

VALIDATING REASONING HEURISTICS USING NEXT GENERATI ON

THEOREM PROVERS

by

PAUL STEPHANES STEYN

submitted in fulfilment of the requirements for the

degree of

MASTER OF SCIENCE

in the subject of

COMPUTER SCIENCE

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: PROF JA VAN DER POLL

JANUARY 2009

 ii

Abstract

The specification of enterprise information systems using formal specification languages

enables the formal verification of these systems. Reasoning about the properties of a formal

specification is a tedious task that can be facilitated much through the use of an automated

reasoner. However, set theory is a corner stone of many formal specification languages and

poses demanding challenges to automated reasoners. To this end a number of heuristics has

been developed to aid the Otter theorem prover in finding short proofs for set-theoretic

problems. This dissertation investigates the applicability of these heuristics to next generation

theorem provers.

Keywords: automated reasoning, automated theorem proving, first-order logic, formal

specification, Gandalf, heuristics, Otter, resolution, Vampire, set theory, Z, Zermelo-Fraenkel

 iii

Contents

1 INTRODUCTION ... 1

1.1 MOTIVATION .. 1

1.2 RESEARCH QUESTION... 2

1.3 HYPOTHESIS... 2

1.4 APPROACH.. 3

1.5 DISSERTATION LAYOUT.. 3

2 INTRODUCTION TO MATHEMATICAL SET THEORY............ ... 5

2.1 ZERMELO-FRAENKEL SET THEORY ..5

2.1.1 Extensionality Axiom.. 7

2.1.2 Empty set Axiom ... 7

2.1.3 Pairing Axiom... 7

2.1.4 Union Axiom... 8

2.1.5 Subset Axiom .. 8

2.1.6 Power set Axiom... 9

2.1.7 Infinity Axiom ... 9

2.1.8 Axiom of replacement ... 10

2.1.9 Axiom of foundation or regularity .. 10

2.1.10 Axiom of choice .. 11

2.1.11 Example .. 11

2.2 LIMITATIONS OF ZF AXIOMS IN AUTOMATED THEOREM PROVING... 12

2.3 SUMMARY .. 13

 iv

3 RESOLUTION .. 14

3.1 DECIDABILITY AND HERBRAND’S UNIVERSE.. 14

3.2 RESOLUTION... 16

3.2.1 Clausal Form.. 16

3.2.2 Resolution in Propositional Logic .. 18

3.2.3 Resolution in First-order Predicate Logic.. 22

3.3 EFFICIENCY ENHANCEMENTS... 29

3.4 REFINEMENTS... 30

3.4.1 Linear Resolution ... 31

3.4.2 Semantic Resolution ... 37

3.4.3 UR-resolution ... 44

3.4.4 Hyperresolution.. 46

3.4.5 Set-of-Support strategy ... 50

3.5 REDUNDANCY AND DELETION.. 52

3.5.1 Subsumption ... 52

3.5.2 Tautologies ... 54

3.6 THEORY RESOLUTION... 55

3.6.1 The Equality Predicate ... 56

3.6.2 Paramodulation.. 57

3.6.3 Demodulation ... 60

3.7 HEURISTICS.. 63

3.8 SUMMARY .. 66

4 AUTOMATED THEOREM PROVERS... 67

4.1 VAMPIRE .. 68

 v

4.2 GANDALF .. 72

4.3 SUMMARY .. 75

5 EVALUATION OF SET-THEORETIC REASONING HEURISTICS 77

5.1 EQUALITY VERSUS EXTENSIONALITY ... 78

5.2 NESTED FUNCTORS... 80

5.3 DIVIDE-AND-CONQUER.. 82

5.4 EXEMPLIFICATION .. 84

5.5 MULTIVARIATE FUNCTORS... 86

5.6 INTERMEDIATE STRUCTURE.. 88

5.7 ELEMENT STRUCTURE.. 90

5.8 REDUNDANT INFORMATION.. 91

5.9 SEARCH-GUIDING ... 93

5.10 RESONANCE.. 96

5.11 TUPLE CONDENSE... 98

5.12 SUMMARY AND CONCLUSIONS... 99

6 AN ORDER MANAGEMENT SYSTEM IN Z .. 102

6.1 PROBLEM STATEMENT.. 102

6.2 CONCEPTUAL MODEL... 103

6.3 THE Z SPECIFICATION LANGUAGE.. 104

6.4 SPECIFYING CLASSES AND THEIR ATTRIBUTES... 105

6.5 SPECIFYING ASSOCIATIONS.. 107

6.6 SPECIFYING ASSOCIATION CLASSES... 110

6.7 SPECIFYING OPERATIONS... 112

6.7.1 Create Operation.. 112

 vi

6.7.2 Read Operation .. 113

6.7.3 Update Operation... 113

6.7.4 Delete Operation .. 115

6.7.5 ProcessOrder.. 116

6.8 TOTAL OPERATIONS... 117

6.9 SPECIFYING AGGREGATION AND COMPOSITION... 118

6.10 SPECIFYING INHERITANCE.. 119

6.11 SPECIFYING THE SYSTEM STATE... 120

6.12 SPECIFYING AN INITIAL STATE ... 121

6.13 PROOF OBLIGATIONS ARISING FROM THE SPECIFICATION.. 122

6.13.1 Initialisation Theorem .. 122

6.13.2 Precondition Simplification.. 122

6.13.3 After State Type .. 124

6.13.4 Total Operations... 125

6.13.5 Operation Interaction... 126

6.13.6 Contents of a Set... 127

6.13.7 State Invariant .. 128

6.14 CONCLUSION.. 128

7 DISCHARGING CASE STUDY PROOF OBLIGATIONS.. 130

7.1 CONVERSION OF Z TO FIRST-ORDER LOGIC.. 130

7.2 DISCHARGING OF PROOF OBLIGATIONS .. 132

7.2.1 CreateProduct Invariant... 132

7.2.2 CreateProduct is Total ... 134

7.2.3 ProcessOrder set contents .. 138

 vii

7.2.4 CreateDeleteItem leaves state unchanged.. 140

7.2.5 After State Type of CancelOrder .. 144

7.3 CONCLUSION.. 147

8 SUMMARY AND CONCLUSIONS.. 149

8.1 CONTRIBUTIONS OF THIS DISSERTATION.. 149

8.2 FUTURE WORK ... 150

APPENDIX A – RESOLUTION DEDUCTIONS OF THE FARMER, W OLF, GOAT AND CABBAGE

(FWGC) PUZZLE... 152

A.1 A POSSIBLE REFUTATION DEDUCTION OF THE FWGC PUZZLE .. 152

A.2 LEVEL SATURATION METHOD DEDUCTION OF FWGC PUZZLE .. 155

A.3 UR-RESOLUTION DEDUCTION OF FWGC PUZZLE .. 158

A.4 ILLUSTRATION OF SET-OF-SUPPORT STRATEGY OF FWGC PUZZLE ... 159

A.5 SET-OF-SUPPORT STRATEGY WITH PREDICATE ORDERING... 160

A.6 SET-OF-SUPPORT STRATEGY WITH SUBSUMPTION.. 161

APPENDIX B - THEOREM PROVERS EVALUATED .. 164

APPENDIX C – SAMPLE REASONER OUTPUT... 167

C.1 VAMPIRE .. 167

C.2 GANDALF ... 171

APPENDIX D – Z CASE STUDY OF ORDER PROCESSING SYSTEM ... 174

D.1 GIVEN SETS (BASIC TYPES).. 174

D.2 PRODUCT.. 174

D.3 ORDER.. 176

D.4 ITEM ...178

D.5 CUSTOMER... 179

D.6 COMPANY... 181

 viii

D.7 PERSON.. 182

D.8 SYSTEM.. 183

APPENDIX E – REASONER INPUTS FOR PROOF OBLIGATIONS ... 185

E.1 CREATEPRODUCT INVARIANT ... 185

E.2 AFTER STATE TYPE OF CANCELORDER.. 187

APPENDIX F – VALIDATING REASONING HEURISTICS USING NEXT-GENERATION

THEOREM-PROVERS ... 195

REFERENCES.. 206

INDEX.. 213

 ix

List of Published Papers

The following paper was published during the research reported on in this dissertation:

Steyn, P.S., Van der Poll, J.A., 2007. Validating Reasoning Heuristics Using Next-Generation

Theorem-Provers, In J.C. Augusto, J. Barjis, U. Ultes-Nitsche, eds., Proceedings of the Fifth

Workshop on Modelling Simulation Verification and Validation of Enterprise Information

Systems (MSVVEIS'07), pp. 43-52, Funchal, Madeira, Portugal, June 2007.

This article appears as Appendix F.

 1

1 Introduction

Chapter 1

Introduction

This is a dissertation on evaluating the utility of a set of reasoning heuristics that have

been developed to aid an automated reasoner in reasoning about the properties of formal

specifications. The focus is on set-theoretic problems and first-order logic resolution-

based automated theorem provers. The motivation is presented below.

1.1 Motivation

Mathematical set theory is a building block of a number of formal specification

languages, e.g. both Z (Spivey 1992) and B (Abriel 1996) are based on strongly-typed

fragments of Zermelo-Fraenkel (Enderton 1977) set theory. One of the advantages in

using a formal notation for specifying a system is that the specifier may reason formally

about the properties of the system. In particular one may want to prove that the proposed

system will behave in a certain way or that some unwanted behaviour will not occur.

However, writing out such proofs is a tedious task as may be observed in (Potter et al.

1996). Hence of particular interest to a specifier could be the feasibility of using an

automated reasoning program (Riazanov & Voronkov 2002, Wos 2006) to reason about

such properties.

Set-theoretic problems, however present difficult problems to automated reasoners

(Boyer et al. 1986, Quaife 1992a, Wos 1988, Wos 1989). Much of the complexity arises

from the fact that sets may be elements of other sets. Set-theoretic constructs are strongly

hierarchical and could lead to deeply nested constructs that greatly increase a problem’s

search complexity (Quaife 1992a, Van der Poll & Labuschagne 1999). For example, in

the following equality

P(A) = P(B) ↔ A = B

 2

a reasoner has to move from the level of elements in set A to the level of elements in

P(A) in its search for a proof, but should be prevented from transcending to the level of

P(P(A)) which would greatly and unnecessarily enlarge the search space. This reasoning

heuristic tends to come naturally to humans. However, for the automated reasoner to

preserve completeness it should still traverse these possibly unlikely search paths when

the other paths fail.

It is generally accepted that heuristics are needed to guide reasoners, especially in the

context of set-theoretic proofs (Bundy 1999). Van der Poll and Labuschagne developed

such a set of heuristics for reasoning about set theory (Van der Poll 2000, Van der Poll &

Labuschagne 1999), mainly through observing the behaviour of the resolution-based

reasoner, Otter (McCune 2003) in its search for proofs. In total 14 heuristics, based on

recognisable patterns, were developed.

1.2 Research Question

The CADE ATP System Competitions (CASC) (Pelletier et al. 2002, Sutcliffe & Suttner

2006) is an annual competition that evaluates the performance of automated theorem

provers using classical first-order logic. Otter no longer features as a worthy opponent in

this competition, since it has to a large extent been superseded by next generation

theorem provers e.g. Vampire (Riazanov & Voronkov 2002) and Gandalf (Tammet

1997). Otter is however still used as a relative benchmark for other provers.

The question therefore arises whether the heuristics developed by Van der Poll and

Labuschagne (Van der Poll & Labuschagne 1999, Van der Poll 2000) have a wider

applicability to other resolution-based reasoners that can be considered state of the art.

The research reported on in this dissertation addresses the above research question and

leads to the following hypothesis.

1.3 Hypothesis

The Van der Poll-Labuschagne heuristics developed for reasoning with set theory are also

applicable to later, state of the art resolution-based automated theorem provers.

 3

For the remainder of this dissertation we shall refer to the Van der Poll-Labuschagne

heuristics as the VdPL set of heuristics.

1.4 Approach

To verify the hypothesis we select two theorem provers that can be considered state of

the art when using the CASC (Pelletier et al. 2002, Sutcliffe & Suttner 2006) competition

as a benchmark. The chosen theorem provers should be resolution-based to make the

comparison with Otter more direct. Since the VdPL heuristics were developed on set-

theoretic problems the chosen provers must also perform generally well with set-theoretic

problems to ensure that the heuristics are indeed applicable and useful.

Each heuristic is then tested in turn on a sample set-theoretic problem. Otter is used to

discharge the proof. After a failed proof attempt, the relevant VdPL heuristic is applied

to the problem specification that enables Otter to find a proof. The original problem is

then discharged on the chosen theorem provers. The heuristic is similarly applied to

failed proof attempts. If the heuristic is found not to be applicable using the next

generation theorem prover, we increase the complexity of the problem, and attempt

again.

The use of automated reasoning in formal specification languages was mentioned as one

of the motivations for research in reasoning heuristics. The heuristics are further tested

on a case study specified in Z (Spivey 1992) and using one of the chosen reasoners to

discharge proof obligations that arise.

1.5 Dissertation Layout

Chapter 2 gives an overview of set theory. The Zermelo-Fraenkel axiomatisation of set

theory in first-order logic is presented. The use of set theory in formal specification

languages is then highlighted followed by the typical issues that arise when reasoning

about set-theoretic problems.

An overview of resolution-based theorem proving is presented in Chapter 3. The

decision problem and Herbrand’s universe is discussed to highlight the theoretical limits

 4

of automated theorem proving. Resolution is presented as a refutation proof procedure

followed by a discussion on efficiency enhancements to resolution theorem proving.

The resolution-based automated reasoners Vampire and Gandalf used in this work are

presented in Chapter 4 including the motivation for their selection.

The utility of the VdPL heuristics for Vampire and Gandalf is investigated in Chapter 5.

For each heuristic a sample problem is presented. The problem is first attempted using

Otter. From a failed proof attempt the heuristic is applied to enable a successful

refutation. The same problem in then applied to Vampire and Gandalf. In some cases the

problem complexity must be increased to illustrate the utility of the heuristic. Some of

these results were published in Steyn and Van der Poll (2007).

An order management system case study is presented in Chapter 6 using the Z

specification language. Typical proof obligations that arise from Z specifications are

presented and discussed.

In Chapter 7 a sample of the proof obligations from the case study is converted to first-

order logic and discharged using Vampire. Various heuristics are then applied to some

failed proof attempts to facilitate a successful refutation.

Chapter 8 summarises the conclusions to be drawn from the research reported on in this

dissertation and indicates directions for further research.

 5

2 Introduction to Mathematical Set Theory

Chapter 2

Introduction to Mathematical Set Theory

Set theory is a foundational theory of mathematics in the sense that many mathematical

theorems, including arithmetic and Euclid’s geometry, can be formulated as theorems of

set theory (Nerode & Shore 1997). The problem of finding the truth of a mathematical

statement can therefore be reduced to a problem of showing that its truth can be derived

from the axioms of set theory (Enderton 1977).

In this chapter we give an overview of the Zermelo-Fraenkel (ZF) axiomatisation of set

theory that allows for the first-order logic representation of set-theoretic problems. In the

next section we discuss the use of set theory in formal specification languages. This is

followed by a discussion of the limits of the ZF axioms in automated theorem proving

due to its infinite axiomatisation. The chapter is concluded with the challenges that are

posed by automated set-theoretic reasoning as well as a summary.

2.1 Zermelo-Fraenkel Set Theory

The concept of a set has been used in mathematic writings since ancient times (Enderton

1977). George Cantor's work at the end of the 19th century put set theory on a proper

mathematical basis with a series of papers published during the period from 1874 to

1897. He is generally regarded as the father of set theory (Enderton 1977).

This early set theory originated in a non-axiomatic form that relied on an informal

understanding of sets as collections of objects. By the turn of the nineteenth century a

number of paradoxes were discovered in set theory. One of these is Russell’s paradox

that was discovered in 1901 by Bertrand Russell (Enderton 1977, Potter et al. 1996). He

showed that Gottlob Frege’s treatment of set theory was contradictory. Frege published a

two-volume work in 1893 and 1903 in which he showed how mathematics could be

 6

developed from principles of set theory. Russell’s paradox stems from a well defined set

in Frege set theory:

A = {x | x ∉ x}

That is, x is an element of A if and only if x is not an element of itself. The question that

arises is whether or not A contains itself. If it does, then by definition it is not a member

of A and thus a contradiction. On the other hand if it does not contain itself, then by

definition it is a member of A which is also a contradiction.

The paradoxes found in set theory led to the development of axiomatic set theory. This

showed that certain assumptions were inconsistent and hence totally flawed. The non-

axiomatic approach to set theory is now often referred to as “naive set theory” (Quine

1971).

Ernst Zermelo proposed the first system of axioms for set theory in 1908. The paradoxes

that have plagued set theory could not occur under Zermelo’s system since the sets

required by the paradoxes cannot be constructed using his axioms. However it was

discovered that rather simple sets could not be proved to exist based solely on these

axioms. Abraham Fraenkel and others proposed the axiom of replacement, discussed

below, to enable the creation of such sets (Enderton 1977). This list of set theory axioms,

10 in total, became known as the Zermelo-Fraenkel axioms.

Next we present a brief introduction to the ZF axioms. It is important to note that every

object it deals with is a set. Every element of a set is itself a set. Therefore, all

mathematical objects must therefore be defined as sets. As an example the non-negative

integers (natural numbers) can be represented in set theory as the set of all smaller natural

numbers:

0 = 0, 1 = {0} = {0}, 2 = {0, 1} = {0, {0}}, ….

This specific method of encoding the natural numbers was proposed by von Neumann in

1923 (Enderton 1977).

 7

2.1.1 Extensionality Axiom

The action of Extensionality states the condition under which two sets are equal. Two

sets are the same if they have the same elements. A set is therefore determined by its

elements.

∀A∀B(∀x(x ∈ A ↔ x ∈ B) → A = B)

Note, this axiom only state when two sets are equal, it does not guarantee the existence of

any sets. Also, note that equality reasoning in first-order logic requires the axioms

presented in section 3.6.1.

2.1.2 Empty set Axiom

There exists a set having no elements called the empty set. The empty set is usually

denoted by the symbol ∅.

∃∅∀x (x ∉ ∅)

The empty set axiom asserts that there exists at least one set, the empty set ∅. From the

axiom of Extensionality it follows that there is only one such set.

2.1.3 Pairing Axiom

If u and v are sets, then there exists a set B containing u and v as its only elements. This

set is called the unordered pair of u and v and is denoted by {u, v}.

∀u∀v∃B∀x(x ∈ B ↔ x = u ∨ x = v)

It follows from the axiom of Extensionality that this set is uniquely determined and since

the elements in a set are unordered we have {u,v} = {v,u}. Pairing implies the existence

of sets containing only one element called singleton sets. For example, given any set v,

the singleton set {v} exists and is equal to the unordered pair {v, v}. Repeated application

of this axiom asserts the existence of sets of the form {{x}, {x,y}}, which is a standard

way of representing the ordered pair (x, y).

 8

2.1.4 Union Axiom

Normally the union axiom is first stated in simpler terms for just two sets (Enderton

1977) and thereafter it is given for the general case. Every set has a union. That is, for

any set A there exists a set B whose elements are exactly the elements of the elements of

A. For example if A = {a, b, c, d}, then B = ⋃{a, b, c, d} = a ∪ b ∪ c ∪ d.

∀A∃B∀x(x ∈ B ↔ ∃b(b ∈ A ∧ x ∈ b))

Finite sets like {a, b, c} can be constructed using this axiom and the pairing axiom above.

For example, given any a, b and c we can construct sets {a} and {b, c} using the pairing

axiom. Set {a, b, c} can then be constructed using the union axiom, that is, {a} ∪ {b, c}.

2.1.5 Subset Axiom

For each formula ϕ(c, t1,…, tn) not containing B, the following is an axiom (Enderton

1977):

∀t1 …∀tn∀c∃B∀x(x ∈ B ↔ (x ∈ c ∧ ϕ (x, t1,…, tn)))

Again from the axiom of Extensionality it follows that the set B is uniquely determined

by c, t1,…,tn. B can be denoted by {x ∈ c | ϕ (x, t1,…, tn)}. It is important to note that the

set B being defined is a subset of the given set c, hence the name subset axiom.

As an example, the following formula is an instance of the subset axiom:

∀A∀C∃B∀x(x ∈ B ↔ x ∈ C ∧ x ∈ A)

It asserts the existence of the set intersection operation such that B = A ∩ C. Similarly

the existence of the relative complement of C in A, denoted A – C, is asserted by the

subset axiom instance:

∀C∀A∃B∀x(x ∈ B ↔ x ∈ A ∧ x ∉ C)

An unrestricted version of the subset construction axiom was often used to specify sets

before the development of axiomatic set theory:

 9

∀t1 …∀tn∀c∃B∀x(x ∈ B ↔ ϕ (x, t1,…, tn))

Here the restricting term x ∈ c is omitted. This formulation leads directly to Russell’s

paradox referred to earlier by taking ϕ to be x ∉ x. Most of the other axioms can be

implied by the unrestricted form, for example the empty set, pairing and union axioms

(Enderton 1977). These other axioms must therefore be explicitly stated since they

cannot follow from the restricted subset form and the unrestricted form leads to

inconsistencies.

2.1.6 Power set Axiom

For any set A there exists a set B whose elements are precisely the subsets of A. B is

called the power set of A and is usually denoted by P(A).

∀A∃B∀x(x ∈ B ↔ x ⊆ A)

The statement “x ⊆ A” is unfolded as:

∀t(t ∈ x → t ∈ A)

For example if A = {a, b, c}, then P(A) = {∅, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}}.

2.1.7 Infinity Axiom

There exists a set A such that ∅ is in A and whenever x is in A, so is the union x ∪ {x}.

∃A[∅ ∈ A ∧ ∀x(x ∈ A → (x ∪ {x}) ∈ A)]

An infinite set of this form contains a copy of the natural numbers as proposed by von

Neumann in 1923 (Nerode & Shore 1997). In this representation the first four natural

numbers would be represented as:

0 = ∅

1 = ∅ ∪ {∅} = { ∅}

2 = {0} ∪ {{ 0}} = { 0, {0}}

 10

3 = {0, {0}} ∪ {{ 0, {0}}} = { 0, {0}, { 0, {0}}}

2.1.8 Axiom of replacement

For each formula ϕ(x, y) not containing B, the following is an axiom (Enderton 1977):

 [∀x∀y1∀y2(ϕ(x, y1) ∧ ϕ(x, y2) → y1 = y2)] →

∀A∃B∀y[y ∈ B ↔ ∃x(x ∈ A ∧ ϕ(x, y))]

This axiom states that if A is a set and the formula ϕ is a functional mapping, then there

exists a set B that is the image of A under ϕ (Nerode & Shore 1997). The functional

property of ϕ is asserted by the hypothesis of the axiom. The consequent of the axiom

states that B is then the set:

B = {y | ∃x(x ∈ A ∧ ϕ(x, y))}

As an example we can show that if the set A exists, then the set B of all power sets of

members of A also exists. That is, B = {P(a) | a ∈ A}. This is done by taking ϕ(x, y) to

be y = P(x).

2.1.9 Axiom of foundation or regularity

Every non-empty set A contains an element disjoint from A (Enderton 1977).

∀A[A ≠ ∅ → ∃x(x ∈ A ∧ x ∩ A = ∅)]

The axiom of foundation restricts set theory to sets in which the elements of a set must be

known or must have been constructed before the set itself can be realised. Some of the

consequences of this axiom are (Enderton 1977, Nerode & Shore 1997):

• No set can be a member of itself.

• There exist no sets x and y such that x ∈ y and y ∈ x.

• There exists no infinite descending sequence of sets e.g. … ∈ f(2) ∈ f(1) ∈

f(0), where f is a function with the domain of the natural numbers.

 11

A proof of these three properties is beyond the scope of this dissertation. Details may be

found in (Enderton 1977).

As an example, let A = {1, 2} = {{∅}, { ∅, {∅}}} and x = { ∅}. It is then true that

x ∈ A and x ∩ A = ∅, since ∅ ∈ {∅} but ∅ ∉ A.

2.1.10 Axiom of choice

For any set A of nonempty sets, there is a function f with domain A such that for each

x ∈ A, f(x) ∈ x. Function f is called a choice function for A and the range of f is called

the choice set of A. In other words, f is a function that chooses one element from each

set in A.

∀A[∀x(x ∈ A → x ≠ ∅) → ∃f(func(f) ∧ dom(f) = A ∧ ∀x(x ∈ A → f(x) ∈ x))]

For finite sets A, the axiom of choice is not required since the existence of a choice

function can be proved using the other axioms (Enderton 1977). However, for infinite

sets A, which are usually uncountable as well, the axiom of choice is needed. This is

because it is either impossible or very difficult to construct a rule that makes an

uncountable number of selections. In the case where it is very difficult to construct such

a rule, the axiom of choice is not required but it makes proofs simpler by postulating that

such a rule exists.

The axiom of choice has been controversial ever since Zermelo explicitly stated it as an

axiom (Enderton 1977, Nerode & Shore 1997). One of the reasons for this is that it

asserts the existence of an object without telling what it is. Objects that are proved to

exist using the axiom of choice can generally not be described by any kind of systematic

rule. These proofs are therefore non-constructive.

The following example illustrates how one may write a set-theoretic formula using the

axioms above.

2.1.11 Example

Consider the following set-theoretic statement:

 12

P{{1}} = { 0,{{1}}}

This statement can be represented in first-order logic with the conjunction of the

following list of formulae:

(AA)(AB)((AX)(X ∈ A ¤ X ∈ B) fi A = B) (extensionality)

(AX)(!(X ∈ empty)) (empty = 0)

(AX)(X ∈ a ¤ X = 1) (a = {1})

(AX)(X ∈ b ¤ X = a) (b = {a})

(AX)(X ∈ c ¤ (AY)(Y ∈ X fi Y ∈ b)) (c = P(b))

(AX)(X ∈ d ¤ X = empty v X = b) (d = {empty,b})

c = d (c = d)

2.2 Limitations of ZF Axioms in Automated Theorem

Proving

The ZF axioms of subset construction and of replacement are infinite axiom schemas,

since any well defined formula ϕ can be used to yield a relevant axiom. As a result ZF

cannot be finitely axiomatised (Montague 1961) and, therefore cannot be input to an

automated theorem prover. The user must therefore input the relevant axiom instances

from the subset construction and replacement axiom schemas. For example, a proof that

would require the premise that the relative complement of two sets exists, A = B – C,

must have the following subset axiom instance specified:

∀C∀B∃A∀x(x ∈ A ↔ x ∈ B ∧ x ∉ C)

There are other axiomatisations of set theory as well. The one used most often in the

automated theorem proving community is that of von Neumann-Bernays-Gödel (NBG)

(Enderton 1977, Quaife 1992a). NBG differs from ZF in that it makes a separation

between concepts of a class and a set. A set has the same meaning as in ZF.

 13

Additionally, any set is a class and any collection of sets is also a class. However, some

classes are too large to be sets. An example of such a class is the class of all sets. It is

not possible to refer to the class of all classes or the set of all sets which avoids any

paradoxes due to self referencing.

Arguably, the most important aspect of NBG set theory for the automated reasoning

community is the fact that it can be finitely axiomatised. NBG set theory is therefore

mostly used for automated reasoning. It unfortunately suffers from having to deal with

two sorts of objects (classes and sets) instead of one (sets). For more information on

NBG and automated reasoning, the reader is referred to Boyer et al. (1986) and Quaife

(1992a).

Formal specification languages like Z and B are based on ZF’s set theory despite its

infinite axiomatisation. This is because its limitations in theorem proving only become a

problem when dealing with advanced mathematical proofs which do not occur in the day-

to-day software engineering industry. For example the mathematical toolkit of Z (Spivey

1992) contains a finite number of axioms some of which are instances of the subset

axiom. In this work we will therefore also use ZF set theory.

2.3 Summary

In this chapter we gave an overview of ZF set theory, its axioms and an example of

specifying a simple set-theoretic statement in first-order logic. We further highlighted

the role of set theory in formal specification languages. NBG was mentioned as an

alternative axiomatisation to ZF. Unlike ZF, the NBG axioms are finite which makes it

attractive for automated reasoning. However, the NBG axiomatisation is more

cumbersome to use with little advantage for common set-theoretic problems. As a result,

in this work we will go the route of ZF. The chapter concluded by discussing the

difficulties of set-theoretic reasoning.

 14

3 Resolution

Chapter 3

Resolution

In this chapter we present an overview of resolution-based theorem proving. The chapter

starts with a discussion on decidability and Herbrand’s universe (Nerode & Shore 1997).

These two concepts specify the theoretical limits of automated theorem proving (Leitsch

1997). Resolution is presented as an efficient refutation-based proof procedure. The rest

of the chapter is dedicated to efficiency enhancements to resolution theorem proving.

These enhancements include resolution refinement, redundancy tests, theory resolution

and heuristics.

3.1 Decidability and Herbrand’s Universe

At the heart of automated theorem proving lies the “decision problem” (Leitsch 1997). It

is the challenge in symbolic logic to find a general algorithm which decides for any first-

order statement whether it is universally valid or not. As early as the 17th century,

Leibniz had the vision of building a machine that would solve this problem. The problem

was revived in the early 20th century by Hilbert who posed it as one of several problems

to the mathematical community. He called the decision problem the “fundamental

problem of mathematical logic” (Leitsch 1997 p. 212). Progress was made in the

following years by several mathematicians who found decidable subclasses of predicate

logic.

It was not until the year 1936 that Alonzo Church and Alan Turing independently showed

that the problem has no solution (Epstein & Carnielli 2000). Church developed an

analysis of computability with his system of the λ-calculus (Church 1936a). He then

showed that the λ-definable functions are undecidable. He later applied his conclusions

to first-order predicate logic to show that there also exists no effectively calculable

procedure to determine the validity of a logical formula (Church 1936b). Turing

independently developed his own analysis of computability using the concept of a

 15

machine that can only perform the most elementary operation (Turing 1936). This

machine concept is now known as a Turing machine. Turing received a copy of Church’s

paper in time to include an appendix to show that a function is Turing machine

computable if and only if it is λ-definable. By using a diagonal argument, Turing showed

that the question of whether a Turing machine will halt on some arbitrarily chosen input

is undecidable. This is known as the halting problem.

Herbrand contributed an important approach to mathematical theorem proving in 1930

(Chang & Lee 1973) by proposing a refutation procedure to determine the unsatisfiability

of a set of clauses. He associated with each logic formula ¬S an infinite sequence of

propositional logic formulas called the Herbrand universe of S (Nerode & Shore 1997).

He then showed that ¬S is provable if and only if there is a finite disjunction of formulas

in H that is provable. Based hereon he developed an algorithm to find an interpretation

that can falsify a given formula. However, if the formula is indeed valid, no such

interpretation can exist since it is by definition true under all interpretations. Herbrand’s

method forms the basis for most modern automatic proof procedures.

The commercial availability of computers during the 1950’s enabled Gilmore (Gilmore

1960) to write a program to implement the refutation procedure of Herbrand’s theorem.

Since a formula is valid if and only if its negation is inconsistent, his program was

designed to detect the inconsistency of the negation of the formula. Based on Herbrand’s

theorem, the unsatisfiability problem is reduced to propositional unsatisfiability and then

check for inconsistency. Unfortunately Gilmore’s method was only able to prove the

simplest of formulas.

Davis and Putnam published a paper in 1960 (Davis & Putnam 1960), shortly after

Gilmore’s implementation, to improve on Gilmore’s method by suggesting a more

efficient method to test for the unsatisfiability of the ground sets. Their method was a

major improvement but also lacked the necessary efficiency. As with Gilmore’s method

the generation of ground sets of formulas using a direct implementation of Herbrand’s

theorem was very inefficient (Leitsch 1997).

 16

3.2 Resolution

All the refutation procedures that are based directly on Herbrand’s theorem suffer from

the same inefficiency that requires the generation of ground clause sets of the input clause

set. It is typical for each successive set to grow exponentially.

In 1965, John Alan Robinson (1965a) published his famous paper on resolution-based

theorem proving. It was a major breakthrough since it can be applied directly to any set

of first-order logic clauses to test its unsatisfiability without the need to generate

successive sets of ground clauses based on Herbrand’s theorem.

In the years that followed, many refinements of resolution have been suggested in

attempts to further increase its efficiency. Some of these refinements include

hyperresolution (Robinson 1965b), set-of-support strategy (Wos 1965), semantic

resolution (Slagle 1967) and paramodulation (Robinson & Wos 1969).

3.2.1 Clausal Form

Many computer implementations of first-order logic use the clausal form to represent

formulas (Quaife 1992b), which is an apparently quantifier-free conjunctive normal form.

This form was introduced by Davis and Putnam (1960). Formulas are therefore

represented by a more restricted syntax-type that enables more efficient inference rules to

be defined and makes it easier to control proof search. The clausal form of a formula is

not necessarily logically equivalent to the original formula. However, the clausal form

has the important property that it is unsatisfiable if and only if the original formula is

unsatisfiable (Hamilton 1991).

A clause is a finite disjunction of zero or more literals (Chang & Lee 1973). It is

sometimes convenient to regard a set of literals as synonymous with a clause. For

example ¬P(x) ∨ Q(f(x)) = {¬P(x), Q(f(x))}. A clause with only one literal is called a

unit clause. A clause that contains no literals is called the empty clause and is

represented by □. The empty clause is always false since it has no literal and cannot be

 17

satisfied by any interpretation. The following identities hold for empty clauses (Leitsch

1997): A ∨ □ ∨ B ≡ A ∨ B and □ ∨ □ ≡ □.

A set S of clauses is regarded as a conjunction of all clauses in S, where every variable in

S is considered governed by an implicit universal quantifier (Chang & Lee 1973). For

example the formula (∀x)[(¬P(x) ∨ Q(f(x))) ∧ (¬Q(x) ∨ P(f(x)))] that is represented by

the set of clauses {¬P(x) ∨ Q(f(x)), ¬Q(x) ∨ P(f(x))}.

For every formula in first-order predicate logic there exists a procedure that maps it to a

set of clauses (Wos et al. 1992). There is more than one method of executing this

procedure. The first method consists of the following three steps (Chang & Lee 1973).

• The formula is converted into prenex normal form. A formula is in prenex

normal form if all the quantifiers appear at the beginning. For example a prenex

normal form of (∀x)P(x) ↔ (∃y)Q(y) is (∀x)(∃y)(P(x) ↔ Q(y)).

• The formula is then transformed to conjunctive normal form. The above formula

then becomes (∀x)(∃y)[(¬P(x) ∨ Q(y)) ∧ (¬Q(x) ∨ P(y))].

• The last step is to eliminate all existential quantifiers using Skolem functions. In

this step logical equivalence is usually lost however the transformation is still

equisatisfiable. For every formula ∀x1…∀xn∃yψ the transformed formula

∀x1…∀xnϕ where ϕ is obtained by replacing every variable y in ψ by the Skolem

function f(x1,…,xn). By repeating this transformation, every existential quantifier

can be eliminated. The last formula then becomes (∀x)[(¬P(x) ∨ Q(f(x))) ∧

(¬Q(x) ∨ P(f(x)))].

Another method of executing the procedure is given by Leitsch (1997). Here the formula

is not required to be transformed to prenex form before the existential quantifiers are

eliminated.

 18

3.2.2 Resolution in Propositional Logic

In this section we first discuss how the resolution principle applies to propositional logic.

In essence this principle may be viewed as an extension of the one-literal rule of Davis

and Putnam (Chang & Lee 1973).

The cut rule (reading from top to bottom) states that:

if P then Q.

P.

therefore Q.

It may also be written in the following format:

¬P, Q

P

Q

The top line in the above box is the clausal form of P → Q where the comma represents a

disjunction. The two clauses above the dividing line represent the premises of the

inference rule and the clause below the line represents its conclusion. Q is therefore a

logical consequence of (¬P∨Q) and P.

3.2.2.1 Binary Resolution Inference Rule

The propositional resolution principle extends the above rule of modus ponens by

allowing any number of additional literals together with P and ¬P. The principle states

that (Chang & Lee 1973, Leitsch 1997):

 19

Definition 3.1

Let C1 and C2 be two clauses where C1 has the form L∨M1∨…∨M i for i ≥ 0 and

C2 has the form ¬L∨N1∨…∨Nj for j ≥ 0. From C1 and C2 we can then infer

M1∨…∨M i∨ N1∨…∨Nj.

The resolution inference rule can also be represented as (Eisinger & Ohlbach 1993):

L,M1,…,Mi

¬L,N1,…,Nj

M1,…,Mi, N1,…,Nj

The resulting inferred clause is called the resolvent of C1 and C2. We say that we

resolved on (the literal) L.

3.2.2.2 Resolution Deduction or Refutation

The next step is to show how a resolution deduction of a clause C can be deduced from a

given formula S.

A resolution deduction is defined as (Chang & Lee 1973, Leitsch 1997):

Definition 3.2

Let S be a set of clauses. A resolution deduction of the clause C from S is a finite

sequence of clauses C1,…,Cn such that C = Cn and for all i=1,…,n either Ci is a

clause in S or Ci is a resolvent of Cj and Ck for j, k < i.

A resolution deduction of the empty clause □ from S is called a resolution

refutation of S.

Example 3.1

Consider the clause set S = {¬a ∨ b, a, ¬c}.

 20

The following deductions can then take place:

C1 = ¬a ∨ b Clause in S

C2 = a Clause in S

C3 = ¬c Clause in S

C4 = b Resolvent of C1 and C2

No further application of the resolution rule is possible and the empty clause was not

deduced, therefore S is satisfiable, e.g. a = true, b = true and c = false.

Now let S be the following set of clauses:

S = {¬a ∨ b, a, ¬c, ¬b ∨ c}

The following deductions can then take place:

C1 = ¬a ∨ b Clause in S

C2 = a Clause in S

C3 = ¬c Clause in S

C4 = ¬b ∨ c Clause in S

C5 = b Resolvent of C1 and C2

C6 = c Resolvent of C4 and C5

C7 = □ Resolvent of C3 and C6

The empty clause was deduced from S and therefore S is unsatisfiable.

 21

3.2.2.3 Propositional Factoring or Reduction Rule

The resolution inference rule on its own is not sufficient to provide a complete

refutational inference system (Leitsch 1997). Take for example the following two

clauses:

C1 = P ∨ P

C2 = ¬P ∨ ¬P

It is clear that these two clauses are contradictory and is unsatisfiable under all

interpretations. However, by just employing the resolution inference rule, we cannot

deduce the empty clause to show this unsatisfiability. Clauses C1 and C2 have resolvent

C3 = P ∨ ¬P. Resolving C3 with either C1 or C2 will just yield C1 and C2 again as

resolvents.

We therefore require another inference rule to reduce a clause by getting rid of any

redundant literals. This reduction rule states (Leitsch 1997):

Definition 3.3

Let C be a clause. Clause C' is a factor of C if it is obtained by removing any

duplicate literals from C.

Applying this rule to the two example clauses C1 and C2 above will give us C3=P and

C4=¬P. The empty clause is then a resolvent of C3 and C4.

3.2.2.4 Soundness and Completeness

There are many texts that give the proofs for the refutational soundness and completeness

of propositional resolution. The soundness theorem of resolution deduction states that if

there is a resolution refutation of a set of clauses S, then S is unsatisfiable (Leitsch 1997,

Chang & Lee 1973). The completeness theorem for propositional resolution deduction

states that if a set of clauses S is unsatisfiable, then there exists a resolution refutation

from S (Leitsch 1997, Nerode & Shore 1997). The proofs of these two properties are

 22

beyond the scope of this dissertation, but details may be observed in Leitsch (1997) and

Nerode and Shore (1997).

3.2.3 Resolution in First-order Predicate Logic

3.2.3.1 Substitution and Unification

The resolution principle for predicate logic is similar to that of propositional logic in that

one attempts to deduce the empty clause from a set of clauses. However, with predicate

logic, the clauses normally contain implicitly quantified variables that must be kept in

mind when the resolution rule is applied (Nerode & Shore 1997). Take for example the

following clauses:

C1: ¬P(x) ∨ Q(x)

C2: P(a)

Variable x in clause C1 may be unified with any constant e.g. a. We may therefore

substitute the constant a for x to obtain the clause:

C3: ¬P(a) ∨ Q(a)

C2 and C3 can now be resolved upon to obtain resolvent Q(a).

