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Abstract 

The specification of enterprise information systems using formal specification languages 

enables the formal verification of these systems. Reasoning about the properties of a formal 

specification is a tedious task that can be facilitated much through the use of an automated 

reasoner. However, set theory is a corner stone of many formal specification languages and 

poses demanding challenges to automated reasoners. To this end a number of heuristics has 

been developed to aid the Otter theorem prover in finding short proofs for set-theoretic 

problems. This dissertation investigates the applicability of these heuristics to next generation 

theorem provers. 
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1 Introduction 

Chapter 1 

Introduction 

This is a dissertation on evaluating the utility of a set of reasoning heuristics that have 

been developed to aid an automated reasoner in reasoning about the properties of formal 

specifications.  The focus is on set-theoretic problems and first-order logic resolution-

based automated theorem provers. The motivation is presented below. 

1.1 Motivation 

Mathematical set theory is a building block of a number of formal specification 

languages, e.g. both Z (Spivey 1992) and B (Abriel 1996) are based on strongly-typed 

fragments of Zermelo-Fraenkel (Enderton 1977) set theory. One of the advantages in 

using a formal notation for specifying a system is that the specifier may reason formally 

about the properties of the system. In particular one may want to prove that the proposed 

system will behave in a certain way or that some unwanted behaviour will not occur. 

However, writing out such proofs is a tedious task as may be observed in (Potter et al. 

1996). Hence of particular interest to a specifier could be the feasibility of using an 

automated reasoning program (Riazanov & Voronkov 2002, Wos 2006) to reason about 

such properties. 

Set-theoretic problems, however present difficult problems to automated reasoners 

(Boyer et al. 1986, Quaife 1992a, Wos 1988, Wos 1989).   Much of the complexity arises 

from the fact that sets may be elements of other sets. Set-theoretic constructs are strongly 

hierarchical and could lead to deeply nested constructs that greatly increase a problem’s 

search complexity (Quaife 1992a, Van der Poll & Labuschagne 1999). For example, in 

the following equality 

P(A) = P(B) ↔ A = B 
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a reasoner has to move from the level of elements in set A to the level of elements in 

P(A) in its search for a proof, but should be prevented from transcending to the level of 

P(P(A)) which would greatly and unnecessarily enlarge the search space.  This reasoning 

heuristic tends to come naturally to humans.  However, for the automated reasoner to 

preserve completeness it should still traverse these possibly unlikely search paths when 

the other paths fail. 

It is generally accepted that heuristics are needed to guide reasoners, especially in the 

context of set-theoretic proofs (Bundy 1999).  Van der Poll and Labuschagne developed 

such a set of heuristics for reasoning about set theory (Van der Poll 2000, Van der Poll & 

Labuschagne 1999), mainly through observing the behaviour of the resolution-based 

reasoner, Otter (McCune 2003) in its search for proofs. In total 14 heuristics, based on 

recognisable patterns, were developed. 

1.2 Research Question 

The CADE ATP System Competitions (CASC)  (Pelletier et al. 2002, Sutcliffe & Suttner 

2006) is an annual competition that evaluates the performance of automated theorem 

provers using classical first-order logic.  Otter no longer features as a worthy opponent in 

this competition, since it has to a large extent been superseded by next generation 

theorem provers e.g. Vampire (Riazanov & Voronkov 2002) and Gandalf (Tammet 

1997).  Otter is however still used as a relative benchmark for other provers. 

The question therefore arises whether the heuristics developed by Van der Poll and 

Labuschagne (Van der Poll & Labuschagne 1999, Van der Poll 2000) have a wider 

applicability to other resolution-based reasoners that can be considered state of the art. 

The research reported on in this dissertation addresses the above research question and 

leads to the following hypothesis. 

1.3 Hypothesis 

The Van der Poll-Labuschagne heuristics developed for reasoning with set theory are also 

applicable to later, state of the art resolution-based automated theorem provers. 
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For the remainder of this dissertation we shall refer to the Van der Poll-Labuschagne 

heuristics as the VdPL set of heuristics. 

1.4 Approach 

To verify the hypothesis we select two theorem provers that can be considered state of 

the art when using the CASC (Pelletier et al. 2002, Sutcliffe & Suttner 2006) competition 

as a benchmark.  The chosen theorem provers should be resolution-based to make the 

comparison with Otter more direct.  Since the VdPL heuristics were developed on set-

theoretic problems the chosen provers must also perform generally well with set-theoretic 

problems to ensure that the heuristics are indeed applicable and useful. 

Each heuristic is then tested in turn on a sample set-theoretic problem.  Otter is used to 

discharge the proof.  After a failed proof attempt, the relevant VdPL heuristic is applied 

to the problem specification that enables Otter to find a proof.  The original problem is 

then discharged on the chosen theorem provers.  The heuristic is similarly applied to 

failed proof attempts.  If the heuristic is found not to be applicable using the next 

generation theorem prover, we increase the complexity of the problem, and attempt 

again. 

The use of automated reasoning in formal specification languages was mentioned as one 

of the motivations for research in reasoning heuristics.  The heuristics are further tested 

on a case study specified in Z (Spivey 1992) and using one of the chosen reasoners to 

discharge proof obligations that arise. 

1.5 Dissertation Layout 

Chapter 2 gives an overview of set theory.  The Zermelo-Fraenkel axiomatisation of set 

theory in first-order logic is presented.  The use of set theory in formal specification 

languages is then highlighted followed by the typical issues that arise when reasoning 

about set-theoretic problems. 

An overview of resolution-based theorem proving is presented in Chapter 3.  The 

decision problem and Herbrand’s universe is discussed to highlight the theoretical limits 
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of automated theorem proving.  Resolution is presented as a refutation proof procedure 

followed by a discussion on efficiency enhancements to resolution theorem proving. 

The resolution-based automated reasoners Vampire and Gandalf used in this work are 

presented in Chapter 4 including the motivation for their selection. 

The utility of the VdPL heuristics for Vampire and Gandalf is investigated in Chapter 5.  

For each heuristic a sample problem is presented.  The problem is first attempted using 

Otter.  From a failed proof attempt the heuristic is applied to enable a successful 

refutation.  The same problem in then applied to Vampire and Gandalf.  In some cases the 

problem complexity must be increased to illustrate the utility of the heuristic.  Some of 

these results were published in Steyn and Van der Poll (2007). 

An order management system case study is presented in Chapter 6 using the Z 

specification language.  Typical proof obligations that arise from Z specifications are 

presented and discussed. 

In Chapter 7 a sample of the proof obligations from the case study is converted to first-

order logic and discharged using Vampire.  Various heuristics are then applied to some 

failed proof attempts to facilitate a successful refutation. 

Chapter 8 summarises the conclusions to be drawn from the research reported on in this 

dissertation and indicates directions for further research. 
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2 Introduction to Mathematical Set Theory 

Chapter 2 

Introduction to Mathematical Set Theory 

Set theory is a foundational theory of mathematics in the sense that many mathematical 

theorems, including arithmetic and Euclid’s geometry, can be formulated as theorems of 

set theory (Nerode & Shore 1997).  The problem of finding the truth of a mathematical 

statement can therefore be reduced to a problem of showing that its truth can be derived 

from the axioms of set theory (Enderton 1977). 

In this chapter we give an overview of the Zermelo-Fraenkel (ZF) axiomatisation of set 

theory that allows for the first-order logic representation of set-theoretic problems.  In the 

next section we discuss the use of set theory in formal specification languages.  This is 

followed by a discussion of the limits of the ZF axioms in automated theorem proving 

due to its infinite axiomatisation.  The chapter is concluded with the challenges that are 

posed by automated set-theoretic reasoning as well as a summary. 

2.1 Zermelo-Fraenkel Set Theory 

The concept of a set has been used in mathematic writings since ancient times (Enderton 

1977). George Cantor's work at the end of the 19th century put set theory on a proper 

mathematical basis with a series of papers published during the period from 1874 to 

1897. He is generally regarded as the father of set theory (Enderton 1977). 

This early set theory originated in a non-axiomatic form that relied on an informal 

understanding of sets as collections of objects. By the turn of the nineteenth century a 

number of paradoxes were discovered in set theory. One of these is Russell’s paradox 

that was discovered in 1901 by Bertrand Russell (Enderton 1977, Potter et al. 1996). He 

showed that Gottlob Frege’s treatment of set theory was contradictory.  Frege published a 

two-volume work in 1893 and 1903 in which he showed how mathematics could be 
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developed from principles of set theory. Russell’s paradox stems from a well defined set 

in Frege set theory: 

A = {x | x ∉ x} 

That is, x is an element of A if and only if x is not an element of itself. The question that 

arises is whether or not A contains itself. If it does, then by definition it is not a member 

of A and thus a contradiction. On the other hand if it does not contain itself, then by 

definition it is a member of A which is also a contradiction. 

The paradoxes found in set theory led to the development of axiomatic set theory. This 

showed that certain assumptions were inconsistent and hence totally flawed. The non-

axiomatic approach to set theory is now often referred to as “naive set theory” (Quine 

1971). 

Ernst Zermelo proposed the first system of axioms for set theory in 1908. The paradoxes 

that have plagued set theory could not occur under Zermelo’s system since the sets 

required by the paradoxes cannot be constructed using his axioms. However it was 

discovered that rather simple sets could not be proved to exist based solely on these 

axioms. Abraham Fraenkel and others proposed the axiom of replacement, discussed 

below, to enable the creation of such sets (Enderton 1977).  This list of set theory axioms, 

10 in total, became known as the Zermelo-Fraenkel axioms. 

Next we present a brief introduction to the ZF axioms. It is important to note that every 

object it deals with is a set.  Every element of a set is itself a set.  Therefore, all 

mathematical objects must therefore be defined as sets.  As an example the non-negative 

integers (natural numbers) can be represented in set theory as the set of all smaller natural 

numbers: 

0 = 0, 1 = {0} = {0}, 2 = {0, 1} = {0, {0}}, …. 

This specific method of encoding the natural numbers was proposed by von Neumann in 

1923 (Enderton 1977). 
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2.1.1 Extensionality Axiom 

The action of Extensionality states the condition under which two sets are equal.  Two 

sets are the same if they have the same elements. A set is therefore determined by its 

elements. 

∀A∀B(∀x(x ∈ A ↔ x ∈ B) → A = B) 

Note, this axiom only state when two sets are equal, it does not guarantee the existence of 

any sets.  Also, note that equality reasoning in first-order logic requires the axioms 

presented in section 3.6.1. 

2.1.2 Empty set Axiom 

There exists a set having no elements called the empty set. The empty set is usually 

denoted by the symbol ∅. 

∃∅∀x (x ∉ ∅) 

The empty set axiom asserts that there exists at least one set, the empty set ∅.  From the 

axiom of Extensionality it follows that there is only one such set. 

2.1.3 Pairing Axiom 

If u and v are sets, then there exists a set B containing u and v as its only elements. This 

set is called the unordered pair of u and v and is denoted by {u, v}. 

∀u∀v∃B∀x(x ∈ B ↔ x = u ∨ x = v) 

It follows from the axiom of Extensionality that this set is uniquely determined and since 

the elements in a set are unordered we have {u,v} = {v,u}.  Pairing implies the existence 

of sets containing only one element called singleton sets. For example, given any set v, 

the singleton set {v} exists and is equal to the unordered pair {v, v}. Repeated application 

of this axiom asserts the existence of sets of the form {{x}, {x,y}}, which is a standard 

way of representing the ordered pair (x, y). 
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2.1.4 Union Axiom   

Normally the union axiom is first stated in simpler terms for just two sets (Enderton 

1977) and thereafter it is given for the general case. Every set has a union. That is, for 

any set A there exists a set B whose elements are exactly the elements of the elements of 

A. For example if A = {a, b, c, d}, then B = ⋃{a, b, c, d} = a ∪ b ∪ c ∪ d. 

∀A∃B∀x(x ∈ B ↔ ∃b(b ∈ A ∧ x ∈ b)) 

Finite sets like {a, b, c} can be constructed using this axiom and the pairing axiom above. 

For example, given any a, b and c we can construct sets {a} and {b, c} using the pairing 

axiom. Set {a, b, c} can then be constructed using the union axiom, that is, {a} ∪ {b, c}. 

2.1.5 Subset Axiom 

For each formula ϕ(c, t1,…, tn) not containing B, the following is an axiom (Enderton 

1977): 

∀t1 …∀tn∀c∃B∀x(x ∈ B ↔ (x ∈ c ∧ ϕ (x, t1,…, tn))) 

Again from the axiom of Extensionality it follows that the set B is uniquely determined 

by c, t1,…,tn. B can be denoted by {x ∈ c | ϕ (x, t1,…, tn)}. It is important to note that the 

set B being defined is a subset of the given set c, hence the name subset axiom. 

As an example, the following formula is an instance of the subset axiom: 

∀A∀C∃B∀x(x ∈ B ↔ x ∈ C ∧ x ∈ A) 

It asserts the existence of the set intersection operation such that B = A ∩ C.  Similarly 

the existence of the relative complement of C in A, denoted A – C, is asserted by the 

subset axiom instance: 

∀C∀A∃B∀x(x ∈ B ↔ x ∈ A ∧ x ∉ C)  

An unrestricted version of the subset construction axiom was often used to specify sets 

before the development of axiomatic set theory: 
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∀t1 …∀tn∀c∃B∀x(x ∈ B ↔ ϕ (x, t1,…, tn)) 

Here the restricting term x ∈ c is omitted.  This formulation leads directly to Russell’s 

paradox referred to earlier by taking ϕ to be x ∉ x.   Most of the other axioms can be 

implied by the unrestricted form, for example the empty set, pairing and union axioms 

(Enderton 1977).  These other axioms must therefore be explicitly stated since they 

cannot follow from the restricted subset form and the unrestricted form leads to 

inconsistencies. 

2.1.6 Power set Axiom 

For any set A there exists a set B whose elements are precisely the subsets of A. B is 

called the power set of A and is usually denoted by P(A). 

∀A∃B∀x(x ∈ B ↔ x ⊆ A) 

The statement “x ⊆ A” is unfolded as: 

∀t(t ∈ x → t ∈ A)  

For example if A = {a, b, c}, then P(A) = {∅, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}}. 

2.1.7 Infinity Axiom 

There exists a set A such that ∅ is in A and whenever x is in A, so is the union x ∪ {x}. 

∃A[∅ ∈ A ∧ ∀x(x ∈ A → (x ∪ {x}) ∈ A)] 

An infinite set of this form contains a copy of the natural numbers as proposed by von 

Neumann in 1923 (Nerode & Shore 1997).  In this representation the first four natural 

numbers would be represented as: 

0 = ∅ 

1 = ∅ ∪ {∅} = { ∅} 

2 = {0} ∪ {{ 0}} = { 0, {0}} 
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3 = {0, {0}} ∪ {{ 0, {0}}} = { 0, {0}, { 0, {0}}} 

2.1.8 Axiom of replacement 

For each formula ϕ(x, y) not containing B, the following is an axiom (Enderton 1977): 

 [∀x∀y1∀y2(ϕ(x, y1) ∧ ϕ(x, y2) → y1 = y2)] → 

∀A∃B∀y[y ∈ B ↔ ∃x(x ∈ A ∧ ϕ(x, y))] 

This axiom states that if A is a set and the formula ϕ is a functional mapping, then there 

exists a set B that is the image of A under ϕ (Nerode & Shore 1997).  The functional 

property of ϕ is asserted by the hypothesis of the axiom.  The consequent of the axiom 

states that B is then the set: 

B = {y | ∃x(x ∈ A ∧ ϕ(x, y))} 

As an example we can show that if the set A exists, then the set B of all power sets of 

members of A also exists.  That is, B = {P(a) | a ∈ A}.  This is done by taking ϕ(x, y) to 

be y = P(x). 

2.1.9 Axiom of foundation or regularity 

Every non-empty set A contains an element disjoint from A (Enderton 1977). 

∀A[A ≠ ∅ → ∃x(x ∈ A ∧ x ∩ A = ∅)] 

The axiom of foundation restricts set theory to sets in which the elements of a set must be 

known or must have been constructed before the set itself can be realised.  Some of the 

consequences of this axiom are (Enderton 1977, Nerode & Shore 1997): 

• No set can be a member of itself. 

• There exist no sets x and y such that x ∈ y and y ∈ x. 

• There exists no infinite descending sequence of sets e.g. … ∈ f(2) ∈ f(1) ∈ 

f(0), where f is a function with the domain of the natural numbers. 
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A proof of these three properties is beyond the scope of this dissertation.  Details may be 

found in (Enderton 1977). 

As an example, let A = {1, 2} = {{∅}, { ∅, {∅}}} and x = { ∅}.  It is then true that 

x ∈ A and x ∩ A = ∅, since ∅ ∈ {∅} but ∅ ∉ A. 

2.1.10 Axiom of choice 

For any set A of nonempty sets, there is a function f with domain A such that for each 

x ∈ A, f(x) ∈ x.  Function f is called a choice function for A and the range of f is called 

the choice set of A.  In other words, f is a function that chooses one element from each 

set in A. 

∀A[∀x(x ∈ A → x ≠ ∅) → ∃f(func(f) ∧ dom(f) = A ∧ ∀x(x ∈ A → f(x) ∈ x))] 

For finite sets A, the axiom of choice is not required since the existence of a choice 

function can be proved using the other axioms (Enderton 1977).  However, for infinite 

sets A, which are usually uncountable as well, the axiom of choice is needed.  This is 

because it is either impossible or very difficult to construct a rule that makes an 

uncountable number of selections.  In the case where it is very difficult to construct such 

a rule, the axiom of choice is not required but it makes proofs simpler by postulating that 

such a rule exists. 

The axiom of choice has been controversial ever since Zermelo explicitly stated it as an 

axiom (Enderton 1977, Nerode & Shore 1997).  One of the reasons for this is that it 

asserts the existence of an object without telling what it is.  Objects that are proved to 

exist using the axiom of choice can generally not be described by any kind of systematic 

rule.  These proofs are therefore non-constructive. 

The following example illustrates how one may write a set-theoretic formula using the 

axioms above. 

2.1.11 Example 

Consider the following set-theoretic statement: 
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P{{1}} = { 0,{{1}}} 

This statement can be represented in first-order logic with the conjunction of the 

following list of formulae: 

(AA)(AB)((AX)(X ∈ A ¤ X ∈ B) fi A = B) (extensionality) 

(AX)(!(X ∈ empty)) (empty = 0) 

(AX)(X ∈ a ¤ X = 1) (a = {1}) 

(AX)(X ∈ b ¤ X = a) (b = {a}) 

(AX)(X ∈ c ¤ (AY)(Y ∈ X fi Y ∈ b)) (c = P(b) ) 

(AX)(X ∈ d ¤ X = empty v X = b) (d = {empty,b}) 

c = d (c = d) 

 

2.2 Limitations of ZF Axioms in Automated Theorem 

Proving 

The ZF axioms of subset construction and of replacement are infinite axiom schemas, 

since any well defined formula ϕ can be used to yield a relevant axiom.  As a result ZF 

cannot be finitely axiomatised (Montague 1961) and, therefore cannot be input to an 

automated theorem prover.  The user must therefore input the relevant axiom instances 

from the subset construction and replacement axiom schemas.  For example, a proof that 

would require the premise that the relative complement of two sets exists, A = B – C, 

must have the following subset axiom instance specified: 

∀C∀B∃A∀x(x ∈ A ↔ x ∈ B ∧ x ∉ C) 

There are other axiomatisations of set theory as well.  The one used most often in the 

automated theorem proving community is that of von Neumann-Bernays-Gödel (NBG) 

(Enderton 1977, Quaife 1992a).  NBG differs from ZF in that it makes a separation 

between concepts of a class and a set.  A set has the same meaning as in ZF.  
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Additionally, any set is a class and any collection of sets is also a class.  However, some 

classes are too large to be sets.  An example of such a class is the class of all sets.  It is 

not possible to refer to the class of all classes or the set of all sets which avoids any 

paradoxes due to self referencing. 

Arguably, the most important aspect of NBG set theory for the automated reasoning 

community is the fact that it can be finitely axiomatised.  NBG set theory is therefore 

mostly used for automated reasoning.  It unfortunately suffers from having to deal with 

two sorts of objects (classes and sets) instead of one (sets).  For more information on 

NBG and automated reasoning, the reader is referred to Boyer et al. (1986) and Quaife 

(1992a). 

Formal specification languages like Z and B are based on ZF’s set theory despite its 

infinite axiomatisation.  This is because its limitations in theorem proving only become a 

problem when dealing with advanced mathematical proofs which do not occur in the day-

to-day software engineering industry.  For example the mathematical toolkit of Z (Spivey 

1992) contains a finite number of axioms some of which are instances of the subset 

axiom.  In this work we will therefore also use ZF set theory. 

2.3 Summary 

In this chapter we gave an overview of ZF set theory, its axioms and an example of 

specifying a simple set-theoretic statement in first-order logic.  We further highlighted 

the role of set theory in formal specification languages.  NBG was mentioned as an 

alternative axiomatisation to ZF.  Unlike ZF, the NBG axioms are finite which makes it 

attractive for automated reasoning.  However, the NBG axiomatisation is more 

cumbersome to use with little advantage for common set-theoretic problems.  As a result, 

in this work we will go the route of ZF.  The chapter concluded by discussing the 

difficulties of set-theoretic reasoning. 
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3 Resolution 

Chapter 3 

Resolution 

In this chapter we present an overview of resolution-based theorem proving.  The chapter 

starts with a discussion on decidability and Herbrand’s universe (Nerode & Shore 1997).  

These two concepts specify the theoretical limits of automated theorem proving (Leitsch 

1997).  Resolution is presented as an efficient refutation-based proof procedure.  The rest 

of the chapter is dedicated to efficiency enhancements to resolution theorem proving.  

These enhancements include resolution refinement, redundancy tests, theory resolution 

and heuristics. 

3.1 Decidability and Herbrand’s Universe 

At the heart of automated theorem proving lies the “decision problem” (Leitsch 1997).  It 

is the challenge in symbolic logic to find a general algorithm which decides for any first-

order statement whether it is universally valid or not.  As early as the 17th century, 

Leibniz had the vision of building a machine that would solve this problem.  The problem 

was revived in the early 20th century by Hilbert who posed it as one of several problems 

to the mathematical community.  He called the decision problem the “fundamental 

problem of mathematical logic” (Leitsch 1997 p. 212).  Progress was made in the 

following years by several mathematicians who found decidable subclasses of predicate 

logic. 

It was not until the year 1936 that Alonzo Church and Alan Turing independently showed 

that the problem has no solution (Epstein & Carnielli 2000).  Church developed an 

analysis of computability with his system of the λ-calculus (Church 1936a).  He then 

showed that the λ-definable functions are undecidable.  He later applied his conclusions 

to first-order predicate logic to show that there also exists no effectively calculable 

procedure to determine the validity of a logical formula (Church 1936b).  Turing 

independently developed his own analysis of computability using the concept of a 
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machine that can only perform the most elementary operation (Turing 1936).  This 

machine concept is now known as a Turing machine.  Turing received a copy of Church’s 

paper in time to include an appendix to show that a function is Turing machine 

computable if and only if it is λ-definable.  By using a diagonal argument, Turing showed 

that the question of whether a Turing machine will halt on some arbitrarily chosen input 

is undecidable.  This is known as the halting problem. 

Herbrand contributed an important approach to mathematical theorem proving in 1930 

(Chang & Lee 1973) by proposing a refutation procedure to determine the unsatisfiability 

of a set of clauses.  He associated with each logic formula ¬S an infinite sequence of 

propositional logic formulas called the Herbrand universe of S (Nerode & Shore 1997).  

He then showed that ¬S is provable if and only if there is a finite disjunction of formulas 

in H that is provable.  Based hereon he developed an algorithm to find an interpretation 

that can falsify a given formula.  However, if the formula is indeed valid, no such 

interpretation can exist since it is by definition true under all interpretations.  Herbrand’s 

method forms the basis for most modern automatic proof procedures. 

The commercial availability of computers during the 1950’s enabled Gilmore (Gilmore 

1960) to write a program to implement the refutation procedure of Herbrand’s theorem.  

Since a formula is valid if and only if its negation is inconsistent, his program was 

designed to detect the inconsistency of the negation of the formula.  Based on Herbrand’s 

theorem, the unsatisfiability problem is reduced to propositional unsatisfiability and then 

check for inconsistency.  Unfortunately Gilmore’s method was only able to prove the 

simplest of formulas. 

Davis and Putnam published a paper in 1960 (Davis & Putnam 1960), shortly after 

Gilmore’s implementation, to improve on Gilmore’s method by suggesting a more 

efficient method to test for the unsatisfiability of the ground sets.  Their method was a 

major improvement but also lacked the necessary efficiency.  As with Gilmore’s method 

the generation of ground sets of formulas using a direct implementation of Herbrand’s 

theorem was very inefficient (Leitsch 1997). 



 16 

3.2 Resolution 

All the refutation procedures that are based directly on Herbrand’s theorem suffer from 

the same inefficiency that requires the generation of ground clause sets of the input clause 

set.  It is typical for each successive set to grow exponentially. 

In 1965, John Alan Robinson (1965a) published his famous paper on resolution-based 

theorem proving.  It was a major breakthrough since it can be applied directly to any set 

of first-order logic clauses to test its unsatisfiability without the need to generate 

successive sets of ground clauses based on Herbrand’s theorem. 

In the years that followed, many refinements of resolution have been suggested in 

attempts to further increase its efficiency.  Some of these refinements include 

hyperresolution (Robinson 1965b), set-of-support strategy (Wos 1965), semantic 

resolution (Slagle 1967) and paramodulation (Robinson & Wos 1969). 

3.2.1 Clausal Form 

Many computer implementations of first-order logic use the clausal form to represent 

formulas (Quaife 1992b), which is an apparently quantifier-free conjunctive normal form.  

This form was introduced by Davis and Putnam (1960).  Formulas are therefore 

represented by a more restricted syntax-type that enables more efficient inference rules to 

be defined and makes it easier to control proof search.  The clausal form of a formula is 

not necessarily logically equivalent to the original formula.  However, the clausal form 

has the important property that it is unsatisfiable if and only if the original formula is 

unsatisfiable (Hamilton 1991). 

A clause is a finite disjunction of zero or more literals (Chang & Lee 1973).  It is 

sometimes convenient to regard a set of literals as synonymous with a clause.  For 

example ¬P(x) ∨ Q(f(x)) = {¬P(x), Q(f(x))}.  A clause with only one literal is called a 

unit clause.  A clause that contains no literals is called the empty clause and is 

represented by □.  The empty clause is always false since it has no literal and cannot be 
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satisfied by any interpretation.  The following identities hold for empty clauses (Leitsch 

1997): A ∨ □ ∨ B ≡ A ∨ B and □ ∨ □ ≡ □. 

A set S of clauses is regarded as a conjunction of all clauses in S, where every variable in 

S is considered governed by an implicit universal quantifier (Chang & Lee 1973).  For 

example the formula (∀x)[(¬P(x) ∨ Q(f(x))) ∧ (¬Q(x) ∨ P(f(x)))] that is represented by 

the set of clauses {¬P(x) ∨ Q(f(x)), ¬Q(x) ∨ P(f(x))}. 

For every formula in first-order predicate logic there exists a procedure that maps it to a 

set of clauses (Wos et al. 1992).  There is more than one method of executing this 

procedure.  The first method consists of the following three steps (Chang & Lee 1973). 

• The formula is converted into prenex normal form.  A formula is in prenex 

normal form if all the quantifiers appear at the beginning.  For example a prenex 

normal form of (∀x)P(x) ↔ (∃y)Q(y) is (∀x)(∃y)(P(x) ↔ Q(y)). 

• The formula is then transformed to conjunctive normal form.  The above formula 

then becomes (∀x)(∃y)[(¬P(x) ∨ Q(y)) ∧ (¬Q(x) ∨ P(y))]. 

• The last step is to eliminate all existential quantifiers using Skolem functions.  In 

this step logical equivalence is usually lost however the transformation is still 

equisatisfiable.  For every formula ∀x1…∀xn∃yψ the transformed formula 

∀x1…∀xnϕ where ϕ is obtained by replacing every variable y in ψ by the Skolem 

function f(x1,…,xn).  By repeating this transformation, every existential quantifier 

can be eliminated.  The last formula then becomes (∀x)[(¬P(x) ∨ Q(f(x))) ∧ 

(¬Q(x) ∨ P(f(x)))]. 

Another method of executing the procedure is given by Leitsch (1997).  Here the formula 

is not required to be transformed to prenex form before the existential quantifiers are 

eliminated. 
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3.2.2 Resolution in Propositional Logic 

In this section we first discuss how the resolution principle applies to propositional logic.  

In essence this principle may be viewed as an extension of the one-literal rule of Davis 

and Putnam (Chang & Lee 1973). 

The cut rule (reading from top to bottom) states that: 

if P then Q. 

P. 

therefore Q. 

It may also be written in the following format: 

¬P, Q 

P 

Q 

 

The top line in the above box is the clausal form of P → Q where the comma represents a 

disjunction.  The two clauses above the dividing line represent the premises of the 

inference rule and the clause below the line represents its conclusion.  Q is therefore a 

logical consequence of (¬P∨Q) and P. 

3.2.2.1 Binary Resolution Inference Rule 

The propositional resolution principle extends the above rule of modus ponens by 

allowing any number of additional literals together with P and ¬P.  The principle states 

that (Chang & Lee 1973, Leitsch 1997): 
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Definition 3.1 

Let C1 and C2 be two clauses where C1 has the form L∨M1∨…∨M i for i ≥ 0 and 

C2 has the form ¬L∨N1∨…∨Nj for j ≥ 0.  From C1 and C2 we can then infer 

M1∨…∨M i∨ N1∨…∨Nj. 

The resolution inference rule can also be represented as (Eisinger & Ohlbach 1993): 

L,M1,…,Mi 

¬L,N1,…,Nj 

M1,…,Mi, N1,…,Nj 

 

The resulting inferred clause is called the resolvent of C1 and C2.  We say that we 

resolved on (the literal) L. 

3.2.2.2 Resolution Deduction or Refutation 

The next step is to show how a resolution deduction of a clause C can be deduced from a 

given formula S. 

A resolution deduction is defined as (Chang & Lee 1973, Leitsch 1997): 

Definition 3.2 

Let S be a set of clauses.  A resolution deduction of the clause C from S is a finite 

sequence of clauses C1,…,Cn such that C = Cn and for all i=1,…,n either Ci is a 

clause in S or Ci is a resolvent of Cj and Ck for j, k < i. 

A resolution deduction of the empty clause □ from S is called a resolution 

refutation of S. 

Example 3.1 

Consider the clause set S = {¬a ∨ b, a, ¬c}. 
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The following deductions can then take place: 

C1 = ¬a ∨ b Clause in S 

C2 = a Clause in S 

C3 = ¬c Clause in S 

C4 = b Resolvent of C1 and C2 

 

No further application of the resolution rule is possible and the empty clause was not 

deduced, therefore S is satisfiable, e.g. a = true, b = true and c = false. 

Now let S be the following set of clauses: 

S = {¬a ∨ b, a, ¬c, ¬b ∨ c} 

The following deductions can then take place:  

C1 = ¬a ∨ b Clause in S 

C2 = a Clause in S 

C3 = ¬c Clause in S 

C4 = ¬b ∨ c Clause in S 

C5 = b Resolvent of C1 and C2 

C6 = c Resolvent of C4 and C5 

C7 = □ Resolvent of C3 and C6 

 

The empty clause was deduced from S and therefore S is unsatisfiable. 
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3.2.2.3 Propositional Factoring or Reduction Rule 

The resolution inference rule on its own is not sufficient to provide a complete 

refutational inference system (Leitsch 1997).  Take for example the following two 

clauses: 

C1 = P ∨ P 

C2 = ¬P ∨ ¬P 

It is clear that these two clauses are contradictory and is unsatisfiable under all 

interpretations.  However, by just employing the resolution inference rule, we cannot 

deduce the empty clause to show this unsatisfiability.  Clauses C1 and C2 have resolvent 

C3 = P ∨ ¬P.  Resolving C3 with either C1 or C2 will just yield C1 and C2 again as 

resolvents. 

We therefore require another inference rule to reduce a clause by getting rid of any 

redundant literals.  This reduction rule states (Leitsch 1997): 

Definition 3.3 

Let C be a clause.  Clause C' is a factor of C if it is obtained by removing any 

duplicate literals from C. 

Applying this rule to the two example clauses C1 and C2 above will give us C3=P and 

C4=¬P.  The empty clause is then a resolvent of C3 and C4. 

3.2.2.4 Soundness and Completeness 

There are many texts that give the proofs for the refutational soundness and completeness 

of propositional resolution.  The soundness theorem of resolution deduction states that if 

there is a resolution refutation of a set of clauses S, then S is unsatisfiable (Leitsch 1997, 

Chang & Lee 1973).  The completeness theorem for propositional resolution deduction 

states that if a set of clauses S is unsatisfiable, then there exists a resolution refutation 

from S (Leitsch 1997, Nerode & Shore 1997).  The proofs of these two properties are 
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beyond the scope of this dissertation, but details may be observed in Leitsch (1997) and 

Nerode and Shore (1997). 

3.2.3 Resolution in First-order Predicate Logic 

3.2.3.1 Substitution and Unification 

The resolution principle for predicate logic is similar to that of propositional logic in that 

one attempts to deduce the empty clause from a set of clauses.  However, with predicate 

logic, the clauses normally contain implicitly quantified variables that must be kept in 

mind when the resolution rule is applied (Nerode & Shore 1997).  Take for example the 

following clauses: 

C1: ¬P(x) ∨ Q(x) 

C2: P(a) 

Variable x in clause C1 may be unified with any constant e.g. a.  We may therefore 

substitute the constant a for x to obtain the clause: 

C3: ¬P(a) ∨ Q(a) 

C2 and C3 can now be resolved upon to obtain resolvent Q(a). 

In general a substitution θ can be defined as a set {t1/v1, …, tn/vn} where every vi is a 

distinct variable and every ti is a term other than vi for 1 ≤ i ≤ n, e.g. {f(z)/x, g(a)/y}.  Let 

E be an expression denoting any term, atom or literal.  Eθ is then also an expression that 

is obtained by simultaneously replacing each variable vi in E with the term ti (Chang & 

Lee 1973). 

For example, let θ = {u/x, a/y, f(v)/z} and E = Q(x, f(y), z).  Then Eθ = Q(u, f(a), f(v)). 

Two or more expressions E1, …, En can be unified if there exists a substitution θ such 

that E1θ = E2θ = … = Enθ.  The substitution θ is called a unifier of the expressions.  

Expressions are called unifiable when they have a unifier. 



 23 

Unification is always applied using the most general unifier to be more effective (Nerode 

& Shore 1997).  A unifier θ of a set of expressions E1, …, En is called a most general 

unifier if and only if for every unifier σ of the set, there exists a substitution λ such that 

E1θ = (E1σ)λ = E2θ = (E2σ)λ = … = Enθ = (Enσ)λ. 

A set of expressions always has a most general unifier if the set is unifiable and the 

problem of obtaining the most general unifier is decidable (Leitsch 1997).  Most texts on 

resolution provide algorithms to determine the most general unifier. 

In the next section we turn our attention to the resolution principle for predicate logic.  

Examples of the application of substitution and unification are shown. 

3.2.3.2 Binary Resolution 

Substitution and unification as discussed in the previous section allow us to apply the 

resolution principle to predicate logic.  The resolution principle for predicate logic is 

stated as (Chang & Lee 1973, Leitsch 1997): 

Definition 3.4 

Let C1 and C2 be two clauses where C1 has the form L∨M1∨…∨M i for i ≥ 0 and 

C2 has the form ¬L'∨N1∨…∨Nj for j ≥ 0.  C1 and C2 also have no variables in 

common.  If θ is a most general unifier of L and ¬L', then we can infer clause 

C = M1θ∨…∨M iθ∨ N1θ∨…∨Njθ. 

The resolution inference rule can also be represented as (Eisinger & Ohlbach 1993): 

L,M1,…,Mi 

¬L',N1,…,Nj 

M1θ,…,Miθ, N1θ,…,Njθ 

 

where θ is the most general unifier of L and ¬L'. 
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The resulting inferred clause C is called the resolvent of C1 and C2.  We say that we 

resolved on (the literal) L.  Clause C is also called the child clause of parent clauses C1 

and C2 (Nerode & Shore 1997). 

The requirement that the parent clauses have no variables in common is due to the fact 

that the variables within each clause are local to that clause.  This is because the clause is 

a Skolem standard form (Chang & Lee 1973) of the original formula with implied 

universal quantifiers for the variables at the beginning of the formula.  The variables 

within different clauses are often renamed to avoid confusion.  This renaming is referred 

to as standardising the variables apart (Nerode & Shore 1997). 

A resolution deduction for predicate logic is performed in the same way as for 

propositional logic.  The difference is that the binary inference rule for predicate logic is 

used (Nerode & Shore 1997). 

Example 3.2 

Let the clause set S be: 

S = {¬P(x) ∨ Q(f(a)), P(a), ¬Q(x)} 

We can then show that S is unsatisfiable using the following refutation deduction: 

C1 = ¬P(x) ∨ Q(f(a)) Clause in S 

C2 = P(a) Clause in S 

C3 = ¬Q(x) Clause in S 

C4 = Q(f(a)) Resolvent of C1 and C2 
Unifier is {a/x} 

C5 = □ Resolvent of C3 and C4 
Unifier is {f(a)/x} 
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Example 3.3: The farmer, goat, cabbage and wolf puzzle 

The problem of the farmer, goat, cabbage and wolf is a classic puzzle that is often used to 

illustrate state space search problems (Eisinger & Ohlbach 1993).  These types of 

problems usually have an initial state and a goal state.  The solution to the problem is a 

path through all the valid states from the initial one to the goal. 

The puzzle goes as follows: 

A farmer has a goat, a cabbage and a wolf that he has to take across a river.  He 

has a small boat with which to accomplish this.  Unfortunately the boat is very 

small and can only carry himself and one of the goat, cabbage or wolf.  In his 

absence the goat would eat the cabbage and the wolf would eat the goat.  How can 

he cross the river with the goat, cabbage and the wolf? 

The above puzzle will be used to illustrate how resolution deduction can be used as a 

decision procedure to determine whether the puzzle has a solution. 

A state in the problem is presented by the predicate symbol S with arity 4.  The 

parameters indicate on which side of the river the farmer, goat, cabbage and wolf are as 

follows: 

fh – farmer here 

fa – farmer across 

gh – goat here 

ga – goat across 

ch – cabbage here 

ca – cabbage across 

wh – wolf here 

wa – wolf across 
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The initial state is given by the predicate: 

S(fh, gh, ch, wh) 

The goal state is given by: 

S(fa, ga, ca, wa) 

A safe state is one in which neither the goat and cabbage nor the goat and wolf are left 

unsupervised.  The predicate symbol SAFE with arity 4 will be used to indicate a safe 

state.  The parameters are similar to those of predicate S.  The following are the safe 

states: 

SAFE(fh, gh, ch, wh) 

SAFE(fh, gh, ch, wa) 

SAFE(fh, gh, ca, wh) 

SAFE(fh, gh, ca, wa) 

SAFE(fh, ga, ch, wh) 

SAFE(fa, gh, ca, wa) 

SAFE(fa, ga, ch, wh) 

SAFE(fa, ga, ch, wa) 

SAFE(fa, ga, ca, wh) 

SAFE(fa, ga, ca, wa) 

The farmer can cross the river with or without one of the goat, cabbage and wolf if we are 

in a safe state and the state after the river crossing is also safe.  In the light of the 

resolution deduction, it means we can deduce a new state from an existing state if both 
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the current and new states are safe.  The various river crossing rules are given by the 

following formulae: 

Farmer goes across alone: 

∀(x,y,z) [S(fh,x,y,z) ∧ SAFE(fh,x,y,z) ∧ SAFE(fa,x,y,z) → S(fa,x,y,z)] 

Farmer comes back alone: 

∀(x,y,z) [S(fa,x,y,z) ∧ SAFE(fa,x,y,z) ∧ SAFE(fh,x,y,z) → S(fh,x,y,z)] 

Farmer takes goat across: 

∀(y,z) [S(fh,gh,y,z) ∧ SAFE(fh,gh,y,z) ∧ SAFE(fa,ga,y,z) → S(fa,ga,y,z)] 

Farmer brings goat back: 

∀(y,z) [S(fa,ga,y,z) ∧ SAFE(fa,ga,y,z) ∧ SAFE(fh,gh,y,z) → S(fh,gh,y,z)] 

Farmer takes cabbage across: 

∀(x,z) [S(fh,x,ch,z) ∧ SAFE(fh,x,ch,z) ∧ SAFE(fa,x,ca,z) → S(fa,x,ca,z)] 

Farmer brings cabbage back: 

∀(x,z) [S(fa,x,ca,z) ∧ SAFE(fa,x,ca,z) ∧ SAFE(fh,x,ch,z) → S(fh,x,ch,z)] 

Farmer takes wolf across: 

∀(x,y) [S(fh,x,y,wh) ∧ SAFE(fh,x,y,wh) ∧ SAFE(fa,x,y,wa) → S(fa,x,y,wa)] 

Farmer brings wolf back: 

∀(x,y) [S(fa,x,y,wa) ∧ SAFE(fa,x,y,wa) ∧ SAFE(fh,x,y,wh) → S(fh,x,y,wh)] 
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The resolution deduction is presented in Appendix A.1.  It represents one of a number of 

solutions: 

The farmer takes the goat across and returns.  He then takes the wolf across and 

returns with the goat.  He leaves the goat and takes the cabbage across.  He then 

returns and take the goat across. 

Referring to Appendix A.1, clauses 1 to 20 are the inputs to the resolution deduction.  

Clauses 1 to 8 are the above formulae converted to clausal form.  Clauses 9 to 18 

represent all the safe states.  Clause 19 is the initial state.  The goal state is given by 

clause 20 and is the negation of the actual goal since we are using refutation to show that 

a solution exists. 

We deduced the empty clause and thereby a refutation, showing that a solution exists. 

3.2.3.3 Factoring 

As in the case of propositional resolution, the binary resolution inference rule for 

predicate logic is sound but not refutation complete (Wos et al. 1992).  Take the 

following two clauses as example: 

C1 = P(a) ∨ P(y) 

C2 = ¬P(w) ∨ ¬P(z) 

Clauses C1 and C2 are unsatisfiable, but binary resolution alone is not sufficient to deduce 

the empty clause.  Any deduced clause will still contain two literals. 

Factoring is an inference rule that overcomes this problem (Wos et al. 1992) and is 

defined as (Chang & Lee 1973): 

Definition 3.5 

If θ is a most general unifier of two or more literals of a clause C, then Cθ is 

called a factor of C. 
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Returning to the above example, a factor of C1 is P(a) and a factor of C2 is ¬P(w).  The 

conjunction of these two clauses is then unsatisfiable.  Note that unification of P(a) and 

P(y) in C1 for example results in P(a) ∨ P(a) and not just P(a).  However, a clause is 

considered to be a set of literals and since one does not repeatedly list the same element 

of a set, unification produces the set {P(a)}. 

3.2.3.4 Soundness and Completeness 

The combination of the binary resolution and factoring inference rules provides us with a 

refutational sound and complete inference system (Wos et al. 1992).  The soundness 

theorem of resolution deduction states that if there is a resolution refutation of a set of 

clauses S, then S is unsatisfiable (Nerode & Shore 1997).  The completeness theorem of 

resolution deduction states that if a set of clauses S is unsatisfiable, then there exists a 

resolution refutation from S (Nerode & Shore 1997, Chang & Lee 1973, Leitsch 1997). 

