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Background
Researchers have been utilizing linear mixed models
(LMMs) for different hierarchical study designs and
under different names, which emphasizes the need for a
standard in reporting such models [1, 2]. Mixed effects
models, multilevel data, contextual analysis, hierarchical
studies, longitudinal studies, panel data and repeated-
measures designs are some of the different names used
when referring to study designs and/or analytical tools
for correlated data. In addition, there is usually no dis-
tinction made between having a data structure that is
multilevel, and having a research question that requires
a multilevel analysis. There are multiple excellent tuto-
rials on multilevel analyses [3–5]. However, there is in-
consistency in how the results of LMMs are reported in
the literature [6]. Casals et al. conducted a systematic re-
view of how various LMMs were reported in the medical
literature, and found that important aspects were not re-
ported in most cases [6].
As an example, a cohort study of children that selects

a sample of schools, then selects students within schools,
and conducts multiple measurements over time in the
same students, would be a 3-level dataset: with school as
the highest level (Level 3), student as a lower level (Level
2), and time-point as the lowest level (Level 1). Repeated
measurements of a variable over time within a student
are likely to be similar, i.e. positively correlated. Also,
values of a variable measured on students of a particular
school may be more similar to each other than to the
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values of the same variable measured on students from
different schools, i.e. they are also likely to be positively
correlated. These within-level correlations reduce the
overall information in the data. Considering the correla-
tions typically leads to larger estimates of variances and
consequently lower power if sample sizes are not in-
creased at the design stage. At the analysis stage, incorp-
orating random effects into a regression model is one
way to acknowledge the variation among upper-level
units. Random intercepts and random slopes help to at-
tribute the variation in values of the outcome variable to
the relevant levels and independent variables.
A standardized checklist for the reporting of multilevel

data and the presentation of linear mixed models will
promote adequate reporting of correlated data analyses.
In this manuscript, we propose LEVEL (Logical Explana-
tions & Visualizations of Estimates in Linear mixed
models), a systematic approach for the presentation of
studies with correlated data from multilevel study de-
signs, with an accompanying checklist for standardizing
the reporting of results from linear mixed models. These
models are quite complex, and the intention of this
manuscript is not to be a statistical tutorial, but to men-
tion aspects of the study design and analysis methods
that we propose should be addressed in a publication.
We present the basics of a linear mixed model simply to
introduce the terminology and to help understand the
proposed reporting recommendations.

Methods
The linear mixed model
Written as an equation, the ‘null’ (no covariate) linear
mixed model for a 2-level hierarchical study is:
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Y ij ¼ μþ τi þ εij;

where i = 1, …,m indexes the number of upper-level units,
j = 1, …, ni indexes the number of base-level units in the ith

upper-level unit, μ denotes the overall mean of the
dependent random variable Y, τi is the random intercept ef-
fect of the ith upper-level unit, and εij is the random error
of the jth lower-level unit in the ith upper-level unit. We as-
sume Normal distributions for the random effects, such
that τi � Nð0; σ2I Þ and εij � Nð0; σ2EÞ , where σ2I is the
component of variation due to variability among upper-
level units, and σ2E is the residual component of variation
due to variability among lower-level units. We assume that
these two random effects are independent of each other.
By acknowledging multiple sources of variability and then

attributing the variation to the appropriate level, the multi-
level model can more accurately and precisely estimate the
effects of all variables included in the model [7]. Variance
components are used to calculate the “intra-level” or intra-
class correlation coefficient (ICC), a statistic that quantifies
the degree to which data at the lower level are correlated.
The ICC, also referred to as the variance partition coeffi-
cient (VPC), is calculated by the following proportion,

ICC ¼ VPC ¼ σ2I
σ2I þ σ2E

;

which helps answer the question: of the total variation in
Fig. 1 Schematic example of the ‘multilevel diagram’ for a 3-level hierarchi
over time in students, in a table format and b flowchart format
the outcome variable, how much is accounted for by the
variation among the upper-level units? As the term ICC
is often mistaken for an estimate of a correlation coeffi-
cient, we will use the more appropriate term VPC.
A VPC close to 0 suggests that little to no variation in

the outcome is attributable to variation among upper-
level units, so most of the variation in the outcome is
among the lower-level units and thus there is little cor-
relation among them. On the other hand, a VPC close to
1 suggests that most of the variation in the outcome is
attributable to variation among upper-level units, so lit-
tle variation is to be found among the lower-level units;
thus, there is high correlation among them. Calculating
the VPC can help determine the presence of correlation
at the lower level and the need to account for it in the
analyses. Interpretation of the magnitude of the ICC/
VPC is context dependent.
In hierarchical data structures with more than 2-levels