In general a substitution θ can be defined as a set {t1/v1, …, tn/vn} where every vi is a

distinct variable and every ti is a term other than vi for 1 ≤ i ≤ n, e.g. {f(z)/x, g(a)/y}. Let

E be an expression denoting any term, atom or literal. Eθ is then also an expression that

is obtained by simultaneously replacing each variable vi in E with the term ti (Chang &

Lee 1973).

For example, let θ = {u/x, a/y, f(v)/z} and E = Q(x, f(y), z). Then Eθ = Q(u, f(a), f(v)).

Two or more expressions E1, …, En can be unified if there exists a substitution θ such

that E1θ = E2θ = … = Enθ. The substitution θ is called a unifier of the expressions.

Expressions are called unifiable when they have a unifier.

 23

Unification is always applied using the most general unifier to be more effective (Nerode

& Shore 1997). A unifier θ of a set of expressions E1, …, En is called a most general

unifier if and only if for every unifier σ of the set, there exists a substitution λ such that

E1θ = (E1σ)λ = E2θ = (E2σ)λ = … = Enθ = (Enσ)λ.

A set of expressions always has a most general unifier if the set is unifiable and the

problem of obtaining the most general unifier is decidable (Leitsch 1997). Most texts on

resolution provide algorithms to determine the most general unifier.

In the next section we turn our attention to the resolution principle for predicate logic.

Examples of the application of substitution and unification are shown.

3.2.3.2 Binary Resolution

Substitution and unification as discussed in the previous section allow us to apply the

resolution principle to predicate logic. The resolution principle for predicate logic is

stated as (Chang & Lee 1973, Leitsch 1997):

Definition 3.4

Let C1 and C2 be two clauses where C1 has the form L∨M1∨…∨M i for i ≥ 0 and

C2 has the form ¬L'∨N1∨…∨Nj for j ≥ 0. C1 and C2 also have no variables in

common. If θ is a most general unifier of L and ¬L', then we can infer clause

C = M1θ∨…∨M iθ∨ N1θ∨…∨Njθ.

The resolution inference rule can also be represented as (Eisinger & Ohlbach 1993):

L,M1,…,Mi

¬L',N1,…,Nj

M1θ,…,Miθ, N1θ,…,Njθ

where θ is the most general unifier of L and ¬L'.

 24

The resulting inferred clause C is called the resolvent of C1 and C2. We say that we

resolved on (the literal) L. Clause C is also called the child clause of parent clauses C1

and C2 (Nerode & Shore 1997).

The requirement that the parent clauses have no variables in common is due to the fact

that the variables within each clause are local to that clause. This is because the clause is

a Skolem standard form (Chang & Lee 1973) of the original formula with implied

universal quantifiers for the variables at the beginning of the formula. The variables

within different clauses are often renamed to avoid confusion. This renaming is referred

to as standardising the variables apart (Nerode & Shore 1997).

A resolution deduction for predicate logic is performed in the same way as for

propositional logic. The difference is that the binary inference rule for predicate logic is

used (Nerode & Shore 1997).

Example 3.2

Let the clause set S be:

S = {¬P(x) ∨ Q(f(a)), P(a), ¬Q(x)}

We can then show that S is unsatisfiable using the following refutation deduction:

C1 = ¬P(x) ∨ Q(f(a)) Clause in S

C2 = P(a) Clause in S

C3 = ¬Q(x) Clause in S

C4 = Q(f(a)) Resolvent of C1 and C2
Unifier is {a/x}

C5 = □ Resolvent of C3 and C4
Unifier is {f(a)/x}

 25

Example 3.3: The farmer, goat, cabbage and wolf puzzle

The problem of the farmer, goat, cabbage and wolf is a classic puzzle that is often used to

illustrate state space search problems (Eisinger & Ohlbach 1993). These types of

problems usually have an initial state and a goal state. The solution to the problem is a

path through all the valid states from the initial one to the goal.

The puzzle goes as follows:

A farmer has a goat, a cabbage and a wolf that he has to take across a river. He

has a small boat with which to accomplish this. Unfortunately the boat is very

small and can only carry himself and one of the goat, cabbage or wolf. In his

absence the goat would eat the cabbage and the wolf would eat the goat. How can

he cross the river with the goat, cabbage and the wolf?

The above puzzle will be used to illustrate how resolution deduction can be used as a

decision procedure to determine whether the puzzle has a solution.

A state in the problem is presented by the predicate symbol S with arity 4. The

parameters indicate on which side of the river the farmer, goat, cabbage and wolf are as

follows:

fh – farmer here

fa – farmer across

gh – goat here

ga – goat across

ch – cabbage here

ca – cabbage across

wh – wolf here

wa – wolf across

 26

The initial state is given by the predicate:

S(fh, gh, ch, wh)

The goal state is given by:

S(fa, ga, ca, wa)

A safe state is one in which neither the goat and cabbage nor the goat and wolf are left

unsupervised. The predicate symbol SAFE with arity 4 will be used to indicate a safe

state. The parameters are similar to those of predicate S. The following are the safe

states:

SAFE(fh, gh, ch, wh)

SAFE(fh, gh, ch, wa)

SAFE(fh, gh, ca, wh)

SAFE(fh, gh, ca, wa)

SAFE(fh, ga, ch, wh)

SAFE(fa, gh, ca, wa)

SAFE(fa, ga, ch, wh)

SAFE(fa, ga, ch, wa)

SAFE(fa, ga, ca, wh)

SAFE(fa, ga, ca, wa)

The farmer can cross the river with or without one of the goat, cabbage and wolf if we are

in a safe state and the state after the river crossing is also safe. In the light of the

resolution deduction, it means we can deduce a new state from an existing state if both

 27

the current and new states are safe. The various river crossing rules are given by the

following formulae:

Farmer goes across alone:

∀(x,y,z) [S(fh,x,y,z) ∧ SAFE(fh,x,y,z) ∧ SAFE(fa,x,y,z) → S(fa,x,y,z)]

Farmer comes back alone:

∀(x,y,z) [S(fa,x,y,z) ∧ SAFE(fa,x,y,z) ∧ SAFE(fh,x,y,z) → S(fh,x,y,z)]

Farmer takes goat across:

∀(y,z) [S(fh,gh,y,z) ∧ SAFE(fh,gh,y,z) ∧ SAFE(fa,ga,y,z) → S(fa,ga,y,z)]

Farmer brings goat back:

∀(y,z) [S(fa,ga,y,z) ∧ SAFE(fa,ga,y,z) ∧ SAFE(fh,gh,y,z) → S(fh,gh,y,z)]

Farmer takes cabbage across:

∀(x,z) [S(fh,x,ch,z) ∧ SAFE(fh,x,ch,z) ∧ SAFE(fa,x,ca,z) → S(fa,x,ca,z)]

Farmer brings cabbage back:

∀(x,z) [S(fa,x,ca,z) ∧ SAFE(fa,x,ca,z) ∧ SAFE(fh,x,ch,z) → S(fh,x,ch,z)]

Farmer takes wolf across:

∀(x,y) [S(fh,x,y,wh) ∧ SAFE(fh,x,y,wh) ∧ SAFE(fa,x,y,wa) → S(fa,x,y,wa)]

Farmer brings wolf back:

∀(x,y) [S(fa,x,y,wa) ∧ SAFE(fa,x,y,wa) ∧ SAFE(fh,x,y,wh) → S(fh,x,y,wh)]

 28

The resolution deduction is presented in Appendix A.1. It represents one of a number of

solutions:

The farmer takes the goat across and returns. He then takes the wolf across and

returns with the goat. He leaves the goat and takes the cabbage across. He then

returns and take the goat across.

Referring to Appendix A.1, clauses 1 to 20 are the inputs to the resolution deduction.

Clauses 1 to 8 are the above formulae converted to clausal form. Clauses 9 to 18

represent all the safe states. Clause 19 is the initial state. The goal state is given by

clause 20 and is the negation of the actual goal since we are using refutation to show that

a solution exists.

We deduced the empty clause and thereby a refutation, showing that a solution exists.

3.2.3.3 Factoring

As in the case of propositional resolution, the binary resolution inference rule for

predicate logic is sound but not refutation complete (Wos et al. 1992). Take the

following two clauses as example:

C1 = P(a) ∨ P(y)

C2 = ¬P(w) ∨ ¬P(z)

Clauses C1 and C2 are unsatisfiable, but binary resolution alone is not sufficient to deduce

the empty clause. Any deduced clause will still contain two literals.

Factoring is an inference rule that overcomes this problem (Wos et al. 1992) and is

defined as (Chang & Lee 1973):

Definition 3.5

If θ is a most general unifier of two or more literals of a clause C, then Cθ is

called a factor of C.

 29

Returning to the above example, a factor of C1 is P(a) and a factor of C2 is ¬P(w). The

conjunction of these two clauses is then unsatisfiable. Note that unification of P(a) and

P(y) in C1 for example results in P(a) ∨ P(a) and not just P(a). However, a clause is

considered to be a set of literals and since one does not repeatedly list the same element

of a set, unification produces the set {P(a)}.

3.2.3.4 Soundness and Completeness

The combination of the binary resolution and factoring inference rules provides us with a

refutational sound and complete inference system (Wos et al. 1992). The soundness

theorem of resolution deduction states that if there is a resolution refutation of a set of

clauses S, then S is unsatisfiable (Nerode & Shore 1997). The completeness theorem of

resolution deduction states that if a set of clauses S is unsatisfiable, then there exists a

resolution refutation from S (Nerode & Shore 1997, Chang & Lee 1973, Leitsch 1997).

The detailed proof of the above soundness and completeness properties is beyond the

scope of this dissertation. Nevertheless the proof starts by showing that the system is

complete for ground clauses. The lifting lemma is then the key to proving the

completeness of the system for predicate logic. The lifting lemma shows that any

instantiation of a deduction can be replaced by a more general one. It is called the lifting

lemma because it “lifts” ground deductions to deductions in predicate logic.

3.3 Efficiency Enhancements

The field of automated reasoning concerns itself mainly with searching for the existence

of proofs. The size of the search space and the method of traversing the search space are

of vital importance to the efficiency of automated theorem proving (Leitsch 1997).

Robinson’s resolution principle (Robinson 1965a) brought about a major advancement to

the field of automated reasoning. With each application of the binary inference rule, the

search space grows by a bounded number of branches which are generally not too many,

compared to methods based on Herbrand’s theorem and other classical methods where

the search space could grow at an unbounded rate (Eisinger & Ohlbach 1993).

 30

Implementations of binary resolution are able to solve much more complex problems. It

is however still not efficient enough to solve everyday mathematical problems. One of

the problems is that of the unbounded generation of resolvents. Another problem is the

presence of redundant clauses and literals. Robinson acknowledged these problems and

proposed three principles that automated implementations should employ when searching

for a refutation (Robinson 1965a). These principles are those of purity, subsumption and

replacement. The reasoning steps taken by binary resolution are also very small (Quaife

1992b) and result in a high number of unnecessary resolvents (Leitsch 1997). Robinson

has also seen this as a problem and published a paper on hyper-resolution (Robinson

1965b) that uses more than two clauses simultaneously in a reasoning step. Hyper-

resolution is discussed in Section 3.4.4.

Numerous other techniques have been proposed to reduce the search space. Leitsch

(1997) lists three categorises of techniques: refinements of resolution, redundancy tests

and heuristics. Another category is theory resolution (Eisinger & Ohlbach 1993).

We shall expand on Leitsch’s treatment of heuristics and look at it from two perspectives.

The first is that of the automatic deduction implementation. The order in which

derivations are generated may have a significant impact on the cost of the search. One

such heuristic could be to give preference to deductions containing smaller clauses. The

second perspective is that of the problem specifier. There are usually many different

ways to model a problem in first-order logic. The problem specification provides the

initial set of clauses and therefore could have a significant impact on the search space

(Van der Poll & Labuschagne 1999, Van der Poll 2000, Wos et al. 1992).

The next sections will be dedicated to exploring some of these techniques.

3.4 Refinements

A technique X is a refinement of technique Y if the possible resolution deductions from

X are a subset of those of Y. Since X has fewer deductions, the search space is smaller.

A possible implementation of resolution is known as the level-saturation method (Chang

& Lee 1973). The first level S0 is the initial set S of clauses. The resolvents of clauses in

 31

S0 are added to S1 until no more resolutions are possible, that is, until the level is

saturated. The resolvents of S0 ∪ S1 are then added to S2. This process is continued until

the empty clause is found.

The level sets are defined as:

S0 = S

Sn = {resolvents of C1 and C2 | C1 ∈ {S0 ∪ … ∪ Sn-1}, C2 ∈ Sn-1}, n=1,2,…

The level-saturation method of resolution is a simple algorithm to implement on a

computer but generates an extremely high number of clauses. The example of the farmer,

goat, cabbage and wolf puzzle in Appendix A.1 will again be used to illustrate this point.

However, we will use a different start state, one where the goat is on this side and the

farmer, cabbage and wolf on the other side. Also, only two levels of resolvents will be

generated and only an adequate set of input clauses is used. All the initial clauses will

keep the same clause numbering as before.

The level-saturation deduction is shown in Appendix A.2. Nine clauses are generated in

the first level and 28 in the second level. This shows that the number of resolvents for

each level grows at a phenomenal rate.

3.4.1 Linear Resolution

The above level saturation implementation of resolution is not a natural way for people to

carry out a proof using resolution. Humans would most likely start with a clause, resolve

it with another clause and use the resolvent for the next resolution step, until the empty

clause is deduced (Chang & Lee 1973). This method of resolution is a called linear

resolution and is a refinement of resolution (Nerode & Shore 1997).

3.4.1.1 Linear Resolution Deduction

We can formally define linear resolution as (Chang & Lee 1973, Leitsch 1997, Nerode &

Shore 1997):

 32

Definition 3.6

Let S be a set of clauses and C a clause in S. A linear deduction of D from S with

top clause C is a sequence 〈C0, B1, C1, …, Bn, Cn〉 of clauses (for n ≥ 1) such that

• C0 = C and

• D = Cn and

• for 1 ≤ i ≤ n, Ci is a resolvent of Ci-1 and Bi and

• Bi is either in S or is a Cj for some j < i.

C is called the top clause, all Bi are called side clauses and all Ci are called centre

clauses. There is a linear resolution refutation of S if the empty clause can be

deduced from S.

Example 3.4

Let S be the set of clauses S = {Q(x) ∨ R(x), ¬Q(x) ∨ R(f(y)), Q(x) ∨ ¬R(f(x)), ¬Q(x) ∨

¬R(x)}. The following is a linear resolution refutation of S:

 Clauses in S

C1 = Q(x) ∨ R(x)

C2 = ¬Q(x) ∨ R(f(y))

C3 = Q(x) ∨ ¬R(f(x))

C4 = ¬Q(x) ∨ ¬R(x)

 Linear refutation with top clause C2

C5 = ¬Q(x) ∨ ¬Q(f(y)) C2 and C4

C6 = R(f(y)) C5 and C1

C7 = Q(x) C6 and C3

 33

C8 = ¬R(x) C7 and C4

C9 = □ C8 and C6

Note that clause C6 was obtained after factoring was applied to clause C5, followed by a

resolution step with C1.

The farmer, goat, cabbage and wolf puzzle that was used as an example of binary

resolution (Appendix A.1) is also an example of linear resolution.

3.4.1.2 Soundness and Completeness

Linear resolution is a special case of binary resolution with factoring which is sound,

therefore linear resolution is also sound (Nerode & Shore 1997).

Linear resolution is also a complete resolution refutation procedure. A proof is provided

by Leitsch (1997). It must be noted however that using the incorrect top clause can cause

incompleteness. For example, let S be the set of clauses S = {P(x), ¬P(y) ∨ Q(y), ¬Q(u),

R(a)}. The following linear deduction shows that S is unsatisfiable:

 Clauses in S

C1 = P(x)

C2 = ¬P(y) ∨ Q(y)

C3 = ¬Q(u)

C4 = R(a)

 Linear refutation with top clause C1

C5 = Q(y) C1 and C2

C6 = □ C5 and C3

 34

However, if clause C4 is chosen as the top clause, then there are no other clauses that can

be resolved with it. C4 is therefore the only linear deduction and is not a refutation.

3.4.1.3 Refinements of Linear Resolution

There are various refinements for linear resolution (Leitsch 1997). Some of these include

clause ordering and literal information (Chang & Lee 1973) as well as input and UR

resolution. The latter two will be discussed in the following sections.

3.4.1.4 Input Resolution

Input resolution is a refinement of linear resolution but is not refutation complete (Wos et

al. 1992). Input resolution is still useful despite its incompleteness. The reason for this is

that a large class of theorems can be proved with it and it is very efficient (Chang & Lee

1973).

Input resolution can be defined as (Chang & Lee 1973, Leitsch 1997):

Definition 3.7

Let S be a set of clauses. A clause in S is called an input clause. An input

resolution is a resolution in which one of the parent clauses is an input clause. An

input deduction is a linear deduction in which all the side clauses are input

clauses. An input refutation is an input deduction of the empty clause.

The class of theorems for which input resolution is complete is called Horn logic (Leitsch

1997):

 35

Definition 3.8

Horn logic is the class of all finite sets of Horn clauses, where a Horn clause is a

clause with one of the following forms:

1. P

2. P ∨ ¬Q1 ∨ … ∨ ¬Qn

3. ¬Q1 ∨ … ∨ ¬Qn

Form 1 is called a fact, 2 is called rule and 3 is called a goal.

A Horn clause is therefore a clause with at most one positive literal. The terminology of

facts, rules and goals comes from the field of logic programming. A proof of the

completeness of input resolution on Horn logic is provided by (Leitsch 1997).

The following example serves to show that input resolution is not complete in predicate

logic.

Example 3.5

Let S be the set of clauses S = {Q(x) ∨ R(x), ¬Q(x) ∨ R(f(y)), Q(x) ∨ ¬R(f(x)), ¬Q(x) ∨

¬R(x)}. Note that this is the same set of refutable clauses that was used in Example 3.4.

S does not contain any unit clauses or unit factors of clauses. Also, S contains a non-

Horn clause Q(x) ∨ R(x). Let D = 〈C0, B1, C1, …, Bn, Cn〉 be an arbitrary linear input

deduction from S (for n ≥ 1). C0 must be a clause from S. Bn is also a clause from S. Cn

is a resolvent of Cn-1 and Bn. However, Cn cannot be the empty clause since neither Bn

nor any factor of it is a unit clause. D can therefore not be an input refutation of S.

Example 3.6

This example shows an input refutation. It is an example about the relationship between

being a parent and grandparent, father and grandfather in this case.

 36

 Clauses in S

C1 = ¬FATHER(x, y) ∨ ¬FATHER(y,z) ∨ GRANDFATHER(x, z)

C2 = FATHER(johnSr, johnBoy)

C3 = FATHER(zebulon, johnSr)

C4 = ¬GRANDFATHER(zebulon, johnBoy)

 Input refutation with top clause C4

C5 = ¬FATHER(zebulon, y) ∨ ¬FATHER(y, johnBoy) C4 and C1

C6 = ¬FATHER(zebulon, johnSr) C5 and C2

C7 = □ C6 and C3

The farmer, goat, cabbage and wolf puzzle that was used above as an example for binary

resolution is also an example of input resolution.

3.4.1.5 Unit Resolution

Unit resolution is a refinement of resolution, but not linear resolution. It is discussed here

because it is refutation equivalent to input resolution. Unit resolution can be viewed as

an extension of the one-literal rule of Davis and Putnam and may be defined as (Chang &

Lee 1973):

Definition 3.9

A unit resolution is a resolution in which at least one parent clause is a unit clause

or a unit factor thereof. A deduction in which every resolution step is a unit

resolution is called a unit deduction. A unit deduction of the empty clause is

called a unit refutation.

 37

Unit resolvents are always smaller as opposed to binary resolution where the resolvents

tend to be longer clauses (Quaife 1992b). This property is very important since to deduce

the empty clause, shorter clauses ought to be deduced. As a result, unit resolution is a

very efficient refinement of resolution (Chang & Lee 1973).

As was stated above, input- and unit resolution are refutation equivalent. That is, a

theorem can be proved with input resolution if and only if it can be proved by unit

resolution. A proof of this equivalence can be found in (Chang & Lee 1973). This

equivalence then implies that unit resolution, as with input resolution, is not refutation

complete but is complete for Horn logic (Wos et al. 1992).

The proof of the completeness of unit resolution for Horn logic follows from its

equivalence with input resolution and the proof referred to in the previous section that

input resolution is complete over Horn logic (Leitsch 1997).

Since input resolution and unit resolution are equivalent, Example 3.5 that was used to

show that input resolution is not refutation complete also suffices to show that unit

resolution is not refutation complete. Recall the given set S = {Q(x) ∨ R(x), ¬Q(x) ∨

R(f(y)), Q(x) ∨ ¬R(f(x)), ¬Q(x) ∨ ¬R(x)}. This time it is easier to see that unit

resolution is not sufficient to refute S. This is because there is no unit clause in S that can

be used as a parent clause to perform a unit resolution.

Example 3.6 that was used to illustrate an input refutation is also an example of a unit

refutation. The farmer, goat, cabbage and wolf puzzle is another example of a unit

refutation.

3.4.2 Semantic Resolution

Semantic resolution was proposed by Slagle (1967). It unifies Robinson’s hyper-

resolution (Robinson 1965b), Meltzer’s renamable resolution (Meltzer 1966) and the set-

of-support strategy of Wos, Robinson and Carson (1965). These resolution concepts will

be discussed below.

 38

3.4.2.1 Splitting into Two Groups

The first method that semantic resolution provides to reduce the number of resolvents is

to split a given set S of clauses into two groups S1 and S2. Clauses within the same group

are not allowed to be resolved with each other. The criterion by which the given set is

split in two is determined by a Herbrand interpretation, M (Bachmair & Ganzinger 2001).

All clauses that are true under M are put into one group and the rest are put into the other

group. It should be noted that if the set of clauses is unsatisfiable, then there is no

interpretation that can make all the clauses true. As a result, all interpretations would

split the set of clauses in two groups.

Example 3.7

Consider clauses C1 and C2 of the puzzle (in Appendix A.1) that are repeated here:

C1 = ¬S(fh, x, y, z) ∨ ¬SAFE(fh, x, y, z) ∨

¬SAFE(fa, x, y, z) ∨ S(fa, x, y, z)

Farmer goes across

C2 = ¬S(fa, x, y, z) ∨ ¬SAFE(fa, x, y, z) ∨

¬SAFE(fh, x, y, z) ∨ S(fh, x, y, z)

Farmer returns

C1 and C2 have the following resolvents:

¬S(fh, x, y, z) ∨ ¬SAFE(fh, x, y, z) ∨ ¬SAFE(fa, x, y, z) ∨

¬SAFE(fa, x, y, z) ∨ ¬SAFE(fh, x, y, z) ∨ S(fh, x, y, z)

Resolved on S(fa, x, y, z)

¬SAFE(fh, x, y, z) ∨ ¬SAFE(fa, x, y, z) ∨ S(fa, x, y, z) ∨

¬S(fa, x, y, z) ∨ ¬SAFE(fa, x, y, z) ∨ ¬SAFE(fh, x, y, z)

Resolved on S(fh, x, y, z)

Let M be an interpretation in which every literal is the negation of an atom:

M = { ¬S(fh, gh, ch, wh), ¬S(fh, gh, ch, wa), ¬S(fh, gh, ca, wh), …,

¬SAFE(fh, gh, ch, wh), ¬SAFE(fh, gh, ch, wa), ¬SAFE(fh, gh, ca, wh), … }

 39

Further, let all clauses that are true under M go into group S1 and the rest into group S2.

Both C1 and C2 in the puzzle are true under M and therefore belong to the same group S1.

C1 and C2 are therefore not allowed to be resolved with each other under the principle of

semantic resolution with splitting.

3.4.2.2 Ordering of Predicate Symbols

The second concept of semantic resolution that allows us to cut down on the number of

generated resolvents is the ordering of predicate symbols. Given an ordering of predicate

symbols, we can only resolve a clause X from S1 with a clause Y from S2 if the literal

resolved upon contains the largest predicate symbol in X. Such ordering of predicate

symbols is specified beforehand.

Example 3.8

Consider clauses C1 and C9 of the puzzle that is repeated here:

C1 = ¬S(fh, x, y, z) ∨ ¬SAFE(fh, x, y, z) ∨

¬SAFE(fa, x, y, z) ∨ S(fa, x, y, z)

Farmer goes across

C9 = SAFE(fh, gh, ch, wh) Safe state

C1 and C9 has the following resolvent:

¬S(fh, x, y, z) ∨ ¬SAFE(fa, x, y, z) ∨ S(fa, x, y, z) Resolved on SAFE(fh, gh, ch, wh)

Unifier {gh/x, ch/y, wh/z}

We will use the same interpretation M as before in which every literal is the negation of

an atom. Also, let clauses that are true under M go into S1 and the rest into S2. C1 is

therefore in group S1 and C9 is in group S2. Let the predicate ordering be S > SAFE. C1

and C9 are in different groups and therefore the splitting criteria do not prevent them from

 40

being resolved with each other. However, the resolution would be on SAFE(fh, gh, ch,

wh) which does not have the largest predicate symbol in clause C1 based on the chosen

predicate ordering. Clauses C1 and C9 can therefore not be resolved under the specified

ordering. If the predicate ordering was chosen the other way round, then the resolution

would have been allowed.

3.4.2.3 The Clash

The final concept of semantic resolution that we introduce is the clash (Slagle 1967). To

illustrate the concept, consider the following clauses from the farmer, goat, cabbage and

wolf puzzle:

C3 = ¬S(fh, gh, y, z) ∨ ¬SAFE(fh, gh, y, z) ∨

¬SAFE(fa, ga, y, z) ∨ S(fa, ga, y, z)

Farmer takes goat across

C9 = SAFE(fh, gh, ch, wh)

C15 = SAFE(fa, ga, ch, wh)

C19 = S(fh, gh, ch, wh) Start state

 Take goat across

C21 = ¬SAFE(fh, gh, ch, wh) ∨ ¬SAFE(fa, ga, ch, wh) ∨

S(fa, ga, ch, wh)

Resolvent of C3 and C19

Unifier {ch/y, wh/z}

C22 = ¬SAFE(fa, ga, ch, wh) ∨ S(fa, ga, ch, wh) Resolvent of C9 and C21

C23 = S(fa, ga, ch, wh) Resolvent of C15 and C22

Clauses C21 and C22 were intermediate resolvents to allow the resolution of clause C23.

This is just one way of generating clause C23. By using the level-saturation method

(Section 3.4), clause C23 would occur more than once via some other intermediate

resolvents. Some of the other ways that duplicates of clause C23 could be generated are:

 41

 Variant 1

C1-21 = ¬SAFE(fh, gh, ch, wh) ∨ ¬SAFE(fa, ga, ch, wh) ∨

S(fa, ga, ch, wh)

Resolvent of C3 and C19

Unifier {ch/y, wh/z}

C1-22 = ¬SAFE(fh, gh, ch, wh) ∨ S(fa, ga, ch, wh) Resolvent of C15 and C1-21

C1-23 = S(fa, ga, ch, wh) Resolvent of C9 and C1-22

 Variant 2

C2-21 = ¬S(fh, gh, ch, wh) ∨ ¬SAFE(fa, ga, ch, wh) ∨

S(fa, ga, ch, wh)

Resolvent of C3 and C9

Unifier {ch/y, wh/z}

C2-22 = ¬S(fh, gh, ch, wh) ∨ S(fa, ga, ch, wh) Resolvent of C15 and C2-21

C2-23 = S(fa, ga, ch, wh) Resolvent of C19 and C2-22

There are at least three other ways in which clause C23 may be deduced. All of these

deductions use clauses C3, C9, C15 and C19. The only difference between them is the

order in which they use the clauses. The semantic clash avoids this redundant generation

of clauses by generating clause C23 directly from clauses C3, C9, C15 and C19 without the

need of the intermediate clauses like C21 and C22. In this scenario the set {C3, C9, C15,

C19} is called a clash.

A clash can formally be defined as (Slagle 1967):

Definition 3.10

A clash S is a finite set of clauses {E1, …, En, N} for n≥1 such that

1. clause N contains at least n literals L1, …, Ln

2. for all i = 1, …, n clause Ei contains the complement ¬Li of literal Li, but

not the complement of any other literal in N nor any literal in Ej for j = 1,

…, n.

 42

N is called the nucleus and all Ei are called electrons.

3.4.2.4 Semantic Resolution

Semantic resolution refers to the technique whereby some interpretation M is used to

divide a set of clauses into two groups and a resolution step must use clauses from both

groups. It is defined as (Leitsch 1997):

Definition 3.11

Let S be a set of clauses and let M be an interpretation of S. Let C and D be

clauses in S such that either C or D is false in M. A resolvent with C and D as

parent clauses is then called a semantic M-resolvent or simply an M-resolvent.

A semantic deduction is defined as (Leitsch 1997):

Definition 3.12

Let S be a set of clauses and let M be an interpretation of S. A semantic

deduction of the clause C from S is a finite sequence of clauses C1,…,Cn such that

C = Cn and for all i=1,…,n either Ci is a clause in S or Ci is an M-resolvent.

3.4.2.5 Semantic Clash Resolution

Semantic resolution can be strengthened by introducing the concept of the semantic

clash. This kind of resolution is called semantic clash resolution. It is defined as (Leitsch

1997):

Definition 3.13

Let M be an interpretation of a finite set of clauses S = {E1, …, Eq, N} for q≥1

that satisfies the following conditions:

1. E1, …, Eq are false under M.

2. Let R1 = N. There exists a resolvent Ri+1 of Ri and Ei for 1 ≤ i ≤ q.

3. Rq+1 is false under M.

 43

Set S is then called a semantic clash with respect to M, or simply an M-clash.

Clauses E1,…, Eq are called electrons and clause N is called the nucleus. Rq+1 is

called an M-resolvent of the M-clash S.

A semantic clash deduction is defined as (Leitsch 1997):

Definition 3.14

Let S be a set of clauses and let M be an interpretation of S. A semantic clash

deduction of the clause C from S is a finite sequence of clauses C1,…,Cn such that

C = Cn and for all i=1,…,n either Ci is a clause in S or Ci is an M-resolvent of an

M-clash.

A proof of the completeness of semantic clash resolution is provided by (Leitsch 1997).

The ground completeness is first proved as a lemma. Thereafter, the completeness for

first-order logic is proved by using the lifting lemma. Details of the proof are beyond the

scope of this dissertation.

3.4.2.6 Semantic Clash Resolution with Predicate Ordering

Semantic Clash Resolution can be strengthened by adding predicate ordering. This is

how Slagle (1967) originally proposed semantic resolution. It is defined as (Slagle 1967,

Chang & Lee 1973):

Definition 3.15

Let M be an interpretation and P be an ordering of predicate symbols of a finite

set of clauses S = {E1, …, Eq, N} for q≥1 that satisfy the following conditions:

1. E1, …, Eq are false under M.

2. Let R1 = N. There exists a resolvent Ri+1 of Ri and Ei for 1 ≤ i ≤ q.

3. The literal that was resolved upon in Ei contains the largest predicate

symbol in Ei for 1 ≤ i ≤ q.

4. Rq+1 is false under M.

 44

Set S is then called a semantic clash with respect to P and M, or simply a PM-

clash. Clauses E1,…, Eq are called electrons and clause N is called the nucleus.

Rq+1 is called a PM-resolvent of the PM-clash S.

A semantic clash resolution deduction with predicate ordering is then defined as (Slagle

1967, Chang & Lee 1973):

Definition 3.16

Let S be a set of clauses, M an interpretation of S and P an ordering of the

predicate symbols appearing in S. A semantic clash resolution deduction with

predicate ordering of the clause C from S is a finite sequence of clauses C1,…,Cn

such that C = Cn and for all i=1,…,n either Ci is a clause in S or Ci is a PM-

resolvent of a PM-clash.

Proofs of the completeness of semantic clash resolution with predicate ordering are

provided by both Slagle (1967) and Chang and Lee (1973). As for semantic clash

resolution, the ground completeness is first proved. Thereafter, the completeness for

first-order logic is proved by using the lifting lemma.

Next we discuss a number of important subclasses of semantic resolution namely UR-

resolution, hyperresolution and set-of-support resolution.

3.4.3 UR-resolution

Unit resulting resolution or simply UR-resolution was proposed in 1967 by McCharen et

al. (1967). It derives its name from the fact that it produces unit clauses as resolvents.

UR-resolution inference rule can be formally defined as (Eisinger & Ohlbach 1993):

Definition 3.17

Let S be a set of clauses S = {E1, …, En, N} for n≥1. E1, …, En are unit clauses.

Clause N has the form N = L1 ∨ … ∨ Ln+1. Let θ be a most general unifier such

that Liθ and Eiθ are complementary for all i = 1, …, n.

 45

Ln+1 is called a UR-resolvent of S and is a unit clause. The clause N is called the

nucleus. θ is called a simultaneous unifier S.

The inference rule can also be defined in the following format (Van der Poll 2000, Quaife

1992b):

E1

 :

En

L1, …, Ln+1

Ln+1θ

where θ is a simultaneous unifier such that Liθ and Eiθ are complementary for all i = 1,

…, n.

A UR-resolution deduction is defined as (Wos et al. 1992, Eisinger & Ohlbach 1993):

Definition 3.18

Let S be a set of clauses. A UR-resolution deduction of the clause C from S is a

finite sequence of clauses C1,…,Cn such that C = Cn and for all i=1,…,n either Ci

is a clause in S or Ci is a UR-resolvent of S.

The unit clause resolvent can also be derived using binary resolution (Wos et al. 1992).

However, in this case binary resolution has some disadvantages (Quaife 1992b). This is

because a number of applications of the binary resolution rule are required. As a result

intermediate clauses are generated that unnecessarily enlarge the search space.

Depending on the search algorithm used e.g. level saturation (Chang & Lee 1973), the

same intermediate clauses may be generated more than once because every possible

combination of resolution could be attempted. This concept is known as a clash (Slagle

1967) and was discussed under semantic resolution above.

 46

UR-resolution eliminates the unnecessary generation of resolvents by replacing all the

individual inferences by just one inference step. For this reason, UR-resolution is

referred to as a macro resolution step (Eisinger & Ohlbach 1993).

UR-resolution essentially combines several applications of the unit resolution rule into

one macro resolution rule by using the concept of a clash. Unit resolution is not

refutation complete, but is complete for Horn logic (Wos et al. 1992). As a result UR-

resolution is not refutation complete, but is complete for Horn logic (Quaife 1992b). UR-

resolution is usually used in conjunction with other inference rules due to its

incompleteness.

Appendix A.3 shows an example of the farmer, goat, cabbage and wolf puzzle with UR-

resolution applied. Note that the initial clause set is not repeated in the appendix. The

use of UR-resolution substantially shortens the proof by simultaneously resolving more

than two parent clauses.

3.4.4 Hyperresolution

Hyperresolution was proposed by Robinson (1965b) in the same year that he proposed

binary resolution. Hyperresolution is a special case of semantic clash resolution (Leitsch

1997) based on the interpretation that is used. There are two variants, positive and

negative hyperresolution. The difference between the two variants is the interpretation

that is used. Hyperresolution can be defined in terms of semantic clash resolution as

(Chang & Lee 1973):

 47

Definition 3.19

Positive hyperresolution is a special case of semantic clash resolution (with or

without predicate ordering) where the interpretation M is chosen such that every

literal is negative.

Negative hyperresolution is a special case of semantic clash resolution (with or

without predicate ordering) where the interpretation M is chosen such that every

literal is positive.

Hyperresolution can also be defined independently of semantic clash resolution (Eisinger

& Ohlbach 1993):

Definition 3.20

A clause is called positive if none of its literals has a negation sign. A clause is

called negative if all of its literals have a negation sign. A clause is called mixed

if it is neither positive nor negative.

Definition 3.21

Let S be a set of clauses S = {E1, …, En, N} for n ≥ 1. Clause N is negative

(positive) or mixed and has the form N = L1 ∨ … ∨ Ln+m for m ≥ 0. For all i = 1,

…, n Ei is positive (negative) and has the form Ei = Ki ∨ Hi where Ki is a literal

and Hi a possibly empty clause. Let θ be a most general unifier such that Liθ and

K iθ are complementary for all i = 1, …, n. Clause H1θ ∨ … ∨ Hnθ ∨ Ln+1 ∨ … ∨

Ln+m is then called a positive (negative) hyperresolvent of S.

A resolution that yields a positive (negative) hyperresolvent is called a positive

(negative) hyperresolution. Clause N is called the nucleus and all Ei are called

electrons or satellites. θ is called a simultaneous unifier of S.

The inference rule can also be defined in the following format (Van der Poll 2000, Quaife

1992b):

 48

K1, H1

 :

Kn, Hi

L1, …, Ln+m

H1θ ∨ … ∨ Hnθ ∨ Ln+1θ ∨ … ∨ Ln+mθ

where all symbols have the same meaning as in Definition 3.21.

Positive hyperresolution derives its name from the fact that all electrons and

hyperresolvents are positive. Negative hyperresolution derives its name similarly namely

all electrons and hyperresolvents are negative.

A hyperresolution deduction is defined as (Slagle 1967):

Definition 3.22

A positive hyperdeduction is a semantic clash deduction (with or without

predicate ordering) in which the interpretation M is chosen such that every literal

is negative.

A negative hyperdeduction is a semantic clash deduction (with or without

predicate ordering) in which the interpretation M is chosen such that every literal

is positive.

Example 3.9

This example refutation is the same as Example 3.6 about the relationship between being

a father and grandfather except for the last deduction step C6 that makes use of positive

hyperresolution.

 49

 Clauses in S

C1 = ¬FATHER(x, y) ∨ ¬FATHER(y,z) ∨ GRANDFATHER(x, z)

C2 = FATHER(johnSr, johnBoy)

C3 = FATHER(zebulon, johnSr)

C4 = ¬GRANDFATHER(zebulon, johnBoy)

 Input refutation with top clause C4

C5 = ¬FATHER(zebulon, y) ∨ ¬FATHER(y, johnBoy) C4 and C1

C6 = □ C5, C2 and C3

Hyperresolution can be regarded as a generalisation of UR-resolution (Eisinger &

Ohlbach 1993). As with UR-resolution, hyperresolution is also a macro inference rule

(Leitsch 1997). It has the same advantages as UR-resolution in that it combines more

than one inference step into a single step, i.e. it eliminates the generation of intermediate

clauses. Therefore, the order in which intermediate resolution steps would have been

carried out for the semantic clash becomes irrelevant.

Hyperresolution has the additional advantage that it is refutation complete. Its

completeness is implied by the completeness of semantic clash resolution. A direct proof

is also provided by (Leitsch 1997) and is beyond the scope of this dissertation.

The input to a theorem-proving attempt is usually given as positive or mixed clauses and

the negated conclusion as negative clauses. With negative hyperresolution, the negative

conclusion clauses are typically used as electrons. The negative hyperdeduction therefore

tends to be suitable for backward reasoning from the conclusion towards the axioms.

Similarly, positive hyperdeduction tends to correspond to forward reasoning from the

axioms towards the conclusion (Chang & Lee 1973, Eisinger & Ohlbach 1993).

 50

In the next section we discuss an important advancement in the automated reasoning

arena namely the use of a set-of-support.

3.4.5 Set-of-Support strategy

The set-of-support strategy is a widely used and fairly successful restriction strategy

(Eisinger & Ohlbach 1993). It was proposed by Wos, Robinson and Carson (Wos 1965)

in 1965. Similar to hyperresolution, the set-of-support strategy is a special case of

semantic clash resolution (Slagle 1967) based on the interpretation that is used.