The detailed proof of the above soundness and completeness properties is beyond the 

scope of this dissertation.  Nevertheless the proof starts by showing that the system is 

complete for ground clauses.  The lifting lemma is then the key to proving the 

completeness of the system for predicate logic.  The lifting lemma shows that any 

instantiation of a deduction can be replaced by a more general one.  It is called the lifting 

lemma because it “lifts” ground deductions to deductions in predicate logic. 

3.3 Efficiency Enhancements 

The field of automated reasoning concerns itself mainly with searching for the existence 

of proofs.  The size of the search space and the method of traversing the search space are 

of vital importance to the efficiency of automated theorem proving (Leitsch 1997). 

Robinson’s resolution principle (Robinson 1965a) brought about a major advancement to 

the field of automated reasoning.  With each application of the binary inference rule, the 

search space grows by a bounded number of branches which are generally not too many, 

compared to methods based on Herbrand’s theorem and other classical methods where 

the search space could grow at an unbounded rate (Eisinger & Ohlbach 1993). 
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Implementations of binary resolution are able to solve much more complex problems.  It 

is however still not efficient enough to solve everyday mathematical problems.  One of 

the problems is that of the unbounded generation of resolvents.  Another problem is the 

presence of redundant clauses and literals.  Robinson acknowledged these problems and 

proposed three principles that automated implementations should employ when searching 

for a refutation (Robinson 1965a).  These principles are those of purity, subsumption and 

replacement.  The reasoning steps taken by binary resolution are also very small (Quaife 

1992b) and result in a high number of unnecessary resolvents (Leitsch 1997).  Robinson 

has also seen this as a problem and published a paper on hyper-resolution (Robinson 

1965b) that uses more than two clauses simultaneously in a reasoning step.  Hyper-

resolution is discussed in Section 3.4.4. 

Numerous other techniques have been proposed to reduce the search space.  Leitsch 

(1997) lists three categorises of techniques: refinements of resolution, redundancy tests 

and heuristics.  Another category is theory resolution (Eisinger & Ohlbach 1993). 

We shall expand on Leitsch’s treatment of heuristics and look at it from two perspectives.  

The first is that of the automatic deduction implementation.  The order in which 

derivations are generated may have a significant impact on the cost of the search.  One 

such heuristic could be to give preference to deductions containing smaller clauses.  The 

second perspective is that of the problem specifier.  There are usually many different 

ways to model a problem in first-order logic.  The problem specification provides the 

initial set of clauses and therefore could have a significant impact on the search space 

(Van der Poll & Labuschagne 1999, Van der Poll 2000, Wos et al. 1992). 

The next sections will be dedicated to exploring some of these techniques. 

3.4 Refinements 

A technique X is a refinement of technique Y if the possible resolution deductions from 

X are a subset of those of Y.  Since X has fewer deductions, the search space is smaller. 

A possible implementation of resolution is known as the level-saturation method (Chang 

& Lee 1973).  The first level S0 is the initial set S of clauses.  The resolvents of clauses in 



 31 

S0 are added to S1 until no more resolutions are possible, that is, until the level is 

saturated.  The resolvents of S0 ∪ S1 are then added to S2.  This process is continued until 

the empty clause is found. 

The level sets are defined as: 

S0 = S 

Sn = {resolvents of C1 and C2 | C1 ∈ {S0 ∪ … ∪ Sn-1}, C2 ∈ Sn-1}, n=1,2,… 

The level-saturation method of resolution is a simple algorithm to implement on a 

computer but generates an extremely high number of clauses.  The example of the farmer, 

goat, cabbage and wolf puzzle in Appendix A.1 will again be used to illustrate this point.  

However, we will use a different start state, one where the goat is on this side and the 

farmer, cabbage and wolf on the other side.  Also, only two levels of resolvents will be 

generated and only an adequate set of input clauses is used.  All the initial clauses will 

keep the same clause numbering as before. 

The level-saturation deduction is shown in Appendix A.2.  Nine clauses are generated in 

the first level and 28 in the second level.  This shows that the number of resolvents for 

each level grows at a phenomenal rate. 

3.4.1 Linear Resolution 

The above level saturation implementation of resolution is not a natural way for people to 

carry out a proof using resolution.  Humans would most likely start with a clause, resolve 

it with another clause and use the resolvent for the next resolution step, until the empty 

clause is deduced (Chang & Lee 1973).  This method of resolution is a called linear 

resolution and is a refinement of resolution (Nerode & Shore 1997). 

3.4.1.1 Linear Resolution Deduction 

We can formally define linear resolution as (Chang & Lee 1973, Leitsch 1997, Nerode & 

Shore 1997): 
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Definition 3.6 

Let S be a set of clauses and C a clause in S.  A linear deduction of D from S with 

top clause C is a sequence 〈C0, B1, C1, …, Bn, Cn〉 of clauses (for n ≥ 1) such that 

• C0 = C and 

• D = Cn and 

• for 1 ≤ i ≤ n, Ci is a resolvent of Ci-1 and Bi and 

• Bi is either in S or is a Cj for some j < i. 

C is called the top clause, all Bi are called side clauses and all Ci are called centre 

clauses.  There is a linear resolution refutation of S if the empty clause can be 

deduced from S. 

Example 3.4 

Let S be the set of clauses S = {Q(x) ∨ R(x), ¬Q(x) ∨ R(f(y)), Q(x) ∨ ¬R(f(x)), ¬Q(x) ∨ 

¬R(x)}.  The following is a linear resolution refutation of S: 

 Clauses in S  

C1 = Q(x) ∨ R(x)  

C2 = ¬Q(x) ∨ R(f(y))  

C3 = Q(x) ∨ ¬R(f(x))  

C4 = ¬Q(x) ∨ ¬R(x)  

 Linear refutation with top clause C2  

C5 = ¬Q(x) ∨ ¬Q(f(y)) C2 and C4 

C6 = R(f(y)) C5 and C1 

C7 = Q(x) C6 and C3 
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C8 = ¬R(x) C7 and C4 

C9 = □ C8 and C6 

 

Note that clause C6 was obtained after factoring was applied to clause C5, followed by a 

resolution step with C1. 

The farmer, goat, cabbage and wolf puzzle that was used as an example of binary 

resolution (Appendix A.1) is also an example of linear resolution. 

3.4.1.2 Soundness and Completeness 

Linear resolution is a special case of binary resolution with factoring which is sound, 

therefore linear resolution is also sound (Nerode & Shore 1997). 

Linear resolution is also a complete resolution refutation procedure.  A proof is provided 

by Leitsch (1997).  It must be noted however that using the incorrect top clause can cause 

incompleteness.  For example, let S be the set of clauses S = {P(x), ¬P(y) ∨ Q(y), ¬Q(u), 

R(a)}.  The following linear deduction shows that S is unsatisfiable: 

 Clauses in S  

C1 = P(x)  

C2 = ¬P(y) ∨ Q(y)  

C3 = ¬Q(u)  

C4 = R(a)  

 Linear refutation with top clause C1  

C5 = Q(y) C1 and C2 

C6 = □ C5 and C3 
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However, if clause C4 is chosen as the top clause, then there are no other clauses that can 

be resolved with it.  C4 is therefore the only linear deduction and is not a refutation. 

3.4.1.3 Refinements of Linear Resolution 

There are various refinements for linear resolution (Leitsch 1997).  Some of these include 

clause ordering and literal information (Chang & Lee 1973) as well as input and UR 

resolution.  The latter two will be discussed in the following sections. 

3.4.1.4 Input Resolution 

Input resolution is a refinement of linear resolution but is not refutation complete (Wos et 

al. 1992).  Input resolution is still useful despite its incompleteness.  The reason for this is 

that a large class of theorems can be proved with it and it is very efficient (Chang & Lee 

1973). 

Input resolution can be defined as (Chang & Lee 1973, Leitsch 1997): 

Definition 3.7 

Let S be a set of clauses.  A clause in S is called an input clause.  An input 

resolution is a resolution in which one of the parent clauses is an input clause.  An 

input deduction is a linear deduction in which all the side clauses are input 

clauses.  An input refutation is an input deduction of the empty clause. 

The class of theorems for which input resolution is complete is called Horn logic (Leitsch 

1997): 
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Definition 3.8 

Horn logic is the class of all finite sets of Horn clauses, where a Horn clause is a 

clause with one of the following forms: 

1. P 

2. P ∨ ¬Q1 ∨ … ∨ ¬Qn 

3. ¬Q1 ∨ … ∨ ¬Qn 

Form 1 is called a fact, 2 is called rule and 3 is called a goal. 

A Horn clause is therefore a clause with at most one positive literal.  The terminology of 

facts, rules and goals comes from the field of logic programming.  A proof of the 

completeness of input resolution on Horn logic is provided by (Leitsch 1997). 

The following example serves to show that input resolution is not complete in predicate 

logic. 

Example 3.5 

Let S be the set of clauses S = {Q(x) ∨ R(x), ¬Q(x) ∨ R(f(y)), Q(x) ∨ ¬R(f(x)), ¬Q(x) ∨ 

¬R(x)}.  Note that this is the same set of refutable clauses that was used in Example 3.4.  

S does not contain any unit clauses or unit factors of clauses.  Also, S contains a non-

Horn clause Q(x) ∨ R(x).  Let D = 〈C0, B1, C1, …, Bn, Cn〉 be an arbitrary linear input 

deduction from S (for n ≥ 1).  C0 must be a clause from S.  Bn is also a clause from S.  Cn 

is a resolvent of Cn-1 and Bn.  However, Cn cannot be the empty clause since neither Bn 

nor any factor of it is a unit clause.  D can therefore not be an input refutation of S. 

Example 3.6 

This example shows an input refutation.  It is an example about the relationship between 

being a parent and grandparent, father and grandfather in this case. 
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 Clauses in S  

C1 = ¬FATHER(x, y) ∨ ¬FATHER(y,z) ∨ GRANDFATHER(x, z)  

C2 = FATHER(johnSr, johnBoy)  

C3 = FATHER(zebulon, johnSr)  

C4 = ¬GRANDFATHER(zebulon, johnBoy)  

 Input refutation with top clause C4  

C5 = ¬FATHER(zebulon, y) ∨ ¬FATHER(y, johnBoy) C4 and C1 

C6 = ¬FATHER(zebulon, johnSr) C5 and C2 

C7 = □ C6 and C3 

 

The farmer, goat, cabbage and wolf puzzle that was used above as an example for binary 

resolution is also an example of input resolution. 

3.4.1.5 Unit Resolution 

Unit resolution is a refinement of resolution, but not linear resolution.  It is discussed here 

because it is refutation equivalent to input resolution.  Unit resolution can be viewed as 

an extension of the one-literal rule of Davis and Putnam and may be defined as (Chang & 

Lee 1973): 

Definition 3.9 

A unit resolution is a resolution in which at least one parent clause is a unit clause 

or a unit factor thereof.  A deduction in which every resolution step is a unit 

resolution is called a unit deduction.  A unit deduction of the empty clause is 

called a unit refutation. 
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Unit resolvents are always smaller as opposed to binary resolution where the resolvents 

tend to be longer clauses (Quaife 1992b).  This property is very important since to deduce 

the empty clause, shorter clauses ought to be deduced.  As a result, unit resolution is a 

very efficient refinement of resolution (Chang & Lee 1973). 

As was stated above, input- and unit resolution are refutation equivalent.  That is, a 

theorem can be proved with input resolution if and only if it can be proved by unit 

resolution.  A proof of this equivalence can be found in (Chang & Lee 1973).  This 

equivalence then implies that unit resolution, as with input resolution, is not refutation 

complete but is complete for Horn logic (Wos et al. 1992). 

The proof of the completeness of unit resolution for Horn logic follows from its 

equivalence with input resolution and the proof referred to in the previous section that 

input resolution is complete over Horn logic (Leitsch 1997). 

Since input resolution and unit resolution are equivalent, Example 3.5 that was used to 

show that input resolution is not refutation complete also suffices to show that unit 

resolution is not refutation complete.  Recall the given set S = {Q(x) ∨ R(x), ¬Q(x) ∨ 

R(f(y)), Q(x) ∨ ¬R(f(x)), ¬Q(x) ∨ ¬R(x)}.  This time it is easier to see that unit 

resolution is not sufficient to refute S.  This is because there is no unit clause in S that can 

be used as a parent clause to perform a unit resolution. 

Example 3.6 that was used to illustrate an input refutation is also an example of a unit 

refutation.  The farmer, goat, cabbage and wolf puzzle is another example of a unit 

refutation. 

3.4.2 Semantic Resolution 

Semantic resolution was proposed by Slagle (1967).  It unifies Robinson’s hyper-

resolution (Robinson 1965b), Meltzer’s renamable resolution (Meltzer 1966) and the set-

of-support strategy of Wos, Robinson and Carson (1965).  These resolution concepts will 

be discussed below. 
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3.4.2.1 Splitting into Two Groups 

The first method that semantic resolution provides to reduce the number of resolvents is 

to split a given set S of clauses into two groups S1 and S2.  Clauses within the same group 

are not allowed to be resolved with each other.  The criterion by which the given set is 

split in two is determined by a Herbrand interpretation, M (Bachmair & Ganzinger 2001).  

All clauses that are true under M are put into one group and the rest are put into the other 

group.  It should be noted that if the set of clauses is unsatisfiable, then there is no 

interpretation that can make all the clauses true.  As a result, all interpretations would 

split the set of clauses in two groups. 

Example 3.7 

Consider clauses C1 and C2 of the puzzle (in Appendix A.1) that are repeated here: 

C1 = ¬S(fh, x, y, z) ∨ ¬SAFE(fh, x, y, z) ∨ 

¬SAFE(fa, x, y, z) ∨ S(fa, x, y, z) 

Farmer goes across 

C2 = ¬S(fa, x, y, z) ∨ ¬SAFE(fa, x, y, z) ∨ 

¬SAFE(fh, x, y, z) ∨ S(fh, x, y, z) 

Farmer returns 

 

C1 and C2 have the following resolvents: 

¬S(fh, x, y, z) ∨ ¬SAFE(fh, x, y, z) ∨ ¬SAFE(fa, x, y, z) ∨ 

¬SAFE(fa, x, y, z) ∨ ¬SAFE(fh, x, y, z) ∨ S(fh, x, y, z) 

Resolved on S(fa, x, y, z) 

¬SAFE(fh, x, y, z) ∨ ¬SAFE(fa, x, y, z) ∨ S(fa, x, y, z) ∨     

¬S(fa, x, y, z) ∨ ¬SAFE(fa, x, y, z) ∨ ¬SAFE(fh, x, y, z) 

Resolved on S(fh, x, y, z) 

 

Let M be an interpretation in which every literal is the negation of an atom: 

M =  { ¬S(fh, gh, ch, wh), ¬S(fh, gh, ch, wa), ¬S(fh, gh, ca, wh), …, 

¬SAFE(fh, gh, ch, wh), ¬SAFE(fh, gh, ch, wa), ¬SAFE(fh, gh, ca, wh), … } 
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Further, let all clauses that are true under M go into group S1 and the rest into group S2.  

Both C1 and C2 in the puzzle are true under M and therefore belong to the same group S1.  

C1 and C2 are therefore not allowed to be resolved with each other under the principle of 

semantic resolution with splitting. 

3.4.2.2 Ordering of Predicate Symbols 

The second concept of semantic resolution that allows us to cut down on the number of 

generated resolvents is the ordering of predicate symbols.  Given an ordering of predicate 

symbols, we can only resolve a clause X from S1 with a clause Y from S2 if the literal 

resolved upon contains the largest predicate symbol in X.  Such ordering of predicate 

symbols is specified beforehand. 

Example 3.8 

Consider clauses C1 and C9 of the puzzle that is repeated here: 

C1 = ¬S(fh, x, y, z) ∨ ¬SAFE(fh, x, y, z) ∨ 

¬SAFE(fa, x, y, z) ∨ S(fa, x, y, z) 

Farmer goes across 

C9 = SAFE(fh, gh, ch, wh) Safe state 

 

C1 and C9 has the following resolvent: 

¬S(fh, x, y, z) ∨ ¬SAFE(fa, x, y, z) ∨ S(fa, x, y, z) Resolved on SAFE(fh, gh, ch, wh) 

Unifier {gh/x, ch/y, wh/z} 

 

We will use the same interpretation M as before in which every literal is the negation of 

an atom.  Also, let clauses that are true under M go into S1 and the rest into S2.  C1 is 

therefore in group S1 and C9 is in group S2.  Let the predicate ordering be S > SAFE.  C1 

and C9 are in different groups and therefore the splitting criteria do not prevent them from 
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being resolved with each other.  However, the resolution would be on SAFE(fh, gh, ch, 

wh) which does not have the largest predicate symbol in clause C1 based on the chosen 

predicate ordering.  Clauses C1 and C9 can therefore not be resolved under the specified 

ordering.  If the predicate ordering was chosen the other way round, then the resolution 

would have been allowed. 

3.4.2.3 The Clash 

The final concept of semantic resolution that we introduce is the clash (Slagle 1967).  To 

illustrate the concept, consider the following clauses from the farmer, goat, cabbage and 

wolf puzzle: 

C3 = ¬S(fh, gh, y, z) ∨ ¬SAFE(fh, gh, y, z) ∨ 

¬SAFE(fa, ga, y, z) ∨ S(fa, ga, y, z) 

Farmer takes goat across 

C9 = SAFE(fh, gh, ch, wh)  

C15 = SAFE(fa, ga, ch, wh)  

C19 = S(fh, gh, ch, wh) Start state 

 Take goat across  

C21 = ¬SAFE(fh, gh, ch, wh) ∨ ¬SAFE(fa, ga, ch, wh) ∨ 

S(fa, ga, ch, wh) 

Resolvent of C3 and C19 

Unifier {ch/y, wh/z} 

C22 = ¬SAFE(fa, ga, ch, wh) ∨ S(fa, ga, ch, wh) Resolvent of C9 and C21 

C23 = S(fa, ga, ch, wh) Resolvent of C15 and C22 

 

Clauses C21 and C22 were intermediate resolvents to allow the resolution of clause C23.  

This is just one way of generating clause C23.  By using the level-saturation method 

(Section 3.4), clause C23 would occur more than once via some other intermediate 

resolvents.  Some of the other ways that duplicates of clause C23 could be generated are: 
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 Variant 1  

C1-21 = ¬SAFE(fh, gh, ch, wh) ∨ ¬SAFE(fa, ga, ch, wh) ∨ 

S(fa, ga, ch, wh) 

Resolvent of C3 and C19 

Unifier {ch/y, wh/z} 

C1-22 = ¬SAFE(fh, gh, ch, wh) ∨ S(fa, ga, ch, wh) Resolvent of C15 and C1-21 

C1-23 = S(fa, ga, ch, wh) Resolvent of C9 and C1-22 

 Variant 2  

C2-21 = ¬S(fh, gh, ch, wh) ∨ ¬SAFE(fa, ga, ch, wh) ∨  

S(fa, ga, ch, wh) 

Resolvent of C3 and C9 

Unifier {ch/y, wh/z} 

C2-22 = ¬S(fh, gh, ch, wh) ∨ S(fa, ga, ch, wh) Resolvent of C15 and C2-21 

C2-23 = S(fa, ga, ch, wh) Resolvent of C19 and C2-22 

 

There are at least three other ways in which clause C23 may be deduced.  All of these 

deductions use clauses C3, C9, C15 and C19.  The only difference between them is the 

order in which they use the clauses.  The semantic clash avoids this redundant generation 

of clauses by generating clause C23 directly from clauses C3, C9, C15 and C19 without the 

need of the intermediate clauses like C21 and C22.  In this scenario the set {C3, C9, C15, 

C19} is called a clash. 

A clash can formally be defined as (Slagle 1967): 

Definition 3.10 

A clash S is a finite set of clauses {E1, …, En, N} for n≥1 such that 

1. clause N contains at least n literals L1, …, Ln 

2. for all i = 1, …, n clause Ei contains the complement ¬Li of literal Li, but 

not the complement of any other literal in N nor any literal in Ej for j = 1, 

…, n. 
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N is called the nucleus and all Ei are called electrons. 

3.4.2.4 Semantic Resolution 

Semantic resolution refers to the technique whereby some interpretation M is used to 

divide a set of clauses into two groups and a resolution step must use clauses from both 

groups.  It is defined as (Leitsch 1997): 

Definition 3.11 

Let S be a set of clauses and let M be an interpretation of S.  Let C and D be 

clauses in S such that either C or D is false in M.  A resolvent with C and D as 

parent clauses is then called a semantic M-resolvent or simply an M-resolvent. 

A semantic deduction is defined as (Leitsch 1997): 

Definition 3.12 

Let S be a set of clauses and let M be an interpretation of S.  A semantic 

deduction of the clause C from S is a finite sequence of clauses C1,…,Cn such that 

C = Cn and for all i=1,…,n either Ci is a clause in S or Ci is an M-resolvent. 

3.4.2.5 Semantic Clash Resolution 

Semantic resolution can be strengthened by introducing the concept of the semantic 

clash.  This kind of resolution is called semantic clash resolution.  It is defined as (Leitsch 

1997): 

Definition 3.13 

Let M be an interpretation of a finite set of clauses S = {E1, …, Eq, N} for q≥1 

that satisfies the following conditions: 

1. E1, …, Eq are false under M. 

2. Let R1 = N.  There exists a resolvent Ri+1 of Ri and Ei for 1 ≤ i ≤ q. 

3. Rq+1 is false under M. 
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Set S is then called a semantic clash with respect to M, or simply an M-clash.  

Clauses E1,…, Eq are called electrons and clause N is called the nucleus.  Rq+1 is 

called an M-resolvent of the M-clash S. 

A semantic clash deduction is defined as (Leitsch 1997): 

Definition 3.14 

Let S be a set of clauses and let M be an interpretation of S.  A semantic clash 

deduction of the clause C from S is a finite sequence of clauses C1,…,Cn such that 

C = Cn and for all i=1,…,n either Ci is a clause in S or Ci is an M-resolvent of an 

M-clash. 

A proof of the completeness of semantic clash resolution is provided by (Leitsch 1997).  

The ground completeness is first proved as a lemma.  Thereafter, the completeness for 

first-order logic is proved by using the lifting lemma.  Details of the proof are beyond the 

scope of this dissertation. 

3.4.2.6 Semantic Clash Resolution with Predicate Ordering 

Semantic Clash Resolution can be strengthened by adding predicate ordering.  This is 

how Slagle (1967) originally proposed semantic resolution.  It is defined as (Slagle 1967, 

Chang & Lee 1973): 

Definition 3.15 

Let M be an interpretation and P be an ordering of predicate symbols of a finite 

set of clauses S = {E1, …, Eq, N} for q≥1 that satisfy the following conditions: 

1. E1, …, Eq are false under M. 

2. Let R1 = N.  There exists a resolvent Ri+1 of Ri and Ei for 1 ≤ i ≤ q. 

3. The literal that was resolved upon in Ei contains the largest predicate 

symbol in Ei for 1 ≤ i ≤ q. 

4. Rq+1 is false under M. 
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Set S is then called a semantic clash with respect to P and M, or simply a PM-

clash.  Clauses E1,…, Eq are called electrons and clause N is called the nucleus.  

Rq+1 is called a PM-resolvent of the PM-clash S. 

A semantic clash resolution deduction with predicate ordering is then defined as (Slagle 

1967, Chang & Lee 1973): 

Definition 3.16 

Let S be a set of clauses, M an interpretation of S and P an ordering of the 

predicate symbols appearing in S.  A semantic clash resolution deduction with 

predicate ordering of the clause C from S is a finite sequence of clauses C1,…,Cn 

such that C = Cn and for all i=1,…,n either Ci is a clause in S or Ci is a PM-

resolvent of a PM-clash. 

Proofs of the completeness of semantic clash resolution with predicate ordering are 

provided by both Slagle (1967) and Chang and Lee (1973).  As for semantic clash 

resolution, the ground completeness is first proved.  Thereafter, the completeness for 

first-order logic is proved by using the lifting lemma. 

Next we discuss a number of important subclasses of semantic resolution namely UR-

resolution, hyperresolution and set-of-support resolution. 

3.4.3 UR-resolution 

Unit resulting resolution or simply UR-resolution was proposed in 1967 by McCharen et 

al. (1967).  It derives its name from the fact that it produces unit clauses as resolvents. 

UR-resolution inference rule can be formally defined as (Eisinger & Ohlbach 1993): 

Definition 3.17 

Let S be a set of clauses S = {E1, …, En, N} for n≥1.  E1, …, En are unit clauses.  

Clause N has the form N = L1 ∨ … ∨ Ln+1.  Let θ be a most general unifier such 

that Liθ and Eiθ are complementary for all i = 1, …, n. 
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Ln+1 is called a UR-resolvent of S and is a unit clause.  The clause N is called the 

nucleus.  θ is called a simultaneous unifier S. 

The inference rule can also be defined in the following format (Van der Poll 2000, Quaife 

1992b): 

E1 

 : 

En 

L1, …, Ln+1 

Ln+1θ 

 

where θ is a simultaneous unifier such that Liθ and Eiθ are complementary for all i = 1, 

…, n. 

A UR-resolution deduction is defined as (Wos et al. 1992, Eisinger & Ohlbach 1993): 

Definition 3.18 

Let S be a set of clauses.  A UR-resolution deduction of the clause C from S is a 

finite sequence of clauses C1,…,Cn such that C = Cn and for all i=1,…,n either Ci 

is a clause in S or Ci is a UR-resolvent of S. 

The unit clause resolvent can also be derived using binary resolution (Wos et al. 1992).  

However, in this case binary resolution has some disadvantages (Quaife 1992b).  This is 

because a number of applications of the binary resolution rule are required.  As a result 

intermediate clauses are generated that unnecessarily enlarge the search space.  

Depending on the search algorithm used e.g. level saturation (Chang & Lee 1973), the 

same intermediate clauses may be generated more than once because every possible 

combination of resolution could be attempted.  This concept is known as a clash (Slagle 

1967) and was discussed under semantic resolution above. 
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UR-resolution eliminates the unnecessary generation of resolvents by replacing all the 

individual inferences by just one inference step.  For this reason, UR-resolution is 

referred to as a macro resolution step (Eisinger & Ohlbach 1993). 

UR-resolution essentially combines several applications of the unit resolution rule into 

one macro resolution rule by using the concept of a clash.  Unit resolution is not 

refutation complete, but is complete for Horn logic (Wos et al. 1992).  As a result UR-

resolution is not refutation complete, but is complete for Horn logic (Quaife 1992b).  UR-

resolution is usually used in conjunction with other inference rules due to its 

incompleteness. 

Appendix A.3 shows an example of the farmer, goat, cabbage and wolf puzzle with UR-

resolution applied.  Note that the initial clause set is not repeated in the appendix.  The 

use of UR-resolution substantially shortens the proof by simultaneously resolving more 

than two parent clauses. 

3.4.4 Hyperresolution 

Hyperresolution was proposed by Robinson (1965b) in the same year that he proposed 

binary resolution.  Hyperresolution is a special case of semantic clash resolution (Leitsch 

1997) based on the interpretation that is used.  There are two variants, positive and 

negative hyperresolution.  The difference between the two variants is the interpretation 

that is used.  Hyperresolution can be defined in terms of semantic clash resolution as 

(Chang & Lee 1973): 
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Definition 3.19 

Positive hyperresolution is a special case of semantic clash resolution (with or 

without predicate ordering) where the interpretation M is chosen such that every 

literal is negative. 

Negative hyperresolution is a special case of semantic clash resolution (with or 

without predicate ordering) where the interpretation M is chosen such that every 

literal is positive. 

Hyperresolution can also be defined independently of semantic clash resolution (Eisinger 

& Ohlbach 1993): 

Definition 3.20 

A clause is called positive if none of its literals has a negation sign.  A clause is 

called negative if all of its literals have a negation sign.  A clause is called mixed 

if it is neither positive nor negative. 

Definition 3.21 

Let S be a set of clauses S = {E1, …, En, N} for n ≥ 1.  Clause N is negative 

(positive) or mixed and has the form N = L1 ∨ … ∨ Ln+m for m ≥ 0.  For all i = 1, 

…, n Ei is positive (negative) and has the form Ei = Ki ∨ Hi where Ki is a literal 

and Hi a possibly empty clause.  Let θ be a most general unifier such that Liθ and 

K iθ are complementary for all i = 1, …, n.  Clause H1θ ∨ … ∨ Hnθ ∨ Ln+1 ∨ … ∨ 

Ln+m is then called a positive (negative) hyperresolvent of S. 

A resolution that yields a positive (negative) hyperresolvent is called a positive 

(negative) hyperresolution.  Clause N is called the nucleus and all Ei are called 

electrons or satellites.  θ is called a simultaneous unifier of S. 

The inference rule can also be defined in the following format (Van der Poll 2000, Quaife 

1992b): 
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K1, H1 

 : 

Kn, Hi 

L1, …, Ln+m 

H1θ ∨ … ∨ Hnθ ∨ Ln+1θ ∨ … ∨ Ln+mθ 

 

where all symbols have the same meaning as in Definition 3.21. 

Positive hyperresolution derives its name from the fact that all electrons and 

hyperresolvents are positive.  Negative hyperresolution derives its name similarly namely 

all electrons and hyperresolvents are negative. 

A hyperresolution deduction is defined as (Slagle 1967): 

Definition 3.22 

A positive hyperdeduction is a semantic clash deduction (with or without 

predicate ordering) in which the interpretation M is chosen such that every literal 

is negative. 

A negative hyperdeduction is a semantic clash deduction (with or without 

predicate ordering) in which the interpretation M is chosen such that every literal 

is positive. 

Example 3.9 

This example refutation is the same as Example 3.6 about the relationship between being 

a father and grandfather except for the last deduction step C6 that makes use of positive 

hyperresolution. 
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 Clauses in S  

C1 = ¬FATHER(x, y) ∨ ¬FATHER(y,z) ∨ GRANDFATHER(x, z)  

C2 = FATHER(johnSr, johnBoy)  

C3 = FATHER(zebulon, johnSr)  

C4 = ¬GRANDFATHER(zebulon, johnBoy)  

 Input refutation with top clause C4  

C5 = ¬FATHER(zebulon, y) ∨ ¬FATHER(y, johnBoy) C4 and C1 

C6 = □ C5, C2 and C3 

 

Hyperresolution can be regarded as a generalisation of UR-resolution (Eisinger & 

Ohlbach 1993).  As with UR-resolution, hyperresolution is also a macro inference rule 

(Leitsch 1997).  It has the same advantages as UR-resolution in that it combines more 

than one inference step into a single step, i.e. it eliminates the generation of intermediate 

clauses.  Therefore, the order in which intermediate resolution steps would have been 

carried out for the semantic clash becomes irrelevant. 

Hyperresolution has the additional advantage that it is refutation complete.  Its 

completeness is implied by the completeness of semantic clash resolution.  A direct proof 

is also provided by (Leitsch 1997) and is beyond the scope of this dissertation. 

The input to a theorem-proving attempt is usually given as positive or mixed clauses and 

the negated conclusion as negative clauses.  With negative hyperresolution, the negative 

conclusion clauses are typically used as electrons.  The negative hyperdeduction therefore 

tends to be suitable for backward reasoning from the conclusion towards the axioms.  

Similarly, positive hyperdeduction tends to correspond to forward reasoning from the 

axioms towards the conclusion (Chang & Lee 1973, Eisinger & Ohlbach 1993). 
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In the next section we discuss an important advancement in the automated reasoning 

arena namely the use of a set-of-support. 

3.4.5 Set-of-Support strategy 

The set-of-support strategy is a widely used and fairly successful restriction strategy 

(Eisinger & Ohlbach 1993).  It was proposed by Wos, Robinson and Carson (Wos 1965) 

in 1965.  Similar to hyperresolution, the set-of-support strategy is a special case of 

semantic clash resolution (Slagle 1967) based on the interpretation that is used. 

The input to a refutation-based proof attempt typically consists of a set of axioms, 

theorems and a negated conclusion.  The set of axioms and theorems should be satisfiable 

and therefore a refutation should involve the negated conclusion.  The set-of-support 

strategy takes advantage of this general form of refutation-based proofs by preventing 

clauses from the set of axioms and theorems to be resolved with each other (Eisinger & 

Ohlbach 1993).  The more general case would be to choose any satisfiable subset of the 

initial clause set.  This is the “unsupported” set – no resolutions among its members are 

allowed.  The complement of the “unsupported” set is the “supported” set or set-of-

support.  Any resolution must include a “supported” clause from the set-of-support.  The 

resolvent is also “supported”.  It therefore prevents the expansion of a set of consistent 

clauses in a proof procedure where the aim is to find a contradiction (Wos et al. 1992). 

Linear resolution (Section 3.4.1) is also compatible with the set-of-support strategy 

(Chang & Lee 1973).  That is, its refutation completeness is preserved.  A completeness 

proof is provided by Nerode and Shore (1997). 

The set-of-support strategy is defined as (Nerode & Shore 1997, Chang & Lee 1973): 
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Definition 3.23 

Let T be a subset of a set of clauses S.  If S – T is satisfiable then T is a set-of-

support in S. 

A resolution of which the parent clauses are not both from S – T is called a set-of-

support resolution. 

A deduction in which every resolution is a set-of-support resolution is called a 

set-of-support deduction. 

The set-of-support strategy is refutation complete.  Rather lengthy proofs of completeness 

are given by Wos (1965, 1992).  A very concise completeness proof is provided by Slagle 

(1967) in terms of semantic clash resolution.  In this proof, the interpretation M that is 

used for the semantic clash deduction is any interpretation that satisfies the set S – T.  

The set S – T is assumed to be satisfiable by definition.  Based on this assumption it must 

have an interpretation that satisfies all of its clauses.  It is however possible that the 

satisfiable set is chosen incorrectly which will fail the assumption the proof is based on.  

In such a case all proofs might be blocked (Wos et al. 1992).  The following example 

illustrates how the wrong choice for the set-of-support could block a refutation: 

 Given set 

C1 = P(x) ∨ Q(y) 

C2 = ¬P(b) 

C3 = ¬Q(c) 

 Set-of-support 

C4 = P(a) 

 

The clause set S = {C1, C2, C3, C4} is unsatisfiable, but no resolution is possible using the 

set-of-support strategy.  No resolvent is possible starting with clause C4. 



 52 

The following two examples show how powerful the set-of-support strategy is in 

restricting the growth of the search space.  The same example (Appendix A.2) that was 

used to illustrate the level saturation method with using just binary resolution is again 

used here.  The only difference is that the set-of-support strategy is used.  The negated 

goal clause ¬S(fa, ga, ca, wa) is put in the set-of-support and the rest of the clauses in the 

unsupported set. 

The first example is given in Appendix A.4 and shows up to saturation level 3.  In this 

example the first level has only 1 clause instead of 9 clauses in the original example.  The 

second level has only 3 clauses instead of 28.  The third level has 8 clauses and the forth 

level that has not been shown in Appendix A.4 has 21 clauses.  The number of clauses 

per saturation level started to grow very fast in the third and forth levels.  The example 

was therefore not completed since the level growth becomes too large to apply resolution 

manually. 

The second example is given in Appendix A.5.  It is the same as the previous one except 

that this time a predicate ordering is applied such that S > SAFE.  This greatly reduced 

the number of clauses, enabling the example to be extended up to a refutation.  Note that 

the initial set of clauses has been omitted.  The first three levels have only one clause as 

opposed to the previous example’s 1, 3 and 8 respectively.  Level four has 3 clauses 

instead of 21.  Level five has 6 clauses and a refutation was found immediately on level 

6.  

3.5 Redundancy and Deletion 

The various resolution refinements introduced above could still contain redundancies 

such as tautologies and circular derivations.  Redundancy tests can eliminate these and 

thereby reduce the search space. 

3.5.1 Subsumption 

Subsumption is a deletion strategy whereby duplicate clauses or clauses that are more 

specific than certain other clauses are discarded (Wos et al. 1992).  This is in line with 
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the resolution principle that works on the most general level (Leitsch 1997).  The case for 

deletion can be defined as (Eisinger & Ohlbach 1993): 

Definition 3.24 

A clause C subsumes a clause D if and only if there is a substitution θ such that 

Cθ ⊆ D.  D is called a subsumed clause. 

The symbol ⊆ in the above definition is used to indicate subsumption of one clause by 

another. Note that according to this definition a clause D is regarded as redundant not 

only if it is an instance of C, but also if it contains an instance of C. 

For example, let C = P(x) ∨ Q(y) and D = P(a) ∨ Q(b) ∨ R(a).  For θ = {a/x, b/y} we get 

Cθ = P(a) ∨ Q(b).  But Cθ ⊆ D and therefore C subsumes D.  From this example it can be 

seen that clause C implies clause D and is therefore more general. 

Subsumption is often employed as a pre-processing step whereby a set of clauses is first 

reduced before resolution takes place.  Subsumption can also be used during resolution 

deductions (Leitsch 1997).  Forward subsumption is the process that discards any newly 

generated clauses that are subsumed by previously retained clauses.  Backward 

subsumption occurs when newly generated clauses are used to discard previously 

retained clauses by subsumption.  Lastly, if derived clauses are periodically reduced by 

subsumption, the process is called replacement. 

The pruning of the search space using subsumption is in general refutation complete 

(Wos et al. 1992).  Proofs of the completeness and incompleteness of subsumption in 

combination with some resolution refinements are provided by (Leitsch 1997).  An 

example of incompleteness is the combination of forward subsumption with lock 

resolution.  Another example is the use of subsumption with the set-of-support strategy 

(Wos et al. 1992).  A clause D with support can be subsumed by a clause C without 

support.  Clause D might however be required in the final proof, hence the problem can 

be solved by also giving clause C support. 
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Appendix A.6 illustrates the use of subsumption combined with the set-of-support 

strategy.  The same example that was used to illustrate the set-of-support strategy without 

predicate ordering (Appendix A.4) is used here again with the addition of subsumption.  

Subsumption greatly reduces the size of the search space thereby making it viable to 

extend it up to a refutation.  The number of generated clauses in the first four levels was 

1, 2, 4 and 2 as opposed to the original example’s 1, 3, 8 and 21 respectively, also in 

Appendix A.4.  Level five has 2 clauses and a refutation was found on level six.  The 

total number of clauses was 18 of which 9 were retained and 9 discarded. 

3.5.2 Tautologies 

A tautology is a clause that is valid under all interpretations.  A clause is a disjunction of 

literals therefore a clause is a tautology if and only if it is true or if it contains a 

complementary pair of literals (Leitsch 1997).  The clause P(f(x)) ∨ Q(y) ∨ ¬P(f(x)) is an 

example of a tautology.  This is because either P(f(x)) or its complement will be valid 

regardless of the interpretation that is used. 

The tautology rule states that a clause D that is a tautology can be removed from a clause 

set S resulting in set S – {D}.  Since D is satisfied by all interpretations it follows that an 

interpretation satisfies S if and only if it satisfies S – {D} (Eisinger & Ohlbach 1993).  

The two sets S and S – {D} are therefore logically equivalent as far as a subsequent proof 

attempt is concerned. 

Clauses that are subsumed are redundant, and this redundancy depends on the other 

clauses that are present.  A tautology is redundant independently of any other clauses that 

may be present.  As an algorithmic test, tautology elimination is therefore simpler and 

faster than subsumption since the algorithm only needs to check whether or not the clause 

contains a complementary pair (Chang & Lee 1973). 

The tautology rule is in most cases refutation complete (Leitsch 1997).  Proofs of the 

completeness and incompleteness of the tautology rule in combination with some 

resolution refinements are provided by (Leitsch 1997).  Tautology elimination is for 

example complete when used as pre-processing or in combination with subsumption or 
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hyperresolution.  An example of incompleteness is the combination of forward 

subsumption with lock resolution (Leitsch 1997). 

3.6 Theory Resolution 

Any unsatisfiable first-order predicate formula can be refuted by resolution (Robinson 

1965a).  Resolution is therefore a universal rule of inference.  A disadvantage of this 

generality is that resolution does not have any semantic knowledge of the symbols it 

manipulates.  As a result domain specific knowledge and algorithms cannot be employed 

to perform macro inference steps.  To perform simple addition for example the axioms of 

number theory must be specified and the correct resolution steps must then be selected to 

simulate the addition of two numbers.  The search space therefore tends to become very 

big for resolution steps that appear to be trivial. 

Tailored inference rules that incorporate the semantic knowledge of a theory have been 

proposed for specific cases thereby eliminating the need to add the axioms of the relevant 

theory.  These macro inference rules have the advantage of reducing the length of proofs 

as well as the size of the search space.  General theory resolution that incorporates these 

special cases was proposed by Stickel (1985).  A good overview of theory resolution is 

provided by Eisinger and Ohlbach (1993). 

The equality predicate was one of the first symbols for which special inference rules were 

developed (Eisinger & Ohlbach 1993).  One reason for this is that many theorems can be 

specified more elegantly using the equality relation (Chang & Lee 1973).  This is 

especially the case for mathematical reasoning (Quaife 1992b). 

In this section we shall look at how the equality predicate is used in proofs and which 

axioms must be included to make the decision procedure complete.  Paramodulation is 

thereafter discussed as a special case of theory resolution applied to the equality 

predicate.  Lastly demodulation is discussed. 
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3.6.1 The Equality Predicate 

An equality predicate by convention starts with EQUAL (Wos et al. 1992), using prefix 

notation.  For example, to state that a = b the clause EQUAL(a,b) is provided.  However, 

to make clauses more readable the equals symbol ‘=’ will sometimes be used, infix 

notation instead. 

Through inspection we can see that the following clause set is unsatisfiable: 

C1 = P(a) 

C2 = EQUAL(a,b) 

C3 = ¬P(b) 

 

However, the unsatisfiability of the above set of clauses cannot be formally proved using 

only the resolution techniques introduced so far.  There is equality involved which is only 

complete if a number of equality axioms are included in the proof attempt.  These extra 

axioms are (Eisinger & Ohlbach 1993): 

∀x (x = x) Reflexivity 

∀x,y (x = y → y = x) Symmetry 

∀x,y,z (x = y ∧ y = z → x = z) Transitivity 

∀x1,…,xn,y1,…,yn (x1 = y1 ∧ … ∧ xn = yn → f(x1,…,xn) = f(y1,…,yn) Substitution 

∀x1,…,xn,y1,…,yn (x1 = y1 ∧ … ∧ xn = yn ∧ P(x1,…,xn) → P(y1,…,yn) Substitution 

 

The above substitution rules must be added for every function and predicate symbol 

appearing among the formulae. 
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These equality axioms formalise the ‘identity of indiscernibles’ principle which states 

that if there is no way of telling two entities apart then they are the same.  This principle 

is also known as Leibniz’s law (Eisinger & Ohlbach 1993). 

The first example above in the current subsection can now be refuted by adding the 

relevant substitution clause for the predicate symbol P: 

C1 = P(a)  

C2 = EQUAL(a,b)  

C3 = ¬P(b)  

C4 = ¬EQUAL(x,y) ∨ ¬P(x) ∨ P(y) Axiom of substitution applied to P 

C5 = ¬P(a) ∨ P(b) Resolvent of C2 and C4 

C6 = P(b) Resolvent of C1 and C5 

C7 = □ Resolvent of C3 and C6 

 

3.6.2 Paramodulation 

The above axioms provide a logically complete treatment of equality but their use slows 

down a proof attempt and makes it inefficient (Quaife 1992b).  Numerous redundant 

clauses are generated (Nieuwenhuis & Rubio 2001) resulting in a search space that is 

rather large for relatively simple problems (Eisinger & Ohlbach 1993). 

