classes, the audio signal needs to be expressed in terms of its 

statistical properties based on spectral and temporal features and statistical values of these features 

are used to differentiate between the audio classes.  The suitability of various low-level audio 

features was evaluated to determine suitability and efficiency in discriminating between different 

audio classes. To gain a better understanding of the feature set, exploratory dimensionality 

reduction analysis was performed with Principal Component Analysis (PCA). The mean accuracy for 

the SVM classifier was used to rank combinations of features. A number of feature selection 

techniques were employed to reduce the feature space and increase the mean accuracy, these 

included Univariate feature selection, Random Forest Regression, forward and backward Sequential 

Feature Selection and the highest loading factors of the PCA components. 

An optimal subset of features was selected and used in evaluating a Neural Network-based classifier 

model and validated against a Support Vector Machine model. It was demonstrated that using this 

novel method of selecting the optimal combination of audio features, a 50% reduction in 

dimensionality and higher mean accuracy (99.95%) was achieved and proved to be well suited as a 

tool for extracting and compiling speech data sets. 

The algorithm developed in this study is pertinent and applicable to the requirement of the initial 

motivation for the study, to efficiently create datasets for the study of language identification and 

recognition for African and other indigenous languages and beyond that, for analysing audio content 

in general. The reduction in the dimensionality of the feature space and consequently reduction in 

computational load should capacitate a real-time audio content analysis tool, implemented on low 

power IoT devices. 
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Chapter 1 - Introduction 

1.1 Background 

The field of speech recognition has been studied widely, however, the research focused mainly on 

a few major languages, specifically English. Recently, interest emerged in applying speech 

recognition to smaller indigenous languages. To develop and optimise a speech recognition engine, 

a researcher requires many hours of speech data to work on. For a small language without extensive 

libraries, this can be quite a challenge. In South Africa, many of our indigenous languages receive 

dedicated time allocations on national television service and most of them have dedicated local 

radio stations devoted to a specific language. Recording these audio sources and separating the 

speech and non-speech parts thereof, provides a simple and cheap method of compiling a dataset 

library for further analysis. The problem of discriminating between the different audio components 

in a noisy environment or where the audio components overlap has not been studied extensively. 

This research project aims to develop an algorithm for automatic speech / non-speech 

discrimination to annotate two classes of audio, speech and non-speech, including music, 

background noise and silence in audio files.  Different audio features will be extracted, evaluated 

and statistically compared with different classifier algorithms. Feature extraction is a method of data 

reduction and consists of discovering the unique properties of each class. 

 

For humans, the distinction between various types of sound is a very simple and involuntary process. 

According to Hepper and Shahidullah (1994), a human foetus responds to different frequency 

sounds from as early as 19 weeks of gestational age and infants usually utter their first words 

between 12 to 18 months old. The Cognitive Trade-off Hypothesis (Matsuzawa, 2007) suggest that 

our language facility was developed at the cost of short-term memory compared to other primate 

species. For human infants to master speech communication at a very early age, they need the 

ability to separate speech from environmental sound and other non-speech human sounds and so 

by nature humans became formidable at discriminating sound classes. To mimic this human ability 

with the use of software is no simple task. The first challenge is that humans perceive audio in the 

form of analogue signals in a non-linear way, while machines need to convert this audio signal to a 
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digital form. This is done by converting the analog signal to a continuous varying electrical signal. 

This signal is then converted to a sequence of discrete digital values by sampling the continuous 

signal at sufficiently regular intervals and storing a binary representation of the signal amplitude as 

a time series. The second challenge is to extract unique properties from the digital representation 

of the signal that can aid in identifying the various classes of sounds. This is the domain of the study 

of Audio Content Analysis (ACA). Lavner and Ruinskiy (2009) and Burred and Lerch (2004) describe 

audio content analysis as a field of research within machine learning, also called computer audition 

or machine listening, which deals with the extraction of information from audio signals through 

statistical modelling of data and applications of probability and decision theory with the aim of 

classification of sound categories.  It combines knowledge and methods from a variety of disciplines 

including signal processing, machine learning, sound perception (psychoacoustics) and cognitive 

musicology (Ajmera, McCowan and Bourlard, 2003)(Lavner and Ruinskiy, 2009)(Burred and Lerch, 

2004). 

 

Applications for speech/music discrimination include automatic speech recognition (ASR) systems, 

transcription systems for broadcast audio, and variable or low bit-rate audio coding. Traditionally, 

separate codec designs are used to digitally encode speech and music signals. An effective 

speech/music discrimination decision will enable these to be merged into a universal coding scheme 

capable of reproducing well both speech and music. (Ajmera, McCowan and Bourlard, 2003) 

 

 Machine learning is a branch of artificial intelligence that aims to create systems that automatically 

detect patterns in data, and use these to make predictions or decisions. These systems rely on 

programs with tunable parameters that can be adjusted to improve the performance of the system 

by adapting to previously seen data. Machine learning is not a new concept, but it has been gaining 

a lot of momentum in recent years. The resurging interest in machine learning is due to factors like 

growing volumes and varieties of available data, computational processing that is cheaper and more 

powerful, and affordable data storage. Cloud computing allows engineers to access vast processing 

resources on demand while distributed computing like the internet of things (IoT) allows machine 

learning applications to be scaled out over a multitude of nodes. It is now possible to quickly and 
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automatically produce models that can analyse larger, more complex data and deliver more 

accurate results faster, resulting in predictions that can guide better decisions and smart actions in 

real-time without human intervention. This also benefitted the study of ACA, where a segmented 

audio stream, is analysed to identify a sequence of audio segments exhibiting common properties 

or features. These coherent features are then either grouped together (clustered) or through a 

supervised learning process, taxonomically classified.  

1.2 The research problem 

To achieve the goal of developing a neural network-based speech/non-speech discrimination 

algorithm for audio files using audio content analysis, a set of challenges needs to be solved. These 

challenges can be grouped and summarised in the following criteria: 

 The necessity to research and evaluate various low level statistical audio features to find 

a sub-set of features that describe the statistical differences between the audio classes 

accurately and efficiently.  

 The need to design a classifier model that can accurately and efficiently discriminate 

between the audio classes. A software implementation of a multi-layer perceptron 

neural network classifier model was proposed. The model needs to be robust enough to 

adapt to various speech sources, male and female voices, and various music genres. 

 To develop a software algorithm to extract a collection of statistical features from a 

particular audio signal. The audio signal needs to be processed and normalised before 

analysis can take place. To evaluate features and train a classifier algorithm, an 

annotated dataset (corpus) of multiple audio files, comprising a wide range of sources 

and genres representing diversity within the different audio classes is required. This 

dataset should contain a balanced representation of the classes to be evaluated. 

1.3 Research Objectives 

This research project aims to develop an algorithm for automatic speech / non-speech 

discrimination to identify pure speech and non-speech classes in audio files. Non-speech can include 

music, background noise and silence. Different audio features will be extracted, evaluated and 

statistically compared to determine the best possible set of features and to evaluate with different 
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classifier algorithms. This study will focus on separating pure speech and music classes as well as 

removing silent segments in a pre-processing step. 

 The first objective of this research will be to investigate numerous low-level features 

commonly used in audio content analysis to determine their theoretical suitability in 

discriminating between speech and non-speech audio classes. Some latest or less frequently 

used features will also be considered. The statistical properties of these theoretical features 

need to be extracted from an annotated dataset and this must be implemented in a software 

algorithm, as efficiently as possible. 

 The second objective of this research will be to evaluate the list of features selected in the 

first objective individually and in combinations to determine suitability and efficiency in 

discriminating different audio classes. An optimal subset of features will be selected and 

used in a classifier model. The main audio classes that will be focused on are pure speech, 

music and low-level random noise, humanly perceived as silence. 

 The third objective of this research will be to develop a multi-layer perceptron neural 

network classifier model and avoid using existing standard classification software libraries 

such as Theano and Tensorflow. The model will be evaluated and compared to a standard 

Support Vector Machine software library for suitability with the aim of implementation in 

the final algorithm.  

1.4 Research methodology 

This research builds on prior work performed in conjunction with the Stellenbosch University 

Department of Electrical Engineering's DSP Research Laboratory. This forms part of a study group 

focusing on speech and language processing, specifically, multilingual speech processing for 

Southern African languages. The preparation of datasets for this research, especially the manual 

extraction of speech data from mixed media recordings, is a laborious and time-consuming exercise, 

impeding the progress of the research. Typically the annotation ratio is > 1:10, meaning that it takes 

more than ten hours to accurately extract about one hour of speech data. This type of problem is 

particularly well suited to be solved by pattern recognition and automated by machine learning. 
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While researching the application of machine learning for speech and music processing, it became 

evident that while the fields of speech recognition and music genre classification have been 

researched frequently in the past, the study of speech/non-speech discrimination, especially the 

problem of discriminating between the different audio components in a noisy environment or 

where the audio components overlap have not been studied extensively. Most studies in the past 

focused on only a few audio features and their results in a mixture of audio components are often 

inconclusive or vague. The most comprehensive comparison of features and classification 

algorithms was done by Scheirer and Slaney (1997), who compared 13 temporal, spectral and 

cepstral features and four classification schemes, namely the Gaussian mixture model (GMM), K 

nearest neighbour (KNN), K-D trees and a multidimensional Gaussian MAP. Alexandre et al had done 

a study where they compared 14 different audio features  (Alexandre et al., 2008). Many other 

studies tend to focus on a limited feature set or one or more classification algorithms. A trend among 

these studies seems to be that the role of a strong feature set is just as important, if not more 

important than the classifier algorithm used, yet none of the studies performs a thorough process 

of selecting an optimal feature set prior to the classification step. 

 

Features are extracted at the short term frame (few milliseconds) level and evaluated at the medium 

to longer-term segment level (few seconds). Frame level analytics represent a quasi-stationary 

position but to determine the semantic meaning of an audio signal, we need to observe the frame-

level statistical variations over a longer period. 

 

A classifier algorithm is required to discriminate between the different audio classes and for this 

study, a neural network algorithm was developed in Python and validated against a Support Vector 

Machine algorithm. The study also requires a dataset representative of all the audio classes and 

large and diverse enough to be able to use as a training and a test set without causing overfitting.  

An initial annotated training set is required to train the neural network and for this purpose a data 

corpus containing close to 7 hours, and 45 minutes of audio data was compiled, representing each 

class equally. The data was divided randomly into training and testing sets with k-fold iterations.  
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The output decision of the classifier will be compared to the values of an annotated test data set to 

calculate evaluation metrics whereby the performance of the algorithm can be measured.  

 

This study adopted a positivist quantitative research paradigm. Figure 1.1 shows common research 

methods on a Positivist─Interpretivist axis, tending from quantitative to qualitative. Quantitative 

research methodology focuses on testing theories, determining facts, and demonstrating 

relationships between variables, thereby enabling the researcher to objectively predict outcomes  

(Van der Merwe, 1996). It is further the aim of the positivist approach to discover knowledge by 

controlled empirical means and experiments that are scientific, objective and reproducible (De 

Villiers, 2012). 

 

Figure 1.1: Research Methodologies (De Villiers, 2012) 

 

A key principle of research is to first establish a solid theoretical foundation and understanding of 

the subject field. This often determines the direction of the research. For this purpose, an extensive 

and relevant literature review was undertaken to gain a thorough understanding of how similar 

research problems were dealt with by other scholars on the same subject and to gain a scientific 

explanation(s) and answers to the research questions. Through the literature review, a scholar 

should establish a body of knowledge necessary to answer the research questions and as a baseline 
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against which results can be evaluated. The literature review then enabled the student to decide on 

a preliminary feature set, a set of outcomes to strive towards and a method of evaluating results.  

 

This leads to the design and implementation phase. The design phase included the collection of data 

and the preparation of the final corpus of data and the design of the software algorithm under 

development. The software algorithm comprises two software programs, the first to analyse data 

and compute statistical features and the other to evaluate statistical results in a reproducible 

fashion. These statistical results are then used to determine the optimal feature set and to compare 

classifier performance. 

1.5 Scope 

This study focuses on the discrimination of speech and music audio content as well as identifying 

silent segments of audio. The audio segmentation and classification of only two major audio classes 

were considered at this stage. Twelve (12) audio features were evaluated, namely, Root Mean 

Square value, Short Time Energy Ratio, Zero Crossing Rate, Spectral Rolloff, Spectral Flux, Spectral 

Centroid, Energy Entropy, Spectral Entropy and the first 13 Mel Frequency Cepstral Coefficients 

(MFCC). For each of these features, the first four standardised moments (mean, variance, skewness 

and kurtosis) were calculated and evaluated. A sub-set of features was selected after a rigorous 

evaluation process. A large, community-developed, open-source implementation of the Support 

Vector Machine algorithm was used to evaluate and select the feature set and was also used to 

benchmark the neural network algorithm. This algorithm was developed from the ground up.  

1.6 Limitations 

The project will only consider a limited number of audio classes, of which speech is the most 

important. It is however very simple to adapt the algorithm to other data classes or to focus on a 

specific class in more detail, for instance, to discriminate a specific genre of music or to discriminate 

between speaker gender classes.  
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1.7 Contribution of the study 

While this is not the first time this topic has been studied, this study provides thorough and detailed 

selection criteria and a benchmark process for selecting the optimal set of features for speech / non-

speech discrimination. This study aims to provide the most comprehensive analysis of statistical 

features used for the analysis of audio signals to date and will thus serve as a benchmark for other 

studies in this field on which audio features and statistical variants thereof to use.   

The study also compares different classifier algorithms. The algorithm for the study was 

implemented in a high-level software language (Python) which can easily be implemented in other 

projects and on various platforms with minimal changes. Part of the selection criteria focused on 

the performance of the algorithm, cognitive of the need to conserve processing effort. This makes 

it ideal to be implemented on a low power embedded or mobile platform. 

 

The algorithm developed in this study provides a building block for quickly and efficiently creating 

datasets for the study of language identification and recognition for African and other indigenous 

languages or for analysing audio content in general. 

1.8 Overview of the dissertation 

The research consists of six chapters. 

Chapter 1 sets the background to the project by stating an explanation of the research problem, 

scope and objectives as well as a general description of the research design and methodology. 

 

Chapter 2 provides an extensive review of the literature relevant to the research problem, providing 

an overview of earlier work done in the field of speech / non-speech discrimination and creating the 

foundation for solving the research objectives. The chapter begins with a brief discussion of audio 

theory related to the classes of data that will be analysed, followed by an explanation of the 

theoretical framework for audio content analysis. The next section of the chapter provides an in-depth 

discussion of several audio features specific to this project as well as a summary of previous research 
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on audio features. The chapter also provides an understanding of the decision and learning 

paradigms used in machine learning and how machine learning techniques work.  

 

Chapter 3 continues from chapter 2 and further discusses the background and theory of the 

classification models applied in this research. It focuses on the Support Vector Machine (SVM) 

supervised machine learning classification algorithm which is used for the evaluation and selection 

of audio features as well as a multi-layer perceptron neural network classifier model used to 

evaluate the final audio feature set. 

 

Chapter 4 explains the specific software implementation of the algorithm to process the audio data 

to extract the relevant audio features and the classification model. 

 

Chapter 5 discusses the evaluation of the algorithm, feature selection process, including the 

performance on an individual level and the benchmarking of combinations of features to select a 

lower-dimensional feature set without sacrificing classification accuracy. 

 

Chapter 6 discusses the outcomes achieved and notable conclusions drawn from the study as well 

as future ideas and possibilities. 

 

 



 

 

10 

 

Chapter 2 - Audio Content Analysis: Literature Review 

2.1 Introduction 

This study aims to develop a speech and music discrimination algorithm as a tool to isolate parts of 

speech in audio recordings to assist research focusing on speech and language processing, 

specifically, multilingual speech processing for Southern African languages. Audio signal content can 

be classified into different categories, for example, speech, music, background noise and silence 

(low-level white noise) or a combination thereof. For the purpose of this work, only two audio 

classes were considered, namely pure speech and music. As a first step in the process of speech and 

language processing is the discrimination of speech and non-speech and it is important to 

understand the theory behind audio content and the mathematical description of different audio 

classes, and in this case, specifically, silence, speech and music in terms of and how these features 

can be utilised through the process of pattern recognition and automated with machine learning to 

develop an algorithm that can effectively and accurately discriminate between these classes of 

audio. For this to happen, the audio signal needs to be transformed from a continuous or sampled 

representation of a continuous waveform that cannot be directly compared, to a sequence of 

statistical time series features in a reduced feature dimension.  

2.2 Audio Classes 

This study focuses on the discrimination of speech and non-speech audio classes. Only two classes 

were considered at this stage,  however silent segments of audio were dealt with as a processing 

step similar to the approach followed by (Bugatti, Flammini and Migliorati, 2002). Other studies that 

considered the same audio classes include (Saunders, 1996), (Foote, 1997), (Scheirer and Slaney, 

1997), (Balabko, 1999), (Carey, Parris and Lloyd-Thomas, 1999), (Williams and Ellis, 1999), (El-Maleh 

et al., 2000), (Bugatti, Flammini and Migliorati, 2002), (Pinquier, Rouas and E-Obrecht, 2002),  (Saad 

et al., 2002), (Tzanetakis and Cook, 2002), (Ajmera, McCowan and Bourlard, 2003), (Wang, Gao and 

Ying, 2003), (Beierholm and Baggenstoss, 2004), (Burred and Lerch, 2004), (Panagiotakis and 

Tziritas, 2005), (Giannakopoulos, Pikrakis and Theodoridis, 2006), (Ericsson, 2009), (Lavner and 

Ruinskiy, 2009), (Muñoz-Expósito et al., 2009), (Gallardo-Antolin and Montero, 2010), (Tardón, 

Sammartino and Barbancho, 2010), (Markaki and Stylianou, 2011). Some studies considered other 
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classes as well, for instance (Zhang and Jay Kuo, 2001; Lu, Zhang and Jiang, 2002; Alexandre et al., 

2006, 2008) also looked at environmental noise, while (Lu, Zhang and Li, 2003; Khan and Al-Khatib, 

2006) looked at a class for speech with background music. A complete list of previous research and 

methods can be found in Appendix A – Summary of previous studies 

 Speech 

Speech consists of syllables that are made up of consonant clusters separated by vowels.  Vowels 

(or voiced sounds) are high energy events due to the vocal tract being fairly unrestricted during their 

formation.  They have a periodic component due to the glottal excitation, which can be 

approximated by an impulse train in the time domain and by harmonics in the frequency domain 

(Saunders, 1996) and which is characterised by their intensity (loudness) and frequency (pitch). 

Most of the energy in voiced sounds is contained in the low-frequency portion of their spectra. 

Approximately two-thirds of all speech is voiced. (Bachu et al., 2010).  The voiced speech of a typical 

adult male will have a fundamental frequency between 85 Hz and 180 Hz, and that of a typical adult 

female between 165 Hz and 255 Hz (Traunmüller and Eriksson, 1994). 

Consonants, in turn, are produced by frication, where constrictions in the vocal tract lead to 

turbulent airflow, damped resonances and the attenuation of acoustic energy.  The resulting sound 

has higher “noise” content, with energy distribution at somewhat higher frequencies. The speech 

signal is also characterised by an energy modulation peak, specifically in the syllabic range (~2-5 Hz) 

(Edwards and Chang, 2013). Speech is thus composed of a collection of fairly typical sound 

characteristics and as such, can be represented well by statistical models.  

 Music 

Music is a social and emotional activity unique to humans and played an important role in human 

civilisation throughout history to entertain, communicate emotion and construct social cohesion. 

Even though there is a multitude of music genres, music is universally understood and appreciated. 

The ancient Greek philosophers formulated the framework of the seven liberal arts consisting of a 

lower dimension, trívium - grammar, dialect, rhetoric, fundamentals underlying society and higher 

dimension quadrivium (Pythagoras around 500 BC) - arithmetic, geometry, astronomy, music as the 
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laws of nature and the universe and thereby acknowledging the existence of a correlation between 

music and mathematics. Pythagoras defined the discipline of music or harmony, as fundamentally, 

an application of mathematics and geometry, evolving in time. The way humans perceive music and 

machines processing music is therefore not completely unrelated. Human perception and 

classification of music can be described using various dimensions including genres, moods 

(emotions) and sound characteristics. Features extracted for machine learning are aimed at pattern 

recognition and describe quantitative characteristics of the audio signal, such as amplitudes, 

energies, and spectral characteristics. These technical attributes struggle to describe the emotional 

component associated with music and this is a general drawback of all machine-based classification 

systems. 

Music audio signals can be described on a low level in 5 different characteristics (Lerch, 2012): 

1. Statistical signal characteristics such as amplitude distribution, including the arithmetic, 

geometric and harmonic mean of the audio signal as well as its variance and deviation. 

2. Timbre characteristics are indicative of sound quality. These describe the spectral shape and 

spread of the signal. The timbre characteristics can further be distinguished by timbre quality 

and timbre identity. The timbre quality refers to different sounds originating from the same 

source such as two recordings made with the same instrument. Timbre identity enables the 

identification of the instrument family of two sounds with the same tone characteristics 

originating from different sources, for instance, two violins of different quality. The quality of 

vocal sound is differing from one individual to another, but in vocal music, timbre properties 

are usually indicative of the expression of emotion. Low-level features typically associated 

with timbre characteristics are Spectral Rolloff, Zero-Cross and Spectral Centroid. 

3. Features related to intensity and loudness. Intensity implies a physical, measurable entity 

such as the magnitude of a sound while loudness refers to how a human observer perceives 

the magnitude of the sound. The relationship between these attributes is non-linear; a linear 

increase in the signal's magnitude or power will not result in a linear increase in perceived 

loudness. Doubling the perceived loudness corresponds to a level increase of 10 dB in 

intensity. Root Mean Square (RMS) is the most common intensity feature. 
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4. Tonal and pitch characteristics are directly related to the frequency of a signal. The relation 

between the fundamental frequency and the perceived pitch is non-linear, due to the non-

linearity of the frequency resolution of the human cochlea. At higher frequencies, two pitches 

with the same perceived pitch difference will have a larger frequency difference than at lower 

frequencies.  Tonal and pitch characteristics are often used in music theory, most notably 

features based on the Mel scale including Mel-frequency cepstral coefficients (MFCC). 

5. Temporal characteristics such as tempo and rhythm define events in time and are often 

described through beat histogram analysis. 

 Silence 

Silence, for real-world audio processing, is referring to a low-level random signal (white noise) with 

a flat power spectral density. Speech with background music or random background noise is by far 

the most challenging to classify accurately. Background noise is usually non-periodic and consists of 

high energy events that are difficult to define. 

2.3 Audio Content Analysis 

The theoretical framework for audio content analysis was first described by Pfeiffer, Fischer and 

Effelsberg  (1997) and alludes to the theoretical model of audio where the content of audio signal 

data can be assessed in two different ways, firstly in terms of physical properties and secondly in 

terms of the human cognitive properties thereof. The physical properties describe the waveform 

characteristics of the audio signal such as amplitude, frequency and phase, while the cognitive 

properties pertain to how we, as humans, perceive it. The most prominent perceptive properties 

are pitch and timbre.  

 

Audio content analysis and discrimination algorithms generally consist of two stages.  The first stage 

is a supervised learning phase, based on a statistical approach.  In this phase labelled training data 

for each class that needs to be identified is analysed by the algorithm to build a statistical model of 

each of the classes and to define the separation boundaries (thresholds) between the different 
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classes. In the second stage, the processing phase, the test audio signal is analysed and the feature 

data for each frame is compared against the statistical model of each class and labelled by the 

classification algorithm. 

The audio signal stream is analysed using the following steps as illustrated in Figure 2.1: 

 

Figure 2.1: Processing stages for audio content analysis 

 Pre-processing 

Pre-processing of the audio stream, including bandwidth filtering, dimensionality reduction and 

normalisation. As a first step, the audio files are homogenised to ensure a common format and 

sampling scheme. The files are converted Waveform Audio File Format, Microsoft and IBM originally 

developed WAV in 1991 for use within Windows 3.1. Derived from Resource Interchange File Format 

(RIFF) bitstream format method for storing data in indexed chunks, WAV audio format is 
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compressed or uncompressed audio in the loss-less linear pulse code modulation (LPCM) format. 

The data is then down-mixed and down-sampled to single-channel (mono) data with a 16 k sample 

rate. Down mixing stereo to mono is achieved by computing the arithmetic mean of all input 

channels according to (2.1). 

 

𝑥(𝑖) =
1

𝐶𝑥
∑ 𝑥𝑐(𝑖)

𝐶𝑥

𝑐=1

 (2.1) 

 

Considering the Nyquist sampling theorem, this allows for audio data up to 8 kHz. A low-pass FIR 

filter (Hamming window) is applied to discard unwanted artefacts. 

If the signal’s arithmetic mean is not zero, it is indicative of a direct current (DC) offset. DC offset is 

removed before feature extraction by calculating the arithmetic mean of the signal and subtracting 

it from each sample (2.2).  

 

𝑥(𝑖) = 𝑥𝐷𝐶(𝑖) −
1

𝐼
∑ 𝑥𝐷𝐶(𝑖)

𝐼

𝑖=1

 (2.2) 

 

To compensate for varying audio amplitude levels in different audio recordings, the last pre-

processing step is to normalise the signal level. This is done by scaling the signal so that the peak 

absolute value of the signal is mapped to the maximum value of the storage variable, which for 16 

bits storage is 32767, thus the signal is scaled so that the largest absolute sample value is 32767. 

 Segmentation 

Segmentation is dividing the audio stream into smaller segments and frames for analysis. Frames 

are short-term windows, generally with a duration of a few milliseconds. The optimal analysis 

window duration of 15 to 35 milliseconds results in a quasi-stationary representation of the audio 

signal which can, therefore, be processed through the short-time Fourier analysis. (Paliwal and 



 

 

16 

 

Wojcicki, 2008)  Frames can either be overlapping (the frame step is shorter than the frame length) 

or non-overlapping. In this work the audio stream was divided into 1-second segments and 40-

milliseconds frames, thus producing 25 frames per segment. Features derived on the frame level 

are referred to as short term or instantaneous features and serve as building blocks for the higher-

level semantic description of the properties of an audio signal. 

 Feature Extraction 

Extracting a series of features from these frames and aggregating statistical characteristics on a 

per-segment basis. Some features require evaluation over a longer duration, typically the length of 

the segment, which typically can be 1 to 10 seconds. The most common segment-based statistical 

features are the mean and variance of a full segment, as well as higher-order statistical properties 

such as skewness and kurtosis. Skewness is otherwise known as the third central moment of a 

signal divided by the cube of its standard deviation. It is a measure of the asymmetry of the 

probability density function (PDF) of the signal (2.3).  

 

𝑣𝑆𝐾(𝑛) =
1

𝜎𝑥
3(𝑛). 𝐾

∑(𝑥(𝑖) − 𝜇𝑥(𝑛))3

𝑛

𝑖=0

 (2.3) 

 

For symmetric distributions, skewness = 0, while for negative value for left-skewed distributions 

and positive for 46-dimensional distributions. Kurtosis is the fourth central moment of a signal 

divided by the fourth power of its standard deviation (2.4). 

 

𝑣𝐾(𝑛) =
1

𝜎𝑥
4(𝑛). 𝐼

∑(𝑥(𝑖) −  𝜇𝑥(𝑛))4 − 3

𝑛

𝑖=0

 (2.4) 

 

Kurtosis, also called the fourth central moment of a signal, is an indication of the flatness/peakiness 

of a distribution compared to a Gaussian distribution (Lerch, 2012). A kurtosis value of 0 is 
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equivalent to a Gaussian distribution, a negative value is indicative of a flatter, wide peak shaped 

distribution (platykurtic), while a sharp, narrower peaked distribution is a positive value 

(leptokurtic). 