The input to a refutation-based proof attempt typically consists of a set of axioms,

theorems and a negated conclusion. The set of axioms and theorems should be satisfiable

and therefore a refutation should involve the negated conclusion. The set-of-support

strategy takes advantage of this general form of refutation-based proofs by preventing

clauses from the set of axioms and theorems to be resolved with each other (Eisinger &

Ohlbach 1993). The more general case would be to choose any satisfiable subset of the

initial clause set. This is the “unsupported” set – no resolutions among its members are

allowed. The complement of the “unsupported” set is the “supported” set or set-of-

support. Any resolution must include a “supported” clause from the set-of-support. The

resolvent is also “supported”. It therefore prevents the expansion of a set of consistent

clauses in a proof procedure where the aim is to find a contradiction (Wos et al. 1992).

Linear resolution (Section 3.4.1) is also compatible with the set-of-support strategy

(Chang & Lee 1973). That is, its refutation completeness is preserved. A completeness

proof is provided by Nerode and Shore (1997).

The set-of-support strategy is defined as (Nerode & Shore 1997, Chang & Lee 1973):

 51

Definition 3.23

Let T be a subset of a set of clauses S. If S – T is satisfiable then T is a set-of-

support in S.

A resolution of which the parent clauses are not both from S – T is called a set-of-

support resolution.

A deduction in which every resolution is a set-of-support resolution is called a

set-of-support deduction.

The set-of-support strategy is refutation complete. Rather lengthy proofs of completeness

are given by Wos (1965, 1992). A very concise completeness proof is provided by Slagle

(1967) in terms of semantic clash resolution. In this proof, the interpretation M that is

used for the semantic clash deduction is any interpretation that satisfies the set S – T.

The set S – T is assumed to be satisfiable by definition. Based on this assumption it must

have an interpretation that satisfies all of its clauses. It is however possible that the

satisfiable set is chosen incorrectly which will fail the assumption the proof is based on.

In such a case all proofs might be blocked (Wos et al. 1992). The following example

illustrates how the wrong choice for the set-of-support could block a refutation:

 Given set

C1 = P(x) ∨ Q(y)

C2 = ¬P(b)

C3 = ¬Q(c)

 Set-of-support

C4 = P(a)

The clause set S = {C1, C2, C3, C4} is unsatisfiable, but no resolution is possible using the

set-of-support strategy. No resolvent is possible starting with clause C4.

 52

The following two examples show how powerful the set-of-support strategy is in

restricting the growth of the search space. The same example (Appendix A.2) that was

used to illustrate the level saturation method with using just binary resolution is again

used here. The only difference is that the set-of-support strategy is used. The negated

goal clause ¬S(fa, ga, ca, wa) is put in the set-of-support and the rest of the clauses in the

unsupported set.

The first example is given in Appendix A.4 and shows up to saturation level 3. In this

example the first level has only 1 clause instead of 9 clauses in the original example. The

second level has only 3 clauses instead of 28. The third level has 8 clauses and the forth

level that has not been shown in Appendix A.4 has 21 clauses. The number of clauses

per saturation level started to grow very fast in the third and forth levels. The example

was therefore not completed since the level growth becomes too large to apply resolution

manually.

The second example is given in Appendix A.5. It is the same as the previous one except

that this time a predicate ordering is applied such that S > SAFE. This greatly reduced

the number of clauses, enabling the example to be extended up to a refutation. Note that

the initial set of clauses has been omitted. The first three levels have only one clause as

opposed to the previous example’s 1, 3 and 8 respectively. Level four has 3 clauses

instead of 21. Level five has 6 clauses and a refutation was found immediately on level

6.

3.5 Redundancy and Deletion

The various resolution refinements introduced above could still contain redundancies

such as tautologies and circular derivations. Redundancy tests can eliminate these and

thereby reduce the search space.

3.5.1 Subsumption

Subsumption is a deletion strategy whereby duplicate clauses or clauses that are more

specific than certain other clauses are discarded (Wos et al. 1992). This is in line with

 53

the resolution principle that works on the most general level (Leitsch 1997). The case for

deletion can be defined as (Eisinger & Ohlbach 1993):

Definition 3.24

A clause C subsumes a clause D if and only if there is a substitution θ such that

Cθ ⊆ D. D is called a subsumed clause.

The symbol ⊆ in the above definition is used to indicate subsumption of one clause by

another. Note that according to this definition a clause D is regarded as redundant not

only if it is an instance of C, but also if it contains an instance of C.

For example, let C = P(x) ∨ Q(y) and D = P(a) ∨ Q(b) ∨ R(a). For θ = {a/x, b/y} we get

Cθ = P(a) ∨ Q(b). But Cθ ⊆ D and therefore C subsumes D. From this example it can be

seen that clause C implies clause D and is therefore more general.

Subsumption is often employed as a pre-processing step whereby a set of clauses is first

reduced before resolution takes place. Subsumption can also be used during resolution

deductions (Leitsch 1997). Forward subsumption is the process that discards any newly

generated clauses that are subsumed by previously retained clauses. Backward

subsumption occurs when newly generated clauses are used to discard previously

retained clauses by subsumption. Lastly, if derived clauses are periodically reduced by

subsumption, the process is called replacement.

The pruning of the search space using subsumption is in general refutation complete

(Wos et al. 1992). Proofs of the completeness and incompleteness of subsumption in

combination with some resolution refinements are provided by (Leitsch 1997). An

example of incompleteness is the combination of forward subsumption with lock

resolution. Another example is the use of subsumption with the set-of-support strategy

(Wos et al. 1992). A clause D with support can be subsumed by a clause C without

support. Clause D might however be required in the final proof, hence the problem can

be solved by also giving clause C support.

 54

Appendix A.6 illustrates the use of subsumption combined with the set-of-support

strategy. The same example that was used to illustrate the set-of-support strategy without

predicate ordering (Appendix A.4) is used here again with the addition of subsumption.

Subsumption greatly reduces the size of the search space thereby making it viable to

extend it up to a refutation. The number of generated clauses in the first four levels was

1, 2, 4 and 2 as opposed to the original example’s 1, 3, 8 and 21 respectively, also in

Appendix A.4. Level five has 2 clauses and a refutation was found on level six. The

total number of clauses was 18 of which 9 were retained and 9 discarded.

3.5.2 Tautologies

A tautology is a clause that is valid under all interpretations. A clause is a disjunction of

literals therefore a clause is a tautology if and only if it is true or if it contains a

complementary pair of literals (Leitsch 1997). The clause P(f(x)) ∨ Q(y) ∨ ¬P(f(x)) is an

example of a tautology. This is because either P(f(x)) or its complement will be valid

regardless of the interpretation that is used.

The tautology rule states that a clause D that is a tautology can be removed from a clause

set S resulting in set S – {D}. Since D is satisfied by all interpretations it follows that an

interpretation satisfies S if and only if it satisfies S – {D} (Eisinger & Ohlbach 1993).

The two sets S and S – {D} are therefore logically equivalent as far as a subsequent proof

attempt is concerned.

Clauses that are subsumed are redundant, and this redundancy depends on the other

clauses that are present. A tautology is redundant independently of any other clauses that

may be present. As an algorithmic test, tautology elimination is therefore simpler and

faster than subsumption since the algorithm only needs to check whether or not the clause

contains a complementary pair (Chang & Lee 1973).

The tautology rule is in most cases refutation complete (Leitsch 1997). Proofs of the

completeness and incompleteness of the tautology rule in combination with some

resolution refinements are provided by (Leitsch 1997). Tautology elimination is for

example complete when used as pre-processing or in combination with subsumption or

 55

hyperresolution. An example of incompleteness is the combination of forward

subsumption with lock resolution (Leitsch 1997).

3.6 Theory Resolution

Any unsatisfiable first-order predicate formula can be refuted by resolution (Robinson

1965a). Resolution is therefore a universal rule of inference. A disadvantage of this

generality is that resolution does not have any semantic knowledge of the symbols it

manipulates. As a result domain specific knowledge and algorithms cannot be employed

to perform macro inference steps. To perform simple addition for example the axioms of

number theory must be specified and the correct resolution steps must then be selected to

simulate the addition of two numbers. The search space therefore tends to become very

big for resolution steps that appear to be trivial.

Tailored inference rules that incorporate the semantic knowledge of a theory have been

proposed for specific cases thereby eliminating the need to add the axioms of the relevant

theory. These macro inference rules have the advantage of reducing the length of proofs

as well as the size of the search space. General theory resolution that incorporates these

special cases was proposed by Stickel (1985). A good overview of theory resolution is

provided by Eisinger and Ohlbach (1993).

The equality predicate was one of the first symbols for which special inference rules were

developed (Eisinger & Ohlbach 1993). One reason for this is that many theorems can be

specified more elegantly using the equality relation (Chang & Lee 1973). This is

especially the case for mathematical reasoning (Quaife 1992b).

In this section we shall look at how the equality predicate is used in proofs and which

axioms must be included to make the decision procedure complete. Paramodulation is

thereafter discussed as a special case of theory resolution applied to the equality

predicate. Lastly demodulation is discussed.

 56

3.6.1 The Equality Predicate

An equality predicate by convention starts with EQUAL (Wos et al. 1992), using prefix

notation. For example, to state that a = b the clause EQUAL(a,b) is provided. However,

to make clauses more readable the equals symbol ‘=’ will sometimes be used, infix

notation instead.

Through inspection we can see that the following clause set is unsatisfiable:

C1 = P(a)

C2 = EQUAL(a,b)

C3 = ¬P(b)

However, the unsatisfiability of the above set of clauses cannot be formally proved using

only the resolution techniques introduced so far. There is equality involved which is only

complete if a number of equality axioms are included in the proof attempt. These extra

axioms are (Eisinger & Ohlbach 1993):

∀x (x = x) Reflexivity

∀x,y (x = y → y = x) Symmetry

∀x,y,z (x = y ∧ y = z → x = z) Transitivity

∀x1,…,xn,y1,…,yn (x1 = y1 ∧ … ∧ xn = yn → f(x1,…,xn) = f(y1,…,yn) Substitution

∀x1,…,xn,y1,…,yn (x1 = y1 ∧ … ∧ xn = yn ∧ P(x1,…,xn) → P(y1,…,yn) Substitution

The above substitution rules must be added for every function and predicate symbol

appearing among the formulae.

 57

These equality axioms formalise the ‘identity of indiscernibles’ principle which states

that if there is no way of telling two entities apart then they are the same. This principle

is also known as Leibniz’s law (Eisinger & Ohlbach 1993).

The first example above in the current subsection can now be refuted by adding the

relevant substitution clause for the predicate symbol P:

C1 = P(a)

C2 = EQUAL(a,b)

C3 = ¬P(b)

C4 = ¬EQUAL(x,y) ∨ ¬P(x) ∨ P(y) Axiom of substitution applied to P

C5 = ¬P(a) ∨ P(b) Resolvent of C2 and C4

C6 = P(b) Resolvent of C1 and C5

C7 = □ Resolvent of C3 and C6

3.6.2 Paramodulation

The above axioms provide a logically complete treatment of equality but their use slows

down a proof attempt and makes it inefficient (Quaife 1992b). Numerous redundant

clauses are generated (Nieuwenhuis & Rubio 2001) resulting in a search space that is

rather large for relatively simple problems (Eisinger & Ohlbach 1993).

Many solutions have been proposed (Chang & Lee 1973) of which paramodulation

became the most accepted. Paramodulation was introduced by G.A. Robinson and L.

Wos in 1969 (Robinson & Wos 1969). The name is derived from the close relationship it

has with demodulation (Wos et al. 1992). Demodulation is discussed in Section 3.6.3.

Paramodulation can formally be defined as (Chang & Lee 1973):

 58

Definition 3.25

Let C1 and C2 be two clauses with no variables in common. C1 has the form

L[t] ∨M1∨…∨M i for i ≥ 0 where L[t] is a literal containing the term t. C2 has the

form (r = s)∨N1∨…∨Nj for j ≥ 0. If θ is a most general unifier of t and r, then we

can infer clause

C = Lθ[sθ] ∨ M1θ ∨ … ∨ Miθ ∨ N1θ ∨ … ∨ Njθ

where Lθ[sθ] is obtained by replacing a single occurrence of tθ in Lθ by sθ.

C is called a binary paramodulant of C1 and C2. C1 and C2 are called the parent

clauses of C. The literals L and r = s are called the literals paramodulated upon.

We also say the paramodulation is applied from C2 into C1. As a result C1 is

called the ‘into’ clause and C2 the ‘from’ clause.

The paramodulation inference rule can also be represented as (Van der Poll 2000):

L[t], M 1, …, Mi

r = s, N1, …, Nj

‘into’ clause

’from’ clause

Lθ[sθ], M1θ, …, Miθ, N1θ, …, Njθ

where all symbols have the same meaning as in Definition 3.25 above.

An E-model of a set S of clauses is a model of the equality axioms that also satisfies the

set S (Chang & Lee 1973). Paramodulation is sound in that if C is a paramodulant of any

two clauses in S then any E-model of S is also an E-model of S ∪ {C} (Eisinger &

Ohlbach 1993).

A set S of clauses is E-unsatisfiable if and only if has no E-model otherwise S is called E-

satisfiable (Chang & Lee 1973). The use of the paramodulation rule together with

resolution is refutation complete for any set of E-unsatisfiable clauses that contains the

 59

reflexivity axiom (Plaisted 1993). The reflexivity axiom is required to be able to refute

the E-unsatisfiable set {¬(a = a)}.

There are various refinements of paramodulation that preserve completeness when used

with resolution. Some of these include hyper, unit, input and linear paramodulation

(Chang & Lee 1973) as well as the set-of-support strategy (Wos et al. 1992).

The following example shows that the two clauses x + 0 = x and P((g(y) + 0) + f(b))

implies the clause P(z + f(b)) using paramodulation:

C1 = EQUAL(sum(x,0), x)

C2 = P(sum(sum(g(y),0), f(b)))

C3 = ¬P(sum(z, f(b)))

C4 = P(sum(g(y), f(b))) Paramodulant from C1 into C2

Unifier {g(y)/x}

C5 = □ Binary resolvent of C3 and C4

Paramodulation aids in reducing the search space of problems containing equalities. This

is because no unnecessary resolution steps can occur with and between the equality

axioms (Eisinger & Ohlbach 1993). Unfortunately paramodulation still generates many

irrelevant clauses (Quaife 1992b). This is especially the case when the terms t and r in

Definition 3.25 above are variables. Demodulation (Wos 1967) is a technique that helps

to restrict the number of inferences. Demodulation is discussed in the following section.

Ordered paramodulation (Nieuwenhuis & Rubio 2001) is another restriction technique

that only performs replacements of large terms by smaller ones with respect to some

ordering. Knuth-Bendix completion (Plaisted 1993) contained the first instances of

ordered paramodulation. It is often used successfully in conjunction with other resolution

techniques. It provides an algorithm for a class of equational theories that permits the

 60

computation of a set of rewrite rules sufficient to check the truth of every equation of the

theory by requiring that equal terms reduce to the same normal form (Quaife 1992b).

3.6.3 Demodulation

Equality relations in many fields of mathematics often tend to be very general with

expressions like (x -1)-1 = x. In the presence of the expression a⋅b = c, equality resolutions

mechanisms like paramodulation will infer a set of very closely related expressions like

(a -1)-1⋅b = c. The retention of all these related expressions causes an unacceptable high

growth of the search space.

Demodulation was one of the proposed solutions to this uncontrolled repeated application

of a given equality (Wos 1967). The aim of demodulation is to simplify the presentation

of information. Such simplification is achieved by applying a transformation to relevant

clauses that replaces α in some clause by β where β = α and β is simpler than α. The

original clause is then discarded (see Example 3.10).

An application of demodulation is defined as (Wos et al. 1992):

Definition 3.26

Let C1 and C2 be two clauses. C1 has the form L[t]∨M1∨…∨M i for i ≥ 0 where

L[t] is a literal containing the term t. C2 is a positive unit equality clause r = s that

has been designated to be used to rewrite expressions. C2 is called a demodulator.

Let θ be a substitution such that rθ = t. A clause C is then obtained by replacing t

in L with sθ:

C = L[sθ] ∨ M1θ ∨ … ∨ Miθ

Clause C1 is then discarded and replaced by C. Clause C is called a demodulant

of C1.

Note that one-way matching is used instead of unification. Also, in the above definition,

if sθ = t then a demodulant can be obtained by replacing t in L with rθ. It is however a

 61

common convention to consider only the first argument of the demodulator C2 (Wos et

al. 1992).

The application of demodulation can also be represented as (Van der Poll 2000, Quaife

1992b):

L[t], M 1, …, Mi

r = s

L[sθ], M1θ, …, Miθ

where all symbols have the same meaning as in the above Definition 3.26, e.g. rθ = t.

Demodulation is then defined as (Wos 1967):

Definition 3.27

Let W be a set of positive equality unit clauses. Demodulation is the process of

replacing a clause C by a demodulant D of A relative to W. D is obtained by

generating a sequence C1, …, Ck such that C = C1, D = Ck, Ci+1 is a demodulant of

Ci as defined above using a demodulator in W for 1 ≤ i < k, Ci+1 has strictly fewer

symbols than Ci and Ck has no demodulant relative to W with fewer symbols.

Example 3.10

 In the following example the demodulation rule is applied to clause C1 using equality W1

to obtain the simpler demodulant C2.

W1 = EQUAL(sum(x,0), x) An available equality.

C1 = P(sum(1,0)) ∨ ¬Q(c) The given clause.

C2 = P(1) ∨ ¬Q(c) Demodulant of W1 and C1

Substitution {sum(1,0)/1}

 62

Demodulation typically applies all demodulators in the system to all relevant terms of

any newly generated clause until the clause cannot be simplified any further (Quaife

1992b). In the case where a new demodulator is generated, all the previously retained

clauses can be examined for possible demodulation with the new demodulator. This is

called back demodulation (Wos et al. 1992).

Demodulation and paramodulation are similar in that both cause an equality substitution

with a successful application. Demodulation also has equivalent ‘from’ and ‘into’

clauses. In fact, paramodulation’s name was derived from the close relationship it has

with demodulation (Wos et al. 1992). Demodulation and paramodulation differs in

several aspects though (Wos et al. 1992). Unlike paramodulation, demodulation requires

the equality literal to be in a unit clause. Demodulation allows for variable replacement

only in the argument of the equality literal while paramodulation allows it also in the

term into which the substitution is being attempted. Paramodulation retains the parent

clauses and the paramodulant whereas demodulation discards the original clause into

which the substitution took place.

Example 3.11

The following example from group theory illustrates the simplification of the expression

(e⋅(e⋅(a-1)-1))⋅b = c to a⋅b = c. Suppose P(x,y,z) represents x⋅y = z, function f(x,y)

represents x⋅y and function g(x) represents x -1. Two equalities are available: e⋅x = x,

(x-1)-1 = x.

W1 = EQUAL(f(e,x),x) An available equality.

W2 = EQUAL(g(g(x)),x) An available equality.

C1 = P(f(e,f(e,g(g(a)))),b,c) The given clause.

C2 = P(f(e,g(g(a))),b,c) Demodulant of W1 and C1

Substitution {g(g(a))/x}

 63

C3 = P(g(g(a)),b,c) Demodulant of W1 and C2

Substitution {g(g(a))/x}

C4 = P(a,b,c) Demodulant of W2 and C3

Substitution {a/x}

The following section introduces a further aid to the resolution process, namely heuristics

to be used in the search for a proof.

3.7 Heuristics

A general definition of a heuristic is an informal, judgmental knowledge of an application

area that constitutes the rules of good judgement in the field (Turban & Frenzel 1992).

For example, a stock trading heuristic to reduce risk could be to not buy stocks whose

price-to-earnings ratio is larger than 10.

The order in which derivations are generated during the search for a refutation has a

strong influence on the cost of the search (Leitsch 1997). A simple but effective heuristic

would be to give preference to deductions containing smaller clauses. Smaller clauses

could mean clauses containing fewer literals or clauses of smaller term depth, i.e. fewer

levels of nesting.

Different types of clause complexity may be combined in a weight function, resulting in a

preference for clauses having smaller weight. The weight of a clause is determined

primarily by the number of literals in the clause or the term depth of the clause. Other

examples of weight function parameters could be to give priorities to variables, function

symbols, predicate symbols and terms. An automated reasoning program that employs

weighting chooses the clauses with the most favourable weight (e.g. a smaller weight).

Using weighting in this manner is referred to as a direction strategy (Wos et al. 1992).

Weighting can also be used as a restriction strategy. In this case it will cause new clauses

whose weight is above some threshold to be deleted.

 64

The use of weighting as a direction strategy only influences the ordering of derivations

and therefore does not influence the completeness of the proof procedure. This heuristic

differs from a restriction strategy heuristic that could make the proof procedure

incomplete. For example, a restriction of producing only clauses with fewer than four

literals (say) is an incomplete refinement (Leitsch 1997).

Another heuristic is the selection of the inference mechanism for a specific class of

problem. An automated theorem prover could elect to use paramodulation with

demodulation when identifying the use of equality. It could identify the problem as a

Horn class problem and therefore use the more efficient unit and input resolution

strategies that would otherwise be incomplete. The reasoner can also change its strategy

when detecting that a specific theory is relevant to the problem for example set theory as

is the case in this dissertation. This heuristic could lead to incompleteness for example

when forward subsumption is selected in combination with lock resolution (Leitsch

1997).

All the heuristics discussed above are used by modern automated reasoners. Theorem

provers also make many of these parameters available to the user for configuration.

Some of these parameters include weighting, main loop settings, inference rules,

restriction strategies, time and memory limits, maximum number of clauses to retain

(McCune 2003, Tammet 1997, Voronkov 2005).

The user can therefore apply his or her own heuristics in an attempt to guide the theorem

prover to find a proof by adjusting these parameters. For example the weighting strategy

is suggested as a user heuristic by Van der Poll and Labuschagne (1999) whenever the

set-of-support contains an equality literal. Various configurations of the weighing

strategy are also suggested by Quaife (1992b) when working with problems involving

sets and Tarski’s geometry. He also proposes that one should not use binary resolution as

an inference rule (Quaife 1992b). Wos also provides heuristics with regards to inference

rules and strategy selection (Wos et al. 1992).

A further heuristic that can be applied by a user is that of problem representation (Wos et

al. 1992, Van der Poll & Labuschagne 1999). The choice of problem representation can

 65

play an essential role in the theorem prover’s chance of succeeding and the time it takes

to succeed. Wos refers to the heuristics of problem representation as an art because of its

subtleties and the difficulty of characterising the essential concepts that constitute a

problem representation. Various problem-representation heuristics are provided by Wos

(1992), for example that unit clauses, shorter clauses and equality predicates should be

given preference.

Quaife provides heuristics for problem representation in set theory (Quaife 1992a). One

of these is to replace the axiom of extensionality that contains a Skolem function when

clausified with an equivalent but simpler formula. The Extensionality axiom (Section

2.1.1) states that ∀A∀B(∀x(x ∈ A ↔ x ∈ B) → A = B) where A and B are sets and x

represents elements of these sets (Enderton 1977). The axiom can be replaced with the

equivalent formula ∀A∀B(A = B ↔ A ⊆ B ∧ B ⊆ A) that requires no Skolem function.

Van der Poll and Labuschagne have done extensive research on heuristics that could be

applied to the representation of problems in set theory (Van der Poll & Labuschagne

1999, Van der Poll 2000). In their work they present a set of problem frames or patterns

that captures the properties of a specification that can compromise the efficiency of a

theorem prover. For each of these problem frames he provides one or more heuristics

that can alleviate the problem as well as an example that illustrates its effect. Some of

these heuristics are:

• Use the principle of extensionality to replace equality in the set-of-support. For

example, if C=D appears in the set-of-support it can be replaced by (∀x)(x ∈ C

↔ x ∈ D).

• Perform two separate subset proofs whenever the problem at hand requires the

theorem prover to prove the equality of two sets. For example, the above goal of

C = D can be replaced by a proof showing that (∀x)(x ∈ C → x ∈ D) and

thereafter a proof that (∀x)(x ∈ C → x ∈ C).

• Avoid if possible the use of nested function symbols in definitions.

 66

• Avoid the inclusion of information that is not obviously necessary in the input to

the theorem prover.

3.8 Summary

This chapter gave a brief overview of decidability and Herbrand’s universe. The next

section presented resolution as an efficient refutation procedure. It was shown how a

first-order statement may be converted to clausal form which is required for resolution.

Resolution in propositional and predicate logic was described. The rest of the chapter

focused on efficiency enhancements for resolution. These enhancements were classified

into four categories: resolution refinements, redundancy tests, theory resolution and

heuristics. The refinements that were addressed were linear resolution, semantic

resolution, UR-resolution, hyperresolution and set-of-support strategy. Redundancy tests

included subsumption and tautologies. Theory resolution covered paramodulation and

demodulation. Finally some heuristics that can be automatically applied by the theorem

prover and those that must be applied by the specifier were discussed.

 67

4 Automated Theorem Provers

Chapter 4

Automated Theorem Provers

The VdPL heuristics (Section 1.3) were arrived at with the aid of Otter, a first-order

automated resolution-based reasoner (McCune 2003). The aim of this work is to

determine to what extent other state-of-the-art reasoners can benefit from the said

heuristics. The Vampire and Gandalf theorem provers will be used for this purpose and a

motivation for using these reasoners is presented. An overview of each of Vampire and

Gandalf as well as an example of the input to each and the resulting proofs are given.

Appendix B gives a list of some of the theorem provers that were evaluated for this work.

The list is limited to automated theorem provers for first-order logic. Within this list only

resolution-based theorem provers were considered since Otter is also based on resolution.

The selection of possible reasoners was further reduced by considering individual

performances in the CADE ATP System Competitions (CASC) (Pelletier et al. 2002,

Sutcliffe & Suttner 2006). CASC is an annual competition that evaluates the

performance of automated theorem provers using classical first-order logic. It has 6 main

divisions based on the types of problems.

Vampire is our first choice and will be the primary reasoner used in this work. Vampire

fits the profile for two reasons. The first is because of its consistent success at the annual

CASC competitions. Vampire came first in two of its divisions every year from 2002 to

2007. In 2000 and 2001 it came first in one of the divisions. The second reason stems

from the fact that Vampire has solved more set-theoretic problems than any of the other

competing provers in the period from 2002 to 2007 across all divisions involving these

problems.

 68

Vampire may therefore undoubtedly be considered a state-of-the-art reasoner for set-

theoretic problems. If we can show that Vampire benefits from the VdPL heuristics, then

it is plausible that other reasoners will benefit from these heuristics as well.

Gandalf was chosen as the secondary reasoner since it was the only other automated,

resolution-based reasoner that has recently won in a CASC division.

The rest of this section will be used to describe Vampire and Gandalf in more detail.

4.1 Vampire

Vampire was developed in the Computer Science Department of the University of

Manchester by Andrei Voronkov previously together with Alexandre Riazanov. Vampire

is coded in C++. The version that was used in this work is version 7.0.

Vampire is described in a number of sources, namely, Voronkov (2001, 2005), Riazanov

(2003) and Riazanov & Voronkov (2002, 2001). It is a resolution-based system for fully

automatic theorem proving in first-order logic with equality. It implements the calculi of

ordered binary resolution and superposition for handling equality. Superposition is a

calculus for reasoning in equational first-order logic that combines concepts from first-

order resolution with ordering-based equality handling as developed in the context of

unfailing Knuth-Bendix completion (Nieuwenhuis & Rubio 2001).

Vampire supports the inference rules of ordered binary resolution (Bachmair &

Ganzinger 2001) with negative selection, superposition and a special form of splitting.

The splitting rule and negative equality splitting are simulated by the introduction of new

predicate definitions and dynamic folding of such definitions.

Vampire makes use of a number of redundancy control and simplification techniques.

These include forward and backward subsumption, subsumption resolution, tautology

deletion, forward and backward demodulation, rewriting by ordered unit equalities, basic

restrictions and irreducibility of substitution terms. The reduction orderings used are the

standard Knuth-Bendix ordering and a special non-recursive version of the Knuth-Bendix

ordering.

 69

A number of efficient indexing techniques are used to implement the major operations on

sets of terms and clauses. Run-time algorithm specialisation is used to accelerate some

costly operations for example checks on ordering constraints. Run-time algorithm

specialisation originated with Vampire and is described in Riazanov (2003).

Vampire is a saturation-based theorem prover. It implements three different saturation

algorithms that can be selected for its main loop for inferring and processing clauses.

The three saturation algorithms are an Otter loop with or without the Limited Resource

Strategy and the Discount loop. These algorithms belong to the class of given-clause

algorithms.

The Otter algorithm used in Vampire is a slight modification of the saturation algorithm

used in the Otter reasoner (McCune 2003). A simplified version of the algorithm used by

Vampire is given below:

input: init: set of clauses;
var active, passive, unprocessed: set of clauses
var given, new: clause;
active := ∅;
unprocessed := init;
loop
 while unprocessed ≠ ∅
 new := pop(unprocessed);
 if new = □ then return unsatisfiable;
 if retained(new) then (* retention test *)

 simplify new by clauses in active ∪ passive;(* forward simplification *)
 if new = □ then return unsatisfiable;
 if retained(new) then (* another retention test *)
 delete and simplify clauses in active and (* backward simplification *)
 passive usin g new;
 move the simplified clauses to unprocessed;
 add new to passive;
 if passive = ∅ then return satisfiable or unknown;
 given := select(passive); (* clause selection *)
 move given from passive to active;
 unprocessed := infer(given, active); (* generating inferences *)

Clause selection in Otter is based on an age-weight ratio which is also known as the pick-

given ratio in Otter. The retention test consists of deletion rules plus a weight test. The

weight test discards any clause whose weight exceeds a user-defined limit, if specified.

The Limited Resource Strategy aims to improve the effectiveness of the Otter algorithm

when a time limit is imposed. Usually when the Otter algorithm reaches the time limit

 70

many clauses remain passive. This means that any computational resources that were

used to generate, process and keep these clauses have been wasted. The aim of the

Limited Resource Strategy is therefore to identify which passive clauses have little

chance to be processed by the time limit and it then discards these clauses.

The set of passive clauses tends to become much larger than the number of active ones.

As a result, its use in simplifying inferences slows down the proof search. The Discount

algorithm, which is named after the theorem prover Discount (Denzinger et al. 1997)

aims to solve this problem by not allowing passive clauses to be used at all. As a result

any new clauses can be processed faster since only a small subset of all clauses is

involved in simplifying inferences. A disadvantage of the algorithm is that a valuable

clause might not be generated by a simplification inference, which would have been

generated by the Otter algorithm. The Discount algorithm is given below:

input: init: set of clauses;
var active, passive, unprocessed: set of clauses
var given, new: clause;
active := ∅;
unprocessed := init;
loop
 while unprocessed ≠ ∅
 new := pop(unprocessed);
 if new = □ then return unsatisfiable;
 if retained(new) then (* retention test *)
 simplify new by clauses in active; (* forward simplification *)
 if new = □ then return unsatisfiable;
 if retained(new) then (* another retention test *)
 delete and simplify clauses (* backward simplification *)
 in active using new;
 move the simplified clauses to unprocessed;
 add new to passive;
 if passive = ∅ then return satisfiable or unknown;
 given := select(passive); (* clause selection *)
 simplify given by clauses in active; (* forward simplification *)
 if given = □ then return unsatisfiable;
 if retained(given) then (* retention test *)
 delete and simplify clauses (* backward simplification *)
 in active using given;
 move the simplified clauses to unprocessed;
 add given to active;
 unprocessed := infer(given, active); (* generating inferences *)

Various heuristics for Vampire’s automatic mode have been derived from empirical data

obtained on problems from the TPTP (Thousands of Problems for Theorem Provers)

(Sutcliffe & Suttner 1998) problem library.

 71

Vampire is divided into a kernel and a shell component. The kernel works only with

clausal normal forms. The shell or pre-processor however can accept a problem in first-

order logic syntax, clausify it and perform a number of useful transformations before

passing the result to the kernel. The TPTP notation is used as input for Vampire. The

advantage of the TPTP syntax is that it is widely used among theorem provers. There are

also tools available to convert a problem specified using the TPTP notation into other

notations for those theorem provers that do not accept the TPTP notation.

The following is an example TPTP input of a set-theoretic problem to show that

P{{1}} = { ∅,{{1}}}.

% A TPTP set-theoretic problem:
% Show that P{{1}} = {Empty,{{1}}}.

% Reflexivity
fof(reflexivity, axiom,
 ! [X] : X = X
).

% Extensionality
fof(extensionality, axiom,
 ! [A,B] : ((![X]:(el(X,A) <=> el(X,B))) => (A = B))
).

% Empty = {}
fof(empty, axiom,
 ~(?[X]: el(X, empty))
).

% A = {1}
fof(a_is_1, axiom,
 ![X]: (el(X,a) <=> (X = 1))
).

% B = {A}
fof(b_is_a, axiom,
 ![X]: (el(X,b) <=> (X = a))
).

% C = P(B)
fof(c_is_power_b, axiom,
 ![X]: (el(X,c) <=> (![Y]: (el(Y,X) => el(Y,b))))
).

% D = {Empty,{{1}}}
fof(d_is_empty_or_1, axiom,
 ![X]: (el(X,d) <=> ((X = empty) | (X = b)))
).

% Goal clause C = D
fof(c_is_d, conjecture,
 c = d
).

 72

Vampire then finds a proof for P{{1}} = { ∅,{{1}}} in 0.2 seconds. The output appears

in Appendix C.1. It also lists the proof steps. Vampire tries to make the proof as

readable as possible and as a result the proof output makes up the largest part of the

output. Finally some global statistics are provided for example the number of clauses

generated, subsumed, discarded etc.

Note also that by default in the TPTP notation constants start with a lower-case symbol

(e.g. empty above) while variables start with capitals. The documentation (i.e.

comments) in the above example follow a more traditional approach, e.g. Empty = {}.

4.2 Gandalf

Gandalf was developed by Tanel Tammet (1997). It is a family of theorem provers for

classical first-order logic, intuitionistic first-order logic and propositional linear logic. It

also includes a finite model builder. These provers share large parts of their code. The

name Gandalf is that of a powerful wizard in the famous fantasy books “The Hobbit” and

“The Lord of the Rings” written by J.R.R. Tolkien (1966).

Gandalf is a resolution-based reasoner with equality and implements a large number of

inferences and strategies. Some of these include binary-, unit- and hyperresolution, set-

of-support, paramodulation, forward and back demodulation, Knuth-Bendix ordering,

literal ordering, tautology elimination, forward and backward subsumption and limits on

clause length and term depth.

Gandalf is written in Scheme (Dybvig 2003) and compiled to C by the Scheme-to-C

compiler Hobbit which was also developed by Tammet (1997). The platforms under

which Gandalf has been tested are Linux, Solaris and MS Windows using Cygwin.

Gandalf is also optimised for handling problems where large numbers of long clauses are

derived. It is freely available under the Gnu Public Licence. A commercial version

called G is developed and distributed by Safelogic AB. This version contains numerous

additions, strategies and optimisations aimed specifically at the verification of large

systems. In this dissertation we used the freely available version c-2.6.r1.

 73

Gandalf implements a large number of search strategies. The usage of these strategies

can be either controlled by the human user or by the powerful automatic mode of

Gandalf. The automatic mode first selects a set of different strategies that are likely to be

useful for a given problem and then attempts all these strategies one after another. It uses

time-slicing to limit the time that a specific search strategy is executed. When the

strategy’s time runs out, the next strategy is executed. During each specific strategy run

Gandalf typically modifies its strategy as the time limit for the run starts coming closer.

Selected clauses from unsuccessful runs are sometimes used in later runs.

The basic strategies that Gandalf selects from are hyperresolution, binary set-of-support

resolution, unit resolution and ordered resolution. Typically Gandalf selects one or two

strategies to iterate over term depth limit and one or two strategies to iterate over the

selection of equality orderings. During the second half of each strategy run Gandalf will

impose additional restrictions, like introducing unit restriction and switching over to strict

best-first clause selection.

The strategy selection for a particular problem is based on the following criteria:

• The CASC problem class (Pelletier 2002, Sutcliffe & Suttner 2006). These

classes include unit equality (UEQ), pure equality (PEQ), Horn logic with no

equality (HNE), Horn with some but not pure equality (HEQ), non-Horn with

some but not pure equality (NEQ) and non-Horn with no equality (NNE). These

strictly determine the list of basic strategies. The following criteria determine the

relative amount of time given to each strategy.

o The problem size based on the number of clauses in the problem. The

classifications are small, medium or large. For bigger problems, the set of

support strategy gets relatively more time than other strategies.

o The percentage of clauses that can be ordered by term depth are small,

medium and all. For larger percentages term depth ordering gets relatively

more time than other strategies.

 74

Like Vampire, Gandalf is a saturation-based theorem prover. It implements the widely

used given-clause saturation algorithm, also used by the Otter and Vampire provers. The

main loop for inferring and processing clauses is exactly the same as that of Otter

(McCune 2003):

while (sos is not empty and no refutation has been found)
 1. Let given_clause be the lightest clause in sos ;
 2. Move given_clause from sos to usable;
 3. Infer and process new clauses using the infere nce rules in effect;
 each new clause must have the given_clause as one of its parents and
 members of usable as its other parents;
 new clauses that pass the retention tests are appended to sos;
end of while loop.

A subset of the Otter notation (McCune 2003) is used for problem input. Gandalf does

not recognise formula syntax and requires the input to be in clausal form. The TPTP

utility tptp2X (Sutcliffe & Suttner 1998) can be used to convert a problem in TPTP

notation to the required Otter notation in clausal form that can be used by Gandalf.

The following example illustrates the use of Gandalf. It is the same example that was

used to illustrate Vampire’s use. The input is in the Otter clausal form notation and was

obtained by a conversion from the TPTP input using the tptp2X utility. The input file has

been modified afterwards by adding comments and removing some unnecessary

generated comments.

assign(max_seconds,1800).
set(prolog_style_variables).
set(tptp_eq).
set(auto).
clear(print_given).

% The usable list
% ---------------
list(usable).

% Reflexivity
 equal(X,X).

% Extensionality
 el($f1(A,B),A)|el($f1(A,B),B)|equal(A,B).
 -el($f1(A,B),A)| -el($f1(A,B),B)|equal(A,B).

% Empty = {}
 -el(X,empty).

% A = {1}
 -el(X,a)|equal(X,1).
 el(X,a)| -equal(X,1).

% B = {A}
 -el(X,b)|equal(X,a).
 el(X,b)| -equal(X,a).

 75

% C = P(B)
 -el(X,c)| -el(Y,X)|el(Y,b).
 el(X,c)|el($f2(X),X).
 el(X,c)| -el($f2(X),b).

% D = {Empty,{{1}}}
 -el(X,d)|equal(X,empty)|equal(X,b).
 el(X,d)| -equal(X,empty).
 el(X,d)| -equal(X,b).
end_of_list.

% The set of support
% ------------------
list(sos).
% Goal clause C = D
 -equal(c,d).
end_of_list.

With the above input Gandalf is given 30 minutes (1800 seconds) to find a refutation by

the command assign(max_seconds,1800) . Also, no explicit inference strategies have

been set. The command set(auto) instructs Gandalf to automatically select strategies.

Gandalf finds a proof after 119.21 seconds and produces the output as shown in

Appendix C.2. The output also confirms that automatic strategy selection is used and that

the time limit is 30 minutes. The problem class has been identified as NEQ, that is non-

Horn with some but not pure equality. The problem size is classified as medium. The

strategies that have been selected are displayed, followed by the steps of the proof. The

strategies that were actually used to obtain the proof are also listed. Finally the output

gives some global statistics for example the number of clauses generated, kept, subsumed

etc.

Note that the Gandalf algorithm attempts a number of proof strategies one after another.

It is possible that only the last strategy attempted produces a proof, hence the work done

during the previous strategies is effectively wasted. In reporting the time taken to find a

proof, Gandalf does however give the total time taken of which the time for the

successful strategy is a part. We observe this in the proof output in Appendix C.2. This

phenomenon is similar to other reasoners exploring the consequences of irrelevant

information, e.g. the Redundant Information heuristic developed in Section 5.8.