Many solutions have been proposed (Chang & Lee 1973) of which paramodulation 

became the most accepted.  Paramodulation was introduced by G.A. Robinson and L. 

Wos in 1969 (Robinson & Wos 1969).  The name is derived from the close relationship it 

has with demodulation (Wos et al. 1992).  Demodulation is discussed in Section 3.6.3. 

Paramodulation can formally be defined as (Chang & Lee 1973): 
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Definition 3.25 

Let C1 and C2 be two clauses with no variables in common.  C1 has the form 

L[t] ∨M1∨…∨M i for i ≥ 0 where L[t] is a literal containing the term t. C2 has the 

form (r = s)∨N1∨…∨Nj for j ≥ 0.  If θ is a most general unifier of t and r, then we 

can infer clause 

C = Lθ[sθ] ∨ M1θ ∨ … ∨ Miθ ∨ N1θ ∨ … ∨ Njθ 

where Lθ[sθ] is obtained by replacing a single occurrence of tθ in Lθ by sθ. 

C is called a binary paramodulant of C1 and C2.  C1 and C2 are called the parent 

clauses of C.  The literals L and r = s are called the literals paramodulated upon. 

We also say the paramodulation is applied from C2 into C1.  As a result C1 is 

called the ‘into’ clause and C2 the ‘from’ clause. 

The paramodulation inference rule can also be represented as (Van der Poll 2000): 

L[t], M 1, …, Mi 

r = s, N1, …, Nj 

‘into’ clause 

’from’ clause 

Lθ[sθ], M1θ, …, Miθ, N1θ, …, Njθ 

 

where all symbols have the same meaning as in Definition 3.25 above. 

An E-model of a set S of clauses is a model of the equality axioms that also satisfies the 

set S (Chang & Lee 1973).  Paramodulation is sound in that if C is a paramodulant of any 

two clauses in S then any E-model of S is also an E-model of S ∪ {C} (Eisinger & 

Ohlbach 1993). 

A set S of clauses is E-unsatisfiable if and only if has no E-model otherwise S is called E-

satisfiable (Chang & Lee 1973).  The use of the paramodulation rule together with 

resolution is refutation complete for any set of E-unsatisfiable clauses that contains the 
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reflexivity axiom (Plaisted 1993).  The reflexivity axiom is required to be able to refute 

the E-unsatisfiable set {¬(a = a)}. 

There are various refinements of paramodulation that preserve completeness when used 

with resolution.  Some of these include hyper, unit, input and linear paramodulation 

(Chang & Lee 1973) as well as the set-of-support strategy (Wos et al. 1992). 

The following example shows that the two clauses x + 0 = x and P((g(y) + 0) + f(b)) 

implies the clause P(z + f(b)) using paramodulation: 

C1 = EQUAL(sum(x,0), x)  

C2 = P(sum(sum(g(y),0), f(b)))  

C3 = ¬P(sum(z, f(b)))  

C4 = P(sum(g(y), f(b))) Paramodulant from C1 into C2 

Unifier {g(y)/x} 

C5 = □ Binary resolvent of C3 and C4 

 

Paramodulation aids in reducing the search space of problems containing equalities.  This 

is because no unnecessary resolution steps can occur with and between the equality 

axioms (Eisinger & Ohlbach 1993).  Unfortunately paramodulation still generates many 

irrelevant clauses (Quaife 1992b).  This is especially the case when the terms t and r in 

Definition 3.25 above are variables.  Demodulation (Wos 1967) is a technique that helps 

to restrict the number of inferences.  Demodulation is discussed in the following section. 

Ordered paramodulation (Nieuwenhuis & Rubio 2001) is another restriction technique 

that only performs replacements of large terms by smaller ones with respect to some 

ordering.  Knuth-Bendix completion (Plaisted 1993) contained the first instances of 

ordered paramodulation.  It is often used successfully in conjunction with other resolution 

techniques.  It provides an algorithm for a class of equational theories that permits the 
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computation of a set of rewrite rules sufficient to check the truth of every equation of the 

theory by requiring that equal terms reduce to the same normal form (Quaife 1992b). 

3.6.3 Demodulation 

Equality relations in many fields of mathematics often tend to be very general with 

expressions like (x -1)-1 = x.  In the presence of the expression a⋅b = c, equality resolutions 

mechanisms like paramodulation will infer a set of very closely related expressions like 

(a -1)-1⋅b = c.  The retention of all these related expressions causes an unacceptable high 

growth of the search space. 

Demodulation was one of the proposed solutions to this uncontrolled repeated application 

of a given equality (Wos 1967).  The aim of demodulation is to simplify the presentation 

of information.  Such simplification is achieved by applying a transformation to relevant 

clauses that replaces α in some clause by β where β = α and β is simpler than α.  The 

original clause is then discarded (see Example 3.10). 

An application of demodulation is defined as (Wos et al. 1992): 

Definition 3.26 

Let C1 and C2 be two clauses.  C1 has the form L[t]∨M1∨…∨M i for i ≥ 0 where 

L[t] is a literal containing the term t. C2 is a positive unit equality clause r = s that 

has been designated to be used to rewrite expressions.  C2 is called a demodulator.  

Let θ be a substitution such that rθ = t.  A clause C is then obtained by replacing t 

in L with sθ: 

C = L[sθ] ∨ M1θ ∨ … ∨ Miθ 

Clause C1 is then discarded and replaced by C.  Clause C is called a demodulant 

of C1. 

Note that one-way matching is used instead of unification.  Also, in the above definition, 

if sθ = t then a demodulant can be obtained by replacing t in L with rθ.  It is however a 
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common convention to consider only the first argument of the demodulator C2 (Wos et 

al. 1992). 

The application of demodulation can also be represented as (Van der Poll 2000, Quaife 

1992b): 

L[t], M 1, …, Mi 

r = s 

L[sθ], M1θ, …, Miθ 

 

where all symbols have the same meaning as in the above Definition 3.26, e.g. rθ = t. 

Demodulation is then defined as (Wos 1967): 

Definition 3.27 

Let W be a set of positive equality unit clauses.  Demodulation is the process of 

replacing a clause C by a demodulant D of A relative to W.  D is obtained by 

generating a sequence C1, …, Ck such that C = C1, D = Ck, Ci+1 is a demodulant of 

Ci as defined above using a demodulator in W for 1 ≤ i < k, Ci+1 has strictly fewer 

symbols than Ci and Ck has no demodulant relative to W with fewer symbols. 

Example 3.10 

 In the following example the demodulation rule is applied to clause C1 using equality W1 

to obtain the simpler demodulant C2. 

W1 = EQUAL(sum(x,0), x) An available equality. 

C1 = P(sum(1,0)) ∨ ¬Q(c) The given clause. 

C2 = P(1) ∨ ¬Q(c) Demodulant of W1 and C1 

Substitution {sum(1,0)/1} 
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Demodulation typically applies all demodulators in the system to all relevant terms of 

any newly generated clause until the clause cannot be simplified any further (Quaife 

1992b).  In the case where a new demodulator is generated, all the previously retained 

clauses can be examined for possible demodulation with the new demodulator.  This is 

called back demodulation (Wos et al. 1992). 

Demodulation and paramodulation are similar in that both cause an equality substitution 

with a successful application.  Demodulation also has equivalent ‘from’ and ‘into’ 

clauses.  In fact, paramodulation’s name was derived from the close relationship it has 

with demodulation (Wos et al. 1992).  Demodulation and paramodulation differs in 

several aspects though (Wos et al. 1992).  Unlike paramodulation, demodulation requires 

the equality literal to be in a unit clause.  Demodulation allows for variable replacement 

only in the argument of the equality literal while paramodulation allows it also in the 

term into which the substitution is being attempted.  Paramodulation retains the parent 

clauses and the paramodulant whereas demodulation discards the original clause into 

which the substitution took place. 

Example 3.11 

The following example from group theory illustrates the simplification of the expression 

(e⋅(e⋅(a-1)-1))⋅b = c to a⋅b = c.  Suppose P(x,y,z) represents x⋅y = z, function f(x,y) 

represents x⋅y and function g(x) represents x -1.  Two equalities are available: e⋅x = x,     

(x-1)-1 = x. 

W1 = EQUAL(f(e,x),x) An available equality. 

W2 = EQUAL(g(g(x)),x) An available equality. 

C1 = P(f(e,f(e,g(g(a)))),b,c) The given clause. 

C2 = P(f(e,g(g(a))),b,c) Demodulant of W1 and C1 

Substitution {g(g(a))/x} 
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C3 = P(g(g(a)),b,c) Demodulant of W1 and C2 

Substitution {g(g(a))/x} 

C4 = P(a,b,c) Demodulant of W2 and C3 

Substitution {a/x} 

 

The following section introduces a further aid to the resolution process, namely heuristics 

to be used in the search for a proof. 

3.7 Heuristics 

A general definition of a heuristic is an informal, judgmental knowledge of an application 

area that constitutes the rules of good judgement in the field (Turban & Frenzel 1992).  

For example, a stock trading heuristic to reduce risk could be to not buy stocks whose 

price-to-earnings ratio is larger than 10. 

The order in which derivations are generated during the search for a refutation has a 

strong influence on the cost of the search (Leitsch 1997).  A simple but effective heuristic 

would be to give preference to deductions containing smaller clauses.  Smaller clauses 

could mean clauses containing fewer literals or clauses of smaller term depth, i.e. fewer 

levels of nesting. 

Different types of clause complexity may be combined in a weight function, resulting in a 

preference for clauses having smaller weight.  The weight of a clause is determined 

primarily by the number of literals in the clause or the term depth of the clause.  Other 

examples of weight function parameters could be to give priorities to variables, function 

symbols, predicate symbols and terms.  An automated reasoning program that employs 

weighting chooses the clauses with the most favourable weight (e.g. a smaller weight).  

Using weighting in this manner is referred to as a direction strategy (Wos et al. 1992).  

Weighting can also be used as a restriction strategy.  In this case it will cause new clauses 

whose weight is above some threshold to be deleted. 
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The use of weighting as a direction strategy only influences the ordering of derivations 

and therefore does not influence the completeness of the proof procedure.  This heuristic 

differs from a restriction strategy heuristic that could make the proof procedure 

incomplete.  For example, a restriction of producing only clauses with fewer than four 

literals (say) is an incomplete refinement (Leitsch 1997). 

Another heuristic is the selection of the inference mechanism for a specific class of 

problem.  An automated theorem prover could elect to use paramodulation with 

demodulation when identifying the use of equality.  It could identify the problem as a 

Horn class problem and therefore use the more efficient unit and input resolution 

strategies that would otherwise be incomplete.  The reasoner can also change its strategy 

when detecting that a specific theory is relevant to the problem for example set theory as 

is the case in this dissertation.  This heuristic could lead to incompleteness for example 

when forward subsumption is selected in combination with lock resolution (Leitsch 

1997). 

All the heuristics discussed above are used by modern automated reasoners.  Theorem 

provers also make many of these parameters available to the user for configuration.  

Some of these parameters include weighting, main loop settings, inference rules, 

restriction strategies, time and memory limits, maximum number of clauses to retain 

(McCune 2003, Tammet 1997, Voronkov 2005). 

The user can therefore apply his or her own heuristics in an attempt to guide the theorem 

prover to find a proof by adjusting these parameters.  For example the weighting strategy 

is suggested as a user heuristic by Van der Poll and Labuschagne (1999) whenever the 

set-of-support contains an equality literal.  Various configurations of the weighing 

strategy are also suggested by Quaife (1992b) when working with problems involving 

sets and Tarski’s geometry.  He also proposes that one should not use binary resolution as 

an inference rule (Quaife 1992b).  Wos also provides heuristics with regards to inference 

rules and strategy selection (Wos et al. 1992). 

A further heuristic that can be applied by a user is that of problem representation (Wos et 

al. 1992, Van der Poll & Labuschagne 1999).  The choice of problem representation can 
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play an essential role in the theorem prover’s chance of succeeding and the time it takes 

to succeed.  Wos refers to the heuristics of problem representation as an art because of its 

subtleties and the difficulty of characterising the essential concepts that constitute a 

problem representation.  Various problem-representation heuristics are provided by Wos 

(1992), for example that unit clauses, shorter clauses and equality predicates should be 

given preference. 

Quaife provides heuristics for problem representation in set theory (Quaife 1992a).  One 

of these is to replace the axiom of extensionality that contains a Skolem function when 

clausified with an equivalent but simpler formula.  The Extensionality axiom (Section 

2.1.1) states that ∀A∀B(∀x(x ∈ A ↔ x ∈ B) → A = B) where A and B are sets and x 

represents elements of these sets (Enderton 1977).  The axiom can be replaced with the 

equivalent formula ∀A∀B(A = B ↔ A ⊆ B ∧ B ⊆ A) that requires no Skolem function. 

Van der Poll and Labuschagne have done extensive research on heuristics that could be 

applied to the representation of problems in set theory (Van der Poll & Labuschagne 

1999, Van der Poll 2000).  In their work they present a set of problem frames or patterns 

that captures the properties of a specification that can compromise the efficiency of a 

theorem prover.  For each of these problem frames he provides one or more heuristics 

that can alleviate the problem as well as an example that illustrates its effect.  Some of 

these heuristics are: 

• Use the principle of extensionality to replace equality in the set-of-support.  For 

example, if C=D appears in the set-of-support it can be replaced by (∀x)(x ∈ C 

↔ x ∈ D). 

• Perform two separate subset proofs whenever the problem at hand requires the 

theorem prover to prove the equality of two sets.  For example, the above goal of 

C = D can be replaced by a proof showing that (∀x)(x ∈ C → x ∈ D) and 

thereafter a proof  that (∀x)(x ∈ C → x ∈ C). 

• Avoid if possible the use of nested function symbols in definitions. 
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• Avoid the inclusion of information that is not obviously necessary in the input to 

the theorem prover. 

3.8 Summary 

This chapter gave a brief overview of decidability and Herbrand’s universe.  The next 

section presented resolution as an efficient refutation procedure.  It was shown how a 

first-order statement may be converted to clausal form which is required for resolution.  

Resolution in propositional and predicate logic was described.  The rest of the chapter 

focused on efficiency enhancements for resolution.  These enhancements were classified 

into four categories: resolution refinements, redundancy tests, theory resolution and 

heuristics.  The refinements that were addressed were linear resolution, semantic 

resolution, UR-resolution, hyperresolution and set-of-support strategy.  Redundancy tests 

included subsumption and tautologies.  Theory resolution covered paramodulation and 

demodulation.  Finally some heuristics that can be automatically applied by the theorem 

prover and those that must be applied by the specifier were discussed. 
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4 Automated Theorem Provers 

Chapter 4 

Automated Theorem Provers 

The VdPL heuristics (Section 1.3) were arrived at with the aid of Otter, a first-order 

automated resolution-based reasoner (McCune 2003).  The aim of this work is to 

determine to what extent other state-of-the-art reasoners can benefit from the said 

heuristics.  The Vampire and Gandalf theorem provers will be used for this purpose and a 

motivation for using these reasoners is presented. An overview of each of Vampire and 

Gandalf as well as an example of the input to each and the resulting proofs are given. 

Appendix B gives a list of some of the theorem provers that were evaluated for this work.  

The list is limited to automated theorem provers for first-order logic.  Within this list only 

resolution-based theorem provers were considered since Otter is also based on resolution. 

The selection of possible reasoners was further reduced by considering individual 

performances in the CADE ATP System Competitions (CASC)  (Pelletier et al. 2002, 

Sutcliffe & Suttner 2006).  CASC is an annual competition that evaluates the 

performance of automated theorem provers using classical first-order logic. It has 6 main 

divisions based on the types of problems. 

Vampire is our first choice and will be the primary reasoner used in this work.  Vampire 

fits the profile for two reasons.  The first is because of its consistent success at the annual 

CASC competitions.  Vampire came first in two of its divisions every year from 2002 to 

2007. In 2000 and 2001 it came first in one of the divisions. The second reason stems 

from the fact that Vampire has solved more set-theoretic problems than any of the other 

competing provers in the period from 2002 to 2007 across all divisions involving these 

problems. 
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Vampire may therefore undoubtedly be considered a state-of-the-art reasoner for set-

theoretic problems. If we can show that Vampire benefits from the VdPL heuristics, then 

it is plausible that other reasoners will benefit from these heuristics as well. 

Gandalf was chosen as the secondary reasoner since it was the only other automated, 

resolution-based reasoner that has recently won in a CASC division. 

The rest of this section will be used to describe Vampire and Gandalf in more detail. 

4.1 Vampire 

Vampire was developed in the Computer Science Department of the University of 

Manchester by Andrei Voronkov previously together with Alexandre Riazanov.  Vampire 

is coded in C++.  The version that was used in this work is version 7.0. 

Vampire is described in a number of sources, namely, Voronkov (2001, 2005), Riazanov 

(2003) and Riazanov & Voronkov (2002, 2001).  It is a resolution-based system for fully 

automatic theorem proving in first-order logic with equality.  It implements the calculi of 

ordered binary resolution and superposition for handling equality.  Superposition is a 

calculus for reasoning in equational first-order logic that combines concepts from first-

order resolution with ordering-based equality handling as developed in the context of 

unfailing Knuth-Bendix completion (Nieuwenhuis & Rubio 2001). 

Vampire supports the inference rules of ordered binary resolution (Bachmair & 

Ganzinger 2001) with negative selection, superposition and a special form of splitting.  

The splitting rule and negative equality splitting are simulated by the introduction of new 

predicate definitions and dynamic folding of such definitions. 

Vampire makes use of a number of redundancy control and simplification techniques.  

These include forward and backward subsumption, subsumption resolution, tautology 

deletion, forward and backward demodulation, rewriting by ordered unit equalities, basic 

restrictions and irreducibility of substitution terms.  The reduction orderings used are the 

standard Knuth-Bendix ordering and a special non-recursive version of the Knuth-Bendix 

ordering. 



 69 

A number of efficient indexing techniques are used to implement the major operations on 

sets of terms and clauses.  Run-time algorithm specialisation is used to accelerate some 

costly operations for example checks on ordering constraints.  Run-time algorithm 

specialisation originated with Vampire and is described in Riazanov (2003). 

Vampire is a saturation-based theorem prover.  It implements three different saturation 

algorithms that can be selected for its main loop for inferring and processing clauses.  

The three saturation algorithms are an Otter loop with or without the Limited Resource 

Strategy and the Discount loop.  These algorithms belong to the class of given-clause 

algorithms. 

The Otter algorithm used in Vampire is a slight modification of the saturation algorithm 

used in the Otter reasoner (McCune 2003).  A simplified version of the algorithm used by 

Vampire is given below: 

input: init: set of clauses; 
var active, passive, unprocessed: set of clauses 
var given, new: clause; 
active := ∅; 
unprocessed := init; 
loop 
  while unprocessed ≠ ∅ 
    new := pop(unprocessed); 
    if new = □ then return unsatisfiable; 
    if retained(new) then                         ( * retention test *) 

      simplify new by clauses in active ∪ passive;(* forward simplification *) 
      if new = □ then return unsatisfiable; 
      if retained(new) then                       ( * another retention test *) 
        delete and simplify clauses in active and ( * backward simplification *) 
                                       passive usin g new; 
        move the simplified clauses to unprocessed;  
        add new to passive; 
  if passive = ∅ then return satisfiable or unknown; 
  given := select(passive);                       ( * clause selection *) 
  move given from passive to active; 
  unprocessed := infer(given, active);            ( * generating inferences *) 

 

Clause selection in Otter is based on an age-weight ratio which is also known as the pick-

given ratio in Otter.  The retention test consists of deletion rules plus a weight test.  The 

weight test discards any clause whose weight exceeds a user-defined limit, if specified. 

The Limited Resource Strategy aims to improve the effectiveness of the Otter algorithm 

when a time limit is imposed.  Usually when the Otter algorithm reaches the time limit 
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many clauses remain passive.  This means that any computational resources that were 

used to generate, process and keep these clauses have been wasted.  The aim of the 

Limited Resource Strategy is therefore to identify which passive clauses have little 

chance to be processed by the time limit and it then discards these clauses. 

The set of passive clauses tends to become much larger than the number of active ones.  

As a result, its use in simplifying inferences slows down the proof search.  The Discount 

algorithm, which is named after the theorem prover Discount (Denzinger et al. 1997) 

aims to solve this problem by not allowing passive clauses to be used at all.  As a result 

any new clauses can be processed faster since only a small subset of all clauses is 

involved in simplifying inferences.  A disadvantage of the algorithm is that a valuable 

clause might not be generated by a simplification inference, which would have been 

generated by the Otter algorithm.  The Discount algorithm is given below: 

input: init: set of clauses; 
var active, passive, unprocessed: set of clauses 
var given, new: clause; 
active := ∅; 
unprocessed := init; 
loop 
  while unprocessed ≠ ∅ 
    new := pop(unprocessed); 
    if new = □ then return unsatisfiable; 
    if retained(new) then                        (*  retention test *) 
      simplify new by clauses in active;         (*  forward simplification *) 
      if new = □ then return unsatisfiable; 
      if retained(new) then                      (*  another retention test *) 
        delete and simplify clauses              (*  backward simplification *) 
            in active using new; 
        move the simplified clauses to unprocessed;  
        add new to passive; 
  if passive = ∅ then return satisfiable or unknown; 
  given := select(passive);                      (*  clause selection *) 
  simplify given by clauses in active;           (*  forward simplification *) 
  if given = □ then return unsatisfiable; 
  if retained(given) then                        (*  retention test *) 
    delete and simplify clauses                  (*  backward simplification *) 
        in active using given; 
    move the simplified clauses to unprocessed; 
    add given to active; 
    unprocessed := infer(given, active);         (*  generating inferences *) 

 

Various heuristics for Vampire’s automatic mode have been derived from empirical data 

obtained on problems from the TPTP (Thousands of Problems for Theorem Provers) 

(Sutcliffe & Suttner 1998) problem library. 
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Vampire is divided into a kernel and a shell component.  The kernel works only with 

clausal normal forms.  The shell or pre-processor however can accept a problem in first-

order logic syntax, clausify it and perform a number of useful transformations before 

passing the result to the kernel.  The TPTP notation is used as input for Vampire.  The 

advantage of the TPTP syntax is that it is widely used among theorem provers.  There are 

also tools available to convert a problem specified using the TPTP notation into other 

notations for those theorem provers that do not accept the TPTP notation. 

The following is an example TPTP input of a set-theoretic problem to show that       

P{{1}} = { ∅,{{1}}}. 

% A TPTP set-theoretic problem: 
% Show that P{{1}} = {Empty,{{1}}}. 
 
% Reflexivity 
fof(reflexivity, axiom, 
  ! [X] : X = X 
). 
 
% Extensionality 
fof(extensionality, axiom, 
  ! [A,B] : ( (![X]:(el(X,A) <=> el(X,B))) => (A = B) ) 
). 
 
% Empty = {} 
fof(empty, axiom, 
  ~( ?[X]: el(X, empty) ) 
). 
 
% A = {1} 
fof(a_is_1, axiom, 
  ![X]: ( el(X,a) <=> (X = 1) ) 
). 
 
% B = {A} 
fof(b_is_a, axiom, 
  ![X]: ( el(X,b) <=> (X = a) ) 
). 
 
% C = P(B) 
fof(c_is_power_b, axiom, 
  ![X]: ( el(X,c) <=> (![Y]: (el(Y,X) => el(Y,b)) )  ) 
). 
 
% D = {Empty,{{1}}} 
fof(d_is_empty_or_1, axiom, 
  ![X]: ( el(X,d) <=> ( (X = empty) | (X = b) ) )   
). 
 
% Goal clause C = D 
fof(c_is_d, conjecture, 
  c = d 
). 
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Vampire then finds a proof for P{{1}} = { ∅,{{1}}} in 0.2 seconds. The output appears 

in Appendix C.1.  It also lists the proof steps.  Vampire tries to make the proof as 

readable as possible and as a result the proof output makes up the largest part of the 

output.  Finally some global statistics are provided for example the number of clauses 

generated, subsumed, discarded etc. 

Note also that by default in the TPTP notation constants start with a lower-case symbol 

(e.g. empty above) while variables start with capitals.  The documentation (i.e. 

comments) in the above example follow a more traditional approach, e.g. Empty = {}. 

4.2 Gandalf 

Gandalf was developed by Tanel Tammet (1997).  It is a family of theorem provers for 

classical first-order logic, intuitionistic first-order logic and propositional linear logic.  It 

also includes a finite model builder.  These provers share large parts of their code.  The 

name Gandalf is that of a powerful wizard in the famous fantasy books “The Hobbit” and 

“The Lord of the Rings” written by J.R.R. Tolkien (1966). 

Gandalf is a resolution-based reasoner with equality and implements a large number of 

inferences and strategies.  Some of these include binary-, unit- and hyperresolution, set-

of-support, paramodulation, forward and back demodulation, Knuth-Bendix ordering, 

literal ordering, tautology elimination, forward and backward subsumption and limits on 

clause length and term depth. 

Gandalf is written in Scheme (Dybvig 2003) and compiled to C by the Scheme-to-C 

compiler Hobbit which was also developed by Tammet (1997).  The platforms under 

which Gandalf has been tested are Linux, Solaris and MS Windows using Cygwin. 

Gandalf is also optimised for handling problems where large numbers of long clauses are 

derived.  It is freely available under the Gnu Public Licence.  A commercial version 

called G is developed and distributed by Safelogic AB.  This version contains numerous 

additions, strategies and optimisations aimed specifically at the verification of large 

systems.  In this dissertation we used the freely available version c-2.6.r1. 
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Gandalf implements a large number of search strategies.  The usage of these strategies 

can be either controlled by the human user or by the powerful automatic mode of 

Gandalf.  The automatic mode first selects a set of different strategies that are likely to be 

useful for a given problem and then attempts all these strategies one after another.  It uses 

time-slicing to limit the time that a specific search strategy is executed.  When the 

strategy’s time runs out, the next strategy is executed.  During each specific strategy run 

Gandalf typically modifies its strategy as the time limit for the run starts coming closer.  

Selected clauses from unsuccessful runs are sometimes used in later runs. 

The basic strategies that Gandalf selects from are hyperresolution, binary set-of-support 

resolution, unit resolution and ordered resolution.  Typically Gandalf selects one or two 

strategies to iterate over term depth limit and one or two strategies to iterate over the 

selection of equality orderings. During the second half of each strategy run Gandalf will 

impose additional restrictions, like introducing unit restriction and switching over to strict 

best-first clause selection.  

The strategy selection for a particular problem is based on the following criteria: 

• The CASC problem class (Pelletier 2002, Sutcliffe & Suttner 2006).  These 

classes include unit equality (UEQ), pure equality (PEQ), Horn logic with no 

equality (HNE), Horn with some but not pure equality (HEQ), non-Horn with 

some but not pure equality (NEQ) and non-Horn with no equality (NNE). These 

strictly determine the list of basic strategies. The following criteria determine the 

relative amount of time given to each strategy. 

o The problem size based on the number of clauses in the problem.  The 

classifications are small, medium or large. For bigger problems, the set of 

support strategy gets relatively more time than other strategies.  

o The percentage of clauses that can be ordered by term depth are small, 

medium and all. For larger percentages term depth ordering gets relatively 

more time than other strategies. 
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Like Vampire, Gandalf is a saturation-based theorem prover.  It implements the widely 

used given-clause saturation algorithm, also used by the Otter and Vampire provers.  The 

main loop for inferring and processing clauses is exactly the same as that of Otter 

(McCune 2003): 

while (sos is not empty and no refutation has been found ) 
  1. Let given_clause be the lightest clause in sos ; 
  2. Move given_clause from sos to usable; 
  3. Infer and process new clauses using the infere nce rules in effect; 
     each new clause must have the given_clause as one of its parents and 
     members of usable as its other parents; 
     new clauses that pass the retention tests are appended to sos; 
end of while loop. 

A subset of the Otter notation (McCune 2003) is used for problem input.  Gandalf does 

not recognise formula syntax and requires the input to be in clausal form.  The TPTP 

utility tptp2X  (Sutcliffe & Suttner 1998) can be used to convert a problem in TPTP 

notation to the required Otter notation in clausal form that can be used by Gandalf. 

The following example illustrates the use of Gandalf.  It is the same example that was 

used to illustrate Vampire’s use.  The input is in the Otter clausal form notation and was 

obtained by a conversion from the TPTP input using the tptp2X utility.  The input file has 

been modified afterwards by adding comments and removing some unnecessary 

generated comments. 

assign(max_seconds,1800). 
set(prolog_style_variables). 
set(tptp_eq). 
set(auto). 
clear(print_given). 
 
% The usable list 
% --------------- 
list(usable). 
 
% Reflexivity 
  equal(X,X). 
 
% Extensionality 
  el($f1(A,B),A)|el($f1(A,B),B)|equal(A,B). 
  -el($f1(A,B),A)| -el($f1(A,B),B)|equal(A,B). 
 
% Empty = {} 
  -el(X,empty). 
 
% A = {1} 
  -el(X,a)|equal(X,1). 
  el(X,a)| -equal(X,1). 
 
% B = {A} 
  -el(X,b)|equal(X,a). 
  el(X,b)| -equal(X,a). 
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% C = P(B) 
  -el(X,c)| -el(Y,X)|el(Y,b). 
  el(X,c)|el($f2(X),X). 
  el(X,c)| -el($f2(X),b). 
 
% D = {Empty,{{1}}} 
  -el(X,d)|equal(X,empty)|equal(X,b). 
  el(X,d)| -equal(X,empty). 
  el(X,d)| -equal(X,b). 
end_of_list. 
 
% The set of support 
% ------------------ 
list(sos). 
% Goal clause C = D 
  -equal(c,d). 
end_of_list. 

With the above input Gandalf is given 30 minutes (1800 seconds) to find a refutation by 

the command assign(max_seconds,1800) .  Also, no explicit inference strategies have 

been set.  The command set(auto)  instructs Gandalf to automatically select strategies. 

Gandalf finds a proof after 119.21 seconds and produces the output as shown in 

Appendix C.2.  The output also confirms that automatic strategy selection is used and that 

the time limit is 30 minutes.  The problem class has been identified as NEQ, that is non-

Horn with some but not pure equality.  The problem size is classified as medium.  The 

strategies that have been selected are displayed, followed by the steps of the proof.  The 

strategies that were actually used to obtain the proof are also listed.  Finally the output 

gives some global statistics for example the number of clauses generated, kept, subsumed 

etc. 

Note that the Gandalf algorithm attempts a number of proof strategies one after another. 

It is possible that only the last strategy attempted produces a proof, hence the work done 

during the previous strategies is effectively wasted. In reporting the time taken to find a 

proof, Gandalf does however give the total time taken of which the time for the 

successful strategy is a part. We observe this in the proof output in Appendix C.2.  This 

phenomenon is similar to other reasoners exploring the consequences of irrelevant 

information, e.g. the Redundant Information heuristic developed in Section 5.8. 

4.3 Summary 

The aim of this work is to determine to what extent state-of-the-art resolution-based 

reasoners may benefit from the VdPL heuristics in the same way that Otter benefited 
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from these.  This chapter identified the two theorem provers that we consider in this 

dissertation.  Vampire and Gandalf were selected because they are also resolution-based 

reasoners like Otter and performed well in the set theory sections of the CADE ATP 

System Competitions (CASC) (Pelletier et al. 2002, Sutcliffe & Suttner 2006).   

A brief introduction to the resolution techniques employed by Vampire and Gandalf was 

given including a sample input problem and the respective outputs in appendices.  In the 

next chapter we shall investigate the utility of the VdPL heuristics for Vampire and 

Gandalf. 
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5 Evaluation of Set-Theoretic Reasoning Heuristics 

Chapter 5 

Evaluation of Set-Theoretic Reasoning 

Heuristics 

The VdPL heuristics were developed to aid automated reasoners in solving set-theoretic 

problems.  The heuristics were arrived at through the use of the resolution-based reasoner 

Otter.  In this section we measure the utility of these heuristics for Vampire and on a 

scaled down version also for Gandalf. 

We evaluate eleven of the fourteen heuristics initially developed by Van der Poll and 

Labuschagne (1999) and later extended by Van der Poll (2000).  The three heuristics that 

are not evaluated are weighting, inference rule selection and set of support enlargement.  

The use of these 3 heuristics would involve modifications of prover default settings e.g. 

inference rule selection, weighting and inference strategy.  A fair amount of time can be 

consumed by experimenting with the large number of settings and the combinations 

thereof.  For this reason the only default settings that were changed are the time and 

memory limits. 

The experiments reported on in this chapter follow a pattern: First a sample problem is 

presented and the ZF axioms on which the problem is based are stated. The performance 

of Otter as researched by Van der Poll and Labuschagne (1999) and Van der Poll (2000) 

in their attempts to find proofs is then reported. The heuristic identified from a failed 

proof attempt is then presented. Such heuristic allowed Otter to successfully solve the 

given problem. Next Vampire and Gandalf are used on the original problem to determine 

the need for the particular heuristic. In some cases we increase the complexity of the 

problem as an additional test.  

We used Vampire version 8.0 and Gandalf version c-2.6.r1.  A time limit of 30 minutes 

and a memory limit of 128MB were imposed on each.  These limits cause Vampire to use 
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its limited resource strategy, thereby allowing the reasoner to selectively discard passive 

clauses.  No changes were made to the other default settings of Vampire and Gandalf.  

All the Vampire and Gandalf proofs were done on an AMD Athlon 1700+ machine with 

256MB RAM and a clock speed of 1.47GHz. The VdPL heuristics were previously 

arrived at by running Otter on a slower machine, namely an AMD K6-2 machine with 

64MB RAM and a clock speed of 400MHz (Van der Poll 2000). 

5.1 Equality versus Extensionality 

The first heuristic that we consider is applicable to situations where set-theoretic equality 

is used in the input to the reasoner.  The Zermelo-Fraenkel axiom of extensionality 

(Enderton 1977) states that two sets are the same if and only if they have the same 

elements (Section 2.1.1): 

∀A∀B(∀x(x ∈ A ↔ x ∈ B) → A = B) (5.1) 

A set is therefore determined by its elements.  We can therefore replace any set equality 

formula with a formula stating that the elements of the sets are the same. 

Our first sample problem based on set-theoretic equality and the power set axiom is given 

by: 

P{{1}} = { ∅, {{1}}} (5.2) 

Neither Otter nor Vampire accepts formulae in the highly evolved notation of set theory, 

which is the result of introducing a number of symbols by meta-level definitions.  Hence 

the user has to rewrite set-theoretic formulae like (5.2) above in terms of a weaker first-

order language having the relevant relations and functions symbols in its alphabet (Van 

der Poll & Labuschagne 1999).  Therefore, our proof obligation is rewritten as: 

A = {1} ∧ B = {A} ∧ C = P(B) ∧ D = {∅, B} → C = D (5.3) 

Further decomposition is required for P(B) as (refer Section 2.1.6): 
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∀x(x ∈ C ↔ ∀y(y ∈ x → y ∈ B)) (5.4) 

Otter found no proof for (5.3) in 20 minutes (Van der Poll 2000).  Next, if one through 

extensionality replaces the consequent (C = D) by  

∀x(x ∈ C ↔ x ∈ D) (5.5) 

then it allowed Otter to find a proof in 0.03 seconds.  These findings led to the following 

heuristic: 

Heuristic #1:  Use the principle of extensionality to replace set equality with the 

condition under which two sets are equal, i.e., when their elements are the same. 

When the same problem (5.3) above is given to Vampire, it has little difficulty in finding 

a proof in 1.3 seconds.  The application of the above extensionality heuristic #1 leads to a 

relatively faster proof in 0.1 seconds.  These times are however too short to determine the 

utility of the heuristic for Vampire.  However, consider the following, more complex 

example involving arbitrary intersection: 

⋂{{1,2,3}, {2,3,4}} = {2,3} (5.6) 

The arbitrary intersection of a set A is defined as ⋂A = {x | (∀y)(y ∈ A → x ∈ y)} 

(Enderton 1977).  As before formula (5.6) is rewritten to make the relevant constructions 

explicit: 

A = {1,2,3} ∧ B = {2,3,4} ∧ C = {A,B} ∧ D = {2,3}→ ⋂C = D (5.7) 

This time Vampire finds no proof within 30 minutes.  When we, however, apply the 

principle of extensionality to the consequent of formula (5.7) as in 

∀x(x ∈ ⋂C ↔ x ∈ D) (5.8) 

then Vampire finds a short proof in 0.4 seconds.  Therefore heuristic #1 appears to be 

useful for Vampire as well, depending on the complexity of the problem in which the set-

theoretic equality occurs. 
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Gandalf is able to find a proof for the original problem (5.3) in 1 minute 57 seconds.  

When extensionality is applied a proof is found in 43 seconds.  However, on the more 

complex problem Gandalf is unable to find proofs before or after application of the 

extensionality heuristic.  It is possible that the variable-strategy selection algorithm of 

Gandalf may be responsible for this and more work would be needed to investigate this 

result. 

5.2 Nested Functors 

A simple yet effective heuristic is to give preference to deductions containing smaller 

clauses (Section 3.7), i.e. clauses containing fewer literals or clauses of smaller term 

depth. The use of nested function symbols (called functors in the world of automated 

reasoning) leads to larger term depth and makes the unification of clauses more difficult. 

The nesting of function symbols usually occurs naturally as illustrated by the next 

example: 

(A + B) + C = A + (B + C) (5.9) 

Formula (5.9) states that set-theoretic symmetric difference (denoted by ‘+’) is 

associative. The symmetric difference (Enderton 1977) of sets A and B is defined as A + 

B = (A – B) ∪ (B – A) = {x | ((x ∈ A) ∧ (x ∉ B)) ∨ ((x ∉ A) ∧ (x ∈ B))}. Therefore our 

sample problem (5.9) employs equality as well as a ZF subset axiom as instantiated by 

set-theoretic difference. A first-order logic definition of the symmetric difference functor 

(called symmdiff below to avoid possible confusion with ordinary set-theoretic difference) 

is: 

∀A∀B∀x(x ∈ symmdiff(A,B) ↔ ((x ∈ A ∧ x ∉ B) ∨ (x ∉ A ∧ x ∈ B))) (5.10) 

The conclusion of the proof is then stated as: 

∀x(x ∈ symmdiff(symmdiff(A,B), C) ↔  

x ∈ symmdiff(A, symmdiff(B,C))) 

(5.11) 
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With this formulation it took Otter 4 minutes 3 seconds to find a proof of (5.11).  The 

problem can alternatively be formulated as by unfolding (i.e. effectively removing) the 

nested functors in (5.11): 

D = A + B ∧ E = D + C ∧ F = B + C ∧ G = A + F →  

∀x(x ∈ E ↔ x ∈ G) 

(5.12) 

The use of (5.12) instead allowed Otter to find a proof in only 0.17 seconds (Van der Poll 

2000). These results suggest the following heuristic: 

Heuristic #2:  Avoid, if possible, the use of nested functor symbols in definitions. 

Vampire quickly finds a proof of (5.11) in less than 0.1 seconds, both with and without 

the use of the nested functor heuristic #2. We therefore increase the complexity of the 

problem to further investigate the utility of this heuristic for Vampire. Note that in both 

problem formulations the extensionality heuristic #1 was already applied to problem 

conclusions. Rewriting (5.11) without using extensionality as 

symmdiff(symmdiff(A,B), C) = symmdiff(A, symmdiff(B,C)) (5.13) 

results in Vampire finding no proof after 30 minutes (another illustration of the utility of 

Heuristic #1 for Vampire). Next we apply the nested functor heuristic #2 by rewriting 

(5.13) using Skolem constants: 

D = A + B ∧ E = D + C ∧ F = B + C ∧ G = A + F →  E = G (5.14) 

Vampire now finds a proof for (5.14) after only 0.5 seconds. 

The nested functor heuristic #2 does not seem to be useful for Gandalf’s algorithm.  In 

fact, it appears to lead the theorem prover astray. Gandalf finds a proof for (5.11) in 41 

seconds and for (5.12) in 5 minutes 43 seconds.  Therefore, the application of the nested 

functor heuristic #2 resulted in a longer proof time.  However, if we test Gandalf on the 

more complex problem then it finds no proof for (5.13) after 30 minutes.  Application of 

the nested functor heuristic as in (5.14) results in a proof after 5 minutes 44 seconds.  

This time corresponds with Gandalf’s time for (5.12). 
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One should keep in mind that the VdPL heuristics are guidelines and not hard and fast 

rules and it is certainly possible that they might not be applicable in every situation as 

might be expected beforehand.  Therefore more work with Gandalf would be needed to 

determine the cause of the above phenomenon. It is possible, therefore, that the nested 

functor heuristic #2 may have to be augmented in certain cases. 

5.3 Divide-and-Conquer 

The heuristic examined in this section is applicable to proofs where the consequence of 

the proof contains a set-theoretic equality or an if-and-only-if formula. A set-theoretic 

equality in the conclusion of a proof implies ‘if and only if’ via the axiom of 

extensionality. Owing to the if-and-only-if formula, a specifier can perform two separate 

proofs, one for the only-if part and another proof for the if part. 

Consider the following sample problem based on equality and the power set axiom: 

P{0,1} = { ∅, {0}, {1}, {0,1}} (5.15) 

The formula is rewritten to make the relevant constructions explicit: 

A = {0} ∧ B = {1} ∧ C = {0,1} ∧ D = P(C) ∧ E = {∅, A, B, C} →  

D = E 

(5.16) 

Otter found no proof for (5.16) after 30 minutes. Resorting to the extensionality heuristic 

#1 by changing the conclusion to 

∀x(x ∈ D ↔ x ∈ E) (5.17) 

allowed Otter to find a proof in 3 minutes 23 seconds (Van der Poll 2000). A further 

simplification is to perform two separate proofs, one for each half of (5.17) and in the two 

proofs specify the conclusion as 

∀x(x ∈ D → x ∈ E) (5.18) 

and 
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∀x(x ∈ E → x ∈ D) (5.19) 

respectively. Otter then found a proof for (5.18) in 0.43 seconds and for (5.19) in 0.03 

seconds. These results led to the following divide-and-conquer heuristic: 

Heuristic #3:  Perform two separate subset proofs whenever the problem at hand 

requires one to prove the equality of two sets. 

The divide-and-conquer heuristic #3 is not only applicable to proof consequences 

containing ‘if and only if’ formulae but also to a proof conclusion that is a conjunction. In 

this case a separate proof may be performed for each conjunct in the proof’s conclusion. 

Vampire is also unable to find a proof for (5.16) after 30 minutes. However for (5.17), 

(5.18) and (5.19) Vampire finds quick proofs in 0.8, 0.3 and 0.1 seconds respectively. 