 

Computationally, features can be categorised as either in the time domain (temporal) or frequency 

domain (spectral). Table 2.1 compares various audio features found in previous studies based on 

the signal domain they are in. Temporal features are usually easier to process because they do not 

need to be computed with a Fourier transform, however, if more than one spectral feature is 

employed, the Fourier transform needs to be calculated only once per frame and is then used by 

each feature. 

 

Table 2.1: Comparison of audio features per signal domain 

Temporal Features: Spectral Features: 

Energy Entropy 4Hz Modulation Energy 

Root Mean Square / Short time Energy Spectral Centroid 

Zero-Crossing Ratio Spectral Flux 

Percentage Low Energy Frames / Short 
Time Energy Ratio 

Spectral Rolloff 

Modified Low Energy Ratio Mel Frequency Cepstrum Coefficients 

Dynamism Chromatic Spectral Entropy 

Loudness Auto-correlation function 

 Haar Discrete wavelet transform 

 Spectral Flatness Measure 

 

 

 



 

 

18 

 

Audio instantaneous features are however also taxonomically categorised in terms of timbre, 

temporal, tonal and intensity/loudness characteristics. Timbre characteristics are indicative of 

sound quality. These describe the spectral shape and spread of the signal. Intensity and loudness 

related characteristics such as root mean square (RMS) values. Tonal and pitch characteristics are 

often used in music theory, most notably features based on the Mel scale including Mel-frequency 

cepstral coefficients (MFCC). Temporal characteristics, such as tempo and rhythm are important in 

onset detection and beat histogram analysis.  (Lerch, 2012) 

2.4 Audio features 

Audio features can further be categorised based on their analysis method into either time-domain 

(temporal) or frequency domain features (spectral) (Giannakopoulos, 2015). Time-domain features 

are directly extracted from the raw signal samples within a specific analysis window. Time-domain 

features include Zero Crossing Rate, amplitude pitch and temporal features while frequency domain 

features include various spectral features, MFCC and entropy. Frequency domain features are 

derived from the magnitude of the Discrete Fourier Transform (DFT) of the audio signal. Mel-

frequency cepstral coefficients are a variation of the frequency domain whereby applying the 

Inverse DFT on the logarithmic spectrum results in features existing in the cepstral domain. Audio 

features are also distinguished as either low level or high-level features. Low-level features are 

regarded as having no direct human interpretable meaning, whereas high-level features represent 

qualities that create structure in audio that humans can discern such as tempo (Lerch, 2012). Audio 

features regardless of which definition is applied can simply be considered a lower-dimensional 

representation of the original audio signal.   

 

Audio instantaneous features are also taxonomically categorised in terms of timbre, temporal, tonal 

and intensity/loudness characteristics (Lerch, 2012). Many different features were used in previous 

studies as listed in Table 2.2. In most cases, the set of features is selected based on a hypothetical 

expectation of their individual strengths. It is interesting to note that only two studies explicitly 

compared different features to determine their suitability. Scheirer and Slaney (1997) compared the 

univariate discrimination performance of thirteen different temporal, spectral and cepstral 
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features, namely 4 Hz Modulation Energy, Percentage of Low-Energy Frames, Spectral Rolloff, 

Spectral Centroid, Spectral Flux, Zero Crossing Rate, Cepstrum Resynthesis Residual Magnitude and 

Pulse Metric (signal “rhythmicness”). The best individual features based on classification accuracy 

and computational overhead were then combined and compared with all features combined. In the 

study by Carey, Parris and Lloyd-Thomas (1999), it was hypothesised that pitch and cepstral 

coefficients might be a strong differentiator between speech and music classes. They selected eight 

features to compare, namely Cepstral Coefficients, Delta Cepstral Coefficients, Amplitude, Delta 

Amplitude, Pitch, Delta Pitch, Zero-Crossing Rate and Delta Zero-Crossing Rate of which Amplitude 

and Zero Crossing rate were the only non-spectral features but were included as they are 

computationally inexpensive. The authors evaluate and rank each feature individually, but do not 

compare them in combinations. 
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Table 2.2: Summary of audio features used in previous studies. 

Spectral Rolloff Spectral Centroid Spectral Flux Entropy MFCC 

Alexandre, E., Cuadra, L., Álvarez, L., Rosa-
Zurera, M., López-Ferreras, F. (2006) 

Alexandre, E., Cuadra, L., Álvarez, L., Rosa-
Zurera, M., López-Ferreras, F. (2006) 

Alexandre, E., Cuadra, L., Álvarez, L., Rosa-
Zurera, M., López-Ferreras, F. (2006) 

Ajmera, J., McCowan, I., & Bourlard, H. 
(2003) 

Ajmera, J., McCowan, I., & Bourlard, H. 
(2003) 

Alexandre, E., Gil-Pita, R., Cuadra, L., 
Álvarez, L., & Rosa-Zurera, M. (2008) 

Alexandre, E., Gil-Pita, R., Cuadra, L., 
Álvarez, L., & Rosa-Zurera, M. (2008) 

Alexandre, E., Gil-Pita, R., Cuadra, L., 
Álvarez, L., & Rosa-Zurera, M. (2008) 

Ericsson, L. (2009) 
Alexandre, E., Cuadra, L., Álvarez, L., Rosa-
Zurera, M., López-Ferreras, F. (2006) 

Barbedo, J. G. A., & Lopes, A. (2007) 
Bugatti, A., Flammini, A., & Migliorati, P. 
(2002) 

Barbedo, J. G. A., & Lopes, A. (2007) Giannakopoulos, T. (2015) Balabko, P. (1999) 

Burred, J. J., & Lerch, A. (2004) Burred, J. J., & Lerch, A. (2004) 
Bugatti, A., Flammini, A., & Migliorati, P. 
(2002) 

Pikrakis, A., Giannakopoulos, T., & 
Theodoridis, S. (2006) 

Bugatti, A., Flammini, A., & Migliorati, P. 
(2002) 

Giannakopoulos, T., Pikrakis, A., & 
Theodoridis, S. (2006) 

Ericsson, L. (2009) Burred, J. J., & Lerch, A. (2004) 
Pinquier, J., Rouas, J. L., & E-Obrecht, R. a. 
(2002) 

Burred, J. J., & Lerch, A. (2004) 

Giannakopoulos, T. (2015) 
Giannakopoulos, T., Pikrakis, A., & 
Theodoridis, S. (2006) 

Giannakopoulos, T., Pikrakis, A., & 
Theodoridis, S. (2006) 

Williams, G., & Ellis, D. P. W. (1999) 
Carey, M. J., Parris, E. S., & Lloyd-Thomas, 
H. (1999) 

Lavner, Y., & Ruinskiy, D. (2009) Giannakopoulos, T. (2015) Giannakopoulos, T. (2015)  Ericsson, L. (2009) 

Saad, E.M., El-Adawy, M.I., Abu-El-Wafa, 
M.E., Wahba, A.A. (2002) 

Lavner, Y., & Ruinskiy, D. (2009) Lavner, Y., & Ruinskiy, D. (2009)  Foote, J. T. (1997) 

Scheirer, E.& Slaney, M., (1997) 
Munoz-Exposito, J. E., Galan, S. G., Reyes, 
N. R., & Candeas, P. V. (2009) 

Lu, L., Zhang, H.-J., & Li, S. Z. (2003)  
Gallardo-Antolin, A., & Montero, J. M. 
(2010) 

Sigtia, S., Stark, A. M., Krstulović, S., & 
Plumbley, M. D. (2016) 

Saad, E.M., El-Adawy, M.I., Abu-El-Wafa, 
M.E., Wahba, A.A. (2002) 

Saad, E.M., El-Adawy, M.I., Abu-El-Wafa, 
M.E., Wahba, A.A. (2002) 

 
Giannakopoulos, T., Pikrakis, A., & 
Theodoridis, S. (2006) 

Tardón, L. J., Sammartino, S., & Barbancho, 
I. (2010). 

Scheirer, E.& Slaney, M., (1997) Scheirer, E.& Slaney, M., (1997)  Giannakopoulos, T. (2015) 

Tzanetakis, G., & Cook, P. (2002) 
Sigtia, S., Stark, A. M., Krstulović, S., & 
Plumbley, M. D. (2016) 

Tardón, L. J., Sammartino, S., & Barbancho, 
I. (2010). 

 Khan, M. K. S., & Al-Khatib, W. G. (2006) 

  
Tardón, L. J., Sammartino, S., & Barbancho, 
I. (2010). 

Tzanetakis, G., & Cook, P. (2002)  Lavner, Y., & Ruinskiy, D. (2009) 

  Tzanetakis, G., & Cook, P. (2002)   Lu, L., Zhang, H.-J., & Li, S. Z. (2003) 

     Markaki, M., & Stylianou, Y. (2011). 
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Pikrakis, A., Giannakopoulos, T., & 
Theodoridis, S. (2006) 

     Scheirer, E.& Slaney, M., (1997) 

     
Sigtia, S., Stark, A. M., Krstulović, S., & 
Plumbley, M. D. (2016) 

     
Tardón, L. J., Sammartino, S., & Barbancho, 
I. (2010). 

     Tzanetakis, G., & Cook, P. (2002) 

       

Zero-Crossing Rate RMS / Short Time Energy PLEF / Short Time Energy Ratio Modified Low Energy Rate 4 Hz Modulation Energy 

Alexandre, E., Cuadra, L., Álvarez, L., Rosa-
Zurera, M., López-Ferreras, F. (2006) 

Alexandre, E., Cuadra, L., Álvarez, L., Rosa-
Zurera, M., López-Ferreras, F. (2006) 

Alexandre, E., Cuadra, L., Álvarez, L., Rosa-
Zurera, M., López-Ferreras, F. (2006) 

Ericsson, L. (2009) Wu Chou, & Liang Gu. (2001) 

Alexandre, E., Gil-Pita, R., Cuadra, L., 
Álvarez, L., & Rosa-Zurera, M. (2008) 

Alexandre, E., Gil-Pita, R., Cuadra, L., 
Álvarez, L., & Rosa-Zurera, M. (2008) 

Alexandre, E., Gil-Pita, R., Cuadra, L., 
Álvarez, L., & Rosa-Zurera, M. (2008) 

Wang, W. Q., Gao, W., & Ying, D. W. 
(2003). 

Pinquier, J., Rouas, J. L., & E-Obrecht, R. a. 
(2002) 

Bachu, R. G., Kopparthi, S., Adapa, B., & 
Barkana, B. D. (2010). 

Bachu, R. G., Kopparthi, S., Adapa, B., & 
Barkana, B. D. (2010). 

Burred, J. J., & Lerch, A. (2004)  Scheirer, E.& Slaney, M., (1997) 

Bugatti, A., Leonardi, R., & Rossi, L. (1999) Bugatti, A., Leonardi, R., & Rossi, L. (1999) 
Saad, E.M., El-Adawy, M.I., Abu-El-Wafa, 
M.E., Wahba, A.A. (2002) 

   

Bugatti, A., Flammini, A., & Migliorati, P. 
(2002) 

Bugatti, A., Flammini, A., & Migliorati, P. 
(2002) 

Lu, L., Jiang, H., Zhang, H.-J. (2001)    

Burred, J. J., & Lerch, A. (2004) Burred, J. J., & Lerch, A. (2004) Lu, L., Zhang, H.-J., & Li, S. Z. (2003)    

Carey, M. J., Parris, E. S., & Lloyd-Thomas, 
H. (1999) 

Ericsson, L. (2009) Scheirer, E.& Slaney, M., (1997)    

El-Maleh, K., Klein, M., Petrucci, G., & 
Kabal, P. (2000) 

Foote, J. T. (1997) Tzanetakis, G., & Cook, P. (2002)    

Ericsson, L. (2009) 
Giannakopoulos, T., Pikrakis, A., & 
Theodoridis, S. (2006) 

    

Giannakopoulos, T., Pikrakis, A., & 
Theodoridis, S. (2006) 

Giannakopoulos, T. (2015)     

Giannakopoulos, T. (2015) Khan, M. K. S., & Al-Khatib, W. G. (2006)     
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Khan, M. K. S., & Al-Khatib, W. G. (2006) Lavner, Y., & Ruinskiy, D. (2009)     

Lavner, Y., & Ruinskiy, D. (2009) Liu, Z., Wang, Y., & Chen, T. (1998)     

Lu, L., Jiang, H., Zhang, H.-J. (2001) Panagiotakis, C., & Tziritas, G. (2005)     

Lu, L., Zhang, H.-J., & Li, S. Z. (2003) 
Pikrakis, A., Giannakopoulos, T., & 
Theodoridis, S. (2006) 

    

Panagiotakis, C., & Tziritas, G. (2005) Saunders, J. (1996)     

Pikrakis, A., Giannakopoulos, T., & 
Theodoridis, S. (2006) 

Tardón, L. J., Sammartino, S., & Barbancho, 
I. (2010). 

    

Saad, E.M., El-Adawy, M.I., Abu-El-Wafa, 
M.E., Wahba, A.A. (2002) 

Zhang, T., & Jay Kuo, C. C. (2001)     

Saunders, J. (1996)      

Scheirer, E.& Slaney, M., (1997)      

Sigtia, S., Stark, A. M., Krstulović, S., & 
Plumbley, M. D. (2016) 

     

Tardón, L. J., Sammartino, S., & Barbancho, 
I. (2010). 

     

Tzanetakis, G., & Cook, P. (2002)      

Zhang, T., & Jay Kuo, C. C. (2001)      

       

Dynamism Loudness Auto-correlation function (ACF)  Haar Discrete wavelet transform Spectral Flatness 

Ajmera, J., McCowan, I., & Bourlard, H. 
(2003) 

Alexandre, E., Cuadra, L., Álvarez, L., Rosa-
Zurera, M., López-Ferreras, F. (2006) 

Beierholm, T., & Baggenstoss, P. M. (2004) Khan, M. K. S., & Al-Khatib, W. G. (2006) 
Alexandre, E., Cuadra, L., Álvarez, L., Rosa-
Zurera, M., López-Ferreras, F. (2006) 

Williams, G., & Ellis, D. P. W. (1999) 
Alexandre, E., Gil-Pita, R., Cuadra, L., 
Álvarez, L., & Rosa-Zurera, M. (2008) 

  
Alexandre, E., Gil-Pita, R., Cuadra, L., 
Álvarez, L., & Rosa-Zurera, M. (2008) 

  Barbedo, J. G. A., & Lopes, A. (2007)   Burred, J. J., & Lerch, A. (2004) 

  Burred, J. J., & Lerch, A. (2004)     
Sigtia, S., Stark, A. M., Krstulović, S., & 
Plumbley, M. D. (2016) 
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 Silence removal 

An important initial step in processing an audio signal is identifying and eliminating silence segments 

thereby discarding a large portion of worthless information. The method followed here 

distinguishes between high energy and low energy short term frames to identify silence. This is 

similar to the method proposed by Bugatti et al. and Giannakopoulos (Bugatti, Leonardi and Rossi, 

1999), (Giannakopoulos, 2015). The criteria used in this work is where the Root Mean Square value 

is below 0.003% of the maximum signal energy. 

 Zero-Crossing Rate 

The Zero Crossing Rate (ZCR) is a measure of how often the audio signal crosses the zero amplitude 

level, i.e. the amplitude of the signal changes sign per unit of time. The zero-crossing rate is an 

indicator of the frequency at which the energy is concentrated in the signal spectrum, thus an 

indication of the spectral content of the signal or the dominant frequency in the signal  (Saunders, 

1996), (Carey, Parris and Lloyd-Thomas, 1999), (Zhang and Jay Kuo, 2001) and (Burred and Lerch, 

2004) used this feature along with short-time energy to obtain results (2.5). 

 

The feature is defined as: 

𝑍𝐶𝑅 =
1

2
∑|𝑠𝑔𝑛(𝑥[𝑛]) − 𝑠𝑔𝑛(𝑥[𝑛 − 1])|

𝑁

𝑛=1

 (2.5𝑎) 

 

𝑠𝑔𝑛(𝑥) = {
1, 𝑥 ≥ 0

−1, 𝑥 < 0
 (2.5𝑏) 

where 𝒙[𝒏] is the discrete sound signal of length 𝑵 measured in time and 𝒔𝒈𝒏(. ) is a sign function.  

 

The average zero-crossing rate is used to distinguish between voiced and unvoiced speech signals 

because unvoiced speech components normally have much higher ZCR values than voiced ones. The 

ZCR curve for speech indicates rapid variations alternating between unvoiced and voiced 
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components. This results in a large variance in amplitude for the speech ZCR curve. For pure speech 

(single voiced) it can be used as a weak estimation of half the fundamental glotteral frequency 

(approximately 40 Hz to 125 Hz). The zero-crossing rate for music is typically much more stable over 

time with a lower variation in amplitude. Higher ZCR values indicate a noisy, less periodic signal. For 

speech/music discrimination, the variance (2nd central moment) and skewness (3rd central moment) 

is useful, with higher variance and skewness likely indicating a speech signal. (Saunders, 1996)  Due 

to its simplicity and low computational requirement, this feature is popular, especially for speech 

analysis and was also used by (Scheirer and Slaney, 1997; Bugatti, Leonardi and Rossi, 1999; El-

Maleh et al., 2000; Lu, Jiang and Zhang, 2001; Saad et al., 2002; Tzanetakis and Cook, 2002; Bugatti, 

Flammini and Migliorati, 2002; Lu, Zhang and Li, 2003; Panagiotakis and Tziritas, 2005; Alexandre et 

al., 2006, 2008; Pikrakis, Giannakopoulos and Theodoridis, 2006; Giannakopoulos, Pikrakis and 

Theodoridis, 2006; Khan and Al-Khatib, 2006; Lavner and Ruinskiy, 2009; Ericsson, 2009; Tardón, 

Sammartino and Barbancho, 2010; Bachu et al., 2010; Giannakopoulos, 2015; Sigtia et al., 2016). 

 Root Mean Square Energy (Short Time Energy) 

The signal energy can be expressed in terms of its Root Mean Square energy value and is a measure 

of sound intensity. Short Time Energy (STE) is defined as the mean RMS energy of the signal within 

each analysis frame. Energy is the square root of power, which in turn is defined as the sum of the 

squares of the signal samples, averaged over the frame duration.  This feature becomes 

computationally inefficient on large window sizes and is therefore only applied at the frame level. 

Bachu et al., (2010) calculated the short time energy on a per-segment base using a Hamming 

window function, however, the choice of the window duration proved difficult, as the energy will 

fluctuate rapidly if it is too small and if too large, the energy will change very slowly and thus will 

not adequately reflect the signal properties. 

The signal energy of an audio signal in one analysis frame is defined by Lerch as (2.6) and by Lavner 

and Ruinskiy (2009) and Lerch(2012) as the log of the power expressed in decibels (2.7). 
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𝐸𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥(𝑛)

2

𝑁

𝑛=1

 (2.6) 

where 𝑵 is the number of samples within the frame and 𝒙(𝒏) is the sample value. 

 

𝑑𝐵(𝐸𝑅𝑀𝑆) = 10𝑙𝑜𝑔10 (
1

𝑁
∑ 𝑥(𝑛)

2

𝑁

𝑛=1

) (2.7) 

 

For the same perceived loudness level, the RMS energy values of the frames for different audio 

classes can vary significantly. The energy contour of music tends to contain fewer and much less 

drastic variations than the energy contour of speech.  The erratic energy contour of the speech 

signal is due to the alternation between voicing and frication.  This feature is very useful for silence 

detection, but on its own, STE is a poor choice for speech/music discriminator and because it 

depends on the amplitude of the sample, it requires the speech and non-speech portions of the 

audio segments to be normalised first. Saunders found that using this as a secondary feature in 

conjunction with ZCR produced a marked improvement (±8%) in classification accuracy (Saunders, 

1996). The STE for a segment will be very low or close to zero for silent audio passages. For music, 

the segment variation will be higher for speech than for music. This feature was used by (Saunders, 

1996; Foote, 1997; Liu, Wang and Chen, 1998; Bugatti, Leonardi and Rossi, 1999; Zhang and Jay Kuo, 

2001; Bugatti, Flammini and Migliorati, 2002; Burred and Lerch, 2004; Panagiotakis and Tziritas, 

2005; Alexandre et al., 2006, 2008; Pikrakis, Giannakopoulos and Theodoridis, 2006; Khan and Al-

Khatib, 2006; Lavner and Ruinskiy, 2009; Ericsson, 2009; Tardón, Sammartino and Barbancho, 2010; 

Bachu et al., 2010; Giannakopoulos, 2015). Some other features derived from the RMS Energy and 

STE are Loudness, Short-Time Energy Ratio (STER) and Percentage of Low Energy Frames (PLEF). 

Loudness is defined as an exponential function of the energy of the audio signal (2.8) (Alexandre et 

al., 2006, 2008):  

 

𝐿𝑜𝑢𝑑𝑛𝑒𝑠𝑠𝑡 = 𝑅𝑀𝑆 𝐸𝑛𝑒𝑟𝑔𝑦𝑡
0.23 (2.8) 
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 Percentage Low Energy Frames (PLEF) / Low Short Time Energy 

Ratio (LSTER) 

This feature is derived from the STE and is defined as the ratio of frames with a mean STE less than 

50% of the mean RMS energy within a segment (Scheirer and Slaney, 1997). The same feature is 

used by (Lu, Zhang and Li, 2003) for speech-music discrimination, but called as Low Short-Time 

Energy Ratio (LSTER). The value for speech is normally higher than that of music. (Saad et al., 2002; 

Tzanetakis and Cook, 2002; Burred and Lerch, 2004; Alexandre et al., 2006, 2008). The reason is that 

there are more quiet frames in speech as some pause between every word exists and hence the 

energy of the frame containing pauses is lower (Khan and Al-Khatib, 2006). According to Saunders 

(1996), the energy distribution for speech is more left-skewed than that of music.  

 Modified Low Energy Ratio 

The feature Modified Low Energy Ratio (MLER) is introduced by (Wang, Gao and Ying, 2003) as a 

variation to the Percentage Low Energy Frames. The feature exploits the fact that music shows little 

variation in the energy contour of the waveform, while speech shows large variations between 

voicing and frication. MLER is defined as the proportion of frames with RMS power less than a 

variable threshold within one second.  It is suggested by the authors that the threshold should be in 

the interval [0.05%, 0.12%] for best performance (2.9). This feature was also used by (Ericsson, 

2009). 

𝑀𝐿𝐸𝑅 =
1

2𝑁
∑|𝑠𝑔𝑛(𝑙𝑜𝑤𝑡ℎ𝑟𝑒𝑠 − 𝐸(𝑛)) + 1|

𝑁

𝑛=1

 (2.9𝑎) 

𝑙𝑜𝑤𝑡ℎ𝑟𝑒𝑠 = 𝛿.
∑ 𝐸(𝑛)𝑁

𝑛=1

𝑁
 (2.9𝑏) 

 

where N is the total number of frames in the segment, E(n) is the Short Time Energy of the nth 

frame, δ is a control coefficient, which is suggested in the interval [0.05, 0.12].  
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 Energy Entropy and Chromatic Spectral Entropy 

The term entropy was originally used by von Boltzmann in the 1870s in the field of thermodynamics 

to describe the statistical mechanics that quantifies the average disorder in an isolated system. 

Shannon’s 1948 paper on the mathematical theory of information provides the foundation of the 

field of information theory in the context of communication systems and stated inter alia that 

entropy is a measure of the uncertainty or disorder in a given distribution and thus a more stochastic 

signal contains higher entropy. The information in a signal can be interpreted as the inverse of 

entropy and the negative logarithm of its probability. The application of entropy speech/music 

discrimination is based on the assumption that the speech spectrum is more stochastic than music 

and has a higher entropy value (Pinquier, Rouas and E-Obrecht, 2002).  

Giannakopoulos differentiate between energy entropy and spectral entropy, with the former simply 

the entropy of the normalised energies (STE) of the individual frames Giannakopoulos, (2015). To 

determine the spectral entropy, calculate the entropy of the normalised Power Spectral Density 

(PSD) of the signal (2.10). 

 

𝐻𝑃𝑆𝐸 = − ∑ 𝑝𝑖
𝑛
𝑖=1 𝑙𝑛𝑝𝑖 (2.10𝑎)

here 𝑝𝑖is the normalised PSD: 

𝑝𝑖 =
𝑃(𝑤𝑖)

∑ 𝑃 (𝑤𝑖)
 (2.10𝑏) 

𝑃(𝑤𝑖) =
1

𝑁
|𝑋(𝑤𝑖)|2 (2.10𝑐) 

 

In Pikrakis, Giannakopoulos and Theodoridis (2006), the authors use a feature called Chromatic 

Entropy which is a variation of Spectral Entropy.  The spectrum is first mapped to the Mel scale and 

then divided into twelve sub‐bands (bins), with centre frequencies that coincide with the 

frequencies of the chromatic scale. The energy 𝐸𝑖 of the 𝑖-th sub-band, 𝑖 = 0, . . . ,𝑁 − 1, is then 

normalized by the total energy of all the sub-bands, yielding 𝑛𝑖 =
𝐸𝑖

∑ 𝐸𝑖
𝐿−1
𝑖=0

, 𝑖 = 0, . . . ,𝑁 − 1 
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The entropy of the normalized spectral energy is now calculated (2.11) as per Pikrakis, 

Giannakopoulos and Theodoridis, (2006). 

𝐻 = − ∑ 𝑛𝑖

𝑁−1

𝑖=0

× 𝑙𝑜𝑔2(𝑛𝑖)  (2.11) 

where 𝒏𝒊 is the normalized energy of sub‐band 𝒊 and 𝑵 is the number of sub-bands.  

 

Ajmera, McCowan and Bourlard (2003) show that the average entropy for music is usually higher 

than for speech since the values of probabilities in music will be more uniformly distributed than in 

speech, thus resulting in a higher value for entropy (Pinquier, Rouas and E-Obrecht, 2002). 

 Spectral Rolloff 

Spectral Roll-off (SR) is a representation of the spectral shape of an audio signal.  It is defined as the 

frequency bin below which 95% of the energy in the power spectral distribution is concentrated 

according to (Scheirer and Slaney, 1997). However, some papers refer to the 85th percentile, e.g. 

(Reeder, 2001), (Burred and Lerch, 2004) and (Lerch, 2012) or the 90th percentile (Giannakopoulos, 

2015) for each K where (2.12) applies. 

 

𝑓(𝑘) = ∑|𝑋[𝑘]| ≤ 0.85 ∑ |𝑋[𝑘]|

𝑁 2−1⁄

𝑘=0

𝑖

𝑘=0

 (2.12) 

 

Then, the Spectral Roll-off frequency is𝑓(𝐾), where |𝑋[𝑘]|represents the magnitude of bin number 

𝑘, and 𝑓(𝑘) represents the centre frequency of that bin. Voiced speech has a high proportion of 

energy contained in the high-frequency range of the spectrum, where most of the energy for 

unvoiced speech and music is contained in lower bands. As a result, the spectral roll-off value is 

higher values for music and unvoiced speech, and lower for voiced speech (Saad et al., 2002). This 

feature was also used by Tzanetakis & Cook (2002); Alexandre et al. (2006, 2008); Giannakopoulos 
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et al. (2006); Barbedo & Lopes (2007); Lavner & Ruinskiy (2009); Tardón et al. (2010); 

Giannakopoulos (2015); Sigtia et al. (2016). 