4.3 Summary

The aim of this work is to determine to what extent state-of-the-art resolution-based

reasoners may benefit from the VdPL heuristics in the same way that Otter benefited

 76

from these. This chapter identified the two theorem provers that we consider in this

dissertation. Vampire and Gandalf were selected because they are also resolution-based

reasoners like Otter and performed well in the set theory sections of the CADE ATP

System Competitions (CASC) (Pelletier et al. 2002, Sutcliffe & Suttner 2006).

A brief introduction to the resolution techniques employed by Vampire and Gandalf was

given including a sample input problem and the respective outputs in appendices. In the

next chapter we shall investigate the utility of the VdPL heuristics for Vampire and

Gandalf.

 77

5 Evaluation of Set-Theoretic Reasoning Heuristics

Chapter 5

Evaluation of Set-Theoretic Reasoning

Heuristics

The VdPL heuristics were developed to aid automated reasoners in solving set-theoretic

problems. The heuristics were arrived at through the use of the resolution-based reasoner

Otter. In this section we measure the utility of these heuristics for Vampire and on a

scaled down version also for Gandalf.

We evaluate eleven of the fourteen heuristics initially developed by Van der Poll and

Labuschagne (1999) and later extended by Van der Poll (2000). The three heuristics that

are not evaluated are weighting, inference rule selection and set of support enlargement.

The use of these 3 heuristics would involve modifications of prover default settings e.g.

inference rule selection, weighting and inference strategy. A fair amount of time can be

consumed by experimenting with the large number of settings and the combinations

thereof. For this reason the only default settings that were changed are the time and

memory limits.

The experiments reported on in this chapter follow a pattern: First a sample problem is

presented and the ZF axioms on which the problem is based are stated. The performance

of Otter as researched by Van der Poll and Labuschagne (1999) and Van der Poll (2000)

in their attempts to find proofs is then reported. The heuristic identified from a failed

proof attempt is then presented. Such heuristic allowed Otter to successfully solve the

given problem. Next Vampire and Gandalf are used on the original problem to determine

the need for the particular heuristic. In some cases we increase the complexity of the

problem as an additional test.

We used Vampire version 8.0 and Gandalf version c-2.6.r1. A time limit of 30 minutes

and a memory limit of 128MB were imposed on each. These limits cause Vampire to use

 78

its limited resource strategy, thereby allowing the reasoner to selectively discard passive

clauses. No changes were made to the other default settings of Vampire and Gandalf.

All the Vampire and Gandalf proofs were done on an AMD Athlon 1700+ machine with

256MB RAM and a clock speed of 1.47GHz. The VdPL heuristics were previously

arrived at by running Otter on a slower machine, namely an AMD K6-2 machine with

64MB RAM and a clock speed of 400MHz (Van der Poll 2000).

5.1 Equality versus Extensionality

The first heuristic that we consider is applicable to situations where set-theoretic equality

is used in the input to the reasoner. The Zermelo-Fraenkel axiom of extensionality

(Enderton 1977) states that two sets are the same if and only if they have the same

elements (Section 2.1.1):

∀A∀B(∀x(x ∈ A ↔ x ∈ B) → A = B) (5.1)

A set is therefore determined by its elements. We can therefore replace any set equality

formula with a formula stating that the elements of the sets are the same.

Our first sample problem based on set-theoretic equality and the power set axiom is given

by:

P{{1}} = { ∅, {{1}}} (5.2)

Neither Otter nor Vampire accepts formulae in the highly evolved notation of set theory,

which is the result of introducing a number of symbols by meta-level definitions. Hence

the user has to rewrite set-theoretic formulae like (5.2) above in terms of a weaker first-

order language having the relevant relations and functions symbols in its alphabet (Van

der Poll & Labuschagne 1999). Therefore, our proof obligation is rewritten as:

A = {1} ∧ B = {A} ∧ C = P(B) ∧ D = {∅, B} → C = D (5.3)

Further decomposition is required for P(B) as (refer Section 2.1.6):

 79

∀x(x ∈ C ↔ ∀y(y ∈ x → y ∈ B)) (5.4)

Otter found no proof for (5.3) in 20 minutes (Van der Poll 2000). Next, if one through

extensionality replaces the consequent (C = D) by

∀x(x ∈ C ↔ x ∈ D) (5.5)

then it allowed Otter to find a proof in 0.03 seconds. These findings led to the following

heuristic:

Heuristic #1: Use the principle of extensionality to replace set equality with the

condition under which two sets are equal, i.e., when their elements are the same.

When the same problem (5.3) above is given to Vampire, it has little difficulty in finding

a proof in 1.3 seconds. The application of the above extensionality heuristic #1 leads to a

relatively faster proof in 0.1 seconds. These times are however too short to determine the

utility of the heuristic for Vampire. However, consider the following, more complex

example involving arbitrary intersection:

⋂{{1,2,3}, {2,3,4}} = {2,3} (5.6)

The arbitrary intersection of a set A is defined as ⋂A = {x | (∀y)(y ∈ A → x ∈ y)}

(Enderton 1977). As before formula (5.6) is rewritten to make the relevant constructions

explicit:

A = {1,2,3} ∧ B = {2,3,4} ∧ C = {A,B} ∧ D = {2,3}→ ⋂C = D (5.7)

This time Vampire finds no proof within 30 minutes. When we, however, apply the

principle of extensionality to the consequent of formula (5.7) as in

∀x(x ∈ ⋂C ↔ x ∈ D) (5.8)

then Vampire finds a short proof in 0.4 seconds. Therefore heuristic #1 appears to be

useful for Vampire as well, depending on the complexity of the problem in which the set-

theoretic equality occurs.

 80

Gandalf is able to find a proof for the original problem (5.3) in 1 minute 57 seconds.

When extensionality is applied a proof is found in 43 seconds. However, on the more

complex problem Gandalf is unable to find proofs before or after application of the

extensionality heuristic. It is possible that the variable-strategy selection algorithm of

Gandalf may be responsible for this and more work would be needed to investigate this

result.

5.2 Nested Functors

A simple yet effective heuristic is to give preference to deductions containing smaller

clauses (Section 3.7), i.e. clauses containing fewer literals or clauses of smaller term

depth. The use of nested function symbols (called functors in the world of automated

reasoning) leads to larger term depth and makes the unification of clauses more difficult.

The nesting of function symbols usually occurs naturally as illustrated by the next

example:

(A + B) + C = A + (B + C) (5.9)

Formula (5.9) states that set-theoretic symmetric difference (denoted by ‘+’) is

associative. The symmetric difference (Enderton 1977) of sets A and B is defined as A +

B = (A – B) ∪ (B – A) = {x | ((x ∈ A) ∧ (x ∉ B)) ∨ ((x ∉ A) ∧ (x ∈ B))}. Therefore our

sample problem (5.9) employs equality as well as a ZF subset axiom as instantiated by

set-theoretic difference. A first-order logic definition of the symmetric difference functor

(called symmdiff below to avoid possible confusion with ordinary set-theoretic difference)

is:

∀A∀B∀x(x ∈ symmdiff(A,B) ↔ ((x ∈ A ∧ x ∉ B) ∨ (x ∉ A ∧ x ∈ B))) (5.10)

The conclusion of the proof is then stated as:

∀x(x ∈ symmdiff(symmdiff(A,B), C) ↔

x ∈ symmdiff(A, symmdiff(B,C)))

(5.11)

 81

With this formulation it took Otter 4 minutes 3 seconds to find a proof of (5.11). The

problem can alternatively be formulated as by unfolding (i.e. effectively removing) the

nested functors in (5.11):

D = A + B ∧ E = D + C ∧ F = B + C ∧ G = A + F →

∀x(x ∈ E ↔ x ∈ G)

(5.12)

The use of (5.12) instead allowed Otter to find a proof in only 0.17 seconds (Van der Poll

2000). These results suggest the following heuristic:

Heuristic #2: Avoid, if possible, the use of nested functor symbols in definitions.

Vampire quickly finds a proof of (5.11) in less than 0.1 seconds, both with and without

the use of the nested functor heuristic #2. We therefore increase the complexity of the

problem to further investigate the utility of this heuristic for Vampire. Note that in both

problem formulations the extensionality heuristic #1 was already applied to problem

conclusions. Rewriting (5.11) without using extensionality as

symmdiff(symmdiff(A,B), C) = symmdiff(A, symmdiff(B,C)) (5.13)

results in Vampire finding no proof after 30 minutes (another illustration of the utility of

Heuristic #1 for Vampire). Next we apply the nested functor heuristic #2 by rewriting

(5.13) using Skolem constants:

D = A + B ∧ E = D + C ∧ F = B + C ∧ G = A + F → E = G (5.14)

Vampire now finds a proof for (5.14) after only 0.5 seconds.

The nested functor heuristic #2 does not seem to be useful for Gandalf’s algorithm. In

fact, it appears to lead the theorem prover astray. Gandalf finds a proof for (5.11) in 41

seconds and for (5.12) in 5 minutes 43 seconds. Therefore, the application of the nested

functor heuristic #2 resulted in a longer proof time. However, if we test Gandalf on the

more complex problem then it finds no proof for (5.13) after 30 minutes. Application of

the nested functor heuristic as in (5.14) results in a proof after 5 minutes 44 seconds.

This time corresponds with Gandalf’s time for (5.12).

 82

One should keep in mind that the VdPL heuristics are guidelines and not hard and fast

rules and it is certainly possible that they might not be applicable in every situation as

might be expected beforehand. Therefore more work with Gandalf would be needed to

determine the cause of the above phenomenon. It is possible, therefore, that the nested

functor heuristic #2 may have to be augmented in certain cases.

5.3 Divide-and-Conquer

The heuristic examined in this section is applicable to proofs where the consequence of

the proof contains a set-theoretic equality or an if-and-only-if formula. A set-theoretic

equality in the conclusion of a proof implies ‘if and only if’ via the axiom of

extensionality. Owing to the if-and-only-if formula, a specifier can perform two separate

proofs, one for the only-if part and another proof for the if part.

Consider the following sample problem based on equality and the power set axiom:

P{0,1} = { ∅, {0}, {1}, {0,1}} (5.15)

The formula is rewritten to make the relevant constructions explicit:

A = {0} ∧ B = {1} ∧ C = {0,1} ∧ D = P(C) ∧ E = {∅, A, B, C} →

D = E

(5.16)

Otter found no proof for (5.16) after 30 minutes. Resorting to the extensionality heuristic

#1 by changing the conclusion to

∀x(x ∈ D ↔ x ∈ E) (5.17)

allowed Otter to find a proof in 3 minutes 23 seconds (Van der Poll 2000). A further

simplification is to perform two separate proofs, one for each half of (5.17) and in the two

proofs specify the conclusion as

∀x(x ∈ D → x ∈ E) (5.18)

and

 83

∀x(x ∈ E → x ∈ D) (5.19)

respectively. Otter then found a proof for (5.18) in 0.43 seconds and for (5.19) in 0.03

seconds. These results led to the following divide-and-conquer heuristic:

Heuristic #3: Perform two separate subset proofs whenever the problem at hand

requires one to prove the equality of two sets.

The divide-and-conquer heuristic #3 is not only applicable to proof consequences

containing ‘if and only if’ formulae but also to a proof conclusion that is a conjunction. In

this case a separate proof may be performed for each conjunct in the proof’s conclusion.

Vampire is also unable to find a proof for (5.16) after 30 minutes. However for (5.17),

(5.18) and (5.19) Vampire finds quick proofs in 0.8, 0.3 and 0.1 seconds respectively.

These times are again too short to affirm the utility of the divide-and-conquer heuristic #3

for Vampire. As before we increase the complexity of the problem through the equality:

P{0,1,2} = {∅, {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}} (5.20)

Formula (5.20) is again rewritten to make the relevant constructions explicit:

A = {0} ∧ B = {1} ∧ C = {2} ∧ D = {0,1} ∧ E = {0,2} ∧ F = {1,2} ∧

G = {0,1,2} ∧ H = P(G) ∧ I={∅, A, B, C, D, E, F, G} → H = I

(5.21)

Vampire terminates without finding a refutation after 8 minutes 53 seconds with the

message ‘no passive clauses left’. Note that this does not mean that a refutation does not

exist. Since Vampire was run with both a time and memory limit, it uses the limited

resource strategy (Riazanov & Voronkov 2003), which is not a complete resolution

strategy (see Section 4.1). If we apply our extensionality heuristic #1 to (5.21) by

rewriting the consequent (H = I) as

∀x(x ∈ H ↔ x ∈ I) (5.22)

 84

then Vampire finds a proof in 8 minutes 40 seconds which is still too long. Next we apply

the divide-and-conquer heuristic #3 by performing two different proofs for each half of

(5.22) by specifying the proof consequents as

∀x(x ∈ H → x ∈ I) (5.23)

and

∀x(x ∈ I → x ∈ H) (5.24)

respectively. Vampire then finds a proof for (5.23) in 28 seconds and for (5.24) in 2

seconds.

Gandalf is also unable to find a proof of the original problem (5.16) after 30 minutes.

Application of the extensionality heuristic #1 allows Gandalf to find a proof for (5.17) in

1 minute 27 seconds. However, further application of the divide-and-conquer heuristic

appears not to be useful for Gandalf in the context of formula (5.18) since a proof is

found in 1 minute 36 seconds. Similarly a proof for (5.19) is found in 1 minute 14

seconds.

On the more complex problem Gandalf is unable to find a proof for (5.21) after 30

minutes. Gandalf is still unable to find a proof after applying the extensionality heuristic

#1 in (5.22). The application of the divide-and-conquer heuristic #3 leads to some degree

of success since, although it does not enable Gandalf to find a proof for sub-problem

(5.23), it enables the reasoner to find a proof for (5.24) in 1 minute 15 seconds.

5.4 Exemplification

When writing the contents of sets in list notation one naturally tends to define these sets

using one or more levels of indirection by moving from the various elements to a symbol

representing the collection of those elements (Van der Poll & Labuschagne 1999). The

sample problem used for the divide-and-conquer heuristic will be used here as well:

P{0,1} = { ∅, {0}, {1}, {0,1}} (5.25)

 85

Recall that in the initial formulation

A = {0} ∧ B = {1} ∧ C = {0,1} ∧ D = P(C) ∧ E = {∅, A, B, C} → D = E (5.26)

Otter was unable to find a proof within 30 minutes. Suppose we remove one level of

indirection by eliminating symbol E, i.e.

A = {0} ∧ B = {1} ∧ C = {0,1} ∧ D = P(C) → D = {∅, A, B, C} (5.27)

where D = {∅, A, B, C} is unfolded (repeatedly using the ZF pairing axiom) as

∀x(x ∈ D ↔ (x = ∅ ∨ x = A ∨ x = B ∨ x = C)) (5.28)

in the proof conclusion. With this formulation Otter found a proof in 4 minutes 5

seconds. These results led to the following heuristic:

Heuristic #4: Avoid unnecessary levels of elementhood in formulae by using the

elements of sets directly.

The divide-and-conquer heuristic was applied to this last proof attempt to yield proofs in

0.34 and 0.03 seconds for the ‘only-if’ and ‘if’ directions respectively. Vampire was also

unable to find a proof for (5.26) within 30 minutes. However, for (5.27) Vampire finds a

proof in 0.8 seconds. In this example, therefore, it was not necessary to increase the

complexity of the problem to illustrate the utility of the heuristic #4 for Vampire. If we

do increase the complexity of the problem by again using formula (5.20) as an example,

but instead of unfolding it as in (5.21) we unfold it as

A = {0} ∧ B = {1} ∧ C = {2} ∧ D = {0, 1} ∧ E = {0, 2} ∧

F = {1, 2} ∧ G = {0, 1 ,2} ∧ H = P(G) → H = {∅, A, B, C, D, E, F, G}

(5.29)

then Vampire finds a proof in 5 minutes and 50 seconds. The divide-and-conquer

heuristic can be applied to this last proof attempt to yield proofs in 31.5 and 1.6 seconds

for the ‘only-if’ and ‘if’ directions respectively.

 86

Gandalf was able to refute the original problem (5.26) after 16 minutes 22 seconds.

Application of the exemplification heuristic enables Gandalf to find a proof in 1 minute

14 seconds. On the more complex problem unfolded as in (5.29) Gandalf is unable to

find a proof with or without application of exemplification. When the divide-and-

conquer heuristic is applied then Gandalf only finds a proof for the only-if sub-problem

in 12 minutes 56 seconds.

5.5 Multivariate Functors

Terms containing functors may contain both constants and variables as arguments. The

number of possible unifications with a clause containing a functor increases with each

functor argument that occurs as a variable. As a result more clauses are generated leading

to a larger search space. There are two main examples that lead to functors containing

variables as arguments. The first is due to the specifier using functors that take variables

as arguments, typically because of indirect definitions. The second example is produced

by Skolemisation (Hamilton 1991, Section 0). Skolemisation occurs when first-order

formulae are clausified to serve as input to the resolution mechanism. An important step

is the elimination of existential quantifiers (Van der Poll & Labuschagne 1999). If the

existential quantifier occurs after any universal quantifiers, the existential quantifier is

replaced by a Skolem functor taking each of the universally quantified variables as an

argument (Section 0).

The example problem (5.16) will be used again with the extensionality heuristic #1

applied to the conclusion as in (5.17). First we define the term D = P(C) indirectly as

∀x(x ∈ D ↔ x ⊆ C) (5.30)

where the subset functor ⊆ is defined as

∀A∀B(A ⊆ B ↔ ∀y(y ∈ A → y ∈ B)) (5.31)

With this formulation Otter found no proof in 30 minutes. The clausification of (5.31)

results in universally quantified variable y being replaced by a Skolem functor of the two

variables A and B. The effect of Skolemisation may be reduced by eliminating one of the

 87

universally quantified variables in (5.31), e.g. replace variable B by a constant C (say) in

(5.30):

∀A(A ⊆ C ↔ ∀y(y ∈ A → y ∈ C)) (5.32)

Otter then found a proof after 4 minutes 5 seconds. Variable y in the clausal form of

(5.32) is now replaced by a Skolem functor of only one variable as opposed to a functor

of two variables in (5.31). The possibility of irrelevant unifications with this Skolem

functor has therefore been reduced. It should also be noted that the subset functor ⊆ in

both cases has an arity of two, but in (5.31) it contains two variables as opposed to one

constant and one variable in (5.32). These results delivered the following heuristic:

Heuristic #5: Simplify terms in sets by either not involving functors, or else

functors with the minimum number of argument positions taken up by variables.

Vampire finds proofs with or without heuristic #5 applied. With the subset functor

formulated as in (5.31) it finds a proof in 21 seconds and for (5.32) in 0.1 seconds. The

relative improvement in search time is significant. However, the search time for (5.31)

may still be too low to seriously justify the use of heuristic #5. We therefore increase the

complexity of the problem to further test our heuristic. The example problem (5.21) that

was also used in the divide-and-conquer heuristic has sufficient complexity and will be

used again with the extensionality heuristic #1 applied to the conclusion as in (5.22). As

before, the term H = P(G) is unfolded as

∀x(x ∈ H ↔ x ⊆ G) (5.33)

where the subset functor ⊆ is again defined as in (5.31). With this formulation Vampire

finds no proof in 30 minutes. We next apply the multivariate functor heuristic by defining

the subset functor with variable B replaced by the constant G:

∀A(A ⊆ G ↔ ∀y(y ∈ A → y ∈ G)) (5.34)

 88

Now Vampire finds a proof after 1 minute and 32 seconds. This result can further be

improved through divide-and-conquer. The times for the two sub-proofs are 5.2 and 0.3

seconds respectively.

Gandalf is also able to find a proof for the original problem with and without heuristic #5

applied. A proof is found in 8 minutes 11 seconds with the subset functor formulated as

in (5.31) and in 1 minutes 31 seconds for (5.32). The original problem is therefore

sufficient to illustrate the usefulness of heuristic #5 in Gandalf’s case. For the more

complex problem Gandalf is unable to find a proof with or without the multivariate

heuristic applied to the subset functor. When the divide-and-conquer heuristic is applied

to the conjecture together with the multivariate functor heuristic then Gandalf is only able

to find a proof for the only-if direction in 1 minute 16 seconds. Hence, further work

would have to investigate possible proofs for the if-direction above.

5.6 Intermediate Structure

The intermediate structure heuristic is applicable to formulae in which the direct

definition of intermediate structures leads to complex functor expressions. The

intermediate structure heuristic can be regarded as a special case of the Multivariate

functor heuristic as outlined below.

Consider the following example problem involving arbitrary union (Section 2.1.4):

A × ⋃B ⊆ ⋃{A × X | X ∈ B} (5.35)

This set-theoretic formula can be unfolded as:

C = ⋃B ∧ D = A × C ∧ E = {A × X | X ∈ B} ∧ F = ⋃E → D ⊆ F (5.36)

The intermediate structure E still needs to be expanded further. The following formula is

a direct definition of E:

∀x(x ∈ E ↔ ∃X(X ∈ B ∧ ∀y∀z((y,z) ∈ x ↔ y ∈ A ∧ z ∈ X))) (5.37)

 89

Otter could not find a proof with these inputs and ran out of memory after 9 minutes 51

seconds. Closer inspection of the clausal form of this direct definition of E shows that

the ordered pair (y,z) clausifies into the functor ORD(f1(x1,x2),f2(x1,x2)). The

Skolemisation of the variables y and z results in Skolem functions of two variables that

are nested within the ordered pair functor. The nested functor and multivariate functor

heuristics showed that this clausal form complicates the resolution process. To avoid this

clausal form for E, one may resort to the following definition:

∀x(x ∈ E ↔ ∃X(X ∈ B ∧ ∀y∀z((y,z) ∈ x ↔ (y,z) ∈ PROD(A,X)))) (5.38)

PROD(A,X) is further defined as:

∀X∀y∀z((y,z) ∈ PROD(A,X) ↔ y ∈ A ∧ z ∈ X) (5.39)

The clausal form for the ordered pair (y,z) in (5.39) now remains ORD(y,z). As a result

the unification process is simplified and it enabled Otter to find a proof in just 0.06

seconds, leading to the following heuristic:

Heuristic #6: Use an indirect definition for an intermediate structure instead of a

direct definition when its clausification results in less complex functors.

Vampire is also not able to find a proof after 30 minutes with the direct definition of E in

(5.37). However, Vampire is able to find a proof in 40 seconds for the indirect definition

of E in (5.38) and (5.39). Even though Vampire is now able to find a proof in a relatively

short time, the time is strikingly larger than that of Otter. Closer inspection of the clausal

form of (5.38) reveals that it still contains two variable Skolem functors nested in the

ordered pair functor. The following reformulation of (5.38) uses equality instead of

extensionality:

∀x(x ∈ E ↔ ∃X(X ∈ B ∧ x = PROD(A,X))) (5.40)

The clausal form the definition of E in (5.40) does not contain any of the complex

functors encountered above. As a result Vampire is now able to find a proof in 0.1

seconds.

 90

Gandalf’s results are similar to those of Vampire. It is also not able find a refutation after

30 minutes using (5.37). Using the indirect definition of E in (5.38) and (5.39) enables

Gandalf to find a proof in 1 minute 15 seconds. This result is further reduced to 0.3

seconds by using the equality formulation of (5.40).

5.7 Element Structure

The element structure heuristic, like the intermediate structure heuristic, is a special case

of the multivariate heuristic by focusing on another situation in which formulae describe

the structure of elements of relations and functions.

Consider the following example problem (Van der Poll & Labuschagne 1999):

F = {(∅,a), ({∅},b), (a,b)} → F-1 = {(a,∅), (b,{∅}), (b,a)} (5.41)

F is firstly defined as (ORD is a functor denoting an ordered pair):

∀x(x ∈ F ↔ (x=ORD(∅,a) ∨ x=ORD({ ∅},b) ∨ x=ORD(a,b))) (5.42)

The relationship between F and F-1 (the inverse of F) is given by:

∀y∀z(ORD(y,z) ∈ F ↔ ORD(z,y) ∈ F-1) (5.43)

The element structure of F is defined as:

∀x(x ∈ F → ∃y∃z(x = ORD(y,z))) (5.44)

The following theorem about ordered pairs is also required (Enderton 1977):

∀u∀v∀w∀x(ORD(u,v) = ORD(w,x) ↔ (u=w ∧ v=x)) (5.45)

Finally the goal is specified by:

∀x(x ∈ F-1 → (x=ORD(a,∅) ∨ x=ORD(b,{∅}) ∨ x=ORD(b,a))) (5.46)

Otter was unable to find a proof after 20 minutes with the above formulation.

 91

Next one may attempt another approach by rather specifying the elements of F and F-1

more directly at the level of ordered pairs. Firstly F is defined as

∀y∀z(ORD(y,z) ∈ F ↔ (y=∅ ∧ z=a) ∨ (y={∅} ∧ z=b) ∨ (y=a ∧ z=b)) (5.47)

and the goal by:

∀y∀z(ORD(y,z) ∈ F-1 → (y= a ∧ z=∅) ∨ (y= b ∧ z={∅}) ∨ (y=b ∧ z=a)) (5.48)

The more direct approach allowed Otter to find a proof in just 0.03 seconds. Closer

inspection indicated that the more direct definition does not require formulae (5.44) and

(5.45) to find a proof. The clausal form of these formulae contains nested Skolem

functors and two variable arguments to the ORD functor thereby contradicting the

multivariate functor heuristic #5. These results led to the following heuristic:

Heuristic #7: Specify elements of relations and functions more directly at the

level of ordered pairs or ordered n-tuples whenever the tuples need to be opened

during the proof.

The results for Vampire are similar as for Otter without increasing the complexity of the

problem. Vampire is also not able to find a proof for (5.46) after 30 minutes. However

for the direct definition of (5.48) Vampire easily finds a proof in 0.1 seconds.

Gandalf is also not able to find a proof for (5.46) after 30 minutes, but the direct

definition in (5.48) enables it to find a refutation in 0.2 seconds. The element structure

heuristic #7 therefore appears to be a useful heuristic for the next-generation theorem

provers.

5.8 Redundant Information

Redundant formulae that are provided as part of the problem specification can cause

many unnecessary unifications that greatly increase the problem’s search space. This is

especially the case with general formulae like axioms that contain variables instead of

constants found in the problem domain. This problem of combinatorial explosion due to

 92

redundant information may seem rather obvious. However, since it is such a common

problem the redundant information heuristic serves to emphasise it.

The following example problem is used as illustration:

[Fun(f) ∧ Fun(g) ∧ ∀x(x ∈ dom(f) ∩ dom(g) → f(x)=g(x))] → Fun(f ∪ g) (5.49)

The intention of functor Fun is that its argument is a function. The unfolding of this

formula into a first-order form makes extensive use of the ordered pair functor. One may

therefore feel inclined to add the following fact about ordered pair equality:

∀u∀v∀w∀x(ORD(u,v) = ORD(w,x) ↔ (u=w ∧ v=x)) (5.50)

The inclusion of the ordered pair equality fact prevented Otter from finding a proof

within 30 minutes. When the fact is removed Otter was able to easily find a proof in 0.08

seconds. This result led to the following heuristic:

Heuristic #8: Refrain from using formulae in the problem specification that do

not contribute to the proof.

It is generally difficult to know beforehand whether a formula or axiom is required for a

proof attempt. The next heuristic will attempt to alleviate this problem.

Vampire appears to have no problem in finding quick proofs with or without the

inclusion of the ordered pair equality (5.50) in less than 1 second for both cases. To

increase the effect of redundant information we add some unnecessary axioms from set

theory that are relevant to relations and functions in addition to the equality axiom (5.1).

Firstly we add a fact about cross products:

∀A∀B∀x∀y(ORD(x,y) ∈ PROD(A,B) ↔ (x ∈ A ∧ y ∈ B)) (5.51)

Vampire is still able to find a quick proof in 1 second. Next we remove the cross product

formula above and instead add the definition for range:

∀R∀y(y ∈ RAN(R) ↔ ∃x(ORD(x,y) ∈ R)) (5.52)

 93

It now takes Vampire 4.5 seconds to find a proof. The individual addition of these last

two formulae therefore did not increase the proof time significantly. However, if we add

both formulae at the same time, then Vampire is unable to find a proof in 30 minutes.

Gandalf is not influenced very much by any variation of the above formulae. With the

ordered pair equality (5.50) included in the problem it finds a proof in 59 seconds and

without it in 57 seconds. Inclusion of both the equality (5.1) and cross product (5.51)

formulae increases the refutation time slightly to 1 minute 5 seconds. Inclusion of the

equality (5.1) and range axioms (5.52) results in a similar proof time of 1 minute 7

seconds. Finally inclusion of all these unnecessary axioms (5.1), (5.51) and (5.52) has a

proof time of 1 minute 9 seconds. Gandalf therefore does not seem to be influenced too

much with the addition of redundant information. This might be explained by the fact

that in Gandalf’s automatic mode it first selects a set of different strategies that are likely

to be useful for a given problem and then tries all these strategies one after another

(Tammet 1997). It uses time-slicing to limit the time that a specific search strategy is

executed. When the strategy’s time runs out, the next strategy is executed. Redundant

information may therefore only have an impact on some of the strategy runs, but not all

of them.

5.9 Search-Guiding

The redundant information heuristic suggests that formulae that do not contribute to a

proof attempt should be discarded since these unnecessarily enlarge the search space. It

is however difficult to know beforehand which formulae and axioms will be required to

find a proof.

The purpose of the search-guiding heuristic is to identify which parts of formulae are

most probably required for the proof attempt via a technique called resolution by

inspection. These parts are called half-definitions. The parts that are less clearly relevant

can be provisionally excluded from the proof attempt.

The following example problem for nonempty sets A and B will be used:

 94

⋂(A ∪ B) ⊆ (⋂A) ∩ (⋂B) (5.53)

This formula may be unfolded as:

C = A ∪ B ∧ D = ⋂C ∧ E = ⋂A ∧ F = ⋂B ∧ G = E ∩ F → D ⊆ G (5.54)

The search-guiding heuristic will be illustrated by tracing a small part of the proof

attempt. The goal of the problem is D ⊆ G and must form part of the proof attempt. In

its unabbreviated first-order form it is defined by the formula:

∀x(x ∈ D → x ∈ G) (5.55)

The goal of the proof is negated to find a proof by refutation. The negated goal after

clausification is given by the following two clauses:

c1 ∈ D (5.56)

c1 ∉ G (5.57)

c1 is a Skolem constant that arises due to the negation of the universal quantifier that

becomes an existential quantifier. To find a proof both of these clauses must be resolved.

The unabbreviated first-order definition of set G is:

∀x(x ∈ G ↔ x ∈ E ∧ x ∈ F) (5.58)

The literal c1 ∉ G in (5.57) can only be resolved with a literal of the form x ∈ G which is

found in the “if” direction of the “if-and-only-if” formula (5.58). The “only-if” half can

therefore be discarded which gives:

∀x(x ∈ G ← x ∈ E ∧ x ∈ F) (5.59)

The same resolution by inspection technique can be followed for the literal c1 ∈ D in

(5.56) and literal c1 ∉ D which is found in the first-order definition for set D. The half

definition that is required is:

 95

∀x(x ∈ D → ∀b(b ∈ C → x ∈ b)) (5.60)

Otter found a proof for the original unfolding in 8.36 seconds. By using only the half

definitions Otter found a proof in 0.12 seconds. Although the original time seems fast

enough, the half definitions enabled a 70 times faster proof time. These results inspired

the following heuristic:

Heuristic #9: Use half definitions of if-and-only-if formulae via the technique of

resolution by inspection to guide the resolution of literals that will form part of a

proof starting at the goal.

Vampire is able to find quick proof in less than 1 second with or without the use of the

half definitions. To illustrate the utility of the search-guiding heuristic to Vampire we

will use the example problem (5.35) of the intermediate structure heuristic #6 after the

heuristic has been applied. For ease of reference we repeat its unfolding in (5.36) here

C = ⋃B ∧ D = A × C ∧ E = {A × X | X ∈ B} ∧ F = ⋃E → D ⊆ F (5.61)

with the definition of E as given by (5.38). It took Vampire 40 seconds to find a proof

for this formulation. The goal of this problem also contains the subset functor which

clausifies into clauses similar to (5.56) and (5.57). The search-guiding heuristic #9 is

applied by using only half definitions for sets D and F. Vampire is then able to find a

proof in 9 seconds.

We can apply the search-guiding heuristic #9 further. The half definition of set D that

remained is:

∀x∀y((x,y) ∈ D → x ∈ A ∧ y ∈ C) (5.62)

Further note that set C is defined as:

∀x(x ∈ C ↔ ∃y(y ∈ B ∧ x ∈ y)) (5.63)

 96

In its clausal form the literal y ∈ C in (5.62) will resolve with a clause in a half definition

of set C in (5.63). By discarding the half definition that is not used for set C in (5.63),

allows Vampire to find a quick proof in 0.5 seconds.

Gandalf also finds quick proofs for the original problem in less than one second with or

without search guiding. For the more complex problem (5.61) Gandalf finds a proof after

1 minute 15 seconds. This time is reduced to 1 minute 3 seconds when only half

definitions for sets D and F are used. The time is slightly reduced further to 59 seconds

by using a half definition for set C. It is plausible, therefore, that a more complicated

problem would necessitate the use of the search-guiding heuristic #9 for Gandalf even

more.

5.10 Resonance

The resonance heuristic aims to identify formulae that can be rewritten in a format that is

syntactically similar to facilitate the resolution process. This heuristic was originally

proposed by Wos (1995, 1996). The example used to illustrate it is taken from the area of

databases.

Let Emp be a partial function from personnel identifications in ID to personnel

information in PERSON:

Emp: ID → PERSON (5.64)

Suppose the structure of PERSON is defined as:

PERSON = Name × Role × Dept × Salary × Address (5.65)

Suppose we want to increase the salary of an employee with personnel number p by

amount. Let Emp' represent the updated employee function. The increase operation can

then be specified as:

∀x∀n∀r∀d∀s'∀a

 (ORD(x, 5TUP(n, r, d, s', a)) ∈ Emp' ↔

(5.66)

 97

 ((x≠p ∧ ORD(x, 5TUP(n, r, d, s', a)) ∈ Emp) ∨

 (x = p ∧ ∃s(s' = s + amount ∧ ORD(x, 5TUP(n, r, d, s, a)) ∈ Emp))))

A proof obligation (PO) arises from (5.66) above, namely, to show that Emp' is (still) a

function. This involves showing that each and every element in Emp' is a tuple of the

correct kind (this PO is not addressed further below) and that Emp' is single valued, i.e.

functional:

Siv(Emp') (5.67)

where Siv is defined as:

∀R(Siv(R) ↔ ∀u∀v∀w(ORD(u,v) ∈ R ∧ ORD(u, w) ∈ R → (v = w))) (5.68)

Lastly we add the following two facts about ordered pair equality and 5-tuple equality:

∀u∀v∀w∀x(ORD(u, v) = ORD(w, x) ↔ (u = w ∧ v = x)) (5.69)

∀u∀v∀w∀x∀y∀u'∀v'∀w'∀x'∀y'

(5TUP(u, v, w, x, y) = 5TUP (u', v', w', x', y') ↔

(u = u' ∧ v = v' ∧ w = w' ∧ x = x' ∧ y = y'))

(5.70)

Otter failed to find a proof for this formulation after 20 minutes. The resonance heuristic

#10 was applied next to formula (5.68) by rewriting it into a form that is syntactically

similar to corresponding terms in (5.66):

∀R(Siv(R) ↔

 ∀u∀v∀w∀x∀y∀z∀v'∀w'∀x'∀y'∀z'

 (ORD(u, 5TUP(v, w, x, y, z)) ∈ R ∧

 ORD(u, 5TUP(v', w', x', y', z')) ∈ R →

 5TUP(v, w, x, y, z) = 5TUP (v', w', x', y', z')))

(5.71)

This reformulation enabled Otter to find a proof in 11.62 seconds. These results led to

the following heuristic:

 98

Heuristic #10: Rewrite formulae to give corresponding terms a syntactically

similar structure to aid the resolution process.

Vampire is also unable to find a proof for the original formulation of Siv in (5.68). After

the application of the resonance heuristic to Siv Vampire is able to find a proof in less

than 1 second.

Gandalf is unable to find any proof after 30 minutes with or without the application of the

resonance heuristic, hence further work needs to investigate this phenomenon.

5.11 Tuple Condense

The last heuristic that we consider may also be regarded as a special case of the

multivariate functors heuristic #5. The tuple condense heuristic in this section is

applicable to tuples containing multiple variable arguments that are not changed or

referred to in operations that change some of the other coordinates in the tuples. This

heuristic suggests that these irrelevant argument positions be folded up into one argument

for the purposes of the proof attempt (Van der Poll 2000).

Example (5.66) from the resonance heuristic #10 will again be used here. The salary

increase operation s' = s + amount only changes the salary argument of a tuple of the

larger type PERSON. We can therefore reorder the argument positions and fold all the

irrelevant arguments into one for the purposes of this proof attempt. Formula (5.66) can

then be redefined as:

∀x∀y∀s'

 (ORD(x, ORD(y, s')) ∈ Emp' ↔

 ((x≠p ∧ ORD(x, ORD(y, s')) ∈ Emp) ∨

 (x = p ∧ ∃s(s' = s + amount ∧ ORD(x, ORD(y, s)) ∈ Emp))))

(5.72)

In the above formulation the positions for name, rank, department and address have been

abstracted into one position represented by variable y.

 99

The resonance heuristic is applied again to the single-valued formula (5.67) to be

applicable to the syntactic form of (5.72):

∀R(Siv(R) ↔

 ∀u∀v∀w∀v'∀w'

 (ORD(u, ORD(v, w)) ∈ R ∧ ORD(u, ORD(v', w')) ∈ R →

 ORD(v, w) = ORD(v', w')))

(5.73)

With this formulation Otter was able to find a proof in 0.07 seconds as opposed to the

11.62 seconds using only the resonance heuristic #10 of the previous section. These

results suggested the following heuristic:

Heuristic #11: Reduce the number of arguments of a functor by folding those

arguments that are irrelevant to the proof attempt into one.

Vampire finds quick proofs for the example problem in less than 1 second with or

without tuple condensing. A more complex problem is therefore required to illustrate the

utility of this heuristic for Vampire. Various problems were used but none was able to

show a noticeable difference in refutation time by applying the tuple condense heuristic.

Gandalf on the other hand was unable to find a proof for the example problem after 30

minutes with or without the heuristic. It should be noted therefore that more work is

needed to determine the general utility or not, of the tuple condense heuristic #11, either

in its current form, or some enhanced version thereof.

5.12 Summary and Conclusions

In this chapter we investigated to what extent the VdPL heuristics may be useful to other

reasoners with similar characteristics. The Vampire theorem prover was chosen as the

primary reasoner for this task owing to its steadfast superior performance at recent CASC

competitions. Gandalf was used as a secondary prover in this evaluation.

We evaluated 11 of the original 14 VdPL heuristics. Table 5.1 below summarises the

results of this chapter. A * in the ‘Times Faster’ column indicates a proof found versus

 100

no proof found. The results that best illustrated the applicability of the various heuristics

for Vampire and Gandalf were used.

Otter
(AMD K6-2 64MB 400MHz)

Vampire Gandalf Heuristic

Before After Times
Faster

Before After Times
Faster

Before After Times
Faster

Equality vs
Extensionality

- 0.03 * - 0.4 * 117 43 2.7

Nested Functors 243 0.17 1429 - 0.5 * - 344 *

Divide-and-Conquer 203 0.46 441 520 30 17 87 170 0.5

Exemplification - 14.74 * - 0.8 * 982 74 13

Multivariate Functor - 245 * - 92 * 491 91 5.4

Intermediate Structure - 0.06 * - 0 * - 75 *

Element Structure - 0.03 * - 0.1 * - 0.2 *

Redundant Information - 0.08 * - 0 * 69 57 1.2

Search-Guiding 8.36 0.12 70 40 8.9 4.5 75 59 1.2

Resonance - 11.62 * - 0 * - - -

Tuple Condense 11.62 0.07 166 0 0 0 - - -

Table 5.1: Summary of theorem-proving results

It was found that Vampire needed 10 of the 11 heuristics that were evaluated. In some

cases the original problem had to be enlarged to illustrate the usefulness of the given

heuristic using the new reasoner. This is significant for two reasons: Firstly it is evident

that Vampire may be considered as a next generation of resolution-based reasoners.