These times are again too short to affirm the utility of the divide-and-conquer heuristic #3 

for Vampire. As before we increase the complexity of the problem through the equality: 

P{0,1,2} = {∅, {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}} (5.20) 

Formula (5.20) is again rewritten to make the relevant constructions explicit: 

A = {0} ∧ B = {1} ∧ C = {2} ∧ D = {0,1} ∧ E = {0,2} ∧ F = {1,2} ∧ 

G = {0,1,2} ∧ H = P(G) ∧ I={∅, A, B, C, D, E, F, G} → H = I 

(5.21) 

Vampire terminates without finding a refutation after 8 minutes 53 seconds with the 

message ‘no passive clauses left’. Note that this does not mean that a refutation does not 

exist. Since Vampire was run with both a time and memory limit, it uses the limited 

resource strategy (Riazanov & Voronkov 2003), which is not a complete resolution 

strategy (see Section 4.1). If we apply our extensionality heuristic #1 to (5.21) by 

rewriting the consequent (H = I) as 

∀x(x ∈ H ↔ x ∈ I) (5.22) 
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then Vampire finds a proof in 8 minutes 40 seconds which is still too long. Next we apply 

the divide-and-conquer heuristic #3 by performing two different proofs for each half of 

(5.22) by specifying the proof consequents as 

∀x(x ∈ H → x ∈ I) (5.23) 

and 

∀x(x ∈ I → x ∈ H) (5.24) 

respectively. Vampire then finds a proof for (5.23) in 28 seconds and for (5.24) in 2 

seconds. 

Gandalf is also unable to find a proof of the original problem (5.16) after 30 minutes. 

Application of the extensionality heuristic #1 allows Gandalf to find a proof for (5.17) in 

1 minute 27 seconds.  However, further application of the divide-and-conquer heuristic 

appears not to be useful for Gandalf in the context of formula (5.18) since a proof is 

found in 1 minute 36 seconds. Similarly a proof for (5.19) is found in 1 minute 14 

seconds. 

On the more complex problem Gandalf is unable to find a proof for (5.21) after 30 

minutes.  Gandalf is still unable to find a proof after applying the extensionality heuristic 

#1 in (5.22).  The application of the divide-and-conquer heuristic #3 leads to some degree 

of success since, although it does not enable Gandalf to find a proof for sub-problem 

(5.23), it enables the reasoner to find a proof for (5.24) in 1 minute 15 seconds. 

5.4 Exemplification 

When writing the contents of sets in list notation one naturally tends to define these sets 

using one or more levels of indirection by moving from the various elements to a symbol 

representing the collection of those elements (Van der Poll & Labuschagne 1999). The 

sample problem used for the divide-and-conquer heuristic will be used here as well: 

P{0,1} = { ∅, {0}, {1}, {0,1}} (5.25) 
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Recall that in the initial formulation 

A = {0} ∧ B = {1} ∧ C = {0,1} ∧ D = P(C) ∧ E = {∅, A, B, C} → D = E (5.26) 

Otter was unable to find a proof within 30 minutes.  Suppose we remove one level of 

indirection by eliminating symbol E, i.e. 

A = {0} ∧ B = {1} ∧ C = {0,1} ∧ D = P(C) → D = {∅, A, B, C} (5.27) 

where D = {∅, A, B, C} is unfolded (repeatedly using the ZF pairing axiom) as 

∀x(x ∈ D ↔ (x = ∅ ∨ x = A ∨ x = B ∨ x = C)) (5.28) 

in the proof conclusion. With this formulation Otter found a proof in 4 minutes 5 

seconds. These results led to the following heuristic: 

Heuristic #4:  Avoid unnecessary levels of elementhood in formulae by using the 

elements of sets directly. 

The divide-and-conquer heuristic was applied to this last proof attempt to yield proofs in 

0.34 and 0.03 seconds for the ‘only-if’ and ‘if’ directions respectively. Vampire was also 

unable to find a proof for (5.26) within 30 minutes. However, for (5.27) Vampire finds a 

proof in 0.8 seconds. In this example, therefore, it was not necessary to increase the 

complexity of the problem to illustrate the utility of the heuristic #4 for Vampire. If we 

do increase the complexity of the problem by again using formula (5.20) as an example, 

but instead of unfolding it as in (5.21) we unfold it as 

A = {0} ∧ B = {1} ∧ C = {2} ∧ D = {0, 1} ∧ E = {0, 2} ∧ 

F = {1, 2} ∧ G = {0, 1 ,2} ∧ H = P(G) → H = {∅, A, B, C, D, E, F, G} 

(5.29) 

then Vampire finds a proof in 5 minutes and 50 seconds. The divide-and-conquer 

heuristic can be applied to this last proof attempt to yield proofs in 31.5 and 1.6 seconds 

for the ‘only-if’ and ‘if’ directions respectively. 
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Gandalf was able to refute the original problem (5.26) after 16 minutes 22 seconds.  

Application of the exemplification heuristic enables Gandalf to find a proof in 1 minute 

14 seconds.  On the more complex problem unfolded as in (5.29) Gandalf is unable to 

find a proof with or without application of exemplification.  When the divide-and-

conquer heuristic is applied then Gandalf only finds a proof for the only-if sub-problem 

in 12 minutes 56 seconds. 

5.5 Multivariate Functors 

Terms containing functors may contain both constants and variables as arguments. The 

number of possible unifications with a clause containing a functor increases with each 

functor argument that occurs as a variable. As a result more clauses are generated leading 

to a larger search space. There are two main examples that lead to functors containing 

variables as arguments. The first is due to the specifier using functors that take variables 

as arguments, typically because of indirect definitions. The second example is produced 

by Skolemisation (Hamilton 1991, Section 0). Skolemisation occurs when first-order 

formulae are clausified to serve as input to the resolution mechanism. An important step 

is the elimination of existential quantifiers (Van der Poll & Labuschagne 1999). If the 

existential quantifier occurs after any universal quantifiers, the existential quantifier is 

replaced by a Skolem functor taking each of the universally quantified variables as an 

argument (Section 0). 

The example problem (5.16) will be used again with the extensionality heuristic #1 

applied to the conclusion as in (5.17). First we define the term D = P(C) indirectly as 

∀x(x ∈ D ↔ x ⊆ C) (5.30) 

where the subset functor ⊆ is defined as 

∀A∀B(A ⊆ B ↔ ∀y(y ∈ A → y ∈ B)) (5.31) 

With this formulation Otter found no proof in 30 minutes. The clausification of (5.31) 

results in universally quantified variable y being replaced by a Skolem functor of the two 

variables A and B. The effect of Skolemisation may be reduced by eliminating one of the 
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universally quantified variables in (5.31), e.g. replace variable B by a constant C (say) in 

(5.30): 

∀A(A ⊆ C ↔ ∀y(y ∈ A → y ∈ C)) (5.32) 

Otter then found a proof after 4 minutes 5 seconds. Variable y in the clausal form of 

(5.32) is now replaced by a Skolem functor of only one variable as opposed to a functor 

of two variables in (5.31). The possibility of irrelevant unifications with this Skolem 

functor has therefore been reduced. It should also be noted that the subset functor ⊆ in 

both cases has an arity of two, but in (5.31) it contains two variables as opposed to one 

constant and one variable in (5.32).  These results delivered the following heuristic: 

Heuristic #5:  Simplify terms in sets by either not involving functors, or else 

functors with the minimum number of argument positions taken up by variables. 

Vampire finds proofs with or without heuristic #5 applied. With the subset functor 

formulated as in (5.31) it finds a proof in 21 seconds and for (5.32) in 0.1 seconds. The 

relative improvement in search time is significant. However, the search time for (5.31) 

may still be too low to seriously justify the use of heuristic #5. We therefore increase the 

complexity of the problem to further test our heuristic. The example problem (5.21) that 

was also used in the divide-and-conquer heuristic has sufficient complexity and will be 

used again with the extensionality heuristic #1 applied to the conclusion as in (5.22). As 

before, the term H = P(G) is unfolded as 

∀x(x ∈ H ↔ x ⊆ G) (5.33) 

where the subset functor ⊆ is again defined as in (5.31). With this formulation Vampire 

finds no proof in 30 minutes. We next apply the multivariate functor heuristic by defining 

the subset functor with variable B replaced by the constant G: 

∀A(A ⊆ G ↔ ∀y(y ∈ A → y ∈ G)) (5.34) 
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Now Vampire finds a proof after 1 minute and 32 seconds. This result can further be 

improved through divide-and-conquer. The times for the two sub-proofs are 5.2 and 0.3 

seconds respectively. 

Gandalf is also able to find a proof for the original problem with and without heuristic #5 

applied.  A proof is found in 8 minutes 11 seconds with the subset functor formulated as 

in (5.31) and in 1 minutes 31 seconds for (5.32).  The original problem is therefore 

sufficient to illustrate the usefulness of heuristic #5 in Gandalf’s case.  For the more 

complex problem Gandalf is unable to find a proof with or without the multivariate 

heuristic applied to the subset functor.  When the divide-and-conquer heuristic is applied 

to the conjecture together with the multivariate functor heuristic then Gandalf is only able 

to find a proof for the only-if direction in 1 minute 16 seconds. Hence, further work 

would have to investigate possible proofs for the if-direction above. 

5.6 Intermediate Structure 

The intermediate structure heuristic is applicable to formulae in which the direct 

definition of intermediate structures leads to complex functor expressions.  The 

intermediate structure heuristic can be regarded as a special case of the Multivariate 

functor heuristic as outlined below. 

Consider the following example problem involving arbitrary union (Section 2.1.4): 

A × ⋃B ⊆ ⋃{A × X | X ∈ B} (5.35) 

This set-theoretic formula can be unfolded as: 

C = ⋃B ∧ D = A × C ∧ E = {A × X | X ∈ B} ∧ F = ⋃E → D ⊆ F (5.36) 

The intermediate structure E still needs to be expanded further.  The following formula is 

a direct definition of E: 

∀x(x ∈ E ↔ ∃X(X ∈ B ∧ ∀y∀z((y,z) ∈ x ↔ y ∈ A ∧ z ∈ X))) (5.37) 
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Otter could not find a proof with these inputs and ran out of memory after 9 minutes 51 

seconds.  Closer inspection of the clausal form of this direct definition of E shows that 

the ordered pair (y,z) clausifies into the functor ORD(f1(x1,x2),f2(x1,x2)).  The 

Skolemisation of the variables y and z results in Skolem functions of two variables that 

are nested within the ordered pair functor.  The nested functor and multivariate functor 

heuristics showed that this clausal form complicates the resolution process.  To avoid this 

clausal form for E, one may resort to the following definition: 

∀x(x ∈ E ↔ ∃X(X ∈ B ∧ ∀y∀z((y,z) ∈ x ↔ (y,z) ∈ PROD(A,X)))) (5.38) 

PROD(A,X) is further defined as: 

∀X∀y∀z((y,z) ∈ PROD(A,X) ↔ y ∈ A ∧ z ∈ X) (5.39) 

The clausal form for the ordered pair (y,z) in (5.39) now remains ORD(y,z).  As a result 

the unification process is simplified and it enabled Otter to find a proof in just 0.06 

seconds, leading to the following heuristic: 

Heuristic #6:  Use an indirect definition for an intermediate structure instead of a 

direct definition when its clausification results in less complex functors. 

Vampire is also not able to find a proof after 30 minutes with the direct definition of E in 

(5.37).  However, Vampire is able to find a proof in 40 seconds for the indirect definition 

of E in (5.38) and (5.39).  Even though Vampire is now able to find a proof in a relatively 

short time, the time is strikingly larger than that of Otter.  Closer inspection of the clausal 

form of (5.38) reveals that it still contains two variable Skolem functors nested in the 

ordered pair functor.  The following reformulation of (5.38) uses equality instead of 

extensionality: 

∀x(x ∈ E ↔ ∃X(X ∈ B ∧ x = PROD(A,X))) (5.40) 

The clausal form the definition of E in (5.40) does not contain any of the complex 

functors encountered above.  As a result Vampire is now able to find a proof in 0.1 

seconds. 
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Gandalf’s results are similar to those of Vampire.  It is also not able find a refutation after 

30 minutes using (5.37).  Using the indirect definition of E in (5.38) and (5.39) enables 

Gandalf to find a proof in 1 minute 15 seconds.  This result is further reduced to 0.3 

seconds by using the equality formulation of (5.40). 

5.7 Element Structure 

The element structure heuristic, like the intermediate structure heuristic, is a special case 

of the multivariate heuristic by focusing on another situation in which formulae describe 

the structure of elements of relations and functions. 

Consider the following example problem (Van der Poll & Labuschagne 1999): 

F = {(∅,a), ({∅},b), (a,b)} → F-1 = {(a,∅), (b,{∅}), (b,a)} (5.41) 

F is firstly defined as (ORD is a functor denoting an ordered pair): 

∀x(x ∈ F ↔ (x=ORD(∅,a) ∨ x=ORD({ ∅},b) ∨ x=ORD(a,b))) (5.42) 

The relationship between F and F-1 (the inverse of F) is given by: 

∀y∀z(ORD(y,z) ∈ F ↔ ORD(z,y) ∈ F-1) (5.43) 

The element structure of F is defined as: 

∀x(x ∈ F → ∃y∃z(x = ORD(y,z))) (5.44) 

The following theorem about ordered pairs is also required (Enderton 1977): 

∀u∀v∀w∀x(ORD(u,v) = ORD(w,x) ↔ (u=w ∧ v=x)) (5.45) 

Finally the goal is specified by: 

∀x(x ∈ F-1 → (x=ORD(a,∅) ∨ x=ORD(b,{∅}) ∨ x=ORD(b,a))) (5.46) 

Otter was unable to find a proof after 20 minutes with the above formulation. 
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Next one may attempt another approach by rather specifying the elements of F and F-1 

more directly at the level of ordered pairs.   Firstly F is defined as 

∀y∀z(ORD(y,z) ∈ F ↔ (y=∅ ∧ z=a) ∨ (y={∅} ∧ z=b) ∨ (y=a ∧ z=b)) (5.47) 

and the goal by: 

∀y∀z(ORD(y,z) ∈ F-1 → (y= a ∧ z=∅) ∨ (y= b ∧ z={∅}) ∨ (y=b ∧ z=a)) (5.48) 

The more direct approach allowed Otter to find a proof in just 0.03 seconds.  Closer 

inspection indicated that the more direct definition does not require formulae (5.44) and 

(5.45) to find a proof.  The clausal form of these formulae contains nested Skolem 

functors and two variable arguments to the ORD functor thereby contradicting the 

multivariate functor heuristic #5.  These results led to the following heuristic: 

Heuristic #7:  Specify elements of relations and functions more directly at the 

level of ordered pairs or ordered n-tuples whenever the tuples need to be opened 

during the proof. 

The results for Vampire are similar as for Otter without increasing the complexity of the 

problem.  Vampire is also not able to find a proof for (5.46) after 30 minutes.  However 

for the direct definition of (5.48) Vampire easily finds a proof in 0.1 seconds. 

Gandalf is also not able to find a proof for (5.46) after 30 minutes, but the direct 

definition in (5.48) enables it to find a refutation in 0.2 seconds. The element structure 

heuristic #7 therefore appears to be a useful heuristic for the next-generation theorem 

provers.  

5.8 Redundant Information 

Redundant formulae that are provided as part of the problem specification can cause 

many unnecessary unifications that greatly increase the problem’s search space.  This is 

especially the case with general formulae like axioms that contain variables instead of 

constants found in the problem domain.  This problem of combinatorial explosion due to 
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redundant information may seem rather obvious.  However, since it is such a common 

problem the redundant information heuristic serves to emphasise it. 

The following example problem is used as illustration: 

[Fun(f) ∧ Fun(g) ∧ ∀x(x ∈ dom(f) ∩ dom(g) → f(x)=g(x))] → Fun(f ∪ g) (5.49) 

The intention of functor Fun is that its argument is a function.  The unfolding of this 

formula into a first-order form makes extensive use of the ordered pair functor.  One may 

therefore feel inclined to add the following fact about ordered pair equality: 

∀u∀v∀w∀x(ORD(u,v) = ORD(w,x) ↔ (u=w ∧ v=x)) (5.50) 

The inclusion of the ordered pair equality fact prevented Otter from finding a proof 

within 30 minutes.  When the fact is removed Otter was able to easily find a proof in 0.08 

seconds.  This result led to the following heuristic: 

Heuristic #8:  Refrain from using formulae in the problem specification that do 

not contribute to the proof. 

It is generally difficult to know beforehand whether a formula or axiom is required for a 

proof attempt.  The next heuristic will attempt to alleviate this problem. 

Vampire appears to have no problem in finding quick proofs with or without the 

inclusion of the ordered pair equality (5.50) in less than 1 second for both cases.  To 

increase the effect of redundant information we add some unnecessary axioms from set 

theory that are relevant to relations and functions in addition to the equality axiom (5.1).  

Firstly we add a fact about cross products: 

∀A∀B∀x∀y(ORD(x,y) ∈ PROD(A,B) ↔ (x ∈ A ∧ y ∈ B)) (5.51) 

Vampire is still able to find a quick proof in 1 second.  Next we remove the cross product 

formula above and instead add the definition for range: 

∀R∀y(y ∈ RAN(R) ↔ ∃x(ORD(x,y) ∈ R)) (5.52) 
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It now takes Vampire 4.5 seconds to find a proof.  The individual addition of these last 

two formulae therefore did not increase the proof time significantly.  However, if we add 

both formulae at the same time, then Vampire is unable to find a proof in 30 minutes. 

Gandalf is not influenced very much by any variation of the above formulae.  With the 

ordered pair equality (5.50) included in the problem it finds a proof in 59 seconds and 

without it in 57 seconds.  Inclusion of both the equality (5.1) and cross product (5.51) 

formulae increases the refutation time slightly to 1 minute 5 seconds.  Inclusion of the 

equality (5.1) and range axioms (5.52) results in a similar proof time of 1 minute 7 

seconds.  Finally inclusion of all these unnecessary axioms (5.1), (5.51) and (5.52) has a 

proof time of 1 minute 9 seconds.  Gandalf therefore does not seem to be influenced too 

much with the addition of redundant information.  This might be explained by the fact 

that in Gandalf’s automatic mode it first selects a set of different strategies that are likely 

to be useful for a given problem and then tries all these strategies one after another 

(Tammet 1997).  It uses time-slicing to limit the time that a specific search strategy is 

executed.  When the strategy’s time runs out, the next strategy is executed.  Redundant 

information may therefore only have an impact on some of the strategy runs, but not all 

of them. 

5.9 Search-Guiding 

The redundant information heuristic suggests that formulae that do not contribute to a 

proof attempt should be discarded since these unnecessarily enlarge the search space.  It 

is however difficult to know beforehand which formulae and axioms will be required to 

find a proof. 

The purpose of the search-guiding heuristic is to identify which parts of formulae are 

most probably required for the proof attempt via a technique called resolution by 

inspection.  These parts are called half-definitions.  The parts that are less clearly relevant 

can be provisionally excluded from the proof attempt. 

The following example problem for nonempty sets A and B will be used: 
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⋂(A ∪ B) ⊆ (⋂A) ∩ (⋂B) (5.53) 

This formula may be unfolded as: 

C = A ∪ B ∧ D = ⋂C ∧ E = ⋂A ∧ F = ⋂B ∧ G = E ∩ F → D ⊆ G (5.54) 

The search-guiding heuristic will be illustrated by tracing a small part of the proof 

attempt.  The goal of the problem is D ⊆ G and must form part of the proof attempt.  In 

its unabbreviated first-order form it is defined by the formula: 

∀x(x ∈ D → x ∈ G) (5.55) 

The goal of the proof is negated to find a proof by refutation.  The negated goal after 

clausification is given by the following two clauses: 

c1 ∈ D (5.56) 

c1 ∉ G (5.57) 

c1 is a Skolem constant that arises due to the negation of the universal quantifier that 

becomes an existential quantifier.  To find a proof both of these clauses must be resolved. 

The unabbreviated first-order definition of set G is: 

∀x( x ∈ G ↔ x ∈ E ∧ x ∈ F) (5.58) 

The literal c1 ∉ G in (5.57) can only be resolved with a literal of the form x ∈ G which is 

found in the “if” direction of the “if-and-only-if” formula (5.58).  The “only-if” half can 

therefore be discarded which gives: 

∀x( x ∈ G ← x ∈ E ∧ x ∈ F) (5.59) 

The same resolution by inspection technique can be followed for the literal c1 ∈ D in 

(5.56) and literal c1 ∉ D which is found in the first-order definition for set D.  The half 

definition that is required is: 
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∀x( x ∈ D → ∀b(b ∈ C → x ∈ b)) (5.60) 

Otter found a proof for the original unfolding in 8.36 seconds.  By using only the half 

definitions Otter found a proof in 0.12 seconds.  Although the original time seems fast 

enough, the half definitions enabled a 70 times faster proof time.  These results inspired 

the following heuristic: 

Heuristic #9:  Use half definitions of if-and-only-if formulae via the technique of 

resolution by inspection to guide the resolution of literals that will form part of a 

proof starting at the goal. 

Vampire is able to find quick proof in less than 1 second with or without the use of the 

half definitions.  To illustrate the utility of the search-guiding heuristic to Vampire we 

will use the example problem (5.35) of the intermediate structure heuristic #6 after the 

heuristic has been applied.  For ease of reference we repeat its unfolding in (5.36) here 

C = ⋃B ∧ D = A × C ∧ E = {A × X | X ∈ B} ∧ F = ⋃E → D ⊆ F (5.61) 

with the definition of E as given by (5.38).  It took Vampire 40 seconds to find a proof 

for this formulation.  The goal of this problem also contains the subset functor which 

clausifies into clauses similar to (5.56) and (5.57).  The search-guiding heuristic #9 is 

applied by using only half definitions for sets D and F.  Vampire is then able to find a 

proof in 9 seconds. 

We can apply the search-guiding heuristic #9 further.  The half definition of set D that 

remained is: 

∀x∀y((x,y) ∈ D → x ∈ A ∧ y ∈ C) (5.62) 

Further note that set C is defined as: 

∀x(x ∈ C ↔ ∃y(y ∈ B ∧ x ∈ y)) (5.63) 



 96 

In its clausal form the literal y ∈ C in (5.62) will resolve with a clause in a half definition 

of set C in (5.63).  By discarding the half definition that is not used for set C in (5.63), 

allows Vampire to find a quick proof in 0.5 seconds. 

Gandalf also finds quick proofs for the original problem in less than one second with or 

without search guiding.  For the more complex problem (5.61) Gandalf finds a proof after 

1 minute 15 seconds.  This time is reduced to 1 minute 3 seconds when only half 

definitions for sets D and F are used.  The time is slightly reduced further to 59 seconds 

by using a half definition for set C.  It is plausible, therefore, that a more complicated 

problem would necessitate the use of the search-guiding heuristic #9 for Gandalf even 

more. 

5.10 Resonance 

The resonance heuristic aims to identify formulae that can be rewritten in a format that is 

syntactically similar to facilitate the resolution process.  This heuristic was originally 

proposed by Wos (1995, 1996). The example used to illustrate it is taken from the area of 

databases. 

Let Emp be a partial function from personnel identifications in ID to personnel 

information in PERSON: 

Emp: ID → PERSON (5.64) 

Suppose the structure of PERSON is defined as: 

PERSON = Name × Role × Dept × Salary × Address (5.65) 

Suppose we want to increase the salary of an employee with personnel number p by 

amount.  Let Emp' represent the updated employee function.  The increase operation can 

then be specified as: 

∀x∀n∀r∀d∀s'∀a 

    (ORD(x, 5TUP(n, r, d, s', a)) ∈ Emp' ↔ 

(5.66) 
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        ((x≠p ∧ ORD(x, 5TUP(n, r, d, s', a)) ∈ Emp) ∨ 

         (x = p ∧ ∃s(s' = s + amount ∧ ORD(x, 5TUP(n, r, d, s, a)) ∈ Emp)))) 

A proof obligation (PO) arises from (5.66) above, namely, to show that Emp' is (still) a 

function. This involves showing that each and every element in Emp' is a tuple of the 

correct kind (this PO is not addressed further below) and that Emp' is single valued, i.e. 

functional: 

Siv(Emp') (5.67) 

where Siv is defined as: 

∀R(Siv(R) ↔ ∀u∀v∀w(ORD(u,v) ∈ R ∧ ORD(u, w) ∈ R → (v = w))) (5.68) 

Lastly we add the following two facts about ordered pair equality and 5-tuple equality: 

∀u∀v∀w∀x(ORD(u, v) = ORD(w, x) ↔ (u = w ∧ v = x)) (5.69) 

∀u∀v∀w∀x∀y∀u'∀v'∀w'∀x'∀y' 

(5TUP(u, v, w, x, y) = 5TUP (u', v', w', x', y') ↔ 

(u = u' ∧ v = v' ∧ w = w' ∧ x = x' ∧ y = y')) 

(5.70) 

Otter failed to find a proof for this formulation after 20 minutes.  The resonance heuristic 

#10 was applied next to formula (5.68) by rewriting it into a form that is syntactically 

similar to corresponding terms in (5.66): 

∀R(Siv(R) ↔ 

   ∀u∀v∀w∀x∀y∀z∀v'∀w'∀x'∀y'∀z' 

      (ORD(u, 5TUP(v, w, x, y, z)) ∈ R ∧ 

       ORD(u, 5TUP(v', w', x', y', z')) ∈ R → 

          5TUP(v, w, x, y, z) = 5TUP (v', w', x', y', z'))) 

(5.71) 

This reformulation enabled Otter to find a proof in 11.62 seconds.  These results led to 

the following heuristic: 
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Heuristic #10:  Rewrite formulae to give corresponding terms a syntactically 

similar structure to aid the resolution process. 

Vampire is also unable to find a proof for the original formulation of Siv in (5.68).  After 

the application of the resonance heuristic to Siv Vampire is able to find a proof in less 

than 1 second. 

Gandalf is unable to find any proof after 30 minutes with or without the application of the 

resonance heuristic, hence further work needs to investigate this phenomenon. 

5.11 Tuple Condense 

The last heuristic that we consider may also be regarded as a special case of the 

multivariate functors heuristic #5.  The tuple condense heuristic in this section is 

applicable to tuples containing multiple variable arguments that are not changed or 

referred to in operations that change some of the other coordinates in the tuples.  This 

heuristic suggests that these irrelevant argument positions be folded up into one argument 

for the purposes of the proof attempt (Van der Poll 2000). 

Example (5.66) from the resonance heuristic #10 will again be used here.  The salary 

increase operation s' = s + amount only changes the salary argument of a tuple of the 

larger type PERSON.  We can therefore reorder the argument positions and fold all the 

irrelevant arguments into one for the purposes of this proof attempt.  Formula (5.66) can 

then be redefined as: 

∀x∀y∀s' 

    (ORD(x, ORD(y, s')) ∈ Emp' ↔ 

        ((x≠p ∧ ORD(x, ORD(y, s')) ∈ Emp) ∨ 

         (x = p ∧ ∃s(s' = s + amount ∧ ORD(x, ORD(y, s)) ∈ Emp)))) 

(5.72) 

In the above formulation the positions for name, rank, department and address have been 

abstracted into one position represented by variable y. 
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The resonance heuristic is applied again to the single-valued formula (5.67) to be 

applicable to the syntactic form of (5.72): 

∀R(Siv(R) ↔ 

   ∀u∀v∀w∀v'∀w' 

      (ORD(u, ORD(v, w)) ∈ R ∧ ORD(u, ORD(v', w')) ∈ R → 

          ORD(v, w) = ORD(v', w'))) 

(5.73) 

With this formulation Otter was able to find a proof in 0.07 seconds as opposed to the 

11.62 seconds using only the resonance heuristic #10 of the previous section.  These 

results suggested the following heuristic: 

Heuristic #11:  Reduce the number of arguments of a functor by folding those 

arguments that are irrelevant to the proof attempt into one. 

Vampire finds quick proofs for the example problem in less than 1 second with or 

without tuple condensing.  A more complex problem is therefore required to illustrate the 

utility of this heuristic for Vampire.  Various problems were used but none was able to 

show a noticeable difference in refutation time by applying the tuple condense heuristic. 

Gandalf on the other hand was unable to find a proof for the example problem after 30 

minutes with or without the heuristic. It should be noted therefore that more work is 

needed to determine the general utility or not, of the tuple condense heuristic #11, either 

in its current form, or some enhanced version thereof.  

5.12 Summary and Conclusions 

In this chapter we investigated to what extent the VdPL heuristics may be useful to other 

reasoners with similar characteristics. The Vampire theorem prover was chosen as the 

primary reasoner for this task owing to its steadfast superior performance at recent CASC 

competitions. Gandalf was used as a secondary prover in this evaluation. 

We evaluated 11 of the original 14 VdPL heuristics.  Table 5.1 below summarises the 

results of this chapter.  A * in the ‘Times Faster’ column indicates a proof found versus 
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no proof found.  The results that best illustrated the applicability of the various heuristics 

for Vampire and Gandalf were used. 

Otter 
(AMD K6-2 64MB 400MHz) 

Vampire Gandalf Heuristic 

Before After Times 
Faster 

Before After Times 
Faster 

Before After Times 
Faster 

Equality vs 
Extensionality 

- 0.03 * - 0.4 * 117 43 2.7 

Nested Functors 243 0.17 1429 - 0.5 * - 344 * 

Divide-and-Conquer 203 0.46 441 520 30 17 87 170 0.5 

Exemplification - 14.74 * - 0.8 * 982 74 13 

Multivariate Functor - 245 * - 92 * 491 91 5.4 

Intermediate Structure - 0.06 * - 0 * - 75 * 

Element Structure - 0.03 * - 0.1 * - 0.2 * 

Redundant Information - 0.08 * - 0 * 69 57 1.2 

Search-Guiding 8.36 0.12 70 40 8.9 4.5 75 59 1.2 

Resonance - 11.62 * - 0 * - - - 

Tuple Condense 11.62 0.07 166 0 0 0 - - - 

Table 5.1: Summary of theorem-proving results 

It was found that Vampire needed 10 of the 11 heuristics that were evaluated. In some 

cases the original problem had to be enlarged to illustrate the usefulness of the given 

heuristic using the new reasoner. This is significant for two reasons: Firstly it is evident 

that Vampire may be considered as a next generation of resolution-based reasoners. 

Secondly, illustrating the utility of a particular heuristic when the complexity of a 

problem is increased suggests a real need for the said heuristic when the given problem 

becomes part of a larger problem and a specifier wants to discharge a proof obligation in 

a single proof attempt, rather than breaking it up into smaller steps. 

Gandalf in general performed better than Otter but not as well as Vampire.  Using the 

theorem-proving defaults of the reasoners throughout, Gandalf was not able to solve 
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some of the more complex problems that Vampire could and the ones it could solve, 

usually took longer than Vampire.  Of the 11 heuristics evaluated, 9 heuristics were 

shown to be useful for Gandalf.  In all the cases where Gandalf was able to find proofs 

with and without the relevant heuristics the time gain is diluted by the fact that in any 

given proof run Gandalf tries various strategies one after the other.  For example, if a 

proof was found during a strategy that started 5 minutes after the proof run was initiated 

by the human user and such strategy is allocated 1 minute then the best possible time gain 

can only be 6/5 = 1.2. 

In the next chapter we define a case study in Z and identify a number of proof obligations 

that arise from the specification. Some of these proof obligations will be addressed in 

Chapter 7.  
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6 An Order Management System in Z 

Chapter 6 

An Order management System in Z 

In this chapter we present a simplified order management system that caters for order 

capturing and processing as well as customer and product information.  The problem 

statement of the case study is presented first.  Thereafter a high level conceptual model of 

the problem is given, highlighting the various entities that the case study aims to capture.  

The goal here is neither to present a treatment of an object-oriented development 

methodology nor to serve as an exercise in requirements elicitation.  Next we examine 

the patterns that were used to translate the high level object-oriented concepts of the 

conceptual model to Z.  The full Z specification of the problem can be found in Appendix 

D.  Lastly we highlight typical proof obligations that arise from such a Z specification.  

The next chapter applies the set-theoretic heuristics of the Chapter 5 to proof obligations 

that arise from the case study. 

6.1 Problem Statement 

An order management system facilitates the capturing and processing of orders.  It could 

contain various subsystems for handling different stages of the order fulfilment process 

for example stock, customers, marketing, order entry, financials, processing, and 

management information.  The scope of this case study includes order capturing and 

processing as well as customer and product information. 

The order management system keeps stock of various products.  For each product its 

name, price and quantity in stock is recorded.  No two products can have the same name.  

Free products are also kept in stock.  A product can therefore have a price of 0.0.  New 

products can be added.  A product’s name, price and quantity in stock can be updated.  

Products can also be deleted.  A list of all products that is below a specified threshold 

quantity can be obtained. 
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The system has two types of customers namely companies and persons.  The addresses 

and phone numbers of all customers are kept.  Additionally, the first and last names of 

persons and the names and government registration numbers of companies are 

maintained.  New persons and companies can be added.  Persons and companies can only 

be removed if they have not placed orders before.  All the information of a customer can 

be modified. 

An order for a customer can be created.  The information that is associated with an order 

includes the customer, date, status and order items.  A new order has a status of 

“pending” and no items.  While in pending status an order can be cancelled which will 

change its status to “cancelled”.  

New order items can be added to an order that is in a pending status.  An order item is for 

a specific product.  No two order items may refer to the same product; instead an item 

should have a quantity greater than one.  The quantity of the product as well as the price 

of the product at the time the order item was created, is also kept.  An order item must 

have a quantity that is more than zero.  An order item can be added regardless of the 

amount of stock that is available.  The quantity of an order item can be updated.  Order 

items may be deleted. 

An order with status “pending” can be processed if there are enough products in stock.  

Processing an order changes its status to “processed” and the quantities of products in 

stock are reduced by the corresponding item quantities ordered. 

6.2 Conceptual Model 

The following UML (Booch et al. 2005) class diagram is an object-oriented 

representation of the problem domain.  It also shows the various operations for the 

domain. 
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1
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Figure 6.1: A UML class diagram of an order management system 

The class diagram contains the main classes of the problem: Product, Customer, 

Company, Person, Order and Item.  It also contains the classes Products, Customers and 

Orders.  The purpose of these latter classes is to provide operations that can manage the 

collective states of Product, Customer and Order. 

6.3 The Z Specification Language 

Z (Spivey 1992) is a formal specification language based on first-order logic and a 

strongly-typed fragment of Zermelo-Frankel set theory.  Z attained ISO standardisation in 

2002 (ISO 2002). 

Since the purpose of this study is not to consider object-oriented aspects per se, the 

specification of the case study presented above will be done using conventional Z instead 

of, for example, Object-Z (Derrick & Boiten 2001, Duke et al. 1995).  One of the main 
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differences between Z and object-oriented versions is that mathematical functions are 

used for attributes instead of schemas that encapsulate the class instance state (Wieringa 

1998, Amalio & Polack 2003).  The “Birthday Book” tutorial that is provided by Spivey 

(1992) gives a good overview of a specification in standard Z. 

The following sections examine the patterns that are used to translate the high level 

object-oriented concepts of the conceptual model to Z.  These are classes, attributes, 

associations, association classes, aggregation and composition and inheritance. 

The full Z specification of the case study is provided in Appendix D. 

6.4 Specifying Classes and their Attributes 

A UML class describes a set of objects that share the same attributes, operations, 

relationships and semantics (Booch et al. 2005).  Objects and object classes are usually 

identified as nouns in a problem statement.  For example, the statement “an order is 

placed by a customer” refers to two classes of objects that are order and customer.  

Similarly, the statement “an order is for one or more products” identifies the order class 

as well as the product class.  All orders have the common attributes of order date (the 

date the order was placed) and a status (whether the order is pending, whether it has been 

processed, delivered etc.).  The objects within a specific class mostly derive their 

individuality due to differences in attribute values and relationships to other classes.  It is 

possible though that objects can have the same attribute values and relationships. But, as 

stated earlier, all objects have an implicit identity, which means that in this case they are 

still separate objects. 

This section focuses on the specification of less complicated classes and their attributes.  

By this is meant classes that do not utilise object-oriented concepts like relationships, 

inheritance, aggregation and so forth.  Also, the class attributes will be pure data values, 

i.e. an attribute type will not be a class otherwise it would constitute a relationship with 

that class.  Nevertheless, the concepts discussed also apply to more complex cases.  The 

class Product in the case study will be used in this section to describe a less complex 

class. 
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The Product class is an abstraction of the merchandise sold to customers.  It has no 

inheritance associations with another class and it does not refer to any other class (it has 

no attribute with a class type).  The fact that Product does not refer to another class does 

not mean it has no association with another class.  It has an association with the Item 

class because Item refers to it (see Figure 6.1).  This type of association is discussed in 

the following section. 

A product has three attributes: name, price and quantity.  The name attribute has a 

character string type, the price attribute’s type is an amount and the quantity is a non-

negative (i.e. natural) number.  A Nokia 3650 cell phone could be an example of a 

product object. In this case, the name attribute could have the value “Nokia 3650” and the 

price attribute could have the value R4495.00 (say). 

In Z a UML class may be represented by a single schema.  The following example shows 

how the Product class and its attributes may be specified in Z. 

» Product ____________________________________________ 
Æproducts: P PRODUCT 
ÆprodName: PRODUCT © STRING 
ÆprodPrice: PRODUCT ß AMOUNT 
ÆprodQuantity: PRODUCT ß N 
«_______ 
Ædom prodName = products 
Ædom prodPrice = products 
Ædom prodQuantity = products 
–________________________________________________ 

The schema name has been chosen to be the same as that of the class (see Figure 6.1).  

The schema contains a component that represents the identities of all the available 

products in the system i.e. products: P PRODUCT. 

Each attribute is declared as a function from an identity to the type of the attribute.  For 

example, the product price attribute is declared by the partial function prodPrice: 

PRODUCT ß AMOUNT.  No two products can have the same name, therefore we use a 

partial injective function prodName: PRODUCT © STRING. 
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The domain of each attribute function must equal the identities collection.  This 

constraint is specified in the predicate section of the schema.  For example, the prodName 

function is constrained as: dom prodName = products. 

Finally, any additional constraints can also be specified in the schema’s predicate section.  

For example, if the product name was not defined by an injective function, then the 

constraint that no two products can have the same name could be specified with the 

predicate: Ap1, p2: products • p1 Î p2 fi prodName(p1) Î prodName(p2). 

A possible state of the Product schema has three products in the products identity set, 

with the corresponding names, prices and quantities recorded by functions prodName, 

prodPrice and prodQuantity: 

products = {38627, 39241, 41189} 

prodName = {38627 å “Nokia 3650”, 

                       39241 å “Sony Playstation 3”, 

                       41189 å “Microsoft Windows Vista Home Premium”} 

prodPrice = {38627 å R4495.00, 

                      39241 å R5299.00, 

                      41189 å R1353.18} 

prodQuantity = {38627 å 37, 

                           39241 å 29, 

                           41189 å 13} 

6.5 Specifying Associations 

A link specifies that an object instance of one class is connected to an object instance of 

another or the same class.  For example, the phrase “Ralph (a customer) placed an order 

on the 11’th of October 2008”, describes a link between a Customer instance and an 

Order instance. 
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A link is an instance of an association.  An association specifies a set of links with 

common structure and semantics that exist between two classes.  For example, the phrase 

“a customer places an order”, describes an association.  It is also possible to have an 

association between more than two classes, called n-ary associations.  This is however 

not as common and will not be considered further in this dissertation. 

An association can also have a minimum and maximum multiplicity at each end.  For 

example, a customer can be associated with zero (minimum) or more (any finite 

maximum) orders and an order can be associated with one (minimum) and only one 

(maximum) customer.  This is commonly referred to as a one-to-many relationship. 

Navigation of associations refers to the ability to navigate from one object to another via 

the association that exists between their classes.  For example, if the one-to-many 

relationship between customer and order can be navigated only from customer to order, 

then given a customer instance, one can reference its orders.  On the other hand, given an 

order instance one cannot reference the customer directly. 

An association can also have a role at each end.  For example, let there be a one-to-many 

relationship between company and person.  The role of person in this association is an 

employee and the role of the company is employer.  There could also be another one-to-

one relationship between company and person where the role of person is CEO (Chief 

Executive Officer). 

The association between Customer and Order will be used to illustrate the various 

specification styles.  As with the specification of a class and its attributes using Z, the 

specification of associations is not as explicit.  However, in the opinion of the author of 

this dissertation it does not fail to be simple and effective. 

Let us have a look at how the association between Customer and Order may be specified 

for the case study (see also Appendix D). 
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» Customer ___________________________________________ 
Æcustomers: P CUSTOMER 
ÆcustAddress: CUSTOMER ß STRING 
ÆcustPhone: CUSTOMER ß STRING 
«_______ 
Ædom custAddress = customers 
Ædom custPhone = customers 
–________________________________________________ 

» Order _____________________________________________ 
Æorders: P ORDER 
ÆorderDate: ORDER ß DATE 
ÆorderStatus: ORDER ß STATUS 
ÆorderCustomer: ORDER ß CUSTOMER 
«_______ 
Ædom orderDate = orders 
Ædom orderStatus = orders 
Ædom orderCustomer = orders 
–________________________________________________ 

The UML model in Figure 6.1 specified the association between Customer and Order as 

a one-to-many relationship that can be navigated in both directions while the Order 

schema has a component (orderCustomer) that maps the ORDER identity to its associated 

CUSTOMER identity.  Therefore, given an order identity we can find the related 

customer identity using the orderCustomer function.  So we can navigate from an order 

to the customer who placed the order. 

In the Z schema for Customer there is no explicit reference to an association between a 

customer and its orders.  However, it is still possible to find the orders of a customer 

through an operation.  SelectOrdersForCustomer is an example of an operation that 

returns all the order identities for a given customer identity. 

» SelectOrdersForCustomer ____________________________________ 
ÆXOrder 
Æcustomer?: CUSTOMER 
Æorders!: P ORDER 
«_______ 
Æorders! = {o: orders | orderCustomer(o) = customer?} 
–_________________________________________________ 

It is therefore possible to navigate from a customer to all the orders placed by the 

customer.   
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The components in a schema (e.g. SelectOrdersForCustomer above) that are decorated 

with question marks (?) represent input to the system.  Components decorated with 

exclamation marks (!) represent output from an operation.  The declaration XOrder 

indicates that (1) the Order schema is included into the SelectOrdersForCustomer 

schema and (2) the state of Order is not changed by the operation.  In an expanded 

version of SelectOrdersForCustomer, the Order schema is shown twice, thereby 

representing the operation schema’s respective before and after states.  The included 

components of the after state instance are decorated with dash symbols ( ' ) to distinguish 

them from the corresponding before state components.  A predicate is also added to 

specify that all the before and after state components are equal, thereby stating that the 

state does not change. 

Multiplicity constraints can also be added to the association.  For example, the Order 

schema could be extended as follows to specify that a customer may have at most 10 

orders (say): 

» Order _____________________________________________ 
Æ… 
«______ 
Æ… 
ÆAc: ran orderCustomer • #(orderCustomer t {c}) ¯ 10 
–________________________________________________ 

Note that the above Order schema is not complete; just the relevant predicate specifying 

that a customer may have no more than 10 orders, is shown.  

6.6 Specifying Association Classes 

An association that exists between two classes may also contain attributes.  Such an 

association is called an association class since it is a class as well.  We use the classes 

Order and Product as an example.  There is an association between them because a 

product can appear on many orders and an order is for one or more products.  However, 

this association carries more information that is essential for the system i.e. the quantity 

and price of the product on the order.  This information ought not to be stored on product 

since it is not specific to the product (a normalisation issue in database terms).  Neither 
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can it be stored on the order because we need the information for more than one product.  

Therefore, it makes sense to store the attributes as part of the association.  The name of 

the association class is Item in Figure 6.1.  Note that the price attribute on Item is the 

price of the product when the order was created. 