(see multilevel diagram in Fig. 1), the VPC can be calcu-
lated for outcomes measured on units of each lower-
level, with the numerator as the variation in outcome
between units on all levels above [8]. For the example in
Fig. 1, if we have the following ‘null’ model for the ob-
servation at time t on the jth pupil from the ith school,

Y ijt ¼ μþ Si þ Pij þ εijt;

then VPC1 quantifies the correlation among all the
cal study of students nested in schools and repeated measurements



Monsalves et al. BMC Medical Research Methodology            (2020) 20:3 Page 3 of 9
values between and within pupils nested within schools
and is given by

VPC1 ¼ σ2I
σ2I þ σ2

J þ σ2E
;

while VPC2 quantifies the correlation among the re-
peated measurements within pupils nested within
schools and is given by

VPC2 ¼
σ2I þ σ2J

σ2I þ σ2
J þ σ2E

;

where σ2I is the component of variation due to variabil-
ity among schools, σ2J is the component of variation due

to variability among pupils nested within schools, and σ2E
is the component of residual variation due to variability
in the repeated measurements within pupils.
Understanding the implications that correlations

among observations may have on the design and ana-
lyses of research studies is essential. At the design stage,
if the contribution to the VPC for a particular level (the
variance component) is small, it implies that there is lit-
tle variation among units at that level; it is therefore
more advantageous to sample more units from higher
levels from an efficiency and power standpoint. These
important statistical considerations in planning sample
sizes at the different levels are accounted for with the
variance inflation factor (VIF), also called the ‘design ef-
fect’. For a given level, k, the VIF is [1 + (mk-1) VPCk],
where mk is the average number of units in a member of
the kth level.
At the analysis stage, depending on the study de-

sign, linear mixed models can include random effects
to account for correlation in space or in a social
group (clustering), time (repeated-measures), or both.
Table 1 Example simple linear mixed models in 2-level and 3-level

Nature of design Random intercept e

2-level • Clustered Yij = β0 + β0i + β1Xij +

• No repeated measurements β0i � Nð0; σ2I Þ
εij � Nð0; σ2EÞ

2-level • Not clustered Yjt = β0 + β0j + β1Xjt

• Repeated measurements β0 j � Nð0; σ2JÞ
εjt � Nð0; σ2EÞ

3-level • Clustered Yijt = β0 + β0i + β0ij +

• Repeated measurements β0i � Nð0; σ2I Þ
β0ij � Nð0; σ2JÞ
εijt � Nð0; σ2EÞ

Note: Clusters are indexed by i, Subjects are indexed by j, and Time points are inde
Table 1 presents example linear mixed models with
dependent variable Y in hypothetical 2-level and 3-
level study designs, with a single independent variable
X. If the data were from a 1-level study design, the
model would have no random effects (except the re-
sidual error!): Yj = β0 + β1Xj + εj, where ε j � Nð0; σ2

EÞ.
The random effects applied in the simple linear mixed

models in Table 1 are assumed to have Normal distribu-
tions and to be independent from the error distribution.
If there is more than one random effect, one must also
specify if they are independent amongst themselves, and
if not, should specify the covariance structure amongst
the random effects.
The statistical literature is confusing and contradictory

as to whether to consider effects as fixed or as random
[9]. Many textbooks state that level effects must be con-
sidered as fixed effects if all possible members of that
level were studied, and as random effects if members of
that level are a sample from some population. Others
state that fixed effects are to be used if the specific mem-
ber effects are of interest, and as random effects if not.
The Hausman test for the difference between the
within-level and between-level regression coefficients is
sometimes used as a test for deciding whether to use a
random or fixed coefficient model [10]. We are not stat-
ing a position on this argument, but insist that one must
acknowledge the hierarchical study design, not ignore
the correlations, and justify the random intercepts and
random slopes used.
Multilevel data versus multilevel research question
The first step in analyzing multilevel data is to decide if
the research question is a multilevel question. The de-
sign of a study may be hierarchical and thus have corre-
lated data, but the research question may be one that
study designs