Secondly, illustrating the utility of a particular heuristic when the complexity of a

problem is increased suggests a real need for the said heuristic when the given problem

becomes part of a larger problem and a specifier wants to discharge a proof obligation in

a single proof attempt, rather than breaking it up into smaller steps.

Gandalf in general performed better than Otter but not as well as Vampire. Using the

theorem-proving defaults of the reasoners throughout, Gandalf was not able to solve

 101

some of the more complex problems that Vampire could and the ones it could solve,

usually took longer than Vampire. Of the 11 heuristics evaluated, 9 heuristics were

shown to be useful for Gandalf. In all the cases where Gandalf was able to find proofs

with and without the relevant heuristics the time gain is diluted by the fact that in any

given proof run Gandalf tries various strategies one after the other. For example, if a

proof was found during a strategy that started 5 minutes after the proof run was initiated

by the human user and such strategy is allocated 1 minute then the best possible time gain

can only be 6/5 = 1.2.

In the next chapter we define a case study in Z and identify a number of proof obligations

that arise from the specification. Some of these proof obligations will be addressed in

Chapter 7.

 102

6 An Order Management System in Z

Chapter 6

An Order management System in Z

In this chapter we present a simplified order management system that caters for order

capturing and processing as well as customer and product information. The problem

statement of the case study is presented first. Thereafter a high level conceptual model of

the problem is given, highlighting the various entities that the case study aims to capture.

The goal here is neither to present a treatment of an object-oriented development

methodology nor to serve as an exercise in requirements elicitation. Next we examine

the patterns that were used to translate the high level object-oriented concepts of the

conceptual model to Z. The full Z specification of the problem can be found in Appendix

D. Lastly we highlight typical proof obligations that arise from such a Z specification.

The next chapter applies the set-theoretic heuristics of the Chapter 5 to proof obligations

that arise from the case study.

6.1 Problem Statement

An order management system facilitates the capturing and processing of orders. It could

contain various subsystems for handling different stages of the order fulfilment process

for example stock, customers, marketing, order entry, financials, processing, and

management information. The scope of this case study includes order capturing and

processing as well as customer and product information.

The order management system keeps stock of various products. For each product its

name, price and quantity in stock is recorded. No two products can have the same name.

Free products are also kept in stock. A product can therefore have a price of 0.0. New

products can be added. A product’s name, price and quantity in stock can be updated.

Products can also be deleted. A list of all products that is below a specified threshold

quantity can be obtained.

 103

The system has two types of customers namely companies and persons. The addresses

and phone numbers of all customers are kept. Additionally, the first and last names of

persons and the names and government registration numbers of companies are

maintained. New persons and companies can be added. Persons and companies can only

be removed if they have not placed orders before. All the information of a customer can

be modified.

An order for a customer can be created. The information that is associated with an order

includes the customer, date, status and order items. A new order has a status of

“pending” and no items. While in pending status an order can be cancelled which will

change its status to “cancelled”.

New order items can be added to an order that is in a pending status. An order item is for

a specific product. No two order items may refer to the same product; instead an item

should have a quantity greater than one. The quantity of the product as well as the price

of the product at the time the order item was created, is also kept. An order item must

have a quantity that is more than zero. An order item can be added regardless of the

amount of stock that is available. The quantity of an order item can be updated. Order

items may be deleted.

An order with status “pending” can be processed if there are enough products in stock.

Processing an order changes its status to “processed” and the quantities of products in

stock are reduced by the corresponding item quantities ordered.

6.2 Conceptual Model

The following UML (Booch et al. 2005) class diagram is an object-oriented

representation of the problem domain. It also shows the various operations for the

domain.

 104

Cancel()
Process()
CreateItem()
UpdateItem()
DeleteItem()

date
status

Order

Update()

price
quantity

Item

order1

items*

Update()
Reduce()

name
price
quantity

Product

-

*

+item 1

Update()

address
phone

Customer customer

1

orders

*

name
regno

Company

firstname
lastname

Person

CreateCompany()
CreatePerson()
DeleteCompany()
DeletePerson()

Customers

1

+customers*

Create()
Delete()
Update()
SelectBelowThreshold()

Products

1

+products*

Create()
Cancel()

Orders

1

+orders*

Figure 6.1: A UML class diagram of an order management system

The class diagram contains the main classes of the problem: Product, Customer,

Company, Person, Order and Item. It also contains the classes Products, Customers and

Orders. The purpose of these latter classes is to provide operations that can manage the

collective states of Product, Customer and Order.

6.3 The Z Specification Language

Z (Spivey 1992) is a formal specification language based on first-order logic and a

strongly-typed fragment of Zermelo-Frankel set theory. Z attained ISO standardisation in

2002 (ISO 2002).

Since the purpose of this study is not to consider object-oriented aspects per se, the

specification of the case study presented above will be done using conventional Z instead

of, for example, Object-Z (Derrick & Boiten 2001, Duke et al. 1995). One of the main

 105

differences between Z and object-oriented versions is that mathematical functions are

used for attributes instead of schemas that encapsulate the class instance state (Wieringa

1998, Amalio & Polack 2003). The “Birthday Book” tutorial that is provided by Spivey

(1992) gives a good overview of a specification in standard Z.

The following sections examine the patterns that are used to translate the high level

object-oriented concepts of the conceptual model to Z. These are classes, attributes,

associations, association classes, aggregation and composition and inheritance.

The full Z specification of the case study is provided in Appendix D.

6.4 Specifying Classes and their Attributes

A UML class describes a set of objects that share the same attributes, operations,

relationships and semantics (Booch et al. 2005). Objects and object classes are usually

identified as nouns in a problem statement. For example, the statement “an order is

placed by a customer” refers to two classes of objects that are order and customer.

Similarly, the statement “an order is for one or more products” identifies the order class

as well as the product class. All orders have the common attributes of order date (the

date the order was placed) and a status (whether the order is pending, whether it has been

processed, delivered etc.). The objects within a specific class mostly derive their

individuality due to differences in attribute values and relationships to other classes. It is

possible though that objects can have the same attribute values and relationships. But, as

stated earlier, all objects have an implicit identity, which means that in this case they are

still separate objects.

This section focuses on the specification of less complicated classes and their attributes.

By this is meant classes that do not utilise object-oriented concepts like relationships,

inheritance, aggregation and so forth. Also, the class attributes will be pure data values,

i.e. an attribute type will not be a class otherwise it would constitute a relationship with

that class. Nevertheless, the concepts discussed also apply to more complex cases. The

class Product in the case study will be used in this section to describe a less complex

class.

 106

The Product class is an abstraction of the merchandise sold to customers. It has no

inheritance associations with another class and it does not refer to any other class (it has

no attribute with a class type). The fact that Product does not refer to another class does

not mean it has no association with another class. It has an association with the Item

class because Item refers to it (see Figure 6.1). This type of association is discussed in

the following section.

A product has three attributes: name, price and quantity. The name attribute has a

character string type, the price attribute’s type is an amount and the quantity is a non-

negative (i.e. natural) number. A Nokia 3650 cell phone could be an example of a

product object. In this case, the name attribute could have the value “Nokia 3650” and the

price attribute could have the value R4495.00 (say).

In Z a UML class may be represented by a single schema. The following example shows

how the Product class and its attributes may be specified in Z.

» Product __
Æproducts: P PRODUCT
ÆprodName: PRODUCT © STRING
ÆprodPrice: PRODUCT ß AMOUNT
ÆprodQuantity: PRODUCT ß N
«_______
Ædom prodName = products
Ædom prodPrice = products
Ædom prodQuantity = products
–__

The schema name has been chosen to be the same as that of the class (see Figure 6.1).

The schema contains a component that represents the identities of all the available

products in the system i.e. products: P PRODUCT.

Each attribute is declared as a function from an identity to the type of the attribute. For

example, the product price attribute is declared by the partial function prodPrice:

PRODUCT ß AMOUNT. No two products can have the same name, therefore we use a

partial injective function prodName: PRODUCT © STRING.

 107

The domain of each attribute function must equal the identities collection. This

constraint is specified in the predicate section of the schema. For example, the prodName

function is constrained as: dom prodName = products.

Finally, any additional constraints can also be specified in the schema’s predicate section.

For example, if the product name was not defined by an injective function, then the

constraint that no two products can have the same name could be specified with the

predicate: Ap1, p2: products • p1 Î p2 fi prodName(p1) Î prodName(p2).

A possible state of the Product schema has three products in the products identity set,

with the corresponding names, prices and quantities recorded by functions prodName,

prodPrice and prodQuantity:

products = {38627, 39241, 41189}

prodName = {38627 å “Nokia 3650”,

 39241 å “Sony Playstation 3”,

 41189 å “Microsoft Windows Vista Home Premium”}

prodPrice = {38627 å R4495.00,

 39241 å R5299.00,

 41189 å R1353.18}

prodQuantity = {38627 å 37,

 39241 å 29,

 41189 å 13}

6.5 Specifying Associations

A link specifies that an object instance of one class is connected to an object instance of

another or the same class. For example, the phrase “Ralph (a customer) placed an order

on the 11’th of October 2008”, describes a link between a Customer instance and an

Order instance.

 108

A link is an instance of an association. An association specifies a set of links with

common structure and semantics that exist between two classes. For example, the phrase

“a customer places an order”, describes an association. It is also possible to have an

association between more than two classes, called n-ary associations. This is however

not as common and will not be considered further in this dissertation.

An association can also have a minimum and maximum multiplicity at each end. For

example, a customer can be associated with zero (minimum) or more (any finite

maximum) orders and an order can be associated with one (minimum) and only one

(maximum) customer. This is commonly referred to as a one-to-many relationship.

Navigation of associations refers to the ability to navigate from one object to another via

the association that exists between their classes. For example, if the one-to-many

relationship between customer and order can be navigated only from customer to order,

then given a customer instance, one can reference its orders. On the other hand, given an

order instance one cannot reference the customer directly.

An association can also have a role at each end. For example, let there be a one-to-many

relationship between company and person. The role of person in this association is an

employee and the role of the company is employer. There could also be another one-to-

one relationship between company and person where the role of person is CEO (Chief

Executive Officer).

The association between Customer and Order will be used to illustrate the various

specification styles. As with the specification of a class and its attributes using Z, the

specification of associations is not as explicit. However, in the opinion of the author of

this dissertation it does not fail to be simple and effective.

Let us have a look at how the association between Customer and Order may be specified

for the case study (see also Appendix D).

 109

» Customer ___
Æcustomers: P CUSTOMER
ÆcustAddress: CUSTOMER ß STRING
ÆcustPhone: CUSTOMER ß STRING
«_______
Ædom custAddress = customers
Ædom custPhone = customers
–__

» Order ___
Æorders: P ORDER
ÆorderDate: ORDER ß DATE
ÆorderStatus: ORDER ß STATUS
ÆorderCustomer: ORDER ß CUSTOMER
«_______
Ædom orderDate = orders
Ædom orderStatus = orders
Ædom orderCustomer = orders
–__

The UML model in Figure 6.1 specified the association between Customer and Order as

a one-to-many relationship that can be navigated in both directions while the Order

schema has a component (orderCustomer) that maps the ORDER identity to its associated

CUSTOMER identity. Therefore, given an order identity we can find the related

customer identity using the orderCustomer function. So we can navigate from an order

to the customer who placed the order.

In the Z schema for Customer there is no explicit reference to an association between a

customer and its orders. However, it is still possible to find the orders of a customer

through an operation. SelectOrdersForCustomer is an example of an operation that

returns all the order identities for a given customer identity.

» SelectOrdersForCustomer ____________________________________
ÆXOrder
Æcustomer?: CUSTOMER
Æorders!: P ORDER
«_______
Æorders! = {o: orders | orderCustomer(o) = customer?}
–___

It is therefore possible to navigate from a customer to all the orders placed by the

customer.

 110

The components in a schema (e.g. SelectOrdersForCustomer above) that are decorated

with question marks (?) represent input to the system. Components decorated with

exclamation marks (!) represent output from an operation. The declaration XOrder

indicates that (1) the Order schema is included into the SelectOrdersForCustomer

schema and (2) the state of Order is not changed by the operation. In an expanded

version of SelectOrdersForCustomer, the Order schema is shown twice, thereby

representing the operation schema’s respective before and after states. The included

components of the after state instance are decorated with dash symbols (') to distinguish

them from the corresponding before state components. A predicate is also added to

specify that all the before and after state components are equal, thereby stating that the

state does not change.

Multiplicity constraints can also be added to the association. For example, the Order

schema could be extended as follows to specify that a customer may have at most 10

orders (say):

» Order ___
Æ…
«______
Æ…
ÆAc: ran orderCustomer • #(orderCustomer t {c}) ¯ 10
–__

Note that the above Order schema is not complete; just the relevant predicate specifying

that a customer may have no more than 10 orders, is shown.

6.6 Specifying Association Classes

An association that exists between two classes may also contain attributes. Such an

association is called an association class since it is a class as well. We use the classes

Order and Product as an example. There is an association between them because a

product can appear on many orders and an order is for one or more products. However,

this association carries more information that is essential for the system i.e. the quantity

and price of the product on the order. This information ought not to be stored on product

since it is not specific to the product (a normalisation issue in database terms). Neither

 111

can it be stored on the order because we need the information for more than one product.

Therefore, it makes sense to store the attributes as part of the association. The name of

the association class is Item in Figure 6.1. Note that the price attribute on Item is the

price of the product when the order was created.

The method used for the specification of the association class Item is the same as for one-

to-many associations used above. The difference here is that Item has two one-to-many

associations. The first is a one-to-many from Order to Item and the second is a one-to-

many from Product to Item. A partial schema for Item is shown below:

» Item __
Æitems: P ITEM
ÆitemOrder: ITEM ß ORDER
ÆitemProduct: ITEM ß PRODUCT
Æ…
«______
Æ…
ÆAi1, i2: items • i1 Î i2 fi itemOrder(i1) Î itemOrder(i2) v itemProduct(i1) Î itemProduct(i2)
Æ…
–___

An additional predicate is added to ensure that no two items can reference the same

order-product combination. The full version of schema Item appears in Appendix D.

The UML model above (Figure 6.1) shows that the association between Order and Item

may be navigated in both directions. This is indicated by the absence of arrows on either

side of the association. To facilitate such navigation the operation SelectItemsForOrder

was defined to allow one to obtain the set of items of an order, given its identity:

» SelectItemsForOrder ______________________________________
ÆXItem
Æorder?: ORDER
Æitems!: P ITEM
«_______
Æitems! = {i: items | itemOrder(i) = order?}
–___

 112

6.7 Specifying Operations

So far the static aspects of the system have been described. Next, we describe the

dynamic aspects of the system. These include the operations that are possible, the

relationships between their inputs and outputs and the changes of state that take place as a

result of the operations.

The most basic operations that are typically required in most systems are create, read,

update and delete (CRUD). The operations of the Product class are used to illustrate

these. Additionally ProcessOrder (see Section 6.7.5) is provided as an example of a

more complex operation. An order that is in a pending status can be processed if there

are enough products in stock. Processing an order changes its status to processed and the

quantities of the relevant products in stock are reduced by the order’s item quantities.

6.7.1 Create Operation

A create operation adds a new instance of a class to the system. For example, an

operation to create a new product is:

» CreateProduct __
ÆDProduct
Æproduct?: PRODUCT
Æname?: STRING
Æprice?: AMOUNT
Æquantity?: N
«_______
Æproduct? ‰ products
Æname? ‰ ran prodName
Æproducts' = products U product?
ÆprodName' = prodName U {product? å name?}
ÆprodPrice' = prodPrice U {product? å price?}
ÆprodQuantity' = prodQuantity U {product? å quantity?}
–___

The declaration DProduct indicates that the Product schema is included into the

CreateProduct schema and the state of Product may change as a result of the operations

specified. In the expanded version, the Product schema is included twice, thereby

representing the operation schema’s respective before and after states. The included

 113

components of the after state instance are decorated with dash symbols (') to distinguish

them from the corresponding before state components.

The first predicate of the schema is a typical precondition of a create operation stating

that the new order item may not already be in the system. The following predicates state

that the products, prodName, prodPrice and prodQuantity functions are extended to map

the new name, price and quantity values to the given product identity. Note that the

notation x å y is a graphic way of expressing the ordered pair (x, y).

6.7.2 Read Operation

A read operation finds zero or more objects based on certain criteria and return them.

The following schema definition is for a finder operation that returns all products with

quantities below the specified threshold:

» SelectProductsBelowThreshold __________________________________
ÆXProduct
Æquantity?: N
Æproducts!: P PRODUCT
«_______
Æproducts! = {p: products | prodQuantity(p) < quantity?}
–___

The output of this operation (products!) is a set of product identities. The predicate

further states that the output is a subset of product identities of which the quantity is less

than the specified input, quantity?. The notation {x: S | E}, where S is a set and E a

predicate, means the set of values of x taken from S which satisfy E.

6.7.3 Update Operation

An update operation changes the current value of an object in the system. In Z it

specifies that the before and after state components are related in certain ways. The

update operation for Product is specified as:

 114

» UpdateProduct __
ÆDProduct
Æproduct?: PRODUCT
Æname?: STRING
Æprice?: AMOUNT
Æquantity?: N
«_______
Æproduct? e products
Æproducts' = products
ÆprodName' = prodName ± {product? å name?}
ÆprodPrice' = prodPrice ± {product? å price?}
ÆprodQuantity' = prodQuantity ± {product? å quantity?}
–___

The first predicate of the schema is a typical precondition of an update operation stating

that the product must exist in the system. The following predicates state that the

prodName, prodPrice and prodQuantity functions are remapped to associate the new

name, price and quantity values to the given product (product?). These predicates use the

overriding operator ±. The relation Q ± R relates everything in the domain of R to the

same objects as R does (Q is overridden by R), and everything else in the domain of Q to

the mappings in Q.

The state of the products set however does not change i.e.:

products' = products

The following proof shows that the above restriction could be derived:

products'

= dom prodPrice' (invariant after)

= dom (prodPrice ± {product? å price?}) (specification of UpdateProduct)

= dom prodPrice U dom {product? å price?} (fact about ‘dom’)

= dom prodPrice U {product?} (fact about ‘dom’)

 115

= products U {product?} (invariant before)

= products Predicate: product? e products

6.7.4 Delete Operation

A delete operation removes an object from the system. The delete operation for Product

is specified as:

» DeleteProduct __
ÆDProduct
Æproduct?: PRODUCT
«_______
Æproduct? e products
Æproducts' = products \ {product?}
ÆprodName' = {product?} y prodName
ÆprodPrice' = {product?} y prodPrice
ÆprodQuantity' = {product?} y prodQuantity
–___

Again, the first predicate of the schema is a typical precondition of a delete operation

stating that the specified product must exist in the system. The remaining predicates state

that prodName, prodPrice and prodQuantity functions are changed by removing the

mapping for the given product (product?). These predicates use the domain anti-

restriction operator y. The relation S y R is the set of all tuples (x, y) in R where x is not

in the domain of S.

The state of the products set also changes to reflect the removal of the product identity

i.e.:

products' = products \ {product?}

The following proof shows that the above restriction could be derived:

 116

products'

= dom prodPrice' (invariant after)

= dom ({product?} y prodPrice) (specification of DeleteProduct)

= dom ((products \ {product?}) r prodPrice) (fact about y)

= (products \ {product?}) I dom (prodPrice) (fact about ‘dom’)

= (products I products) \ {product?} (fact about I and \)

= products \ {product?} (fact about I)

The relation S r R above is the set of all tuples (x, y) in R where x is in the domain of S.

6.7.5 ProcessOrder

An operation to process an order is:

» ProcessOrder __
ÆDOrder
ÆDProduct
ÆXItem
Æorder?: ORDER
«_______
Æorder? e orders
ÆorderStatus(order?) = pending
ÆAi: items • itemOrder(i) = order? fi prodQuantity(itemProduct(i)) – itemQuantity(i) ˘ 0
Æorders' = orders
ÆorderDate' = orderDate
ÆorderStatus' = orderStatus ± {order? å processed}
ÆorderCustomer' = orderCustomer
Æproducts' = products
ÆprodName' = prodName
ÆprodPrice' = prodPrice
ÆprodQuantity' = prodQuantity ±
Æ {i: items | itemOrder(i) = order? • itemProduct(i) å prodQuantity(itemProduct(i)) – itemQuantity(i)}
–___

 117

The operation schema includes the Order, Product and Item schemas. It further states

that it could change the states of the Order and Product schemas. It takes an order

identity as input.

The first three predicates ensure that the order exists, that it is in a pending status and that

there are enough products in stock to fulfil the order. If all of these conditions are valid

the order’s status is changed to processed and the quantities of all products referenced by

the order’s items are reduced by the relevant item quantities.

6.8 Total Operations

All the operations above specify how the system state should change if correct input is

given and the relevant preconditions are satisfied. However, the state change is

undefined for incorrect inputs. The operations are therefore not total.

As an example we convert the CreateProduct operation into a total one as an example of

specifying complete operations. The total version will be called CreateProductTotal. It

has three possible outcomes (some may overlap) depending on the input:

• It could be successful if the input is correct.

• The product could be already known.

• The product name could already exist.

These possible outcomes are specified using the following partial schemas:

» Success ___
Æresult! : REPORT
«_______
Æresult! = success
–___

 118

» ProductAlreadyKnown ______________________________________
ÆXProduct
Æproduct? : PRODUCT
Æresult! : REPORT
«_______
Æproduct? e products
Æresult! = already_known
–___

» DuplicateProductName _____________________________________
ÆXProduct
Æproduct? : PRODUCT
Æname?: STRING
Æresult! : REPORT
«_______
Æproduct? ‰ products
Æname? e ran prodName
Æresult! = duplicate_name
–___

Using the schema calculus of Z, we can then specify the total create operation as:

CreateProductTotal == (CreateProduct ¶ Success) v

 ProductAlreadyKnown v

 DuplicateProductName

CreateProductTotal is defined for all possible inputs and additionally the result! output

component specifies whether the operation was successful or otherwise what error

occurred.

6.9 Specifying Aggregation and Composition

Aggregation is used to indicate a “whole-part” relationship, in which one class represents

a larger entity (the whole), which consists of smaller entities (the parts). Aggregation is

often referred to as a “has-a” relationship. Aggregation does not change the meaning of

navigation across the association between the whole and its parts, nor does it link the life

spans of the whole and its parts (Booch et al. 2005).

Composition however is a form of aggregation with strong ownership and a coincident

lifetime as part of the whole. This means that in a composite aggregation, an object may

be a part of only one composite at a time and once it is created, it lives and dies with the

 119

composite. The whole is responsible for the disposition of its parts, which means that the

composite must manage the creation and destruction of its parts.

Aggregation and composition are stronger forms of association (refer Sections 6.5 & 6.6)

and therefore the various ways of specifying these are very similar to associations.

Our case study has an instance of aggregation and composition between the classes Order

and Item in Figure 6.1. However, to keep our Z specification relatively simple, we shall

not consider aggregation and composition further in this dissertation.

6.10 Specifying Inheritance

A generalisation is the relationship between a more general element (the parent) and a

more specific element (the child). The child is fully consistent with the parent and adds

additional information. A child inherits the attributes and operations of its parent and is

therefore substitutable for the parent, i.e. child objects may be used anywhere the parent

may appear. Generalisation is therefore also called an inheritance or an "is-a"

relationship. Usually the child has attributes and operations in addition to those found in

its parent. Polymorphism occurs when a child overrides an operation of the parent.

The Customer, Company and Person classes can be used to illustrate the different

specification approaches for inheritance. All customers have an address, a phone number

and a fax number. There are two types of customers, i.e. companies and individuals

(called Person in this case study). Company and Person are specialisations of Customer

since they add some extra attributes.

The identity sets of the child classes are declared as subsets of the customer identity set in

the following Z axiomatic definition:

ÆCOMPANY: P CUSTOMER
ÆPERSON: P CUSTOMER
«_______
Æ„COMPANY, PERSONÒ partition CUSTOMER

 120

The declaration further shows that the customer identity set is partitioned by the

company and person identity sets. Therefore, any element of CUSTOMER is an element

of COMPANY or PERSON but not both.

Customer, Company and Person are specified below:

» Customer __
Æcustomers: P CUSTOMER
ÆcustAddress: CUSTOMER ß STRING
ÆcustPhone: CUSTOMER ß STRING
«_______
Ædom custAddress = customers
Ædom custPhone = customers
–___

» Company __
ÆCustomer
Æcompanies: P COMPANY
ÆcompName: COMPANY ß STRING
ÆcompRegNo: COMPANY ß STRING
«_______
Æcompanies z customers
Ædom compName = companies
Ædom compRegNo = companies
–___

» Person ___
ÆCustomer
Æpersons: P PERSON
ÆperName: PERSON ß STRING
ÆperSurname: PERSON ß STRING
«_______
Æpersons z customers
Ædom perName = persons
Ædom perSurname = persons
–___

6.11 Specifying the System State

It is conventional in Z to specify a schema representing the whole system state (Potter et

al. 1996). Operations are defined on the whole state, so that all side effects may be

captured and the full invariant could be demonstrated to hold after the operation.

 121

The system state is given by:

» System ___
ÆProduct
ÆOrder
ÆItem
ÆCustomer
ÆCompany
ÆPerson
–___

6.12 Specifying an Initial State

An initial state of the system is specified and a proof obligation arises to show that such

an initial state may be realised. It also provides a base case to show by induction that any

operation preserves the invariants of the system state. That is, given any valid system

state, one ought to be able to show that such state can be realised from the initial state

followed by zero or more operations.

The initial state of a class is specified by an operation schema that only includes the after

state components (Potter et al. 1996). For example, the initial state of the Product

scheme is specified as:

» InitProduct ___
ÆProduct'
«_______
Æproducts' = 0
ÆprodName' = 0
ÆprodPrice' = 0
ÆprodQuantity' = 0
–___

The initial state of the whole system is then:

» InitSystem ___
ÆInitProduct
ÆInitOrder
ÆInitItem
ÆInitCustomer
ÆInitCompany
ÆInitPerson
–___

 122

6.13 Proof Obligations Arising from the Specification

In this section we highlight a number of proof obligations that arise from Z specifications

(Potter et al. 1996; Van der Poll 2000; Spivey 1992). Many of these proof obligations

occur in the context of operations that change the system state. In Chapter 7 some of

these proof obligations will later be converted to first-order logic and discharged using

the Vampire theorem prover with the aid of various heuristics presented in Chapter 5.

6.13.1 Initialisation Theorem

Whenever an initial state schema is specified, a proof obligation arises to show that such

a state may be realised (Potter et al. 1996; Van der Poll 2000). The proof obligation for

the InitProduct initialisation schema (refer Section 6.12) is:

H E Product' • InitProduct

That is, we need to show that there exists an after state such that the predicate of the

initialisation schema is valid.

The “turnstile” symbol, H, is used to state a theorem (Potter et al. 1996). The hypothesis

of the theorem is specified on the left hand side of the turnstile and conclusion on the

right hand side.

6.13.2 Precondition Simplification

In Z the precondition of an operation is obtained by hiding the after-state components by

existentially quantifying them in the schema’s predicate (Potter et al. 1996). The

precondition for the CreateProduct operation would therefore be:

 123

» PreCreateProduct __
ÆProduct
Æproduct?: PRODUCT
Æname?: STRING
Æprice?: AMOUNT
Æquantity?: N
«_______
ÆE Product' •
Æ product? ‰ products
Æ name? ‰ ran prodName
Æ products' = products U {product?}
Æ prodName' = prodName U {product? å name?}
Æ prodPrice' = prodPrice U {product? å price?}
Æ prodQuantity' = prodQuantity U {product? å quantity?}
–___

This precondition can be simplified using, amongst others, the one-point-rule (Potter et

al. 1996):

» PreCreateProduct __
ÆProduct
Æproduct?: PRODUCT
Æname?: STRING
Æprice?: AMOUNT
Æquantity?: N
«_______
Æproduct? ‰ products
Æname? ‰ ran prodName
–___

Whenever a precondition is simplified we need to show that it is equivalent to the

original version (Potter et al. 1996), i.e. the precondition of CreateProduct is indeed

schema PreCreateProduct above:

H pre CreateProduct =

 [Product

 product?: PRODUCT

 name?: STRING

 price?: AMOUNT

 quantity?: N

 |

 product? ‰ products

 name? ‰ ran prodName]

 124

The “pre” prefix operator in Z indicates the precondition of a schema (Spivey 1992).

Also, note that the right hand side of the above equality uses a linear form of schema

definition (Potter et al. 1996).

6.13.3 After State Type

Every component of a schema for which a possible state change is specified, a proof

obligation arises to show that the corresponding after state component is of the correct

type (Van der Poll 2000). As an example consider schema UpdateProduct in Section

6.7.3 above and in particular the component prodName. Upon the successful completion

of UpdateProduct one typically has to show that:

(1) Every element of prodName' is an ordered pair, i.e. prodName': PRODUCT j

STRING. This effectively verifies the carrier type of the component. For the purposes

of this dissertation a carrier type is built from applications of the powerset operator,

Cartesian products and combinations of these to given sets (basic types). In particular

for any two sets X and Y, we define P(X x Y) = X j Y (Potter et al. 1996).

(2) Component prodName' is actually more restricted that just its underlying carrier type,

i.e. prodName': PRODUCT © STRING).

For reasons of simplicity in this dissertation, we typically do not discharge proof

obligations (1) above, but assume the carrier type of the component to be correct. Our

decision to not attend to proof obligations involving carrier types stem from the fact that

many type checkers for Z like the Community Z Tools (CZT) (Malik & Utting 2005)

ensure that the carrier types of components are correct but they do not provide for more

restrictive type checking, e.g. the kind mentioned in (2) above.

Proof obligations like those in (2) above are however addressed in our work. Discharging

these kind of proof obligations effectively shows that the after state of a component is

indeed more restricted as expected. These proof obligations are amongst other things the

topic of Chapter 7.

 125

For UpdateProduct the following proof obligation needs to be discharged:

 Product

 products': P PRODUCT

 prodName': PRODUCT j STRING

 prodPrice': PRODUCT j AMOUNT

 prodQuantity': PRODUCT j N

 product?: PRODUCT

 name?: STRING

 price?: AMOUNT

 quantity?: N

 |

 dom prodName' = products'

 dom prodPrice' = products'

 dom prodQuantity' = products'

 product? e products

 name? ‰ ran prodName

 products' = products

 prodName' = prodName ± {product? å name?}

 prodPrice' = prodPrice ± {product? å price?}

 prodQuantity' = prodQuantity ± {product? å quantity?}

H

 prodName' e PRODUCT © STRING

 prodPrice' e PRODUCT ß AMOUNT

 prodQuantity' e PRODUCT ß N

The above notation for stating a proof obligation stems from Potter et al. (1996).

6.13.4 Total Operations

For every total operation specified, a proof obligation arises to show that it is indeed total

(Van der Poll 2000). An operation is total if its precondition is a partition, i.e. the

precondition is total and any two constituent preconditions are pairwise disjoint.

 126

We first need to show that the precondition is total. This is true when the disjunction of

all the constituent preconditions is a tautology (Van der Poll 2000). Here is an example

for CreateProductTotal:

H pre (CreateProduct ¶ Success) v pre ProductAlreadyKnown v pre DuplicateProductName

An equivalent method of specifying that the precondition is total is:

H pre CreateProductTotal =

 [Product

 product?: PRODUCT

 name?: STRING

 price?: AMOUNT

 quantity?: N

 | true]

Secondly we need to show that all the constituent preconditions are pairwise disjoint.

This conjecture for CreateProductTotal is:

H (pre (CreateProduct ¶ Success) ¶ pre ProductAlreadyKnown) = 0 ¶

 (pre (CreateProduct ¶ Success) ¶ pre DuplicateProductName) = 0 ¶

 (pre ProductAlreadyKnown ¶ pre DuplicateProductName) = 0

6.13.5 Operation Interaction

The composition of operations leads to various proof obligations (Potter et al. 1996; Van

der Poll 2000). For example, most specifications of create and delete operations have the

property that a create operation followed by a delete operation of the same element

results in an unchanged state. This is the case for CreateProduct followed by

DeleteProduct:

CreateProduct ; DeleteProduct H X Product

Similarly, deletion of an element followed by its creation leaves the state unchanged:

DeleteProduct ; CreateProduct H X Product

 127

Another class of interactions is create, update or delete operations followed by a find

operation of the corresponding element. The element involved in the state change may or

may not be expected to be found, depending on the operation composition. For example,

after creating a product with some quantity, one does not expect that product to be below

that quantity:

CreateProduct ; SelectProductsBelowThreshold H product? ‰ products!

6.13.6 Contents of a Set

A proof obligation arises when adding an element to a set. One has to show that the

element is in the set afterwards provided that the necessary precondition holds (Van der

Poll 2000). For example the following conjecture could be stated for CreateProduct:

 CreateProduct | product? ‰ products ¶ name? ‰ ran prodName

H

 product? e products' ¶ (product? å name?) e prodName'

In the case of an update we also need to show that such update has been successful, given

a valid precondition:

 UpdateProduct | product? e products

H

 product? e products' ¶ (product? å name?) e prodName'

Similarly, after deleting an element we can show that it is not in the set anymore:

DeleteProduct | product? e products H product? ‰ products' ¶ product? ‰ dom prodName'

In all of the above cases we need to show that the other elements are not affected (i.e. the

operation did not cause any side effects as far as the other elements are concerned). For

example:

 CreateProduct | product? ‰ products ¶ name? ‰ ran prodName

H

 A p: products; n: prodName | p Î product? ¶ n.1 Î product? • p e products' ¶ n e prodName'

 128

Note that n.1 above is a projection of the first component of the tuple n.

6.13.7 State Invariant

The expanded form of any Z operation explicitly specifies the state invariant. It is

therefore not required to separately show that the state invariant is preserved. However,

to ensure that an operation does not introduce an inconsistency in the state one can prove

that the after state invariant is preserved, given the operation with the after state

components only declared in terms of their carrier types. For example, the proof

obligation for CreateProduct would then be:

 Product

 products': P PRODUCT

 prodName': PRODUCT j STRING

 prodPrice': PRODUCT j AMOUNT

 prodQuantity': PRODUCT j N

 product?: PRODUCT

 name?: STRING

 price?: AMOUNT

 quantity?: N

 |

 product? e products

 name? ‰ ran prodName

 products' = products

 prodName' = prodName ± {product? å name?}

 prodPrice' = prodPrice ± {product? å price?}

 prodQuantity' = prodQuantity ± {product? å quantity?}

H

 Product'

6.14 Conclusion

In this chapter we presented a simple order management system. The system was

specified in Z by translating the high level specification using specific patterns. A

 129

number of typical proof obligations that result from such specifications were also

discussed.

In the next chapter we convert some of the case study proof obligations of Section 6.13 to

first-order logic and discharge these using the Vampire theorem prover with the aid of

various heuristics presented in Chapter 5.

 130

7 Discharging Case Study Proof Obligations

Chapter 7

Discharging Case Study Proof

Obligations

In this chapter a number of proof obligations that arose from the case study presented in

Chapter 6 are converted from Z to first-order logic and discharged using Vampire. The

heuristics discussed in Chapter 5 are finally applied to failed proof attempts in an attempt

to find a proof. From the results in Chapter 5 we observed that Vampire generally

performed well, hence our decision to use just Vampire as our reasoner in this chapter.

7.1 Conversion of Z to First-Order Logic

To discharge Z proof obligations using Vampire we need to convert the Z notation

presented in Chapter 6 to the TPTP (Thousands of Problems for Theorem Provers)

notation (refer Section 4.1) used by Vampire. The ISO standardisation of Z (ISO 2002)

specifies how a Z specification can be converted to a typed first-order logic. However,

first-order logic representation using the TPTP notation is not typed. To avoid the

paradoxes of naïve set theory the type information must be incorporated in the TPTP

transformation. A typed version of TPTP has been proposed (Claessen & Sutcliffe 2008)

but has not been implemented yet. The typed conversion to TPTP notation in this chapter

is based on this proposal.

As an example of such a typed conversion we will use the following conjecture:

H P{{1}} = { 0,{{1}}}

Note that this problem was also used in Section 4.1 to illustrate the TPTP notation. In Z

the type of the number literal 1 is (arithmos) which represents all numbers (ISO 2002).

The type of {1} therefore is P . Similarly the types of {{1}}, P{{1}} and { 0,{{1}}} are

PP , PPP and PPP respectively. Since Z is strongly typed, all elements of a set in Z

 131

must be of the same type (ISO 2002). Therefore the type of 0 is inferred to be PPA. The

TPTP representation to show that P{{1}} = { ∅,{{1}}} is then given by the following

input to a reasoner:

% A typed TPTP set-theoretic problem:
% Show that P{{1}} = {Empty,{{1}}}.

% Types
fof(types, axiom,
 el(number_literal_1,t_A) &
 el(empty,t_PPA) &
 el(a,t_PA) &
 el(b,t_PPA) &
 el(c,t_PPPA) &
 el(d,t_PPPA)
).

% Reflexivity
fof(reflexivity, axiom,
 ! [X] : X = X
).

% Extensionality for types PA, PPA and PPPA
fof(extensionality, axiom,
 ![A,B]:((el(A,t_PA) & el(B,t_PA)) =>
 ((![X]:(el(X,t_A) => (el(X,A) <=> el(X,B)))) => A=B)) &
 ![A,B]:((el(A,t_PPA) & el(B,t_PPA)) =>
 ((![X]:(el(X,t_PA) => (el(X,A) <=> el(X,B)))) => A=B)) &
 ![A,B]:((el(A,t_PPPA) & el(B,t_PPPA)) =>
 ((![X]:(el(X,t_PPA) => (el(X,A) <=> el(X,B)))) => A=B))
).

% Empty = {}
fof(empty, axiom,
 ![X]:(el(X,t_PA) => (~el(X,empty)))
).

% A = {1}
fof(a_is_1, axiom,
 ![X]:(el(X,t_A) => (el(X,a) <=> (X = number_liter al_1)))
).

% B = {A}
fof(b_is_a, axiom,
 ![X]:(el(X,t_PA) => (el(X,b) <=> (X = a)))
).

% C = P(B)
fof(c_is_power_b, axiom,
 ![X]:(el(X,t_PPA) => (el(X,c) <=> ![Y]:(el(Y,t_PA) => (el(Y,X) => el(Y,b)))))
).

% D = {Empty,{{1}}}
fof(d_is_empty_or_1, axiom,
 ![X]:(el(X,t_PPA) => (el(X,d) <=> (((X = empty) | (X = b)))))
).

% Goal clause C = D
fof(c_is_d, conjecture,
 c = d
).

The following should be noted about the above TPTP example. Each variable or constant

is specified to be of a specific type. For example el(X,t_PPA) specifies that the type of

 132

variable X is PP . The same would apply to any functor representing an expression.

Lastly, the extensionality axiom must be given for each set type occurring in the problem.

The author of this dissertation wrote a system to translate a large part of Z into first-order

logic in TPTP notation. Such system allowed us to automatically convert Z input to the

desired notation to be used as input to the reasoner. A number of the heuristics were also

applied to the input during this automated translation process. All input to the proof

attempts reported on in this chapter were generated with the aid of the above system

written in Java.

7.2 Discharging of Proof Obligations

In this section we take some of the proof obligations that arise from the order

management system specification in Chapter 6 and show how they can be discharged

using Vampire with the aid of the heuristics of Chapter 5.

7.2.1 CreateProduct Invariant

The CreateProduct operation adds a new product type to the stock. Its schema contains

the following predicate:

products' = products U {product?}

The following proof shows that this predicate may also be derived from the other

predicates:

products'

= dom prodName' (invariant after)

= dom (prodName U {product? å name?}) (specification of CreateProduct)

= dom prodName U dom {product? å name?} (fact about ‘dom’)

 133

= dom prodName U {product?} (fact about ‘dom’)

= products U {product?} (invariant before)

We may, therefore, redefine the CreateProduct schema to exclude the products'

predicate. Also, to keep the schema simple we exclude the price and quantity variables.