 Spectral Flux 

Spectral Flux (2.13) or Delta Spectrum Magnitude feature is a measure of the rate at which the 

spectral shape changes, or fluctuates.  It is calculated by summing the squared differences of 

magnitude spectra of two neighbouring frames. 

 

𝐹 = ∑(|𝑋𝑟[𝑘]| − |𝑋𝑟−1[𝑘]|)2

𝑁
2

𝑘=1

 (2.13) 

 

where 𝑵 is the number of FFT points and 𝑿𝒓[𝒌] is the STFT of frame 𝒓 at bin 𝒌. 

Lu, Zhang and Li (2003) found this feature to be especially useful for detecting some strong 

periodicity environment sounds such as tone signals, from music signals. Burred and Lerch (2004) 

found this a useful feature for speech/music separation, yielding higher values for music than 

speech, as speech signals exhibit more drastic frame-to-frame changes than music. Speech 

alternates between periods of transition (consonant-vowel boundaries) and periods of relative 

stasis (vowels), where music typically has a more constant rate of change (Khan and Al-Khatib, 2006)  

(Scheirer and Slaney, 1997). 

This feature was also used by (Tzanetakis and Cook, 2002; Bugatti, Flammini and Migliorati, 2002; 

Saad et al., 2002; Burred and Lerch, 2004; Alexandre et al., 2006, 2008; Barbedo and Lopes, 2006; 

Giannakopoulos, Pikrakis and Theodoridis, 2006; Lavner and Ruinskiy, 2009; Tardón, Sammartino 

and Barbancho, 2010; Giannakopoulos, 2015). 

 Spectral Centroid 

This feature describes the spectral shape of the audio signal, i.e. indicates the “balancing point” of 

the spectral power distribution.  This feature is correlated with the psychoacoustic features' 
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sharpness and brightness which is related to the high-frequency content of the spectrum.  There are 

several definitions of the Spectral Centroid (SC) feature in previous work.  In (Ericsson, 2009) it is 

defined as a weighted mean of the frequencies in the FFT transform of the signal (2.14). 

 

𝑆𝐶 =
∑ 𝑓(𝑘)|𝑋[𝑘]|𝑁 2⁄

𝑘=1

∑ |𝑋[𝑘]|𝑁 2⁄
𝑘=1

 (2.14) 

 

where 𝑵is the number of FFT points, |𝑿[𝒌]|represents the magnitude of bin number 𝒌, and 𝒇(𝒌) 

represents the centre frequency of that bin.  

 

4 Hz Modulation Energy and Spectral Centroid are also used to separate voiced speech from noisy 

sound signals (Saunders, 1996). The spectral centroid for music is typically higher than that for 

speech. (Scheirer and Slaney, 1997; Saad et al., 2002). This feature was also used by (Tzanetakis and 

Cook, 2002; Bugatti, Flammini and Migliorati, 2002; Burred and Lerch, 2004; Alexandre et al., 2006, 

2008; Giannakopoulos, Pikrakis and Theodoridis, 2006; Lavner and Ruinskiy, 2009; Muñoz-Expósito 

et al., 2009; Tardón, Sammartino and Barbancho, 2010; Giannakopoulos, 2015; Sigtia et al., 2016) 

 Mel Frequency Cepstral Coefficients (MFCC) 

The human ear detects small changes in pitch at low frequencies much better than at high 

frequencies. The cochlea of the human inner ear is a fluid-filled, coiled tube that is lined lengthwise 

with approximately 3,500 sensory cells, similar to a row of tiny hairs, which resonates to different 

sound frequencies. The cochlea is also separated length-wise by two membranes. One of these, the 

basilar membrane, is the base of the sensory cells and responds to sound frequencies in a non-linear 

way along its length. The analogy of this is a continuous array of band-pass filters with exponential 

frequency response, along the length of the membrane which effectively separates sound into 

spectral components  (Rothmann, 2018). Figure 2.2 illustrates the similarity between the human 

perception of sound and the non-linear characteristic of the inner ear to the path of a digital signal 

through a non-linear filterbank and an input to a classifier model. 
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Figure 2.2:  A simplified comparison between human hearing and its digital equivalent (Rothmann, 2018) 

 

To simulate the response of the human ear, a signal source cannot just be sampled over a linear 

frequency scale, rather a non-linear (gamma tone) scale, called the Mel scale is used.  The Mel scale 

relates the perceived frequency, or pitch, of a pure tone to its actual measured frequency.  

Incorporating this scale makes our features match more closely what humans perceive.  The Mel 

scale emphasises the lower frequency ranges as these contain more useful information.  

The formula for converting from frequency to Mel scale is given in (2.15) 

 

𝑀(𝑓) = 2595 𝑙𝑜𝑔10 (1 +
𝑓

700
) (2.15) 

 

Filter banks using the Mel scale are used to compute a particular parameterisation of the cepstrum, 

known as Mel-Frequency Cepstral Coefficients (MFCCs).  A filter bank is an array of overlapping 

triangular bandpass filters that cover a desired portion of the frequency spectrum, usually from zero 

up to the Nyquist frequency.  On a Mel scale, the distances between the centre frequency 𝑓𝑐  and 

the low frequency (𝑓𝑙) / high frequency (𝑓ℎ), i.e. (𝑓𝑐 − 𝑓𝑙) and (𝑓ℎ − 𝑓𝑐) are the same as the distance 

between the centre frequencies of successive filters, mimicking the non-linear response of the 

human ear, by being more discriminative at lower frequencies and less discriminative at higher 
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frequencies. The filter bank is applied to map the signal power spectrumobtained from short-time 

Fourier transform (STFT) to Mel bins, as shown in Figure 2.3.  

 

Figure 2.3: Triangular filter bank using the Mel scale (Bishop, 2006) 

 

MFCCs are commonly derived as follows: 

 Take the fast Fourier transform (FFT) of each frame of the audio signal. 

 Map the powers of the spectrum onto Mel scale bins, by multiplication of the FFT of each 

frame with each filter in the triangular filter bank.  Each bin now contains a weighted sum 

representing the spectral magnitude in that filter bank channel. 

 Take the logarithm of the powers at each of the Mel scale bins. 

 Take the Discrete Cosine transform (DCT) of the list of Mel log powers, as if it were a signal. 

 The MFCCs are the amplitudes of the resulting spectrum. 

 

The lowest 13 coefficients of the Mel-cepstrum are widely used as a feature in automatic speech 

recognition.  Often the lowest cepstral coefficient is replaced by the frame energy.  This feature was 

evaluated in the research of (Foote 1997.), (Scheirer and Slaney, 1997) and (Ericsson, 2009). The 

statistical mean and variance of MFCC might not be discriminative enough for distinguishing 

between the different audio classes and kurtosis and skewness must also be considered (Pikrakis, 
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Giannakopoulos and Theodoridis, 2006; Gallardo-Antolin and Montero, 2010). MFCC is 

computationally very expensive, however, it can be justified since 4 Hz Modulation energy is a by-

product of MFCC.  

 4 Hz modulation Energy 

Dudley formulated a “modulation theory” of speech, whereby speech sounds are seen as a sum of carrier 

signals produced by the vocal cords and the vocal tract (Dudley, 1940). The amplitude modulation (AM) 

component relates to the fluctuations of the temporal envelope of the speech signal. These fluctuations are 

due to alternating periods of 46-dimensional silence and higher energy events, corresponding to the 4 Hz 

syllabic rate. The frequency modulation (FM) components are mainly due to the primary glottal frequency 

and the harmonics thereof, the amplitude and frequency of which change slowly as a consequence of the 

dynamic changes of the vocal tract during phonation (Varnet et al., 2017). Speech signals thus have a distinct 

rhythmic rate of energy pulsation due to amplitude modulation, corresponding to the average syllable rate 

(around 4 Hz, depending on speaker and language spoken) and the rate of music energy spectrum variation 

is determined by the beat rate, around 0.7 Hz – 2 Hz. (Scheirer and Slaney, 1997; Edwards and Chang, 2013).  

 

This feature can be calculated using different methods. The first is a by-product of the MFCC feature. Unless 

the MFCC feature is also required, this method is unnecessarily complex and computationally expensive. The 

alternative method is using the Hilbert transform for envelope detection. In a simpler experiment, to avoid 

the MFCC calculation process, (Pinquier, Rouas and E-Obrecht, 2002), determined the 4 Hz Modulation 

energy directly from the short term energy of the signal. 

 

In (Scheirer and Slaney, 1997) and (Pinquier, Rouas and E-Obrecht, 2002), the authors calculated 

the energy for each MFCC bin. This energy was then filtered with an FIR bandpass filter, centred on 

4 Hz. The energy is summed for all channels and normalized by the mean energy on the frame.   

 

This method first produces an analytical signal of the original signal by either extracting the signal 

envelope by using half-wave rectification that is then filtered with a low pass filter with a cut-off at 

around 50 Hz or the Hilbert Transform. An analytic signal (2.16) is a form of envelope detection 
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where the magnitude and phase information is extracted from a signal. The next step is to apply a 

Fast Fourier transform to the analytical signal waveform. It is important that the frequency 

resolution is low enough (~1 Hz).  The analytical signal 𝑠𝐴(𝑡) of signal (𝑡) , where 𝑗�̂�(𝑡) is the Hilbert 

Transform of the signal 𝑠(𝑡): 

 

𝑠𝐴(𝑡) = 𝑠(𝑡) + 𝑗�̂�(𝑡) (2.16) 

 

The Analytic Signal is complex-valued, therefore it can be expressed in exponential notation (2.17) 

where A(t) is the instantaneous amplitude (envelope) and  𝜑(𝑡) is the instantaneous phase: 

 

𝑠𝐴(𝑡) = 𝐴(𝑡)𝑒𝑗𝜑(𝑡) (2.17) 

 

A note on discrete signal energy vs power in time and frequency domain: 

An energy signal is a signal with finite energy and zero average power, while a power signal is a 

signal with infinite energy but finite average power. Energy signals are time-limited while power 

signals can exist over infinite time. 

Non-periodic signals are energy signals while power signals are periodic. 

The power of an energy signal tends to zero and the energy of a power signal is approaching infinite. 

A discrete-time energy signal is defined as one for which 0 < 𝐸 <  ∞  and a discrete-time power 

signal is defined as  0 < 𝑃 <  ∞ . A discrete-time signal can be neither an energy signal nor a power 

signal, but it cannot be both. Since audio signals are mostly non-periodic, they can be regarded as 

energy signals. The energy in the time domain for a discrete-time signal is shown in (2.18).   

However, the glottal excitation frequency portion of speech may be regarded as periodic and thus 

regarded as a discrete-time power signal. (2.19) 
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𝐸 =  ∑|𝑥(𝑛)|2

𝑁−1

𝑛=0

 (2.18) 

 

𝑃 =  lim
𝑁→∞

(
1

2𝑁 + 1
∑ |𝑥(𝑛)|2

𝑁

𝑛=−𝑁

) =  
1

𝑁
∫ |𝑋[𝑘]|2

𝑁−1

𝑘=0

 (2.19) 

 

The energy in the frequency domain for the same discrete-time signal is equal to the DFT of the time 

domain discrete-time signal. This is Parseval’s relation, which implies, inter alia, that the total energy 

may be determined either summing over all time-domain samples or by integrating within the 

frequency domain over all frequencies. 

2.5 Summary of previous research on audio features 

The paper by Scheirer and Slaney (1997) used thirteen audio features, to train different types of 

multidimensional classifiers, including a Gaussian MAP estimator and the nearest neighbour 

classifier and was considered the most extensive and influential study to date and is widely cited (n 

> 1293). This research aims to build on this and complete an even more comprehensive study of the 

most common features used in audio content analysis. Table 2.3 contains a summary of prior 

research on audio content analysis where the audio features used were explicitly mentioned. The 

references are listed alphabetically and the table summarises the purpose and main applications of 

the research as well as the classification method that was used. It is interesting to note that while 

there is some similarity in audio features used, only a few studies mention the use of higher-order 

statistical moments for analysis. Skewness and kurtosis is only mentioned by Bugatti, Leonardi and 

Rossi (1999), Lavner and Ruinskiy (2009), Muñoz-Expósito et al. (2009), Gallardo-Antolin and 

Montero (2010) and Sigtia et al., (2016). 
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Table 2.3: Abbreviated summary of previous research on speech / music discrimination 

 
Reference Main Applications Features  Classification method  

(Ajmera, McCowan and Bourlard, 2003) Automatic transcription of broadcast news Entropy measure and “dynamism” estimated at the 
output of a multilayer perceptron (MLP) trained to emit 
posterior probabilities of phones. MLP input: 13 first 
cepstra of a 12th-order perceptual linear prediction 
filter.  

2-state HMM with minimum duration 
constraints (threshold-free, unsupervised, no 
training). 

(Alexandre et al., 2006) Speech/music classification algorithm for 
hearing aids. 

Spectral centroid, spectral rolloff,  spectral flux, ZCR, 
High Zero Crossing Rate Ratio, short-time energy, low 
short time energy ratio (LSTER), MFCC, voice-to- white, 
activity level, loudness, Spectral Flatness Measure 
(SFM) 

Fisher linear discriminant, three-layer MLP 
neural network 

(Alexandre et al., 2008) Development of an automatic sound 
classifier for digital hearing aids with 
automatic self-adaptation. 

14 Features: Spectral Centroid, Spectral Roll-Off, 
Voice2White, Spectral Flux, Zero Crossing Rate, Short-
Time Energy, Percentage of Low Energy Frames, High 
Zero Crossing Rate Ratio, Low Short-Time Energy Rate, 
Spectral Flatness Measure, Mel Frequency Cepstral 
Coefficients, Loudness, Spectral Crest Factor, 
Bandwidth 

Two-stage Mean Squared Error (MSE) linear 
discriminant classifier, first one discriminates 
the input sound into either speech or non-
speech, the second layer classifies it into either 
speech in quiet or speech in noise. 

(Bachu et al., 2010) Separation of voiced and unvoiced speech ZCR and Energy Not stated 

(Balabko, 1999) Speech/music discrimination for automatic 
speech recognition systems  

MFCC. Used 6th band (466-600 Hz) and 20th band 
(1510-1732 Hz) out of 40 bands 

Gaussian Classifier 

(Barbedo and Lopes, 2006) Automatic genre classification of musical 
signals. 

Bandwidth, spectral roll-off, spectral flux, and 
loudness. Three summary features are extracted: 
mean, variance, and main peak prevalence 

Pairwise Euclidean distance  four-layer 
hierarchical structure search tree and linear 
discriminant analysis (LDA) 

(Beierholm and Baggenstoss, 2004) Class-specific features discriminating 
between speech and music. 

Auto-correlation function (ACF)  Class-specific density functions were estimated 
using Gaussian mixture HMMs. 130 speech 
samples and 75 music samples were used in the 
density estimation 

(Bugatti, Flammini and Migliorati, 2002) “Table of Content description” of a 
multimedia document 

ZCR-based features, spectral flux, short-time energy, 
cepstrum coefficients, spectral centroids, the ratio of 
the high-frequency power spectrum, a measure based 
on the syllabic frequency  

Multivariate Gaussian classifier, neural network 
(MLP)  
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(Bugatti, Leonardi and Rossi, 1999) Video indexing approach based only on 
audio classification. 

ZCR variance, skewness (3rd moment), Difference 
between the number of ZCR samples which are above 
and below the mean and Short-time energy 

Multivariate Gaussian classifier 

(Burred and Lerch, 2004) Audio classification (speech/ 
music/background noise), music 
classification into genres 

Statistical measures of the short-time frame features: 
ZCR, spectral centroid/roll-off/flux, first 5 MFCCs, audio 
spectrum centroid/flatness, harmonic ratio, beat 
strength, rhythmic regularity, RMS energy, time 
envelope, low energy rate, loudness, others 

KNN classifier, 3- component GMM classifier  

(Carey, Parris and Lloyd-Thomas, 1999) Proof of concept for pitch and amplitude 
features 

Mel Frequency Cepstral Coefficients, Delta Cepstral 
Coefficients, Amplitude,  Delta Amplitude, Pitch, Delta 
Pitch, Zero-Crossing Rate and Delta Zero-Crossing Rate 

Gaussian Mixture Model using the difference in 
the log-likelihood 

(Wu Chou and Liang Gu, 2001) Signing signal detection in speech/music 
discrimination applied to applications of 
audio indexing. 

4 Hz modulation energy, harmonic coefficient and 4 Hz 
modulation value of the harmonic coefficient 

Gaussian Mixture Model 

(El-Maleh et al., 2000) Automatic coding and content-based 
audio/video retrieval 

Line spectral frequencies (LSF), differential LSF, 
measures based on the ZCR of high-pass filtered signal 
and linear prediction zero-crossing ratio (LP-ZCR) 

KNN classifier and quadratic Gaussian classifier 
(QCG) 

(Ericsson 2009) Thesis – Discrimination and annotation of 
speech and music for radio broadcasts. 

Variance, standard deviation and the derivative and the 
standard deviation of the RMS amplitude, Zero 
Crossing‐Rate (ZCR), Mel Frequency Cepstrum 
Coefficients (MFCC), Spectral Centroid (SC), Pulse 
Clarity (PC) and Modified Low Energy Ratio (MLER) 

Compare feature histograms per class. Final 
classification algorithm not stated. 

(Foote, 1997) Audio search engine. Retrieving audio 
documents by acoustic similarity 

12 MFCC, Short-time energy  Template matching of histograms, created 
using a tree-based, vector quantizer, trained to 
maximize mutual information. Create 
histogram templates of classes to compare 
unknown samples to base on Euclidian and 
Cosine distance measures. 

(Gallardo-Antolin and Montero, 2010) Automatically classifying collections of 
audio files in three acoustic classes: speech, 
instrumental music and song (music with 
singing voice). 

Mean, variance, kurtosis and skewness of 12 MFCC. 
Polynomial-Fit Histogram Equalization (PHEQ) of the 
MFCC 

GMM-based classifier 

(Giannakopoulos, Pikrakis and Theodoridis, 
2006) 

Speech/music discriminator for radio 
recordings. 

The first and second moment of Spectral Centroid, 
Spectral Flux, Spectral Rolloff, Zero Crossing Rate, 
Frame Energy and four Mel-frequency cepstral 
coefficients (MFCCs) 

Bayesian Network (BN) that combines 
the outputs of nine individual k-Nearest 
Neighbour classifiers. 
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Giannakopoulos (2015) Python Audio Analysis library is to provide a 
wide range of audio analysis functionalities 

Zero-Crossing Rate, Energy, Entropy of Normalised 
Energy, Spectral Centroid,  
Spectral Spread (The second central moment of the 
spectrum.), Spectral Entropy, Spectral Flux, Spectral 
Rolloff, 12 MFCCs, Chroma Vector (12-element) and 
Chroma Deviation 

Support vector machines and the k-Nearest 
Neighbour classifier 

(Graves, Mohamed & Hinton, 2013) Speech recognition. Map directly from acoustic to phonetic sequences. No 
feature extraction required. 

Recurrent neural networks (RNNs).  
All networks were trained using stochastic 
gradient descent, with learning rate 10−4, 
momentum 0.9 and random initial weights are 
drawn uniformly from [−0.1, 0.1]. 

(Khan and Al-Khatib, 2006) Evaluation of features and classifiers for 
speech and music classification. 

Haar Discrete wavelet transform, the variance of MFCC, 
RMS of lowpass filtered signal, delta ZCR. Used fuzzy C-
means clustering to select viable feature. 

Multi-Layer Perceptron (MLP) Neural 
Networks, radial basis functions (RBF) Neural 
Networks, and Hidden Markov Model (HMM) 

(Lavner and Ruinskiy, 2009) Consumer audio application of 
segmentation of audio signals into speech 
or music 

Mean and Standard deviation of Short-time energy, 
Zero Crossing rate, Band Energy Ratio, Autocorrelation 
Coefficient, MFCC, Spectral Rolloff, Spectral Centroid. 
Spectral Flux and Spectrum Spread. The skewness of 
ZCR and the difference magnitude between 
consecutive analysis frames. Low Short Time Energy 

Three-stage sieve-like decision tree approach, 
applying both Bayesian and rule-based 
methods.  

(Lobo and Loizou, 2003) Algorithm for voiced-unvoiced speech 
discrimination in noise. 

Gabor coefficient atomic decomposition Radial Basis function MLP neural network 

(Liu, Wang and Chen, 1998) Analysis of audio for the scene classification 
of TV programs 

The mean and standard deviation of RMS value, Silence 
ratio, volume std, volume dynamic range, mean and std 
of pitch difference, speech, noise ratios, frequency 
centroid, bandwidth, energy in 4 sub-bands 

A feed-forward neural network using the one-
class-in-one-network (OCON) structure 

(Lu, Jiang and Zhang, 2001) Audio content analysis in video parsing  High zero-crossing rate ratio (HZCRR), low short-time 
energy ratio (LSTER), linear spectral pairs, band 
periodicity, noise-frame ratio (NFR) 

3-step classification: 1. KNN and linear spectral 
pairs-vector quantization (LSP-VQ) for 
speech/non- speech discrimination. 2. Heuristic 
rules for non-speech classification into 
music/background noise/silence. 3. Speaker 
segmentation 
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(Lu, Zhang and Li, 2003) Content-based audio classification and 
segmentation using support vector 
machines (SVM) 

8 MFCC coefficients,  zero-crossing rate (ZCR), short-
time energy (STE), sub-band power distribution, 
brightness, bandwidth, spectrum flux (SF), band 
periodicity (BP), and noise frame ratio (NFR). 

Compared the performance of SVM, K-Nearest 
Neighbour (KNN), and Gaussian Mixture Model 
(GMM). Audio is classified into five classes. 
They are silence, music, background sound, 
pure speech, and non-pure speech which 
include speech with music and speech with 
noise. Used rule-based pre- and post-
classification 

(Markaki and Stylianou, 2011) Discrimination of speech and non-speech 
for speaker segmentation/recognition and 
speech transcription 

MFCC and Modulation spectrum envelope for 65 
frequency sub-bands was detected by a magnitude 
square operator.  Higher-order generalization of 
singular value decomposition (HOSVD) for 
dimensionality reduction. 

SVM classifier with median filter smoothing 

(Muñoz-Expósito et al., 2009) An intelligent audio coding system Warped LPC-based spectral centroid. Used the mean, 
variance, and skewness of the feature vector. 

3-component GMM, with or without fuzzy 
rules-based system. SVM with a fuzzy rule-
based system 

(Panagiotakis and Tziritas, 2005) Web-based streaming audio content 
characterisation 

Mean and variance of RMS value and ZCR as an 
indication of mean frequency 

Rule-based Gaussian likelihood ratio test. 

(Pikrakis, Giannakopoulos and Theodoridis, 
2006) 

Discrimination scheme for radio recordings Energy, zero-crossing rate, spectral entropy and the 
first two Mel- Frequency Cepstral Coefficients (MFCCs). 
ML 

 

Variable Duration Hidden Markov Model 
(VDHMM) and a Bayesian Network (BN). 

(Pinquier, Rouas and E-Obrecht, 2002). To describe and index an audio document.  
Keywords and speakers detection. 

4 Hz modulation energy, entropy modulation, number 
of “stationary” segments and segment duration. 

Bayesian maximum likelihood classifier 

(Saad et al., 2002)  Automatic classification of audio signals Percentage of low energy frames, spectral roll-off, 
spectral centroid, spectral flux, ZCR 

Rule-based classification 

(Saunders, 1996) Automatic monitoring of FM radio channels 
in real-time 

Short-time energy, statistical parameters of the ZCR Multivariate Gaussian classifier 
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(Scheirer and Slaney, 1997) Speech/music discrimination for automatic 
speech recognition 

13 temporal, spectral and cepstral features (e.g., 4 Hz 
modulation energy, % of low energy frames, spectral 
roll-off, spectral centroid, spectral flux, ZCR, cepstrum-
based feature, “rhythmicness”), the variance of 
features across 1 sec. Pulse Metric 

Gaussian mixture model (GMM), K nearest 
neighbour (KNN), K-D trees, multidimensional 
Gaussian MAP 
estimator 

(Sigtia et al., 2016) Automatic Environmental Sound 
Recognition (AESR) algorithm for low power 
IoT devices. 

MFCCs, Spectral centroid, Spectral flatness, Spectral 
roll-off, Spectral kurtosis and Zero crossing rate 

Compared Gaussian mixture models (GMMs), 
support vector machines (SVMs) and deep 
neural networks (DNNs) in terms of their 
performance and their computational cost. 

(Taniguchi, Tohyama & Shirai, 2008) Speech, music and mixed sound 
classification method based on sinusoidal 
trajectories. 

Sinusoidal trajectories and temporal features extracted 
thereof. 

Gaussian mixture models 

(Tardón, Sammartino & Barbancho, 2010) Efficient music-speech discriminator for 
large audio data sets 

The mean and standard deviation of RMS, ZCR, 
Cepstrum Residuals, Spectral Flux, DFT Magnitude, 5 
MFCC's, Volume dynamic ratio were used in the final 
classification. Silence ratio, Spectral Centroid, Spectral 
Rolloff, Bandwidth, frame and segment energy, 
fundamental frequency and Salience of pitch was also 
evaluated. 

Simple Gaussian model 

(Tzanetakis and Cook, 2002) Genre categorisation for audio Mean and Std Deviation of Spectral Centroid, Spectral-
Rolloff, Spectral Flux, Zero Crossing ratio as well as 
Percentage Low Energy frames, MFCC and  rhythm 
features derived from Discrete Wavelet Transform 

Gaussian classifier 

(Wang, Gao and Ying, 2003) An experimental approach to discriminate 
speech and music 

Modified Low Energy ratio Bayes MAP classifier. Rule-based post-decision 
filter 

(Williams and Ellis, 1999) Segmentation of speech versus non-speech 
in automatic speech recognition tasks 

Mean per-frame entropy and average probability 
“dynamism”, background-label energy ratio, phone 
distribution match—all derived from posterior 
probabilities of phones in hybrid connectionist-HMM 
framework 

Gaussian likelihood ratio test 
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2.6 Decision and Learning Paradigms 

The application of machine learning problems can be approached in two different ways: 

Frequentism and Bayesianism. Fundamentally, the disagreement between frequentists and 

Bayesians concerns the definition of probability. For frequentists, probabilities are fundamentally 

related to the frequencies of events. While for Bayesians, probabilities are fundamentally related to 

our knowledge about an event. 

 Frequentist Learning 

Frequentist learning relies on a frequency of events to derive a conclusion, all culminating in one 

universal true model with parameters 𝜃0. In frequentist learning, these parameters are selected 

through a process of optimisation such as the likelihood function.  

 

Maximum likelihood is the most widely used estimator in Frequentist learning. In the Frequentist 

learning paradigm, we try to avoid prior beliefs, bias and subjectivity, instead we believe that there 

exists only one true model, with parameters 𝜃0. The belief in this model is enforced by statistical 

data. The estimated parameters based on the training data, that maximise the likelihood, are 

denoted 𝜃, where  𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑝(𝑋|𝜃). For independent and identically distributed data from 

𝑝(𝑥|𝜃0), the maximum likelihood distribution minimises the Kullback-Liebler divergence (2.19). The 

first term of the Kullback-Leibler divergence represents the information (inverse entropy) in the true 

model and the second term is the information in the chosen model. 