The method used for the specification of the association class Item is the same as for one-

to-many associations used above.  The difference here is that Item has two one-to-many 

associations.  The first is a one-to-many from Order to Item and the second is a one-to-

many from Product to Item.  A partial schema for Item is shown below: 

» Item ______________________________________________ 
Æitems: P ITEM 
ÆitemOrder: ITEM ß ORDER 
ÆitemProduct: ITEM ß PRODUCT 
Æ… 
«______ 
Æ… 
ÆAi1, i2: items • i1 Î i2 fi itemOrder(i1) Î itemOrder(i2) v itemProduct(i1) Î itemProduct(i2) 
Æ… 
–_________________________________________________ 

An additional predicate is added to ensure that no two items can reference the same 

order-product combination.  The full version of schema Item appears in Appendix D. 

The UML model above (Figure 6.1) shows that the association between Order and Item 

may be navigated in both directions.  This is indicated by the absence of arrows on either 

side of the association.  To facilitate such navigation the operation SelectItemsForOrder 

was defined to allow one to obtain the set of items of an order, given its identity: 

» SelectItemsForOrder ______________________________________ 
ÆXItem 
Æorder?: ORDER 
Æitems!: P ITEM 
«_______ 
Æitems! = {i: items | itemOrder(i) = order?} 
–_________________________________________________ 
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6.7 Specifying Operations 

So far the static aspects of the system have been described.  Next, we describe the 

dynamic aspects of the system.  These include the operations that are possible, the 

relationships between their inputs and outputs and the changes of state that take place as a 

result of the operations. 

The most basic operations that are typically required in most systems are create, read, 

update and delete (CRUD).  The operations of the Product class are used to illustrate 

these.  Additionally ProcessOrder (see Section 6.7.5) is provided as an example of a 

more complex operation.  An order that is in a pending status can be processed if there 

are enough products in stock.  Processing an order changes its status to processed and the 

quantities of the relevant products in stock are reduced by the order’s item quantities. 

6.7.1 Create Operation 

A create operation adds a new instance of a class to the system.  For example, an 

operation to create a new product is: 

» CreateProduct __________________________________________ 
ÆDProduct 
Æproduct?: PRODUCT 
Æname?: STRING 
Æprice?: AMOUNT 
Æquantity?: N 
«_______ 
Æproduct? ‰ products 
Æname? ‰ ran prodName 
Æproducts' = products U product? 
ÆprodName' = prodName U {product? å name?} 
ÆprodPrice' = prodPrice U {product? å price?} 
ÆprodQuantity' = prodQuantity U {product? å quantity?} 
–_________________________________________________ 

The declaration DProduct indicates that the Product schema is included into the 

CreateProduct schema and the state of Product may change as a result of the operations 

specified.  In the expanded version, the Product schema is included twice, thereby 

representing the operation schema’s respective before and after states.  The included 
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components of the after state instance are decorated with dash symbols ( ' ) to distinguish 

them from the corresponding before state components. 

The first predicate of the schema is a typical precondition of a create operation stating 

that the new order item may not already be in the system.  The following predicates state 

that the products, prodName, prodPrice and prodQuantity functions are extended to map 

the new name, price and quantity values to the given product identity.  Note that the 

notation x å y is a graphic way of expressing the ordered pair (x, y). 

6.7.2 Read Operation 

A read operation finds zero or more objects based on certain criteria and return them.  

The following schema definition is for a finder operation that returns all products with 

quantities below the specified threshold: 

» SelectProductsBelowThreshold __________________________________ 
ÆXProduct 
Æquantity?: N 
Æproducts!: P PRODUCT 
«_______ 
Æproducts! = {p: products | prodQuantity(p) < quantity?} 
–_________________________________________________ 

The output of this operation (products!) is a set of product identities.  The predicate 

further states that the output is a subset of product identities of which the quantity is less 

than the specified input, quantity?.  The notation {x: S | E}, where S is a set and E a 

predicate, means the set of values of x taken from S which satisfy E. 

6.7.3 Update Operation 

An update operation changes the current value of an object in the system.  In Z it 

specifies that the before and after state components are related in certain ways.  The 

update operation for Product is specified as: 
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» UpdateProduct __________________________________________ 
ÆDProduct 
Æproduct?: PRODUCT 
Æname?: STRING 
Æprice?: AMOUNT 
Æquantity?: N 
«_______ 
Æproduct? e products 
Æproducts' = products 
ÆprodName' = prodName ± {product? å name?} 
ÆprodPrice' = prodPrice ± {product? å price?} 
ÆprodQuantity' = prodQuantity ± {product? å quantity?} 
–_________________________________________________ 

The first predicate of the schema is a typical precondition of an update operation stating 

that the product must exist in the system.  The following predicates state that the 

prodName, prodPrice and prodQuantity functions are remapped to associate the new 

name, price and quantity values to the given product (product?).  These predicates use the 

overriding operator ±.  The relation Q ± R relates everything in the domain of R to the 

same objects as R does (Q is overridden by R), and everything else in the domain of Q to 

the mappings in Q. 

The state of the products set however does not change i.e.: 

products' = products 

The following proof shows that the above restriction could be derived: 

products'  

= dom prodPrice' (invariant after) 

= dom (prodPrice ± {product? å price?}) (specification of UpdateProduct) 

= dom prodPrice U dom {product? å price?} (fact about ‘dom’) 

= dom prodPrice U {product?} (fact about ‘dom’) 
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= products U {product?} (invariant before) 

= products Predicate: product? e products 

 

6.7.4 Delete Operation 

A delete operation removes an object from the system.  The delete operation for Product 

is specified as: 

» DeleteProduct __________________________________________ 
ÆDProduct 
Æproduct?: PRODUCT 
«_______ 
Æproduct? e products 
Æproducts' = products \ {product?} 
ÆprodName' = {product?} y prodName 
ÆprodPrice' = {product?} y prodPrice 
ÆprodQuantity' = {product?} y prodQuantity 
–_________________________________________________ 

Again, the first predicate of the schema is a typical precondition of a delete operation 

stating that the specified product must exist in the system.  The remaining predicates state 

that prodName, prodPrice and prodQuantity functions are changed by removing the 

mapping for the given product (product?).  These predicates use the domain anti-

restriction operator y.  The relation S y R is the set of all tuples (x, y) in R where x is not 

in the domain of S. 

The state of the products set also changes to reflect the removal of the product identity 

i.e.: 

products' = products \ {product?} 

The following proof shows that the above restriction could be derived: 
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products'  

= dom prodPrice' (invariant after) 

= dom ({product?} y prodPrice) (specification of DeleteProduct) 

= dom ((products \ {product?}) r prodPrice) (fact about y) 

= (products \ {product?}) I dom (prodPrice) (fact about ‘dom’) 

= (products I products) \ {product?} (fact about I and \) 

= products \ {product?} (fact about I) 

 

The relation S r R above is the set of all tuples (x, y) in R where x is in the domain of S. 

6.7.5 ProcessOrder 

An operation to process an order is: 

» ProcessOrder __________________________________________ 
ÆDOrder 
ÆDProduct 
ÆXItem 
Æorder?: ORDER 
«_______ 
Æorder? e orders 
ÆorderStatus(order?) = pending 
ÆAi: items • itemOrder(i) = order? fi prodQuantity(itemProduct(i)) – itemQuantity(i) ˘ 0 
Æorders' = orders 
ÆorderDate' = orderDate 
ÆorderStatus' = orderStatus ± {order? å processed} 
ÆorderCustomer' = orderCustomer 
Æproducts' = products 
ÆprodName' = prodName 
ÆprodPrice' = prodPrice 
ÆprodQuantity' = prodQuantity ± 
Æ      {i: items | itemOrder(i) = order? • itemProduct(i) å prodQuantity(itemProduct(i)) – itemQuantity(i)} 
–_________________________________________________ 
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The operation schema includes the Order, Product and Item schemas.  It further states 

that it could change the states of the Order and Product schemas.  It takes an order 

identity as input. 

The first three predicates ensure that the order exists, that it is in a pending status and that 

there are enough products in stock to fulfil the order.  If all of these conditions are valid 

the order’s status is changed to processed and the quantities of all products referenced by 

the order’s items are reduced by the relevant item quantities. 

6.8 Total Operations 

All the operations above specify how the system state should change if correct input is 

given and the relevant preconditions are satisfied.  However, the state change is 

undefined for incorrect inputs.  The operations are therefore not total. 

As an example we convert the CreateProduct operation into a total one as an example of 

specifying complete operations.  The total version will be called CreateProductTotal.  It 

has three possible outcomes (some may overlap) depending on the input: 

• It could be successful if the input is correct. 

• The product could be already known. 

• The product name could already exist. 

These possible outcomes are specified using the following partial schemas: 

» Success _____________________________________________ 
Æresult! : REPORT 
«_______ 
Æresult! = success 
–_________________________________________________ 
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» ProductAlreadyKnown ______________________________________ 
ÆXProduct 
Æproduct? : PRODUCT 
Æresult! : REPORT 
«_______ 
Æproduct? e products 
Æresult! = already_known 
–_________________________________________________ 

» DuplicateProductName _____________________________________ 
ÆXProduct 
Æproduct? : PRODUCT 
Æname?: STRING 
Æresult! : REPORT 
«_______ 
Æproduct? ‰ products 
Æname? e ran prodName 
Æresult! = duplicate_name 
–_________________________________________________ 

Using the schema calculus of Z, we can then specify the total create operation as: 

CreateProductTotal == (CreateProduct ¶ Success) v 

                                        ProductAlreadyKnown v 

                                        DuplicateProductName 

CreateProductTotal is defined for all possible inputs and additionally the result! output 

component specifies whether the operation was successful or otherwise what error 

occurred. 

6.9 Specifying Aggregation and Composition 

Aggregation is used to indicate a “whole-part” relationship, in which one class represents 

a larger entity (the whole), which consists of smaller entities (the parts).  Aggregation is 

often referred to as a “has-a” relationship.  Aggregation does not change the meaning of 

navigation across the association between the whole and its parts, nor does it link the life 

spans of the whole and its parts (Booch et al. 2005). 

Composition however is a form of aggregation with strong ownership and a coincident 

lifetime as part of the whole.  This means that in a composite aggregation, an object may 

be a part of only one composite at a time and once it is created, it lives and dies with the 
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composite.  The whole is responsible for the disposition of its parts, which means that the 

composite must manage the creation and destruction of its parts. 

Aggregation and composition are stronger forms of association (refer Sections 6.5 & 6.6) 

and therefore the various ways of specifying these are very similar to associations. 

Our case study has an instance of aggregation and composition between the classes Order 

and Item in Figure 6.1. However, to keep our Z specification relatively simple, we shall 

not consider aggregation and composition further in this dissertation. 

6.10 Specifying Inheritance 

A generalisation is the relationship between a more general element (the parent) and a 

more specific element (the child).  The child is fully consistent with the parent and adds 

additional information.  A child inherits the attributes and operations of its parent and is 

therefore substitutable for the parent, i.e. child objects may be used anywhere the parent 

may appear.  Generalisation is therefore also called an inheritance or an "is-a" 

relationship.  Usually the child has attributes and operations in addition to those found in 

its parent.  Polymorphism occurs when a child overrides an operation of the parent. 

The Customer, Company and Person classes can be used to illustrate the different 

specification approaches for inheritance.  All customers have an address, a phone number 

and a fax number.  There are two types of customers, i.e. companies and individuals 

(called Person in this case study).  Company and Person are specialisations of Customer 

since they add some extra attributes. 

The identity sets of the child classes are declared as subsets of the customer identity set in 

the following Z axiomatic definition: 

ÆCOMPANY: P CUSTOMER 
ÆPERSON: P CUSTOMER 
«_______ 
Æ„COMPANY, PERSONÒ partition CUSTOMER 
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The declaration further shows that the customer identity set is partitioned by the 

company and person identity sets.  Therefore, any element of CUSTOMER is an element 

of COMPANY or PERSON but not both. 

Customer, Company and Person are specified below: 

» Customer ____________________________________________ 
Æcustomers: P CUSTOMER 
ÆcustAddress: CUSTOMER ß STRING 
ÆcustPhone: CUSTOMER ß STRING 
«_______ 
Ædom custAddress = customers 
Ædom custPhone = customers 
–_________________________________________________ 

» Company ____________________________________________ 
ÆCustomer 
Æcompanies: P COMPANY 
ÆcompName: COMPANY ß STRING 
ÆcompRegNo: COMPANY ß STRING 
«_______ 
Æcompanies z customers 
Ædom compName = companies 
Ædom compRegNo = companies 
–_________________________________________________ 

» Person _____________________________________________ 
ÆCustomer 
Æpersons: P PERSON 
ÆperName: PERSON ß STRING 
ÆperSurname: PERSON ß STRING 
«_______ 
Æpersons z customers 
Ædom perName = persons 
Ædom perSurname = persons 
–_________________________________________________ 

6.11 Specifying the System State 

It is conventional in Z to specify a schema representing the whole system state (Potter et 

al. 1996).  Operations are defined on the whole state, so that all side effects may be 

captured and the full invariant could be demonstrated to hold after the operation. 
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The system state is given by: 

» System _____________________________________________ 
ÆProduct 
ÆOrder 
ÆItem 
ÆCustomer 
ÆCompany 
ÆPerson 
–_________________________________________________ 

6.12 Specifying an Initial State 

An initial state of the system is specified and a proof obligation arises to show that such 

an initial state may be realised.  It also provides a base case to show by induction that any 

operation preserves the invariants of the system state.  That is, given any valid system 

state, one ought to be able to show that such state can be realised from the initial state 

followed by zero or more operations. 

The initial state of a class is specified by an operation schema that only includes the after 

state components (Potter et al. 1996).  For example, the initial state of the Product 

scheme is specified as: 

» InitProduct ___________________________________________ 
ÆProduct' 
«_______ 
Æproducts' = 0 
ÆprodName' = 0 
ÆprodPrice' = 0 
ÆprodQuantity' = 0 
–_________________________________________________ 

The initial state of the whole system is then: 

» InitSystem ___________________________________________ 
ÆInitProduct 
ÆInitOrder 
ÆInitItem 
ÆInitCustomer 
ÆInitCompany 
ÆInitPerson 
–_________________________________________________ 
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6.13 Proof Obligations Arising from the Specification 

In this section we highlight a number of proof obligations that arise from Z specifications 

(Potter et al. 1996; Van der Poll 2000; Spivey 1992).  Many of these proof obligations 

occur in the context of operations that change the system state.  In Chapter 7 some of 

these proof obligations will later be converted to first-order logic and discharged using 

the Vampire theorem prover with the aid of various heuristics presented in Chapter 5. 

6.13.1 Initialisation Theorem 

Whenever an initial state schema is specified, a proof obligation arises to show that such 

a state may be realised (Potter et al. 1996; Van der Poll 2000).  The proof obligation for 

the InitProduct initialisation schema (refer Section 6.12) is: 

H E Product' • InitProduct 

That is, we need to show that there exists an after state such that the predicate of the 

initialisation schema is valid. 

The “turnstile” symbol, H, is used to state a theorem (Potter et al. 1996).  The hypothesis 

of the theorem is specified on the left hand side of the turnstile and conclusion on the 

right hand side. 

6.13.2 Precondition Simplification 

In Z the precondition of an operation is obtained by hiding the after-state components by 

existentially quantifying them in the schema’s predicate (Potter et al. 1996).  The 

precondition for the CreateProduct operation would therefore be: 
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» PreCreateProduct ________________________________________ 
ÆProduct 
Æproduct?: PRODUCT 
Æname?: STRING 
Æprice?: AMOUNT 
Æquantity?: N 
«_______ 
ÆE Product' • 
Æ        product? ‰ products 
Æ        name? ‰ ran prodName 
Æ        products' = products U {product?} 
Æ        prodName' = prodName U {product? å name?} 
Æ        prodPrice' = prodPrice U {product? å price?} 
Æ        prodQuantity' = prodQuantity U {product? å quantity?} 
–_________________________________________________ 

This precondition can be simplified using, amongst others, the one-point-rule (Potter et 

al. 1996): 

» PreCreateProduct ________________________________________ 
ÆProduct 
Æproduct?: PRODUCT 
Æname?: STRING 
Æprice?: AMOUNT 
Æquantity?: N 
«_______ 
Æproduct? ‰ products 
Æname? ‰ ran prodName 
–_________________________________________________ 

Whenever a precondition is simplified we need to show that it is equivalent to the 

original version (Potter et al. 1996), i.e. the precondition of CreateProduct is indeed 

schema PreCreateProduct above: 

H pre CreateProduct = 

 [Product 

   product?: PRODUCT 

   name?: STRING 

   price?: AMOUNT 

   quantity?: N 

 | 

   product? ‰ products 

   name? ‰ ran prodName] 



 124 

The “pre” prefix operator in Z indicates the precondition of a schema (Spivey 1992).  

Also, note that the right hand side of the above equality uses a linear form of schema 

definition (Potter et al. 1996). 

6.13.3 After State Type 

Every component of a schema for which a possible state change is specified, a proof 

obligation arises to show that the corresponding after state component is of the correct 

type (Van der Poll 2000).  As an example consider schema UpdateProduct in Section 

6.7.3 above and in particular the component prodName. Upon the successful completion 

of UpdateProduct one typically has to show that: 

(1) Every element of prodName' is an ordered pair, i.e. prodName': PRODUCT j 

STRING. This effectively verifies the carrier type of the component. For the purposes 

of this dissertation a carrier type is built from applications of the powerset operator, 

Cartesian products and combinations of these to given sets (basic types). In particular 

for any two sets X and Y, we define P(X x Y) = X j Y (Potter et al. 1996). 

(2) Component prodName'  is actually more restricted that just its underlying carrier type, 

i.e. prodName': PRODUCT © STRING). 

For reasons of simplicity in this dissertation, we typically do not discharge proof 

obligations (1) above, but assume the carrier type of the component to be correct. Our 

decision to not attend to proof obligations involving carrier types stem from the fact that 

many type checkers for Z like the Community Z Tools (CZT) (Malik & Utting 2005) 

ensure that the carrier types of components are correct but they do not provide for more 

restrictive type checking, e.g. the kind mentioned in (2) above.  

Proof obligations like those in (2) above are however addressed in our work. Discharging 

these kind of proof obligations effectively shows that the after state of a component is 

indeed more restricted as expected. These proof obligations are amongst other things the 

topic of Chapter 7. 
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For UpdateProduct the following proof obligation needs to be discharged: 

      Product 

      products': P PRODUCT 

      prodName': PRODUCT j STRING 

      prodPrice': PRODUCT j AMOUNT 

      prodQuantity': PRODUCT j N 

      product?: PRODUCT 

      name?: STRING 

      price?: AMOUNT 

      quantity?: N 

      | 

      dom prodName' = products' 

      dom prodPrice' = products' 

      dom prodQuantity' = products' 

      product? e products 

      name? ‰ ran prodName 

      products' = products 

      prodName' = prodName ± {product? å name?} 

      prodPrice' = prodPrice ± {product? å price?} 

      prodQuantity' = prodQuantity ± {product? å quantity?} 

H 

      prodName' e PRODUCT © STRING 

      prodPrice' e PRODUCT ß AMOUNT 

      prodQuantity' e PRODUCT ß N 

The above notation for stating a proof obligation stems from Potter et al. (1996).  

6.13.4 Total Operations 

For every total operation specified, a proof obligation arises to show that it is indeed total 

(Van der Poll 2000).  An operation is total if its precondition is a partition, i.e. the 

precondition is total and any two constituent preconditions are pairwise disjoint. 
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We first need to show that the precondition is total.  This is true when the disjunction of 

all the constituent preconditions is a tautology (Van der Poll 2000).  Here is an example 

for CreateProductTotal: 

H pre (CreateProduct ¶ Success) v pre ProductAlreadyKnown v pre DuplicateProductName 

An equivalent method of specifying that the precondition is total is: 

H pre CreateProductTotal = 

 [Product 

    product?: PRODUCT 

    name?: STRING 

    price?: AMOUNT 

    quantity?: N 

 | true] 

Secondly we need to show that all the constituent preconditions are pairwise disjoint.  

This conjecture for CreateProductTotal is: 

H (pre (CreateProduct ¶ Success) ¶ pre ProductAlreadyKnown) = 0 ¶ 

   (pre (CreateProduct ¶ Success) ¶ pre DuplicateProductName) = 0 ¶ 

   (pre ProductAlreadyKnown ¶ pre DuplicateProductName) = 0 

6.13.5 Operation Interaction 

The composition of operations leads to various proof obligations (Potter et al. 1996; Van 

der Poll 2000).  For example, most specifications of create and delete operations have the 

property that a create operation followed by a delete operation of the same element 

results in an unchanged state.  This is the case for CreateProduct followed by 

DeleteProduct: 

CreateProduct ; DeleteProduct H X Product 

Similarly, deletion of an element followed by its creation leaves the state unchanged: 

DeleteProduct ; CreateProduct H X Product 
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Another class of interactions is create, update or delete operations followed by a find 

operation of the corresponding element.  The element involved in the state change may or 

may not be expected to be found, depending on the operation composition.  For example, 

after creating a product with some quantity, one does not expect that product to be below 

that quantity: 

CreateProduct ; SelectProductsBelowThreshold H product? ‰ products! 

6.13.6 Contents of a Set 

A proof obligation arises when adding an element to a set. One has to show that the 

element is in the set afterwards provided that the necessary precondition holds (Van der 

Poll 2000).  For example the following conjecture could be stated for CreateProduct: 

      CreateProduct | product? ‰ products ¶ name? ‰ ran prodName 

H 

      product? e products' ¶ (product? å name?) e prodName' 

In the case of an update we also need to show that such update has been successful, given 

a valid precondition: 

      UpdateProduct | product? e products 

H 

      product? e products' ¶ (product? å name?) e prodName' 

Similarly, after deleting an element we can show that it is not in the set anymore: 

DeleteProduct | product? e products H product? ‰ products' ¶ product? ‰ dom prodName' 

In all of the above cases we need to show that the other elements are not affected (i.e. the 

operation did not cause any side effects as far as the other elements are concerned).  For 

example: 

      CreateProduct | product? ‰ products ¶ name? ‰ ran prodName 

H 

      A p: products; n: prodName | p Î product? ¶ n.1 Î product? • p e products' ¶ n e prodName' 
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Note that n.1 above is a projection of the first component of the tuple n. 

6.13.7 State Invariant 

The expanded form of any Z operation explicitly specifies the state invariant.  It is 

therefore not required to separately show that the state invariant is preserved.  However, 

to ensure that an operation does not introduce an inconsistency in the state one can prove 

that the after state invariant is preserved, given the operation with the after state 

components only declared in terms of their carrier types.  For example, the proof 

obligation for CreateProduct would then be: 

      Product 

      products': P PRODUCT 

      prodName': PRODUCT j STRING 

      prodPrice': PRODUCT j AMOUNT 

      prodQuantity': PRODUCT j N 

      product?: PRODUCT 

      name?: STRING 

      price?: AMOUNT 

      quantity?: N 

      | 

      product? e products 

      name? ‰ ran prodName 

      products' = products 

      prodName' = prodName ± {product? å name?} 

      prodPrice' = prodPrice ± {product? å price?} 

      prodQuantity' = prodQuantity ± {product? å quantity?} 

H 

      Product' 

6.14 Conclusion 

In this chapter we presented a simple order management system.  The system was 

specified in Z by translating the high level specification using specific patterns.  A 
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number of typical proof obligations that result from such specifications were also 

discussed. 

In the next chapter we convert some of the case study proof obligations of Section 6.13 to 

first-order logic and discharge these using the Vampire theorem prover with the aid of 

various heuristics presented in Chapter 5. 
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7 Discharging Case Study Proof Obligations 

Chapter 7 

Discharging Case Study Proof 

Obligations 

In this chapter a number of proof obligations that arose from the case study presented in 

Chapter 6 are converted from Z to first-order logic and discharged using Vampire.  The 

heuristics discussed in Chapter 5 are finally applied to failed proof attempts in an attempt 

to find a proof. From the results in Chapter 5 we observed that Vampire generally 

performed well, hence our decision to use just Vampire as our reasoner in this chapter. 

7.1 Conversion of Z to First-Order Logic 

To discharge Z proof obligations using Vampire we need to convert the Z notation 

presented in Chapter 6 to the TPTP (Thousands of Problems for Theorem Provers) 

notation (refer Section 4.1) used by Vampire.  The ISO standardisation of Z (ISO 2002) 

specifies how a Z specification can be converted to a typed first-order logic.  However, 

first-order logic representation using the TPTP notation is not typed.  To avoid the 

paradoxes of naïve set theory the type information must be incorporated in the TPTP 

transformation.  A typed version of TPTP has been proposed (Claessen & Sutcliffe 2008) 

but has not been implemented yet.  The typed conversion to TPTP notation in this chapter 

is based on this proposal. 

As an example of such a typed conversion we will use the following conjecture: 

H P{{1}} = { 0,{{1}}} 

Note that this problem was also used in Section 4.1 to illustrate the TPTP notation.  In Z 

the type of the number literal 1 is  (arithmos) which represents all numbers (ISO 2002).  

The type of {1} therefore is P .  Similarly the types of {{1}}, P{{1}} and { 0,{{1}}} are 

PP , PPP  and PPP  respectively.  Since Z is strongly typed, all elements of a set in Z 
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must be of the same type (ISO 2002).  Therefore the type of 0 is inferred to be PPA.  The 

TPTP representation to show that P{{1}} = { ∅,{{1}}} is then given by the following 

input to a reasoner: 

% A typed TPTP set-theoretic problem: 
% Show that P{{1}} = {Empty,{{1}}}. 
 
% Types 
fof(types, axiom, 
  el(number_literal_1,t_A) & 
  el(empty,t_PPA) & 
  el(a,t_PA) & 
  el(b,t_PPA) & 
  el(c,t_PPPA) & 
  el(d,t_PPPA) 
). 
 
% Reflexivity 
fof(reflexivity, axiom, 
  ! [X] : X = X 
). 
 
% Extensionality for types PA, PPA and PPPA 
fof(extensionality, axiom, 
  ![A,B]:((el(A,t_PA) & el(B,t_PA)) => 
      ((![X]:(el(X,t_A) => (el(X,A) <=> el(X,B)))) => A=B)) & 
  ![A,B]:((el(A,t_PPA) & el(B,t_PPA)) => 
      ((![X]:(el(X,t_PA) => (el(X,A) <=> el(X,B))))  => A=B)) & 
  ![A,B]:((el(A,t_PPPA) & el(B,t_PPPA)) => 
      ((![X]:(el(X,t_PPA) => (el(X,A) <=> el(X,B))) ) => A=B)) 
). 
 
% Empty = {} 
fof(empty, axiom, 
  ![X]:(el(X,t_PA) => (~el(X,empty))) 
). 
 
% A = {1} 
fof(a_is_1, axiom, 
  ![X]:(el(X,t_A) => (el(X,a) <=> (X = number_liter al_1))) 
). 
 
% B = {A} 
fof(b_is_a, axiom, 
  ![X]:(el(X,t_PA) => (el(X,b) <=> (X = a))) 
). 
 
% C = P(B) 
fof(c_is_power_b, axiom, 
  ![X]:(el(X,t_PPA) => (el(X,c) <=> ![Y]:(el(Y,t_PA ) => (el(Y,X) => el(Y,b))))) 
). 
 
% D = {Empty,{{1}}} 
fof(d_is_empty_or_1, axiom, 
  ![X]:(el(X,t_PPA) => (el(X,d) <=> (((X = empty) |  (X = b))))) 
). 
 
% Goal clause C = D 
fof(c_is_d, conjecture, 
  c = d 
). 

The following should be noted about the above TPTP example.  Each variable or constant 

is specified to be of a specific type.  For example el(X,t_PPA) specifies that the type of 
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variable X is PP .  The same would apply to any functor representing an expression.  

Lastly, the extensionality axiom must be given for each set type occurring in the problem. 

The author of this dissertation wrote a system to translate a large part of Z into first-order 

logic in TPTP notation. Such system allowed us to automatically convert Z input to the 

desired notation to be used as input to the reasoner. A number of the heuristics were also 

applied to the input during this automated translation process.  All input to the proof 

attempts reported on in this chapter were generated with the aid of the above system 

written in Java.  

7.2 Discharging of Proof Obligations 

In this section we take some of the proof obligations that arise from the order 

management system specification in Chapter 6 and show how they can be discharged 

using Vampire with the aid of the heuristics of Chapter 5. 

7.2.1 CreateProduct Invariant 

The CreateProduct operation adds a new product type to the stock.  Its schema contains 

the following predicate: 

products' = products U {product?} 

The following proof shows that this predicate may also be derived from the other 

predicates: 

products'  

= dom prodName' (invariant after) 

= dom (prodName U {product? å name?}) (specification of CreateProduct) 

= dom prodName U dom {product? å name?} (fact about ‘dom’) 
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= dom prodName U {product?} (fact about ‘dom’) 

= products U {product?} (invariant before) 

 

We may, therefore, redefine the CreateProduct schema to exclude the products' 

predicate.  Also, to keep the schema simple we exclude the price and quantity variables.  

The final expanded schema is given below: 

» LeanerCreateProduct ______________________________________ 
Æproducts: P PRODUCT 
ÆprodName: PRODUCT © STRING 
Æproducts': P PRODUCT 
ÆprodName': PRODUCT © STRING 
Æproduct?: PRODUCT 
Æname?: STRING 
«_______ 
Ædom prodName = products 
Ædom prodName' = products' 
Æproduct? ‰ products 
Æname? ‰ ran prodName 
ÆprodName' = prodName U {product? å name?} 
–_________________________________________________ 

The proof conjecture can then be stated as: 

LeanerCreateProduct H products' = products U {product?} 

In the conversion to first-order logic all heuristics are applied except for the products' 

predicate to which the extensionality heuristic #1 and exemplification heuristic #4 were 

not applied.  

The exclusion of the exemplification heuristic prevents the union operator’s definition 

from being used directly instead of a functor. With this transformation Vampire is unable 

to find a proof by terminating after 7 minutes with no more passive clauses left.  We next 

apply the extensionality heuristic by defining the above set equality products' = products 

U {product?} in terms of its elements as: 
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A x: PRODUCT • x e products' ¤ x e products U {product?} 

With this transformation Vampire is able to find a proof in 1 minute 12 seconds.  Next we 

apply the exemplification heuristic by using a direct definition of the union operator as: 

A x: PRODUCT • x e products' ¤ x e {y: PRODUCT | y e products v y = product?} 

Vampire is then able to find a quick proof in 1 second.  The input to this last proof 

attempt is shown in Appendix E.1. 

The following table summarises the above results: 

Extensionality 

(Heuristic #1) 

Exemplification 

(Heuristic #4) 

Time to find a proof 

No No No proof after 7 minutes 

Yes No 72s 

Yes Yes 1s 

 

From the above table we observe that the application of both the extensionality heuristic 

#1 and the exemplification heuristic #4 leads to a very short proof.  

7.2.2 CreateProduct is Total 

The CreateProduct operation adds a new product type.  It is not a total operation since it 

is not defined for all possible inputs.  The after state for example is not defined if the 

input product already exists.  CreateProductTotal is an enhanced version that caters for 

all possible inputs.  To show that CreateProductTotal is indeed total we need to show 

that its precondition is a partition (refer Section 6.13.4).  This is done as two separate 

proof obligations (POs): 

1. The first is to show that the disjunction of the constituent preconditions is a 

tautology. 
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2. Secondly we need to show that all the constituent preconditions are pairwise 

disjoint. 

The following conjecture states that the precondition is a tautology (PO 1 above): 

H pre (CreateProduct ¶ Success) v pre ProductAlreadyKnown v pre DuplicateProductName 

An expanded form of the above conjecture is: 

      Product 

      product?: PRODUCT 

      name?: STRING 

      price?: AMOUNT 

      quantity?: N 

H     

     (E Product'; result!: REPORT • 

          product? ‰ products 

          name? ‰ ran prodName 

          products' = products U {product?} 

          prodName' = prodName U {product? å name?} 

          prodPrice' = prodPrice U {product? å price?} 

          prodQuantity' = prodQuantity U {product? å quantity?} 

          result! = success) 

     v 

     (E Product'; result!: REPORT • 

          product? e products 

          products' = products 

          prodName' = prodName 

          prodPrice' = prodPrice 

          prodQuantity' = prodQuantity 

          result! = already_known) 

     v 

     (E Product'; result!: REPORT • 

          product? ‰ products 
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          name? e ran prodName 

          products' = products 

          prodName' = prodName 

          prodPrice' = prodPrice 

          prodQuantity' = prodQuantity 

          result! = duplicate_name) 

Most heuristics have been applied in the conversion to first-order logic except for the 

divide-and-conquer heuristic #3.  With such transformed input Vampire is unable to find 

a proof after 30 minutes.  Owing to the complexity of the proof, the transformed 

conjecture is a conjunction of 8 terms.  We can therefore apply the divide-and-conquer 

heuristic #3 to the above conjecture by splitting it into 8 separate conjectures and 

corresponding proof attempts.  Vampire is then still unable to find any proof after 30 

minutes for any of the conjectures.  These 8 conjectures also consist of conjunctions onto 

which the divide-and-conquer heuristic may be applied to further.  This application 

results in 56 proofs.  Each of these proofs is allocated 5 minutes of which only 1 is found 

in less than 1 second.  The divide-and-conquer heuristic is further applied to the 

remaining 55 proofs, resulting in 440 proof attempts, all with the aid of the Java system 

described in Section 7.1 above.  Each of these proofs is again allocated 5 minutes of 

which 438 are found in less than 1 second.  The remaining two proofs are further split up 

into four proof attempts of which three proofs are found in less than one second and the 

last proof in 5.5 seconds.  This one remaining proof is finally split into two proofs for 

which Vampire finds refutations in 1 second each.  The following table summarises the 

results of these proof attempts: 

Proof Attempt # Number of Proof 

Obligations 

Number of 

Refutations found  

Number of failed 

attempts remaining 

1 1 0 1 

2 8 0 8 

3 56 1 55 
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Proof Attempt # Number of Proof 

Obligations 

Number of 

Refutations found  

Number of failed 

attempts remaining 

4 440 438 2 

5 4 3 1 

6 1 1 0 

 

As may be observed from the above table, the divide-and-conquer heuristic #3 proved to 

be very useful. 

Lastly we need to show that all the constituent preconditions are pairwise disjoint (PO 2 

above) as given by the following conjecture: 

H (pre (CreateProduct ¶ Success) ¶ pre ProductAlreadyKnown) = 0 ¶ 

   (pre (CreateProduct ¶ Success) ¶ pre DuplicateProductName) = 0 ¶ 

   (pre ProductAlreadyKnown ¶ pre DuplicateProductName) = 0 

Suppose we exclude the extensionality and divide-and-conquer heuristics in the 

conversion to first-order logic.  Vampire is then unable to find a proof after 30 minutes.  

The conjecture to be proved is a conjunction that enables us to apply the divide-and-

conquer heuristic.  This results in three separate proofs.  Vampire is now able to find 

quick refutations for the first and third proofs in 18 and 24 seconds respectively, but is 

still unable to find a refutation for the second proof attempt after 30 minutes.  The 

remaining proof is a set equality that enables us to apply the extensionality heuristic as:  

A x [x e (pre (CreateProduct ¶ Success) ¶ pre DuplicateProductName) ¤ x e 0] 

The application of the extensionality heuristic enables Vampire to find a quick proof in 1 

second.  We can similarly apply extensionality to the first and third proofs for which 

Vampire then also find quick proofs in 1 second. 

The following table summarises the above results: 
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Divide-and-conquer 

(Heuristic #3) 

Extensionality 

(Heuristic #1) 

Time to find a proof 

No No No proof found 

Yes No 18s, no proof, 24s  

(3 proof attempts) 

Yes Yes 1s, 1s, 1s 

(3 proof attempts) 

 

7.2.3 ProcessOrder set contents 

The ProcessOrder operation (refer Section 6.7.5) changes the state of a pending order to 

processed and removes the relevant product quantities from stock as indicated on the 

order line items.  The specification of the ProcessOrder operation is repeated here for 

convenience: 

» ProcessOrder __________________________________________ 
ÆDOrder 
ÆDProduct 
ÆXItem 
Æorder?: ORDER 
«_______ 
Æorder? e orders 
ÆorderStatus(order?) = pending 
ÆAi: items • itemOrder(i) = order? fi prodQuantity(itemProduct(i)) – itemQuantity(i) ˘ 0 
Æorders' = orders 
ÆorderDate' = orderDate 
ÆorderStatus' = orderStatus ± {order? å processed} 
ÆorderCustomer' = orderCustomer 
Æproducts' = products 
ÆprodName' = prodName 
ÆprodPrice' = prodPrice 
ÆprodQuantity' = prodQuantity ± 
Æ    {i: items | itemOrder(i) = order? • itemProduct(i) å prodQuantity(itemProduct(i)) – itemQuantity(i)} 
–_________________________________________________ 



 139 

ProcessOrder updates orderStatus and prodQuantity. A proof obligation therefore arises 

from ProcessOrder to show that: 

• Other order statuses are not affected. 

• Product quantities not appearing as line items in the order are not affected. 

The conjecture for the above double proof obligation is specified as: 

ProcessOrder H 

      (A s: orderStatus | s.1 Î order? • s e orderStatus') ¶ 

      (A q: prodQuantity | !(E i: items • itemOrder(i) = order? ¶ itemProduct(i) = q.1) • 

                q e prodQuantity') 

The divide-and-conquer heuristic has not been applied in the transformation to first-order 

logic.  Furthermore the exemplification heuristic was not applied to the instances of the 

above override operators (±) which are used in the specification of the after state 

variables orderStatus' and prodQuantity'.  Functors are therefore used instead of direct 

definitions of the override operator. 

With this transformation Vampire is unable to find a refutation after 30 minutes.  We next 

apply the divide-and-conquer heuristic by doing two separate proofs for orderStatus' and 

prodQuantity'. 

Vampire is then able to find a proof for the orderStatus' sub-problem in 16 minutes 22 

seconds but is still unable to find a proof for the prodQuantity' sub-problem after 30 

minutes. 

The orderStatus' sub-problem still contains a definition of the override operator for 

prodQuantity'.  Similarly the prodQuantity' sub-problem also contains a definition of the 

orderStatus' override operator.  We can therefore apply the redundant information 

heuristic by removing these unnecessary definitions.  Vampire is then able to find a proof 
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for the orderStatus' sub-problem in 5 minutes 26 seconds and is still unable to find a 

proof for the prodQuantity' sub-problem after 30 minutes. 

Lastly we apply the exemplification heuristic to the override operators of the two sub-

problems by replacing the indirect definitions via functors with direct definitions.  

Vampire is then able to find quick proofs for both problems in 1 second. 

The following table summarises the above results: 

Divide-and-

conquer 

(Heuristic #3) 

Redundant 

information 

(Heuristic #8) 

Exemplification 

(Heuristic #4) 

Time to find a 

proof 

No No No No proof 

Yes No No 982s, no proof 

Yes Yes No 326s, no proof 

Yes Yes Yes 1s, 1s 

7.2.4 CreateDeleteItem leaves state unchanged 

The CreateItem and DeleteItem operations respectively add and remove a line item from 

an order.  An operation interaction proof obligation (refer Section 6.13.5) that arises is to 

show that adding an item and then immediately removing the item will leave the Item 

state unchanged.  This proof obligation is specified with the following theorem: 

CreateItem ; DeleteItem H X Item 

An expanded version of this conjecture looks as follows: 

      DItem 

      XProduct 

      item?: ITEM 

      order?: ORDER 
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      quantity?: N1 

      product?: PRODUCT 

      | 

      EItem'' • 

            item? ‰ items ¶ 

            items'' = items U {item?} ¶ 

            itemOrder'' = itemOrder U {item? å order?} ¶ 

            itemPrice'' = itemPrice U {item? å prodPrice(product?)} ¶ 

            itemQuantity'' = itemQuantity U {item? å quantity?} ¶ 

            itemProduct'' = itemProduct U {item? å product?} ¶ 

            item? e items'' ¶ 

            items' = items'' \ {item?} ¶ 

            itemOrder' = {item?} y itemOrder'' ¶ 

            itemPrice' = {item?} y itemPrice'' ¶ 

            itemQuantity' = {item?} y itemQuantity'' ¶ 

            itemProduct' = {item?} y itemProduct'' 

H 

      X Item 

The double prime ( '' ) decorated components above are the intermediate states that link 

the outputs of CreateItem with the inputs of DeleteItem. 

In the conversion to first-order logic all heuristics have been applied except for the terms 

resulting from XItem to which the extensionality heuristic has not been applied.  With 

this conversion Vampire is unable to find a proof after 30 minutes. 

When fully expanded, the term XItem becomes the following conjunction: 

items e P ITEM ¶ items' e P ITEM ¶ 

itemOrder e ITEM ß ORDER ¶ itemOrder' e ITEM ß ORDER ¶ 

itemPrice e ITEM ß AMOUNT ¶ itemPrice' e ITEM ß AMOUNT ¶ 

itemQuantity e ITEM ß N1 ¶ itemQuantity' e ITEM ß N1 ¶ 

itemProduct e ITEM ß PRODUCT ¶ itemProduct' e ITEM ß PRODUCT ¶ 
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dom itemOrder = items ¶ dom itemOrder' = items' ¶ 

dom itemPrice = items ¶ dom itemPrice' = items' ¶ 

dom itemQuantity = items ¶ dom itemQuantity' = items' ¶ 

dom itemProduct = items ¶ dom itemProduct' = items' ¶ 

(Ai1, i2: items • i1 Î i2 fi itemOrder(i1) Î itemOrder(i2) v itemProduct(i1) Î itemProduct(i2)) ¶ 

(Ai1, i2: items' • i1 Î i2 fi itemOrder'(i1) Î itemOrder'(i2) v itemProduct'(i1) Î itemProduct'(i2)) ¶ 

items = items' ¶ 

itemOrder = itemOrder' ¶ 

itemPrice = itemPrice' ¶ 

itemQuantity = itemQuantity' ¶ 

itemProduct = itemProduct' 

Of all these conjuncts above only the last 5 equality conjuncts are required to prove that 

the before and after states are the same: 

items = items' ¶ 

itemOrder = itemOrder' ¶ 

itemPrice = itemPrice' ¶ 

itemQuantity = itemQuantity' ¶ 

itemProduct = itemProduct' 

We can therefore apply the redundant information heuristic #8 by only keeping the 

equality conjuncts.  In this case the use of the redundant information heuristic is similar 

to the divide-and-conquer heuristic #3 except that only one half of the divide will be 

pursued.  Vampire is now able to find a proof in 1 minute 44 seconds. 

Similarly to term XItem, the use of XProduct in the problem statement also results in a 

large number of unnecessary formulae.  Of these only prodPrice is being used in the 

function application prodPrice(product?).  We therefore apply the redundant information 

heuristic again by only keeping the variable declaration of prodPrice in XProduct.  

Vampire is then able to find a proof in 1 minute 30 seconds. 



 143 

The next target for the redundant information heuristic is the predicate in schema Item 

that states that itemOrder and itemProduct combinations must be unique: 

Ai1, i2: items • i1 Î i2 fi itemOrder(i1) Î itemOrder(i2) v itemProduct(i1) Î itemProduct(i2) 

Removal of this predicate in each of Item, Item' and Item'' enables Vampire to find a 

proof in 1 minute 5 seconds. 

We next apply the divide-and-conquer heuristic by finding separate equality proofs for 

the five state variables of Item.  Vampire now finds proofs in 0.2, 59, 55, 29 and 22 

seconds for the respective conjectures. 