The final expanded schema is given below:

» LeanerCreateProduct ______________________________________
Æproducts: P PRODUCT
ÆprodName: PRODUCT © STRING
Æproducts': P PRODUCT
ÆprodName': PRODUCT © STRING
Æproduct?: PRODUCT
Æname?: STRING
«_______
Ædom prodName = products
Ædom prodName' = products'
Æproduct? ‰ products
Æname? ‰ ran prodName
ÆprodName' = prodName U {product? å name?}
–___

The proof conjecture can then be stated as:

LeanerCreateProduct H products' = products U {product?}

In the conversion to first-order logic all heuristics are applied except for the products'

predicate to which the extensionality heuristic #1 and exemplification heuristic #4 were

not applied.

The exclusion of the exemplification heuristic prevents the union operator’s definition

from being used directly instead of a functor. With this transformation Vampire is unable

to find a proof by terminating after 7 minutes with no more passive clauses left. We next

apply the extensionality heuristic by defining the above set equality products' = products

U {product?} in terms of its elements as:

 134

A x: PRODUCT • x e products' ¤ x e products U {product?}

With this transformation Vampire is able to find a proof in 1 minute 12 seconds. Next we

apply the exemplification heuristic by using a direct definition of the union operator as:

A x: PRODUCT • x e products' ¤ x e {y: PRODUCT | y e products v y = product?}

Vampire is then able to find a quick proof in 1 second. The input to this last proof

attempt is shown in Appendix E.1.

The following table summarises the above results:

Extensionality

(Heuristic #1)

Exemplification

(Heuristic #4)

Time to find a proof

No No No proof after 7 minutes

Yes No 72s

Yes Yes 1s

From the above table we observe that the application of both the extensionality heuristic

#1 and the exemplification heuristic #4 leads to a very short proof.

7.2.2 CreateProduct is Total

The CreateProduct operation adds a new product type. It is not a total operation since it

is not defined for all possible inputs. The after state for example is not defined if the

input product already exists. CreateProductTotal is an enhanced version that caters for

all possible inputs. To show that CreateProductTotal is indeed total we need to show

that its precondition is a partition (refer Section 6.13.4). This is done as two separate

proof obligations (POs):

1. The first is to show that the disjunction of the constituent preconditions is a

tautology.

 135

2. Secondly we need to show that all the constituent preconditions are pairwise

disjoint.

The following conjecture states that the precondition is a tautology (PO 1 above):

H pre (CreateProduct ¶ Success) v pre ProductAlreadyKnown v pre DuplicateProductName

An expanded form of the above conjecture is:

 Product

 product?: PRODUCT

 name?: STRING

 price?: AMOUNT

 quantity?: N

H

 (E Product'; result!: REPORT •

 product? ‰ products

 name? ‰ ran prodName

 products' = products U {product?}

 prodName' = prodName U {product? å name?}

 prodPrice' = prodPrice U {product? å price?}

 prodQuantity' = prodQuantity U {product? å quantity?}

 result! = success)

 v

 (E Product'; result!: REPORT •

 product? e products

 products' = products

 prodName' = prodName

 prodPrice' = prodPrice

 prodQuantity' = prodQuantity

 result! = already_known)

 v

 (E Product'; result!: REPORT •

 product? ‰ products

 136

 name? e ran prodName

 products' = products

 prodName' = prodName

 prodPrice' = prodPrice

 prodQuantity' = prodQuantity

 result! = duplicate_name)

Most heuristics have been applied in the conversion to first-order logic except for the

divide-and-conquer heuristic #3. With such transformed input Vampire is unable to find

a proof after 30 minutes. Owing to the complexity of the proof, the transformed

conjecture is a conjunction of 8 terms. We can therefore apply the divide-and-conquer

heuristic #3 to the above conjecture by splitting it into 8 separate conjectures and

corresponding proof attempts. Vampire is then still unable to find any proof after 30

minutes for any of the conjectures. These 8 conjectures also consist of conjunctions onto

which the divide-and-conquer heuristic may be applied to further. This application

results in 56 proofs. Each of these proofs is allocated 5 minutes of which only 1 is found

in less than 1 second. The divide-and-conquer heuristic is further applied to the

remaining 55 proofs, resulting in 440 proof attempts, all with the aid of the Java system

described in Section 7.1 above. Each of these proofs is again allocated 5 minutes of

which 438 are found in less than 1 second. The remaining two proofs are further split up

into four proof attempts of which three proofs are found in less than one second and the

last proof in 5.5 seconds. This one remaining proof is finally split into two proofs for

which Vampire finds refutations in 1 second each. The following table summarises the

results of these proof attempts:

Proof Attempt # Number of Proof

Obligations

Number of

Refutations found

Number of failed

attempts remaining

1 1 0 1

2 8 0 8

3 56 1 55

 137

Proof Attempt # Number of Proof

Obligations

Number of

Refutations found

Number of failed

attempts remaining

4 440 438 2

5 4 3 1

6 1 1 0

As may be observed from the above table, the divide-and-conquer heuristic #3 proved to

be very useful.

Lastly we need to show that all the constituent preconditions are pairwise disjoint (PO 2

above) as given by the following conjecture:

H (pre (CreateProduct ¶ Success) ¶ pre ProductAlreadyKnown) = 0 ¶

 (pre (CreateProduct ¶ Success) ¶ pre DuplicateProductName) = 0 ¶

 (pre ProductAlreadyKnown ¶ pre DuplicateProductName) = 0

Suppose we exclude the extensionality and divide-and-conquer heuristics in the

conversion to first-order logic. Vampire is then unable to find a proof after 30 minutes.

The conjecture to be proved is a conjunction that enables us to apply the divide-and-

conquer heuristic. This results in three separate proofs. Vampire is now able to find

quick refutations for the first and third proofs in 18 and 24 seconds respectively, but is

still unable to find a refutation for the second proof attempt after 30 minutes. The

remaining proof is a set equality that enables us to apply the extensionality heuristic as:

A x [x e (pre (CreateProduct ¶ Success) ¶ pre DuplicateProductName) ¤ x e 0]

The application of the extensionality heuristic enables Vampire to find a quick proof in 1

second. We can similarly apply extensionality to the first and third proofs for which

Vampire then also find quick proofs in 1 second.

The following table summarises the above results:

 138

Divide-and-conquer

(Heuristic #3)

Extensionality

(Heuristic #1)

Time to find a proof

No No No proof found

Yes No 18s, no proof, 24s

(3 proof attempts)

Yes Yes 1s, 1s, 1s

(3 proof attempts)

7.2.3 ProcessOrder set contents

The ProcessOrder operation (refer Section 6.7.5) changes the state of a pending order to

processed and removes the relevant product quantities from stock as indicated on the

order line items. The specification of the ProcessOrder operation is repeated here for

convenience:

» ProcessOrder __
ÆDOrder
ÆDProduct
ÆXItem
Æorder?: ORDER
«_______
Æorder? e orders
ÆorderStatus(order?) = pending
ÆAi: items • itemOrder(i) = order? fi prodQuantity(itemProduct(i)) – itemQuantity(i) ˘ 0
Æorders' = orders
ÆorderDate' = orderDate
ÆorderStatus' = orderStatus ± {order? å processed}
ÆorderCustomer' = orderCustomer
Æproducts' = products
ÆprodName' = prodName
ÆprodPrice' = prodPrice
ÆprodQuantity' = prodQuantity ±
Æ {i: items | itemOrder(i) = order? • itemProduct(i) å prodQuantity(itemProduct(i)) – itemQuantity(i)}
–___

 139

ProcessOrder updates orderStatus and prodQuantity. A proof obligation therefore arises

from ProcessOrder to show that:

• Other order statuses are not affected.

• Product quantities not appearing as line items in the order are not affected.

The conjecture for the above double proof obligation is specified as:

ProcessOrder H

 (A s: orderStatus | s.1 Î order? • s e orderStatus') ¶

 (A q: prodQuantity | !(E i: items • itemOrder(i) = order? ¶ itemProduct(i) = q.1) •

 q e prodQuantity')

The divide-and-conquer heuristic has not been applied in the transformation to first-order

logic. Furthermore the exemplification heuristic was not applied to the instances of the

above override operators (±) which are used in the specification of the after state

variables orderStatus' and prodQuantity'. Functors are therefore used instead of direct

definitions of the override operator.

With this transformation Vampire is unable to find a refutation after 30 minutes. We next

apply the divide-and-conquer heuristic by doing two separate proofs for orderStatus' and

prodQuantity'.

Vampire is then able to find a proof for the orderStatus' sub-problem in 16 minutes 22

seconds but is still unable to find a proof for the prodQuantity' sub-problem after 30

minutes.

The orderStatus' sub-problem still contains a definition of the override operator for

prodQuantity'. Similarly the prodQuantity' sub-problem also contains a definition of the

orderStatus' override operator. We can therefore apply the redundant information

heuristic by removing these unnecessary definitions. Vampire is then able to find a proof

 140

for the orderStatus' sub-problem in 5 minutes 26 seconds and is still unable to find a

proof for the prodQuantity' sub-problem after 30 minutes.

Lastly we apply the exemplification heuristic to the override operators of the two sub-

problems by replacing the indirect definitions via functors with direct definitions.

Vampire is then able to find quick proofs for both problems in 1 second.

The following table summarises the above results:

Divide-and-

conquer

(Heuristic #3)

Redundant

information

(Heuristic #8)

Exemplification

(Heuristic #4)

Time to find a

proof

No No No No proof

Yes No No 982s, no proof

Yes Yes No 326s, no proof

Yes Yes Yes 1s, 1s

7.2.4 CreateDeleteItem leaves state unchanged

The CreateItem and DeleteItem operations respectively add and remove a line item from

an order. An operation interaction proof obligation (refer Section 6.13.5) that arises is to

show that adding an item and then immediately removing the item will leave the Item

state unchanged. This proof obligation is specified with the following theorem:

CreateItem ; DeleteItem H X Item

An expanded version of this conjecture looks as follows:

 DItem

 XProduct

 item?: ITEM

 order?: ORDER

 141

 quantity?: N1

 product?: PRODUCT

 |

 EItem'' •

 item? ‰ items ¶

 items'' = items U {item?} ¶

 itemOrder'' = itemOrder U {item? å order?} ¶

 itemPrice'' = itemPrice U {item? å prodPrice(product?)} ¶

 itemQuantity'' = itemQuantity U {item? å quantity?} ¶

 itemProduct'' = itemProduct U {item? å product?} ¶

 item? e items'' ¶

 items' = items'' \ {item?} ¶

 itemOrder' = {item?} y itemOrder'' ¶

 itemPrice' = {item?} y itemPrice'' ¶

 itemQuantity' = {item?} y itemQuantity'' ¶

 itemProduct' = {item?} y itemProduct''

H

 X Item

The double prime ('') decorated components above are the intermediate states that link

the outputs of CreateItem with the inputs of DeleteItem.

In the conversion to first-order logic all heuristics have been applied except for the terms

resulting from XItem to which the extensionality heuristic has not been applied. With

this conversion Vampire is unable to find a proof after 30 minutes.

When fully expanded, the term XItem becomes the following conjunction:

items e P ITEM ¶ items' e P ITEM ¶

itemOrder e ITEM ß ORDER ¶ itemOrder' e ITEM ß ORDER ¶

itemPrice e ITEM ß AMOUNT ¶ itemPrice' e ITEM ß AMOUNT ¶

itemQuantity e ITEM ß N1 ¶ itemQuantity' e ITEM ß N1 ¶

itemProduct e ITEM ß PRODUCT ¶ itemProduct' e ITEM ß PRODUCT ¶

 142

dom itemOrder = items ¶ dom itemOrder' = items' ¶

dom itemPrice = items ¶ dom itemPrice' = items' ¶

dom itemQuantity = items ¶ dom itemQuantity' = items' ¶

dom itemProduct = items ¶ dom itemProduct' = items' ¶

(Ai1, i2: items • i1 Î i2 fi itemOrder(i1) Î itemOrder(i2) v itemProduct(i1) Î itemProduct(i2)) ¶

(Ai1, i2: items' • i1 Î i2 fi itemOrder'(i1) Î itemOrder'(i2) v itemProduct'(i1) Î itemProduct'(i2)) ¶

items = items' ¶

itemOrder = itemOrder' ¶

itemPrice = itemPrice' ¶

itemQuantity = itemQuantity' ¶

itemProduct = itemProduct'

Of all these conjuncts above only the last 5 equality conjuncts are required to prove that

the before and after states are the same:

items = items' ¶

itemOrder = itemOrder' ¶

itemPrice = itemPrice' ¶

itemQuantity = itemQuantity' ¶

itemProduct = itemProduct'

We can therefore apply the redundant information heuristic #8 by only keeping the

equality conjuncts. In this case the use of the redundant information heuristic is similar

to the divide-and-conquer heuristic #3 except that only one half of the divide will be

pursued. Vampire is now able to find a proof in 1 minute 44 seconds.

Similarly to term XItem, the use of XProduct in the problem statement also results in a

large number of unnecessary formulae. Of these only prodPrice is being used in the

function application prodPrice(product?). We therefore apply the redundant information

heuristic again by only keeping the variable declaration of prodPrice in XProduct.

Vampire is then able to find a proof in 1 minute 30 seconds.

 143

The next target for the redundant information heuristic is the predicate in schema Item

that states that itemOrder and itemProduct combinations must be unique:

Ai1, i2: items • i1 Î i2 fi itemOrder(i1) Î itemOrder(i2) v itemProduct(i1) Î itemProduct(i2)

Removal of this predicate in each of Item, Item' and Item'' enables Vampire to find a

proof in 1 minute 5 seconds.

We next apply the divide-and-conquer heuristic by finding separate equality proofs for

the five state variables of Item. Vampire now finds proofs in 0.2, 59, 55, 29 and 22

seconds for the respective conjectures.

The separation of the conjecture into five separate conjectures allows us to apply the

redundant information heuristic even further. For example, the proof to show that

itemOrder = itemOrder' does not require any terms that reference the various decorations

of itemPrice, itemQuantity and itemProduct. If we remove such unnecessary terms for

each of the five conjectures, then Vampire is able to find proofs in 0, 1.5, 6.8, 13.5 and

1.4 seconds respectively.

The following table summarises the above results in order:

Redundant information

(Heuristic #8)

Divide-and-

conquer

(Heuristic #3)

Time to find a proof

Not applied No No proof

Keep only equality predicates in

XItem

No 104s

Keep only declaration of prodPrice in

XProduct

No 90s

Remove unique itemOrder, No 65s

 144

Redundant information

(Heuristic #8)

Divide-and-

conquer

(Heuristic #3)

Time to find a proof

itemProduct predicate in Item, Item'

and Item''

 Yes 0.2s, 59s, 55s, 29s, 22s

Remove declarations of unrelated

variables and predicates referring to

them in Item, Item' and Item''

Yes 0s, 1.5s, 6.8s, 13.5s,

1.4s

7.2.5 After State Type of CancelOrder

An order that has not been processed yet, that is it is in a pending status, can be cancelled.

This is done with the CancelOrder operation:

» CancelOrder ___
ÆDOrder
Æorder?: ORDER
«_______
Æorder? e orders
ÆorderStatus(order?) = pending
Æorders' = orders
ÆorderDate' = orderDate
ÆorderStatus' = orderStatus ± {order? å cancelled}
ÆorderCustomer' = orderCustomer
–___

Components orderStatus and orderStatus' are partial functions from ORDER to STATUS

and their carrier types are ORDER j STATUS. Specification tools that do type checking

often only ensure that the carrier type of a variable is correct (see Section 6.13.3), but do

not cater for more restricted type checking. For the CancelOrder operation they,

 145

therefore, do not verify whether orderStatus' is a partial function. The following

conjecture can be used to show that orderStatus' is a partial function:

 Order

 orders': P ORDER

 orderDate': ORDER j DATE

 orderStatus': ORDER j STATUS

 orderCustomer': ORDER j CUSTOMER

 order?: ORDER

 |

 dom orderDate' = orders'

 dom orderStatus' = orders'

 dom orderCustomer' = orders'

 order? e orders

 orderStatus(order?) = pending

 orders' = orders

 orderDate' = orderDate

 orderStatus' = orderStatus ± {order? å cancelled}

 orderCustomer' = orderCustomer

H

 orderStatus': ORDER ß STATUS

In the conversion to first-order logic most heuristics are applied except for the following

conjunct to which the exemplification heuristic was not applied to the override operator:

orderStatus' = orderStatus ± {order? å cancelled}

The exclusion of the exemplification heuristic results in the use of a functor instead of a

direct definition of the override operator. This enables us to manipulate the override

operator’s definition independently to investigate the utility of some other heuristics. We

therefore do not use the following generic definition of the override operator in the

standard Z toolkit:

 146

Ω [X, Y] æææ
Æ_ ± _ : (X j Y) x (X j Y) f (X j Y)
«_______
ÆA r, s : X j Y • r ± s = ((dom s) y r) U s)
–___

but rather define it instantiated for ORDER and STATUS, as well as defining the

expression ((dom s) y r) U s) directly instead of using the domain, domain anti-restriction

and union set operations that are evident in the above definition:

Æ_ ± _ : (ORDER j STATUS) x (ORDER j STATUS) f (ORDER j STATUS)
«_______
ÆA r, s : ORDER j STATUS • r ± s = {x: ORDER x STATUS | (x e r ¶ A p: s • x.1 Î p.1) v x e s}

Suppose we decide to not use the element structure and multivariate functor heuristics in

the definition of the override operator above for the conversion to first-order logic.

Vampire is then unable to find a proof after 30 minutes. Next we apply the element

structure heuristic to the override operator in its transformation to first-order logic. The

heuristic is applied by converting all instances of variables that are Cartesian product

types to tuples. One such example is the definition of variable x in the above definition

of ±. It can be rewritten as:

{x 1: ORDER; x2: STATUS | ((x1,x2) e r ¶ A p: s • x1 Î p.1) v (x1,x2) e s}

With this transformation of the override operator Vampire is able to find a proof in 2

minutes 47 seconds. However, if the element structure heuristic is only applied to x as in

the example above and not to all instances of Cartesian product variables then Vampire

only finds a proof after 5 minutes 53 seconds. This is an example of the resonance

heuristic #10 that requires corresponding terms to have a syntactically similar structure to

aid the resolution process.

Next we discard the element structure heuristic and instead apply the multivariate functor

heuristic. We do this by replacing the universal variable s in the definition of the

override operator with the constant {order? å cancelled}:

 147

Æ_ ± _ : (ORDER j STATUS) x (ORDER j STATUS) f (ORDER j STATUS)
«_______
ÆA r : ORDER j STATUS • r ± {order? å cancelled} =
Æ {x: ORDER x STATUS |
Æ (x e r ¶ A p: {order? å cancelled} • x.1 Î p.1) v x e {order? å cancelled}}

Vampire now finds a proof in 3 minutes 31 seconds.

Lastly we apply both the element structure and the multivariate functor heuristics to the

definition of the override operator. Vampire is then able to find a quick proof in 1

second. The input to this last successful proof attempt appears in Appendix E.2.

The following table summarises the above results:

Element structure

(Heuristic #7)

Resonance

(Heuristic #10)

Multivariate functor

(Heuristic #5)

Time to find a

proof

No No No No proof

Yes Yes No 167s

Yes No No 353s

No No Yes 211s

Yes Yes Yes 1s

7.3 Conclusion

Chapter 6 introduced a case study of an order management system specified in Z and

highlighted typical proof obligations that arise from such specifications. This chapter

started by discussing the conversion of Z proof obligations to first-order logic. Finally

five proof obligations that arose from the case study were converted to first-order logic

with the aid of a Java program written by the author of this dissertation and discharged

using the Vampire reasoner with the help of the presented heuristics.

 148

From the successes reported in this chapter we see that the heuristics presented in Chapter

5 are indeed useful, not only in discharging traditional set-theoretic problems, but also

problems on a larger scale, typically those present in Z specifications.

The next and final chapter takes stock of what was set out to be achieved in Chapter 1

and to what extent these aims have been met.

 149

8 Summary and Conclusions

Chapter 8

Summary and Conclusions

In this final chapter we revisit our original research question and hypothesis from Chapter

1. We then discuss how the proposed approach in Section 1.4 was applied and what our

findings were. The chapter concludes with a discussion of the directions that future work

in this area could follow.

8.1 Contributions of this Dissertation

Van der Poll and Labuschagne developed a suite of 14 heuristics (Van der Poll &

Labuschagne 1999, Van der Poll 2000) to aid the Otter automated reasoner (McCune

2003) in finding proofs for set-theoretic problems. Otter became dated since the work of

Van der Poll and Labuschagne and its performance at the annual CASC (Pelletier et al.

2002, Sutcliffe & Suttner 2006) competitions since 2000 indicates that it cannot be

considered a state of the art prover anymore. It has also been decommissioned by its

author and replaced by Prover 9 (McCune 2009). Nevertheless, Otter was used to arrive

at the VdPL heuristics described throughout this dissertation and its use led to the

question of whether the VdPL heuristics are applicable to other resolution-based

reasoners that have since surpassed Otter in performance.

Our hypothesis was:

The set-theoretic heuristics developed by Van der Poll and Labuschagne are

applicable to state of the art resolution-based automated theorem provers.

We selected Vampire (Riazanov & Voronkov 2002) in Chapter 4 as our primary and state

of the art automated theorem prover to verify our hypothesis. Vampire was chosen

because it is a resolution-based automated reasoner, performed consistently well in the

annual CASC (Pelletier et al. 2002, Sutcliffe & Suttner 2006) competitions. Vampire

also solved more set-theoretic problems than any of the other competing provers in the

 150

period from 2002 to 2007 across all divisions. Gandalf (Tammet 1997) was chosen as the

secondary resolution-based reasoner since it also had reasonable success at the CASC

competitions some time ago.

In Chapter 5 each of the VdPL heuristics obtained through the use of Otter was stated and

tested in turn on sample set-theoretic problems using Vampire and Gandalf. Otter was

used to discharge the proof. After a failed proof attempt the relevant heuristic was

applied to the problem specification and it enabled Otter to find a proof. The original

problem was then discharged on Vampire and Gandalf. In some of the cases Vampire

and Gandalf were able to solve the original problem without the application of the

heuristic. In these cases the problem complexity was increased to such an extent that a

proof could not be found. The heuristic was then similarly applied to failed proof

attempts. It was found that Vampire needed 10 and Gandalf 9 of the 11 heuristics

evaluated. However, Vampire generally found proofs quicker, hence it was chosen as the

reasoner to be used in the rest of our work.

In Chapter 6 an order management case study was developed using the Z specification

language (Spivey 1992) that is based on first-order logic and a strongly-typed set theory.

Some of the proof obligations that arose from the case study were selected in Chapter 7,

converted to first-order logic and discharged using Vampire. In all these cases various

combinations of heuristics were required to enable Vampire to find proofs.

We have therefore provided empirical evidence of the utility of the VdPL heuristics to

state of the art resolution-based automated theorem provers in the domain of set-theoretic

problems.

8.2 Future Work

The proofs in this work were done using the default settings of Vampire and Gandalf.

Three of the 14 heuristics were not evaluated because they require changes to these

default settings. Future empirical work involving changing and fine-tuning some of these

settings may yield further useful results.

 151

We limited our selection of reasoners to resolution-based provers since Otter is

resolution-based. The applicability of the heuristics to other types of automated

reasoners could be investigated, for example tableau and term rewriting (Bundy 1999).

The problem domain was also limited to set theory. Similarly the utility of the heuristics

can be tested on other problem domains, especially those with similar characteristics as

set theory, e.g. deeply nested constructs.

The translation of Z specification proof obligations to first-order logic in Chapter 7 had to

incorporate the Z type information into the resulting problem. It was found that the

additional typed terms in the resulting clauses help to restrict irrelevant search paths

resulting from the resolution of clauses with unrelated types. Some resolution of these

incompatible clauses can, however, still take place but the resolvents can only be reduced

up to the type terms where further reductions are prevented. It is plausible that these

undesired unifications may be prevented up front if the type information becomes part of

the TPTP notation (Sutcliffe & Suttner 1998) that is used as the input to our proof

attempts. The incorporation of type information as manifested in this dissertation

coincides with the mechanism proposed by Claessen and Sutcliffe (2008). The

implementation of type information into the unification algorithms of next generation

theorem provers may therefore create a more efficient class of reasoners against which

the applicability of the VdPL heuristics may be tested.

Since the VdPL heuristics appear to be more universally applicable as was known before

one may now consider building a library of such recognisable patterns in proof attempts,

aimed at automatically transforming a specifier’s input to a reasoner prior to an attempt at

discharging a proof obligation. Some progress in this regard has already been made as

part of this work. The conversion of Z proof obligations in Chapter 7 to first-order logic

was largely automated through the use a Java program developed for this purpose. It was

found that some of the heuristics could to some extent be applied automatically during

the conversion. Further work in this area could result in an automated conversion to first-

order logic of the full Z language with the VdPL heuristics applied automatically where

applicable.

 152

Appendix A – Resolution Deductions of the Farmer, Wolf, Goat and Cabbage (FWGC) Puzzle

Appendix A

Resolution Deductions of the Farmer,

Wolf, Goat and Cabbage (FWGC) Puzzle

A.1 A Possible Refutation Deduction of the FWGC

Puzzle

C1 = ¬S(fh, x, y, z) ∨ ¬SAFE(fh, x, y, z) ∨

¬SAFE(fa, x, y, z) ∨ S(fa, x, y, z)

Farmer goes across

C2 = ¬S(fa, x, y, z) ∨ ¬SAFE(fa, x, y, z) ∨

¬SAFE(fh, x, y, z) ∨ S(fh, x, y, z)

Farmer returns

C3 = ¬S(fh, gh, y, z) ∨ ¬SAFE(fh, gh, y, z) ∨

¬SAFE(fa, ga, y, z) ∨ S(fa, ga, y, z)

Farmer takes goat across

C4 = ¬S(fa, ga, y, z) ∨ ¬SAFE(fa, ga, y, z) ∨

¬SAFE(fh, gh, y, z) ∨ S(fh, gh, y, z)

Farmer returns goat

C5 = ¬S(fh, x, ch, z) ∨ ¬SAFE(fh, x, ch, z) ∨

¬SAFE(fa, x, ca, z) ∨ S(fa, x, ca, z)

Farmer takes cabbage

across

C6 = ¬S(fa, x, ca, z) ∨ ¬SAFE(fa, x, ca, z) ∨

¬SAFE(fh, x, ch, z) ∨ S(fh, x, ch, z)

Farmer returns cabbage

C7 = ¬S(fh, x, y, wh) ∨ ¬SAFE(fh, x, y, wh) ∨

¬SAFE(fa, x, y, wa) ∨ S(fa, x, y, wa)

Farmer takes wolf across

C8 = ¬S(fa, x, y, wa) ∨ ¬SAFE(fa, x, y, wa) ∨

¬SAFE(fh, x, y, wh) ∨ S(fh, x, y, wh)

Farmer returns wolf

 153

C9 = SAFE(fh, gh, ch, wh)

C10 = SAFE(fh, gh, ch, wa)

C11 = SAFE(fh, gh, ca, wh)

C12 = SAFE(fh, gh, ca, wa)

C13 = SAFE(fh, ga, ch, wh)

C14 = SAFE(fa, gh, ca, wa)

C15 = SAFE(fa, ga, ch, wh)

C16 = SAFE(fa, ga, ch, wa)

C17 = SAFE(fa, ga, ca, wh)

C18 = SAFE(fa, ga, ca, wa)

C19 = S(fh, gh, ch, wh) Start state

C20 = ¬S(fa, ga, ca, wa) Goal state negated

 Take goat across

C21 = ¬SAFE(fh, gh, ch, wh) ∨ ¬SAFE(fa, ga, ch, wh) ∨

S(fa, ga, ch, wh)

Resolvent of C3 and C19

Unifier {ch/y, wh/z}

C22 = ¬SAFE(fa, ga, ch, wh) ∨ S(fa, ga, ch, wh) Resolvent of C9 and C21

C23 = S(fa, ga, ch, wh) Resolvent of C15 and C22

 Farmer returns

C24 = ¬SAFE(fa, ga, ch, wh) ∨ ¬SAFE(fh, ga, ch, wh) ∨

S(fh, ga, ch, wh)

Resolvent of C2 and C23

Unifier {ga/x, ch/y, wh/z}

C25 = ¬SAFE(fh, ga, ch, wh) ∨ S(fh, ga, ch, wh) Resolvent of C15 and C24

C26 = S(fh, ga, ch, wh) Resolvent of C13 and C25

 154

 Take wolf across

C27 = ¬SAFE(fh, ga, ch, wh) ∨ ¬SAFE(fa, ga, ch, wa) ∨

S(fa, ga, ch, wa)

Resolvent of C7 and C26

Unifier {ga/x, ch/y}

C28 = ¬SAFE(fa, ga, ch, wa) ∨ S(fa, ga, ch, wa) Resolvent of C13 and C27

C29 = S(fa, ga, ch, wa) Resolvent of C16 and C28

 Bring goat back

C30 = ¬SAFE(fa, ga, ch, wa) ∨ ¬SAFE(fh, gh, ch, wa) ∨

S(fh, gh, ch, wa)

Resolvent of C4 and C29

Unifier {ch/y, wa/z}

C31 = ¬SAFE(fh, gh, ch, wa) ∨ S(fh, gh, ch, wa) Resolvent of C16 and C30

C32 = S(fh, gh, ch, wa) Resolvent of C10 and C31

 Take cabbage across

C33 = ¬SAFE(fh, gh, ch, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨

S(fa, gh, ca, wa)

Resolvent of C5 and C32

Unifier {gh/x, wa/z}

C34 = ¬SAFE(fa, gh, ca, wa) ∨ S(fa, gh, ca, wa) Resolvent of C10 and C33

C35 = S(fa, gh, ca, wa) Resolvent of C14 and C34

 Farmer returns

C36 = ¬SAFE(fa, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨

S(fh, gh, ca, wa)

Resolvent of C2 and C35

Unifier {gh/x, ca/y, wa/z}

C37 = ¬SAFE(fh, gh, ca, wa) ∨ S(fh, gh, ca, wa) Resolvent of C14 and C36

C38 = S(fh, gh, ca, wa) Resolvent of C12 and C37

 Take goat across

C39 = ¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) ∨

S(fa, ga, ca, wa)

Resolvent of C3 and C38

Unifier {ca/y, wa/z}

 155

C40 = ¬SAFE(fa, ga, ca, wa) ∨ S(fa, ga, ca, wa) Resolvent of C12 and C39

C41 = S(fa, ga, ca, wa) Resolvent of C18 and C40

 Goal achieved

C42 = □ Resolvent of C20 and C41

A.2 Level Saturation Method Deduction of FWGC

Puzzle

C2 = ¬S(fa, x, y, z) ∨ ¬SAFE(fa, x, y, z) ∨

¬SAFE(fh, x, y, z) ∨ S(fh, x, y, z)

Farmer returns

C3 = ¬S(fh, gh, y, z) ∨ ¬SAFE(fh, gh, y, z) ∨

¬SAFE(fa, ga, y, z) ∨ S(fa, ga, y, z)

Farmer takes

goat across

C12 = SAFE(fh, gh, ca, wa)

C14 = SAFE(fa, gh, ca, wa)

C18 = SAFE(fa, ga, ca, wa)

C19 = S(fa, gh, ca, wa) Start state

C20 = ¬S(fa, ga, ca, wa) Goal state

negated

 Saturation Level 1

C21 = ¬S(fh, gh, y, z) ∨ ¬SAFE(fh, gh, y, z) ∨ ¬SAFE(fa, ga, y, z) C2, C3 on

S(fa, ga, y, z)

C22 = ¬SAFE(fh, gh, y, z) ∨ ¬SAFE(fa, ga, y, z) ∨ S(fa, ga, y, z) C2, C3 on

S(fh, gh, y, z)

C23 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨ S(fh, gh, ca, wa) C2, C12

 156

C24 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨ S(fh, gh, ca, wa) C2, C14

C25 = ¬S(fa, ga, ca, wa) ∨ ¬SAFE(fh, ga, ca, wa) ∨ S(fh, ga, ca, wa) C2, C18

C26 = ¬SAFE(fa, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨

S(fh, gh, ca, wa)

C2, C19

C27 = ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) ∨ S(fa, ga, ca, wa) C3, C12

C28 = ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨ S(fa, ga, ca, wa) C3, C18

C29 = ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨

¬SAFE(fa, ga, ca, wa)

C3, C20

 Saturation Level 2

 ¬S(fa, gh, y, z) ∨ ¬SAFE(fa, gh, y, z) ∨ ¬SAFE(fh, gh, y, z) ∨

¬SAFE(fa, ga, y, z)

C2, C21 on

S(fh, gh, y, z)

 ¬SAFE(fa, ga, y, z) ∨ ¬SAFE(fh, ga, y, z) ∨ S(fh, ga, y, z) ∨

¬SAFE(fh, gh, y, z)

C2, C22 on

S(fa, ga, y, z)

 ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨

¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) ∨

S(fa, ga, ca, wa)

C2, C27 on

S(fh, gh, ca, wa)

 ¬SAFE(fa, ga, ca, wa) ∨ ¬SAFE(fh, ga, ca, wa) ∨

S(fh, ga, ca, wa) ∨ ¬S(fh, gh, ca, wa)

C2, C27 on

S(fa, ga, ca, wa)

 ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨

¬SAFE(fh, gh, ca, wa) ∨ S(fa, ga, ca, wa)

C2, C28 on

S(fh, gh, ca, wa)

 ¬SAFE(fa, ga, ca, wa) ∨ ¬SAFE(fh, ga, ca, wa) ∨

S(fh, ga, ca, wa) ∨ ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa)

C2, C28 on

S(fa, ga, ca, wa)

 ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨

¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa)

C2, C29 on

S(fh, gh, ca, wa)

 ¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) ∨ C3, C23 on

 157

S(fa, ga, ca, wa) ∨ ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) S(fh, gh, ca, wa)

 ¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) ∨

S(fa, ga, ca, wa) ∨ ¬S(fa, gh, ca, wa)

C3, C24 on

S(fh, gh, ca, wa)

 ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨

¬SAFE(fa, ga, ca, wa) ∨ ¬SAFE(fh, ga, ca, wa) ∨

S(fh, ga, ca, wa)

C3, C25 on

S(fa, ga, ca, wa)

 ¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) ∨

S(fa, ga, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa)

C3, C26 on

S(fh, gh, ca, wa)

 ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) C12, C21

 ¬SAFE(fa, ga, ca, wa) ∨ S(fa, ga, ca, wa) C12, C22

 ¬S(fa, gh, ca, wa) ∨ S(fh, gh, ca, wa) C12, C24

 ¬SAFE(fa, gh, ca, wa) ∨ S(fh, gh, ca, wa) C12, C26

 ¬S(fh, gh, ca, wa) ∨ S(fa, ga, ca, wa) C12, C28

 ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) C12, C29

 ¬S(fa, gh, ca, wa) ∨ S(fh, gh, ca, wa) C14, C23

 ¬SAFE(fh, gh, ca, wa) ∨ S(fh, gh, ca, wa) C14, C26

 ¬S(fh, gh, y, z) ∨ ¬SAFE(fh, gh, y, z) C18, C21

 ¬SAFE(fh, gh, y, z) ∨ S(fa, ga, y, z) C18, C22

 ¬S(fh, gh, ca, wa) ∨ S(fa, ga, ca, wa) C18, C27

 ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) C18, C29

 ¬SAFE(fa, gh, ca, wa) ∨ S(fh, gh, ca, wa) C19, C23

 ¬SAFE(fh, gh, ca, wa) ∨ S(fh, gh, ca, wa) C19, C24

 158

 ¬SAFE(fh, gh, y, z) ∨ ¬SAFE(fa, ga, y, z) C20, C22

 ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) C20, C27

 ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) C20, C28

A.3 UR-resolution Deduction of FWGC Puzzle

 Take goat across

C21 = S(fa, ga, ch, wh) N: C3 E: C9, C15, C19

 Farmer returns

C22 = S(fh, ga, ch, wh) N: C2 E: C13, C15, C21

 Take wolf across

C23 = S(fa, ga, ch, wa) N: C7 E: C13, C16, C22

 Bring goat back

C24 = S(fh, gh, ch, wa) N: C4 E: C10, C16, C23

 Take cabbage across

C25 = S(fa, gh, ca, wa) N: C5 E: C10, C14, C24

 Farmer returns

C26 = S(fh, gh, ca, wa) N: C2 E: C12, C14, C25

 Take goat across

C27 = S(fa, ga, ca, wa) N: C3 E: C12, C18, C26

 Goal achieved

C28 = □ C20, C27

 159

A.4 Illustration of Set-of-support Strategy of FWGC

Puzzle

 Given set

C2 = ¬S(fa, x, y, z) ∨ ¬SAFE(fa, x, y, z) ∨

¬SAFE(fh, x, y, z) ∨ S(fh, x, y, z)

Farmer returns

C3 = ¬S(fh, gh, y, z) ∨ ¬SAFE(fh, gh, y, z) ∨

¬SAFE(fa, ga, y, z) ∨ S(fa, ga, y, z)

Farmer takes

goat across

C12 = SAFE(fh, gh, ca, wa)

C14 = SAFE(fa, gh, ca, wa)

C18 = SAFE(fa, ga, ca, wa)

C19 = S(fa, gh, ca, wa) Start state

 Set-of-support

C20 = ¬S(fa, ga, ca, wa) Goal state

negated

 Saturation Level 1

C21 = ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨

¬SAFE(fa, ga, ca, wa)

C3, C20

 Saturation Level 2

C22 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨

¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa)

C2, C21 on

S(fh, gh, ca, wa)

C23 = ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) C12, C21

C24 = ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) C18, C21

 160

 Saturation Level 3

C25 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨

¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa)

C2, C23

C26 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨

¬SAFE(fh, gh, ca, wa)

C2, C24

C27 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨

¬SAFE(fa, ga, ca, wa)

C12, C22

C28 = ¬S(fh, gh, ca, wa) C12, C24

C29 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨

¬SAFE(fa, ga, ca, wa)

C14, C22

C30 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨

¬SAFE(fh, gh, ca, wa)

C18, C22

C31 = ¬S(fh, gh, ca, wa) C18, C23

C32 = ¬SAFE(fa, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨

¬SAFE(fa, ga, ca, wa)

C19, C22

A.5 Set-of-support Strategy with Predicate Ordering

 Saturation Level 1

C21 = ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨

¬SAFE(fa, ga, ca, wa)

C3, C20

 Saturation Level 2

C22 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨

¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa)

C2, C21 on

S(fh, gh, ca, wa)

 Saturation Level 3

 161

C23 = ¬SAFE(fa, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨

¬SAFE(fa, ga, ca, wa)

C19, C22

 Saturation Level 4

C24 = ¬SAFE(fa, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) C12, C23

C25 = ¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) C14, C23

C26 = ¬SAFE(fa, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) C18, C23

 Saturation Level 5

C27 = ¬SAFE(fa, ga, ca, wa) C14, C24

C28 = ¬SAFE(fa, gh, ca, wa) C18, C24

C29 = ¬SAFE(fa, ga, ca, wa) C12, C25

C30 = ¬SAFE(fh, gh, ca, wa) C18, C25

C31 = ¬SAFE(fh, gh, ca, wa) C14, C26

C32 = ¬SAFE(fa, gh, ca, wa) C12, C26

 Saturation Level 6

C33 = □ C18, C27

A.6 Set-of-support Strategy with Subsumption

 Given set

C2 = ¬S(fa, x, y, z) ∨ ¬SAFE(fa, x, y, z) ∨

¬SAFE(fh, x, y, z) ∨ S(fh, x, y, z)

Farmer returns

C3 = ¬S(fh, gh, y, z) ∨ ¬SAFE(fh, gh, y, z) ∨ Farmer takes goat

across

 162

¬SAFE(fa, ga, y, z) ∨ S(fa, ga, y, z) Subsumed by C26

C12 = SAFE(fh, gh, ca, wa)

C14 = SAFE(fa, gh, ca, wa)

C18 = SAFE(fa, ga, ca, wa)

C19 = S(fa, gh, ca, wa) Start state

 Set-of-support

C20 = ¬S(fa, ga, ca, wa) Goal state negated

 Saturation Level 1

C21 = ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨

¬SAFE(fa, ga, ca, wa)

C3, C20

Subsumed by C23

 Saturation Level 2

C22 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨

¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa)

C2, C21

Subsumed by C25

C23 = ¬S(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) C12, C21

Subsumed by C26

 Saturation Level 3

C24 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨

¬SAFE(fh, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa)

C2, C23

Subsumed by C22

C25 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, gh, ca, wa) ∨

¬SAFE(fa, ga, ca, wa)

C12, C22

Subsumed by C28

C26 = ¬S(fh, gh, ca, wa) C18, C23

C27 = ¬SAFE(fa, gh, ca, wa) ∨ ¬SAFE(fh, gh, ca, wa) ∨

¬SAFE(fa, ga, ca, wa)

C19, C22

Subsumed by C29

 163

 Saturation Level 4

C28 = ¬S(fa, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) C14, C25

Subsumed by C30

C29 = ¬SAFE(fa, gh, ca, wa) ∨ ¬SAFE(fa, ga, ca, wa) C12, C27

Subsumed by C31

 Saturation Level 5

C30 = ¬S(fa, gh, ca, wa) C18, C28

C31 = ¬SAFE(fa, ga, ca, wa) C14, C29

 Saturation Level 6

C32 = □ C19, C30

 164

Appendix B - Theorem Provers Evaluated

Appendix B

Theorem Provers Evaluated

Prover Resolution-

Based

CASC

Division

Winner

Notes

Bliksem Yes - Development has been abandoned and was

replaced by the Smiley theorem prover.