 

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 ∫ 𝑙𝑜𝑔
𝑝(𝑥|𝜃0)

𝑝(𝑥|𝜃)
𝑝(𝑥|𝜃0) (2.19𝑎) 

 

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 ∫ 𝑝(𝑥|𝜃0)𝑙𝑜𝑔𝑝(𝑥|𝜃0)𝑑𝑥 − ∫ 𝑝(𝑥|𝜃0)𝑙𝑜𝑔𝑝(𝑥|𝜃)𝑑𝑥 (2.19𝑏) 
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According to the law of large numbers, the estimated parameters will diverge towards the true 

model if the data set is sufficiently large,  𝜃𝑛 →∝
⇒

𝜃0. The maximum likelihood estimate (MLE) of 𝜃 

is obtained by taking the derivative of the log-likelihood, 𝑙𝑜𝑔𝑝𝑝(𝑦|𝑋, 𝜃, 𝜎)  and adjusting the 

parameters (𝜃, 𝜎) in order to maximise the likelihood. 

 Bayesian Learning 

Bayesian learning relies on the paradigm that there exists some prior observed knowledge 

component that is expressed as a relevant probability distribution and we apply the Bayes rule to 

compute a corresponding posterior distribution, given the prior data. In Bayesian learning 𝜃is a 

random variable wherein ML, 𝜃 is a known parameter and the randomness is in the data. Where 

maximum likelihood is regarded as a problem of optimisation, Bayesian learning is a problem of 

integration.  Conjugate analysis plays an important role in solving posterior probabilities in Bayesian 

learning. By using the notion of conjugate priors we can establish the functional form of the 

posterior distribution to be the same as that of the prior distribution, thereby simplifying the 

Bayesian analysis. For example, the prior mean of a Gaussian is another Gaussian distribution and 

using the mathematical property that the area under a Gaussian integrates to one, reduces the 

complexity of the calculation. The conditional probability in the case of Frequentist learning is 

defined as an expected frequency of occurrence over a large number of experiments (2.20). 

  

𝑃(𝑋|𝑌) = 𝑝(𝑦|𝑋, 𝜃0) (2.20) 

 

While in Bayesian learning the conditional probability is related to a degree of belief and is defined 

as (2.21)  

𝑃(𝑋|𝑌) = ∫ 𝑝(𝑦|𝑋, 𝜃, 𝜎) 𝑝(𝜃|𝐷) (2.21𝑎) 

 

where 

𝑝(𝑦|𝑋, 𝜃, 𝜎) = (2𝜋𝜎)
−1

2 . 𝑒
−1

2𝜎2(𝑦−𝑋𝜃)𝑇(𝑦−𝑋𝜃)
 (2.21𝑏) 
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Remember that the sum of probabilities in a Gaussian distribution sums to one: 

∫ 𝑝(𝑦|𝑋, 𝜃, 𝜎) = 1 (2.22) 

then: 

∫ 𝑝(𝑦|𝑋, 𝜃, 𝜎) = ∫(2𝜋𝜎)
−1
2 . 𝑒

−1
2𝜎2(𝑦−𝑋𝜃)𝑇(𝑦−𝑋𝜃)

= 1 (2.23𝑎) 

where 

∫ 𝑒
−1

2𝜎2(𝑦−𝑋𝜃)𝑇(𝑦−𝑋𝜃)
= (2𝜋𝜎)

1
2 (2.23𝑏) 

 

Assume a class model 𝐶𝑘  with prior distribution 𝑝(𝐶𝑘) and an observed data set, 𝑥, we can use 

Bayes Theorem to find the posterior probabilities 𝑃(𝑥|𝐶𝑘) corresponding to a value of 𝑥. (2.24) 

 

𝑃(𝑥|𝐶𝑘) =
𝑃(𝑥|𝐶𝑘)𝑃(𝐶𝑘)

𝑃(𝑥)
 (2.24) 

 

Bayes rule relates what we know about a model before (prior) and after (posterior) having seen the 

data. The difference between the prior and posterior distributions for the model can be interpreted 

as a `machine learning' effect. The aim of using the Bayes Rule is to maximise the class conditional 

probability 𝑃(𝑥|𝐶𝑘)  to find 𝑎𝑟𝑔𝑚𝑎𝑥  { 𝑃(𝑥|𝐶𝑘)𝑃(𝐶𝑘)} . The probability that a feature vector 𝑥 

belongs to the class 𝐶𝑘  is 𝑃(𝐶𝑘|𝑥), and it is often referred to as a posteriori probability.  The 

classification of the vector is done according to posterior probabilities or decision risks calculated 

from the probabilities using Bayes Rule. 

 

In the Bayesian paradigm, we place higher confidence in the data that is closely related to known 

data but it relies on exploring new data in areas of high uncertainty, as this either affirms the 



 

 

44 

 

confidence of existing data or provides the opportunity to explore new lucrative data. Both 

scenarios improve the quality of our predictions (exploration versus exploitation). 

2.7 Classification Models 

In this study, an MLP neural network was built and compared with the Python Scikit-Learn library 

(Pedregosa, Weiss and Brucher, 2011) implementation of the SVM classifier.  The MLP neural 

network was written from scratch in Python and the library implementation of the SVM classifier 

served as a benchmark to compare the performance of the neural network and to help with the 

selection of the optimal feature set. The multilayer perceptron was previously used by Ajmera, 

McCowan and Bourlard (2003) to estimate the posterior probabilities of the speech phonetic 

classes, as a precursor to an HMM classifier. Alexandre et al. (2006) compared a Fisher linear 

discriminant classification algorithm and a neural network. In discriminating speech from non-

speech data, the MLP obtained better results while discriminating between pure speech and noisy 

speech, the results were almost equal. Bugatti et al. compared an MLP classifier with 8 input vectors, 

including variants of Spectral Flux, Short Time Energy, Spectral Centroid and MFCC features to a 

simpler configuration of Zero Crossing Ratio and a Bayesian classifier (Bugatti, Flammini and 

Migliorati, 2002). The latter produced comparable results in the case of pure music or speech but 

performed poorly in mixed class and noisy environments compared to the MLP. The authors 

concluded that the higher computational complexity of the MLP was a worthwhile trade-off for 

superior classification performance. Khan and Al-Khatib (2006) compared three classifiers; MLP and 

Radial Basis Function Neural Network (RBFNN), and Hidden Markov Model (HMM) applied to 

various sets of features. The RBFNN delivered a sporadic performance in their application while 

both, MLP networks and HMMs have given good results. The authors pointed out that a 

disadvantage of using HMMs is that it requires long training and testing time as compared to MLP 

and that HMMs need to be trained for each audio class separately, which requires more memory 

space. MLP is trained only once for all the audio classes simultaneously and the synaptic weights are 

stored once. 

   

In a fairly recent and salient paper, Sigtia et al., (2016) compared Gaussian mixture models (GMMs), 

support vector machines (SVMs) and Feed-Forward Deep Neural Networks (DNNs) and Recurrent 
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Neural Networks (RNNs) in terms of their performance as a function of their computational cost. 

The features used were MFCCs, Spectral Centroid, Spectral Flatness, Spectral Rolloff and Zero 

Crossing Rate. They suggest that GMMs have a low computational cost and reasonable 

performance. SVMs with linear and sigmoid kernels yield similar performance compared to GMMs, 

but their computational cost is overall higher. The neural networks consistently outperform both 

the GMMs and the SVMs, although they are computationally most expensive. The authors allude to 

the fact that the computational cost of DNNs can be controlled by limiting the number of hidden 

units and the number of layers.  

 

In Lu, Zhang and Li, (2003) the performance of SVM, K-Nearest Neighbor (KNN), and Gaussian 

Mixture Model (GMM) was compared. The authors claimed that the performance of the SVM 

method is much higher than that of using KNN and GMM classifiers. Markaki and Stylianou (Markaki 

and Stylianou, 2011) compared frame-based and segment-based SVM classifiers and found that 

using a median filter for the output smoothing on the frame-based SVM classification produced the 

best results. The authors (Muñoz-Expósito et al., 2009) compared the performance of an SVM-based 

classifier for speech/music discrimination to the GMM classifier with a fuzzy rules post-decision 

stage that achieved an improvement of about 6% compared to using only the SVM-based classifier. 

Both performed better than the GMM classifier.  

 

2.8 Summary 

 

This chapter provides a detailed literature study of research on audio content analysis and audio 

feature extraction used in previous studies, specifically to discriminate between different audio 

classes. The prelude of the chapter explained the rationale and aim of this study. In section 2.2, the 

properties of the data classes are examined and this is followed by a brief introduction to audio 

content analysis. Section 2.4 is a discussion of the various audio features utilised in this study the 

process of pattern recognition to develop an algorithm that can effectively and accurately 

discriminate between these classes of audio. Section 2.5 provides a summary of previous research 

on audio features. Section 2.6 is a discussion of the different paradigms followed in machine learning 

decision making, explaining the differences in the classifiers based on a popular method used in 

each approach. For the frequentist machine learning paradigm, the maximum likelihood estimator 
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is discussed in comparison to Bayesian learning and classifiers based on the Bayesian rule approach. 

This sets the background for the discussion of various classification models used in previous studies. 

It is interesting to note that there were many different classifier models and learning approaches 

used in previous studies and that no clear advantage or general preference in the choice of classifier 

method was observed across the different previous studies in this literature review. Instead, there 

appears to be a consensus that the choice of classifier model is a trade-off between higher 

computational complexity versus computational speed and simplicity at the possible sacrifice of 

superior classification performance. In the next chapter, the development of a Neural Network-

based classifier for discriminating between speech and music audio classes is described. Classical 

neural networks use maximum likelihood estimation to optimise network weight and bias 

parameters, thus making it an example of frequentist learning. This model is compared to an SVM 

model to benchmark classifier performance as well as for the selection of an optimal audio feature 

set. 

 



 

 

47 

 

Chapter 3 - Classification Model for Audio Content 
Analysis 

3.1 Introduction 

The study of speech and language processing requires preparing homogeneous data sets based on 

real-world data such as digital television broadcasts and internet podcasts. The same requirement 

exists for audio classification, audio segmentation, and music information retrieval tasks. The 

preparation of datasets for this research, especially the manual extraction of speech or music data 

from mixed media recordings, is a laborious and time-consuming exercise, slowing down the 

progress of the research.  To automate this process, audio content analysis (ACA) is applied. Lavner 

and Ruinskiy describe audio content analysis as a field of research within machine learning, also 

called computer audition or machine listening (Lavner and Ruinskiy, 2009). This process entails the 

extraction of information from audio signals through statistical modelling of data and the 

application of probability and decision theory with the aim of classification of sound categories.  It 

combines knowledge and methods from a variety of disciplines including signal processing, machine 

learning, sound perception (psychoacoustics) and cognitive musicology (Scheirer, 2000), (Ericsson, 

2009), (Tzanetakis and Cook, 2002). Humans orientate themselves quickly with musical sounds and 

effortlessly distinguish between speech and music and even a combination of sounds. For a machine 

learning process, however, it is a very different scenario, as music audio and environmental noise 

obfuscate speech data and vice versa (Scheirer, 2000).  

Audio content analysis and discrimination algorithms generally consist of two stages.  The first stage 

is a supervised learning phase, based on a statistical approach.  In this phase labelled training data 

for each class that needs to be identified is analysed by the algorithm to build a statistical model of 

each of the classes based on the extracted feature set and to define the separation boundaries 

(thresholds) between the different classes. In the second stage, the processing phase, the test audio 

signal is analysed and the feature data for each segment is compared against the statistical model 

of each class and labelled by the classification algorithm according to the highest probability class 

affinity.  
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The choice of audio features must reflect the significant characteristics of each class of audio signals 

and it influences the accuracy of audio classification greatly, consequently, it is important to further 

reduce the feature space by ranking the importance of these features, both individually and in 

combinations to compare how they contribute to the overall process.  The next step of the process 

is to evaluate and benchmark the classification algorithm presented here, implemented in a high-

level programming language in this case, Python, with another established and mature open-source 

classification algorithm and compare the difference in performance. 

3.2 Feature extraction 

In this study, several of the different audio features suggested in previous studies were compared, 

comprising both time-domain (temporal) and frequency domain (spectral) features and focused on 

separating pure speech and music classes as well as removing silent segments in a pre-processing 

step. Unlike previous studies, the features are first evaluated and ranked according to individual and 

collective suitability to discriminate between the two audio classes. Various feature selection 

methods were used to evaluate both individual and combinations of features, culminating in the 

selection of a final set of features to be used in the classification task. The final feature set was 

compared on two different classification algorithms, a feed-forward multi-layer perceptron (MLP) 

neural network classifier and a support vector machine (SVM) classifier as a baseline. 

3.3 Support Vector Machine 

The SVM classifier is a supervised machine learning classification algorithm, first introduced in the 

1960s but only became popular in the 1990s. The reason was that it was initially only regarded as a 

linear, binary classifier, and yes, SVM is excellently suited to linearly separable data in two classes. 

Support Vector Machines are based on the concept of decision planes that define decision 

boundaries. A simplified representation of the elements of an SVM is shown in Figure 3.1, indicating 

the relation between the data points, support vectors and the separation plane. The two data 

classes  are separated by the optimal hyperplane. Although it is possible to define multiple decision 

boundaries that will possibly separate data classes, the SVM algorithm attempts to find the optimal 

decision boundary between two data classes, by establishing the decision boundary that maximizes 

the distance from the nearest data points of all the classes. The nearest data points of each class to 
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the decision boundary, that maximise the distance between the decision boundary and these points 

are called support vectors. Support vectors are the most difficult to classify and have a direct bearing 

on the optimum location of the decision boundaries.  

 

The decision boundary is referred to as the maximum margin classifier or the maximum margin 

hyperplane if the data is in higher dimensions. The SVM classifier also scales well to higher 

dimensional and non-linearly separable data when using a kernel method.  

 

 

Figure 3.1: SVM margin and hyper-plane 

 

Kernel models first transform the input feature space to achieve non-linearity by increasing the 

dimensionality. In the case of the Gaussian RBF kernel, this equates to virtually infinite-dimensional 

space. The biggest disadvantage of the SVM classifier is that kernelised SVMs require the 

computation of a distance function between each point in the dataset,  the computational scaling 

with the number of samples N is 𝑂[𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∗ 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠
3 ]  or at best 𝑂[𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∗  𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠

2 ] for 
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efficient implementations. For large numbers of training samples, this computational cost can be 

inefficient or prohibitive.  Since the calculation of support vectors and associated hyper-plane is not 

derived from a probability model, SVM is regarded as a frequentist learning perspective. 

3.4 Neural Network Model construction 

Classification performance is defined by two characteristics, accuracy and the processing effort 

required to achieve it. The objective is to ensure that the selected features deliver optimal 

classification performance. While it should always be the goal to maximise the classification 

accuracy, a large feature set may be undesirable as it implies a processing performance penalty. In 

some applications such as the Internet of Things (IoT), processing power is a restriction, and a slight 

reduction in accuracy might be a viable sacrifice to reduce the size of the feature set.  

 Perceptron 

Neural networks as the name suggest, mimic the synaptic function of animal brain neurons. 

McCulloch and Pitts (1943) formulated a mathematical model of neurons as a set of weighted inputs 

(𝑤𝑖) that corresponds to synapses, an adder function that sums these inputs and an activation (or 

threshold) function that decides the output state, i.e. the neuron fires or not (3.1). This 

mathematical model of a single neuron is represented as a block diagram in Figure 3.2.  

 

The mathematical model of neurons, where 𝑥𝑖 =  𝑥1, 𝑥2, … , 𝑥𝑚 as a set of input nodes, 𝑤𝑖 =

 𝑤1, 𝑤2, … , 𝑤𝑚 as the corresponding weights and ℎ  is the output of the adder function, can be 

represented as follows: 

ℎ =  ∑ 𝑤𝑖

𝑚

𝑖=1

𝑥𝑖  (3.1) 

 

The McCulloch and Pitts (1943) model also provide for an additional bias input to provide an 

outcome for the situation where all the inputs are simultaneously zero, in which case the weighted 

inputs are all negated and causing the output to depend purely on the activation function threshold. 
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The bias input is usually set to the value -1. The McCulloch and Pitts neuron model is thus a binary 

threshold device and a network of such neurons is capable of complex decision making, provided 

the input weighting is correctly set. A network of neurons is also called a perceptron. 

 

 

 

Figure 3.2: Single layer perceptron 

In supervised learning, the weighting of the inputs and threshold values must be tuned such that 

the output of the perceptron must closely resemble the output target of training data. This is an 

iterative process and during each iteration, the weight of each neuron is adjusted to minimise the 

error function and the magnitude of the adjustment is controlled by the learning rate parameter 

(𝜂). The value of 𝜂  determines how fast the network learns while still providing dampening to 

prevent instability. 

 

The single-layer perceptron is a linear classifier and is therefore limited to solutions where groups 

of data can be separated by a straight line or hyper-plane. The most famous example of the 

perceptron’s inability to solve problems with non-linear vectors is the Boolean XOR problem.  

Multilayer neural networks are created by inserting additional weight and adder layers to the 

perceptron and this enables us to solve non-linear separation problems. These additional layers are 

also called hidden layers because it is not possible to examine or adjust their values directly. This 
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multilayer structure is shown in Figure 3.3, illustrating the interconection of perceptrons with the 

inclusion of hidden layers. 

 

 

 

Figure 3.3: Structure of a Multi-Layer Perceptron 

For the perceptron the error function: 𝐸 = 𝑡 − 𝑦 is used, however with the MLP you need to use a 

sum-of-squares error function to avoid making the mistake of inner layer errors cancelling out due 

to mismatched signs (3.2). 

𝐸(𝑡, 𝑦) =  
1

2
∑(𝑡𝑘 −  𝑦𝑘)2

𝑛

𝑘=1

 (3.2) 

In an MLP the weight update function is not that simple since you cannot directly determine which 

layer is responsible for which portion of the total error. Instead, an optimisation algorithm is used 

to minimise the error function.  
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 Activation Function 

There are a few choices for the activation function of an MLP network. In this study, the sigmoid 

activation function was used. The sigmoid function resembles a binary logistic regression classifier 

solution (3.3). The advantage of using the sigmoid curve is that it allows for differentiation, which 

greatly simplifies the back-propagation training of multi-layer networks (3.4).  

 

𝑃(𝑐𝑙𝑎𝑠𝑠 = 1) = 𝜎 =  
1

1 +  𝑒−𝑧
 (3.3) 

The derivative of the sigmoid function is: 

𝜎′(𝑧) =  𝜎(𝑧)(1 −  𝜎(𝑧)) (3.4) 

 

This function has saturation points at (0;1) with a linear transition between these values at the 

decision boundary as shown in Figure 3.4. The derivative of the sigmoid function is also shown in 

this figure. The smooth and continuous output between (0;1) can be interpreted as a probability 

range, with the decision boundary being:  

 

P ≥ 0.5 class=1 

P<0.5, class=0 

 

Since this is a binary classification problem, applying a moving average filter can improve the 

classification result accuracy on flip point decisions. 
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Figure 3.4: Sigmoid function and its derivative 

 

In the case of multiclass logistic regression, with K classes, the predicted probabilities are 

determined by using the softmax function (3.5). 

 

𝑃(𝑐𝑙𝑎𝑠𝑠 = 1) =  𝜎(𝑧𝑗) =  
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 (3.5) 

 

Although the mean squared error cost function can be used with the softmax activation function, 

cross-entropy is the preferred loss function for classification NN with softmax activation in the last 

layer. It is given by the function (3.6): 

 

𝐶 =  −
1

𝑘
∑[𝑦𝑘 log(𝜎(𝑧𝑘)) + (1 −  𝑦𝑘)log (1 −  𝜎(𝑧𝑘))]

𝐾

𝑘=1

 (3.6) 

 

Another popular activation function is the Rectified Linear Unit (ReLU) activation function (3.7). It is 

used in almost all convolutional neural networks or deep learning. 
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 𝑅(𝑧) = max(0, 𝑧) (3.7) 

 

As its name implies, the ReLU function represents a response similar to a half-bridge rectifier, with 

all negative values leading to an output of zero and the output equal to the positive values. Figure 

3.5 visually compares the ReLU and Sigmoid activation functions, with the sigmoid function having 

a linear transition between saturation points at (0;1) and an intersection at the midpoint where the 

input is zero. 

 

 

Figure 3.5: ReLU vs Sigmoid 

 Optimisation / minimisation 

Like most machine learning algorithms, the primary challenge of neural networks is an optimisation 

problem. Solving this optimisation problem is a function of updating and tuning the Neural Network 

Model’s parameters in a direction as to minimise an associated cost function. The cost function can 

contain potentially many minima, but usually, only one that provides the lowest possible value of 

the function, known as the global minimum. A critical part of the optimisation process is to ensure 

that the global minimum is resolved and to avoid getting trapped in local minima. The cost function 

depends on the biases and synaptic weights of the layers of the neural network and the goal is to 
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optimise these adaptive parameters to minimise the cost function. The simplest optimisation 

algorithm is the Gradient descent method which is a recursive process of finding the local minima 

by evaluating at each step the direction where the gradient is the steepest and converging in that 

direction (3.8). 

 

𝜃𝑖+1 ∶=  𝜃𝑖 − 𝛼
𝑑

𝑑𝜃𝑖
𝐽(𝜃0, 𝜃1) (3.8) 

 

If the learning rate parameter, 𝛼 is small, gradient descent might take a long period to converge, 

but if it is too large, it can fail to converge to the local minima and can even diverge. The derivative 

part of the function does help to mostly avoid this by reducing the step size as it approaches the 

minima. The evaluation of these error derivatives with respect to the layer weights (ω) through all 

the layers of the MLP is accomplished by using a version of the chain rule of differentiation, thus 

back-propagation of the error. This method requires significantly more training iterations than the 

simple perceptron and the training iteration requirement increases as the number of hidden layers 

increases. The optimisation continues until either the loss error decreases below a set threshold or 

the reduction rate of the error does not reduce significantly or a predetermined maximum amount 

of epochs has been reached. These conditions are guided by diminishing returns and limits on 

computing time. In cases where the derivative of the cost function can include multiple local 

minima, an optimisation algorithm is used called Newton’s method, which is a good method of 

approximating the roots of higher-order polynomial functions.  

 

Newton’s method is a second-order algorithm and it makes use of the Hessian matrix (3.9). 

Newton's method for unconstrained minimisation of 𝑓(𝑥) , where 𝑓  is convex and is twice 

continuously differentiable, is expressed as: 

 

𝑥𝑘+1 =  𝑥𝑘 − 𝛼∇2𝑓(𝑥𝑘)−1∇𝑓(𝑥𝑘) (3.9𝑎) 

 

= −𝛼𝐻𝑘
−1∇𝑓(𝑥𝑘) (3.9𝑏) 
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where ∇2𝑓(𝑥𝑘)−1 is the inverse Hessian and ∇𝑓(𝑥𝑘) is the gradient of the current 𝑓(𝑥) and α is the 

gradient step size, also called the training rate or learning rate. 

The Hessian matrix is composed of the second partial derivatives of the cost function. Due to the 

complexity of evaluating the Hessian matrix and calculating its inverse, this method is 

computationally expensive. To mitigate this problem, variable metric methods such as the quasi-

newton method are used to approximate Newton's method in a way that is more computationally 

efficient. Instead of calculating the Hessian directly and then evaluating its inverse, the inverse 

Hessian can be approximated by another matrix using only the first partial derivatives of the cost 

function. In this study, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is used to perform 

the optimisation process. BFGS is a quasi-Newton method algorithm for iteratively solving nonlinear 

optimisations. The steps for optimising the back-propagation parameters using the BFGS algorithm 

are as follows (Vandenberghe, 2019):  

Given a starting point 𝑥0  ∈ 𝑑𝑜𝑚 𝑓,  𝑓(𝑥) denotes the objective function to be minimized and an 

estimated initial Hessian 𝐻0 = 0, for k = 0, 1, ... : 

 

i. Compute quasi-Newton direction:  

∆𝑥𝑘 =  −𝐻𝑘
−1∇𝑓(𝑥𝑘) (3.10) 

 

ii. Compute the step size:  

𝛼𝑘 = arg min 𝑓( 𝑥𝑘 + 𝛼∆𝑥𝑘) (3.11) 

 

iii. Update the estimate:  

𝑥𝑘+1 =  𝑥𝑘 + 𝛼𝑘∆𝑥𝑘 (3.12) 

 

iv. Find the iteration difference:  

𝛿 = 𝑥𝑘+1 − 𝑥𝑘 (3.13) 

 

v. And the gradient difference:  
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𝛾 =  ∇𝑓(𝑥𝑘+1) −  ∇𝑓(𝑥𝑘) (3.14) 

 

vi. Compute the updated Hessian matrix:   

𝐻𝑘+1 =  𝐻𝑘 +  
𝛾. 𝛾𝑇

𝛾𝑇𝛿
−  

𝐻𝑘𝛿𝐻𝑘
𝑇𝛿𝑇

𝛿𝑇𝐻𝑘𝛿
 (3.15) 

 

vii. Find the inverse of the update Hessian: 

𝐻𝑘+1
−1 =  𝐻𝑘

−1 +  
(𝛿𝑇𝛾 + 𝛾𝑇𝐻𝑘

−1𝛾)(𝛿𝛿𝑇)

(𝛿𝑇𝛾)2
−  

𝐻𝑘
−1𝛾𝛿𝑇 + 𝛿𝛾𝑇𝐻𝑘

−1

𝛾𝑇𝐻𝑘
−1  (3.16) 

 

3.5 Summary 

 

This chapter provides an overview of the classification models that were used in this study, a 

support vector machine (SVM) classifier (Section 3.3) as a baseline, but also used in evaluating and 

selecting the optimal feature set and a feed-forward multi-layer perceptron (MLP) neural network 

classifier. Section 3.4 describes the components of the MLP neural network, including the function 

of the perceptron, the different options for activation functions and finally the process of 

optimising (section 3.4.3) the parameters of the multi-layer perceptron (MLP), specifically the 

optimisation using the quasi-Newton method used in the algorithm for this study. In the next 

chapter, this theory is applied in the development of the algorithm and implementation in 

software. 
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Chapter 4 - Development of a neural network-based 
speech/non-speech discrimination algorithm 

4.1 Introduction 

This chapter will discuss the steps taken to collect a dataset for training and testing purposes, 

develop an algorithm for processing the audio files in the corpus, extract audio features from these 

files and generate statistical abstraction of the raw feature data for analysis. The performance of 

the audio features is then evaluated to determine the best performing set of features.  

4.2 Corpus 

For the initial training and testing dataset, a corpus of audio files was compiled representing a 

balanced mixture of both classes of data. For the speech class, part of the LibriSpeech ASR corpus 

was used (Korvas et al., 2014). The total duration of the speech data is 233 minutes, 48 seconds. 

The music class data comprises random samples of various musical genres. The duration of data for 

this class is 231 minutes and 7 seconds. The audio data were down-sampled and down-mixed to 

single channel, 16 bit and 16 kHz sample rate and then normalised before splitting into 1-second 

segments with a 250 ms segment shift. These segments were then further divided into 40 ms frames 

with a 20 ms offset. For each of these frames, a scalar value for each of the audio features is 

extracted. The first four statistical moments are then calculated for each feature on the accumulated 

frame data for the duration of the segment. For four of the features, Chromatic Spectral Entropy, 

Energy Entropy, Percentage Low Energy Frames and Modified Low Energy Ratio, the values are not 

calculated on a per-frame basis, but rather on the whole segment at once.  The duration of this 

corpus is compared to those of similar studies in Table 4.1 below. The duration of the corpus content 

varies significantly between the previous studies, from as little as 20 minutes (El-Maleh et al., 2000) 

to more than 34 hours in the case of Lavner and Ruinskiy, (2009). In this study, the total duration of 

the corpus content is 7 hours and 45 minutes, which is more than the average of similar previous 

studies. The size requirement of the dataset for supervised machine learning is a fundamental 

question. The amount of data needed should be enough to reasonably approximate the unknown 

underlying mapping function from inputs to outputs and to reasonably measure the performance 
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of the model on testing data. It is also important that the corpus is a balanced representation of the 

various data classes as skewed training data results in a poor approximation.  