The separation of the conjecture into five separate conjectures allows us to apply the 

redundant information heuristic even further.  For example, the proof to show that 

itemOrder = itemOrder' does not require any terms that reference the various decorations 

of itemPrice, itemQuantity and itemProduct.  If we remove such unnecessary terms for 

each of the five conjectures, then Vampire is able to find proofs in 0, 1.5, 6.8, 13.5 and 

1.4 seconds respectively. 

The following table summarises the above results in order: 

Redundant information 

(Heuristic #8) 

Divide-and-

conquer 

(Heuristic #3) 

Time to find a proof 

Not applied No No proof 

Keep only equality predicates in 

XItem 

No 104s 

Keep only declaration of prodPrice in 

XProduct 

No 90s 

Remove unique itemOrder, No 65s 
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Redundant information 

(Heuristic #8) 

Divide-and-

conquer 

(Heuristic #3) 

Time to find a proof 

itemProduct predicate in Item, Item' 

and Item'' 

 Yes 0.2s, 59s, 55s, 29s, 22s 

Remove declarations of unrelated 

variables and predicates referring to 

them in Item, Item' and Item'' 

Yes 0s, 1.5s, 6.8s, 13.5s, 

1.4s 

 

7.2.5 After State Type of CancelOrder 

An order that has not been processed yet, that is it is in a pending status, can be cancelled.  

This is done with the CancelOrder operation: 

» CancelOrder ___________________________________________ 
ÆDOrder 
Æorder?: ORDER 
«_______ 
Æorder? e orders 
ÆorderStatus(order?) = pending 
Æorders' = orders 
ÆorderDate' = orderDate 
ÆorderStatus' = orderStatus ± {order? å cancelled} 
ÆorderCustomer' = orderCustomer 
–_________________________________________________ 

Components orderStatus and orderStatus' are partial functions from ORDER to STATUS 

and their carrier types are ORDER j STATUS.  Specification tools that do type checking 

often only ensure that the carrier type of a variable is correct (see Section 6.13.3), but do 

not cater for more restricted type checking.  For the CancelOrder operation they, 
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therefore, do not verify whether orderStatus' is a partial function.  The following 

conjecture can be used to show that orderStatus' is a partial function: 

      Order 

      orders': P ORDER 

      orderDate': ORDER j DATE 

      orderStatus': ORDER j STATUS 

      orderCustomer': ORDER j CUSTOMER 

      order?: ORDER 

      | 

      dom orderDate' = orders' 

      dom orderStatus' = orders' 

      dom orderCustomer' = orders' 

      order? e orders 

      orderStatus(order?) = pending 

      orders' = orders 

      orderDate' = orderDate 

      orderStatus' = orderStatus ± {order? å cancelled} 

      orderCustomer' = orderCustomer 

H 

      orderStatus': ORDER ß STATUS 

In the conversion to first-order logic most heuristics are applied except for the following 

conjunct to which the exemplification heuristic was not applied to the override operator: 

orderStatus' = orderStatus ± {order? å cancelled} 

The exclusion of the exemplification heuristic results in the use of a functor instead of a 

direct definition of the override operator.  This enables us to manipulate the override 

operator’s definition independently to investigate the utility of some other heuristics.  We 

therefore do not use the following generic definition of the override operator in the 

standard Z toolkit: 
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Ω [ X, Y ] æææææææææææææææææææææææææææææææææææææææææææææ 
Æ_ ± _ : (X j Y) x (X j Y) f (X j Y) 
«_______ 
ÆA r, s : X j Y • r ± s = ( ( dom s ) y r ) U s ) 
–_________________________________________________ 

but rather define it instantiated for ORDER and STATUS, as well as defining the 

expression ((dom s) y r) U s) directly instead of using the domain, domain anti-restriction 

and union set operations that are evident in the above definition: 

Æ_ ± _ : (ORDER j STATUS) x (ORDER j STATUS) f (ORDER j STATUS) 
«_______ 
ÆA r, s : ORDER j STATUS • r ± s = {x: ORDER x STATUS | (x e r ¶ A p: s • x.1 Î p.1) v x e s} 
 

Suppose we decide to not use the element structure and multivariate functor heuristics in 

the definition of the override operator above for the conversion to first-order logic.  

Vampire is then unable to find a proof after 30 minutes.  Next we apply the element 

structure heuristic to the override operator in its transformation to first-order logic.  The 

heuristic is applied by converting all instances of variables that are Cartesian product 

types to tuples.  One such example is the definition of variable x in the above definition 

of ±. It can be rewritten as: 

{x 1: ORDER; x2: STATUS | ((x1,x2) e r ¶ A p: s • x1 Î p.1) v (x1,x2) e s} 

With this transformation of the override operator Vampire is able to find a proof in 2 

minutes 47 seconds.  However, if the element structure heuristic is only applied to x as in 

the example above and not to all instances of Cartesian product variables then Vampire 

only finds a proof after 5 minutes 53 seconds.  This is an example of the resonance 

heuristic #10 that requires corresponding terms to have a syntactically similar structure to 

aid the resolution process. 

Next we discard the element structure heuristic and instead apply the multivariate functor 

heuristic.  We do this by replacing the universal variable s in the definition of the 

override operator with the constant {order? å cancelled}: 
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Æ_ ± _ : (ORDER j STATUS) x (ORDER j STATUS) f (ORDER j STATUS) 
«_______ 
ÆA r : ORDER j STATUS • r ± {order? å cancelled} = 
Æ          {x: ORDER x STATUS | 
Æ                      (x e r ¶ A p: {order? å cancelled} • x.1 Î p.1) v x e {order? å cancelled}} 
 

Vampire now finds a proof in 3 minutes 31 seconds. 

Lastly we apply both the element structure and the multivariate functor heuristics to the 

definition of the override operator.  Vampire is then able to find a quick proof in 1 

second. The input to this last successful proof attempt appears in Appendix E.2. 

The following table summarises the above results: 

Element structure 

(Heuristic #7) 

Resonance 

(Heuristic #10) 

Multivariate functor 

(Heuristic #5) 

Time to find a 

proof 

No No No No proof 

Yes Yes No 167s 

Yes No No 353s 

No No Yes 211s 

Yes Yes Yes 1s 

 

7.3 Conclusion 

Chapter 6 introduced a case study of an order management system specified in Z and 

highlighted typical proof obligations that arise from such specifications.  This chapter 

started by discussing the conversion of Z proof obligations to first-order logic.  Finally 

five proof obligations that arose from the case study were converted to first-order logic 

with the aid of a Java program written by the author of this dissertation and discharged 

using the Vampire reasoner with the help of the presented heuristics. 
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From the successes reported in this chapter we see that the heuristics presented in Chapter 

5 are indeed useful, not only in discharging traditional set-theoretic problems, but also 

problems on a larger scale, typically those present in Z specifications.  

The next and final chapter takes stock of what was set out to be achieved in Chapter 1 

and to what extent these aims have been met. 
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8 Summary and Conclusions 

Chapter 8 

Summary and Conclusions 

In this final chapter we revisit our original research question and hypothesis from Chapter 

1.  We then discuss how the proposed approach in Section 1.4 was applied and what our 

findings were.  The chapter concludes with a discussion of the directions that future work 

in this area could follow. 

8.1 Contributions of this Dissertation 

Van der Poll and Labuschagne developed a suite of 14 heuristics (Van der Poll & 

Labuschagne 1999, Van der Poll 2000) to aid the Otter automated reasoner (McCune 

2003) in finding proofs for set-theoretic problems.  Otter became dated since the work of 

Van der Poll and Labuschagne and its performance at the annual CASC (Pelletier et al. 

2002, Sutcliffe & Suttner 2006) competitions since 2000 indicates that it cannot be 

considered a state of the art prover anymore. It has also been decommissioned by its 

author and replaced by Prover 9 (McCune 2009).   Nevertheless, Otter was used to arrive 

at the VdPL heuristics described throughout this dissertation and its use led to the 

question of whether the VdPL heuristics are applicable to other resolution-based 

reasoners that have since surpassed Otter in performance. 

Our hypothesis was: 

The set-theoretic heuristics developed by Van der Poll and Labuschagne are 

applicable to state of the art resolution-based automated theorem provers. 

We selected Vampire (Riazanov & Voronkov 2002) in Chapter 4 as our primary and state 

of the art automated theorem prover to verify our hypothesis.  Vampire was chosen 

because it is a resolution-based automated reasoner, performed consistently well in the 

annual CASC (Pelletier et al. 2002, Sutcliffe & Suttner 2006) competitions.  Vampire 

also solved more set-theoretic problems than any of the other competing provers in the 
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period from 2002 to 2007 across all divisions.  Gandalf (Tammet 1997) was chosen as the 

secondary resolution-based reasoner since it also had reasonable success at the CASC 

competitions some time ago. 

In Chapter 5 each of the VdPL heuristics obtained through the use of Otter was stated and 

tested in turn on sample set-theoretic problems using Vampire and Gandalf.  Otter was 

used to discharge the proof.  After a failed proof attempt the relevant heuristic was 

applied to the problem specification and it enabled Otter to find a proof.  The original 

problem was then discharged on Vampire and Gandalf.  In some of the cases Vampire 

and Gandalf were able to solve the original problem without the application of the 

heuristic.  In these cases the problem complexity was increased to such an extent that a 

proof could not be found.  The heuristic was then similarly applied to failed proof 

attempts.  It was found that Vampire needed 10 and Gandalf 9 of the 11 heuristics 

evaluated.  However, Vampire generally found proofs quicker, hence it was chosen as the 

reasoner to be used in the rest of our work. 

In Chapter 6 an order management case study was developed using the Z specification 

language (Spivey 1992) that is based on first-order logic and a strongly-typed set theory.  

Some of the proof obligations that arose from the case study were selected in Chapter 7, 

converted to first-order logic and discharged using Vampire.  In all these cases various 

combinations of heuristics were required to enable Vampire to find proofs. 

We have therefore provided empirical evidence of the utility of the VdPL heuristics to 

state of the art resolution-based automated theorem provers in the domain of set-theoretic 

problems. 

8.2 Future Work 

The proofs in this work were done using the default settings of Vampire and Gandalf.  

Three of the 14 heuristics were not evaluated because they require changes to these 

default settings.  Future empirical work involving changing and fine-tuning some of these 

settings may yield further useful results. 
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We limited our selection of reasoners to resolution-based provers since Otter is 

resolution-based.  The applicability of the heuristics to other types of automated 

reasoners could be investigated, for example tableau and term rewriting (Bundy 1999).  

The problem domain was also limited to set theory.  Similarly the utility of the heuristics 

can be tested on other problem domains, especially those with similar characteristics as 

set theory, e.g. deeply nested constructs. 

The translation of Z specification proof obligations to first-order logic in Chapter 7 had to 

incorporate the Z type information into the resulting problem.  It was found that the 

additional typed terms in the resulting clauses help to restrict irrelevant search paths 

resulting from the resolution of clauses with unrelated types.  Some resolution of these 

incompatible clauses can, however, still take place but the resolvents can only be reduced 

up to the type terms where further reductions are prevented.  It is plausible that these 

undesired unifications may be prevented up front if the type information becomes part of 

the TPTP notation (Sutcliffe & Suttner 1998) that is used as the input to our proof 

attempts.  The incorporation of type information as manifested in this dissertation 

coincides with the mechanism proposed by Claessen and Sutcliffe (2008).  The 

implementation of type information into the unification algorithms of next generation 

theorem provers may therefore create a more efficient class of reasoners against which 

the applicability of the VdPL heuristics may be tested. 

Since the VdPL heuristics appear to be more universally applicable as was known before 

one may now consider building a library of such recognisable patterns in proof attempts, 

aimed at automatically transforming a specifier’s input to a reasoner prior to an attempt at 

discharging a proof obligation.  Some progress in this regard has already been made as 

part of this work.  The conversion of Z proof obligations in Chapter 7 to first-order logic 

was largely automated through the use a Java program developed for this purpose.  It was 

found that some of the heuristics could to some extent be applied automatically during 

the conversion.  Further work in this area could result in an automated conversion to first-

order logic of the full Z language with the VdPL heuristics applied automatically where 

applicable. 
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Appendix A – Resolution Deductions of the Farmer, Wolf, Goat and Cabbage (FWGC) Puzzle 

Appendix A 

Resolution Deductions of the Farmer, 

Wolf, Goat and Cabbage (FWGC) Puzzle 

A.1 A Possible Refutation Deduction of the FWGC 

Puzzle 

C1 = ¬S(fh, x, y, z) ∨ ¬SAFE(fh, x, y, z) ∨ 

¬SAFE(fa, x, y, z) ∨ S(fa, x, y, z) 

Farmer goes across 

C2 = ¬S(fa, x, y, z) ∨ ¬SAFE(fa, x, y, z) ∨ 

¬SAFE(fh, x, y, z) ∨ S(fh, x, y, z) 

Farmer returns 

C3 = ¬S(fh, gh, y, z) ∨ ¬SAFE(fh, gh, y, z) ∨ 

¬SAFE(fa, ga, y, z) ∨ S(fa, ga, y, z) 

Farmer takes goat across 

C4 = ¬S(fa, ga, y, z) ∨ ¬SAFE(fa, ga, y, z) ∨ 

¬SAFE(fh, gh, y, z) ∨ S(fh, gh, y, z) 

Farmer returns goat 

C5 = ¬S(fh, x, ch, z) ∨ ¬SAFE(fh, x, ch, z) ∨ 

¬SAFE(fa, x, ca, z) ∨ S(fa, x, ca, z) 

Farmer takes cabbage 

across 

C6 = ¬S(fa, x, ca, z) ∨ ¬SAFE(fa, x, ca, z) ∨ 

¬SAFE(fh, x, ch, z) ∨ S(fh, x, ch, z) 

Farmer returns cabbage 

C7 = ¬S(fh, x, y, wh) ∨ ¬SAFE(fh, x, y, wh) ∨ 

¬SAFE(fa, x, y, wa) ∨ S(fa, x, y, wa) 

Farmer takes wolf across 

C8 = ¬S(fa, x, y, wa) ∨ ¬SAFE(fa, x, y, wa) ∨ 

¬SAFE(fh, x, y, wh) ∨ S(fh, x, y, wh) 

Farmer returns wolf 
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C9 = SAFE(fh, gh, ch, wh)  

C10 = SAFE(fh, gh, ch, wa)  

C11 = SAFE(fh, gh, ca, wh)  

C12 = SAFE(fh, gh, ca, wa)  

C13 = SAFE(fh, ga, ch, wh)  

C14 = SAFE(fa, gh, ca, wa)  

C15 = SAFE(fa, ga, ch, wh)  

C16 = SAFE(fa, ga, ch, wa)  

C17 = SAFE(fa, ga, ca, wh)  

C18 = SAFE(fa, ga, ca, wa)  

C19 = S(fh, gh, ch, wh) Start state 

C20 = ¬S(fa, ga, ca, wa) Goal state negated 

 Take goat across  

C21 = ¬SAFE(fh, gh, ch, wh) ∨ ¬SAFE(fa, ga, ch, wh) ∨ 

S(fa, ga, ch, wh) 

Resolvent of C3 and C19 

Unifier {ch/y, wh/z} 

C22 = ¬SAFE(fa, ga, ch, wh) ∨ S(fa, ga, ch, wh) Resolvent of C9 and C21 

C23 = S(fa, ga, ch, wh) Resolvent of C15 and C22 

 Farmer returns  

C24 = ¬SAFE(fa, ga, ch, wh) ∨ ¬SAFE(fh, ga, ch, wh) ∨ 

S(fh, ga, ch, wh) 

Resolvent of C2 and C23 

Unifier {ga/x, ch/y, wh/z} 

C25 = ¬SAFE(fh, ga, ch, wh) ∨ S(fh, ga, ch, wh) Resolvent of C15 and C24 

C26 = S(fh, ga, ch, wh) Resolvent of C13 and C25 
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 Take wolf across  

C27 = ¬SAFE(fh, ga, ch, wh) ∨ ¬SAFE(fa, ga, ch, wa) ∨ 

S(fa, ga, ch, wa) 

Resolvent of C7 and C26 

Unifier {ga/x, ch/y} 

C28 = ¬SAFE(fa, ga, ch, wa) ∨ S(fa, ga, ch, wa) Resolvent of C13 and C27 

C29 = S(fa, ga, ch, wa) Resolvent of C16 and C28 

 Bring goat back  

C30 = ¬SAFE(fa, ga, ch, wa) ∨ ¬SAFE(fh, gh, ch, wa) ∨ 

S(fh, gh, ch, wa) 

Resolvent of C4 and C29 

Unifier {ch/y, wa/z} 

C31 = ¬SAFE(fh, gh, ch, wa) ∨ S(fh, gh, ch, wa) Resolvent of C16 and C30 

C32 = S(fh, gh, ch, wa) Resolvent of C10 and C31 

 Take cabbage across  

C33 = ¬SAFE(fh, gh, ch, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨ 

S(fa, gh, ca, wa) 

Resolvent of C5 and C32 

Unifier {gh/x, wa/z} 

C34 = ¬SAFE(fa, gh, ca, wa) ∨ S(fa, gh, ca, wa) Resolvent of C10 and C33 

C35 = S(fa, gh, ca, wa) Resolvent of C14 and C34 

 Farmer returns  

C36 = ¬SAFE(fa, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨ 

S(fh, gh, ca, wa) 

Resolvent of C2 and C35 

Unifier {gh/x, ca/y, wa/z} 

C37 = ¬SAFE(fh, gh, ca, wa) ∨ S(fh, gh, ca, wa) Resolvent of C14 and C36 

C38 = S(fh, gh, ca, wa) Resolvent of C12 and C37 

 Take goat across  

C39 = ¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) ∨ 

S(fa, ga, ca, wa) 

Resolvent of C3 and C38 

Unifier {ca/y, wa/z} 
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C40 = ¬SAFE(fa, ga, ca, wa) ∨ S(fa, ga, ca, wa) Resolvent of C12 and C39 

C41 = S(fa, ga, ca, wa) Resolvent of C18 and C40 

 Goal achieved  

C42 = □ Resolvent of C20 and C41 

 

A.2 Level Saturation Method Deduction of FWGC 

Puzzle 

C2 = ¬S(fa, x, y, z) ∨ ¬SAFE(fa, x, y, z) ∨ 

¬SAFE(fh, x, y, z) ∨ S(fh, x, y, z) 

Farmer returns 

C3 = ¬S(fh, gh, y, z) ∨ ¬SAFE(fh, gh, y, z) ∨ 

¬SAFE(fa, ga, y, z) ∨ S(fa, ga, y, z) 

Farmer takes 

goat across 

C12 = SAFE(fh, gh, ca, wa)  

C14 = SAFE(fa, gh, ca, wa)  

C18 = SAFE(fa, ga, ca, wa)  

C19 = S(fa, gh, ca, wa) Start state 

C20 = ¬S(fa, ga, ca, wa) Goal state 

negated 

 Saturation Level 1  

C21 = ¬S(fh, gh, y, z) ∨ ¬SAFE(fh, gh, y, z) ∨ ¬SAFE(fa, ga, y, z) C2, C3 on 

S(fa, ga, y, z) 

C22 = ¬SAFE(fh, gh, y, z) ∨ ¬SAFE(fa, ga, y, z) ∨ S(fa, ga, y, z) C2, C3 on 

S(fh, gh, y, z) 

C23 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨ S(fh, gh, ca, wa) C2, C12 
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C24 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨ S(fh, gh, ca, wa) C2, C14 

C25 = ¬S(fa, ga, ca, wa) ∨ ¬SAFE(fh, ga, ca, wa) ∨ S(fh, ga, ca, wa) C2, C18 

C26 = ¬SAFE(fa, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨ 

S(fh, gh, ca, wa) 

C2, C19 

C27 = ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) ∨ S(fa, ga, ca, wa) C3, C12 

C28 = ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨ S(fa, ga, ca, wa) C3, C18 

C29 = ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨ 

¬SAFE(fa, ga, ca, wa) 

C3, C20 

 Saturation Level 2  

 ¬S(fa, gh, y, z) ∨ ¬SAFE(fa, gh, y, z) ∨ ¬SAFE(fh, gh, y, z) ∨ 

¬SAFE(fa, ga, y, z) 

C2, C21 on 

S(fh, gh, y, z) 

 ¬SAFE(fa, ga, y, z) ∨ ¬SAFE(fh, ga, y, z) ∨ S(fh, ga, y, z) ∨ 

¬SAFE(fh, gh, y, z) 

C2, C22 on 

S(fa, ga, y, z) 

 ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨ 

¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) ∨ 

S(fa, ga, ca, wa) 

C2, C27 on 

S(fh, gh, ca, wa) 

 ¬SAFE(fa, ga, ca, wa) ∨ ¬SAFE(fh, ga, ca, wa) ∨ 

S(fh, ga, ca, wa) ∨ ¬S(fh, gh, ca, wa) 

C2, C27 on 

S(fa, ga, ca, wa) 

 ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨ 

¬SAFE(fh, gh, ca, wa) ∨ S(fa, ga, ca, wa) 

C2, C28 on 

S(fh, gh, ca, wa) 

 ¬SAFE(fa, ga, ca, wa) ∨ ¬SAFE(fh, ga, ca, wa) ∨ 

S(fh, ga, ca, wa) ∨ ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) 

C2, C28 on 

S(fa, ga, ca, wa) 

 ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨ 

¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) 

C2, C29 on 

S(fh, gh, ca, wa) 

 ¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) ∨ C3, C23 on 
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S(fa, ga, ca, wa) ∨ ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) S(fh, gh, ca, wa) 

 ¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) ∨ 

S(fa, ga, ca, wa) ∨ ¬S(fa, gh, ca, wa) 

C3, C24 on 

S(fh, gh, ca, wa) 

 ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨ 

¬SAFE(fa, ga, ca, wa) ∨ ¬SAFE(fh, ga, ca, wa) ∨ 

S(fh, ga, ca, wa) 

C3, C25 on 

S(fa, ga, ca, wa) 

 ¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) ∨ 

S(fa, ga, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) 

C3, C26 on 

S(fh, gh, ca, wa) 

 ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) C12, C21 

 ¬SAFE(fa, ga, ca, wa) ∨ S(fa, ga, ca, wa) C12, C22 

 ¬S(fa, gh, ca, wa) ∨ S(fh, gh, ca, wa) C12, C24 

 ¬SAFE(fa, gh, ca, wa) ∨ S(fh, gh, ca, wa) C12, C26 

 ¬S(fh, gh, ca, wa) ∨ S(fa, ga, ca, wa) C12, C28 

 ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) C12, C29 

 ¬S(fa, gh, ca, wa) ∨ S(fh, gh, ca, wa) C14, C23 

 ¬SAFE(fh, gh, ca, wa) ∨ S(fh, gh, ca, wa) C14, C26 

 ¬S(fh, gh, y, z) ∨ ¬SAFE(fh, gh, y, z) C18, C21 

 ¬SAFE(fh, gh, y, z) ∨ S(fa, ga, y, z) C18, C22 

 ¬S(fh, gh, ca, wa) ∨ S(fa, ga, ca, wa) C18, C27 

 ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) C18, C29 

 ¬SAFE(fa, gh, ca, wa) ∨ S(fh, gh, ca, wa) C19, C23 

 ¬SAFE(fh, gh, ca, wa) ∨ S(fh, gh, ca, wa) C19, C24 
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 ¬SAFE(fh, gh, y, z) ∨ ¬SAFE(fa, ga, y, z) C20, C22 

 ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) C20, C27 

 ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) C20, C28 

 

A.3 UR-resolution Deduction of FWGC Puzzle 

 Take goat across  

C21 = S(fa, ga, ch, wh) N: C3 E: C9, C15, C19 

 Farmer returns  

C22 = S(fh, ga, ch, wh) N: C2 E: C13, C15, C21 

 Take wolf across  

C23 = S(fa, ga, ch, wa) N: C7 E: C13, C16, C22 

 Bring goat back  

C24 = S(fh, gh, ch, wa) N: C4 E: C10, C16, C23 

 Take cabbage across  

C25 = S(fa, gh, ca, wa) N: C5 E: C10, C14, C24 

 Farmer returns  

C26 = S(fh, gh, ca, wa) N: C2 E: C12, C14, C25 

 Take goat across  

C27 = S(fa, ga, ca, wa) N: C3 E: C12, C18, C26 

 Goal achieved  

C28 = □ C20, C27 
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A.4 Illustration of Set-of-support Strategy of FWGC 

Puzzle 

 Given set  

C2 = ¬S(fa, x, y, z) ∨ ¬SAFE(fa, x, y, z) ∨ 

¬SAFE(fh, x, y, z) ∨ S(fh, x, y, z) 

Farmer returns 

C3 = ¬S(fh, gh, y, z) ∨ ¬SAFE(fh, gh, y, z) ∨ 

¬SAFE(fa, ga, y, z) ∨ S(fa, ga, y, z) 

Farmer takes 

goat across 

C12 = SAFE(fh, gh, ca, wa)  

C14 = SAFE(fa, gh, ca, wa)  

C18 = SAFE(fa, ga, ca, wa)  

C19 = S(fa, gh, ca, wa) Start state 

 Set-of-support  

C20 = ¬S(fa, ga, ca, wa) Goal state 

negated 

 Saturation Level 1  

C21 = ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨ 

¬SAFE(fa, ga, ca, wa) 

C3, C20 

 Saturation Level 2  

C22 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨ 

¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) 

C2, C21 on 

S(fh, gh, ca, wa) 

C23 = ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) C12, C21 

C24 = ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) C18, C21 
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 Saturation Level 3  

C25 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨ 

¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) 

C2, C23 

C26 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨ 

¬SAFE(fh, gh, ca, wa) 

C2, C24 

C27 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨ 

¬SAFE(fa, ga, ca, wa) 

C12, C22 

C28 = ¬S(fh, gh, ca, wa) C12, C24 

C29 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨ 

¬SAFE(fa, ga, ca, wa) 

C14, C22 

C30 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨ 

¬SAFE(fh, gh, ca, wa) 

C18, C22 

C31 = ¬S(fh, gh, ca, wa) C18, C23 

C32 = ¬SAFE(fa, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨ 

¬SAFE(fa, ga, ca, wa) 

C19, C22 

 

A.5 Set-of-support Strategy with Predicate Ordering 

 Saturation Level 1  

C21 = ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨ 

¬SAFE(fa, ga, ca, wa) 

C3, C20 

 Saturation Level 2  

C22 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨ 

¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) 

C2, C21 on 

S(fh, gh, ca, wa) 

 Saturation Level 3  
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C23 = ¬SAFE(fa, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨ 

¬SAFE(fa, ga, ca, wa) 

C19, C22 

 Saturation Level 4  

C24 = ¬SAFE(fa, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) C12, C23 

C25 = ¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) C14, C23 

C26 = ¬SAFE(fa, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) C18, C23 

 Saturation Level 5  

C27 = ¬SAFE(fa, ga, ca, wa) C14, C24 

C28 = ¬SAFE(fa, gh, ca, wa) C18, C24 

C29 = ¬SAFE(fa, ga, ca, wa) C12, C25 

C30 = ¬SAFE(fh, gh, ca, wa) C18, C25 

C31 = ¬SAFE(fh, gh, ca, wa) C14, C26 

C32 = ¬SAFE(fa, gh, ca, wa) C12, C26 

 Saturation Level 6  

C33 = □ C18, C27 

 

A.6 Set-of-support Strategy with Subsumption 

 Given set  

C2 = ¬S(fa, x, y, z) ∨ ¬SAFE(fa, x, y, z) ∨ 

¬SAFE(fh, x, y, z) ∨ S(fh, x, y, z) 

Farmer returns 

C3 = ¬S(fh, gh, y, z) ∨ ¬SAFE(fh, gh, y, z) ∨ Farmer takes goat 

across 
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¬SAFE(fa, ga, y, z) ∨ S(fa, ga, y, z) Subsumed by C26 

C12 = SAFE(fh, gh, ca, wa)  

C14 = SAFE(fa, gh, ca, wa)  

C18 = SAFE(fa, ga, ca, wa)  

C19 = S(fa, gh, ca, wa) Start state 

 Set-of-support  

C20 = ¬S(fa, ga, ca, wa) Goal state negated 

 Saturation Level 1  

C21 = ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨ 

¬SAFE(fa, ga, ca, wa) 

C3, C20 

Subsumed by C23 

 Saturation Level 2  

C22 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨ 

¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) 

C2, C21 

Subsumed by C25 

C23 = ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) C12, C21 

Subsumed by C26 

 Saturation Level 3  

C24 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨ 

¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) 

C2, C23 

Subsumed by C22 

C25 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨ 

¬SAFE(fa, ga, ca, wa) 

C12, C22 

Subsumed by C28 

C26 = ¬S(fh, gh, ca, wa) C18, C23 

C27 =  ¬SAFE(fa, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨ 

¬SAFE(fa, ga, ca, wa) 

C19, C22 

Subsumed by C29 
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 Saturation Level 4  

C28 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) C14, C25 

Subsumed by C30 

C29 = ¬SAFE(fa, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) C12, C27 

Subsumed by C31 

 Saturation Level 5  

C30 = ¬S(fa, gh, ca, wa) C18, C28 

C31 = ¬SAFE(fa, ga, ca, wa) C14, C29 

 Saturation Level 6  

C32 = □ C19, C30 
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Appendix B - Theorem Provers Evaluated 

Appendix B 

Theorem Provers Evaluated 

Prover Resolution- 

Based 

CASC 

Division 

Winner 

Notes 

Bliksem Yes - Development has been abandoned and was 

replaced by the Smiley theorem prover. 

Carine Yes - E-mail correspondence with the author 

suggested that Carine would not be suitable 

for the evaluation described in this 

dissertation. 

Darwin No 2007 E-mail correspondence with the author 

confirmed that Darwin only uses resolution 

in a very limited way. 

DCTP No 2005 Tableau based. 

Discount No - Unfailing Knuth-Bendix. 

E No 2000 Equational theorem prover. 

E-KRHyper No - Tableau based. 

E-Setheo No 2002 Uses DCTP, E and SETHEO in parallel. 

Equinox No - Based on model generation. 
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Prover Resolution- 

Based 

CASC 

Division 

Winner 

Notes 

Fampire Yes - Vampire using the SPASS clausifier. 

FM-Darwin No - Based on model generation. 

Gandalf Yes 2004 E-mail correspondence with author indicated 

that Gandalf should be a good candidate for 

the evaluation described in this dissertation. 

Geo No - Based on geometric resolution. 

iProver No - Based on instantiation calculus. 

LeanCoP No - Connection-driven proof search. 

LeanTaP No - Implemented in Prolog. 

Mace No - Based on model generation. 

Meteor No - Based on model elimination. 

Metis Yes - Based on resolution and model elimination. 

Octopus Yes - Multiprocessor version of Theo. 

OSHL No - Instance based – reduces problems to 

propositional logic instances. 

Otter Yes 1999 Considered to be the father of many modern 

automated theorem provers.  It is also a good 

benchmark for improvements in other 

provers. 
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Prover Resolution- 

Based 

CASC 

Division 

Winner 

Notes 

Paradox No 2007 Based on model generation. 

Prover9 Yes - Otter’s replacement. 

RRL No - Based on rewriting techniques. 

Setheo No - Tableau based. 

Smiley Yes - Not available yet. 

SOS Yes - Uses Otter as a sub-program. 

SPASS Yes 1999  

Theo Yes -  

Vampire Yes 2007 Consistent CASC division winner. Solves 

more set theory problems than other provers. 

Waldmeister No 2007 E-mail correspondence with the author 

suggested that Waldmeister would not be 

suitable for our work. 
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Appendix C – Sample Reasoner Output 

Appendix C 

Sample Reasoner Output 

C.1 Vampire 
Refutation found. Thanks to Tanya! 
=========== Refutation ========== 
*********** [7, input] *********** 
(! X0)(el(X0,d) <=> X0=empty \/ X0=b) 
*********** [7->24, NNF transformation] ***********  
  (! X0)(el(X0,d) <=> X0=empty \/ X0=b) 
----------------------------- 
  (! X0)((~el(X0,d) \/ (X0=empty \/ X0=b)) & ((~X0= empty & ~X0=b) \/ el(X0,d))) 
*********** [24->25, flattening] *********** 
  (! X0)((~el(X0,d) \/ (X0=empty \/ X0=b)) & ((~X0= empty & ~X0=b) \/ el(X0,d))) 
----------------------------- 
  (! X0)((~el(X0,d) \/ X0=empty \/ X0=b) & ((~X0=em pty & ~X0=b) \/ el(X0,d))) 
*********** [25->26, skolemization] *********** 
  (! X0)((~el(X0,d) \/ X0=empty \/ X0=b) & ((~X0=em pty & ~X0=b) \/ el(X0,d))) 
----------------------------- 
  (~el(X0,d) \/ X0=empty \/ X0=b) & ((~X0=empty & ~ X0=b) \/ el(X0,d)) 
*********** [26->39, cnf transformation] ********** * 
  (~el(X0,d) \/ X0=empty \/ X0=b) & ((~X0=empty & ~ X0=b) \/ el(X0,d)) 
----------------------------- 
  el(X0,d) \/ X0!=b 
*********** [39->42, literal permutation] ********* ** 
  el(X0,d) \/ X0!=b 
----------------------------- 
  X1!=b \/ el(X1,d) 
*********** [42->55, equality resolution] ********* ** 
  X1!=b \/ el(X1,d) 
----------------------------- 
  el(b,d) 
*********** [26->38, cnf transformation] ********** * 
  (~el(X0,d) \/ X0=empty \/ X0=b) & ((~X0=empty & ~ X0=b) \/ el(X0,d)) 
----------------------------- 
  el(X0,d) \/ X0!=empty 
*********** [38->43, literal permutation] ********* ** 
  el(X0,d) \/ X0!=empty 
----------------------------- 
  X1!=empty \/ el(X1,d) 
*********** [43->56, equality resolution] ********* ** 
  X1!=empty \/ el(X1,d) 
----------------------------- 
  el(empty,d) 
*********** [3, input] *********** 
~(? X0)el(X0,empty) 
*********** [3->14, ENNF transformation] ********** * 
  ~(? X0)el(X0,empty) 
----------------------------- 
  (! X0)~el(X0,empty) 
*********** [14->15, skolemization] *********** 
  (! X0)~el(X0,empty) 
----------------------------- 
  ~el(X0,empty) 
*********** [15->29, cnf transformation] ********** * 
  ~el(X0,empty) 
----------------------------- 
  ~el(X0,empty) 
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*********** [6, input] *********** 
(! X0)(el(X0,c) <=> (! X3)(el(X3,X0) => el(X3,b))) 
*********** [6->10, rectify] *********** 
  (! X0)(el(X0,c) <=> (! X3)(el(X3,X0) => el(X3,b)) ) 
----------------------------- 
  (! X0)(el(X0,c) <=> (! X1)(el(X1,X0) => el(X1,b)) ) 
*********** [10->20, ENNF transformation] ********* ** 
  (! X0)(el(X0,c) <=> (! X1)(el(X1,X0) => el(X1,b)) ) 
----------------------------- 
  (! X0)(el(X0,c) <=> (! X1)(~el(X1,X0) \/ el(X1,b) )) 
*********** [20->21, NNF transformation] ********** * 
  (! X0)(el(X0,c) <=> (! X1)(~el(X1,X0) \/ el(X1,b) )) 
----------------------------- 
  (! X0)((~el(X0,c) \/ (! X1)(~el(X1,X0) \/ el(X1,b ))) & ((? X1)(el(X1,X0) & ~el(X1,b)) 
\/ el(X0,c))) 
*********** [21->22, rectify] *********** 
  (! X0)((~el(X0,c) \/ (! X1)(~el(X1,X0) \/ el(X1,b ))) & ((? X1)(el(X1,X0) & ~el(X1,b)) 
\/ el(X0,c))) 
----------------------------- 
  (! X0)((~el(X0,c) \/ (! X1)(~el(X1,X0) \/ el(X1,b ))) & ((? X2)(el(X2,X0) & ~el(X2,b)) 
\/ el(X0,c))) 
*********** [22->23, skolemization] *********** 
  (! X0)((~el(X0,c) \/ (! X1)(~el(X1,X0) \/ el(X1,b ))) & ((? X2)(el(X2,X0) & ~el(X2,b)) 
\/ el(X0,c))) 
----------------------------- 
  (~el(X0,c) \/ (~el(X1,X0) \/ el(X1,b))) & ((el(sk 1(X0),X0) & ~el(sk1(X0),b)) \/ 
el(X0,c)) 
*********** [23->36, cnf transformation] ********** * 
  (~el(X0,c) \/ (~el(X1,X0) \/ el(X1,b))) & ((el(sk 1(X0),X0) & ~el(sk1(X0),b)) \/ 
el(X0,c)) 
----------------------------- 
  el(X0,c) \/ ~el(sk1(X0),b) 
*********** [36->45, literal permutation] ********* ** 
  el(X0,c) \/ ~el(sk1(X0),b) 
----------------------------- 
  ~el(sk1(X1),b) \/ el(X1,c) 
*********** [23->35, cnf transformation] ********** * 
  (~el(X0,c) \/ (~el(X1,X0) \/ el(X1,b))) & ((el(sk 1(X0),X0) & ~el(sk1(X0),b)) \/ 
el(X0,c)) 
----------------------------- 
  el(X0,c) \/ el(sk1(X0),X0) 
*********** [35->46, literal permutation] ********* ** 
  el(X0,c) \/ el(sk1(X0),X0) 
----------------------------- 
  el(sk1(X1),X1) \/ el(X1,c) 
*********** [45,46->58, resolution] *********** 
  ~el(sk1(X1),b) \/ el(X1,c) 
  el(sk1(X1),X1) \/ el(X1,c) 
----------------------------- 
  el(b,c) 
*********** [23->34, cnf transformation] ********** * 
  (~el(X0,c) \/ (~el(X1,X0) \/ el(X1,b))) & ((el(sk 1(X0),X0) & ~el(sk1(X0),b)) \/ 
el(X0,c)) 
----------------------------- 
  el(X1,b) \/ ~el(X1,X0) \/ ~el(X0,c) 
*********** [34->47, literal permutation] ********* ** 
  el(X1,b) \/ ~el(X1,X0) \/ ~el(X0,c) 
----------------------------- 
  ~el(X1,X2) \/ ~el(X2,c) \/ el(X1,b) 
*********** [26->37, cnf transformation] ********** * 
  (~el(X0,d) \/ X0=empty \/ X0=b) & ((~X0=empty & ~ X0=b) \/ el(X0,d)) 
----------------------------- 
  X0=b \/ X0=empty \/ ~el(X0,d) 
*********** [37->44, literal permutation] ********* ** 
  X0=b \/ X0=empty \/ ~el(X0,d) 
----------------------------- 
  ~el(X1,d) \/ X1=empty \/ X1=b 
*********** [2, input] *********** 
(! X1 X2)((! X0)(el(X0,X1) <=> el(X0,X2)) => X1=X2)  
*********** [2->9, rectify] *********** 
  (! X1 X2)((! X0)(el(X0,X1) <=> el(X0,X2)) => X1=X 2) 
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----------------------------- 
  (! X0 X1)((! X2)(el(X2,X0) <=> el(X2,X1)) => X0=X 1) 
*********** [9->11, ENNF transformation] ********** * 
  (! X0 X1)((! X2)(el(X2,X0) <=> el(X2,X1)) => X0=X 1) 
----------------------------- 
  (! X0 X1)((? X2)(el(X2,X0) <~> el(X2,X1)) \/ X0=X 1) 
*********** [11->12, NNF transformation] ********** * 
  (! X0 X1)((? X2)(el(X2,X0) <~> el(X2,X1)) \/ X0=X 1) 
----------------------------- 
  (! X0 X1)((? X2)((el(X2,X0) \/ el(X2,X1)) & (~el( X2,X0) \/ ~el(X2,X1))) \/ X0=X1) 
*********** [12->13, skolemization] *********** 
  (! X0 X1)((? X2)((el(X2,X0) \/ el(X2,X1)) & (~el( X2,X0) \/ ~el(X2,X1))) \/ X0=X1) 
----------------------------- 
  ((el(sk0(X1,X0),X0) \/ el(sk0(X1,X0),X1)) & (~el( sk0(X1,X0),X0) \/ ~el(sk0(X1,X0),X1))) 
\/ X0=X1 
*********** [13->27, cnf transformation] ********** * 
  ((el(sk0(X1,X0),X0) \/ el(sk0(X1,X0),X1)) & (~el( sk0(X1,X0),X0) \/ ~el(sk0(X1,X0),X1))) 
\/ X0=X1 
----------------------------- 
  X0=X1 \/ el(sk0(X1,X0),X1) \/ el(sk0(X1,X0),X0) 
*********** [27->54, literal permutation] ********* ** 
  X0=X1 \/ el(sk0(X1,X0),X1) \/ el(sk0(X1,X0),X0) 
----------------------------- 
  el(sk0(X1,X2),X2) \/ el(sk0(X1,X2),X1) \/ X2=X1 
*********** [44,54->63, resolution] *********** 
  ~el(X1,d) \/ X1=empty \/ X1=b 
  el(sk0(X1,X2),X2) \/ el(sk0(X1,X2),X1) \/ X2=X1 
----------------------------- 
  el(sk0(X1,d),X1) \/ sk0(X1,d)=empty \/ sk0(X1,d)= b \/ d=X1 
*********** [47,54->69, resolution] *********** 
  ~el(X1,X2) \/ ~el(X2,c) \/ el(X1,b) 
  el(sk0(X1,X2),X2) \/ el(sk0(X1,X2),X1) \/ X2=X1 
----------------------------- 
  ~el(X1,c) \/ el(sk0(X1,X2),b) \/ el(sk0(X1,X2),X2 ) \/ X2=X1 
*********** [63,69->114, resolution] *********** 
  el(sk0(X1,d),X1) \/ sk0(X1,d)=empty \/ sk0(X1,d)= b \/ d=X1 
  ~el(X1,c) \/ el(sk0(X1,X2),b) \/ el(sk0(X1,X2),X2 ) \/ X2=X1 
----------------------------- 
  el(sk0(sk0(c,d),X1),b) \/ el(sk0(sk0(c,d),X1),X1)  \/ sk0(c,d)=empty \/ sk0(c,d)=b \/ 
X1=sk0(c,d) \/ d=c 
*********** [58,47,114->403, resolution, forward su bsumption resolution] *********** 
  el(b,c) 
  ~el(X1,X2) \/ ~el(X2,c) \/ el(X1,b) 
  el(sk0(sk0(c,d),X1),b) \/ el(sk0(sk0(c,d),X1),X1)  \/ sk0(c,d)=empty \/ sk0(c,d)=b \/ 
X1=sk0(c,d) \/ d=c 
----------------------------- 
  el(sk0(sk0(c,d),b),b) \/ sk0(c,d)=empty \/ sk0(c, d)=b \/ d=c 
*********** [13->28, cnf transformation] ********** * 
  ((el(sk0(X1,X0),X0) \/ el(sk0(X1,X0),X1)) & (~el( sk0(X1,X0),X0) \/ ~el(sk0(X1,X0),X1))) 
\/ X0=X1 
----------------------------- 
  X0=X1 \/ ~el(sk0(X1,X0),X1) \/ ~el(sk0(X1,X0),X0)  
*********** [28->53, literal permutation] ********* ** 
  X0=X1 \/ ~el(sk0(X1,X0),X1) \/ ~el(sk0(X1,X0),X0)  
----------------------------- 
  ~el(sk0(X1,X2),X1) \/ ~el(sk0(X1,X2),X2) \/ X2=X1  
*********** [5, input] *********** 
(! X0)(el(X0,b) <=> X0=a) 
*********** [5->18, NNF transformation] ***********  
  (! X0)(el(X0,b) <=> X0=a) 
----------------------------- 
  (! X0)((~el(X0,b) \/ X0=a) & (~X0=a \/ el(X0,b)))  
*********** [18->19, skolemization] *********** 
  (! X0)((~el(X0,b) \/ X0=a) & (~X0=a \/ el(X0,b)))  
----------------------------- 
  (~el(X0,b) \/ X0=a) & (~X0=a \/ el(X0,b)) 
*********** [19->32, cnf transformation] ********** * 
  (~el(X0,b) \/ X0=a) & (~X0=a \/ el(X0,b)) 
----------------------------- 
  X0=a \/ ~el(X0,b) 
*********** [32->49, literal permutation] ********* ** 
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  X0=a \/ ~el(X0,b) 
----------------------------- 
  ~el(X1,b) \/ X1=a 
*********** [49,54->65, resolution] *********** 
  ~el(X1,b) \/ X1=a 
  el(sk0(X1,X2),X2) \/ el(sk0(X1,X2),X1) \/ X2=X1 
----------------------------- 
  el(sk0(X1,b),X1) \/ sk0(X1,b)=a \/ b=X1 
*********** [49,47,65->92, resolution, forward subs umption resolution] *********** 
  ~el(X1,b) \/ X1=a 
  ~el(X1,X2) \/ ~el(X2,c) \/ el(X1,b) 
  el(sk0(X1,b),X1) \/ sk0(X1,b)=a \/ b=X1 
----------------------------- 
  ~el(X1,c) \/ sk0(X1,b)=a \/ b=X1 
*********** [63,92->160, resolution] *********** 
  el(sk0(X1,d),X1) \/ sk0(X1,d)=empty \/ sk0(X1,d)= b \/ d=X1 
  ~el(X1,c) \/ sk0(X1,b)=a \/ b=X1 
----------------------------- 
  sk0(sk0(c,d),b)=a \/ sk0(c,d)=empty \/ sk0(c,d)=b  \/ d=c 
*********** [403,53,160->745, backward superpositio n, forward subsumption resolution] 
*********** 
  el(sk0(sk0(c,d),b),b) \/ sk0(c,d)=empty \/ sk0(c, d)=b \/ d=c 
  ~el(sk0(X1,X2),X1) \/ ~el(sk0(X1,X2),X2) \/ X2=X1  
  sk0(sk0(c,d),b)=a \/ sk0(c,d)=empty \/ sk0(c,d)=b  \/ d=c 
----------------------------- 
  ~el(a,sk0(c,d)) \/ sk0(c,d)=empty \/ sk0(c,d)=b \ / d=c 
*********** [29,54->67, resolution] *********** 
  ~el(X0,empty) 
  el(sk0(X1,X2),X2) \/ el(sk0(X1,X2),X1) \/ X2=X1 
----------------------------- 
  el(sk0(X1,empty),X1) \/ empty=X1 
*********** [47,67->103, resolution] *********** 
  ~el(X1,X2) \/ ~el(X2,c) \/ el(X1,b) 
  el(sk0(X1,empty),X1) \/ empty=X1 
----------------------------- 
  el(sk0(X1,empty),b) \/ ~el(X1,c) \/ empty=X1 
*********** [49,103->185, resolution] *********** 
  ~el(X1,b) \/ X1=a 
  el(sk0(X1,empty),b) \/ ~el(X1,c) \/ empty=X1 
----------------------------- 
  ~el(X1,c) \/ sk0(X1,empty)=a \/ empty=X1 
*********** [63,185->272, resolution] *********** 
  el(sk0(X1,d),X1) \/ sk0(X1,d)=empty \/ sk0(X1,d)= b \/ d=X1 
  ~el(X1,c) \/ sk0(X1,empty)=a \/ empty=X1 
----------------------------- 
  sk0(sk0(c,d),empty)=a \/ sk0(c,d)=b \/ sk0(c,d)=e mpty \/ d=c 
*********** [29,745,54,272->1632, backward superpos ition, forward subsumption resolution] 
*********** 
  ~el(X0,empty) 
  ~el(a,sk0(c,d)) \/ sk0(c,d)=empty \/ sk0(c,d)=b \ / d=c 
  el(sk0(X1,X2),X2) \/ el(sk0(X1,X2),X1) \/ X2=X1 
  sk0(sk0(c,d),empty)=a \/ sk0(c,d)=b \/ sk0(c,d)=e mpty \/ d=c 
----------------------------- 
  sk0(c,d)=empty \/ sk0(c,d)=b \/ d=c 
*********** [46,29->62, resolution] *********** 
  el(sk1(X1),X1) \/ el(X1,c) 
  ~el(X0,empty) 
----------------------------- 
  el(empty,c) 
*********** [62,53,1632->1633, backward superpositi on, forward subsumption resolution] 
*********** 
  el(empty,c) 
  ~el(sk0(X1,X2),X1) \/ ~el(sk0(X1,X2),X2) \/ X2=X1  
  sk0(c,d)=empty \/ sk0(c,d)=b \/ d=c 
----------------------------- 
  ~el(sk0(c,d),d) \/ sk0(c,d)=b \/ d=c 
*********** [56,1632,1633->1664, forward superposit ion, forward subsumption resolution] 
*********** 
  el(empty,d) 
  sk0(c,d)=empty \/ sk0(c,d)=b \/ d=c 
  ~el(sk0(c,d),d) \/ sk0(c,d)=b \/ d=c 
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----------------------------- 
  sk0(c,d)=b \/ d=c 
*********** [58,53,1664->1665, backward superpositi on, forward subsumption resolution] 
*********** 
  el(b,c) 
  ~el(sk0(X1,X2),X1) \/ ~el(sk0(X1,X2),X2) \/ X2=X1  
  sk0(c,d)=b \/ d=c 
----------------------------- 
  ~el(sk0(c,d),d) \/ d=c 
*********** [55,1664,1665->1696, forward superposit ion, forward subsumption resolution] 
*********** 
  el(b,d) 
  sk0(c,d)=b \/ d=c 
  ~el(sk0(c,d),d) \/ d=c 
----------------------------- 
  d=c 
*********** [8, input] *********** 
~c=d 
*********** [8->40, cnf transformation] ***********  
  ~c=d 
----------------------------- 
  c!=d 
*********** [40->41, literal permutation] ********* ** 
  c!=d 
----------------------------- 
  d!=c 
*********** [1696,41->1863, backward demodulation] *********** 
  d=c 
  d!=c 
----------------------------- 
  # 
======= End of refutation ======= 
=========== Statistics ========== 
version: 7.41 Civatateo (v7.40 + more docs) 
=== General: 
time: 0.2s 
memory: 18.4Mb 
termination reason: refutation found 
=== Generating inferences: 
resolution: 2716 
superposition: 1724 
equality_resolution: 4 
=== Simplifying inferences: 
propositional_tautology: 9 
equational_tautology: 718 
forward_subsumption: 2120 
forward_subsumption_resolution: 269 
backward_subsumption: 373 
backward_demodulation: 212 
=== Generated clauses: 
total: 4684 
discarded_as_redundant: 2847 
=== Retained clauses: 
total: 1823 
selected: 361 
currently_active: 268 
currently_passive: 969 
======= End of statistics ======= 