ffects only Random intercept effects and random slope effects

εij Yij = β0 + β0i + (β1 + β1i)Xij + εij

β0i � Nð0; σ2Iint:Þ
β1i � Nð0; σ2IslopeÞ
εij � Nð0; σ2EÞ

+ εjt Yjt = β0 + β0j + (β1 + β1j)Xij + εjt

β0 j � Nð0; σ2Jint:Þ
β1 j � Nð0; σ2JslopeÞ
εjt � Nð0; σ2EÞ

β1Xijt + εijt Yijt = β0 + β0i + β0ij + (β1 + β1i + β1ij)Xijt + εijt

β0i � Nð0; σ2Iint:Þ
β0ij � Nð0; σ2Jint:Þ
β1i � Nð0; σ2IslopeÞ
β1ij � Nð0; σ2JslopeÞ
εijt � Nð0; σ2EÞ

xed by t
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does not require multilevel analyses. For example, in a
clustered study design, research questions where the
dependent variable is at the highest level will not require
multilevel analyses since the members of the highest
level are uncorrelated. In this case, the variation amongst
members of the upper level is the only variance compo-
nent, and a fixed effects model analyzed by ordinary
least squares (OLS) is appropriate [10]. In a repeated
measures study design, if the dependent variable in the
research question is at a single time point, it is not a
multilevel question as there are no repeated measures.
Also, if the dependent variable is the time to the occur-
rence of an event (survival data), the research question is
no longer multilevel; unless there is additional hierarch-
ical structure, as in ‘frailty’ models. In a 2 or more level
hierarchical clustered study, any research question using
as dependent variable any lower level variable will re-
quire a multilevel analysis.
The next step is to consider using the multilevel

diagram [8] as presented in Fig. 1. The multilevel dia-
gram allows visualizing the levels of a study, the
structure of the levels, and the variables collected at
each level. Variables collected at higher levels than
the dependent variable are usually called contextual
variables. The diagram readily allows one to see if the
dependent variable for a particular research question
requires a multilevel analysis.
Another important consideration are ‘aggregated’ or

‘collapsed’ variables, which are variables derived by sum-
marizing the values of observations from lower levels.
For example, if years of education is available at the indi-
vidual level for each adult in a household, the variable
‘highest education level of the household’ is an aggre-
gated variable at the household level. If we have the sex
and the grade-points for each student in multiple
schools, the proportion of boys per school and the
school-wide average grade-point are school-level aggre-
gated variables.
Note that for a research question to be multilevel, the

crucial decision is whether the dependent variable is at a
lower level. One can have independent variables at a dif-
ferent (lower) level, but if the dependent variable is at
the highest level, it is not a multilevel research question.
For example, in a repeated measures design, the out-
come at the end of treatment for a given person (e.g.
treatment success) is measured only once, but may de-
pend on values of a variable measured at different time
points (e.g. hypertension at baseline and at times t1 and
t2 prior to end of treatment).

Results
How to report descriptive analyses
With a hierarchical study design, a correct multilevel de-
scriptive analysis should include analyses of the outcomes
of interest at all relevant levels and distribution of the vari-
ables in all levels. This step will also help the researcher
uncover irregularities in the data, such as unusual patterns
of missingness, lack of heteroscedasticity, or unusual
shapes of distributions. It is also helpful in understanding
which variables are correlated and how to possibly con-
sider them in the modeling.
The choice of summary statistics to use, as with non-

multilevel descriptive statistical analysis, will depend on
the type of variable. When presenting summary statistics
(e.g. means for continuous variables, proportions for cat-
egorical variables) of variables collected at lower levels,
measures of variability and confidence intervals must ac-
count for the variance inflation factors (VIFs).
When presenting plots, univariate and bivariate graphs

should allow comparison of variables measured at the
same level. With clustered data, plots of lower level vari-
ables should identify membership in upper level groups.
With longitudinal data, plots of repeated measurements
over time should identify points that come from the
same subject (e.g. ‘spaghetti plots’) rather than summar-
ies over time that obscure the fact that some of the same
subjects are included across the summaries [11].