Table 4.1: Comparison of audio corpus duration 

Reference to previous studies Audio Corpus Duration 

This study 7 hour 44 minutes 47 seconds 

(Ajmera, McCowan and Bourlard, 2003) 40 minutes 

(Alexandre et al., 2006) 2 hours 2min 33sec 

(Alexandre et al., 2008) 2 hours 2min 33sec 

(Balabko, 1999) 24 minutes 

(Barbedo and Lopes, 2006) > 20 hours 

(Beierholm and Baggenstoss, 2004) 41 minutes 20 seconds 

(Bugatti, Flammini and Migliorati, 2002) 30 minutes 

(Bugatti, Leonardi and Rossi, 1999) Not stated 

(Burred and Lerch, 2004) 75 minutes 

(Carey, Parris and Lloyd-Thomas, 1999) 20 hours 

(Wu Chou and Liang Gu, 2001) 26 minutes 

(El-Maleh et al., 2000) 20 minutes 

(Foote, 1997) 77 minutes 28 seconds 

(Gallardo-Antolin and Montero, 2010) 2440 audio files, duration not 

specified 

(Giannakopoulos, Pikrakis and Theodoridis, 

2006)  3 hours 

(Khan and Al-Khatib, 2006) 5 hours 37 minutes 

(Lavner and Ruinskiy, 2009) > 34 hours 
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(Liu, Wang and Chen, 1998) 70 seconds 

(Lu, Jiang and Zhang, 2001) 6 hours 

(Lu, Zhang and Li, 2003) 4 hours 

(Markaki and Stylianou, 2011) 6 hours 

(Muñoz-Expósito et al., 2009) 2 hours 

(Panagiotakis and Tziritas, 2005) 3 hour 52 minutes 

(Pikrakis, Giannakopoulos and Theodoridis, 

2006) 5 hours 40 minutes 

(Pinquier, Rouas and E-Obrecht, 2002) 33 minutes 19 seconds 

(Saunders, 1996) 2 hours 

(Scheirer and Slaney, 1997) 40 minutes 

(Sigtia et al., 2016) ~7 hours 

(Tzanetakis and Cook, 2002) 6 hours 15 minutes 

(Wang, Gao and Ying, 2003) 5 hours 

(Williams and Ellis, 1999) 40 minutes 

4.3 Algorithm Development 

For the development of the algorithm, the Python programming language was used. Python is a 

very popular programming language for many well-known reasons, notably, its ease of use and wide 

support from an active community of users (Cass, 2018), (Voskoglou, 2017). A general critique of 

Python has always been that since it is an interpreted programming language, it tends to be slow 

compared to other compiled programming languages. With the implementation of the Python just-

in-time compilation of time-critical functions, usage of the Cython C optimised static compiler and 

the use of multi-processing, this drawback has been mostly negated (Behnel et al., 2011).  
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Python is however very well suited towards machine learning and deep-learning, specifically with 

the inclusion of various add on libraries. There are higher-level libraries specific geared towards 

deep learning such as TensorFlow, Theano and PyTorch and some expansion libraries like Numpy 

and Scikit Learn. It is curious to note that by default python does not cater for an array data type. 

For this reason, the Numpy library is used which facilitates the efficient calculation of matrix 

mathematics, a crucial part of neural network computation.    

 Structure of the algorithm 

The structure of the algorithm is explained in a flow diagram (Figure 4.1). The program consists 

of two major parts, the one part being is tasked with reading and analysing the audio files, extracting 

the features and storing the statistical data in storage media, while the other part of the program 

then reads the statistical data and trains the neural network classifier by optimising the adaptive 

parameters, to minimise the loss function or to perform the classification function, comparing the 

result of the neural network classifier to the SVM benchmark classifier. 
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Figure 4.1: Structure of the algorithm 

4.4 Signal pre-processing 

The signal pre-processing stage consists of resampling the input signal to 16 kHz,  converting the 

input signal from stereo to mono by adding together half the value of each signal and then 

normalising the signal level by removing any offset from zero mean and rescaling the maximum 

amplitude to 16 bits as discussed in section 2.3.1. 

The following code excerpts show how the various signal preprocessing steps were implemented in 

Python. Firstly, resampling of the audio signal if the sample rate is not 16 kHz as part of 

homogenising the signal: 

with wave.open(wfile,'rb') as wf: 

    nchannels, sampwidth, srate, nframes, comptype, compname = wf.getparams() 

    signal = np.frombuffer(wf.readframes(-1), dtype='int16') 

    # Resample if sample rate is higher or lower than desired 

    if srate != samplerate: 
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        n_frames = wf.getnframes() 

        signal = wf.readframes(n_frames) 

        cutoff_freq = (samplerate/2)*0.9 

        # including lowpass filter 

        signal = firfilter(signal, cutoff_freq, srate) 

        scale_factor = math.ceil(srate/samplerate) 

        signal = sp.signal.decimate(signal, scale_factor,  

         n=None, type='fir', zero_phase=True) 

        samplerate = (srate/scale_factor) 

 

 

Convert the signal from stereo to mono: 

# If signal stereo, convert to mono first 

if nchannels == 2: 

    lc = signal[0::2] 

    rc = signal[1::2] 

    signal = lc / 2 + rc / 2 

 

Normalise the signal: 

def normalise_signal(sig): 

    """ 

    DC Removal - Remove any DC offset 

    This is achieved by subtracting the arithmetic mean from each sample 

    Find the maximum sample value of all of the samples and using the max(abs()) 

    Because the maximum amplitude we can get with 16 bits is 32767 

    We scale the stream so that the largest sample value to 32767 

    largest * scale = 32767 

    To solve the scale factor use the formula: scale multiplier = 32767/largest 

    Now that we have the scale factor, we multiply all the sound samples by  

    that amount 

 

    :param sig (numpy array of int):  audio file in .wav format 

    :return sig (numpy array of int): normalised audio file 

    """ 

    sig = sig - sum(sig)/len(sig)      # Remove DC offset 

    numbits = 16 

    max_val = float((2**(numbits-1))-1)     # Calculate max value for given 

        storage bits 

    scale = float(max_val)/(max(abs(sig)))  # Calculate scaling factor 

    sig = scale * sig                       # Scale signal to max value 

    return(sig) 

 

The segmentation step divides the normalised signal content of an audio file into segments of a 

predetermined duration and an overlapping shift length. This step produces an array of sample 

amplitude values spanning 1000 ms in duration and each offset by 250 ms. In the feature extraction 

step, these segments are then further subdivided into 40 ms frames, with a 20 ms offset, producing 
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a total of 40 frames per segment, each containing 640 sample values. This means that every second 

of audio data contains 4 segments and 160 frames. 

4.5 Feature extraction 

For each of these frames, a scalar value for each of the audio features is extracted. The first four 

statistical moments are then calculated for each feature on the accumulated frame data for the 

duration of the segment. For four of the features, Chromatic Spectral Entropy, Energy Entropy, 

Percentage Low Energy Frames and Modified Low Energy Ratio, the values are not calculated on a 

per-frame basis, but rather on the whole segment at once. The feature extraction for both classes 

was completed in 4 hours and 18 minutes processing parallel on a single CPU with 4 cores (Intel i7-

4800MQ). The following code excerpts show how the feature extraction was implemented in 

Python. 

 Zero-Crossing Rate 

def feat_zcr(frame): 

    """ 

    Calculate the Zero Crossing Rate value of the frame 

    :param frame (numpy array of int): the array of samples in a frame. 

    Each row is a frame (640 samples @ 25ms). 

    :return zcr (float): The average zero crossings in the frame 

    """ 

    signs = np.int8(np.sign(frame))      # find sign of each array element 

    signs[signs == -1] = 0 

    signs_min_one = np.append(signs[1:],1)  # move sequence one place on 

    crossings = signs_min_one^signs         # Bitwise XOR 

    zcr = float(len(np.where(crossings)[0]))/len(frame) 

    return(zcr) 

 Signal energy and Short Time Energy 

def feat_ste(frame): 

    """ 

    Calculate the Short Time Energy (in decibels) value of the frame 

    :param frame (numpy array of int): the array of samples in a frame.  

     Each row is a frame (640 samples @ 25ms) 

    :return frame_energy (float): the RMS energy of the frame 

    :return ste (float): the Short Time Energy (logarithm of RMS energy)  

    of the frame 

    """ 

    frame_energy = (feat_rms_e(frame)) 

    if frame_energy > 0: 

        ste = 10*float(math.log10(frame_energy)) 

    else: 
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        ste = 0 

    return(frame_energy, ste) 

 

 

def feat_rms_e(frame): 

    """ 

    Calculate the RMS Energy value of the frame 

    :param frame (numpy array of int): the array of samples in a frame. 

    :return rms_e (float): the RMS energy of the frame 

    """ 

    rms_e = math.sqrt(feat_sig_energy(frame)) 

    return(rms_e) 

 

 

def feat_sig_energy(frame): 

    """ 

    # Calculate the signal energy of the frame 

    # Since audio signals are mostly non-periodic, we regard it as an  

      energy signal. 

    :param frame (numpy array of int): the array of samples in a frame. 

    :return sig_energy (float): the signal energy of the frame 

    """ 

    dim = len(frame) 

    if dim > 0: 

        sig_energy = float(sum(np.square(frame))) 

        sig_energy = np.where(sig_energy == 0, np.finfo(float).eps, 

                              sig_energy)/dim 

        # if sig_energy = zero, set it to a VERY small number. 

        # required for log operation in calling function 

        return(sig_energy) 

    else: 

        return(0) 

 

 Percentage Low Energy Frames / Modified Low Energy Ratio 

# Percentage Low Energy Frames 

def feat_plef_mler(seg, ste): 

    """ 

    Calculate the Percentage Low Energy Frames and Modified Low Energy Ratio  

    of the segment. 

    Percentage Low Energy Frames is defined by the percentage of frames with  

    RMS power less than 50%-70% 

    of the mean RMS power within a one second window. The value for speech  

    is normally higher than that of music. 

    Modified Low Energy Ratio - MLER is defined as the proportion of frames  

    with RMS power less than a 

    variable threshold within one second. The threshold should be in the 

    interval [0.05%, 0.12%] for best 

    performance. 

    Music shows little variation in energy contour of the waveform, while  

    speech shows large variations 

    between voicing and frication. 

    :param seg (numpy array of int): the array of samples in a segment.  

    Each row is a segment (16000 samples @ 25ms) 

    :param ste (numpy array of float): the array of Short Time Energy samples  
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    in the segment 

    :return plef (float): the Percentage Low Energy Frames of the segment. 

    :return mler (float): the Modified Low Energy Ratio of the segment. 

    """ 

    mler = 0 

    plef = 0 

    plef_ratio = 0.5 #0.7 

    dim = len(ste) 

    seg_rms, seg_ste = feat_ste(seg) 

    # PLEF 

    threshold = plef_ratio*seg_ste             # Calculate the energy threshold 

    [a, ] = np.nonzero(np.array(ste) <= threshold)  # Return the indices of  

                                                    # the elements that are  

                                                    # non-zero 

    if len(a) > 0: 

        plef = float(len(a)) / (float(dim))    # Calculate the ratio of elements 

                                                # with energy less than 

                                                # the threshold 

    else: 

        plef = 0.0 

    # MLER: 

    level = 0.12 

    thres_high = seg_ste*(1+level) 

    thres_low = seg_ste*(1-level) 

    # Return the indices of the elements that are between the lower and  

    # upper threshold 

    [b, ] = np.nonzero(np.logical_and(thres_low < np.array(ste),  

                       np.array(ste) < thres_high)) 

    if len(b) > 0: 

        mler = float(len(b)) / (float(dim)) # Calculate the ratio of  

                                            # elements with energy between 

                                            # the threshold levels 

    else: 

        mler = 0.0 

    return(plef, mler) 

 

 4 Hz Modulation Energy (Hilbert Transform Method) 

# 4Hz Modulation Energy 

def feat_4hz(frame): 

    """ 

    Calculate the 4Hz Modulation Energy of the frame using the Hilbert Transform 

    :param frame (numpy array of int): the array of samples in a segment.  

     Each row is a segment (16000 samples @ 25ms) 

    :return fhz_energy (float): the 4 Hz Modulation energy of the frame. 

    """ 

    hilbert_signal = hilbert(frame)      # Take Hilbert transform of signal  

                                         # using the Python SciPy library) 

    amplitude_envelope = np.abs(hilbert_signal) 

    # Apply 4Hz bandpass filter 

    lowpass_envelope = pass_band_firfilter(amplitude_envelope, freq=4, 

                                           fs=samplerate)   

    # Calculate the periodogram of the envelope 

    fhz_periodogram = powspec(lowpass_envelope, len(lowpass_envelope))    
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    # Calculate 4Hz energy 

    energy = np.sum(powspec(frame, len(frame))) # this stores the total energy  

                                                # in each frame 

    # if sig_energy = zero, set it to a VERY small number. 

    energy = np.where(energy == 0, np.finfo(float).eps, energy)   

    mean_energy = np.mean(energy) 

    fhz_energy = np.sum(fhz_periodogram) 

    # find the ratio of the 4 Hz energy to the mean energy of the frame 

    fhz_energy = 10 * np.log10(fhz_energy / mean_energy)     

 

    return(fhz_energy) 

 

 Entropy features 

# Chromatic Spectral Entropy 

def feat_spec_entropy(Xf): 

    """ 

    Computes the Spectral Entropy value of the segment 

    :param Xf (numpy array of int): an N x 1 array of the power  

     spectrum of samples in a frame. 

    :return se (float): the Spectral Entropy value of the segment 

    """ 

    s = Xf/(np.sum(Xf)) 

    s = np.where(s == 0, np.finfo(float).eps, s)   # if s = zero, set it to a  

                                                   # VERY small number. 

    se = -np.sum(s*np.log2(s)) 

    return(se) 

 

# Energy Entropy 

def feat_energy_entropy(seg, sub_energy): 

    """ 

    Calculate the Energy Entrophy value of the segment 

    :param seg (numpy array of int): the array of samples in a segment.  

    Each row is a segment (16000 samples @ 25ms) 

    :param sub_energy (): normalised energies (STE) of the individual frames 

    :return entropy (float) the Energy Entrophy value of the segment 

    """ 

    seg_energy = feat_rms_e(seg) 

    ent_energy = [e / seg_energy for e in sub_energy] 

    ent_energy = np.where(ent_energy == 0, np.finfo(float).eps, ent_energy)  

    entropy = -np.sum(ent_energy*np.log2(ent_energy)) 

    return(entropy) 

 

 Spectral Centriod 

# Spectral Centroid 

def feat_spec_centroid(Xf): 

    """ 

    Calculate the Spectral Centriod value of the frame. Defined as a  

    weighted mean of the frequencies in the power spectrum 

    :param Xf (numpy array of int): an N x 1 array array of the power  

    spectrum of samples in a frame. 

    :return sc (float): the Spectral Centroid value of the frame 
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    """ 

    Xt = 0.0 

    # Array of freq samples between 0 and Nyquest freq,  

    # spaced at nFFT/2+1 increments 

    ind = (np.arange(0, len(Xf + 1)) * (samplerate/(2.0 * len(Xf))))    

    Xf = (Xf / Xf.max())  # Normalise Xf 

    if np.sum(Xf) != 0: 

        sc = (np.sum(ind * Xf) / np.sum(Xf))/(samplerate / 2.0) 

        # Spread: 

        ss = np.sqrt(np.sum(((ind - sc) ** 2) * Xf) / np.sum(Xf)) 

    return(sc) 

 

 Spectral Rolloff 

# Spectral Roll-off 

def feat_spec_rolloff(Xf): 

    """ 

    Calculate the Spectral Rolloff value of the frame. This is the number  

    of frequency bins with a cumulative energy 

    in the power spectral distribution is concentrated below a threshold  

    percentage n%. 

    :param Xf (numpy array of int): an N x 1 array array of the power spectrum 

    of samples in a frame. 

    :return (float): the Spectral Rolloff value of the frame 

    """ 

    limit = 0.90    # the threshold energy % 

    total_energy = np.sum(Xf)  # this stores the total energy in each frame 

    dim = len(Xf) 

    threshold = limit*total_energy 

    cumulative_energy = np.cumsum(Xf)  # cumulative energy in the frame 

    [a, ] = np.nonzero(cumulative_energy > threshold) 

    if len(a) > 0: 

        sr = np.float64(a[0]) / (float(dim)) 

    else: 

        sr = 0.0 

    return (sr) 

 

 Spectral Flux 

# Spectral Flux 

def feat_spec_flux(Xf, Xp): 

    """ 

    Calculate the Spectral Flux value of the frame 

    :param Xf (numpy array of int): an N x 1 array of the power spectrum 

    of samples in a frame. 

    :param Xp (numpy array of int): an N x 1 array of the power spectrum  

    of previous frame. 

    :return sf (float): the Spectral Flux value of the frame 

    """ 

    sumX = np.sum(Xf)           # stores the total energy in the frame 

    sumPrevX = np.sum(Xp)       # stores the total energy in the previous frame 

    # compute the spectral flux as the sum of square distances 

    if sumPrevX != 0: 
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        sf = np.sum((Xf / sumX - Xp / sumPrevX) ** 2)   

    else: 

        sf = 0.0 

    return(sf) 

 

 Mel Frequency Cepstral Coefficients (MFCC) 

4.5.9.1 Mel Filter Bank 

# Mel Filter Bank 

def hz2mel(hz): 

    """Convert a value in Hertz to Mels 

    :param hz: a value in Hz. This can also be a numpy array, conversion 

    proceeds element-wise. 

    :returns: a value in Mels. If an array was passed in, an identical sized 

    array is returned. 

    """ 

    return 2595 * np.log10(1+hz/700.0) 

 

 

def mel2hz(mel): 

    """Convert a value in Mels to Hertz 

    :param mel: a value in Mels. This can also be a numpy array, conversion  

    proceeds element-wise. 

    :returns: a value in Hertz. If an array was passed in, an identical sized  

    array is returned. 

    """ 

    return 700*(10**(mel/2595.0)-1) 

 

 

def mel_filter(nFFT=512): 

    """ 

    Compute the Mel filter bank. Filter banks using the Mel scale are used to 

    compute Mel-Frequency Cepstral 

    Coefficients (MFCCs). The filter bank is an array of overlapping triangular  

    bandpass filters. 

    :param nFFT(int): the FFT length (bins) to use for dividing the window into  

    equal bins. 

    :return fbank (numpy array of float): an D x N array of values representing  

    the dimensions of the mel frequency filter bank. (D = 40 default) 

    """ 

    mf = 40                 # number of mel filters 

    fmax = samplerate/2     # maximum frequency (Nyquist frequency) 

    fmin = 2                # minimum frequency 

    mel_l = hz2mel(fmin)    # lower mel freq (2595 * np.log10(1+hz/700.0)) 

    mel_h = hz2mel(fmax)    # upper mel freq (2595 * np.log10(1+hz/700.0)) 

    mel_f = np.zeros(mf+2)  # array of zeros, length is the number of mel  

                            # filters + 2 

    freq = np.zeros(mf+2)   # array of zeros, length is the number of mel 

                            # filters + 2 

    fft_bins = np.zeros(mf+2)   # array of zeros, length is the number of mel 

                                # filters + 2 

    mel_increment=(mel_h - mel_l)/(mf+1) 

    for i in range(0,mf+2): 

        mel_f[i] = mel_l + (i* mel_increment)  # find the centres of the filter  
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                                               # bank elements in mel values 

        freq[i] = mel2hz(mel_f[i])             # find the centres of the filter 

                          # bank elements in Hz. (Hz = 700*(10**(mel/2595.0)-1)) 

        fft_bins[i] = np.floor((nFFT+1)*freq[i]/samplerate) 

    fbank = np.zeros([mf,int(nFFT/2+1)]) # D x N array of zeros.  

                                         # D = number of mel filters and 

                                         # N = nFFT/2 + 1 

    # Calculate filter bank parameters 

    for j in range(0,mf): 

        for i in range(int(fft_bins[j]),int(fft_bins[j+1])): 

            fbank[j,i] = (i - fft_bins[j])/(fft_bins[j+1]-fft_bins[j]) 

        for i in range(int(fft_bins[j+1]),int(fft_bins[j+2])): 

            fbank[j,i] = (fft_bins[j+2]-i)/(fft_bins[j+2]-fft_bins[j+1]) 

    return(fbank) 

 

Figure 4.2 illustrates the Mel filter bank output. Filter banks using the Mel scale are used to compute 
Mel-Frequency Cepstral Coefficients (MFCCs). The Mel-scale simulate the non-linear human hearing 
perception of sound, by being more discriminative at lower frequencies and less discriminative at 
higher frequencies. The filter bank is an array of overlapping triangular bandpass filters, used to map 
frequency bins from short-time Fourier transform (STFT) to Mel bins. 

 

 
Figure 4.2: Mel Filter Bank 

4.5.9.2 Mel Frequency Cepstral Coefficients and 4Hz Modulation Energy 

# Mel Frequency Cepstral Coefficients (MFCC) 

def feat_mfcc(fbank, Xf): 

    """ 

    Calculate the mfcc of the frame and the 4Hz Modulation Energy 

    Steps: 

    1. Divide the signal into short frames (already done). 

    2. Take FFT of frame 

    3. For each frame calculate the estimate of the power spectrum. 

    4. Apply the mel filterbank to the power spectra, sum the energy in  
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       each filterbank. 

    5. Take the logarithm of all filterbank energies. 

    6. Take the Discrete Cosine Transform (DCT) of the log filterbank energies. 

    7. Keep DCT coefficients 1-12, discard the rest. 

    :param fbank (numpy array of float): an D x N array of values representing 

    the dimensions of the mel frequency filter bank. (D = 40 default) 

    :param XF (numpy array of int): an N x 1 array of the power spectrum of  

    samples in a frame. 

    :return mfcc (numpy array of float): array containing the MFCC coefficients 

    of each frame. 

    :return fhz_me (float): scalar containing the 4Hz Modulation Energy result 

    of each frame 

    """ 

    mfcc = [] 

    power_spectrum = Xf 

    # compute the filterbank energies: 

    energy_0 = np.sum(power_spectrum)       # this stores the total energy  

                                            # in each frame 

    # if energy_0 = zero, set it to a VERY small number. 

    energy_0 = np.where(energy_0 == 0,np.finfo(float).eps,energy_0)   

    energy = np.dot(power_spectrum,fbank.T)  # dot product of power spectrum  

                                             # and filter bank transposed 

    energy = np.where(energy == 0,np.finfo(float).eps,energy) 

    #calculating the cepstral coefficients 

    log_energy = np.log(energy) 

    mfcc = dct(log_energy, norm='ortho')[0:ncep] # taking the DCT of the log   

                                                 # of the energy coefficients. 

                                                 # keeping only the first ncep 

                                                 # coefficients  

                                                 #(ncep=13 default) 

    # replace first cepstral coefficient with log of frame energy 

    mfcc[0] = 10*np.log10(energy_0)  

    # Calculate 4Hz Modulation Energy: 

    # apply FIR bandpass filter to find energy at 4Hz 

    fhz_energy = pass_band_firfilter(energy, freq=4, fs=samplerate)   

    mean_energy = np.mean(energy) 

    fhz_energy = np.sum(fhz_energy) 

    fhz_me = 10*np.log10(fhz_energy/mean_energy) # find the ratio of the 4 Hz  

                                     # energy to the mean energy of the frame 

    return(mfcc, fhz_me) 

4.5.9.3 Magnitude Spectrum 

def magspec(fraction,nFFT=512): 

    """Compute the magnitude spectrum of each frame or fraction.  

     If fraction is an NxD matrix, output will be NxnFFT. 

    :param fraction: the array of frames. Each row is a frame. 

    :param nFFT: the FFT length to use. If nFFT > frame_len,  

    the frames are zero-padded. 

    :returns: If fraction is an NxD matrix, output will be NxnFFT.  

    Each row will be the magnitude spectrum of the corresponding frame. 

    """ 

    complex_spec = np.fft.rfft(fraction,nFFT) 

    ms = np.absolute(complex_spec) 

    return(ms) 
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4.5.9.4 Power Spectrum 

    # Calculate power spectrum compute the periodogram 

def powspec(fraction,nFFT=512): 

    """Compute the power spectrum of each frame or fraction.  

    If fraction is an NxD matrix, output will be NxnFFT. 

    :param fraction: the array of frames. Each row is a frame. 

    :param nFFT: the FFT length to use. If nFFT > frame_len,  

    the frames are zero-padded. 

    :returns: If fraction is an NxD matrix, output will be NxnFFT.  

    Each row will be the power spectrum of the corresponding frame. 

    """ 

    tp = (sum(magspec(fraction,nFFT))**2)/nFFT 

    tq = sum((magspec(fraction,len(fraction))**2)/len(fraction)) 

 

    if len(fraction) > 0: 

        ps = 1.0/(len(fraction)*samplerate)* 

                  np.square((magspec(fraction,nFFT)**2)/nFFT) 

    else: 

        ps = 0 

    return(ps) 

 

4.5.9.5 Bandpass Filter 

# 4Hz FIR bandpass filter 

def pass_band_firfilter(src, freq=4.0, fs=samplerate): 

    """ 

    :param src (numpy array of float): the signal input to the filter 

    :param freq (float): centre frequency of the filter 

    :param fs (int): sampling frequency 

    :return (numpy array of ) 

    """ 

    order = 500 

    nyq = 0.5 * fs      # Find the Nyquist frequency of the signal. 

    lowcut = (freq -2)/nyq 

    highcut = (freq + 2)/nyq 

    # calculate the filter parameters. Using Python SciPy library 

    coefficients = bandpass_firwin(order + 1, lowcut, highcut, fs=fs)  

    a = 1 

    # Apply filter to input signal twice 

    firstpass = sp.signal.lfilter(coefficients, a, src)  

    secondpass = sp.signal.lfilter(coefficients, a, firstpass[::-1])[::-1] 

    return(secondpass) 

 

4.6 Classifier functions 

The following code excerpts show how the classifier models were implemented in Python. 
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 Support Vector Machine 

def svm_classifier(trainX,trainY,testX,testY): 

    #------------------------------------------------------------------------- 

    # Train & Test Support Vector Machine 

    #------------------------------------------------------------------------- 

    # 

    """ 

    Support Vector Machine classifier implementation of Python Sklearn library 

    :param trainX (array of float): NxD array of training samples.  

    N samples x D features   

    :param trainY (array of float): NxD array of annotation of training data.  

    N samples x D data classes 

    :param testX (array of float): NxD array of test samples.  

    N samples x D features 

    :param testY (array of float): NxD array of annotation of test data.  

    N samples x D data classes 

    """ 

    t1 = time.time() 

    clf = svm.SVC(verbose=True, kernel='rbf') 

    clf.fit(trainX, trainY) 

    delta_T = time.time() - t1 

    print('\nModel training time: ' + str(delta_T)) 

    print('SVM Score: '+ str(clf.score(trainX, trainY))) 

    y_pred = clf.predict(testX) 

    print(metrics.classification_report(np.array(testY), y_pred)) 

 

 

 

 Feed Forward Neural Network 

 

def neural_net(trainX,trainY,testX,testY): 

    """ 

    Train and predict with a MLP Neural Network  

    :param trainX (array of float): NxD array of training samples.  