Carine Yes - E-mail correspondence with the author

suggested that Carine would not be suitable

for the evaluation described in this

dissertation.

Darwin No 2007 E-mail correspondence with the author

confirmed that Darwin only uses resolution

in a very limited way.

DCTP No 2005 Tableau based.

Discount No - Unfailing Knuth-Bendix.

E No 2000 Equational theorem prover.

E-KRHyper No - Tableau based.

E-Setheo No 2002 Uses DCTP, E and SETHEO in parallel.

Equinox No - Based on model generation.

 165

Prover Resolution-

Based

CASC

Division

Winner

Notes

Fampire Yes - Vampire using the SPASS clausifier.

FM-Darwin No - Based on model generation.

Gandalf Yes 2004 E-mail correspondence with author indicated

that Gandalf should be a good candidate for

the evaluation described in this dissertation.

Geo No - Based on geometric resolution.

iProver No - Based on instantiation calculus.

LeanCoP No - Connection-driven proof search.

LeanTaP No - Implemented in Prolog.

Mace No - Based on model generation.

Meteor No - Based on model elimination.

Metis Yes - Based on resolution and model elimination.

Octopus Yes - Multiprocessor version of Theo.

OSHL No - Instance based – reduces problems to

propositional logic instances.

Otter Yes 1999 Considered to be the father of many modern

automated theorem provers. It is also a good

benchmark for improvements in other

provers.

 166

Prover Resolution-

Based

CASC

Division

Winner

Notes

Paradox No 2007 Based on model generation.

Prover9 Yes - Otter’s replacement.

RRL No - Based on rewriting techniques.

Setheo No - Tableau based.

Smiley Yes - Not available yet.

SOS Yes - Uses Otter as a sub-program.

SPASS Yes 1999

Theo Yes -

Vampire Yes 2007 Consistent CASC division winner. Solves

more set theory problems than other provers.

Waldmeister No 2007 E-mail correspondence with the author

suggested that Waldmeister would not be

suitable for our work.

 167

Appendix C – Sample Reasoner Output

Appendix C

Sample Reasoner Output

C.1 Vampire
Refutation found. Thanks to Tanya!
=========== Refutation ==========
*********** [7, input] ***********
(! X0)(el(X0,d) <=> X0=empty \/ X0=b)
*********** [7->24, NNF transformation] ***********
 (! X0)(el(X0,d) <=> X0=empty \/ X0=b)

 (! X0)((~el(X0,d) \/ (X0=empty \/ X0=b)) & ((~X0= empty & ~X0=b) \/ el(X0,d)))
*********** [24->25, flattening] ***********
 (! X0)((~el(X0,d) \/ (X0=empty \/ X0=b)) & ((~X0= empty & ~X0=b) \/ el(X0,d)))

 (! X0)((~el(X0,d) \/ X0=empty \/ X0=b) & ((~X0=em pty & ~X0=b) \/ el(X0,d)))
*********** [25->26, skolemization] ***********
 (! X0)((~el(X0,d) \/ X0=empty \/ X0=b) & ((~X0=em pty & ~X0=b) \/ el(X0,d)))

 (~el(X0,d) \/ X0=empty \/ X0=b) & ((~X0=empty & ~ X0=b) \/ el(X0,d))
*********** [26->39, cnf transformation] ********** *
 (~el(X0,d) \/ X0=empty \/ X0=b) & ((~X0=empty & ~ X0=b) \/ el(X0,d))

 el(X0,d) \/ X0!=b
*********** [39->42, literal permutation] ********* **
 el(X0,d) \/ X0!=b

 X1!=b \/ el(X1,d)
*********** [42->55, equality resolution] ********* **
 X1!=b \/ el(X1,d)

 el(b,d)
*********** [26->38, cnf transformation] ********** *
 (~el(X0,d) \/ X0=empty \/ X0=b) & ((~X0=empty & ~ X0=b) \/ el(X0,d))

 el(X0,d) \/ X0!=empty
*********** [38->43, literal permutation] ********* **
 el(X0,d) \/ X0!=empty

 X1!=empty \/ el(X1,d)
*********** [43->56, equality resolution] ********* **
 X1!=empty \/ el(X1,d)

 el(empty,d)
*********** [3, input] ***********
~(? X0)el(X0,empty)
*********** [3->14, ENNF transformation] ********** *
 ~(? X0)el(X0,empty)

 (! X0)~el(X0,empty)
*********** [14->15, skolemization] ***********
 (! X0)~el(X0,empty)

 ~el(X0,empty)
*********** [15->29, cnf transformation] ********** *
 ~el(X0,empty)

 ~el(X0,empty)

 168

*********** [6, input] ***********
(! X0)(el(X0,c) <=> (! X3)(el(X3,X0) => el(X3,b)))
*********** [6->10, rectify] ***********
 (! X0)(el(X0,c) <=> (! X3)(el(X3,X0) => el(X3,b)))

 (! X0)(el(X0,c) <=> (! X1)(el(X1,X0) => el(X1,b)))
*********** [10->20, ENNF transformation] ********* **
 (! X0)(el(X0,c) <=> (! X1)(el(X1,X0) => el(X1,b)))

 (! X0)(el(X0,c) <=> (! X1)(~el(X1,X0) \/ el(X1,b)))
*********** [20->21, NNF transformation] ********** *
 (! X0)(el(X0,c) <=> (! X1)(~el(X1,X0) \/ el(X1,b)))

 (! X0)((~el(X0,c) \/ (! X1)(~el(X1,X0) \/ el(X1,b))) & ((? X1)(el(X1,X0) & ~el(X1,b))
\/ el(X0,c)))
*********** [21->22, rectify] ***********
 (! X0)((~el(X0,c) \/ (! X1)(~el(X1,X0) \/ el(X1,b))) & ((? X1)(el(X1,X0) & ~el(X1,b))
\/ el(X0,c)))

 (! X0)((~el(X0,c) \/ (! X1)(~el(X1,X0) \/ el(X1,b))) & ((? X2)(el(X2,X0) & ~el(X2,b))
\/ el(X0,c)))
*********** [22->23, skolemization] ***********
 (! X0)((~el(X0,c) \/ (! X1)(~el(X1,X0) \/ el(X1,b))) & ((? X2)(el(X2,X0) & ~el(X2,b))
\/ el(X0,c)))

 (~el(X0,c) \/ (~el(X1,X0) \/ el(X1,b))) & ((el(sk 1(X0),X0) & ~el(sk1(X0),b)) \/
el(X0,c))
*********** [23->36, cnf transformation] ********** *
 (~el(X0,c) \/ (~el(X1,X0) \/ el(X1,b))) & ((el(sk 1(X0),X0) & ~el(sk1(X0),b)) \/
el(X0,c))

 el(X0,c) \/ ~el(sk1(X0),b)
*********** [36->45, literal permutation] ********* **
 el(X0,c) \/ ~el(sk1(X0),b)

 ~el(sk1(X1),b) \/ el(X1,c)
*********** [23->35, cnf transformation] ********** *
 (~el(X0,c) \/ (~el(X1,X0) \/ el(X1,b))) & ((el(sk 1(X0),X0) & ~el(sk1(X0),b)) \/
el(X0,c))

 el(X0,c) \/ el(sk1(X0),X0)
*********** [35->46, literal permutation] ********* **
 el(X0,c) \/ el(sk1(X0),X0)

 el(sk1(X1),X1) \/ el(X1,c)
*********** [45,46->58, resolution] ***********
 ~el(sk1(X1),b) \/ el(X1,c)
 el(sk1(X1),X1) \/ el(X1,c)

 el(b,c)
*********** [23->34, cnf transformation] ********** *
 (~el(X0,c) \/ (~el(X1,X0) \/ el(X1,b))) & ((el(sk 1(X0),X0) & ~el(sk1(X0),b)) \/
el(X0,c))

 el(X1,b) \/ ~el(X1,X0) \/ ~el(X0,c)
*********** [34->47, literal permutation] ********* **
 el(X1,b) \/ ~el(X1,X0) \/ ~el(X0,c)

 ~el(X1,X2) \/ ~el(X2,c) \/ el(X1,b)
*********** [26->37, cnf transformation] ********** *
 (~el(X0,d) \/ X0=empty \/ X0=b) & ((~X0=empty & ~ X0=b) \/ el(X0,d))

 X0=b \/ X0=empty \/ ~el(X0,d)
*********** [37->44, literal permutation] ********* **
 X0=b \/ X0=empty \/ ~el(X0,d)

 ~el(X1,d) \/ X1=empty \/ X1=b
*********** [2, input] ***********
(! X1 X2)((! X0)(el(X0,X1) <=> el(X0,X2)) => X1=X2)
*********** [2->9, rectify] ***********
 (! X1 X2)((! X0)(el(X0,X1) <=> el(X0,X2)) => X1=X 2)

 169

 (! X0 X1)((! X2)(el(X2,X0) <=> el(X2,X1)) => X0=X 1)
*********** [9->11, ENNF transformation] ********** *
 (! X0 X1)((! X2)(el(X2,X0) <=> el(X2,X1)) => X0=X 1)

 (! X0 X1)((? X2)(el(X2,X0) <~> el(X2,X1)) \/ X0=X 1)
*********** [11->12, NNF transformation] ********** *
 (! X0 X1)((? X2)(el(X2,X0) <~> el(X2,X1)) \/ X0=X 1)

 (! X0 X1)((? X2)((el(X2,X0) \/ el(X2,X1)) & (~el(X2,X0) \/ ~el(X2,X1))) \/ X0=X1)
*********** [12->13, skolemization] ***********
 (! X0 X1)((? X2)((el(X2,X0) \/ el(X2,X1)) & (~el(X2,X0) \/ ~el(X2,X1))) \/ X0=X1)

 ((el(sk0(X1,X0),X0) \/ el(sk0(X1,X0),X1)) & (~el(sk0(X1,X0),X0) \/ ~el(sk0(X1,X0),X1)))
\/ X0=X1
*********** [13->27, cnf transformation] ********** *
 ((el(sk0(X1,X0),X0) \/ el(sk0(X1,X0),X1)) & (~el(sk0(X1,X0),X0) \/ ~el(sk0(X1,X0),X1)))
\/ X0=X1

 X0=X1 \/ el(sk0(X1,X0),X1) \/ el(sk0(X1,X0),X0)
*********** [27->54, literal permutation] ********* **
 X0=X1 \/ el(sk0(X1,X0),X1) \/ el(sk0(X1,X0),X0)

 el(sk0(X1,X2),X2) \/ el(sk0(X1,X2),X1) \/ X2=X1
*********** [44,54->63, resolution] ***********
 ~el(X1,d) \/ X1=empty \/ X1=b
 el(sk0(X1,X2),X2) \/ el(sk0(X1,X2),X1) \/ X2=X1

 el(sk0(X1,d),X1) \/ sk0(X1,d)=empty \/ sk0(X1,d)= b \/ d=X1
*********** [47,54->69, resolution] ***********
 ~el(X1,X2) \/ ~el(X2,c) \/ el(X1,b)
 el(sk0(X1,X2),X2) \/ el(sk0(X1,X2),X1) \/ X2=X1

 ~el(X1,c) \/ el(sk0(X1,X2),b) \/ el(sk0(X1,X2),X2) \/ X2=X1
*********** [63,69->114, resolution] ***********
 el(sk0(X1,d),X1) \/ sk0(X1,d)=empty \/ sk0(X1,d)= b \/ d=X1
 ~el(X1,c) \/ el(sk0(X1,X2),b) \/ el(sk0(X1,X2),X2) \/ X2=X1

 el(sk0(sk0(c,d),X1),b) \/ el(sk0(sk0(c,d),X1),X1) \/ sk0(c,d)=empty \/ sk0(c,d)=b \/
X1=sk0(c,d) \/ d=c
*********** [58,47,114->403, resolution, forward su bsumption resolution] ***********
 el(b,c)
 ~el(X1,X2) \/ ~el(X2,c) \/ el(X1,b)
 el(sk0(sk0(c,d),X1),b) \/ el(sk0(sk0(c,d),X1),X1) \/ sk0(c,d)=empty \/ sk0(c,d)=b \/
X1=sk0(c,d) \/ d=c

 el(sk0(sk0(c,d),b),b) \/ sk0(c,d)=empty \/ sk0(c, d)=b \/ d=c
*********** [13->28, cnf transformation] ********** *
 ((el(sk0(X1,X0),X0) \/ el(sk0(X1,X0),X1)) & (~el(sk0(X1,X0),X0) \/ ~el(sk0(X1,X0),X1)))
\/ X0=X1

 X0=X1 \/ ~el(sk0(X1,X0),X1) \/ ~el(sk0(X1,X0),X0)
*********** [28->53, literal permutation] ********* **
 X0=X1 \/ ~el(sk0(X1,X0),X1) \/ ~el(sk0(X1,X0),X0)

 ~el(sk0(X1,X2),X1) \/ ~el(sk0(X1,X2),X2) \/ X2=X1
*********** [5, input] ***********
(! X0)(el(X0,b) <=> X0=a)
*********** [5->18, NNF transformation] ***********
 (! X0)(el(X0,b) <=> X0=a)

 (! X0)((~el(X0,b) \/ X0=a) & (~X0=a \/ el(X0,b)))
*********** [18->19, skolemization] ***********
 (! X0)((~el(X0,b) \/ X0=a) & (~X0=a \/ el(X0,b)))

 (~el(X0,b) \/ X0=a) & (~X0=a \/ el(X0,b))
*********** [19->32, cnf transformation] ********** *
 (~el(X0,b) \/ X0=a) & (~X0=a \/ el(X0,b))

 X0=a \/ ~el(X0,b)
*********** [32->49, literal permutation] ********* **

 170

 X0=a \/ ~el(X0,b)

 ~el(X1,b) \/ X1=a
*********** [49,54->65, resolution] ***********
 ~el(X1,b) \/ X1=a
 el(sk0(X1,X2),X2) \/ el(sk0(X1,X2),X1) \/ X2=X1

 el(sk0(X1,b),X1) \/ sk0(X1,b)=a \/ b=X1
*********** [49,47,65->92, resolution, forward subs umption resolution] ***********
 ~el(X1,b) \/ X1=a
 ~el(X1,X2) \/ ~el(X2,c) \/ el(X1,b)
 el(sk0(X1,b),X1) \/ sk0(X1,b)=a \/ b=X1

 ~el(X1,c) \/ sk0(X1,b)=a \/ b=X1
*********** [63,92->160, resolution] ***********
 el(sk0(X1,d),X1) \/ sk0(X1,d)=empty \/ sk0(X1,d)= b \/ d=X1
 ~el(X1,c) \/ sk0(X1,b)=a \/ b=X1

 sk0(sk0(c,d),b)=a \/ sk0(c,d)=empty \/ sk0(c,d)=b \/ d=c
*********** [403,53,160->745, backward superpositio n, forward subsumption resolution]

 el(sk0(sk0(c,d),b),b) \/ sk0(c,d)=empty \/ sk0(c, d)=b \/ d=c
 ~el(sk0(X1,X2),X1) \/ ~el(sk0(X1,X2),X2) \/ X2=X1
 sk0(sk0(c,d),b)=a \/ sk0(c,d)=empty \/ sk0(c,d)=b \/ d=c

 ~el(a,sk0(c,d)) \/ sk0(c,d)=empty \/ sk0(c,d)=b \ / d=c
*********** [29,54->67, resolution] ***********
 ~el(X0,empty)
 el(sk0(X1,X2),X2) \/ el(sk0(X1,X2),X1) \/ X2=X1

 el(sk0(X1,empty),X1) \/ empty=X1
*********** [47,67->103, resolution] ***********
 ~el(X1,X2) \/ ~el(X2,c) \/ el(X1,b)
 el(sk0(X1,empty),X1) \/ empty=X1

 el(sk0(X1,empty),b) \/ ~el(X1,c) \/ empty=X1
*********** [49,103->185, resolution] ***********
 ~el(X1,b) \/ X1=a
 el(sk0(X1,empty),b) \/ ~el(X1,c) \/ empty=X1

 ~el(X1,c) \/ sk0(X1,empty)=a \/ empty=X1
*********** [63,185->272, resolution] ***********
 el(sk0(X1,d),X1) \/ sk0(X1,d)=empty \/ sk0(X1,d)= b \/ d=X1
 ~el(X1,c) \/ sk0(X1,empty)=a \/ empty=X1

 sk0(sk0(c,d),empty)=a \/ sk0(c,d)=b \/ sk0(c,d)=e mpty \/ d=c
*********** [29,745,54,272->1632, backward superpos ition, forward subsumption resolution]

 ~el(X0,empty)
 ~el(a,sk0(c,d)) \/ sk0(c,d)=empty \/ sk0(c,d)=b \ / d=c
 el(sk0(X1,X2),X2) \/ el(sk0(X1,X2),X1) \/ X2=X1
 sk0(sk0(c,d),empty)=a \/ sk0(c,d)=b \/ sk0(c,d)=e mpty \/ d=c

 sk0(c,d)=empty \/ sk0(c,d)=b \/ d=c
*********** [46,29->62, resolution] ***********
 el(sk1(X1),X1) \/ el(X1,c)
 ~el(X0,empty)

 el(empty,c)
*********** [62,53,1632->1633, backward superpositi on, forward subsumption resolution]

 el(empty,c)
 ~el(sk0(X1,X2),X1) \/ ~el(sk0(X1,X2),X2) \/ X2=X1
 sk0(c,d)=empty \/ sk0(c,d)=b \/ d=c

 ~el(sk0(c,d),d) \/ sk0(c,d)=b \/ d=c
*********** [56,1632,1633->1664, forward superposit ion, forward subsumption resolution]

 el(empty,d)
 sk0(c,d)=empty \/ sk0(c,d)=b \/ d=c
 ~el(sk0(c,d),d) \/ sk0(c,d)=b \/ d=c

 171

 sk0(c,d)=b \/ d=c
*********** [58,53,1664->1665, backward superpositi on, forward subsumption resolution]

 el(b,c)
 ~el(sk0(X1,X2),X1) \/ ~el(sk0(X1,X2),X2) \/ X2=X1
 sk0(c,d)=b \/ d=c

 ~el(sk0(c,d),d) \/ d=c
*********** [55,1664,1665->1696, forward superposit ion, forward subsumption resolution]

 el(b,d)
 sk0(c,d)=b \/ d=c
 ~el(sk0(c,d),d) \/ d=c

 d=c
*********** [8, input] ***********
~c=d
*********** [8->40, cnf transformation] ***********
 ~c=d

 c!=d
*********** [40->41, literal permutation] ********* **
 c!=d

 d!=c
*********** [1696,41->1863, backward demodulation] ***********
 d=c
 d!=c

 #
======= End of refutation =======
=========== Statistics ==========
version: 7.41 Civatateo (v7.40 + more docs)
=== General:
time: 0.2s
memory: 18.4Mb
termination reason: refutation found
=== Generating inferences:
resolution: 2716
superposition: 1724
equality_resolution: 4
=== Simplifying inferences:
propositional_tautology: 9
equational_tautology: 718
forward_subsumption: 2120
forward_subsumption_resolution: 269
backward_subsumption: 373
backward_demodulation: 212
=== Generated clauses:
total: 4684
discarded_as_redundant: 2847
=== Retained clauses:
total: 1823
selected: 361
currently_active: 268
currently_passive: 969
======= End of statistics =======

C.2 Gandalf
Gandalf c-2.6 r1 starting to prove: ./heuristic1/he ur1.without.gandalf.in
Using automatic strategy selection.
Time limit in seconds: 1800

 172

prove-all-passes started

detected problem class: neq
detected subclass: medium

strategies selected:
(hyper 75 #f 2 5)
(binary-unit 28 #f 2 5)
(binary-double 28 #f 2 5)
(binary-double 45 #f)
(binary-double 45 #t)
(binary 151 #t 2 5)
(binary-order 75 #f 2 5)
(binary-posweight-order 304 #f)
(binary-posweight-lex-big-order 75 #f)
(binary-posweight-lex-small-order 28 #f)
(binary-order-sos 151 #t)
(binary-unit-uniteq 75 #f)
(binary-weightorder 151 #f)
(binary-order 151 #f)
(hyper-order 90 #f)
(binary 328 #t)

********* EMPTY CLAUSE DERIVED *********

timer checkpoints:
c(15,40,23,30,0,27,1629,50,968,1644,0,969,11438,4,5 847,17751,5,7470,17751,1,7470,17751,50
,7471,17751,40,7471,17766,0,7472,18838,50,7647,1885 3,0,7647,21683,50,8058,21698,0,8058,24
528,50,8467,24543,0,8467,27373,50,8882,27373,40,888 2,27388,0,8882,38896,3,10285,40526,4,1
0983,43308,5,11683,43309,5,11683,43309,1,11683,4330 9,50,11685,43309,40,11685,43324,0,1168
5)

START OF PROOF
35918 [?] ?
43311 [] el($$f1(X,Y),Y) | el($$f1(X,Y),X) | equal(X,Y).
43312 [] -el($$f1(X,Y),Y) | -el($$f1(X,Y),X) | equa l(X,Y).
43313 [] -el(X,empty).
43316 [] -el(X,b) | equal(X,a).
43318 [] -el(X,c) | el(Y,b) | -el(Y,X).
43322 [] -equal(X,empty) | el(X,d).
43323 [] -equal(X,b) | el(X,d).
43324 [] -equal(c,d).
43329 [binary:43313,43311] el($$f1(X,empty),X) | eq ual(X,empty).
43331 [binary:43324,43311.3,cut:35918] el($$f1(c,d) ,c).
43351 [binary:43324,43312.3,cut:43331] -el($$f1(c,d),d).
43363 [binary:43351,43322.2] -equal($$f1(c,d),empty).
43366 [binary:43331,43318] -el(X,$$f1(c,d)) | el(X, b).
43378 [binary:43351,43323.2] -equal($$f1(c,d),b).
43380 [binary:43311.3,43378,binarycut:43366] el($$f 1($$f1(c,d),b),b).
43419 [binary:43316,43380] equal($$f1($$f1(c,d),b), a).
43420 [binary:43312,43380,demod:43419,cut:43378] -e l(a,$$f1(c,d)).
45960 [binary:43329,43366,cut:43363] el($$f1($$f1(c ,d),empty),b).
46334 [binary:43316,45960] equal($$f1($$f1(c,d),emp ty),a).
46539 [para:46334.1.1,43311.1.1,demod:46334,cut:433 13,cut:43420,cut:43363] contradiction
END OF PROOF

Proof found by the following strategy:

using binary resolution
not using sos strategy
using double strategy
using dynamic demodulation
using ordered paramodulation
using kb ordering for equality
preferring bigger arities for lex ordering
using clause demodulation
seconds given: 45

 173

GANDALF_FOUND_A_REFUTATION

Global statistics over all passes:

 given clauses: 7037
 derived clauses: 353789
 kept clauses: 33845
 kept size sum: 531726
 kept mid-nuclei: 3933
 kept new demods: 28
 forw unit-subs: 36540
 forw double-subs: 32898
 forw overdouble-subs: 50491
 backward subs: 672
 fast unit cutoff: 7014
 full unit cutoff: 920
 dbl unit cutoff: 110
 real runtime : 120.30
 process. runtime: 119.21
specific non-discr-tree subsumption statistics:
 tried: 1208228
 length fails: 48201
 strength fails: 171347
 predlist fails: 249780
 aux str. fails: 69703
 by-lit fails: 142615
 full subs tried: 383264
 full subs fail: 362366

 174

Appendix D – Z Case Study of Order Processing System

Appendix D

Z Case Study of Order Processing System

D.1 Given Sets (Basic Types)

[STRING, AMOUNT, DATE]

[PRODUCT, ORDER, ITEM, CUSTOMER]

STATUS ::= pending | cancelled | processed

D.2 Product

» Product ___
Æproducts: P PRODUCT
ÆprodName: PRODUCT © STRING
ÆprodPrice: PRODUCT ß AMOUNT
ÆprodQuantity: PRODUCT ß N
«_______
Ædom prodName = products
Ædom prodPrice = products
Ædom prodQuantity = products
–___

» InitProduct ___
ÆProduct'
«_______
Æproducts' = 0
ÆprodName' = 0
ÆprodPrice' = 0
ÆprodQuantity' = 0
–___

 175

» CreateProduct __
ÆDProduct
Æproduct?: PRODUCT
Æname?: STRING
Æprice?: AMOUNT
Æquantity?: N
«_______
Æproduct? ‰ products
Æname? ‰ ran prodName
Æproducts' = products U product?
ÆprodName' = prodName U {product? å name?}
ÆprodPrice' = prodPrice U {product? å price?}
ÆprodQuantity' = prodQuantity U {product? å quantity?}
–___

» UpdateProduct ___
ÆDProduct
Æproduct?: PRODUCT
Æname?: STRING
Æprice?: AMOUNT
Æquantity?: N
«_______
Æproduct? e products
Æproducts' = products
ÆprodName' = prodName ± {product? å name?}
ÆprodPrice' = prodPrice ± {product? å price?}
ÆprodQuantity' = prodQuantity ± {product? å quantity?}
–___

» DeleteProduct __
ÆDProduct
Æproduct?: PRODUCT
«_______
Æproduct? e products
Æproducts' = products \ {product?}
ÆprodName' = {product?} y prodName
ÆprodPrice' = {product?} y prodPrice
ÆprodQuantity' = {product?} y prodQuantity
–___

» SelectProductsBelowThreshold __________________________________
ÆXProduct
Æquantity?: N
Æproducts!: P PRODUCT
«_______
Æproducts! = {p: products | prodQuantity(p) < quantity?}
–___

 176

D.3 Order

» Order __
Æorders: P ORDER
ÆorderDate: ORDER ß DATE
ÆorderStatus: ORDER ß STATUS
ÆorderCustomer: ORDER ß CUSTOMER
«_______
Ædom orderDate = orders
Ædom orderStatus = orders
Ædom orderCustomer = orders
–___

» InitOrder __
ÆOrder'
«_______
Æorders' = 0
ÆorderDate' = 0
ÆorderStatus' = 0
ÆorderCustomer' = 0
–___

» CreateOrder ___
ÆDOrder
Ædate?: DATE
Æcustomer?: CUSTOMER
Æorder!: ORDER
«_______
Æorder! ‰ orders
Æorders' = orders U order!
ÆorderDate' = orderDate U {order! å date?}
ÆorderStatus' = orderStatus U {order! å pending}
ÆorderCustomer' = orderCustomer U {order! å customer?}
–___

 177

» CancelOrder __
ÆDOrder
Æorder?: ORDER
«_______
Æorder? e orders
ÆorderStatus(order?) = pending
Æorders' = orders
ÆorderDate' = orderDate
ÆorderStatus' = orderStatus ± {order? å cancelled}
ÆorderCustomer' = orderCustomer
–___

» ProcessOrder __
ÆDOrder
ÆDProduct
ÆXItem
Æorder?: ORDER
«_______
Æorder? e orders
ÆorderStatus(order?) = pending
ÆAi: items • itemOrder(i) = order? fi prodQuantity(itemProduct(i)) – itemQuantity(i) ˘ 0
Æorders' = orders
ÆorderDate' = orderDate
ÆorderStatus' = orderStatus ± {order? å processed}
ÆorderCustomer' = orderCustomer
Æproducts' = products
ÆprodName' = prodName
ÆprodPrice' = prodPrice
ÆprodQuantity' = prodQuantity ±
Æ {i: items | itemOrder(i) = order? • itemProduct(i) å prodQuantity(itemProduct(i)) – itemQuantity(i)}
–___

» SelectOrdersForCustomer ____________________________________
ÆXOrder
Æcustomer?: CUSTOMER
Æorders!: P ORDER
«_______
Æorders! = {o: orders | orderCustomer(o) = customer?}
–___

 178

D.4 Item

» Item __
Æitems: P ITEM
ÆitemOrder: ITEM ß ORDER
ÆitemPrice: ITEM ß AMOUNT
ÆitemQuantity: ITEM ß N1
ÆitemProduct: ITEM ß PRODUCT
«_______
Ædom itemOrder = items
Ædom itemPrice = items
Ædom itemQuantity = items
Ædom itemProduct = items
ÆAi1, i2: items • i1 Î i2 fi itemOrder(i1) Î itemOrder(i2) v itemProduct(i1) Î itemProduct(i2)
–___

» InitItem ___
ÆItem'
«_______
Æitems' = 0
ÆitemOrder' = 0
ÆitemPrice' = 0
ÆitemQuantity' = 0
ÆitemProduct' = 0
–___

» CreateItem ___
ÆDItem
ÆXProduct
Æitem?: ITEM
Æorder?: ORDER
Æquantity?: N1
Æproduct?: PRODUCT
«_______
Æitem? ‰ items
Æitems' = items U {item?}
ÆitemOrder' = itemOrder U {item? å order?}
ÆitemPrice' = itemPrice U {item? å prodPrice(product?)}
ÆitemQuantity' = itemQuantity U {item? å quantity?}
ÆitemProduct' = itemProduct U {item? å product?}
–___

 179

» UpdateItem ___
ÆDItem
Æitem?: ITEM
Æquantity?: N1
«_______
Æitem? e items
Æitems' = items
ÆitemOrder' = itemOrder
ÆitemPrice' = itemPrice
ÆitemQuantity' = itemQuantity ± {item? å quantity?}
ÆitemProduct' = itemProduct
–___

» DeleteItem ___
ÆDItem
Æitem?: ITEM
«_______
Æitem? e items
Æitems' = items \ {item?}
ÆitemOrder' = {item?} y itemOrder
ÆitemPrice' = {item?} y itemPrice
ÆitemQuantity' = {item?} y itemQuantity
ÆitemProduct' = {item?} y itemProduct
–___

» SelectItemsForOrder _______________________________________
ÆXItem
Æorder?: ORDER
Æitems!: P ITEM
«_______
Æitems! = {i: items | itemOrder(i) = order?}
–___

D.5 Customer

ÆCOMPANY: P CUSTOMER
ÆPERSON: P CUSTOMER
«_______
Æ„COMPANY, PERSONÒ partition CUSTOMER

 180

» Customer __
Æcustomers: P CUSTOMER
ÆcustAddress: CUSTOMER ß STRING
ÆcustPhone: CUSTOMER ß STRING
«_______
Ædom custAddress = customers
Ædom custPhone = customers
–___

» InitCustomer __
ÆCustomer'
«_______
Æcustomers' = 0
ÆcustAddress' = 0
ÆcustPhone' = 0
–___

» CreateCustomer ___
ÆDCustomer
Æcustomer?: CUSTOMER
Æaddress?: STRING
Æphone?: STRING
«_______
Æcustomer? ‰ customers
Æcustomers' = customers U {customer?}
ÆcustAddress' = custAddress U {customer? å address?}
ÆcustPhone' = custPhone U {customer? å phone?}
–___

» UpdateCustomer __
ÆDCustomer
Æcustomer?: CUSTOMER
Æaddress?: STRING
Æphone?: STRING
«_______
Æcustomer? e customers
Æcustomers' = customers
ÆcustAddress' = custAddress ± {customer? å address?}
ÆcustPhone' = custPhone ± {customer? å phone?}
–___

 181

» DeleteCustomer ___
ÆDCustomer
ÆXOrder
Æcustomer?: CUSTOMER
«_______
Æcustomer? e customers
Æcustomer? ‰ ran orderCustomer
Æcustomers' = customers \ customer?
ÆcustAddress' = {customer?} y custAddress
ÆcustPhone' = {customer?} y custPhone
–___

D.6 Company

» Company __
ÆCustomer
Æcompanies: P COMPANY
ÆcompName: COMPANY ß STRING
ÆcompRegNo: COMPANY ß STRING
«_______
Æcompanies z customers
Ædom compName = companies
Ædom compRegNo = companies
–___

» InitCompany __
ÆCompany'
ÆInitCustomer
«_______
Æcompanies' = 0
ÆcompName' = 0
ÆcompRegNo' = 0
–___

» CreateCompany ___
ÆDCompany
ÆCreateCustomer
Æname?: STRING
ÆregNo?: STRING
«_______
Æcompanies' = companies U {customer?}
ÆcompName' = compName U {customer? å name?}
ÆcompRegNo' = compRegNo U {customer? å regNo?}
–___

 182

» UpdateCompany __
ÆDCompany
ÆUpdateCustomer
Æname?: STRING
ÆregNo?: STRING
«_______
Æcustomer? e companies
Æcompanies' = companies
ÆcompName' = compName ± {customer? å name?}
ÆcompRegNo' = compRegNo ± {customer? å regNo?}
–___

» DeleteCompany ___
ÆDCompany
ÆDeleteCustomer
«_______
Æcustomer? e companies
Æcompanies' = companies \ {customer?}
ÆcompName' = {customer?} y compName
ÆcompRegNo' = {customer?} y compRegNo
–___

D.7 Person

» Person ___
ÆCustomer
Æpersons: P PERSON
ÆperName: PERSON ß STRING
ÆperSurname: PERSON ß STRING
«_______
Æpersons z customers
Ædom perName = persons
Ædom perSurname = persons
–___

» InitPerson __
ÆPerson'
ÆInitCustomer
«_______
Æpersons' = 0
ÆperName' = 0
ÆperSurname' = 0
–___

 183

» CreatePerson __
ÆDPerson
ÆCreateCustomer
Æname?: STRING
Æsurname?: STRING
«_______
Æpersons' = persons U customer?
ÆperName' = perName U {customer? å name?}
ÆperSurname' = perSurname U {customer? å surname?}
–___

» UpdatePerson __
ÆDPerson
ÆUpdateCustomer
Æname?: STRING
Æsurname?: STRING
«_______
Æcustomer? e persons
Æpersons' = persons
ÆperName' = perName ± {customer? å name?}
ÆperSurname' = perSurname ± {customer? å surname?}
–___

» DeletePerson __
ÆDPerson
ÆDeleteCustomer
«_______
Æcustomer? e persons
Æpersons' = persons \ customer?
ÆperName' = {customer?} y perName
ÆperSurname' = {customer?} y perSurname
–___

D.8 System

» System ___
ÆProduct
ÆOrder
ÆItem
ÆCustomer
ÆCompany
ÆPerson
–___

 184

» InitSystem ___
ÆInitProduct
ÆInitOrder
ÆInitItem
ÆInitCustomer
ÆInitCompany
ÆInitPerson
–___

 185

Appendix E – Reasoner Inputs for Proof Obligations

Appendix E

Reasoner Inputs for Proof Obligations

E.1 CreateProduct Invariant
% If we didn't specifiy that products? = products ? {product?}, then it could be deduced

fof(anonymous, axiom,
 % t_Product type
 el(t_Product,t_PProduct) &
 % t_String type
 el(t_String,t_PString)
).

% +..
% products: P PRODUCT
% prodName: PRODUCT >-|-> STRING
% products': P PRODUCT
% prodName': PRODUCT >-|-> STRING
% product?: PRODUCT
% name?: STRING
% |
% dom prodName = products
% dom prodName' = products'
% product? /e products
% name? /e ran prodName
% prodName' = prodName u { product? |--> name? }
% ---
% ---------------------- rewritten to ------------- ----------------
% +..
% products: P PRODUCT
% prodName: P { X31: PRODUCT; X32: STRING }
% products': P PRODUCT
% prodName': P { X33: PRODUCT; X34: STRING }
% product?: PRODUCT
% name?: STRING
% |
% A X60: PRODUCT; X61: STRING; X62: PRODUCT; X63: STRING @
% not (X60,X61) e prodName \/ not (X62,X63) e pr odName \/ not X61 = X63 \/ X60 = X62
% A X60: PRODUCT; X61: STRING; X62: PRODUCT; X63: STRING @
% not (X60,X61) e prodName \/ not (X62,X63) e pr odName \/ not X60 = X62 \/ X61 = X63
% A X68: PRODUCT; X69: STRING; X70: PRODUCT; X71: STRING @
% not (X68,X69) e prodName' \/ not (X70,X71) e p rodName' \/ not X69 = X71 \/ X68 = X70
% A X68: PRODUCT; X69: STRING; X70: PRODUCT; X71: STRING @
% not (X68,X69) e prodName' \/ not (X70,X71) e p rodName' \/ not X68 = X70 \/ X69 = X71
% A EL37: PRODUCT @
% (A X104: PRODUCT; X105: STRING @
% not (X104,X105) e prodName \/ not EL37 = X 104) \/ EL37 e products
% A EL37: PRODUCT @ not EL37 e products \/ (E X109 : STRING @ (EL37,X109) e prodName)
% A EL38: PRODUCT @
% (A X112: PRODUCT; X113: STRING @
% not (X112,X113) e prodName' \/ not EL38 = X112) \/ EL38 e products'
% A EL38: PRODUCT @ not EL38 e products' \/ (E X11 7: STRING @ (EL38,X117) e prodName')
% not product? e products
% A X93: PRODUCT; X94: STRING @ not (X93,X94) e pr odName \/ not name? = X94
% A X85: PRODUCT; X86: STRING @
% not (X85,X86) e prodName' \/ (X85,X86) e prodN ame \/ X86 = name?
% A X85: PRODUCT; X86: STRING @
% not (X85,X86) e prodName' \/ (X85,X86) e prodN ame \/ X85 = product?