How to report modeling analyses
Descriptive bivariate analyses that assess significance of
correlation and association measures should adjust for
the correlation in the observations. Once the focus shifts
to the dependent variable of interest, the correlation
among the observations of the dependent variable of
interest at each level must be studied and presented.
Variance decomposition must be performed and the
VPCs or ICCs should be reported. An initial ‘null’ multi-
level model with no independent variables is strongly
encouraged.
The modeling, variable selection, and arriving at a

‘final’ model, is a process that every investigator can fol-
low according to their choice, and is therefore not ad-
dressed. Note that adding dummy (indicator) variables
as fixed effects for members of a higher level is not
exactly equivalent to adding random intercept effects for
members of a higher level. While both approaches do
have the effect of explaining some of the variability in
the outcome, only the latter decomposes the residual
variance into components.
For the ‘final’ model, in addition to reporting the re-

sults for the fixed effects, one must report either the
variance components or the VPCs or ICCs. It may be of
special interest to report these for the ‘null’ model (i.e.
with no independent variables), as well as for the final
model (and other ‘intermediate’ models), so that the
reader may understand the impact of explanatory vari-
ables on the variance components. Note also that if ran-
dom intercepts and random slopes are included in the
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models, the estimated correlation structure among the
random effects should also be presented. Finally, mea-
sures of model fit, such as either the Akaike Information
Criterion (AIC) or the Bayesian Information Criterion
(BIC), or the area under the receiver operating charac-
teristic (ROC) curve (AUC) for logistic regression
models, may be useful for readers.

Example of reporting multilevel data structure and
analyses: the Chilean dental study
We use a 3-level study that measured presence of caries
in temporary dentition in 2275 children from 40 pre-
schools in 13 districts (comunas) of the Metropolitan
Region (around the capital of Santiago) in Chile, to illus-
trate what and how to present results from a multilevel
analysis. All the districts in the Metropolitan Region
were classified according to the United Nations Develop-
ment Program (UNDP) Human Development Index
(HDI) [12], then stratified into 5 groups: Very High,
High, Middle, Low, and Very Low. Estimation of the ne-
cessary number of children and pre-schools to include
took into account the expected ICCs and VIFs based on
the literature. Thirteen districts were randomly selected
across the strata. Within a district, educational establish-
ments (pre-schools) were categorized into private (paid),
private (subsidized) or public, and approached for par-
ticipation. All selected districts participated, but the pri-
vate pre-schools of the highest HDI district refused to
participate; thus that district only had public (municipal)
pre-schools participating. All eligible children of a school
were invited to participate, and refusal (by parents) rates
were less than 1%. The study was approved by the
Comité de Ética de Investigación en Seres Humanos
(ethics committee) of the Facultad de Medicina of the
Universidad de Chile.
Table 2 displays the multilevel diagram for this study.

The research question was: ‘Which factors are related to
the presence of caries in temporary dentition in children
of different districts of the Metropolitan Region?’ The
Table 2 Example multilevel diagram in table format for The Chilean

Sub-index Level Variables

I (3) District HDI (Commu
Rural locatio

J (18) School Administrati
School fluor

K (29) Child Age
Sex
Presence of
Educational
Family incom
Access to he
Frequency o

Dependent v
Presence of
prevalence of caries in temporary dentition in a group
can be calculated from the presence of caries in tempor-
ary teeth at the individual-level. We note that our
dependent variable is at a lower level, while the inde-
pendent variables of interest are from various levels.
Table 3 presents the results of three different random-

intercept logistic regression models: the ‘null’ model, an
‘intermediate’ model, and a ‘final’ model, fitted using max-
imum likelihood. Usually only a final model is presented,
but we illustrate how the other models can help in under-
standing changes in the VPC when one introduces inde-
pendent variables from different levels in multilevel
models. See model equations in the Additional file 1.
The effect estimates and 95% confidence intervals