    N samples x D features 

    :param trainY (array of float): NxD array of annotation of training data.  

    N samples x D data classes 

    :param testX (array of float): NxD array of test samples.  

    N samples x D features 

    :param testY (array of float): NxD array of annotation of test data.  

    N samples x D data classes 

    :return score (float): NxD array of precision, recall, F-measure  

    and support for each class. 

    :return ypred (array of float): NxD array of predicted results of test data. 

    N predictions x D data classes 

    """ 

    # Globalise Initialise neural network parameters to enable writeback 

    global W1 

    global W2 

    global J 

    global J_test 
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    global hidden_layer 

    global input_layer 

    global output_layer 

 

    # Set layer width 

    hw = ceil(trainX.shape[1]/6) 

    input_layer = trainX.shape[1] 

    output_layer = trainY.shape[1] 

    hidden_layer = (hw if hw > 4 else 5)  # Hidden layer width to be the same 

                                      # dim as input layer, but not less than 5 

 

    # Weights (initial parameters) 

    W1 = np.random.randn(input_layer, hidden_layer) 

    W2 = np.random.randn(hidden_layer, output_layer) 

    J = [] 

    J_test = [] 

 

    # Train neural network 

    t1 = time.time() 

    train(trainX, trainY) 

    print('Shape X training data: ' + str(trainX.shape)) 

    print('Shape Y training data: ' + str(trainY.shape)) 

    delta_T = time.time() - t1 

    print('Model training data: ' + str(len(trainX))) 

    print('Model training time: ' + str(delta_T)) 

    print('Model testing data: ' + str(len(testX))) 

 

    # Predict neural network 

    r,y_pred = predict(testX) 

    score = metrics.precision_recall_fscore_support(np.array(testY), y_pred) 

    return (score, y_pred) 

 

def nn_setparams(params): 

    """ 

    Update the NN parameters 

    :param params (float): Array of new parameters to be written back 

    :return: 

    """ 

    global W1 

    global W2 

    global hidden_layer 

    global input_layer 

    global output_layer 

    W1_start = 0 

    W1_end = hidden_layer * input_layer 

    W1 = np.reshape(params[W1_start:W1_end], (input_layer, hidden_layer)) 

    W2_end = W1_end + hidden_layer * output_layer 

    W2 = np.reshape(params[W1_end:W2_end], (hidden_layer, output_layer)) 

    return () 

 

 

def sigmoid(z): 

    """ 

    Apply sigmoid activation function. 

    :param z (array of float): NxD array N the weighted values x D layer  

    width at the activation node 

    :return sig (array of float): NxD array N the decision result (0:1) x D  
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    layer width at the activation node 

    """     

    sig = 1 / (1 + np.exp(-z)) 

    return (sig) 

 

 

 

def nn_forward(X): 

    """ 

    Propogate input values forward though network 

    :param X (array of float): NxD array of samples. N samples x D features 

    :return yH (array of float): NxD array of forward results of NN.  

    N output values x D data classes 

    """ 

    z2 = np.dot(X, W1)  # Calculate first layer weighted inputs 

    a2 = sigmoid(z2)    # Calculate first layer activation output 

    z3 = np.dot(a2, W2) # Calculate second layer weighted inputs 

    yH = sigmoid(z3)    # Calculate second layer activation output 

    return (yH) 

 

 

def cost_function(X, y) 

    """ 

    Compute cost for given X,y, use weights already stored in class. 

    :param X (ndarray): Input NxD array of test samples. N samples x D features 

    :param y: (ndarray): NxD array of true results for samples.  

    N samples x D features 

    :return: (float or ndarray) Norm of the matrix or vector 

    """    

    y_hat = nn_forward(X) 

    J = 0.5 * np.sum((y - y_hat) ** 2) / X.shape[0] + (Lambda /  

       (2 * X.shape[0])) * (np.sum(W1 ** 2) + np.sum(W2 ** 2)) 

    return np.linalg.norm(J) 

 

def cost_function_prime(X,y): 

    """ 

    Compute derivative with respect to W1 and W2 for a given X and y: 

    :param X (ndarray): Input NxD array of test samples. N samples x D features 

    :param y: (ndarray): NxD array of true results for samples.  

    N samples x D features 

    :return the back probagation derivatives for each layer 

    """ 

    y_hat = nn_forward(X) 

    z2 = np.dot(X, W1) 

    a2 = sigmoid(z2) 

    z3 = np.dot(a2, W2) 

    # Calculate the L2 delta for each class per sample 

    delta3 = np.multiply(-(y - y_hat), sigmoid_prime(z3))  

    # Calculate the back prob derivative for W2 

    dJ_dW2 = np.dot(a2.T, delta3) + Lambda*W2  

    # Calculate the L1 delta for each class per sample 

    delta2 = np.dot(delta3, W2.T) * sigmoid_prime(z2)  

    # Calculate the back prob derivative for W1 

    dJ_dW1 = np.dot(X.T, delta2) + Lambda*W1  

    return (dJ_dW1, dJ_dW2) 

 

 

def compute_gradients(X, y): 
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    """ 

    Compute the gradient function 

    :param X: ndarray Input NxD array of test samples. N samples x D features 

    :param y: ndarray NxD array of true results for samples.  

    N samples x D features 

    :return: Return a contiguous flattened array of the gradient at each node 

    """ 

    dJdW1, dJdW2 = cost_function_prime(X, y) 

    gr = np.concatenate((dJdW1.ravel(), dJdW2.ravel())) 

    return (gr) 

 

def process_cf(params, X, y): 

    """ 

    Process the cost function method 

    :param params: flattened array of the weight parameters at each node 

    :param X: Input NxD array of test samples. N samples x D features 

    :param y: NxD array of true results for samples. N samples x D features 

    :return cost (float): magnitude of the cost  

    :return grad: flattened array of the gradient at each node 

    """ 

    nn_setparams(params) 

    cost = cost_function(X, y) 

    grad = compute_gradients(X, y) 

    return (cost, grad) 

 

The algorithm also includes various small functions used to evaluate and rank combinations of the 

audio features, there include Principal Component Analysis (PCA) for exploratory dimensionality 

reduction analysis, univariate feature selection, Random Forest Regression, forward and backward 

Sequential Feature Selection and the highest loading factors of the PCA components. 

4.7 Summary 

 

Chapter 4 describe the implementation of the algorithm in the Python programming language. 

Section 4.2 describes the composition of the data corpus for training and testing purposes, and 

section 4.3 illustrates the structure and flow of the algorithm. Software code excerpts are provided 

to show the functionality of algorithm functions, including the signal pre-processing steps (section 

4.4),  various functions for extracting audio features from the data (section 4.5) and the code 

excerpts for the SVM and MLP neural network classifier models in section 4.6.  
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Chapter 5 - Experimental Evaluation of model for audio 
features for speech/non-speech discrimination  

5.1 Feature selection 

Starting with a large and diverse set of features, it is not known how much each feature would 

contribute to the overall classification performance individually and if the selected feature or 

combination of features is well suited for the classification task at hand. Some features may be 

effective for one class, but not very good for another class and some might deliver moderately to 

well, yet not exceptional results in all classes. Applying several of these “all-rounder” features in 

neural networks is useful and improves both classifier accuracy and recall. Another unknown factor 

was if a certain combination of features might reduce overall performance. Having too many 

irrelevant features in your data can decrease the accuracy of the model. The performance of the 

algorithm is indirectly proportional to the dimension of the feature space, it is, therefore, important 

to keep it as small as possible. There are important benefits of performing feature selection before 

modelling your data. Firstly, it reduces overfitting, less redundant data means less opportunity to 

make decisions based on noise and less misleading data improves modelling accuracy, while also 

reducing the training time. It is important to perform feature selection on a different dataset than 

you train the model on, to prevent over fitment of your training data. 

 

The selection of feature combinations chosen empirically through exhaustive experimentation is 

not practical due to the large number of features extracted. With a total of over 21 features 

computed on the frame level with 4 statistical parameters each and computed 4 times per segment, 

the resultant feature space is quite large. Considering a total feature space of 88 features, it leads 

to 3.094850098×10²⁶ possible combinations of features, clearly impossible to attempt to evaluate 

through brute force methods. 

 

To gain a better understanding of the feature set, exploratory dimensionality reduction analysis was 

performed with Principal Component Analysis (PCA). The cumulative explained variance ratio 

(Figure 5.1) indicates that it is not a case of only a few features that contribute massively but rather 

that all or most features contribute meaningfully to the overall result. 21.86% (n=19) of the features 
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are responsible for explaining one standard deviation (>68.27%) of the data and 64.77% (n=57) of 

the features describe the data to 2 standard deviations (>95.45%).  

 

Having calculated the principal components for the feature set, it is interesting to now also produce 

the loadings plot for each of the principal components, for example, Figure 5.2 show the loadings 

factors, these are the correlated features that contribute the most differentially towards the first 

(main) principal component. Some features are positively correlated, for instance in this plot, the 

variance of the Spectral Centroid (sc_var) and the variance of the Spectral Rolloff (sr_var) feature 

show a strong positive correlation and some features are negatively correlated.  

 

Figure 5.1: PCA Cumulative Explained Variance Ratio. 
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Figure 5.2: Loadings Plot for the first principle component. 

 

Several feature selection techniques were employed to reduce an initial d-dimensional feature 

space to a k-dimensional feature subspace where k < d, i.e., the optimal feature set. As a first step, 

each feature was listed in descending order on mean accuracy (MA) and compared to the mean 

accuracy obtained by all the features (n=88) combined. The training and testing data were 

generated by selecting two independent data sets by random sampling. The mean accuracy for the 

SVM classifier was used to rank the features.  The Scikit-learn Univariate feature selection algorithm 

was also used to verify the results obtained by manual selection. It works by selecting the best 

features based on univariate statistical tests. The result of the Univariate feature selection test is 

represented in Error! Reference source not found., ranking features in descending order of 

effectiveness. The mean and variance of the Spectral Flux feature ranked highest in this test. The 

features that scored in the top 50% for the Univariate (n=44) were selected to represent this test 

against the other feature selection methods.
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Figure 5.3: Feature ranking with Univariate selection method 
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The next method of feature selection considered was Random Forest Regression (RFR). Random 

forests are not only used as a classification and regression tool but can also be used as a method for 

feature selection by applying properties of either mean decrease Gini impurity or information 

gain/entropy. Random forests are an ensemble of several decision trees. Every node in the decision 

tree aims to divide the dataset using the properties of a single feature assigned to the node. The 

optimal condition is based on a property called impurity. In the case of classifier trees, the property 

is typically either Gini impurity or information gain/entropy and for regression trees it is variance. It 

can be computed how much each feature decreases the weighted impurity in a tree. For a forest, 

the impurity decrease from each feature can be averaged and the features are ranked according to 

this measure. An alternative method of calculating the feature importance in Random Forest 

Regression is called Mean Decrease Accuracy and in this method, the feature importance calculation 

is based on the mean decrease in the accuracy. The feature set is randomly shuffled and a feature 

gets selected to evaluate what impact that feature exerts on the model’s performance. The features 

with the greatest positive impact on the performance are the most important. 

 

Another method evaluated was the forward and backward Sequential Feature Selection (SFS) was 

used to extract further candidates for optimal feature sets. Forward Sequential Feature Selection, 

is a greedy search algorithm that considers the full d-dimensional feature set as input and starts 

with an empty subset of the original feature set. First, the best performing single feature is added 

and then a specified number of features are recursively included in the subset based on criteria of 

which feature maximises the result when used in combination with the existing features in the 

subset. This method is still very computationally expensive, with  ∑
𝑛(𝑛+1)

2

𝑑
𝑛=𝑘   combinations to 

evaluate. Each combination also required a recursive SVM optimisation step.  It can be seen that a 

relatively small subset of features will provide close to optimal results (Figure 5.5). Conversely, with 

the backward Sequential Feature Selection algorithm, the feature subset is initially equal to the 

entire d-dimensional feature space and the features that reduce the overall classifier performance 

the least is removed recursively, until the dimension of the subset = k.  
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5.2 Selection results 

The classification result of the full feature space (n=88) was used as the baseline for comparison 

with the results of various feature reduction schemes.  In Table 5.1 the classification result of each 

feature is listed in descending order on mean accuracy (MA) and compared to the result obtained 

by all the features combined. For each measurement, the mean accuracy was calculated using the 

SVM classifier on the data corpus using five-fold cross-validation. The training and testing data were 

generated by selecting two independent data sets by random sampling. The metric used for the 

baseline as well as each subsequent measurement was the mean accuracy achieved with the 

classifier for each of the cross-validation iterations. This metric was also used to rank all the 

individual features. The top-ranked feature, based on an individual evaluation, is a Short Time 

Energy variance, with a mean accuracy of 93.2%. The feature with the lowest individual 

performance, MFCC 9 skewness, had a mean accuracy of 51.38% on the SVM classifier, which 

indicates that each of the features in the set contributes positively to the overall result. Although 

the MFCC 9 skewness feature scored lowest individually, it was among the biggest contributors to 

the first PCA based on the loadings elements. This is a significant finding, supporting the case for 

feature selection analysis.  

A number of feature selection techniques were employed to determine the optimal feature set. The 

results for the different selection methods are summarised in Table 5.2. The overall mean accuracy 

for the full feature set (n=88) was 99.80%. Selecting the features that had an individual mean 

accuracy higher than 90% (n=5), which comprised the variances of the Short-Time Energy Ratio, 

MFCC 0 and MFCC 1 as well as the means of the Modified Low Energy Ratio and the Spectral Entropy, 

yielded a mean accuracy of 96.40%. The ensemble of features with individual mean accuracies 

higher than 80% (n=19) yielded a combined accuracy of 99.24%, those with individual mean 

accuracies higher than 70% (n=31) yielded a combined accuracy of 99.80%, and finally, the features 

with a MA > 60% (n=54) also yielded a combined accuracy of 99.80%. Various sequences of the top 

N features were then selected as possible candidates. Although all features contribute to a better 

overall result, the mean accuracy peaked at n=13 features (MA = 99.22%), suggesting that it might 

be a good trade-off of accuracy and low complexity. The next sequence was the significant loadings 

of the first five principal components (n=70) which achieved a similar mean accuracy (99.94%) to 
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the best combination of features in the Univariate (n=44) evaluation. This was followed by the best 

mean average score for the Random Forest Regression with a mean decrease of Gini impurity index 

score method (n=25, MA=99.92%) and the permutation importance by a mean decrease of 

accuracy. This method resulted in similar accuracy (MA=99.80%) and feature count (n=25). The 

feature ranking with Random Forest Regression method is shown in Figure 5.4. In this test, the 

features are again ranked in descending order of their score. The variance of the Short-Time Energy 

feature ranked highest by a significant margin, followed by the mean of the Modified Low Energy 

Ratio feature. These two features also delivered the highest mean accuracy in the evaluation of 

individual features, but the difference in the margin between them seems contradictory to the PCA 

cumulative explained variance ratio which indicated that no single feature dominated the variance 

in the feature space, but rather that all features contribute positively and suggesting that a 

combination of features would be optimal, as proven in the final analysis. 

 

The final feature selection method evaluated was the Sequential Feature Selection. The best effort 

forward Sequential Feature Selection evaluation (n=44) provided slightly better accuracy 

(MA=99.95%) than the best effort Backward Sequential Feature Selection evaluation (n=59, 

MA=99.92%) but importantly with fewer features. The Forward Sequential Feature Selection subset 

(n=44) was selected for the final evaluation of the performance of the MLP NN classifier model. This 

dataset delivered the best results in the preliminary feature selection tests and apart from delivering 

a higher mean accuracy (99.95%) than the full feature set, it utilises only half the number of features, 

i.e. provided a 50% reduction in dimensionality. The feature ranking with the Forward Sequential 

Feature Selection method is shown in Figure 5.5 and it indicates the use of an increasing number of 

features based on the recursive addition of features that maximises the score of feature space. The 

score increases rapidly with the inclusion of only a few features and peaks at a combination of 44 

features before slightly decreasing up to the point where all features are included. Figure 5.6 shows 

the ranking of features using the Backward Sequential Feature Selector method and conversely, 

how a decreasing number of features influences the selection score. It can be seen that by reducing 

the feature space, the score initially increases slightly and it only decreases significantly with a small 

number of features remaining. 
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An immediate concern with such high accuracy is overfitting of the data. This was repudiated by 

repeating the test several times and combining k-fold cross-validation with data hold-out to ensure 

that the testing phase is performed on unseen data. 
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Figure 5.4: Feature ranking with Random Forest Regression method 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

st
e_

va
r

m
le

r_
m

ea
n

m
fc

c1
_v

ar
m

fc
c0

_m
ea

n
rm

s_
m

ea
n

m
fc

c5
_v

ar
m

fc
c4

_v
ar

st
e_

m
ea

n
m

fc
c3

_v
ar

p
le

f_
m

ea
n

m
fc

c2
_v

ar
sf

_m
ea

n
rm

s_
va

r
m

fc
c5

_m
ea

n
m

fc
c9

_v
ar

m
fc

c1
_m

ea
n

sr
_v

ar
m

fc
c8

_m
ea

n
m

fc
c1

2
_m

ea
n

zc
r_

va
r

m
fc

c1
0

_v
ar

m
fc

c1
0

_s
ke

w
n

es
s

zc
r_

sk
ew

n
es

s
sr

_s
ke

w
n

es
s

m
fc

c1
_k

u
rt

o
si

s
m

fc
c3

_s
ke

w
n

es
s

m
e_

h
b

t_
m

ea
n

zc
r_

m
ea

n
sc

_s
ke

w
n

es
s

sc
_m

ea
n

m
fc

c7
_k

u
rt

o
si

s
m

fc
c6

_v
ar

ee
_m

ea
n

m
fc

c6
_k

u
rt

o
si

s
m

fc
c5

_s
ke

w
n

es
s

m
fc

c3
_m

ea
n

m
fc

c1
2

_v
ar

m
fc

c1
1

_v
ar

m
e_

h
b

t_
va

r
m

fc
c4

_m
ea

n
st

e_
ku

rt
o

si
s

rm
s_

sk
ew

n
es

s
m

fc
c9

_m
ea

n
zc

r_
ku

rt
o

si
s

sr
_k

u
rt

o
si

s
sf

_k
u

rt
o

si
s

m
fc

c6
_s

ke
w

n
es

s
st

e_
sk

ew
n

es
s

sr
_m

ea
n

sf
_s

ke
w

n
es

s
sc

_v
ar

sc
_k

u
rt

o
si

s
m

fc
c8

_v
ar

m
fc

c7
_v

ar
m

fc
c7

_m
ea

n
m

fc
c6

_m
ea

n
m

fc
c4

_k
u

rt
o

si
s

m
fc

c2
_m

ea
n

m
fc

c2
_k

u
rt

o
si

s
m

fc
c1

2
_k

u
rt

o
si

s
m

fc
c0

_s
ke

w
n

es
s

m
e_

m
fc

c_
m

ea
n

m
e_

h
b

t_
ku

rt
o

si
s

m
fc

c9
_k

u
rt

o
si

s
m

fc
c7

_s
ke

w
n

es
s

m
fc

c3
_k

u
rt

o
si

s
m

fc
c2

_s
ke

w
n

es
s

m
fc

c1
_s

ke
w

n
es

s
m

fc
c1

1
_s

ke
w

n
es

s
m

fc
c1

1
_m

ea
n

m
fc

c1
0

_k
u

rt
o

si
s

m
fc

c0
_v

ar
m

e_
m

fc
c_

ku
rt

o
si

s
m

e_
h

b
t_

sk
ew

n
es

s
sf

_v
ar

rm
s_

ku
rt

o
si

s
m

fc
c9

_s
ke

w
n

es
s

m
fc

c8
_s

ke
w

n
es

s
m

fc
c5

_k
u

rt
o

si
s

m
fc

c4
_s

ke
w

n
es

s
m

fc
c0

_k
u

rt
o

si
s

m
e_

m
fc

c_
va

r
m

e_
m

fc
c_

sk
ew

n
es

s
se

_
m

ea
n

m
fc

c8
_k

u
rt

o
si

s
m

fc
c1

2
_s

ke
w

n
es

s
m

fc
c1

1
_k

u
rt

o
si

s
m

fc
c1

0
_m

ea
n

Random Forest Regression Score

Score



 

 

87 

 

 

Figure 5.5: Feature ranking with Forward Sequential Feature Selector method 
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Figure 5.6: Feature ranking with Backward Sequential Feature Selector method 
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Table 5.1: Classification results for all features combined versus each individual feature. 

  Neural Network Support Vector Machine   

Feature precision  recall f1-score precision  recall f1-score mean accuracy 

all features 0.99 0.99 0.99 1 1 1 99.80% 

ste_var 0.9 0.92 0.9 0.93 0.93 0.93 93.20% 

mler_mean 0.92 0.92 0.92 0.92 0.92 0.92 93.04% 

mfcc0_var 0.91 0.89 0.9 0.91 0.91 0.91 91.40% 

mfcc1_var 0.9 0.91 0.9 0.91 0.91 0.91 90.72% 

se_mean 0.9 0.89 0.89 0.9 0.9 0.9 90.46% 

mfcc3_var 0.89 0.88 0.88 0.89 0.89 0.89 89.82% 

plef_mean 0.88 0.84 0.84 0.91 0.89 0.89 88.92% 

mfcc2_var 0.88 0.89 0.89 0.9 0.9 0.89 88.72% 

me_hbt_var 0.87 0.87 0.87 0.88 0.88 0.88 88.36% 

mfcc5_var 0.86 0.89 0.88 0.88 0.88 0.88 88.00% 

mfcc4_var 0.86 0.87 0.86 0.88 0.88 0.88 87.80% 

ste_mean 0.85 0.86 0.86 0.87 0.86 0.86 86.70% 

mfcc0_mean 0.86 0.85 0.86 0.87 0.86 0.86 85.78% 

mfcc6_var 0.85 0.85 0.85 0.86 0.86 0.86 85.60% 

sc_var 0.85 0.83 0.82 0.86 0.85 0.85 85.10% 

me_mfcc_var 0.84 0.81 0.8 0.86 0.84 0.84 84.64% 

sr_var 0.81 0.82 0.8 0.84 0.84 0.84 84.24% 

rms_mean 0.83 0.82 0.82 0.85 0.82 0.82 81.38% 

zcr_var 0.8 0.79 0.78 0.81 0.8 0.8 80.08% 

mfcc7_var 0.79 0.81 0.8 0.8 0.8 0.8 79.48% 

me_mfcc_mean 0.78 0.78 0.78 0.79 0.78 0.78 78.92% 
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sc_mean 0.78 0.77 0.78 0.79 0.79 0.79 78.36% 

mfcc7_mean 0.77 0.77 0.77 0.77 0.77 0.77 77.34% 

mfcc8_var 0.77 0.78 0.77 0.78 0.77 0.77 77.10% 

zcr_skewness 0.76 0.76 0.76 0.76 0.76 0.76 76.94% 

me_hbt_kurtosis 0.74 0.76 0.75 0.75 0.75 0.75 75.92% 

sr_mean 0.75 0.75 0.75 0.77 0.76 0.76 75.52% 

mfcc9_var 0.75 0.74 0.75 0.75 0.75 0.75 75.12% 

mfcc5_mean 0.75 0.74 0.75 0.75 0.75 0.75 74.22% 

mfcc6_mean 0.74 0.68 0.71 0.73 0.73 0.73 72.78% 

me_hbt_skewness 0.72 0.72 0.72 0.71 0.71 0.71 71.10% 

sf_var 0.62 0.63 0.62 0.72 0.7 0.69 69.56% 

mfcc10_var 0.7 0.69 0.69 0.69 0.69 0.69 69.56% 

mfcc1_skewness 0.68 0.68 0.68 0.7 0.69 0.68 69.06% 

zcr_kurtosis 0.69 0.7 0.68 0.69 0.68 0.67 67.90% 

mfcc11_var 0.66 0.67 0.66 0.67 0.67 0.67 67.26% 

me_mfcc_skewness 0.66 0.65 0.66 0.66 0.66 0.66 65.64% 

mfcc4_mean 0.65 0.63 0.64 0.68 0.67 0.66 65.48% 

mfcc8_mean 0.66 0.66 0.66 0.66 0.66 0.66 65.38% 

sc_skewness 0.64 0.64 0.64 0.64 0.64 0.64 65.10% 

mfcc10_mean 0.65 0.64 0.64 0.65 0.65 0.65 64.98% 

mfcc12_var 0.64 0.63 0.63 0.64 0.64 0.64 63.96% 

sf_mean 0.52 0.48 0.49 0.66 0.63 0.61 63.70% 

mfcc1_mean 0.62 0.64 0.63 0.64 0.64 0.64 63.70% 

ste_skewness 0.62 0.61 0.62 0.62 0.62 0.62 62.98% 

sr_skewness 0.59 0.55 0.57 0.64 0.61 0.6 62.22% 

rms_skewness 0.62 0.62 0.62 0.62 0.61 0.61 61.60% 
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mfcc0_skewness 0.61 0.6 0.6 0.61 0.61 0.61 61.48% 

mfcc1_kurtosis 0.62 0.6 0.6 0.62 0.61 0.61 61.20% 

me_mfcc_kurtosis 0.62 0.62 0.61 0.62 0.62 0.62 60.80% 

sf_skewness 0.57 0.69 0.63 0.59 0.59 0.59 60.76% 

mfcc11_mean 0.59 0.6 0.6 0.6 0.6 0.59 60.18% 

mfcc3_mean 0.59 0.48 0.53 0.62 0.6 0.58 60.10% 

sc_kurtosis 0.59 0.6 0.59 0.6 0.6 0.6 60.06% 

rms_kurtosis 0.56 0.54 0.55 0.61 0.6 0.58 59.54% 

zcr_mean 0.61 0.58 0.59 0.61 0.61 0.61 59.52% 

rms_var 0.52 0.52 0.5 0.61 0.59 0.57 59.46% 

mfcc12_mean 0.58 0.56 0.57 0.59 0.59 0.58 59.06% 

ee_mean 0.59 0.57 0.58 0.6 0.59 0.58 58.70% 

me_hbt_mean 0.53 0.47 0.5 0.58 0.57 0.56 58.32% 

mfcc4_skewness 0.57 0.58 0.58 0.58 0.58 0.58 58.10% 

ste_kurtosis 0.51 0.95 0.66 0.58 0.58 0.58 58.04% 

mfcc0_kurtosis 0.53 0.48 0.51 0.58 0.56 0.52 57.42% 

mfcc2_kurtosis 0.56 0.57 0.57 0.57 0.56 0.56 56.44% 

mfcc5_skewness 0.55 0.56 0.55 0.55 0.55 0.55 54.96% 

mfcc3_skewness 0.55 0.55 0.55 0.56 0.55 0.53 54.90% 

mfcc2_mean 0.54 0.61 0.56 0.58 0.54 0.48 54.74% 

mfcc9_mean 0.53 0.46 0.49 0.53 0.53 0.53 54.68% 

sf_kurtosis 0.55 0.55 0.54 0.56 0.55 0.53 54.52% 

sr_kurtosis 0.52 0.51 0.51 0.54 0.54 0.54 54.46% 

mfcc7_skewness 0.52 0.58 0.55 0.54 0.53 0.48 53.86% 

mfcc5_kurtosis 0.52 0.54 0.51 0.54 0.53 0.5 53.82% 

mfcc6_skewness 0.5 0.54 0.51 0.54 0.53 0.51 53.68% 
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mfcc12_skewness 0.52 0.62 0.57 0.54 0.54 0.53 53.60% 

mfcc12_kurtosis 0.53 0.53 0.5 0.53 0.53 0.52 53.50% 

mfcc11_kurtosis 0.52 0.53 0.51 0.54 0.52 0.46 53.28% 

mfcc6_kurtosis 0.25 0.5 0.33 0.52 0.52 0.52 53.16% 

mfcc11_skewness 0.52 0.62 0.56 0.54 0.53 0.52 53.14% 

mfcc4_kurtosis 0.5 0.55 0.49 0.52 0.52 0.52 53.12% 

mfcc8_skewness 0.52 0.48 0.5 0.52 0.52 0.51 53.06% 

mfcc2_skewness 0.51 0.5 0.51 0.53 0.53 0.5 52.74% 

mfcc3_kurtosis 0.51 0.53 0.42 0.52 0.52 0.49 52.74% 

mfcc10_kurtosis 0.53 0.51 0.52 0.53 0.53 0.53 52.72% 

mfcc9_kurtosis 0.25 0.39 0.3 0.52 0.52 0.48 52.56% 

mfcc8_kurtosis 0.48 0.34 0.33 0.51 0.51 0.51 52.44% 

mfcc10_skewness 0.51 0.55 0.52 0.52 0.52 0.51 52.22% 

mfcc7_kurtosis 0.54 0.17 0.25 0.55 0.52 0.45 51.50% 

mfcc9_skewness 0.5 0.49 0.49 0.25 0.5 0.33 51.38% 
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Table 5.2: Classification results for top-ranked features combinations 