 

C.2 Gandalf 
Gandalf c-2.6 r1 starting to prove: ./heuristic1/he ur1.without.gandalf.in 
Using automatic strategy selection. 
Time limit in seconds: 1800 
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prove-all-passes started 
 
detected problem class: neq 
detected subclass: medium 
 
strategies selected:  
(hyper 75 #f 2 5) 
(binary-unit 28 #f 2 5) 
(binary-double 28 #f 2 5) 
(binary-double 45 #f) 
(binary-double 45 #t) 
(binary 151 #t 2 5) 
(binary-order 75 #f 2 5) 
(binary-posweight-order 304 #f) 
(binary-posweight-lex-big-order 75 #f) 
(binary-posweight-lex-small-order 28 #f) 
(binary-order-sos 151 #t) 
(binary-unit-uniteq 75 #f) 
(binary-weightorder 151 #f) 
(binary-order 151 #f) 
(hyper-order 90 #f) 
(binary 328 #t) 
 
 
********* EMPTY CLAUSE DERIVED ********* 
 
 
timer checkpoints: 
c(15,40,23,30,0,27,1629,50,968,1644,0,969,11438,4,5 847,17751,5,7470,17751,1,7470,17751,50
,7471,17751,40,7471,17766,0,7472,18838,50,7647,1885 3,0,7647,21683,50,8058,21698,0,8058,24
528,50,8467,24543,0,8467,27373,50,8882,27373,40,888 2,27388,0,8882,38896,3,10285,40526,4,1
0983,43308,5,11683,43309,5,11683,43309,1,11683,4330 9,50,11685,43309,40,11685,43324,0,1168
5) 
 
 
START OF PROOF 
35918 [?] ? 
43311 [] el($$f1(X,Y),Y) | el($$f1(X,Y),X) | equal( X,Y). 
43312 [] -el($$f1(X,Y),Y) | -el($$f1(X,Y),X) | equa l(X,Y). 
43313 [] -el(X,empty). 
43316 [] -el(X,b) | equal(X,a). 
43318 [] -el(X,c) | el(Y,b) | -el(Y,X). 
43322 [] -equal(X,empty) | el(X,d). 
43323 [] -equal(X,b) | el(X,d). 
43324 [] -equal(c,d). 
43329 [binary:43313,43311] el($$f1(X,empty),X) | eq ual(X,empty). 
43331 [binary:43324,43311.3,cut:35918] el($$f1(c,d) ,c). 
43351 [binary:43324,43312.3,cut:43331] -el($$f1(c,d ),d). 
43363 [binary:43351,43322.2] -equal($$f1(c,d),empty ). 
43366 [binary:43331,43318] -el(X,$$f1(c,d)) | el(X, b). 
43378 [binary:43351,43323.2] -equal($$f1(c,d),b). 
43380 [binary:43311.3,43378,binarycut:43366] el($$f 1($$f1(c,d),b),b). 
43419 [binary:43316,43380] equal($$f1($$f1(c,d),b), a). 
43420 [binary:43312,43380,demod:43419,cut:43378] -e l(a,$$f1(c,d)). 
45960 [binary:43329,43366,cut:43363] el($$f1($$f1(c ,d),empty),b). 
46334 [binary:43316,45960] equal($$f1($$f1(c,d),emp ty),a). 
46539 [para:46334.1.1,43311.1.1,demod:46334,cut:433 13,cut:43420,cut:43363] contradiction 
END OF PROOF 
 
Proof found by the following strategy: 
 
using binary resolution 
not using sos strategy 
using double strategy 
using dynamic demodulation 
using ordered paramodulation 
using kb ordering for equality 
preferring bigger arities for lex ordering 
using clause demodulation 
seconds given: 45 
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***GANDALF_FOUND_A_REFUTATION*** 
 
Global statistics over all passes:  
 
 given clauses:    7037 
 derived clauses:   353789 
 kept clauses:      33845 
 kept size sum:     531726 
 kept mid-nuclei:   3933 
 kept new demods:   28 
 forw unit-subs:    36540 
 forw double-subs: 32898 
 forw overdouble-subs: 50491 
 backward subs:     672 
 fast unit cutoff:  7014 
 full unit cutoff:  920 
 dbl  unit cutoff:  110 
 real runtime    :  120.30 
 process. runtime:  119.21 
specific non-discr-tree subsumption statistics:  
 tried:           1208228 
 length fails:    48201 
 strength fails:  171347 
 predlist fails:  249780 
 aux str. fails:  69703 
 by-lit fails:    142615 
 full subs tried: 383264 
 full subs fail:  362366 
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Appendix D – Z Case Study of Order Processing System 

Appendix D 

Z Case Study of Order Processing System 

D.1 Given Sets (Basic Types) 

[STRING, AMOUNT, DATE] 

[PRODUCT, ORDER, ITEM, CUSTOMER] 

STATUS ::= pending | cancelled | processed 

D.2 Product 

» Product _____________________________________________ 
Æproducts: P PRODUCT 
ÆprodName: PRODUCT © STRING 
ÆprodPrice: PRODUCT ß AMOUNT 
ÆprodQuantity: PRODUCT ß N 
«_______ 
Ædom prodName = products 
Ædom prodPrice = products 
Ædom prodQuantity = products 
–_________________________________________________ 

» InitProduct ___________________________________________ 
ÆProduct' 
«_______ 
Æproducts' = 0 
ÆprodName' = 0 
ÆprodPrice' = 0 
ÆprodQuantity' = 0 
–_________________________________________________ 
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» CreateProduct __________________________________________ 
ÆDProduct 
Æproduct?: PRODUCT 
Æname?: STRING 
Æprice?: AMOUNT 
Æquantity?: N 
«_______ 
Æproduct? ‰ products 
Æname? ‰ ran prodName 
Æproducts' = products U product? 
ÆprodName' = prodName U {product? å name?} 
ÆprodPrice' = prodPrice U {product? å price?} 
ÆprodQuantity' = prodQuantity U {product? å quantity?} 
–_________________________________________________ 

» UpdateProduct _________________________________________ 
ÆDProduct 
Æproduct?: PRODUCT 
Æname?: STRING 
Æprice?: AMOUNT 
Æquantity?: N 
«_______ 
Æproduct? e products 
Æproducts' = products 
ÆprodName' = prodName ± {product? å name?} 
ÆprodPrice' = prodPrice ± {product? å price?} 
ÆprodQuantity' = prodQuantity ± {product? å quantity?} 
–_________________________________________________ 

» DeleteProduct __________________________________________ 
ÆDProduct 
Æproduct?: PRODUCT 
«_______ 
Æproduct? e products 
Æproducts' = products \ {product?} 
ÆprodName' = {product?} y prodName 
ÆprodPrice' = {product?} y prodPrice 
ÆprodQuantity' = {product?} y prodQuantity 
–_________________________________________________ 

» SelectProductsBelowThreshold __________________________________ 
ÆXProduct 
Æquantity?: N 
Æproducts!: P PRODUCT 
«_______ 
Æproducts! = {p: products | prodQuantity(p) < quantity?} 
–_________________________________________________ 
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D.3 Order 

» Order ______________________________________________ 
Æorders: P ORDER 
ÆorderDate: ORDER ß DATE 
ÆorderStatus: ORDER ß STATUS 
ÆorderCustomer: ORDER ß CUSTOMER 
«_______ 
Ædom orderDate = orders 
Ædom orderStatus = orders 
Ædom orderCustomer = orders 
–_________________________________________________ 

» InitOrder ____________________________________________ 
ÆOrder' 
«_______ 
Æorders' = 0 
ÆorderDate' = 0 
ÆorderStatus' = 0 
ÆorderCustomer' = 0 
–_________________________________________________ 

» CreateOrder ___________________________________________ 
ÆDOrder 
Ædate?: DATE 
Æcustomer?: CUSTOMER 
Æorder!: ORDER 
«_______ 
Æorder! ‰ orders 
Æorders' = orders U order! 
ÆorderDate' = orderDate U {order! å date?} 
ÆorderStatus' = orderStatus U {order! å pending} 
ÆorderCustomer' = orderCustomer U {order! å customer?} 
–_________________________________________________ 
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» CancelOrder __________________________________________ 
ÆDOrder 
Æorder?: ORDER 
«_______ 
Æorder? e orders 
ÆorderStatus(order?) = pending 
Æorders' = orders 
ÆorderDate' = orderDate 
ÆorderStatus' = orderStatus ± {order? å cancelled} 
ÆorderCustomer' = orderCustomer 
–_________________________________________________ 

» ProcessOrder __________________________________________ 
ÆDOrder 
ÆDProduct 
ÆXItem 
Æorder?: ORDER 
«_______ 
Æorder? e orders 
ÆorderStatus(order?) = pending 
ÆAi: items • itemOrder(i) = order? fi prodQuantity(itemProduct(i)) – itemQuantity(i) ˘ 0 
Æorders' = orders 
ÆorderDate' = orderDate 
ÆorderStatus' = orderStatus ± {order? å processed} 
ÆorderCustomer' = orderCustomer 
Æproducts' = products 
ÆprodName' = prodName 
ÆprodPrice' = prodPrice 
ÆprodQuantity' = prodQuantity ± 
Æ    {i: items | itemOrder(i) = order? • itemProduct(i) å prodQuantity(itemProduct(i)) – itemQuantity(i)} 
–_________________________________________________ 

» SelectOrdersForCustomer ____________________________________ 
ÆXOrder 
Æcustomer?: CUSTOMER 
Æorders!: P ORDER 
«_______ 
Æorders! = {o: orders | orderCustomer(o) = customer?} 
–_________________________________________________ 
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D.4 Item 

» Item ______________________________________________ 
Æitems: P ITEM 
ÆitemOrder: ITEM ß ORDER 
ÆitemPrice: ITEM ß AMOUNT 
ÆitemQuantity: ITEM ß N1 
ÆitemProduct: ITEM ß PRODUCT 
«_______ 
Ædom itemOrder = items 
Ædom itemPrice = items 
Ædom itemQuantity = items 
Ædom itemProduct = items 
ÆAi1, i2: items • i1 Î i2 fi itemOrder(i1) Î itemOrder(i2) v itemProduct(i1) Î itemProduct(i2) 
–_________________________________________________ 

» InitItem _____________________________________________ 
ÆItem' 
«_______ 
Æitems' = 0 
ÆitemOrder' = 0 
ÆitemPrice' = 0 
ÆitemQuantity' = 0 
ÆitemProduct' = 0 
–_________________________________________________ 

» CreateItem ___________________________________________ 
ÆDItem 
ÆXProduct 
Æitem?: ITEM 
Æorder?: ORDER 
Æquantity?: N1 
Æproduct?: PRODUCT 
«_______ 
Æitem? ‰ items 
Æitems' = items U {item?} 
ÆitemOrder' = itemOrder U {item? å order?} 
ÆitemPrice' = itemPrice U {item? å prodPrice(product?)} 
ÆitemQuantity' = itemQuantity U {item? å quantity?} 
ÆitemProduct' = itemProduct U {item? å product?} 
–_________________________________________________ 
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» UpdateItem ___________________________________________ 
ÆDItem 
Æitem?: ITEM 
Æquantity?: N1 
«_______ 
Æitem? e items 
Æitems' = items 
ÆitemOrder' = itemOrder 
ÆitemPrice' = itemPrice 
ÆitemQuantity' = itemQuantity ± {item? å quantity?} 
ÆitemProduct' = itemProduct 
–_________________________________________________ 

» DeleteItem ___________________________________________ 
ÆDItem 
Æitem?: ITEM 
«_______ 
Æitem? e items 
Æitems' = items \ {item?} 
ÆitemOrder' = {item?} y itemOrder 
ÆitemPrice' = {item?} y itemPrice 
ÆitemQuantity' = {item?} y itemQuantity 
ÆitemProduct' = {item?} y itemProduct 
–_________________________________________________ 

» SelectItemsForOrder _______________________________________ 
ÆXItem 
Æorder?: ORDER 
Æitems!: P ITEM 
«_______ 
Æitems! = {i: items | itemOrder(i) = order?} 
–_________________________________________________ 

 

D.5 Customer 

ÆCOMPANY: P CUSTOMER 
ÆPERSON: P CUSTOMER 
«_______ 
Æ„COMPANY, PERSONÒ partition CUSTOMER 
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» Customer ____________________________________________ 
Æcustomers: P CUSTOMER 
ÆcustAddress: CUSTOMER ß STRING 
ÆcustPhone: CUSTOMER ß STRING 
«_______ 
Ædom custAddress = customers 
Ædom custPhone = customers 
–_________________________________________________ 

» InitCustomer __________________________________________ 
ÆCustomer' 
«_______ 
Æcustomers' = 0 
ÆcustAddress' = 0 
ÆcustPhone' = 0 
–_________________________________________________ 

» CreateCustomer _________________________________________ 
ÆDCustomer 
Æcustomer?: CUSTOMER 
Æaddress?: STRING 
Æphone?: STRING 
«_______ 
Æcustomer? ‰ customers 
Æcustomers' = customers U {customer?} 
ÆcustAddress' = custAddress U {customer? å address?} 
ÆcustPhone' = custPhone U {customer? å phone?} 
–_________________________________________________ 

» UpdateCustomer ________________________________________ 
ÆDCustomer 
Æcustomer?: CUSTOMER 
Æaddress?: STRING 
Æphone?: STRING 
«_______ 
Æcustomer? e customers 
Æcustomers' = customers 
ÆcustAddress' = custAddress ± {customer? å address?} 
ÆcustPhone' = custPhone ± {customer? å phone?} 
–_________________________________________________ 
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» DeleteCustomer _________________________________________ 
ÆDCustomer 
ÆXOrder 
Æcustomer?: CUSTOMER 
«_______ 
Æcustomer? e customers 
Æcustomer? ‰ ran orderCustomer 
Æcustomers' = customers \ customer? 
ÆcustAddress' = {customer?} y custAddress 
ÆcustPhone' = {customer?} y custPhone 
–_________________________________________________ 

D.6 Company 

» Company ____________________________________________ 
ÆCustomer 
Æcompanies: P COMPANY 
ÆcompName: COMPANY ß STRING 
ÆcompRegNo: COMPANY ß STRING 
«_______ 
Æcompanies z customers 
Ædom compName = companies 
Ædom compRegNo = companies 
–_________________________________________________ 

» InitCompany __________________________________________ 
ÆCompany' 
ÆInitCustomer 
«_______ 
Æcompanies' = 0 
ÆcompName' = 0 
ÆcompRegNo' = 0 
–_________________________________________________ 

» CreateCompany _________________________________________ 
ÆDCompany 
ÆCreateCustomer 
Æname?: STRING 
ÆregNo?: STRING 
«_______ 
Æcompanies' = companies U {customer?} 
ÆcompName' = compName U {customer? å name?} 
ÆcompRegNo' = compRegNo U {customer? å regNo?} 
–_________________________________________________ 



 182 

» UpdateCompany ________________________________________ 
ÆDCompany 
ÆUpdateCustomer 
Æname?: STRING 
ÆregNo?: STRING 
«_______ 
Æcustomer? e companies 
Æcompanies' = companies 
ÆcompName' = compName ± {customer? å name?} 
ÆcompRegNo' = compRegNo ± {customer? å regNo?} 
–_________________________________________________ 

» DeleteCompany _________________________________________ 
ÆDCompany 
ÆDeleteCustomer 
«_______ 
Æcustomer? e companies 
Æcompanies' = companies \ {customer?} 
ÆcompName' = {customer?} y compName 
ÆcompRegNo' = {customer?} y compRegNo 
–_________________________________________________ 

D.7 Person 

» Person _____________________________________________ 
ÆCustomer 
Æpersons: P PERSON 
ÆperName: PERSON ß STRING 
ÆperSurname: PERSON ß STRING 
«_______ 
Æpersons z customers 
Ædom perName = persons 
Ædom perSurname = persons 
–_________________________________________________ 

» InitPerson ____________________________________________ 
ÆPerson' 
ÆInitCustomer 
«_______ 
Æpersons' = 0 
ÆperName' = 0 
ÆperSurname' = 0 
–_________________________________________________ 
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» CreatePerson __________________________________________ 
ÆDPerson 
ÆCreateCustomer 
Æname?: STRING 
Æsurname?: STRING 
«_______ 
Æpersons' = persons U customer? 
ÆperName' = perName U {customer? å name?} 
ÆperSurname' = perSurname U {customer? å surname?} 
–_________________________________________________ 

» UpdatePerson __________________________________________ 
ÆDPerson 
ÆUpdateCustomer 
Æname?: STRING 
Æsurname?: STRING 
«_______ 
Æcustomer? e persons 
Æpersons' = persons 
ÆperName' = perName ± {customer? å name?} 
ÆperSurname' = perSurname ± {customer? å surname?} 
–_________________________________________________ 

» DeletePerson __________________________________________ 
ÆDPerson 
ÆDeleteCustomer 
«_______ 
Æcustomer? e persons 
Æpersons' = persons \ customer? 
ÆperName' = {customer?} y perName 
ÆperSurname' = {customer?} y perSurname 
–_________________________________________________ 

D.8 System 

» System _____________________________________________ 
ÆProduct 
ÆOrder 
ÆItem 
ÆCustomer 
ÆCompany 
ÆPerson 
–_________________________________________________ 
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» InitSystem ___________________________________________ 
ÆInitProduct 
ÆInitOrder 
ÆInitItem  
ÆInitCustomer 
ÆInitCompany 
ÆInitPerson 
–_________________________________________________ 
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Appendix E – Reasoner Inputs for Proof Obligations 

Appendix E 

Reasoner Inputs for Proof Obligations 

E.1 CreateProduct Invariant 
% If we didn't specifiy that products? = products ?  {product?}, then it could be deduced 
 
fof(anonymous, axiom, 
  % t_Product type 
  el(t_Product,t_PProduct) & 
  % t_String type 
  el(t_String,t_PString) 
). 
 
% +.. 
%  products: P PRODUCT  
%  prodName: PRODUCT >-|-> STRING  
%  products': P PRODUCT  
%  prodName': PRODUCT >-|-> STRING  
%  product?: PRODUCT  
%  name?: STRING  
% | 
%  dom prodName = products  
%  dom prodName' = products'  
%  product? /e products  
%  name? /e ran prodName  
%  prodName' = prodName u { product? |--> name? }  
% ---  
% ---------------------- rewritten to ------------- ---------------- 
% +.. 
%  products: P PRODUCT  
%  prodName: P { X31: PRODUCT; X32: STRING }  
%  products': P PRODUCT  
%  prodName': P { X33: PRODUCT; X34: STRING }  
%  product?: PRODUCT  
%  name?: STRING  
% | 
%  A X60: PRODUCT; X61: STRING; X62: PRODUCT; X63: STRING @ 
%    not (X60,X61) e prodName \/ not (X62,X63) e pr odName \/ not X61 = X63 \/ X60 = X62  
%  A X60: PRODUCT; X61: STRING; X62: PRODUCT; X63: STRING @ 
%    not (X60,X61) e prodName \/ not (X62,X63) e pr odName \/ not X60 = X62 \/ X61 = X63  
%  A X68: PRODUCT; X69: STRING; X70: PRODUCT; X71: STRING @ 
%    not (X68,X69) e prodName' \/ not (X70,X71) e p rodName' \/ not X69 = X71 \/ X68 = X70  
%  A X68: PRODUCT; X69: STRING; X70: PRODUCT; X71: STRING @ 
%    not (X68,X69) e prodName' \/ not (X70,X71) e p rodName' \/ not X68 = X70 \/ X69 = X71  
%  A EL37: PRODUCT @ 
%    (A X104: PRODUCT; X105: STRING @ 
%        not (X104,X105) e prodName \/ not EL37 = X 104) \/ EL37 e products  
%  A EL37: PRODUCT @ not EL37 e products \/ (E X109 : STRING @ (EL37,X109) e prodName)  
%  A EL38: PRODUCT @ 
%    (A X112: PRODUCT; X113: STRING @ 
%        not (X112,X113) e prodName' \/ not EL38 = X112) \/ EL38 e products'  
%  A EL38: PRODUCT @ not EL38 e products' \/ (E X11 7: STRING @ (EL38,X117) e prodName')  
%  not product? e products  
%  A X93: PRODUCT; X94: STRING @ not (X93,X94) e pr odName \/ not name? = X94  
%  A X85: PRODUCT; X86: STRING @ 
%    not (X85,X86) e prodName' \/ (X85,X86) e prodN ame \/ X86 = name?  
%  A X85: PRODUCT; X86: STRING @ 
%    not (X85,X86) e prodName' \/ (X85,X86) e prodN ame \/ X85 = product?  
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%  A X89: PRODUCT; X90: STRING @ 
%    (X89,X90) e prodName' \/ not X89 = product? \/  not X90 = name?  
%  A X89: PRODUCT; X90: STRING @ (X89,X90) e prodNa me' \/ not (X89,X90) e prodName  
% ---  
fof(anonymous, axiom, 
  el(products, t_PProduct) &  
  el(prodName, t3) &  
  el(products_, t_PProduct) &  
  el(prodName_, t3) &  
  el(productI, t_Product) &  
  el(nameI, t_String) &  
  ![X60,X61,X62,X63]: 
   ((el(X60,t_Product) & el(X61,t_String) & el(X62, t_Product) & el(X63,t_String)) => 
    (~el(ord_t2(X60,X61),prodName) | ~el(ord_t2(X62 ,X63),prodName) | ~(X61 = X63) | 
     X60 = X62)) &  
  ![X60,X61,X62,X63]: 
   ((el(X60,t_Product) & el(X61,t_String) & el(X62, t_Product) & el(X63,t_String)) => 
    (~el(ord_t2(X60,X61),prodName) | ~el(ord_t2(X62 ,X63),prodName) | ~(X60 = X62) | 
     X61 = X63)) &  
  ![X68,X69,X70,X71]: 
   ((el(X68,t_Product) & el(X69,t_String) & el(X70, t_Product) & el(X71,t_String)) => 
    (~el(ord_t2(X68,X69),prodName_) | ~el(ord_t2(X7 0,X71),prodName_) | ~(X69 = X71) | 
     X68 = X70)) &  
  ![X68,X69,X70,X71]: 
   ((el(X68,t_Product) & el(X69,t_String) & el(X70, t_Product) & el(X71,t_String)) => 
    (~el(ord_t2(X68,X69),prodName_) | ~el(ord_t2(X7 0,X71),prodName_) | ~(X68 = X70) | 
     X69 = X71)) &  
  ![EL37]: (el(EL37,t_Product) => 
    ((![X104,X105]: ((el(X104,t_Product) & el(X105, t_String)) => 
      (~el(ord_t2(X104,X105),prodName) | ~(EL37 = X 104)))) | el(EL37,products))) &  
  ![EL37]: (el(EL37,t_Product) => (~el(EL37,product s) | 
    (?[X109]: (el(X109,t_String) & el(ord_t2(EL37,X 109),prodName))))) &  
  ![EL38]: (el(EL38,t_Product) => 
    ((![X112,X113]: ((el(X112,t_Product) & el(X113, t_String)) => 
      (~el(ord_t2(X112,X113),prodName_) | ~(EL38 = X112)))) | el(EL38,products_))) &  
  ![EL38]: (el(EL38,t_Product) => (~el(EL38,product s_) | 
    (?[X117]: (el(X117,t_String) & el(ord_t2(EL38,X 117),prodName_))))) & 
  ~el(productI,products) &  
  ![X93,X94]: ((el(X93,t_Product) & el(X94,t_String )) => 
    (~el(ord_t2(X93,X94),prodName) | ~(nameI = X94) )) &  
  ![X85,X86]: ((el(X85, t_Product) & el(X86, t_Stri ng)) => 
    ((~el(ord_t2(X85,X86),prodName_) | el(ord_t2(X8 5,X86),prodName)) | X86 = nameI)) &  
  ![X85,X86]: ((el(X85,t_Product) & el(X86,t_String )) => 
    (((~el(ord_t2(X85,X86),prodName_) | el(ord_t2(X 85,X86),prodName))) | X85=productI)) &  
  ![X89,X90]: ((el(X89,t_Product) & el(X90,t_String )) => 
    ((el(ord_t2(X89,X90),prodName_) | ~(X89 = produ ctI)) | ~(X90 = nameI))) &  
  ![X89,X90]: ((el(X89,t_Product) & el(X90,t_String )) => 
    (el(ord_t2(X89,X90),prodName_) | ~el(ord_t2(X89 ,X90),prodName))) 
). 
 
fof(anonymous, axiom, 
  % set equality t_PPProduct 
  ![VAL197,VAL198]:((el(VAL197,t_PPProduct) & el(VA L198,t_PPProduct)) => 
    ((![EL199]:(el(EL199,t_PProduct) => 
      (el(EL199,VAL197) <=> el(EL199,VAL198)))) => VAL197=VAL198)) 
). 
 
fof(anonymous, axiom, 
  % t_PProduct membership 
  ![X196]:(el(X196,t_PProduct) => (el(X196,t_PProdu ct) <=> 
    ![Y]:(el(Y,t_Product) => (el(Y,X196) => el(Y,t_ Product))))) & 
  % t_PProduct type 
  el(t_PProduct,t_PPProduct) 
). 
 
fof(anonymous, axiom, 
  % tuple equality t2 
  ![X201,X203,X202,X204]: 
   ((el(X201,t_Product) & el(X203,t_String) & el(X2 02,t_Product) & el(X204,t_String)) => 
     (ord_t2(X201,X203)=ord_t2(X202,X204) <=> (X201  = X202 & X203 = X204))) & 
  % tuple type t2 
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  ![X201,X203]:((el(X201,t_Product) & el(X203,t_Str ing)) => (el(ord_t2(X201,X203), t2))) 
). 
 
fof(anonymous, axiom, 
  % set equality t3 
  ![VAL205,VAL206]:((el(VAL205,t3) & el(VAL206,t3))  => ((![EL207]:(el(EL207,t2) => 
    (el(EL207,VAL205) <=> el(EL207,VAL206)))) => VA L205=VAL206)) 
). 
 
% { X31: PRODUCT; X32: STRING }  
fof(anonymous, axiom, 
  % t2 membership 
  ![EL200]:(el(EL200,t2) => (el(EL200,t2) <=> 
   (?[X31,X32]: ((el(X31,t_Product) & el(X32,t_Stri ng)) & (EL200=ord_t2(X31,X32)))))) & 
  % t2 type 
  el(t2,t3) 
). 
 
fof(anonymous, axiom, 
  % set equality t1 
  ![VAL209,VAL210]:((el(VAL209,t1) & el(VAL210,t1))  => 
   ((![EL211]:(el(EL211,t3) => 
     (el(EL211,VAL209) <=> el(EL211,VAL210)))) => V AL209=VAL210)) 
). 
 
% P { X31: PRODUCT; X32: STRING }  
fof(anonymous, axiom, 
  % t3 membership 
  ![X208]:(el(X208,t3) => 
    (el(X208,t3) <=> ![Y]:(el(Y,t2) => (el(Y,X208) => el(Y,t2))))) & 
  % t3 type 
  el(t3,t1) 
). 
 
% |-? products' = products u { product? }  
% ---------------------- rewritten to ------------- ---------------- 
% |-? A EL135: PRODUCT @ not EL135 e products' \/ E L135 e products \/ EL135 = product?  
%     A EL135: PRODUCT @ EL135 e products' \/ not E L135 = product?  
%     A EL135: PRODUCT @ EL135 e products' \/ not E L135 e products  
fof(conjecture, conjecture, 
  ![EL135]: (el(EL135, t_Product) => 
    (~el(EL135,products_) | el(EL135,products) | EL 135 = productI)) &  
  ![EL135]: (el(EL135, t_Product) => (el(EL135,prod ucts_) | ~(EL135 = productI))) &  
  ![EL135]: (el(EL135, t_Product) => (el(EL135,prod ucts_) | ~el(EL135,products))) 
). 
 

E.2 After State Type of CancelOrder 
fof(anonymous, axiom, 
  % t_Order type 
  el(t_Order,t_POrder) & 
  % t_Customer type 
  el(t_Customer,t_PCustomer) & 
  % t_Date type 
  el(t_Date,t_PDate) 
). 
 
% STATUS ::= pending | cancelled | processed  
fof(anonymous, axiom, 
  % t_Status type 
  el(t_Status,t_PStatus) & 
  % pending, cancelled, processed: STATUS 
  el(pending,t_Status) & el(cancelled,t_Status) & e l(processed,t_Status) 
). 
 
% +.. 
%  orders: P ORDER  
%  orderDate: ORDER -|-> DATE  
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%  orderStatus: ORDER -|-> STATUS  
%  orderCustomer: ORDER -|-> CUSTOMER  
%  orders': P ORDER  
%  orderDate': P (ORDER x DATE)  
%  orderStatus': P (ORDER x STATUS)  
%  orderCustomer': P (ORDER x CUSTOMER)  
%  orderI: ORDER  
% | 
%  dom orderDate = orders  
%  dom orderStatus = orders  
%  dom orderCustomer = orders  
%  dom orderDate' = orders'  
%  dom orderStatus' = orders'  
%  dom orderCustomer' = orders'  
%  orderI e orders  
%  orderStatus (orderI) = pending  
%  orders' = orders  
%  orderDate' = orderDate  
%  orderCustomer' = orderCustomer  
% ---  
% ---------------------- rewritten to ------------- ---------------- 
% +.. 
%  orders: P ORDER  
%  orderDate: P {X31: ORDER; X32: DATE}  
%  orderStatus: P {X33: ORDER; X34: STATUS}  
%  orderCustomer: P {X35: ORDER; X36: CUSTOMER}  
%  orders': P ORDER  
%  orderDate': P {X37: ORDER; X38: DATE}  
%  orderStatus': P {X39: ORDER; X40: STATUS}  
%  orderCustomer': P {X41: ORDER; X42: CUSTOMER}  
%  orderI: ORDER  
% | 
%  A X63: ORDER; X64: DATE; X65: ORDER; X66: DATE @  
%    not (X63,X64) e orderDate \/ not (X65,X66) e o rderDate \/ not X63 = X65 \/ X64 = X66  
%  A X73: ORDER; X74: STATUS; X75: ORDER; X76: STAT US @ 
%    not (X73,X74) e orderStatus \/ not (X75,X76) e  orderStatus \/ not X73=X75 \/ X74=X76  
%  A X83: ORDER; X84: CUSTOMER; X85: ORDER; X86: CU STOMER @ 
%    not (X83,X84) e orderCustomer \/ not (X85,X86)  e orderCustomer \/ 
%    not X83=X85 \/ X84=X86  
%  A EL49: ORDER @ (A X134: ORDER; X135: DATE @ 
%    not (X134,X135) e orderDate \/ not EL49 = X134 ) \/ EL49 e orders  
%  A EL49: ORDER @ not EL49 e orders \/ (E X139: DA TE @ (EL49,X139) e orderDate)  
%  A EL50: ORDER @ (A X142: ORDER; X143: STATUS @ 
%    not (X142,X143) e orderStatus \/ not EL50 = X1 42) \/ EL50 e orders  
%  A EL50: ORDER @ not EL50 e orders \/ (E X147: ST ATUS @ (EL50,X147) e orderStatus)  
%  A EL51: ORDER @ (A X150: ORDER; X151: CUSTOMER @  
%    not (X150,X151) e orderCustomer \/ not EL51 = X150) \/ EL51 e orders  
%  A EL51: ORDER @ not EL51 e orders \/ (E X155: CU STOMER @ (EL51,X155) e orderCustomer)  
%  A EL52: ORDER @ (A X158: ORDER; X159: DATE @ 
%    not (X158,X159) e orderDate' \/ not EL52 = X15 8) \/ EL52 e orders'  
%  A EL52: ORDER @ not EL52 e orders' \/ (E X163: D ATE @ (EL52,X163) e orderDate')  
%  A EL53: ORDER @ (A X166: ORDER; X167: STATUS @ 
%    not (X166,X167) e orderStatus' \/ not EL53 = X 166) \/ EL53 e orders'  
%  A EL53: ORDER @ not EL53 e orders' \/ (E X171: S TATUS @ (EL53,X171) e orderStatus')  
%  A EL54: ORDER @ (A X174: ORDER; X175: CUSTOMER @  
%    not (X174,X175) e orderCustomer' \/ not EL54 =  X174) \/ EL54 e orders'  
%  A EL54: ORDER @ not EL54 e orders' \/ 
%    (E X179: CUSTOMER @ (EL54,X179) e orderCustome r')  
%  orderI e orders  
%  orderStatus (orderI) = pending  
%  A EL55: ORDER @ not EL55 e orders' \/ EL55 e ord ers  
%  A EL55: ORDER @ not EL55 e orders \/ EL55 e orde rs'  
%  A X118: ORDER; X119: DATE @ not (X118,X119) e or derDate' \/ (X118,X119) e orderDate  
%  A X122: ORDER; X123: DATE @ not (X122,X123) e or derDate \/ (X122,X123) e orderDate'  
%  A X126: ORDER; X127: CUSTOMER @ 
%    not (X126,X127) e orderCustomer' \/ (X126,X127 ) e orderCustomer  
%  A X130: ORDER; X131: CUSTOMER @ 
%    not (X130,X131) e orderCustomer \/ (X130,X131)  e orderCustomer'  
% ---  
fof(anonymous, axiom, 
  el(orders,t_POrder) &  
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  el(orderDate,t_P_OrderxDate_) &  
  el(orderStatus, t4) &  
  el(orderCustomer, t7) &  
  el(orders_,t_POrder) &  
  el(orderDate_,t_P_OrderxDate_) &  
  el(orderStatus_, t4) &  
  el(orderCustomer_, t7) &  
  el(orderI,t_Order) &  
  ![X63,X64,X65,X66]: 
   ((el(X63,t_Order) & el(X64,t_Date) & el(X65,t_Or der) & el(X66,t_Date)) => 
    ((((((~el(ord_t__OrderxDate_(X63,X64),orderDate ) | 
     ~el(ord_t__OrderxDate_(X65,X66),orderDate))) |  ~(X63=X65))) | X64=X66))) &  
  ![X73,X74,X75,X76]: 
   ((el(X73,t_Order) & el(X74,t_Status) & el(X75,t_ Order) & el(X76,t_Status)) => 
    ((((((~el(ord_t3(X73,X74),orderStatus) | 
     ~el(ord_t3(X75,X76),orderStatus))) | ~(X73=X75 ))) | X74=X76))) &  
  ![X83,X84,X85,X86]: 
   ((el(X83,t_Order) & el(X84,t_Customer) & el(X85, t_Order) & el(X86,t_Customer)) => 
    ((((((~el(ord_t6(X83,X84),orderCustomer) | 
     ~el(ord_t6(X85,X86),orderCustomer))) | ~(X83 =  X85))) | X84 = X86))) &  
  ![EL49]: ((el(EL49,t_Order)) => 
    (((![X134,X135]: ((el(X134,t_Order) & el(X135,t _Date)) => 
     ((~el(ord_t__OrderxDate_(X134,X135),orderDate)  | 
      ~(EL49 = X134))))) | el(EL49,orders)))) &  
  ![EL49]: ((el(EL49,t_Order)) => ((~el(EL49,orders ) | 
    (?[X139]: (el(X139,t_Date) & el(ord_t__OrderxDa te_(EL49,X139),orderDate)))))) &  
  ![EL50]: ((el(EL50,t_Order)) => 
    (((![X142,X143]: ((el(X142,t_Order) & el(X143,t _Status)) => 
     ((~el(ord_t3(X142,X143),orderStatus) | ~(EL50 = X142))))) | el(EL50,orders)))) &  
  ![EL50]: (el(EL50,t_Order) => ((~el(EL50,orders) | 
    (?[X147]: (el(X147,t_Status) & el(ord_t3(EL50,X 147),orderStatus)))))) &  
  ![EL51]: (el(EL51,t_Order) => 
    (((![X150,X151]: ((el(X150,t_Order) & el(X151,t _Customer)) => 
     ((~el(ord_t6(X150,X151),orderCustomer) | ~(EL5 1 = X150))))) | el(EL51,orders)))) &  
  ![EL51]: (el(EL51,t_Order) => ((~el(EL51,orders) | 
    (?[X155]: (el(X155,t_Customer) & el(ord_t6(EL51 ,X155),orderCustomer)))))) &  
  ![EL52]: (el(EL52,t_Order) => (((![X158,X159]: (( el(X158,t_Order) & el(X159,t_Date)) => 
    ((~el(ord_t__OrderxDate_(X158,X159),orderDate_)  | 
     ~(EL52 = X158))))) | el(EL52,orders_)))) &  
  ![EL52]: (el(EL52,t_Order) => ((~el(EL52,orders_)  | (?[X163]: (el(X163,t_Date) & 
    el(ord_t__OrderxDate_(EL52,X163),orderDate_)))) )) &  
  ![EL53]: (el(EL53,t_Order) => 
    (((![X166,X167]: ((el(X166,t_Order) & el(X167,t _Status)) => 
     ((~el(ord_t3(X166,X167),orderStatus_) | ~(EL53  = X166))))) | el(EL53,orders_)))) &  
  ![EL53]: ((el(EL53,t_Order)) => ((~el(EL53,orders _) | (?[X171]: (el(X171,t_Status) & 
    el(ord_t3(EL53,X171),orderStatus_)))))) &  
  ![EL54]: (el(EL54,t_Order) => 
    (((![X174,X175]: ((el(X174,t_Order) & el(X175,t _Customer)) => 
     ((~el(ord_t6(X174,X175),orderCustomer_) | ~(EL 54 = X174))))) | el(EL54,orders_)))) &  
  ![EL54]: (el(EL54,t_Order) => ((~el(EL54,orders_)  | 
    (?[X179]: (el(X179,t_Customer) & el(ord_t6(EL54 ,X179),orderCustomer_)))))) &  
  el(orderI,orders) &  
  orderStatus(orderI) = pending &  
  ![EL55]: (el(EL55,t_Order) => ((~el(EL55,orders_)  | el(EL55,orders)))) &  
  ![EL55]: (el(EL55,t_Order) => ((~el(EL55,orders) | el(EL55,orders_)))) &  
  ![X118,X119]: ((el(X118,t_Order) & el(X119,t_Date )) => 
    ((~el(ord_t__OrderxDate_(X118,X119),orderDate_)  | 
    el(ord_t__OrderxDate_(X118,X119),orderDate)))) &  
  ![X122,X123]: (el(X122,t_Order) & el(X123,t_Date)  => 
    ((~el(ord_t__OrderxDate_(X122,X123),orderDate) | 
     el(ord_t__OrderxDate_(X122,X123),orderDate_))) ) &  
  ![X126,X127]: ((el(X126,t_Order) & el(X127,t_Cust omer)) => 
    ((~el(ord_t6(X126,X127),orderCustomer_) | el(or d_t6(X126,X127),orderCustomer)))) &  
  ![X130,X131]: ((el(X130,t_Order) & el(X131,t_Cust omer)) => 
    ((~el(ord_t6(X130,X131),orderCustomer) | el(ord _t6(X130,X131),orderCustomer_)))) 
). 
 
fof(anonymous, axiom, 
  % set equality t_PPOrder 
  ![VAL524,VAL525]:((el(VAL524,t_PPOrder) & el(VAL5 25,t_PPOrder)) => 
    ((![EL526]:(el(EL526,t_POrder) => 
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     (el(EL526,VAL524) <=> el(EL526,VAL525)))) => V AL524=VAL525)) 
). 
 