(CIs) do account for the correlation among the observa-
tions; at the bottom of the table of results, one presents
the corresponding intraclass correlation coefficients and
the model fit criteria.
We first note that in the intermediate model, which

only includes district-level and school-level covariates,
the district-level variables of HDI and rurality, and
the type of school are statistically significant – the
higher the human development index of the district,
the lower the probability of caries among the chil-
dren, while children in private (paid) pre-schools have
lower probability of caries. In the final model, which
now includes child-level covariates, the odds ratios
(ORs) for school type and rural location are no longer
significant. The sex and age of the child are signifi-
cant, while family income and access to health care
were not significantly associated with caries presence.
Secondary school education of the main caretaker was
associated with higher likelihood of caries. It could be
that district-level factors like HDI account for the ef-
fect of child-level socioeconomic factors.
From the ‘null’ model, we note that the correlation of

the presence of caries of children from the same district
is not negligible (ICC = 0.0495), but also that this cor-
relation is more than doubled (ICC = 0.1278) among
Dental Study

nity-wide human development index)
n

ve dependency of the school: private (paid), private (subsidized) or public
ide program: available or not

gingivitis
level of main caretaker
e
alth care: private or public
f tooth brushing: daily, 3–4 times/week, 2 times/week, once per week

ariable:
caries in temporary teeth



Table 3 Random-intercept logistic regression models for the presence of caries in The Chilean Dental Study

Value of category ‘Null’ model (n = 2275) ‘Intermediate’ model (n = 2275) ‘Final’ model (n = 2134)b

OR (95% CI) OR (95% CI) OR (95% CI)

District-level variables

Human Development Index 0.08 (0.01–0.82) 0.04 (0.01–0.39)

Rural location 1.82 (1.17–2.81) 1.45 (0.98–2.16)

School-level variables

Administrative dependency Private (paid) Reference Reference

Private (subsidized) 2.74 (1.64–4.55) 1.12 (0.69–1.83)

Public 3.99 (2.28–6.98) 1.65 (0.98–2.77)

School fluoride program No program 1.33 (0.84–2.12) 1.17 (0.81–1.70)

Child-level variables

Sex Male 1.22 (1.00–1.48)

Age 1 year Reference

2 years 4.98 (2.18–11.38)

3 years 12.14 (5.45–27.04)

4 years 15.00 (6.69–33.64)

5 years 15.22 (6.68–34.68)

6 years 14.34 (6.20–33.23)

Family income 0.93 (0.85–1.02)

Presence of gingivitis Absent Reference

Present 2.14 (1.67–2.75)

Educational level of main caretaker University Reference

No studies 0.90 (0.14–5.73)

Primary school 1.26 (0.81–1.97)

Secondary school 1.60 (1.14–2.24)

Technical school 1.15 (0.82–1.61)

Access to health care Private Reference

Public 1.21 (0.89–1.65)

ICCa district 0.0495 0.0135 0.0134

ICCa school within district 0.1278 0.0378 0.0153

AICa 2863.3 2836.8 2521.6

AUCa 0.50 (0.50–0.50) 0.63 (0.60–0.65) 0.72 (0.70–0.74)
aICC intra-level correlation coefficient, AIC Akaike Information Criterion, AUC area under the ROC curve
bNote that the number of children in this model is lower due to non-response to various variables; ‘family income’ had the highest number (76) of
non-responders (3.3%)

Monsalves et al. BMC Medical Research Methodology            (2020) 20:3 Page 6 of 9
children within the same school. When we consider
district-level and school-level covariates, the ICC for
district and for school within district are reduced. The
ICC for district is not reduced further when we add
child-level covariates in the ‘final’ model. However, the
correlation among presence of caries among children
within the same school is reduced when child-level co-
variates are included in the model.
The final model, as expected, has a much better fit

than the intermediate model (much lower AIC), since it
incorporates child-level covariates, which explain well
the child-level variable of presence of caries.
Discussion
The objective of this manuscript is to recommend
how to report and present multilevel data and the re-
sults of linear mixed models. The need for such a
checklist has been previously established by Casals
et al. [6], who conducted a systematic review of the
quality of the presentation of results and information
from LMMs in the field of clinical medicine. Their
extensive and systematic review of indexed medical
journals included longitudinal studies, repeated mea-
surements and multilevel design studies, from various
medical disciplines. They found that “most of the
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useful information about generalized linear mixed
models was not reported in most cases.” [6] Less than
10% reported the variance estimates of random ef-
fects. Aspects that apply to all modeling, such as co-
variate selection, estimation method, and goodness of
fit, were also not universally reported. They conclude
that “it is important to consider the use of minimal
Table 4 LEVEL (Logical Explanations & Visualizations of Estimates in
data and modelling analyses

Item Recommendation

Title and abstract 1 (a) Not essential in the title, but the fact that th
mentioned in the abstract (S)