  Neural Network Support Vector Machine SVM  

Feature precision  recall f1-score precision  recall f1-score mean accuracy 

All features (n=88) 0.99 0.99 0.99 1 1 1 99.80% 

MA > 0.6 (n=54) 0.99 0.99 0.99 1 1 1 99.80% 

MA > 0.7 (n=31) 0.99 0.99 0.99 1 1 1 99.80% 

MA > 0.8 (n=19) 0.99 0.99 0.99 0.99 0.99 0.99 99.24% 

MA > 0.9 (n=5) 0.95 0.96 0.96 0.96 0.96 0.96 96.40% 

MA (n= top 6) 0.96 0.97 0.97 0.97 0.97 0.97 97.36% 

MA (n=top 7) 0.96 0.98 0.97 0.98 0.98 0.98 97.70% 

MA (n=top 8) 0.97 0.97 0.97 0.98 0.98 0.98 97.92% 

MA (n=top  9) 0.97 0.97 0.97 0.98 0.98 0.98 97.90% 

MA (n=top 10) 0.98 0.98 0.98 0.98 0.98 0.98 98.36% 

MA (n=top 11) 0.98 0.98 0.98 0.98 0.98 0.98 98.62% 

MA (n=top 12) 0.99 0.99 0.99 0.99 0.99 0.99 99.08% 

MA (n=top 13) 0.99 0.98 0.98 0.99 0.99 0.99 99.22% 

MA (n=top 14) 0.99 0.99 0.99 0.99 0.99 0.99 99.06% 

MA (n=top 15) 0.99 0.98 0.99 0.99 0.99 0.99 99.00% 

MA (n=top 16) 0.99 0.99 0.99 0.99 0.99 0.99 99.16% 

MA (n=top 17) 0.99 0.99 0.99 0.99 0.99 0.99 99.14% 

MA (n=top 18) 0.99 0.99 0.99 0.99 0.99 0.99 99.12% 

MA (n=top 19) 0.99 0.99 0.99 0.99 0.99 0.99 99.20% 

MA (n=top 20) 0.99 0.99 0.99 0.99 0.99 0.99 99.24% 
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PCA Loadings 1-5 0.99 0.99 0.99 1 1 1 99.94% 

RFR impurity (n=25) 0.99 0.99 0.99 1 1 1 99.92% 

RFR accuracy (n=25) 0.99 0.99 0.99 1 1 1 99.80% 

Univariate Top 50% (n=44) 0.99 0.99 0.99 0.99 0.99 0.99 99.94% 

Forward SFS Top 25 0.99 0.99 0.99 1 1 1 99.88% 

Forward SFS Best MA (n=44) 0.99 0.99 0.99 1 1 1 99.95% 

Backward SFS Top 25 0.99 0.99 0.99 1 1 1 99.92% 

Backward SFS Best MA (n=59) 0.99 0.99 0.99 1 1 1 99.92% 
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A number of feature selection techniques were employed to determine the optimal feature set as 

discussed in chapter 5. Each feature was evaluated against both the MLP neural network classifier 

and the SVM classifier. The training and testing data was generated by selecting two independent 

data sets by random sampling. The mean accuracy for the SVM classifier was used to rank the 

features. It was expected that the MLP neural network would be at a disadvantage when evaluating 

only one feature at a time since the hidden layers and layer width remained optimised for a high 

dimensional feature set. The result, however, was that the MLP neural network performed well and 

achieved similar results to the SVM classifier. The combined feature set delivers excellent results, 

with a total mean accuracy of 99.8%. In Table 5.2 the results of the Univariate selection process, 

Random Forrest Regression (RFR), forward and backward Sequential Feature Selection (SFS) 

processes are shown, compared to combinations of top-n individual features. The Forward 

Sequential Feature Selection subset (n=44) was selected for the final evaluation, as it had a higher 

mean accuracy (99.95%) than the full feature set, it utilises only half the number of features. This 

leads to a reduction in the optimisation task for the MLP Neural Network. 

 

The subset consisted of the following collection of features for the final evaluation: 

 RMS Mean,   

 ZCR Mean, ZCR Variance, ZCR Skewness, ZCR Kurtosis,  

 STE Variance, STE Skewness,  

 PLEF Mean,  

 MLER Mean,  

 SR Mean,  

 SF Mean,  

 SC Mean, SC Kurtosis,  

 ME MFCC Mean,  

 ME_Hilbert Variance, ME Hilbert Skewness,  

 MFCC_0 Mean, MFCC_0 Variance, MFCC_0 Skewness, MFCC_0 Kurtosis,  

 MFCC_1 Mean, MFCC_1 Variance,  

 MFCC_2 Mean, MFCC_2 Variance,  
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 MFCC_3 Variance, 

 MFCC_4 Variance, MFCC_4 Skewness, MFCC_4 Kurtosis,  

 MFCC_5 Mean, MFCC_5 Variance,  

 MFCC_6 Mean, MFCC_6 Variance, MFCC_6 Skewness, 

 MFCC_7 Mean, MFCC_7 Kurtosis,  

 MFCC_8 Skewness,  

 MFCC_9 Mean,  

 MFCC_10 Mean, MFCC_10 Variance, MFCC_10 Skewness, MFCC_10 Kurtosis,  

 MFCC_11 Variance,  

 MFCC_12 Mean, MFCC_12 Variance 

 

It is significant that three of the features in this set, MFCC_7 Kurtosis, MFCC_10 Skewness, MFCC_10 

Kurtosis were among the six lowest-performing features on an individual basis, barely achieving 

over 50 % mean accuracy.  

 

The designated feature set was evaluated with the MLP Neural Network classifier using 5-fold cross-

validation, which avoids overlapping test sets. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) 

algorithm was used to perform the back-propagation optimisation of the MLP parameters. BFGS is 

a quasi-Newton method algorithm for iteratively solving nonlinear optimisations. The BFGS 

algorithm (Ο(𝑛2)) is computationally less complex than the Newton method (Ο(𝑛3)) and copes well 

with a large number of variables. The Ο(𝑛2) complexity is still exorbitantly high if the sample size 

becomes large and therefore the training size for each of the folds was limited to 5000 samples 

(approximately 10%) and the remaining samples were assigned to the test set. The classification 

results of each run were aggregated and the performance of the classification results is summarised 

in the confusion matrix in Figure 5.7. The speech class is denoted “0” or “Negative” and the music 

class as “1” or “positive”. The confusion matrix consists of four basic characteristics that are used to 

define the measurement metrics of the classifier. These four characteristics are: 

1. TN (True Negative): TN represents the number of correctly classified speech audio segments. 
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2. TP (True Positive): TP represents the number of audio segments that have been properly 

classified as music.  

3. FP (False Positive): FP represents the number of speech audio segments misclassified as 

music. FP is also known as a Type I error. 

4. FN (False Negative): FN represents the number of music audio segments misclassified as 

speech. FN is also known as a Type II error. 

 

Figure 5.7: Confusion Matrix for MLP classifier 

 

5.3 Validating the results of the classification model 

Building a predictive model and using accuracy as the only metric of performance does not 

guarantee that it is a good model. A model must also be reproducible and robust. The purpose of 

validating the model is to instil trust in the result and confidence to use the model as part of a 

production system. 
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The model was evaluated using stratified K-fold cross-validation. Stratification aims to ensure that 

each fold is representative of all strata of the data. This aim is achieved by ensuring that the data 

corpus was balanced, thus representing each major class equally and sampling the testing and 

training data randomly based on a normal distribution of samples. 5-fold cross-validation was used 

in which the model is evaluated 5 times each time using a randomly selected test set consisting of 

approximately 18% of the samples in the total corpus. The performances results across the 5 

iterations are then averaged to obtain the final estimate of the model performance. 

 

The confusion matrix presented in Figure 5.7 compares the real training data and the mean 

prediction results of the classifier model over the 5-folds of the cross-validation and the statistical 

metrics are summarised in Table 5.3.  

Table 5.3: Evaluation Results 

 

 

 

 

 

 

 

 

 

 

The statistical metrics highlighted are accuracy, precision, recall, and F1 score, which are calculated 

based on the TP, TN, FP, and FN stated in the confusion matrix (Figure 5.7) 

 

True Positive (TP): 68423 

False Positive (FP): 51 

True Negative (TN): 68606 

False Negative (FN): 139 

Accuracy: 0.9986153521013854 

Error: 0.0013846478986146234 

Precision:   0.9992551917516137 

Recall: 0.9979726379043785 

F1 Score: 0.9986135030211039 
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The Accuracy metric of an algorithm(5.1) is represented as the ratio of correctly classified audio 

segments (TP+TN) to the total number of audio segments (TP+TN+FP+FN). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(TP + TN)

(TP + FP + FN + TN)
 (5.1) 

 

The Precision metric of an algorithm (5.2) is represented as the ratio of correctly classified audio 

segments (TP) to the total audio segments predicted to be of a certain class  (TP+FP). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
(TP)

(TP + FP)
 (5.2) 

 

The Recall metric (5.3) is defined as the ratio of correctly classified audio segments (TP) divided by 

the total number of audio segments of a certain class. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
(TP)

(TP + FN)
 (5.3) 

 

The F1 score (5.4) is also known as the F Measure. The F1 score states the equilibrium between the 

precision and the recall. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ precision ∗ recall

precision +  recall
 (5.4) 

 

In this study, the classification model had an overall accuracy of 99.86 % with an equally impressive 

precision (99.93%) and recall (99.79%).  
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With such high numbers, it is important to check if overfitting of the classifier did not occur. The 

way to check this is by plotting the training error versus the test error. Looking at the cost function 

error graph in Figure 5.8, it can be observed that the model produces similar results for both the 

training set and the test set and that the cost function error for the test set does not start to diverge 

from that of the training set. The latter is indicative of overfitting when the model is trained 

recursively. It can be inferred that it is unlikely that overfitting occurs in the model. 

 

Figure 5.8: Training vs Testing cost function error 
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Chapter 6 - Conclusion 

6.1 Summary 

This research dealt with the problem of speech / non-speech discrimination and the development 

of a feed-forward neural network to classify an audio signal into speech and non-speech parts.  In 

Chapter 1, the background information that leads up to this research was explained, along with the 

purpose and methodology of this research. The research objectives were stated in section 1.3.  A 

literature review was presented in chapter 2, where related work was discussed and background 

theory offered to place this study in the context of literature. In section 2.2 audio theory, in general, 

was discussed, followed by a description of the process of audio content analysis in section 2.3, 

including descriptions of the various audio features that was evaluated in this study. Section 2.4 

provided a theoretical description of the audio features used in this research followed by section 

2.5 with a summary of previous research in speech/music discrimination.   

 

Section 2.6 and 2.7 introduced the theoretical aspects of the classification process, commencing 

with a discussion of decision and learning paradigms and ending with an overview of classification 

models used in previous and related publications. Chapter 3 builds on this topic to describe the 

classification model used in this research, with a specific focus on Support Vector Machine and 

Artificial Neural Network algorithms. The chapter was concluded with a brief discussion of the 

mathematical optimisation process required to update and tune the Neural Network Model’s 

parameters.  

 

Chapter 4 described the compilation of the dataset for this study in section 4.2 and the development 

of the algorithm in section 4.3. Sections 4.4 to 4.6 provide selected extracts of code to show the 

function of important parts of the algorithm. Chapter 5 presents a comprehensive description of the 

evaluation and selection of audio features for application in speech-music discrimination 

algorithms. This process has been distinctly lacking in previous studies. In section 5.2, the 

experimental evaluation of the algorithm was presented, followed by a validation of the 

classification model in 5.3.  
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These chapters, particularly chapters 4 and 5 set out to solve the research objectives as stated in 

section 1.3  Firstly, various low-level statistical audio features were evaluated in section 5.1 based 

on the findings in previous research as explored in the literature review conducted in Chapter 2. A 

wide range of audio features used in previous research was identified as well as the mathematical 

methods required to extract these features from an audio signal. Only two previous studies 

attempted to compare audio features to determine suitability to the task at hand (Scheirer and 

Slaney, 1997), (Carey, Parris and Lloyd-Thomas, 1999). These two studies compared the 

performance of the individual features and not combinations of features. It was found that that 

many previous studies used audio features without elaborating or substantiating the rationale for 

using them other than the simplicity of usage or using mathematically similar features.  

 

This emphasised the importance of the second research objective, namely to determine the 

suitability of the selected features to accurately and efficiently discriminate speech and non-speech 

components of broadcast audio streams. Several feature selection methods were employed and 

discussed in Chapter 5 to evaluate the list of features selected in the first objective individually and 

in combinations to determine suitability and efficiency in discriminating different audio classes. An 

optimal subset of features was selected to be selected and used in a classifier model. The first four 

standardised statistical moments of twelve audio features were evaluated, namely the mean, 

variance, skewness and kurtosis of the Root Mean Square value, Short Time Energy Ratio, Zero 

Crossing Rate, Spectral Rolloff, Spectral Flux, Spectral Centroid, Energy Entropy, Spectral Entropy, 

the first 13 Mel Frequency Cepstral Coefficients (MFCC), Percentage Low Energy Frames, Modified 

Low Energy Ratio and 4Hz Modulation Energy. The 4 Hz modulation energy feature was computed 

by two different methods, firstly as a by-product of the MFCC feature and secondly utilising the 

Hilbert transform for envelope detection. This resulted in an 88-dimensional feature space.  

 

Principle component analysis was used to analyse the contribution of each feature and from the 

cumulative explained variance ratio (Figure 5.1) it was ascertained that all of the features 

contributed meaningfully to the overall result and that the process was not dominated by only a 

small number of significant features. It was also indicated that gains of cumulative explained 
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variance ratio diminished above 50% for the total feature space, again emphasising the need for a 

thorough selection process. Combinations of individual features (Table 5.1), along with the features 

contained in the loadings elements of the first five principle components were compared with 

results of the Univariate selection process, Random Forrest Regression (RFR), forward and backward 

Sequential Feature Selection (SFS) processes. The results are summarised in Table 5.2. The Forward 

Sequential Feature Selection subset (n=44) was selected as it delivered excellent mean accuracy 

(99.94%) with a 50% reduction in feature dimensionality.  

 

The development of a multilayer perceptron neural network classifier model was described in 

Chapter 4 as proposed in the third research objective. The classification model had an overall 

accuracy of 99.86 % with an equally impressive precision (99.93%) and recall (99.79%). This 

compared very well the Support Vector Machine classifier model which was primarily used in the 

feature selection process. The Support Vector Machine classifier was faster and slightly more 

accurate, yet the MLP neural network is more robust and scalable. By optimising feature set 

selection, excellent results were achieved and the difference between classifier algorithms became 

negligible. 

 

These chapters described the reseach process, analysis and outcomes and confirm that the 

objectives set out in Section 1.3 was achieved and thus to the overall aim of this study, were 

accomplished.   

 

6.2 Limitations and recommendations 

Despite the good results obtained in this study, some limitations need to be considered. Firstly, only 

two audio classes, pure speech and music were evaluated. Although this is pertinent to curated 

audio databases, it does not represent the nature of sound that we normally encounter in real life. 

Audio signals are typically a mixture of speech, music and background ambient noise. Adapting the 

classification algorithm to a multi-class model is completely within the potential of the MLP neural 

network and the biggest change required, is the use of a multi-class activation function like the 
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softmax function. Secondly, the number of layers and perceptions in the MLP neural network was 

not specifically optimised but rather chosen based on limited empirical experiments. The MLP 

neural network performs very well with the parameters selected, yet it could be beneficial to 

conduct optimisation of these parameters as this may well increase performance and/or decrease 

complexity. Another limitation is that the classification algorithm operates on off-line audio data. 

The classification algorithm would ideally be used for real-time classification. This could be achieved 

by integrating the part of the algorithm that extracts the audio features and the MLP neural network 

part with asynchronous multi-processing queues in Python. 

6.3 Future research 

Besides the recommendations discussed in the previous section, some other research topics 

opportunities emanated during this study. The MLP neural network algorithm described in this study 

was developed and tested on standard computer hardware. It would be a natural progression to 

apply this algorithm to miniaturised portable hardware and specifically Internet of Things (IoT) 

devices for applications such as security surveillance and real-time speech recognition and Natural 

Language Processing (NLP). 

6.4 Conclusion 

This research described the development of a speech and music discrimination algorithm using 

a simple feed-forward neural network classifier that can be used as a building block, enabling an 

automatic process of discriminating between speech and non-speech data for building speech 

libraries and ultimately as a tool that can assist research into the processing of local languages. It 

was demonstrated that with thorough feature selection processes, a mean accuracy of 99.86% and 

50% reduction in dimensionality was achieved, which results in a significant reduction in processing 

effort required. This is particularly important in embedded processor applications where processing 

power is often minimal or inadequate and energy must be conserved. The salient conclusion from 

this study is that careful evaluation and selection of features yield significant accuracy and 

performance gains.  
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Appendix A – Summary of previous studies 

Paper Main 

Applications 

Features  Classification 

method  

Audio material  Results Notes: 

              

(Ajmera, 

McCowan and 

Bourlard, 2003) 

Speech/music 

segmentation 

using entropy and 

dynamism 

features in an 

HMM 

classification 

framework. 

 

Automatic 

transcription of 

broadcast news 

Entropy measure 

and “dynamism” 

estimated at the 

output of a 

multilayer 

perceptron (MLP) 

trained to emit 

posterior 

probabilities of 

phones. MLP 

input: 13 first 

cepstra of a 12th-

order perceptual 

linear prediction 

filter.  

2-state HMM 

with minimum 

duration 

constraints 

(threshold-free, 

unsupervised, no 

training). 

4 files (10 min. 

each): alternate 

segments of 

speech and 

music, 

speech/music 

interleaved 

GMM: Speech 

98.8%, Music 

93.9%. 

Alternating, 

variable-length 

segments (MLP): 

Speech 98.6%, 

Music 94.6%. 

 

              

(Alexandre et al., 

2006) 

Speech/music 

segmentation 

using entropy and 

dynamism 

features in an 

HMM 

classification 

framework. 

Speech/music 

classification 

algorithm for 

hearing aids. 

Spectral centroid, 

spectral roll-off,  

spectral flux, ZCR, 

High Zero 

Crossing Rate 

Ratio, short-time 

energy, low short 

time energy ratio 

(LSTER), MFCC, 

voice-to- white, 

activity level, 

loudness, 

Spectral Flatness 

Measure (SFM) 

Fisher linear 

discriminant, 

three-layer MLP 

neural network 

Total of 2936 files 

of 2.5 seconds 

each (122min 

33sec), Sampled 

at 22050 Hz with 

16 bits per 

sample. Classes: 

speech, speech in 

stationary noise, 

speech in non-

stationary noise, 

stationary noise 

and non-

stationary noise 

(training: 45 min, 

validation: 17 min 

and testing: 

60min ) 

Music 99.1%, 

speech 96.6%. 

Individual 

features: 95.9% 

(MFCC), 95.1% 

(voice to white). 
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(Alexandre et al., 

2008) 

Speech/music/noi

se classification in 

hearing aids 

using a two-layer 

classification 

system with MSE 

linear 

discriminants. 

Development of 

an automatic 

sound classifier 

for digital hearing 

aids with 

automatic self-

adaptation. 

14 Features: 

Spectral Centroid, 

Spectral Roll-Off, 

Voice2White, 

Spectral Flux, 

Zero Crossing 

Rate, Short-Time 

Energy, 

Percentage of 

Low Energy 

Frames, High 

Zero Crossing 

Rate Ratio, Low 

Short-Time 

Energy Rate, 

Spectral Flatness 

Measure, Mel 

Frequency 

Cepstral 

Coefficients, 

Loudness, 

Spectral Crest 

Factor, 

Bandwidth 

Two-stage Mean 

Squared Error 

(MSE) linear 

discriminant 

classifier, first 

one discriminates 

the input sound 

into either speech 

or non-speech, 

and the second 

layer classifies it 

into either speech 

in quiet or speech 

in noise. 

Total of 2936 

files, with a 

length of 2.5 

seconds each. 

The sampling 

frequency was 

22050 Hz with 16 

bits per sample 

For a similar 

computational 

complexity, the 

single-layer 

system obtains an 

error probability 

equal 11.53%, 

while the dual-

layer system 

reduces the error 

probability down 

to 8.83%. 

The experiments 

prove that the 

two-layer 

approach 

presents a lower 

computational 

complexity in 

terms of the 

number of sums 

and 

multiplications 

required to 

obtain an output. 

             

(Bachu et al., 

2010) 

Separation of 

Voiced and 

Unvoiced using 

Zero crossing rate 

and Energy of the 

Speech Signal. 

Separation of 

voiced and 

unvoiced speech 

ZCR and Energy Not stated Not stated Not stated  

              

(Balabko, 1999) 

Speech and music 

discrimination 

based on signal 

modulation 

spectrum. 

Speech/music 

discrimination for 

automatic speech 

recognition 

systems  

MFCC. Used 6th 

band (466-600 

Hz) and 20th 

band (1510-1732 

Hz) out of 40 

bands 

Gaussian 

Classifier 

News broadcast 

of 24 minutes and 

studio music, 

various genres 

Between 62% of 

music accuracy 

and 98% speech 

accuracy 
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(Barbedo and 

Lopes, 2006) 

Automatic genre 

classification of 

musical signals. 

Automatic genre 

classification of 

musical signals. 

Bandwidth, 

spectral roll-off, 

spectral flux, and 

loudness. Three 

summary 

features are 

extracted: mean, 

variance, and 

main peak 

prevalence 

Pairwise 

Euclidean 

distance  four-

layer hierarchical 

structure search 

tree and linear 

discriminant 

analysis (LDA) 

More than 20 

hours of audio 

data. Each genre 

is represented by 

at least 40 

samples. The 

signals were 

sampled at 48 

kHz and 

quantized with 16 

bits. 

The accuracy 

achieved for the 

first layer is 

higher than 87% 

and accuracy of 

61% for the lower 

level genres 

 

              

(Beierholm and 

Baggenstoss, 

2004) 

Speech music 

discrimination 

using class-

specific features. 

Class-specific 

features 

discriminating 

between speech 

and music. 

Auto-correlation 

function (ACF)  

Class-specific 

density functions 

were estimated 

using Gaussian 

mixture HMMs. 

130 speech 

samples and 75 

music samples 

were used in the 

density 

estimation 

Speech: 560 

seconds / 11 

speakers 

Music: 12 

minutes classical, 

20 minutes Pop   

2-second clips, 16 

kHz sample rate 

Speech: 

untrained 100% / 

trained 100%  

Music: untrained 

80 / trained 100% 

Used class-

specific features 

approach.  

Given the small 

training corpus, 

the result does 

not seem 

plausible. No 

mention of 

training vs testing 

data ratio. Gross 

overfitting? 

              

(Bugatti, 

Flammini and 

Migliorati, 2002)  

Speech music 

discrimination 

using class-

specific features. 

“Table of Content 

description” of a 

multimedia 

document 

ZCR-based 

features, spectral 

flux, short-time 

energy, cepstrum 

coefficients, 

spectral 

centroids, the 

ratio of the high-

frequency power 

spectrum, a 

measure based 

on the syllabic 

frequency  

Multivariate 

Gaussian 

classifier, neural 

network (MLP)  

30 minutes of 

alternating 

sections of music 

and speech (5min 

each)  

95%–96% (NN). 

Total error rate: 

17.7% (Bayesian 

classifier), 6.0% 

(NN). 

As a first stage, a 

silence detector is 

used, which 

divides the 

silence frames 

from the others 

with a measure of 

the short-time 

energy 
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(Bugatti, Leonardi 

and Rossi, 1999) 

A Video Indexing 

Approach Based 

on Audio 

Classification. 

Video indexing 

approach based 

only on audio 

classification. 

ZCR variance, 

skewness (3rd 

moment), 

Difference 

between the 

number of ZCR 

samples which 

are above and 

below the mean 

and Short-time 

energy 

Multivariate 

Gaussian 

classifier 

Not stated Not stated  

              

(Burred and 

Lerch, 2004) 

A Video Indexing 

Approach Based 

on Audio 

Classification. 

Audio 

classification 

(speech/ 

music/backgroun

d noise), music 

classification into 

genres 

Statistical 

measures of the 

short-time frame 

features: ZCR, 

spectral 

centroid/roll-

off/flux, first 5 

MFCCs, audio 

spectrum 

centroid/flatness, 

harmonic ratio, 

beat strength, 

rhythmic 

regularity, RMS 

energy, time 

envelope, low 

energy rate, 

loudness, others 

KNN classifier, 3- 

component GMM 

classifier  

3 classes of 

speech, 13 genres 

of music and 

background 

noise: 50 

examples for 

each class (30 sec 

each), from CDs, 

MP3, and radio. 

94.6% /96.3% 

(hierarchical 

approach and 

direct approach, 

resp.) 

 

              

(Carey, Parris and 

Lloyd-Thomas, 

1999) 

A comparison of 

features for 

speech, music 

discrimination 

Proof of concept 

for pitch and 

amplitude 

features 

Mel Frequency 

Cepstral 

Coefficients, 

Delta Cepstral 

Coefficients, 

Amplitude,  Delta 

Amplitude, Pitch, 

Delta Pitch, Zero-

Crossing Rate and 

Delta Zero-

Crossing Rate 

Gaussian Mixture 

Model using the 

difference in the 

log-likelihood 

12 hours of 

multilingual 

speech and 8 

hours of music 

(classical, pop, 

jazz and some 

world music) all in 

10-second files  

Results reported 

as equal error 

rate (EER): ZCR 

features 6% EER, 

Pitch features 4% 

EER and 

amplitude 

features 1.2-1.7% 

EER 
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(Wu Chou and 

Liang Gu, 2001) 

Robust singing 

detection in 

speech/music 

discriminator 

design. 