% P ORDER  
 
fof(anonymous, axiom, 
  % t_POrder membership 
  ![X523]:(el(X523,t_POrder) => 
    (el(X523,t_POrder) <=> ![Y]:(el(Y,t_Order) => ( el(Y,X523) => el(Y,t_Order))))) & 
  % t_POrder type 
  el(t_POrder,t_PPOrder) 
). 
 
fof(anonymous, axiom, 
  % tuple equality t__OrderxDate_ 
  ![X528,X530,X529,X531]: 
    ((el(X528,t_Order) & el(X530,t_Date) & el(X529, t_Order) & el(X531,t_Date)) => 
     (ord_t__OrderxDate_(X528,X530)=ord_t__OrderxDa te_(X529,X531) <=> 
       (X528 = X529 & X530 = X531))) & 
  % tuple type t__OrderxDate_ 
  ![X528,X530]:((el(X528,t_Order) & el(X530,t_Date) ) => 
    (el(ord_t__OrderxDate_(X528,X530),t__OrderxDate _))) 
). 
 
fof(anonymous, axiom, 
  % set equality t_P_OrderxDate_ 
  ![VAL532,VAL533]:((el(VAL532,t_P_OrderxDate_) & e l(VAL533,t_P_OrderxDate_)) => 
    ((![EL534]:(el(EL534,t__OrderxDate_) => 
     (el(EL534,VAL532) <=> el(EL534,VAL533)))) => V AL532=VAL533)) 
). 
 
% {X31: ORDER; X32: DATE}  
 
fof(anonymous, axiom, 
  % t__OrderxDate_ membership 
  ![EL527]:(el(EL527,t__OrderxDate_) => 
    (el(EL527,t__OrderxDate_) <=> (?[X31,X32]: ((el (X31,t_Order) & 
      el(X32,t_Date)) & (EL527 = ord_t__OrderxDate_ (X31,X32)))))) & 
  % t__OrderxDate_ type 
  el(t__OrderxDate_,t_P_OrderxDate_) 
). 
 
fof(anonymous, axiom, 
  % set equality t1 
  ![VAL536,VAL537]:((el(VAL536,t1) & el(VAL537,t1))  => 
    ((![EL538]:(el(EL538,t_P_OrderxDate_) => 
     (el(EL538,VAL536) <=> el(EL538,VAL537)))) => V AL536=VAL537)) 
). 
 
% P {X31: ORDER; X32: DATE}  
fof(anonymous, axiom, 
  % t_P_OrderxDate_ membership 
  ![X535]:(el(X535,t_P_OrderxDate_) => (el(X535,t_P _OrderxDate_) <=> 
    ![Y]:(el(Y,t__OrderxDate_) => (el(Y,X535) => el (Y,t__OrderxDate_))))) & 
  % t_P_OrderxDate_ type 
  el(t_P_OrderxDate_,t1) 
). 
 
fof(anonymous, axiom, 
  % tuple equality t3 
  ![X540,X542,X541,X543]: 
   ((el(X540,t_Order) & el(X542,t_Status) & el(X541 ,t_Order) & el(X543,t_Status)) => 
    (ord_t3(X540,X542)=ord_t3(X541,X543) <=> (X540 = X541 & X542 = X543))) & 
  % tuple type t3 
  ![X540,X542]:((el(X540,t_Order) & el(X542,t_Statu s)) => (el(ord_t3(X540,X542), t3))) 
). 
 
fof(anonymous, axiom, 
  % set equality t4 
  ![VAL544,VAL545]:((el(VAL544,t4) & el(VAL545,t4))  => 
    ((![EL546]:(el(EL546,t3) => (el(EL546,VAL544) < => el(EL546,VAL545)))) => 
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     VAL544=VAL545)) 
). 
 
% {X33: ORDER; X34: STATUS}  
fof(anonymous, axiom, 
  % t3 membership 
  ![EL539]:(el(EL539,t3) => (el(EL539,t3) <=> 
    (?[X33,X34]: ((el(X33,t_Order) & el(X34,t_Statu s)) & (EL539 = ord_t3(X33,X34)))))) & 
  % t3 type 
  el(t3,t4) 
). 
 
fof(anonymous, axiom, 
  % set equality t2 
  ![VAL548,VAL549]:((el(VAL548,t2) & el(VAL549,t2))  => 
    ((![EL550]:(el(EL550,t4) => 
     (el(EL550,VAL548) <=> el(EL550,VAL549)))) => V AL548=VAL549)) 
). 
 
% P {X33: ORDER; X34: STATUS}  
fof(anonymous, axiom, 
  % t4 membership 
  ![X547]:(el(X547,t4)=>(el(X547,t4) <=> ![Y]:(el(Y ,t3) => (el(Y,X547) => el(Y,t3))))) & 
  % t4 type 
  el(t4,t2) 
). 
 
fof(anonymous, axiom, 
  % tuple equality t6 
  ![X552,X554,X553,X555]: 
    ((el(X552,t_Order) & el(X554,t_Customer) & el(X 553,t_Order) & el(X555,t_Customer)) => 
     (ord_t6(X552,X554)=ord_t6(X553,X555) <=> (X552  = X553 & X554 = X555))) & 
  % tuple type t6 
  ![X552,X554]:((el(X552,t_Order) & el(X554,t_Custo mer)) => (el(ord_t6(X552,X554), t6))) 
). 
 
fof(anonymous, axiom, 
  % set equality t7 
  ![VAL556,VAL557]:((el(VAL556,t7) & el(VAL557,t7))  => 
    ((![EL558]:(el(EL558,t6) => 
     (el(EL558,VAL556) <=> el(EL558,VAL557)))) => V AL556=VAL557)) 
). 
 
% {X35: ORDER; X36: CUSTOMER}  
fof(anonymous, axiom, 
  % t6 membership 
  ![EL551]:(el(EL551,t6) => (el(EL551,t6) <=> 
    (?[X35,X36]:((el(X35,t_Order) & el(X36,t_Custom er)) & (EL551=ord_t6(X35,X36)))))) & 
  % t6 type 
  el(t6,t7) 
). 
 
fof(anonymous, axiom, 
  % set equality t5 
  ![VAL560,VAL561]:((el(VAL560,t5) & el(VAL561,t5))  => ((![EL562]:(el(EL562,t7) => 
    (el(EL562,VAL560) <=> el(EL562,VAL561)))) => VA L560=VAL561)) 
). 
 
% P {X35: ORDER; X36: CUSTOMER}  
fof(anonymous, axiom, 
  % t7 membership 
  ![X559]:(el(X559,t7) => (el(X559,t7) <=> ![Y]:(el (Y,t6) => (el(Y,X559) => el(Y,t6))))) 
& 
  % t7 type 
  el(t7,t5) 
). 
 
% orderStatus (orderI)  
fof(anonymous, axiom, 
  % orderStatus(A563) equality 
  ![A563,VAL564]:((el(A563,t_Order) & el(VAL564,t_S tatus)) => 
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    ((el(ord_t3(A563,VAL564),orderStatus)) => (orde rStatus(A563)=VAL564))) & 
  % orderStatus(A563) type 
  ![A563]:(el(A563,t_Order) => (el(orderStatus(A563 ),t_Status))) 
). 
 
% +.. 
%  override: (ORDER <=--> STATUS) x (ORDER <=--> ST ATUS) --> (ORDER <=--> STATUS)  
% | 
%  A r: ORDER <=--> STATUS @ 
%    override (r,{orderI |--> cancelled}) = 
%      {x: ORDER x STATUS | (x e r /\ (A p: {orderI  |--> cancelled} @ x . 1 /= p . 1)) \/ 
%        x e {orderI |--> cancelled}}  
% ---  
% ---------------------- rewritten to ------------- ---------------- 
% +.. 
%  override: P {X194: {X202: P {X210: ORDER; X211: STATUS}; 
%               X203: P {X212: ORDER; X213: STATUS} }; 
%               X195: P {X204: ORDER; X205: STATUS} }  
% | 
%  A X220: P {X229: ORDER; X230: STATUS}; X221: P { X231: ORDER; X232: STATUS} @ 
%   E y: P {X240: ORDER; X241: STATUS} @ ((X220,X22 1),y) e override /\ 
%    (A y': P {X256: ORDER; X257: STATUS} @ not ((X 220,X221),y') e override \/ 
%     (A X287: ORDER; X288: STATUS @ not (X287,X288 ) e y' \/ (X287,X288) e y)) /\ 
%      (A y': P {X256: ORDER; X257: STATUS} @ not ( (X220,X221),y') e override \/ 
%       (A X291: ORDER; X292: STATUS @ not (X291,X2 92) e y \/ (X291,X292) e y'))  
%  A r: P {X207: ORDER; X208: STATUS}; X242: ORDER;  X243: STATUS @ 
%    not (X242,X243) e override (r,{(orderI,cancell ed)}) \/ 
%     (A X272: ORDER @ not X272 = orderI \/ not X24 2 = X272) \/ X243 = cancelled  
%  A r: P {X207: ORDER; X208: STATUS}; X242: ORDER;  X243: STATUS @ 
%    not (X242,X243) e override (r,{(orderI,cancell ed)}) \/ 
%     (A X272: ORDER @ not X272 = orderI \/ not X24 2 = X272) \/ X242 = orderI  
%  A r: P {X207: ORDER; X208: STATUS}; X242: ORDER;  X243: STATUS @ 
%    not (X242,X243) e override (r,{(orderI,cancell ed)}) \/ 
%     (X242,X243) e r \/ X243 = cancelled  
%  A r: P {X207: ORDER; X208: STATUS}; X242: ORDER;  X243: STATUS @ 
%    not (X242,X243) e override (r,{(orderI,cancell ed)}) \/ 
%     (X242,X243) e r \/ X242 = orderI  
%  A r: P {X207: ORDER; X208: STATUS}; X246: ORDER;  X247: STATUS @ 
%    (X246,X247) e override (r,{(orderI,cancelled)} ) \/ 
%      not X246 = orderI \/ not X247 = cancelled  
%  A r: P {X207: ORDER; X208: STATUS}; X246: ORDER;  X247: STATUS @ 
%    (X246,X247) e override (r,{(orderI,cancelled)} ) \/ 
%      not (X246,X247) e r \/ X246 = orderI  
% ---  
fof(anonymous, axiom, 
  el(override, t10) &  
  ![X220,X221]: (el(X220, t4) & el(X221, t4) => 
   (?[Y]: (el(Y, t4) & (el(ord_t9(ord_t11(X220,X221 ),Y),override) & 
    ![Y_]: (el(Y_, t4) => (~el(ord_t9(ord_t11(X220, X221),Y_),override) | 
     (![X287,X288]: ((el(X287,t_Order) & el(X288,t_ Status)) => 
      (~el(ord_t3(X287,X288),Y_) | el(ord_t3(X287,X 288),Y)))))) & 
       ![Y_]: (el(Y_, t4) => (~el(ord_t9(ord_t11(X2 20,X221),Y_),override) | 
        (![X291,X292]: ((el(X291,t_Order) & el(X292 ,t_Status)) => 
         ((~el(ord_t3(X291,X292),Y) | el(ord_t3(X29 1,X292),Y_))))))))))) &  
  ![R,X242,X243]: ((el(R, t4) & el(X242,t_Order) & el(X243,t_Status)) => 
    ((~el(ord_t3(X242,X243),override(R,const9)) | 
     (![X272]: (el(X272,t_Order) => 
      ((~(X272 = orderI) | ~(X242 = X272)))))) | X2 43 = cancelled)) &  
  ![R,X242,X243]: ((el(R, t4) & el(X242,t_Order) & el(X243,t_Status)) => 
    ((~el(ord_t3(X242,X243),override(R,const9)) | 
     (![X272]: (el(X272,t_Order) => 
      ((~(X272 = orderI) | ~(X242 = X272)))))) | X2 42 = orderI)) &  
  ![R,X242,X243]: ((el(R, t4) & el(X242,t_Order) & el(X243,t_Status)) => 
    ((~el(ord_t3(X242,X243),override(R,const9)) | 
     el(ord_t3(X242,X243),R)) | X243 = cancelled)) &  
  ![R,X242,X243]: ((el(R, t4) & el(X242,t_Order) & el(X243,t_Status)) => 
    ((~el(ord_t3(X242,X243),override(R,const9)) | 
      el(ord_t3(X242,X243),R)) | X242 = orderI)) &  
  ![R,X246,X247]: ((el(R, t4) & el(X246,t_Order) & el(X247,t_Status)) => 
    ((el(ord_t3(X246,X247),override(R,const9)) | 
     ~(X246 = orderI)) | ~(X247 = cancelled))) &  
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  ![R,X246,X247]: ((el(R, t4) & el(X246,t_Order) & el(X247,t_Status)) => 
    ((el(ord_t3(X246,X247),override(R,const9)) | 
     ~el(ord_t3(X246,X247),R)) | X246 = orderI)) 
). 
 
fof(anonymous, axiom, 
  % tuple equality t11 
  ![X566,X569,X567,X570]:((el(X566,t4) & el(X569,t4 ) & el(X567,t4) & el(X570,t4)) => 
    (ord_t11(X566,X569) = ord_t11(X567,X570) <=> (! [EL568]:(el(EL568,t3) => 
     (el(EL568,X566) <=> el(EL568,X567))) & 
      ![EL571]:(el(EL571,t3) => (el(EL571,X569) <=>  el(EL571,X570)))))) & 
  % tuple type t11 
  ![X566,X569]:((el(X566,t4) & el(X569,t4)) => (el( ord_t11(X566,X569), t11))) 
). 
 
fof(anonymous, axiom, 
  % set equality t12 
  ![VAL572,VAL573]:((el(VAL572,t12) & el(VAL573,t12 )) => 
    ((![EL574]:(el(EL574,t11) => 
     (el(EL574,VAL572) <=> el(EL574,VAL573)))) => V AL572=VAL573)) 
). 
 
% {X202: P {X210: ORDER; X211: STATUS}; X203: P {X2 12: ORDER; X213: STATUS}}  
fof(anonymous, axiom, 
  % t11 membership 
  ![EL565]:(el(EL565,t11) => (el(EL565,t11) <=> 
    (?[X202,X203]: ((el(X202, t4) & el(X203, t4)) &  (EL565 = ord_t11(X202,X203)))))) & 
  % t11 type 
  el(t11,t12) 
). 
 
fof(anonymous, axiom, 
  % tuple equality t9 
  ![X576,X578,X577,X579]:((el(X576,t11) & el(X578,t 4) & el(X577,t11) & el(X579,t4)) => 
    (ord_t9(X576,X578) = ord_t9(X577,X579) <=> 
     (X576=X577 & ![EL580]:(el(EL580,t3) => (el(EL5 80,X578) <=> el(EL580,X579)))))) & 
  % tuple type t9 
  ![X576,X578]:((el(X576,t11) & el(X578,t4)) => (el (ord_t9(X576,X578), t9))) 
). 
 
fof(anonymous, axiom, 
  % set equality t10 
  ![VAL581,VAL582]:((el(VAL581,t10) & el(VAL582,t10 )) => 
    ((![EL583]:(el(EL583,t9) => 
     (el(EL583,VAL581) <=> el(EL583,VAL582)))) => V AL581=VAL582)) 
). 
 
% {X194: {X202: P {X210: ORDER; X211: STATUS}; X203 : P {X212: ORDER; X213: STATUS}}; 
X195: P {X204: ORDER; X205: STATUS}}  
fof(anonymous, axiom, 
  % t9 membership 
  ![EL575]:(el(EL575,t9) => (el(EL575,t9) <=> 
    (?[X194,X195]: ((el(X194, t11) & el(X194,t11) &  el(X195, t4)) & 
       (EL575 = ord_t9(X194,X195)))))) & 
  % t9 type 
  el(t9,t10) 
). 
 
fof(anonymous, axiom, 
  % set equality t8 
  ![VAL585,VAL586]:((el(VAL585,t8) & el(VAL586,t8))  => 
    ((![EL587]:(el(EL587,t10) => 
     (el(EL587,VAL585) <=> el(EL587,VAL586)))) => V AL585=VAL586)) 
). 
 
% P {X194: {X202: P {X210: ORDER; X211: STATUS}; X2 03: P {X212: ORDER; X213: STATUS}}; 
%    X195: P {X204: ORDER; X205: STATUS}}  
fof(anonymous, axiom, 
  % t10 membership 
  ![X584]:(el(X584,t10) => 
    (el(X584,t10) <=> ![Y]:(el(Y,t9) => (el(Y,X584)  => el(Y,t9))))) & 
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  % t10 type 
  el(t10,t8) 
). 
 
% {X588: ORDER x STATUS | X588 = (orderI,cancelled) }  
fof(anonymous, axiom, 
  % const9 membership 
  ![X588]:(el(X588,t3) => (el(X588,const9) <=> 
    (el(X588, t3) & el(X588,t3) & X588 = ord_t3(ord erI,cancelled)))) & 
  % const9 type 
  el(const9,t4) 
). 
 
% override (r,{(orderI,cancelled)})  
fof(anonymous, axiom, 
  % override(A591,A592) equality 
  ![A591,A592,VAL593]:((el(A591,t4) & el(A592,t4) &  el(VAL593,t4)) => 
    ((el(ord_t9(ord_t11(A591,A592),VAL593),override )) => 
     (override(A591,A592)=VAL593))) & 
  % override(A591,A592) type 
  ![A591,A592]:((el(A591,t4) & el(A592,t4)) => (el( override(A591,A592),t4))) 
). 
 
 
% +..  
% | 
%  orderStatus' = override (orderStatus,{(orderI,ca ncelled)})  
% ---  
% ---------------------- rewritten to ------------- ---------------- 
% +..  
%  X464: ORDER  
%  X465: STATUS  
%  X466: ORDER  
%  X467: STATUS  
% | 
%  A X312: ORDER; X313: STATUS @ not (X312,X313) e orderStatus' \/ 
%                        (X312,X313) e override(ord erStatus,{(orderI,cancelled)})  
%  A X316: ORDER; X317: STATUS @ 
%    not (X316,X317) e override (orderStatus,{(orde rI,cancelled)}) \/ 
%    (X316,X317) e orderStatus'  
% ---  
% |-? not (X464,X465) e orderStatus' \/ not (X466,X 467) e orderStatus' \/ 
%     not X464 = X466 \/ X465 = X467  
fof(anonymous, axiom, 
  el(x464,t_Order) &  
  el(x465,t_Status) &  
  el(x466,t_Order) &  
  el(x467,t_Status) & 
  ![X312,X313]: ((el(X312,t_Order) & el(X313,t_Stat us)) => 
    (~el(ord_t3(X312,X313),orderStatus_) | 
    el(ord_t3(X312,X313),override(orderStatus,const 9)))) &  
  ![X316,X317]: ((el(X316,t_Order) & el(X317,t_Stat us)) => 
    (~el(ord_t3(X316,X317),override(orderStatus,con st9)) | 
    el(ord_t3(X316,X317),orderStatus_))) 
). 
fof(conjecture, conjecture, 
  ~el(ord_t3(x464,x465),orderStatus_) | ~el(ord_t3( x466,x467),orderStatus_) | 
  ~(x464 = x466) | x465 = x467 
). 
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Abstract. The specification of enterprise information systems using formal 
specification languages enables the formal verification of these systems. 
Reasoning about the properties of a formal specification is a tedious task that 
can be facilitated much through the use of an automated reasoner. However, set 
theory is a corner stone of many formal specification languages and poses 
demanding challenges to automated reasoners. To this end a number of 
heuristics has been developed to aid the Otter theorem prover in finding short 
proofs for set theoretic problems. This paper investigates the applicability of 
these heuristics to a next generation theorem prover Vampire. 

1   Introduction 

Mathematical set theory is a building block of a number of formal specification 
languages, e.g. both Z [13] and B [1] are based on strongly-typed fragments of 
Zermelo-Fraenkel (ZF) [3] set theory. One of the advantages in using a formal 
notation for specifying an enterprise information system is that the specifier may 
formally reason about the properties of the system. In particular one may want to 
prove that the proposed system will behave in a certain way or that some unwanted 
behaviour will not occur. However, writing out such proofs is a tedious task as may 
be observed in [8]. Hence of particular interest to a specifier could be the feasibility of 
using an automated reasoning program [12, 17] to reason about such properties. 

When reasoning about the properties of a specification language based on set 
theory, one inevitably has to move to the level of sets and the various operations 
defined on them. These operations in turn are based on the underlying axioms of the 
particular set theory in question.  

1.2   Set-Theoretic Reasoning Heuristics 

Set theoretic reasoning brings about a number of problems, especially if one opts for a 
resolution-based reasoner like Otter [6]. Much of the complexity arises from the fact 
that sets may be elements of other sets. Constructs in set theory are often strongly 
hierarchical and may lead to deeply nested structures that greatly increase a problem’s
search complexity [9]. In the following equality  
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P(A) = P(B) j A = B 

a reasoner has to transcend from the level of elements in set A to the level of 
elements in P(A) in its search for a proof, but should be prevented from transcending 
to the level of P(P(A)) which would greatly and unnecessarily enlarge the search 
space. It is generally accepted that heuristics are needed to guide reasoners, especially 
in the context of set-theoretic proofs [2]. One such set of heuristics for reasoning 
about set theory has been developed previously [15, 16], mainly through observing 
the behaviour of the resolution-based reasoner, Otter in its search for proofs. In total 
14 heuristics, based on recognisable patterns, were developed and the question arises 
whether these heuristics have a wider applicability to other resolution-based 
reasoners, e.g. Vampire [12] and Gandalf [14]. This paper investigates the utility of 
the said heuristics for Vampire. 

1.3   Layout of this Paper 

Section 2 gives a brief introduction and justification of the use of the Vampire prover 
in this work. Section 3 presents the main results of our work, namely, the extent to 
which Vampire also needs the heuristics previously arrived at through the use of 
Otter. A case study in section 4 illustrates the utility of some of the heuristics on a 
small Z specification. We conclude with an analysis and pointers for future work. 

2   The Vampire Theorem Prover 

We chose Vampire [10, 12], a resolution-based automated reasoner for first-order 
logic with equality for evaluating the wider applicability of the 14 heuristics 
mentioned above for two reasons: The first is because of its consistent success at the 
annual CADE ATP System Competitions (CASC) [7]. The second reason stems from 
the fact that Vampire has solved more set-theoretic problems than any of the other 
competing provers in the period from 2002 to 2005 across all CASC divisions 
involving these problems. If we can show that Vampire benefits from the heuristics 
developed before, then it is plausible that other reasoners may benefit from these 
heuristics as well. 

Vampire is a saturation-based reasoner and implements three different saturation 
algorithms that can be selected for its main loop for inferring and processing clauses. 
The three saturation algorithms are an Otter loop with or without the Limited 
Resource Strategy and the Discount loop. These algorithms belong to the class of 
given-clause algorithms. Vampire’s algorithm is a slight modification of the 
saturation algorithm used by Otter [6]. 

The Limited Resource Strategy [11] aims to improve the efficiency of the Otter 
algorithm when a time limit is imposed by identifying and discarding passive clauses 
that have little chance to be processed within the time limit. The Limited Resource 
Strategy is therefore not a complete proof procedure.  
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3   Evaluation of Set-Theoretic Reasoning Heuristics 

In this section we measure the utility of some previously developed heuristics [15, 16] 
for Vampire. Fourteen heuristics were originally developed, but for reasons of space 
we evaluate 5 heuristics. Our experiments follow a pattern: First we present our 
sample problem and the ZF axiom(s) on which the problem is based. Then we report 
the performance of Otter in an attempt to solve the problem. From a failed proof 
attempt we define a heuristic that allows Otter to successfully solve the problem. Next 
Vampire is used on the original problem to determine its need for the particular 
heuristic. In some cases we increase the complexity of the problem as an additional 
test.  

We used Vampire version 8.0 that was also used at the CADE ATP System 
Competition [7] in 2005 (CASC-20). A time limit of 30 minutes and a memory limit 
of 128MB were imposed which causes Vampire to use its limited resource strategy. 
No changes were made to Vampire’s other default settings. 

3.1   Equality versus Extensionality 

Our first sample problem based on equality and the power set axiom is given by: 

P{{1}} = { ∅, {{1}}} (1) 

Currently neither Otter nor Vampire accept formulae in the highly evolved notation 
of ZF set theory, hence the user has to rewrite set-theoretic formulae like (1) above in 
a weaker first-order language. Therefore, proof obligation in (1) is rewritten as: 

A = {1} ∧ B = {A} ∧ C = P(B) ∧ D = {∅, B} → C = D (2) 

Further decomposition is required for P(B) as follows: 

∀x(x ∈ C ↔ ∀y(y ∈ x → y ∈ B)) (3) 

Otter finds no proof for (2) in 20 minutes. Next, using the extensionality axiom we 
replace the consequent (C=D) by 

∀x(x ∈ C ↔ x ∈ D) (4) 

and this allows Otter to find a proof in 0.03 seconds. These findings lead to the 
following heuristic (for the sake of this paper we call it Heuristic #1): 

 
Heuristic #1:  Use the principle of extensionality to replace set equality with the 
condition under which two sets are equal, i.e., when their elements are the same. 
 
When the same problem (2) is given to Vampire, it has no difficulty in finding a 

proof in 1.3 seconds. The application of the above extensionality heuristic leads to an 
equally fast proof in 0.1 seconds. These times are too short to determine the utility of 
the heuristic for Vampire. However, consider the following, more complex example 
involving a subset axiom of arbitrary intersection:  
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∩ {{1,2,3}, {2,3,4}} = {2,3} (5) 

As before formula (5) is rewritten to make the relevant constructions explicit: 

A = {1,2,3} ∧ B = {2,3,4} ∧ C = {A,B} ∧ D = {2,3}→ ∩C = D (6) 

This time Vampire finds no proof within 30 minutes. When we however apply the 
principle of extensionality to the consequent of formula (6) as in 

∀x(x ∈ ∩C ↔ x ∈ D) (7) 

then Vampire finds a short proof in 0.4 seconds. Therefore Heuristic #1 appears to 
be useful for Vampire as well, depending on the complexity of the problem. 

3.2   Nested Functors 

An effective heuristic is to give preference to deductions containing smaller clauses 
[5], i.e. clauses containing fewer literals or clauses of smaller term depth. The use of 
nested function symbols (called functors) leads to larger term depth and complicates 
unification. The nesting of function symbols occurs often, e.g.: 

(A + B) + C = A + (B + C) (8) 

Formula (8) states that set-theoretic symmetric difference (denoted by ‘+’) is 
associative. The symmetric difference of sets A and B is defined as A + B = (A – B) 
∪ (B – A) = {x | ((x ∈ A) ∧ (x ∉ B)) ∨ ((x ∉ A) ∧ (x ∈ B))}. Therefore formula (8) 
employs equality as well as a ZF subset axiom as instantiated by set-theoretic 
difference. A first-order definition of the symmetric difference functor is: 

∀A∀B∀x(x ∈ symmdiff(A,B) ↔ ((x ∈ A ∧ x ∉ B) ∨ (x ∉ A ∧ x ∈ B))) (9) 

The conclusion of the proof is then stated as: 

∀x(x ∈ symmdiff(symmdiff(A,B), C) ↔  
x ∈ symmdiff(A, symmdiff(B,C))) 

(10) 

With this formulation it takes Otter 4 minutes 3 seconds to find a proof of (10). 
Unfolding, and thereby effectively removing, the nested functors as 

D = A + B ∧ E = D + C ∧ F = B + C ∧ G = A + F →  
∀x(x ∈ E ↔ x ∈ G) 

(11) 

allows Otter to find a proof in only 0.17 seconds, suggesting: 
 
Heuristic #2:  Avoid, if possible, the use of nested functor symbols in definitions. 
 
Vampire quickly finds a proof of (10) in less than 0.1 seconds, both with or 

without the use of the nested functor heuristic. We therefore increase the complexity 
of the problem to further investigate the utility of Heuristic #2 for Vampire. Note that 
in both problem formulations the extensionality heuristic was already applied to 
problem conclusions. Rewriting (10) without using extensionality as  
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symmdiff(symmdiff(A,B), C) = symmdiff(A, symmdiff(B,C)) (12) 

results in Vampire finding no proof after 30 minutes. Next we apply the nested 
functor heuristic by rewriting our problem using Skolem constants: 

D = A + B ∧ E = D + C ∧ F = B + C ∧ G = A + F →  E = G (13) 

Vampire now finds a proof after only 0.5 seconds.  

3.3   Divide-and-Conquer 

The heuristic examined in this section is applicable to proofs where the consequence 
of the proof contains a set equality or an if-and-only-if formula. A set equality in the 
conclusion of a proof implies ‘if and only if’ via the axiom of extensionality. Owing 
to the if-and-only-if formula, a specifier can perform two separate proofs, one for the 
only-if part and another proof for the if part. Consider the following sample problem 
based on equality and the power set axiom: 

P{0,1} = { ∅, {0}, {1}, {0,1}} (14) 

The formula is rewritten to make the relevant constructions explicit: 

A = {0} ∧ B = {1} ∧ C = {0,1} ∧ D = P(C) ∧ E = {∅, A, B, C} →  
D = E 

(15) 

Otter terminates without finding a refutation after 30 minutes. We resort to our 
extensionality heuristic by changing the conclusion to: 

∀x(x ∈ D ↔ x ∈ E) (16) 

Otter now finds a proof in 3 minutes 23 seconds. An alternative approach is to 
perform two separate proofs, one for each half of (16) and in the two proofs specify 
the conclusions as in (17) and (18) below. 

∀x(x ∈ D → x ∈ E) (17) 

∀x(x ∈ E → x ∈ D) (18) 

Otter proves (17) and (18) in 0.43 and 0.03 seconds respectively, leading to: 
 
Heuristic #3:  Perform two separate subset proofs whenever the problem at hand 
requires one to prove the equality of two sets. 
 
Vampire is also unable to find a proof for (15) after 30 minutes. However for (16), 

(17) and (18) Vampire finds quick proofs in 0.8, 0.3 and 0.1 seconds respectively. 
These times are too short to affirm the utility of the divide-and-conquer heuristic for 
Vampire. As before we increase the complexity of the problem through the equality: 

P{0,1,2} = {∅, {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}} (19) 

Formula (19) is again rewritten to make the relevant constructions explicit:  
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A = {0} ∧ B = {1} ∧ C = {2} ∧ D = {0,1} ∧ E = {0,2} ∧ F = {1,2} ∧ 
G = {0,1,2} ∧ H = P(G) ∧ I={ ∅, A, B, C, D, E, F, G} → H=I 

(20) 

Vampire terminates without finding a refutation after 8 minutes 53 seconds with 
the message ‘no passive clauses left’. Note that this does not mean that a refutation 
does not exist. Since Vampire was run with both a time and memory limit, it uses the 
limited resource strategy [11], which is not a complete search strategy. Applying our 
extensionality heuristic by rewriting (H = I) above as 

∀x(x ∈ H ↔ x ∈ I) (21) 

allows Vampire to find a proof after 8 minutes 40 seconds which is still too long. 
By applying divide-and-conquer to (21) in the usual way allows Vampire to find short 
proofs in 28 secs and 2 secs respectively, illustrating the utility of the heuristic. 

3.4   Exemplification 

When writing the contents of sets in list notation one naturally tends to define these 
sets using one or more levels of indirection by moving from the various elements to a 
symbol representing the collection of those elements. The sample problem used for 
the divide-and-conquer heuristic will be used here as well, viz: 

P{0,1} = { ∅, {0}, {1}, {0,1}} (22) 

Recall that Otter failed to find a proof in 30 minutes for the initial unfolding in 
(15). Suppose we remove one level of indirection by eliminating symbol E, i.e.  

A = {0} ∧ B = {1} ∧ C = {0,1} ∧ D = P(C) → D = {∅, A, B, C} (23) 

where D = {∅, A, B, C} is unfolded (repeatedly using the ZF pairing axiom) as 

∀x(x ∈ D ↔ (x = ∅ ∨ x = A ∨ x = B ∨ x = C)) (24) 

in the proof conclusion. With this formulation Otter finds a proof in 4 minutes 5 
seconds. These results lead us to the following heuristic: 

 
Heuristic #4:  Avoid unnecessary levels of elementhood in formulae by using the 
elements of sets directly. 
 
The divide-and-conquer heuristic can be applied to this last proof attempt to yield 

proofs in 0.34 and 0.03 seconds for the ‘only-if’ and ‘if’ directions respectively. 
Vampire was also unable to find a proof for (15) within 30 minutes. However, for 
(23) Vampire finds a proof in 0.8 seconds. In this example, therefore, it was not 
necessary to increase the complexity of the problem to illustrate the utility of the 
heuristic for Vampire. If we do increase the complexity of the problem by again using 
formula (19) as an example, but instead of unfolding it as in (20) we unfold it as 

A = {0} ∧ B = {1} ∧ C = {2} ∧ D = {0, 1} ∧ E = {0, 2} ∧ 
F = {1, 2} ∧ G = {0, 1 ,2} ∧ H = P(G) → H = {∅, A, B, C, D, E, F, G} 

(25) 
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then Vampire finds a proof in 5 minutes and 50 seconds. The divide-and-conquer 
heuristic can be applied to this last proof attempt to yield proofs in 31.5 and 1.6 
seconds for the ‘only-if’ and ‘if’ directions respectively. 

3.5   Multivariate Functors 

Functors containing variables as arguments lead to more unifications, which in turn 
lead to a larger search space. Functors are often introduced by Skolemisation [4], 
which occurs when first order formulae are clausified to serve as input to the 
resolution mechanism. If an existential quantifier occurs within the scope of any 
universal quantifiers, the existential quantifier is replaced by a Skolem functor taking 
each of the universally quantified variables as an argument. 

The example problem (15) will be used again with the extensionality heuristic 
applied to the conclusion as in (16). First we define the term D = P(C) indirectly as 

∀x(x ∈ D ↔ x ⊆ C) (26) 

where the subset functor ⊆ is defined as 

∀A∀B(A ⊆ B ↔ ∀y(y ∈ A → y ∈ B)) (27) 

With this formulation Otter finds no proof in 30 minutes. The clausification of (27) 
results in variable y being replaced by a Skolem function of the two variables A and B. 
The effect of Skolemisation may be reduced by eliminating one of the universally 
quantified variables in (27), e.g. replace variable B by the constant C in (26): 

∀A(A ⊆ C ↔ ∀y(y ∈ A → y ∈ C)) (28) 

Now Otter finds a proof after 4 minutes 5 seconds. Variable y in the clausal form 
of (28) is now replaced by a Skolem functor of only one variable as opposed to a 
functor of two variables in (27). The possibility of irrelevant unifications with this 
Skolem functor has therefore been reduced. It should also be noted that the subset 
functor ⊆ in both cases has an arity of two, but in (27) it contains two variables as 
opposed to one constant and one variable in (28). These results lead to: 

 
Heuristic #5: Simplify terms in sets by either not involving functors, or else 
functors with the minimum number of argument positions taken up by variables. 
 
Vampire finds quick proofs with or without the heuristic applied. With the subset 

functor formulated as in (27) it finds a proof in 21 seconds and for (28) in 0.1 
seconds. The relative improvement in search time is significant. However, the search 
time for (27) may still be too low to seriously justify the use of the heuristic. We 
therefore increase the complexity of the problem to further test our heuristic. The 
example problem (20) that was also used in the divide-and-conquer heuristic has 
sufficient complexity and will be used again with the extensionality heuristic applied 
to the conclusion as in (21). As before, the term H = P(G) is unfolded as 

∀x(x ∈ H ↔ x ⊆ G) (29) 
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where the subset functor ⊆ is again defined as in (27). With this formulation 
Vampire finds no proof in 30 minutes. We next apply the multivariate functor 
heuristic by defining the subset functor with variable B replaced by the constant G: 

∀A(A ⊆ G ↔ ∀y(y ∈ A → y ∈ G)) (30) 

Now Vampire finds a proof after 1 minute and 32 seconds. This result can further 
be improved through divide-and-conquer. The times for the two sub-proofs are 5.2 
and 0.3 seconds respectively.  

4   Case Study:  Football Fan Register 

The following case study serves as a very small example of the specification of an 
enterprise information system using Z and the subsequent reasoning about one of its 
properties using the heuristics of the previous section. 
A Football Identity Scheme allocates each fan a single unique identity code. It also 
keeps a list of troublemakers who have been banned from attending matches. 
PERSON and ID are two given sets and represent the set of people and the set of all 
possible identity codes. The system state is recorded by FIS [8]:  

 
»FIS______________________________ 
Æ members: ID © PERSON;  banned: P ID 
«_________ 
Æ banned z dom members 
–_______________________________ 
The partial injective function members maps identity codes to fans. The set banned 

is a set of banned identity codes and is a subset of the domain of members. 
Schema AddMember adds members to the system. It takes a person as input and 

returns a newly allocated identity code. 
 
» AddMember ______________________________ 
ÆDFIS 
Æperson?: PERSON;  id!: ID 
«_________ 
Æperson? ‰ ran members ¶ id! ‰ dom members 
Æmembers'  = members U { id! å person?} ¶ banned'  = banned 
–____________________________________ 

A Proof Obligation 

Next we show how some of the above heuristics may be used to successfully 
discharge a proof obligation arising from the specification. We want to show that 
members'  is still an injective function. The following are given as input to Vampire:  
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members e rel(id,person) ¶ isSiv(members) ¶ isInjective(members) (31) 

banned e P(id) ¶ banned z dom(members) ¶ person? e person ¶ id! e id (32) 
person? ‰ ran(members) (33) 

id! ‰ dom(members) ¶ ![M]: (M e newMembers ¤ M=ord(id!,person?)) (34) 
members’ = members U newMembers ¶ banned’ = banned (35) 

 
These facts represent the state FIS and operation AddMember Formula (31) states 

that members is a relation that is single valued and injective, i.e. a partial injective 
function [13]. The axioms for rel, isSiv, isInjective, dom, ran, subset, union etc. are 
not shown here but are part of the input to Vampire. 

The proof obligation is stated as: 

members’ e rel(id,person) ¶ isSiv(members’) ¶ isInjective(members’) (36) 

Vampire finds no proof for (36) in 30 minutes. The divide-and-conquer heuristic 
can be applied to (36), resulting in three separate sub-proofs with consequents: 

members’ e rel(id,person) 
isSiv(members’) 

isInjective(members’) 

(37) 
(38) 
(39) 

Vampire finds proofs for (38) and (39) in 14 minutes 48 seconds and 14 minutes 
24 seconds respectively, but fails to find a proof for (37) after 30 minutes. Next we 
apply the multivariate functor heuristic by removing axioms for union, domain, 
injectivity, single valued ness, power set, range, relation and subset and replace them 
by instances of the same axioms where some variables are replaced by constants. For 
example, (33) requires the following definition for the range of a relation: 

AR AY[Y e ran(R) ¤ E(X)(ord(X,Y) e R)] (40) 

A replacement instance of (40) is therefore added to the proof attempt where 
variable R is replaced with constant members: 

AY[Y e ran(members) ¤ E(X)(ord(X,Y) e members)] (41) 

Vampire now finds quick proofs for (38) and (39) in 4 and 7 seconds respectively. 
Vampire still cannot find a proof for (37) in 30 minutes. We finally apply the nested 
functor heuristic to all the introduced axiom instances like (41). For example, (41) 
contains the nested functors el(Y,ran(members)) and is replaced by: 

ranMems = ran(members) ¶ 
AY[Y e ranMems ¤ E(X)(ord(X,Y) e members)] 

(42) 

Vampire finds a solution for sub-proof (37) in 9 minutes and 18 seconds. Solutions 
for (38) and (39) are also found slightly faster in 2 and 4 seconds respectively.  
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5   Conclusions and Future Work 

In this paper we investigated to what extent a previously developed set of heuristics to facilitate 
proofs in set theory for a resolution-based automated reasoner are applicable to another reasoner 
with similar characteristics. The Vampire theorem prover was chosen for this task owing to its 
steadfast performance at recent CASC competitions. We evaluated 5 heuristics and found that all 
these heuristics are indeed needed, even though the original problem often had to be enlarged to 
illustrate the utility of the given heuristic using the new reasoner. Our heuristics appear to have 
an even larger support base since we also tested these on another reasoner, namely, Gandalf [14] 
and comparable results as reported on in this paper were witnessed. 

Future work in this area may include an investigation into the applicability of the rest of our 
heuristics. Preliminary results indicate that at least 11 of the original 14 heuristics are useful, 
some addressing the challenge of tuples and functors with arity 6 or more [15].  
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