(b) The abstract should mention the various lev
also random slopes were modeled (N)

Introduction

Background/
rationale

2 Provide rationale for the study design being hi

Objectives 3 Mention at what level the dependent and inde

Methods

Study design 4 (a) Provide the multilevel diagram for the study

(b) Justify level of the analyses (N)

Population 5 (a) Provide the number of members of each le
sampling of the members (N)

(b) If a repeated measures design, provide desc

(c) Describe missingness patterns and imbalanc

Variables/ data
structure

6 (a) Write out the multilevel model equation inc

(b) Mention the variables used and from what

Study size 7 (a) Provide details of the sample size calculatio
correlation coefficients (ICC) and variance inflat

(b) Provide justification for ICCs from previous s

Statistical methods 8 (a) Describe all statistical methods, descriptive
(E)

(b) Mention estimation procedure utilized (e.g.

(c) Present variance components or VPCs/ICCs

(d) Justify variables considered in the initial mo

(e) Justify choice of random or fixed intercepts
correlation structure among the random effect

Results

Participants 9 (a) Report the number of individuals from each
numbers (N)

(b) Present a flow diagram (S)

Descriptive data 10 (a) Indicate number of participants with missin

(b) Identify the level when presenting graphs a

(c) Adjust the variances even in descriptive uni

Modeling results 11 (a) Present the model equation and estimates

(b) Present a summary table with estimates of
final model (N)

(c) Present model goodness of fit statistics (N)

Other analyses 12 Report other analyses and if multilevel, provide

Key: S Suggested, E Expected, N Necessary
rules as standardized guidelines when presenting gen-
eralized linear mixed model results in medical jour-
nals.” [6]
This manuscript is limited since it is not intended to be

a tutorial on statistical methods for analyzing correlated
data. Many such tutorials do exist. We do not review the
complex statistical considerations behind all the aspects
Linear mixed models) checklist of items for reports of multilevel

e study is hierarchical and the analyses are multilevel must be

els considered in the analyses and whether random intercepts only or

erarchical and for the analyses being multilevel (E)

pendent variables are taken (S)

(S)

vel, the eligibility criteria, and the sources and methods of selection/

ription of methods of follow-up, and spacing of time points (N)

es in members across levels (E)

luding the random effects – this may be provided in an Appendix (N)

level (N)

n, and mention relevant variance partition coefficients (VPC) or intraclass
ion factors (VIF) for each level (N)

tudies – literature or pilot studies (E)

and inferential, detailing how the correlation in the data was dealt with

restricted maximum likelihood) (S)

for ‘null’ model and for final model (S)

del and justify the ones included in the final model (N)

and random or fixed slopes for variables in the final model, along with
s (N)

level in the final model, since missing data may affect the original

g data for each variable of interest, by level (S)

nd tables (E)

variate or bivariate analyses (N)

– maybe in Appendix (S)

fixed effects, VPCs/ICCs for null model, intermediate models (if any) and

similar information as above (S)
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that are important in LMMs. We provided a real-data ex-
ample using a mixed effects logistic regression analysis of
a 3-level study to illustrate how they such analyzes could
be reported following our recommendations.
Table 4 presents a checklist of items that we recom-

mend for reporting multilevel data and modelling re-
sults, where items are either suggested (S), expected (E)
or necessary (N). The checklist was developed by the au-
thors based on their experience in conducting and pre-
senting multilevel data analyses. We thus welcome
comments from users of the proposed checklist and
from journal editors. We welcome considering extending
our recommended checklist to other multilevel models.
Checklists such as the PRISMA [13], STROBE [14],
CONSORT [15] and others have improved the quality of
reporting of scientific medical research studies in ab-
stracts and full manuscripts [16]. More recently, report-
ing guidelines for models have been proposed [17, 18].
The proposed LEVEL checklist is modeled on STROBE
guidelines, modified for multilevel studies.
Conclusions
A standardized checklist for the reporting of multilevel
data and the presentation of linear mixed models will
promote adequate reporting of correlated data analyses,
and ensure that appropriate statistics are contained and
explained thoroughly in manuscripts. The implementa-
tion of our checklist of items to report when presenting
results of a multilevel analysis hopes to increase trans-
parency, completeness, and the quality of reporting.
Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12874-019-0876-8.

Additional file 1. Model equations for the Example mixed effects
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