Signing signal 

detection in 

speech/music 

discrimination 

applied to 

applications of 

audio indexing. 

4 Hz modulation 

energy, harmonic 

coefficient and 4 

Hz modulation 

value of the 

harmonic 

coefficient 

Gaussian Mixture 

Model 

PBS skills 

database. 26 

minutes of 

speech, music 

and singing 

signals. 16-bit 

monophonic 

samples at 16 kHz 

sampling rate 

62% error rate 

reduction. 

Two-stage 

classification 

algorithm - 

classified into 

singing and non-

singing segments 

in the first stage, 

followed by 

conventional 

speech/music 

discrimination in 

the second stage. 

Rule-based Post-

Filtering 

              

(El-Maleh et al., 

2000) 

Speech/music 

discrimination for 

multimedia 

applications. 

Automatic coding 

and content-

based 

audio/video 

retrieval 

Line spectral 

frequencies (LSF), 

differential LSF, 

measures based 

on the ZCR of 

high-pass filtered 

signal and linear 

prediction zero-

crossing ratio (LP-

ZCR) 

KNN classifier and 

quadratic 

Gaussian 

classifier (QCG) 

Music and speech 

audio recordings 

with 8 kHz 

sampling 

frequency. 

Several speakers, 

different genres 

of music 

(training: 9.3 min. 

and 10.7min., 

resp.) 

Frame level 

(20ms): music 

72.7% (QGC), 

79.2% (KNN). 

Speech 74.3% 

(QGC), 82.5% 

(KNN). Segment 

level (1 sec.), 

music 94%–100%, 

speech 80%–94%. 

 

              

(Ericsson, 2009) 

Automatic 

speech/music 

discrimination in 

audio files. 

Thesis – 

Discrimination 

and annotation of 

speech and music 

for radio 

broadcasts. 

Variance, 

standard 

deviation and the 

derivative and 

the standard 

deviation of the 

RMS amplitude, 

Zero Crossing‐

Rate (ZCR), Mel 

Frequency 

Cepstrum 

Coefficients 

(MFCC), Spectral 

Centroid (SC), 

Pulse Clarity (PC) 

and Modified Low 

Compare feature 

histograms per 

class. Final 

classification 

algorithm not 

stated. 

Swedish Radio’s 

digital archive 

(Digas).  

Accuracy of over 

97% stated. 

Only the MLER 

feature was used 

for classification 
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Energy Ratio 

(MLER) 

              

(Foote, 1997) 

Content-based 

retrieval of music 

and audio. 

Audio search 

engine. 

Retrieving audio 

documents by 

acoustic similarity 

12 MFCC, Short-

time energy  

Template 

matching of 

histograms, 

created using a 

tree-based, 

vector quantizer, 

trained to 

maximize mutual 

information. 

Create histogram 

templates of 

classes to 

compare 

unknown 

samples based on 

Euclidian and 

Cosine distance 

measures. 

409 sounds and 

255 (7 sec long) 

clips of music. 16 

kHz / 16Bit 

sampled. 

No specific 

accuracy rates 

are provided. A 

high rate of 

success in 

retrieving simple 

sounds. 

Rejected the use 

of HMM due to 

computational 

complexity. 

Cosine distance 

outperformed 

Euclidian distance 

measures 

comprehensively  

              

(Gallardo-Antolin 

and Montero, 

2010) 

Content-based 

retrieval of music 

and audio. 

Automatically 

classifying 

collections of 

audio files in 

three acoustic 

classes: speech, 

instrumental 

music and song 

(music with 

singing voice). 

Mean, variance, 

kurtosis and 

skewness of 12 

MFCC. 

Polynomial-Fit 

Histogram 

Equalization 

(PHEQ) of the 

MFCC 

GMM-based 

classifier 

2440 audio files 

covering a wide 

variety of 

speakers and 

musical genres. 

800 excerpts of 

speech, 901 of 

instrumental 

music, and 739 of 

songs (singing 

voice). 22.05 kHz 

sampling rate. 6-

fold cross-

validation 

Frame level 

(25ms): MFCC 

only – 72.34% 

accuracy, 

Normalised MFCC 

73.36%  

Segment level 

(1.5s): PHEQ 2nd 

order – 75.29%, 

Normalised to 

mean MFCC + 

PHEQ 2nd order – 

81.52% and 

normalized MFCC 

augmented with 

their 

corresponding 

first derivatives + 

MFCC mean and 

variance are not 

discriminative 

enough for 

distinguishing 

between the 

different audio 

classes. 
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PHEQ 2nd order: 

83.81% 

              

(Giannakopoulos, 

Pikrakis and 

Theodoridis, 

2006)  

A speech/music 

discriminator for 

radio recordings 

using Bayesian 

networks. 

 

Speech/music 

discriminator for 

radio recordings. 

The first and 

second moment 

of Spectral 

Centroid, Spectral 

Flux, Spectral 

Rolloff, Zero 

Crossing Rate, 

Frame Energy and 

four Mel-

frequency 

cepstral 

coefficients 

(MFCCs) 

Bayesian 

Network (BN) 

that combines 

the outputs of 

nine individual k-

Nearest 

Neighbour 

classifiers. 

Distinct radio 

broadcasts (3 

hours 

of total recording 

duration). 16 kHz 

sampling. 

Average 

classification 

accuracy of 

94.5%. 

Use the region 

growth filtering 

technique to 

aggregate 

classifier output  

              

(Giannakopoulos, 

2015) 

PyAudioAnalysis: 

An open-source 

python library for 

audio signal 

analysis. 

Python Audio 

Analysis library is 

to provide a wide 

range of audio 

analysis 

functionalities 

Zero-Crossing 

Rate, Energy, 

Entropy of 

Normalized 

Energy, Spectral 

Centroid,  

Spectral Spread 

(The second 

central moment 

of the spectrum.), 

Spectral Entropy, 

Spectral Flux, 

Spectral Rolloff, 

12 MFCCs, 

Chroma Vector 

(12-element) and 

Chroma 

Deviation 

Support vector 

machines and the 

k-Nearest 

Neighbour 

classifier 

N/A N/A  
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(Graves, 

Mohamed and 

Hinton, 2013) 

Speech 

recognition with 

deep recurrent 

neural networks. 

Speech 

recognition. 

Map directly from 

acoustic to 

phonetic 

sequences. No 

feature 

extraction 

required. 

Recurrent neural 

networks (RNNs).  

All networks were 

trained using 

stochastic- tic 

gradient descent, 

with learning rate 

10−4, momentum 

0.9 and random 

initial weights 

were drawn 

uniformly from 

[−0.1, 0.1]. 

TIMIT Acoustic-

Phonetic 

Continuous 

Speech Corpus. 

462 Speakers of 

eight major 

dialects of 

American English, 

each reading ten 

phonetically rich 

sentences. The 

TIMIT corpus 

includes time-

aligned 

orthographic, 

phonetic and 

word 

transcriptions as 

well as a 16-bit, 

16kHz speech 

waveform file for 

each utterance. 

Best result of 

17.7% phoneme 

error rate on the 

core test set. 

Instead of 

combining RNNs 

with HMMs, it is 

possible to train 

RNNs ‘end-to-

end’ for speech 

recognition. A 

good discussion 

of Deep RNN's.  

Network depth is 

more important 

than layer size. 

              

(Khan and Al-

Khatib, 2006) 

Machine-learning 

based 

classification of 

speech and 

music. 

Evaluation of 

features and 

classifiers for 

speech and music 

classification. 

Haar Discrete 

wavelet 

transform, the 

variance of MFCC, 

RMS of lowpass 

filtered signal, 

delta ZCR. Used 

fuzzy C-means 

clustering to 

select viable 

feature. 

Multi-Layer 

Perceptron (MLP) 

Neural Networks, 

radial basis 

functions (RBF) 

Neural Networks, 

and Hidden 

Markov Model 

(HMM) 

Music, speech, 

and 

speech+music 

data.  Speech: 

both genders, 

American English, 

Urdu, Japanese, 

Spanish, and 

Hebrew. The 

audio samples 

were extracted 

from 

documentaries 

and from 

different movies. 

There were 

approximately 

2.25 h of speech, 

2.72 h of music 

and 0.62 h of 

speech/music 

MLP:  

Music 83.11%, 

Speech 39.86% 

Music+Speech 

64.2% Overall 

62.39% Accuracy 

RBF: 

Music 70.27%, 

Speech 20.27% 

Music+Speech 0% 

Overall 30.18% 

Accuracy 

HMM: 

Music 95.32%, 

Speech 95.32% 

Music+Speech 

7.30% Overall 

65.98% Accuracy 

RBF networks 

give satisfactory 

results only for 

the English 

language. MLP 

networks and 

HMMs have given 

good results. A 

disadvantage of 

using HMMs is 

that it requires 

long training and 

testing time as 

compared to 

MLP. 
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data distributed 

over 3-s audio 

files, 16-bit, 44.1 

kHz, mono PCM 

wave files. 

              

(Lavner and 

Ruinskiy, 2009) 

A Decision-Tree-

Based Algorithm 

for Speech/Music 

Classification and 

Segmentation. 

Consumer audio 

application of 

segmentation of 

audio signals into 

speech or music 

Mean and 

Standard 

deviation of 

Short-time 

energy, Zero 

Crossing rate, 

Band Energy 

Ratio, 

Autocorrelation 

Coefficient, 

MFCC, Spectral 

Rolloff, Spectral 

Centroid. Spectral 

Flux and 

Spectrum Spread. 

The skewness of 

ZCR and the 

difference 

magnitude 

between 

consecutive 

analysis frames. 

Low Short Time 

Energy 

Three-stage 

sieve-like 

decision tree 

approach, 

applying both 

Bayesian and 

rule-based 

methods.  

More than 12 

hours of speech 

material was 

collected from 

free internet 

speech databases 

and more than 22 

hours of music 

extracted from 

CD media and 

some databases 

covering multiple 

genres. 

Correct 

identification 

rates of 99.4% 

(Speech) and 

97.8% (Music) 

Five thresholds 

are computed for 

each feature, 

based on the 

estimated PDFs. 

Elaborate rule-

based final 

classifier and 

result smoothing 

scheme yield 

good results  

              

(Lobo and Loizou, 

2003) 

Voiced/unvoiced 

speech 

discrimination in 

noise using Gabor 

Algorithm for 

voiced-unvoiced 

speech 

discrimination in 

noise. 

Gabor coefficient 

atomic 

decomposition 

Radial Basis 

function MLP 

neural network 

62 sentences 

taken from the 

HINT database 

sampled at 

20,161 Hz 

84% correct 

classification 

accuracy 
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atomic 

decomposition 

              

(Liu, Wang and 

Chen, 1998) 

Audio Feature 

Extraction and 

Analysis for Scene 

Segmentation 

and 

Classification.  

Analysis of audio 

for the scene 

classification of 

TV programs 

The mean and 

standard 

deviation of RMS 

value, Silence 

ratio, volume std, 

volume dynamic 

range, mean and 

std of pitch 

difference, 

speech, noise 

ratios, frequency 

centroid, 

bandwidth, 

energy in 4 sub-

bands 

A feedforward 

neural network 

using the one-

class-in-one-

network (OCON) 

structure 

70 audio clips 

from TV 

programs (1 sec. 

long) for each 

scene class 

(training: 50, 

testing: 20) 

sampled at 22 

kHz 

Average 88% 

class separation 

accuracy 

One-class-in-one-

network (OCON) 

structure, where 

one subnet is 

designated for 

recognizing one 

class only 

              

(Lu, Jiang and 

Zhang, 2001) 

 A robust audio 

classification and 

segmentation 

method.  

Audio content 

analysis in video 

parsing  

High zero-

crossing rate ratio 

(HZCRR), low 

short-time 

energy ratio 

(LSTER), linear 

spectral pairs, 

band periodicity, 

noise-frame ratio 

(NFR) 

3-step 

classification: 1. 

KNN and linear 

spectral pairs-

vector 

quantization 

(LSP-VQ) for 

speech/non-

speech 

discrimination. 2. 

Heuristic rules for 

non-speech 

classification into 

music/backgroun

d noise/silence. 3. 

Speaker 

segmentation 

MPEG-7 test data 

set, TV news, 

movie/audio 

clips. Speech: 

studio recordings, 

4 kHz and 8 kHz 

bandwidths, 

music: songs, pop 

(training: 2 hours, 

testing: 4 hours). 

Speech 97.5%, 

music 93.0%, env. 

sound 84.4%. 

Results of only 

speech/music 

discrimination: 

98.0% 
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(Lu, Zhang and Li, 

2003) 

Content-based 

audio 

classification and 

segmentation by 

using support 

vector machines.  

Content-based 

audio 

classification and 

segmentation 

using support 

vector machines 

(SVM) 

8 MFCC 

coefficients,  

zero-crossing rate 

(ZCR), short-time 

energy (STE), sub-

band power 

distribution, 

brightness, 

bandwidth, 

spectrum flux 

(SF), band 

periodicity (BP), 

and noise frame 

ratio (NFR). 

Compared the 

performance of 

SVM, K-Nearest 

Neighbor (KNN), 

and Gaussian 

Mixture Model 

(GMM). Audio is 

classified into five 

classes. They are 

silence, music, 

background 

sound, pure 

speech, and non-

pure speech 

which include 

speech with 

music and speech 

with noise. Used 

rule-based pre- 

and post-

classification 

2600 audio clips, 

+- 4 hours in total 

length, collected 

from 

TVprograms, the 

Internet, audio 

and music CDs. 8 

kHz sample rate 

at 16-bit per 

sample. 

Average 

accuracy: 

Speech/non-

speech 96.36% 

Music/backgroun

d sound 94.67%  

Pure speech/non-

pure speech 

89.64% 

SVM is more 

accurate and 

efficient than the 

KNN and GMM 

algorithms. 

              

(Markaki and 

Stylianou, 2011) 

Discrimination of 

speech from non-

speech in 

broadcast news 

based on 

modulation 

frequency 

features. 

Discrimination of 

speech and non-

speech for 

speaker 

segmentation/re

cognition and 

speech 

transcription 

MFCC and 

Modulation 

spectrum 

envelope for 65 

frequency sub-

bands was 

detected by a 

magnitude 

square operator.  

Higher-order 

generalization of 

singular value 

decomposition 

(HOSVD) for 

dimensionality 

reduction. 

SVM classifier 

with median filter 

smoothing 

6 hours of 

broadcasts of 

Greek TV 

programs (ERT3). 

mono channel 

and 16 bit per 

sample, 

with 16 kHz 

sampling 

Equal Error Rate: 

3.78% 
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(Muñoz-Expósito 

et al., 2009) 

Speech/music 

discrimination 

based on warping 

transformation 

and fuzzy logic for 

intelligent audio 

coding.  

Intelligent audio 

coding system. 

Warped LPC-

based spectral 

centroid. Used 

the mean, 

variance, and 

skewness of the 

feature vector. 

3-component 

GMM, with or 

without fuzzy 

rules-based 

system. SVM with 

a fuzzy rules-

based system. 

Speech (radio and 

TV news, movie 

dialogs, different 

conditions); 

music (various 

genres, different 

instruments/sing

ers) -1 hour for 

each class. 

GMM with LDA: 

speech 93.47%, 

music 86.95% 

overall 90.21%. 

RBF-SVM:  speech 

95.56%, music 

88.95% overall 

92.25%.  

RBF-SVM with a 

fuzzy system: 

speech 97.46%, 

music 98.85% 

overall 98.15%. 

 

              

(Panagiotakis 

and Tziritas, 

2005) 

A speech/music 

discriminator 

based on RMS 

and zero-

crossings.  

Web-based 

streaming audio 

content 

characterisation. 

Mean and 

variance of RMS 

value and ZCR as 

an indication of 

mean frequency. 

Rule-based 

Gaussian 

likelihood ratio 

test. 

3h speech and 52 

min. music. 

Overall 

classification 

accuracy about 

95%. 97% for 

speech and 92% 

for music. 

 

              

(Pikrakis, 

Giannakopoulos 

and Theodoridis, 

2006) 

Speech/music 

discrimination for 

radio broadcasts 

using a hybrid 

HMM-Bayesian 

Network 

architecture.  

Discrimination 

scheme for radio 

recordings 

Energy, zero-

crossing rate, 

spectral entropy 

and the first two 

Mel- Frequency 

Cepstrum 

Coefficients 

(MFCCs). 

Variable Duration 

Hidden Markov 

Model (VDHMM) 

and a Bayesian 

Network (BN). 

340 minutes of 

BBC on-line radio 

recordings. 

Overall 

performance: 

94.95% 

A joint 

segmentation/cla

ssification 

scheme is 

employed for 

speech/music 

discrimination 

using a hybrid 

architecture 

consisting of a 

Variable Duration 

Hidden Markov 

Model (VDHMM) 

and a Bayesian 

Network (BN). 
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(Pinquier, Rouas 

and E-Obrecht, 

2002) 

Robust 

speech/music 

classification in 

audio documents. 

To describe and 

index an audio 

document.  

Keywords and 

speakers 

detection. 

4 Hz modulation 

energy, entropy 

modulation, 

number of 

“stationary” 

segments and 

segment 

duration. 

Bayesian 

maximum 

likelihood 

classifier 

MULTEX Corpus 

based on reading 

speech excerpts 

(20 kHz sampling 

rate) and a 

corpus-based on 

various musical 

excerpts. (16 kHz 

sampling rate). 

The total 

duration for each 

corpus (music 

and speech) was 

about 2000 

seconds. An 

experimental 

corpus is an audio 

part sampled at 

16 kHz of a 20 min 

TV movie 

Overall 

performance of 

this algorithm is 

90.1 % correct 

classification. 

Speech with an 

accuracy of 99.5% 

and music 93% 

 

              

(Saad et al., 2002) 

A multi-feature 

speech/music 

discrimination 

system.  

Automatic 

classification of 

audio signals 

Percentage of low 

energy frames, 

spectral roll-off, 

spectral centroid, 

spectral flux, ZCR 

Rule-based 

classification 

20 speech files 

and 20 music 

files. Duration not 

stated. 

Speech: 90% 

Music 98.5% 

Overall: 94.25% 

 

              

(Saunders, 1996) 

Real-time 

discrimination of 

broadcast 

speech/music.  

Automatic 

monitoring of FM 

radio channels in 

real-time 

Short-time 

energy, statistical 

parameters of the 

ZCR 

Multivariate 

Gaussian 

classifier 

Talk, 

commercials, 

music (different 

types) 2h 

95%–96%  

              

(Scheirer and 

Slaney, 1997) 

Construction and 

Evaluation of a 

Robust Multi-

feature Speech 

Music 

Discriminator. 

Speech/music 

discrimination for 

automatic speech 

recognition 

13 temporal, 

spectral and 

cepstral features 

(e.g., 4 Hz 

modulation 

energy, % of low 

energy frames, 

spectral roll-off, 

spectral centroid, 

Gaussian mixture 

model (GMM), K 

nearest 

neighbour (KNN), 

K-D trees, 

multidimensional 

Gaussian MAP 

estimator 

FM radio (40min):  

male and female 

speech, various 

conditions, 

different genres 

of music 

(training: 36min, 

testing: 4 min) 

94.2% (frame-by-

frame), 98.6% 

(2.4 sec 

segments) 

Most efficient: 

Low Energy & 

Zero-cross Rate 

Lowest error %: 

Var Spec Flux, 4 

Hz Mod Energy & 

Low Energy. Best: 

4 Hz energy, the 

variance of 
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spectral flux, ZCR, 

cepstrum-based 

feature, 

“rhythmicness”), 

a variance of 

features across 1 

sec. Pulse Metric 

spectral flux, and 

pulse metric. 

              

(Sigtia et al., 

2016) 

Automatic 

Environmental 

Sound 

Recognition: 

Performance 

Versus 

Computational 

Cost. 

Automatic 

Environmental 

Sound 

Recognition 

(AESR) algorithm 

for low power IoT 

devices. 

MFCCs, Spectral 

centroid, Spectral 

flatness, Spectral 

roll-off, Spectral 

kurtosis and Zero 

crossing rate 

Compared 

Gaussian mixture 

models (GMMs), 

support vector 

machines (SVMs) 

and deep neural 

networks (DNNs) 

in terms of their 

performance and 

their 

computational 

cost. 

Three private 

data sets made 

available by 

Audio Analytic 

Ltd. Dataset 1: 4 

822 seconds of 

training data and 

3 669 seconds of 

test data, Dataset 

2: 15 271 seconds 

of training data 

and 5 043 

seconds of testing 

data and Dataset 

3 consists of 5 

000 seconds of 

training data and 

4 089 seconds of 

test data. 

Recordings were 

converted to 16 

kHz, 16 bits 

Dataset 1 EER: 

GMM 14.0%, 

SVM 12.9% and 

DNN 10.8% 

Dataset 2 EER: 

GMM 2.9%, SVM 

3.0% and DNN 

1.7% 

Dataset 3 EER: 

GMM 14.0%, 

SVM 12.9% and 

DNN 10.8% 

Neural Networks 

outperforms all 

the other models. 

Network 

performance is 

not particularly 

sensitive to the 

specific number 

of hidden units in 

each layer. 

However, they 

did observe that 

deeper networks 

(> 1 hidden layer) 

yielded better 

performance. 

Recurrent Neural 

Network 

architectures 

yield slightly 

worse 

performance and 

are 

computationally 

more expensive. 

              

(Taniguchi, 

Tohyama and 

Shirai, 2008) 

 Detection of 

speech and music 

based on spectral 

tracking.  

Speech, music 

and mixed sound 

classification 

method based on 

sinusoidal 

trajectories. 

Sinusoidal 

trajectories and 

temporal 

features 

extracted 

thereof. 

Gaussian mixture 

models 

Three categories:  

speech, singing 

voice, and 

instrument.  400-

sample dataset, 

single channel at 

a 16-kHz 

sampling rate. 

F1 score was 

0.711 when using 

the 16-mixture 

GMMs and the 20 

features 
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Duration not 

stated. 

              

(Tardón, 

Sammartino and 

Barbancho, 2010) 

Design of an 

efficient music-

speech 

discriminator.  

Efficient music-

speech 

discriminator for 

large audio data 

sets 

The mean and 

standard 

deviation of RMS, 

ZCR, Cepstrum 

Residuals, 

Spectral Flux, DFT 

Magnitude, 5 

MFCC's, and 

Volume dynamic 

ratio were used in 

the final 

classification. 

Silence ratio, 

Spectral Centroid, 

Spectral Rolloff, 

Bandwidth, 

frame and 

segment energy, 

fundamental 

frequency and 

Salience of pitch 

was also 

evaluated. 

Simple Gaussian 

model 

Corpus supplied 

by Fundación 

Albéniz (Albeniz 

Foundation), 

"containing a 

large variety of 

classical music 

pieces played 

with a different 

instrument, 

which include 

comments and 

speeches of 

famous 

performers." No 

further 

information 

specified 

Evaluated 

multiple 

combinations of 

features to 

compile a subset 

that attains a 

mean error rate 

of 

0.3% over the test 

data set. 

Fisher linear 

discriminator as a 

technique to 

reduce the 

dimensionality 

              

(Tzanetakis and 

Cook, 2002) 

Musical genre 

classification of 

audio signals.  

Genre 

categorisation for 

audio 

Mean and Std 

Deviation of 

Spectral Centroid, 

Spectral-Rolloff, 

Spectral Flux, 

Zero Crossing 

ratio as well as 

Percentage Low 

Energy frames, 

MFCC and  

rhythm features 

derived from 

Discrete Wavelet 

Transform 

Gaussian 

classifier 

The database 

collected from 

radio, compact 

disks and the 

Web. Total of 

6.25 hours of 

audio, fifteen 

genres including 

male and female 

speech 

86% 

discrimination 

accuracy 

between music 

and speech 
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(Wang, Gao and 

Ying, 2003) 

A fast and robust 

speech/music 

discrimination 

approach.  

 An experimental 

approach to 

discriminate 

speech and music 

 Modified Low 

Energy ratio 

 Bayes MAP 

classifier. Rule-

based post-

decision filter 

 5 hours of audio 

data, which 

involves clean 

and noisy speech 

from various 

speakers (English, 

French and 

Chinese), as well 

as a wide range of 

musical content. 

 Classification 

accuracy of 97% 

for music and 

98.4% for speech 

  

        

(Williams and 

Ellis, 1999) 

Speech/music 

discrimination 

based on the 

posterior 

probability  

 Segmentation of 

speech versus 

non-speech in 

automatic speech 

recognition tasks 

 Mean per-frame 

entropy and 

average 

probability 

“dynamism”, 

background-label 

energy ratio, 

phone 

distribution 

match—all 

derived from 

posterior 

probabilities of 

phones in hybrid 

connectionist-

HMM framework 

Gaussian 

likelihood ratio 

test  

 Radio recordings, 

speech (80 

segments, 15 sec. 

each) and music 

(80, 15), 

respectively. 

Training: 75%, 

testing: 25%. 

 100% accuracy 

with 15 seconds 

long segments 

98.7% accuracy 

with 2.5- seconds 

long segments 

  

       

(Zhang and Jay 

Kuo, 2001) 

Audio content 

analysis for online 

audio-visual data 

segmentation 

and classification 

Audio 

segmentation/ 

retrieval for video 

scene 

classification, 

indexing of raw 

audiovisual 

recordings, 

database 

browsing 

Features based 

on short-time 

energy, average 

ZCR, short-time 

fundamental 

frequency 

A rule-based 

heuristic 

procedure for the 

coarse stage, 

HMM for the 

second stage 

Coarse stage: 

speech, music, 

env. sounds and 

silence. Second 

stage: fine-class 

classification of 

env. sounds. 

>90% (coarse 

stage) 
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Appendix B – Summary of classifiers used in previous 
research 

Support Vector Machine (SVM) Bayesian Classifier Gaussian Classifier Gaussian Mixture Model (GMM) Hidden Markov model (HMM) 

          

Giannakopoulos, T. (2015) Giannakopoulos, T., Pikrakis, A., & 
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(2003).  
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(2003).  

Lu, L., Zhang, H.-J., & Li, S. Z. (2003) Lavner, Y., & Ruinskiy, D. (2009) Bugatti, A., Flammini, A., & Migliorati, P. 

(2002). 

Burred, J. J., & Lerch, A. (2004) Beierholm, T., & Baggenstoss, P. M. 

(2004) 

Markaki, M., & Stylianou, Y. (2011) Pikrakis, A., Giannakopoulos, T., & 

Theodoridis, S. (2006) 
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Plumbley, M. D. (2016) 
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Zhang, T., & Jay Kuo, C. C. (2001) 

 Wang, W. Q., Gao, W., & Ying, D. W. 

(2003) 

Tardón, L. J., Sammartino, S., & 
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   Taniguchi, T., Tohyama, M., & Shirai, K. 

(2008) 

 

Neural Networks (MLP, RNN, CNN) Discriminant Analysis k-Nearest Neighbor (kNN) Feature Histograms Decision Tree / Rule-based Classifier 

     

Multi-layer perceptron         

Ajmera, J., McCowan, I. & Bourlard, H., 

(2003).  

Alexandre, E., Cuadra, L., Álvarez, L., Rosa-

Zurera, M., López-Ferreras, F. (2006) 
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A. P. Lobo and P. C. Loizou (2003)  Lu, L., Zhang, H.-J., & Li, S. Z. (2003)  Saad, E.M., El-Adawy, M.I., Abu-El-Wafa, 
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Recurrent Neural Network     

Graves, A., Mohamed, A., & Hinton, G. 

(2013) 
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