 186

% A X89: PRODUCT; X90: STRING @
% (X89,X90) e prodName' \/ not X89 = product? \/ not X90 = name?
% A X89: PRODUCT; X90: STRING @ (X89,X90) e prodNa me' \/ not (X89,X90) e prodName
% ---
fof(anonymous, axiom,
 el(products, t_PProduct) &
 el(prodName, t3) &
 el(products_, t_PProduct) &
 el(prodName_, t3) &
 el(productI, t_Product) &
 el(nameI, t_String) &
 ![X60,X61,X62,X63]:
 ((el(X60,t_Product) & el(X61,t_String) & el(X62, t_Product) & el(X63,t_String)) =>
 (~el(ord_t2(X60,X61),prodName) | ~el(ord_t2(X62 ,X63),prodName) | ~(X61 = X63) |
 X60 = X62)) &
 ![X60,X61,X62,X63]:
 ((el(X60,t_Product) & el(X61,t_String) & el(X62, t_Product) & el(X63,t_String)) =>
 (~el(ord_t2(X60,X61),prodName) | ~el(ord_t2(X62 ,X63),prodName) | ~(X60 = X62) |
 X61 = X63)) &
 ![X68,X69,X70,X71]:
 ((el(X68,t_Product) & el(X69,t_String) & el(X70, t_Product) & el(X71,t_String)) =>
 (~el(ord_t2(X68,X69),prodName_) | ~el(ord_t2(X7 0,X71),prodName_) | ~(X69 = X71) |
 X68 = X70)) &
 ![X68,X69,X70,X71]:
 ((el(X68,t_Product) & el(X69,t_String) & el(X70, t_Product) & el(X71,t_String)) =>
 (~el(ord_t2(X68,X69),prodName_) | ~el(ord_t2(X7 0,X71),prodName_) | ~(X68 = X70) |
 X69 = X71)) &
 ![EL37]: (el(EL37,t_Product) =>
 ((![X104,X105]: ((el(X104,t_Product) & el(X105, t_String)) =>
 (~el(ord_t2(X104,X105),prodName) | ~(EL37 = X 104)))) | el(EL37,products))) &
 ![EL37]: (el(EL37,t_Product) => (~el(EL37,product s) |
 (?[X109]: (el(X109,t_String) & el(ord_t2(EL37,X 109),prodName))))) &
 ![EL38]: (el(EL38,t_Product) =>
 ((![X112,X113]: ((el(X112,t_Product) & el(X113, t_String)) =>
 (~el(ord_t2(X112,X113),prodName_) | ~(EL38 = X112)))) | el(EL38,products_))) &
 ![EL38]: (el(EL38,t_Product) => (~el(EL38,product s_) |
 (?[X117]: (el(X117,t_String) & el(ord_t2(EL38,X 117),prodName_))))) &
 ~el(productI,products) &
 ![X93,X94]: ((el(X93,t_Product) & el(X94,t_String)) =>
 (~el(ord_t2(X93,X94),prodName) | ~(nameI = X94))) &
 ![X85,X86]: ((el(X85, t_Product) & el(X86, t_Stri ng)) =>
 ((~el(ord_t2(X85,X86),prodName_) | el(ord_t2(X8 5,X86),prodName)) | X86 = nameI)) &
 ![X85,X86]: ((el(X85,t_Product) & el(X86,t_String)) =>
 (((~el(ord_t2(X85,X86),prodName_) | el(ord_t2(X 85,X86),prodName))) | X85=productI)) &
 ![X89,X90]: ((el(X89,t_Product) & el(X90,t_String)) =>
 ((el(ord_t2(X89,X90),prodName_) | ~(X89 = produ ctI)) | ~(X90 = nameI))) &
 ![X89,X90]: ((el(X89,t_Product) & el(X90,t_String)) =>
 (el(ord_t2(X89,X90),prodName_) | ~el(ord_t2(X89 ,X90),prodName)))
).

fof(anonymous, axiom,
 % set equality t_PPProduct
 ![VAL197,VAL198]:((el(VAL197,t_PPProduct) & el(VA L198,t_PPProduct)) =>
 ((![EL199]:(el(EL199,t_PProduct) =>
 (el(EL199,VAL197) <=> el(EL199,VAL198)))) => VAL197=VAL198))
).

fof(anonymous, axiom,
 % t_PProduct membership
 ![X196]:(el(X196,t_PProduct) => (el(X196,t_PProdu ct) <=>
 ![Y]:(el(Y,t_Product) => (el(Y,X196) => el(Y,t_ Product))))) &
 % t_PProduct type
 el(t_PProduct,t_PPProduct)
).

fof(anonymous, axiom,
 % tuple equality t2
 ![X201,X203,X202,X204]:
 ((el(X201,t_Product) & el(X203,t_String) & el(X2 02,t_Product) & el(X204,t_String)) =>
 (ord_t2(X201,X203)=ord_t2(X202,X204) <=> (X201 = X202 & X203 = X204))) &
 % tuple type t2

 187

 ![X201,X203]:((el(X201,t_Product) & el(X203,t_Str ing)) => (el(ord_t2(X201,X203), t2)))
).

fof(anonymous, axiom,
 % set equality t3
 ![VAL205,VAL206]:((el(VAL205,t3) & el(VAL206,t3)) => ((![EL207]:(el(EL207,t2) =>
 (el(EL207,VAL205) <=> el(EL207,VAL206)))) => VA L205=VAL206))
).

% { X31: PRODUCT; X32: STRING }
fof(anonymous, axiom,
 % t2 membership
 ![EL200]:(el(EL200,t2) => (el(EL200,t2) <=>
 (?[X31,X32]: ((el(X31,t_Product) & el(X32,t_Stri ng)) & (EL200=ord_t2(X31,X32)))))) &
 % t2 type
 el(t2,t3)
).

fof(anonymous, axiom,
 % set equality t1
 ![VAL209,VAL210]:((el(VAL209,t1) & el(VAL210,t1)) =>
 ((![EL211]:(el(EL211,t3) =>
 (el(EL211,VAL209) <=> el(EL211,VAL210)))) => V AL209=VAL210))
).

% P { X31: PRODUCT; X32: STRING }
fof(anonymous, axiom,
 % t3 membership
 ![X208]:(el(X208,t3) =>
 (el(X208,t3) <=> ![Y]:(el(Y,t2) => (el(Y,X208) => el(Y,t2))))) &
 % t3 type
 el(t3,t1)
).

% |-? products' = products u { product? }
% ---------------------- rewritten to ------------- ----------------
% |-? A EL135: PRODUCT @ not EL135 e products' \/ E L135 e products \/ EL135 = product?
% A EL135: PRODUCT @ EL135 e products' \/ not E L135 = product?
% A EL135: PRODUCT @ EL135 e products' \/ not E L135 e products
fof(conjecture, conjecture,
 ![EL135]: (el(EL135, t_Product) =>
 (~el(EL135,products_) | el(EL135,products) | EL 135 = productI)) &
 ![EL135]: (el(EL135, t_Product) => (el(EL135,prod ucts_) | ~(EL135 = productI))) &
 ![EL135]: (el(EL135, t_Product) => (el(EL135,prod ucts_) | ~el(EL135,products)))
).

E.2 After State Type of CancelOrder
fof(anonymous, axiom,
 % t_Order type
 el(t_Order,t_POrder) &
 % t_Customer type
 el(t_Customer,t_PCustomer) &
 % t_Date type
 el(t_Date,t_PDate)
).

% STATUS ::= pending | cancelled | processed
fof(anonymous, axiom,
 % t_Status type
 el(t_Status,t_PStatus) &
 % pending, cancelled, processed: STATUS
 el(pending,t_Status) & el(cancelled,t_Status) & e l(processed,t_Status)
).

% +..
% orders: P ORDER
% orderDate: ORDER -|-> DATE

 188

% orderStatus: ORDER -|-> STATUS
% orderCustomer: ORDER -|-> CUSTOMER
% orders': P ORDER
% orderDate': P (ORDER x DATE)
% orderStatus': P (ORDER x STATUS)
% orderCustomer': P (ORDER x CUSTOMER)
% orderI: ORDER
% |
% dom orderDate = orders
% dom orderStatus = orders
% dom orderCustomer = orders
% dom orderDate' = orders'
% dom orderStatus' = orders'
% dom orderCustomer' = orders'
% orderI e orders
% orderStatus (orderI) = pending
% orders' = orders
% orderDate' = orderDate
% orderCustomer' = orderCustomer
% ---
% ---------------------- rewritten to ------------- ----------------
% +..
% orders: P ORDER
% orderDate: P {X31: ORDER; X32: DATE}
% orderStatus: P {X33: ORDER; X34: STATUS}
% orderCustomer: P {X35: ORDER; X36: CUSTOMER}
% orders': P ORDER
% orderDate': P {X37: ORDER; X38: DATE}
% orderStatus': P {X39: ORDER; X40: STATUS}
% orderCustomer': P {X41: ORDER; X42: CUSTOMER}
% orderI: ORDER
% |
% A X63: ORDER; X64: DATE; X65: ORDER; X66: DATE @
% not (X63,X64) e orderDate \/ not (X65,X66) e o rderDate \/ not X63 = X65 \/ X64 = X66
% A X73: ORDER; X74: STATUS; X75: ORDER; X76: STAT US @
% not (X73,X74) e orderStatus \/ not (X75,X76) e orderStatus \/ not X73=X75 \/ X74=X76
% A X83: ORDER; X84: CUSTOMER; X85: ORDER; X86: CU STOMER @
% not (X83,X84) e orderCustomer \/ not (X85,X86) e orderCustomer \/
% not X83=X85 \/ X84=X86
% A EL49: ORDER @ (A X134: ORDER; X135: DATE @
% not (X134,X135) e orderDate \/ not EL49 = X134) \/ EL49 e orders
% A EL49: ORDER @ not EL49 e orders \/ (E X139: DA TE @ (EL49,X139) e orderDate)
% A EL50: ORDER @ (A X142: ORDER; X143: STATUS @
% not (X142,X143) e orderStatus \/ not EL50 = X1 42) \/ EL50 e orders
% A EL50: ORDER @ not EL50 e orders \/ (E X147: ST ATUS @ (EL50,X147) e orderStatus)
% A EL51: ORDER @ (A X150: ORDER; X151: CUSTOMER @
% not (X150,X151) e orderCustomer \/ not EL51 = X150) \/ EL51 e orders
% A EL51: ORDER @ not EL51 e orders \/ (E X155: CU STOMER @ (EL51,X155) e orderCustomer)
% A EL52: ORDER @ (A X158: ORDER; X159: DATE @
% not (X158,X159) e orderDate' \/ not EL52 = X15 8) \/ EL52 e orders'
% A EL52: ORDER @ not EL52 e orders' \/ (E X163: D ATE @ (EL52,X163) e orderDate')
% A EL53: ORDER @ (A X166: ORDER; X167: STATUS @
% not (X166,X167) e orderStatus' \/ not EL53 = X 166) \/ EL53 e orders'
% A EL53: ORDER @ not EL53 e orders' \/ (E X171: S TATUS @ (EL53,X171) e orderStatus')
% A EL54: ORDER @ (A X174: ORDER; X175: CUSTOMER @
% not (X174,X175) e orderCustomer' \/ not EL54 = X174) \/ EL54 e orders'
% A EL54: ORDER @ not EL54 e orders' \/
% (E X179: CUSTOMER @ (EL54,X179) e orderCustome r')
% orderI e orders
% orderStatus (orderI) = pending
% A EL55: ORDER @ not EL55 e orders' \/ EL55 e ord ers
% A EL55: ORDER @ not EL55 e orders \/ EL55 e orde rs'
% A X118: ORDER; X119: DATE @ not (X118,X119) e or derDate' \/ (X118,X119) e orderDate
% A X122: ORDER; X123: DATE @ not (X122,X123) e or derDate \/ (X122,X123) e orderDate'
% A X126: ORDER; X127: CUSTOMER @
% not (X126,X127) e orderCustomer' \/ (X126,X127) e orderCustomer
% A X130: ORDER; X131: CUSTOMER @
% not (X130,X131) e orderCustomer \/ (X130,X131) e orderCustomer'
% ---
fof(anonymous, axiom,
 el(orders,t_POrder) &

 189

 el(orderDate,t_P_OrderxDate_) &
 el(orderStatus, t4) &
 el(orderCustomer, t7) &
 el(orders_,t_POrder) &
 el(orderDate_,t_P_OrderxDate_) &
 el(orderStatus_, t4) &
 el(orderCustomer_, t7) &
 el(orderI,t_Order) &
 ![X63,X64,X65,X66]:
 ((el(X63,t_Order) & el(X64,t_Date) & el(X65,t_Or der) & el(X66,t_Date)) =>
 ((((((~el(ord_t__OrderxDate_(X63,X64),orderDate) |
 ~el(ord_t__OrderxDate_(X65,X66),orderDate))) | ~(X63=X65))) | X64=X66))) &
 ![X73,X74,X75,X76]:
 ((el(X73,t_Order) & el(X74,t_Status) & el(X75,t_ Order) & el(X76,t_Status)) =>
 ((((((~el(ord_t3(X73,X74),orderStatus) |
 ~el(ord_t3(X75,X76),orderStatus))) | ~(X73=X75))) | X74=X76))) &
 ![X83,X84,X85,X86]:
 ((el(X83,t_Order) & el(X84,t_Customer) & el(X85, t_Order) & el(X86,t_Customer)) =>
 ((((((~el(ord_t6(X83,X84),orderCustomer) |
 ~el(ord_t6(X85,X86),orderCustomer))) | ~(X83 = X85))) | X84 = X86))) &
 ![EL49]: ((el(EL49,t_Order)) =>
 (((![X134,X135]: ((el(X134,t_Order) & el(X135,t _Date)) =>
 ((~el(ord_t__OrderxDate_(X134,X135),orderDate) |
 ~(EL49 = X134))))) | el(EL49,orders)))) &
 ![EL49]: ((el(EL49,t_Order)) => ((~el(EL49,orders) |
 (?[X139]: (el(X139,t_Date) & el(ord_t__OrderxDa te_(EL49,X139),orderDate)))))) &
 ![EL50]: ((el(EL50,t_Order)) =>
 (((![X142,X143]: ((el(X142,t_Order) & el(X143,t _Status)) =>
 ((~el(ord_t3(X142,X143),orderStatus) | ~(EL50 = X142))))) | el(EL50,orders)))) &
 ![EL50]: (el(EL50,t_Order) => ((~el(EL50,orders) |
 (?[X147]: (el(X147,t_Status) & el(ord_t3(EL50,X 147),orderStatus)))))) &
 ![EL51]: (el(EL51,t_Order) =>
 (((![X150,X151]: ((el(X150,t_Order) & el(X151,t _Customer)) =>
 ((~el(ord_t6(X150,X151),orderCustomer) | ~(EL5 1 = X150))))) | el(EL51,orders)))) &
 ![EL51]: (el(EL51,t_Order) => ((~el(EL51,orders) |
 (?[X155]: (el(X155,t_Customer) & el(ord_t6(EL51 ,X155),orderCustomer)))))) &
 ![EL52]: (el(EL52,t_Order) => (((![X158,X159]: ((el(X158,t_Order) & el(X159,t_Date)) =>
 ((~el(ord_t__OrderxDate_(X158,X159),orderDate_) |
 ~(EL52 = X158))))) | el(EL52,orders_)))) &
 ![EL52]: (el(EL52,t_Order) => ((~el(EL52,orders_) | (?[X163]: (el(X163,t_Date) &
 el(ord_t__OrderxDate_(EL52,X163),orderDate_)))))) &
 ![EL53]: (el(EL53,t_Order) =>
 (((![X166,X167]: ((el(X166,t_Order) & el(X167,t _Status)) =>
 ((~el(ord_t3(X166,X167),orderStatus_) | ~(EL53 = X166))))) | el(EL53,orders_)))) &
 ![EL53]: ((el(EL53,t_Order)) => ((~el(EL53,orders _) | (?[X171]: (el(X171,t_Status) &
 el(ord_t3(EL53,X171),orderStatus_)))))) &
 ![EL54]: (el(EL54,t_Order) =>
 (((![X174,X175]: ((el(X174,t_Order) & el(X175,t _Customer)) =>
 ((~el(ord_t6(X174,X175),orderCustomer_) | ~(EL 54 = X174))))) | el(EL54,orders_)))) &
 ![EL54]: (el(EL54,t_Order) => ((~el(EL54,orders_) |
 (?[X179]: (el(X179,t_Customer) & el(ord_t6(EL54 ,X179),orderCustomer_)))))) &
 el(orderI,orders) &
 orderStatus(orderI) = pending &
 ![EL55]: (el(EL55,t_Order) => ((~el(EL55,orders_) | el(EL55,orders)))) &
 ![EL55]: (el(EL55,t_Order) => ((~el(EL55,orders) | el(EL55,orders_)))) &
 ![X118,X119]: ((el(X118,t_Order) & el(X119,t_Date)) =>
 ((~el(ord_t__OrderxDate_(X118,X119),orderDate_) |
 el(ord_t__OrderxDate_(X118,X119),orderDate)))) &
 ![X122,X123]: (el(X122,t_Order) & el(X123,t_Date) =>
 ((~el(ord_t__OrderxDate_(X122,X123),orderDate) |
 el(ord_t__OrderxDate_(X122,X123),orderDate_)))) &
 ![X126,X127]: ((el(X126,t_Order) & el(X127,t_Cust omer)) =>
 ((~el(ord_t6(X126,X127),orderCustomer_) | el(or d_t6(X126,X127),orderCustomer)))) &
 ![X130,X131]: ((el(X130,t_Order) & el(X131,t_Cust omer)) =>
 ((~el(ord_t6(X130,X131),orderCustomer) | el(ord _t6(X130,X131),orderCustomer_))))
).

fof(anonymous, axiom,
 % set equality t_PPOrder
 ![VAL524,VAL525]:((el(VAL524,t_PPOrder) & el(VAL5 25,t_PPOrder)) =>
 ((![EL526]:(el(EL526,t_POrder) =>

 190

 (el(EL526,VAL524) <=> el(EL526,VAL525)))) => V AL524=VAL525))
).

% P ORDER

fof(anonymous, axiom,
 % t_POrder membership
 ![X523]:(el(X523,t_POrder) =>
 (el(X523,t_POrder) <=> ![Y]:(el(Y,t_Order) => (el(Y,X523) => el(Y,t_Order))))) &
 % t_POrder type
 el(t_POrder,t_PPOrder)
).

fof(anonymous, axiom,
 % tuple equality t__OrderxDate_
 ![X528,X530,X529,X531]:
 ((el(X528,t_Order) & el(X530,t_Date) & el(X529, t_Order) & el(X531,t_Date)) =>
 (ord_t__OrderxDate_(X528,X530)=ord_t__OrderxDa te_(X529,X531) <=>
 (X528 = X529 & X530 = X531))) &
 % tuple type t__OrderxDate_
 ![X528,X530]:((el(X528,t_Order) & el(X530,t_Date)) =>
 (el(ord_t__OrderxDate_(X528,X530),t__OrderxDate _)))
).

fof(anonymous, axiom,
 % set equality t_P_OrderxDate_
 ![VAL532,VAL533]:((el(VAL532,t_P_OrderxDate_) & e l(VAL533,t_P_OrderxDate_)) =>
 ((![EL534]:(el(EL534,t__OrderxDate_) =>
 (el(EL534,VAL532) <=> el(EL534,VAL533)))) => V AL532=VAL533))
).

% {X31: ORDER; X32: DATE}

fof(anonymous, axiom,
 % t__OrderxDate_ membership
 ![EL527]:(el(EL527,t__OrderxDate_) =>
 (el(EL527,t__OrderxDate_) <=> (?[X31,X32]: ((el (X31,t_Order) &
 el(X32,t_Date)) & (EL527 = ord_t__OrderxDate_ (X31,X32)))))) &
 % t__OrderxDate_ type
 el(t__OrderxDate_,t_P_OrderxDate_)
).

fof(anonymous, axiom,
 % set equality t1
 ![VAL536,VAL537]:((el(VAL536,t1) & el(VAL537,t1)) =>
 ((![EL538]:(el(EL538,t_P_OrderxDate_) =>
 (el(EL538,VAL536) <=> el(EL538,VAL537)))) => V AL536=VAL537))
).

% P {X31: ORDER; X32: DATE}
fof(anonymous, axiom,
 % t_P_OrderxDate_ membership
 ![X535]:(el(X535,t_P_OrderxDate_) => (el(X535,t_P _OrderxDate_) <=>
 ![Y]:(el(Y,t__OrderxDate_) => (el(Y,X535) => el (Y,t__OrderxDate_))))) &
 % t_P_OrderxDate_ type
 el(t_P_OrderxDate_,t1)
).

fof(anonymous, axiom,
 % tuple equality t3
 ![X540,X542,X541,X543]:
 ((el(X540,t_Order) & el(X542,t_Status) & el(X541 ,t_Order) & el(X543,t_Status)) =>
 (ord_t3(X540,X542)=ord_t3(X541,X543) <=> (X540 = X541 & X542 = X543))) &
 % tuple type t3
 ![X540,X542]:((el(X540,t_Order) & el(X542,t_Statu s)) => (el(ord_t3(X540,X542), t3)))
).

fof(anonymous, axiom,
 % set equality t4
 ![VAL544,VAL545]:((el(VAL544,t4) & el(VAL545,t4)) =>
 ((![EL546]:(el(EL546,t3) => (el(EL546,VAL544) < => el(EL546,VAL545)))) =>

 191

 VAL544=VAL545))
).

% {X33: ORDER; X34: STATUS}
fof(anonymous, axiom,
 % t3 membership
 ![EL539]:(el(EL539,t3) => (el(EL539,t3) <=>
 (?[X33,X34]: ((el(X33,t_Order) & el(X34,t_Statu s)) & (EL539 = ord_t3(X33,X34)))))) &
 % t3 type
 el(t3,t4)
).

fof(anonymous, axiom,
 % set equality t2
 ![VAL548,VAL549]:((el(VAL548,t2) & el(VAL549,t2)) =>
 ((![EL550]:(el(EL550,t4) =>
 (el(EL550,VAL548) <=> el(EL550,VAL549)))) => V AL548=VAL549))
).

% P {X33: ORDER; X34: STATUS}
fof(anonymous, axiom,
 % t4 membership
 ![X547]:(el(X547,t4)=>(el(X547,t4) <=> ![Y]:(el(Y ,t3) => (el(Y,X547) => el(Y,t3))))) &
 % t4 type
 el(t4,t2)
).

fof(anonymous, axiom,
 % tuple equality t6
 ![X552,X554,X553,X555]:
 ((el(X552,t_Order) & el(X554,t_Customer) & el(X 553,t_Order) & el(X555,t_Customer)) =>
 (ord_t6(X552,X554)=ord_t6(X553,X555) <=> (X552 = X553 & X554 = X555))) &
 % tuple type t6
 ![X552,X554]:((el(X552,t_Order) & el(X554,t_Custo mer)) => (el(ord_t6(X552,X554), t6)))
).

fof(anonymous, axiom,
 % set equality t7
 ![VAL556,VAL557]:((el(VAL556,t7) & el(VAL557,t7)) =>
 ((![EL558]:(el(EL558,t6) =>
 (el(EL558,VAL556) <=> el(EL558,VAL557)))) => V AL556=VAL557))
).

% {X35: ORDER; X36: CUSTOMER}
fof(anonymous, axiom,
 % t6 membership
 ![EL551]:(el(EL551,t6) => (el(EL551,t6) <=>
 (?[X35,X36]:((el(X35,t_Order) & el(X36,t_Custom er)) & (EL551=ord_t6(X35,X36)))))) &
 % t6 type
 el(t6,t7)
).

fof(anonymous, axiom,
 % set equality t5
 ![VAL560,VAL561]:((el(VAL560,t5) & el(VAL561,t5)) => ((![EL562]:(el(EL562,t7) =>
 (el(EL562,VAL560) <=> el(EL562,VAL561)))) => VA L560=VAL561))
).

% P {X35: ORDER; X36: CUSTOMER}
fof(anonymous, axiom,
 % t7 membership
 ![X559]:(el(X559,t7) => (el(X559,t7) <=> ![Y]:(el (Y,t6) => (el(Y,X559) => el(Y,t6)))))
&
 % t7 type
 el(t7,t5)
).

% orderStatus (orderI)
fof(anonymous, axiom,
 % orderStatus(A563) equality
 ![A563,VAL564]:((el(A563,t_Order) & el(VAL564,t_S tatus)) =>

 192

 ((el(ord_t3(A563,VAL564),orderStatus)) => (orde rStatus(A563)=VAL564))) &
 % orderStatus(A563) type
 ![A563]:(el(A563,t_Order) => (el(orderStatus(A563),t_Status)))
).

% +..
% override: (ORDER <=--> STATUS) x (ORDER <=--> ST ATUS) --> (ORDER <=--> STATUS)
% |
% A r: ORDER <=--> STATUS @
% override (r,{orderI |--> cancelled}) =
% {x: ORDER x STATUS | (x e r /\ (A p: {orderI |--> cancelled} @ x . 1 /= p . 1)) \/
% x e {orderI |--> cancelled}}
% ---
% ---------------------- rewritten to ------------- ----------------
% +..
% override: P {X194: {X202: P {X210: ORDER; X211: STATUS};
% X203: P {X212: ORDER; X213: STATUS} };
% X195: P {X204: ORDER; X205: STATUS} }
% |
% A X220: P {X229: ORDER; X230: STATUS}; X221: P { X231: ORDER; X232: STATUS} @
% E y: P {X240: ORDER; X241: STATUS} @ ((X220,X22 1),y) e override /\
% (A y': P {X256: ORDER; X257: STATUS} @ not ((X 220,X221),y') e override \/
% (A X287: ORDER; X288: STATUS @ not (X287,X288) e y' \/ (X287,X288) e y)) /\
% (A y': P {X256: ORDER; X257: STATUS} @ not ((X220,X221),y') e override \/
% (A X291: ORDER; X292: STATUS @ not (X291,X2 92) e y \/ (X291,X292) e y'))
% A r: P {X207: ORDER; X208: STATUS}; X242: ORDER; X243: STATUS @
% not (X242,X243) e override (r,{(orderI,cancell ed)}) \/
% (A X272: ORDER @ not X272 = orderI \/ not X24 2 = X272) \/ X243 = cancelled
% A r: P {X207: ORDER; X208: STATUS}; X242: ORDER; X243: STATUS @
% not (X242,X243) e override (r,{(orderI,cancell ed)}) \/
% (A X272: ORDER @ not X272 = orderI \/ not X24 2 = X272) \/ X242 = orderI
% A r: P {X207: ORDER; X208: STATUS}; X242: ORDER; X243: STATUS @
% not (X242,X243) e override (r,{(orderI,cancell ed)}) \/
% (X242,X243) e r \/ X243 = cancelled
% A r: P {X207: ORDER; X208: STATUS}; X242: ORDER; X243: STATUS @
% not (X242,X243) e override (r,{(orderI,cancell ed)}) \/
% (X242,X243) e r \/ X242 = orderI
% A r: P {X207: ORDER; X208: STATUS}; X246: ORDER; X247: STATUS @
% (X246,X247) e override (r,{(orderI,cancelled)}) \/
% not X246 = orderI \/ not X247 = cancelled
% A r: P {X207: ORDER; X208: STATUS}; X246: ORDER; X247: STATUS @
% (X246,X247) e override (r,{(orderI,cancelled)}) \/
% not (X246,X247) e r \/ X246 = orderI
% ---
fof(anonymous, axiom,
 el(override, t10) &
 ![X220,X221]: (el(X220, t4) & el(X221, t4) =>
 (?[Y]: (el(Y, t4) & (el(ord_t9(ord_t11(X220,X221),Y),override) &
 ![Y_]: (el(Y_, t4) => (~el(ord_t9(ord_t11(X220, X221),Y_),override) |
 (![X287,X288]: ((el(X287,t_Order) & el(X288,t_ Status)) =>
 (~el(ord_t3(X287,X288),Y_) | el(ord_t3(X287,X 288),Y)))))) &
 ![Y_]: (el(Y_, t4) => (~el(ord_t9(ord_t11(X2 20,X221),Y_),override) |
 (![X291,X292]: ((el(X291,t_Order) & el(X292 ,t_Status)) =>
 ((~el(ord_t3(X291,X292),Y) | el(ord_t3(X29 1,X292),Y_))))))))))) &
 ![R,X242,X243]: ((el(R, t4) & el(X242,t_Order) & el(X243,t_Status)) =>
 ((~el(ord_t3(X242,X243),override(R,const9)) |
 (![X272]: (el(X272,t_Order) =>
 ((~(X272 = orderI) | ~(X242 = X272)))))) | X2 43 = cancelled)) &
 ![R,X242,X243]: ((el(R, t4) & el(X242,t_Order) & el(X243,t_Status)) =>
 ((~el(ord_t3(X242,X243),override(R,const9)) |
 (![X272]: (el(X272,t_Order) =>
 ((~(X272 = orderI) | ~(X242 = X272)))))) | X2 42 = orderI)) &
 ![R,X242,X243]: ((el(R, t4) & el(X242,t_Order) & el(X243,t_Status)) =>
 ((~el(ord_t3(X242,X243),override(R,const9)) |
 el(ord_t3(X242,X243),R)) | X243 = cancelled)) &
 ![R,X242,X243]: ((el(R, t4) & el(X242,t_Order) & el(X243,t_Status)) =>
 ((~el(ord_t3(X242,X243),override(R,const9)) |
 el(ord_t3(X242,X243),R)) | X242 = orderI)) &
 ![R,X246,X247]: ((el(R, t4) & el(X246,t_Order) & el(X247,t_Status)) =>
 ((el(ord_t3(X246,X247),override(R,const9)) |
 ~(X246 = orderI)) | ~(X247 = cancelled))) &

 193

 ![R,X246,X247]: ((el(R, t4) & el(X246,t_Order) & el(X247,t_Status)) =>
 ((el(ord_t3(X246,X247),override(R,const9)) |
 ~el(ord_t3(X246,X247),R)) | X246 = orderI))
).

fof(anonymous, axiom,
 % tuple equality t11
 ![X566,X569,X567,X570]:((el(X566,t4) & el(X569,t4) & el(X567,t4) & el(X570,t4)) =>
 (ord_t11(X566,X569) = ord_t11(X567,X570) <=> (! [EL568]:(el(EL568,t3) =>
 (el(EL568,X566) <=> el(EL568,X567))) &
 ![EL571]:(el(EL571,t3) => (el(EL571,X569) <=> el(EL571,X570)))))) &
 % tuple type t11
 ![X566,X569]:((el(X566,t4) & el(X569,t4)) => (el(ord_t11(X566,X569), t11)))
).

fof(anonymous, axiom,
 % set equality t12
 ![VAL572,VAL573]:((el(VAL572,t12) & el(VAL573,t12)) =>
 ((![EL574]:(el(EL574,t11) =>
 (el(EL574,VAL572) <=> el(EL574,VAL573)))) => V AL572=VAL573))
).

% {X202: P {X210: ORDER; X211: STATUS}; X203: P {X2 12: ORDER; X213: STATUS}}
fof(anonymous, axiom,
 % t11 membership
 ![EL565]:(el(EL565,t11) => (el(EL565,t11) <=>
 (?[X202,X203]: ((el(X202, t4) & el(X203, t4)) & (EL565 = ord_t11(X202,X203)))))) &
 % t11 type
 el(t11,t12)
).

fof(anonymous, axiom,
 % tuple equality t9
 ![X576,X578,X577,X579]:((el(X576,t11) & el(X578,t 4) & el(X577,t11) & el(X579,t4)) =>
 (ord_t9(X576,X578) = ord_t9(X577,X579) <=>
 (X576=X577 & ![EL580]:(el(EL580,t3) => (el(EL5 80,X578) <=> el(EL580,X579)))))) &
 % tuple type t9
 ![X576,X578]:((el(X576,t11) & el(X578,t4)) => (el (ord_t9(X576,X578), t9)))
).

fof(anonymous, axiom,
 % set equality t10
 ![VAL581,VAL582]:((el(VAL581,t10) & el(VAL582,t10)) =>
 ((![EL583]:(el(EL583,t9) =>
 (el(EL583,VAL581) <=> el(EL583,VAL582)))) => V AL581=VAL582))
).

% {X194: {X202: P {X210: ORDER; X211: STATUS}; X203 : P {X212: ORDER; X213: STATUS}};
X195: P {X204: ORDER; X205: STATUS}}
fof(anonymous, axiom,
 % t9 membership
 ![EL575]:(el(EL575,t9) => (el(EL575,t9) <=>
 (?[X194,X195]: ((el(X194, t11) & el(X194,t11) & el(X195, t4)) &
 (EL575 = ord_t9(X194,X195)))))) &
 % t9 type
 el(t9,t10)
).

fof(anonymous, axiom,
 % set equality t8
 ![VAL585,VAL586]:((el(VAL585,t8) & el(VAL586,t8)) =>
 ((![EL587]:(el(EL587,t10) =>
 (el(EL587,VAL585) <=> el(EL587,VAL586)))) => V AL585=VAL586))
).

% P {X194: {X202: P {X210: ORDER; X211: STATUS}; X2 03: P {X212: ORDER; X213: STATUS}};
% X195: P {X204: ORDER; X205: STATUS}}
fof(anonymous, axiom,
 % t10 membership
 ![X584]:(el(X584,t10) =>
 (el(X584,t10) <=> ![Y]:(el(Y,t9) => (el(Y,X584) => el(Y,t9))))) &

 194

 % t10 type
 el(t10,t8)
).

% {X588: ORDER x STATUS | X588 = (orderI,cancelled) }
fof(anonymous, axiom,
 % const9 membership
 ![X588]:(el(X588,t3) => (el(X588,const9) <=>
 (el(X588, t3) & el(X588,t3) & X588 = ord_t3(ord erI,cancelled)))) &
 % const9 type
 el(const9,t4)
).

% override (r,{(orderI,cancelled)})
fof(anonymous, axiom,
 % override(A591,A592) equality
 ![A591,A592,VAL593]:((el(A591,t4) & el(A592,t4) & el(VAL593,t4)) =>
 ((el(ord_t9(ord_t11(A591,A592),VAL593),override)) =>
 (override(A591,A592)=VAL593))) &
 % override(A591,A592) type
 ![A591,A592]:((el(A591,t4) & el(A592,t4)) => (el(override(A591,A592),t4)))
).

% +..
% |
% orderStatus' = override (orderStatus,{(orderI,ca ncelled)})
% ---
% ---------------------- rewritten to ------------- ----------------
% +..
% X464: ORDER
% X465: STATUS
% X466: ORDER
% X467: STATUS
% |
% A X312: ORDER; X313: STATUS @ not (X312,X313) e orderStatus' \/
% (X312,X313) e override(ord erStatus,{(orderI,cancelled)})
% A X316: ORDER; X317: STATUS @
% not (X316,X317) e override (orderStatus,{(orde rI,cancelled)}) \/
% (X316,X317) e orderStatus'
% ---
% |-? not (X464,X465) e orderStatus' \/ not (X466,X 467) e orderStatus' \/
% not X464 = X466 \/ X465 = X467
fof(anonymous, axiom,
 el(x464,t_Order) &
 el(x465,t_Status) &
 el(x466,t_Order) &
 el(x467,t_Status) &
 ![X312,X313]: ((el(X312,t_Order) & el(X313,t_Stat us)) =>
 (~el(ord_t3(X312,X313),orderStatus_) |
 el(ord_t3(X312,X313),override(orderStatus,const 9)))) &
 ![X316,X317]: ((el(X316,t_Order) & el(X317,t_Stat us)) =>
 (~el(ord_t3(X316,X317),override(orderStatus,con st9)) |
 el(ord_t3(X316,X317),orderStatus_)))
).
fof(conjecture, conjecture,
 ~el(ord_t3(x464,x465),orderStatus_) | ~el(ord_t3(x466,x467),orderStatus_) |
 ~(x464 = x466) | x465 = x467
).

 195

Appendix F – Validating Reasoning Heuristics Using Next-Generation Theorem-Provers

Appendix F

Validating Reasoning Heuristics Using

Next-Generation Theorem-Provers

 196

Validating Reasoning Heuristics Using Next-Generation
Theorem-Provers

Paul S. Steyn1 and John A. van der Poll2

School of Computing, University of South Africa (UNISA)
paulsteyn@gmail.com 1 vdpolja@unisa.ac.za 2

Abstract. The specification of enterprise information systems using formal
specification languages enables the formal verification of these systems.
Reasoning about the properties of a formal specification is a tedious task that
can be facilitated much through the use of an automated reasoner. However, set
theory is a corner stone of many formal specification languages and poses
demanding challenges to automated reasoners. To this end a number of
heuristics has been developed to aid the Otter theorem prover in finding short
proofs for set theoretic problems. This paper investigates the applicability of
these heuristics to a next generation theorem prover Vampire.

1 Introduction

Mathematical set theory is a building block of a number of formal specification
languages, e.g. both Z [13] and B [1] are based on strongly-typed fragments of
Zermelo-Fraenkel (ZF) [3] set theory. One of the advantages in using a formal
notation for specifying an enterprise information system is that the specifier may
formally reason about the properties of the system. In particular one may want to
prove that the proposed system will behave in a certain way or that some unwanted
behaviour will not occur. However, writing out such proofs is a tedious task as may
be observed in [8]. Hence of particular interest to a specifier could be the feasibility of
using an automated reasoning program [12, 17] to reason about such properties.

When reasoning about the properties of a specification language based on set
theory, one inevitably has to move to the level of sets and the various operations
defined on them. These operations in turn are based on the underlying axioms of the
particular set theory in question.

1.2 Set-Theoretic Reasoning Heuristics

Set theoretic reasoning brings about a number of problems, especially if one opts for a
resolution-based reasoner like Otter [6]. Much of the complexity arises from the fact
that sets may be elements of other sets. Constructs in set theory are often strongly
hierarchical and may lead to deeply nested structures that greatly increase a problem’s
search complexity [9]. In the following equality

 197

P(A) = P(B) j A = B

a reasoner has to transcend from the level of elements in set A to the level of
elements in P(A) in its search for a proof, but should be prevented from transcending
to the level of P(P(A)) which would greatly and unnecessarily enlarge the search
space. It is generally accepted that heuristics are needed to guide reasoners, especially
in the context of set-theoretic proofs [2]. One such set of heuristics for reasoning
about set theory has been developed previously [15, 16], mainly through observing
the behaviour of the resolution-based reasoner, Otter in its search for proofs. In total
14 heuristics, based on recognisable patterns, were developed and the question arises
whether these heuristics have a wider applicability to other resolution-based
reasoners, e.g. Vampire [12] and Gandalf [14]. This paper investigates the utility of
the said heuristics for Vampire.

1.3 Layout of this Paper

Section 2 gives a brief introduction and justification of the use of the Vampire prover
in this work. Section 3 presents the main results of our work, namely, the extent to
which Vampire also needs the heuristics previously arrived at through the use of
Otter. A case study in section 4 illustrates the utility of some of the heuristics on a
small Z specification. We conclude with an analysis and pointers for future work.

2 The Vampire Theorem Prover

We chose Vampire [10, 12], a resolution-based automated reasoner for first-order
logic with equality for evaluating the wider applicability of the 14 heuristics
mentioned above for two reasons: The first is because of its consistent success at the
annual CADE ATP System Competitions (CASC) [7]. The second reason stems from
the fact that Vampire has solved more set-theoretic problems than any of the other
competing provers in the period from 2002 to 2005 across all CASC divisions
involving these problems. If we can show that Vampire benefits from the heuristics
developed before, then it is plausible that other reasoners may benefit from these
heuristics as well.

Vampire is a saturation-based reasoner and implements three different saturation
algorithms that can be selected for its main loop for inferring and processing clauses.
The three saturation algorithms are an Otter loop with or without the Limited
Resource Strategy and the Discount loop. These algorithms belong to the class of
given-clause algorithms. Vampire’s algorithm is a slight modification of the
saturation algorithm used by Otter [6].

The Limited Resource Strategy [11] aims to improve the efficiency of the Otter
algorithm when a time limit is imposed by identifying and discarding passive clauses
that have little chance to be processed within the time limit. The Limited Resource
Strategy is therefore not a complete proof procedure.

 198

3 Evaluation of Set-Theoretic Reasoning Heuristics

In this section we measure the utility of some previously developed heuristics [15, 16]
for Vampire. Fourteen heuristics were originally developed, but for reasons of space
we evaluate 5 heuristics. Our experiments follow a pattern: First we present our
sample problem and the ZF axiom(s) on which the problem is based. Then we report
the performance of Otter in an attempt to solve the problem. From a failed proof
attempt we define a heuristic that allows Otter to successfully solve the problem. Next
Vampire is used on the original problem to determine its need for the particular
heuristic. In some cases we increase the complexity of the problem as an additional
test.

We used Vampire version 8.0 that was also used at the CADE ATP System
Competition [7] in 2005 (CASC-20). A time limit of 30 minutes and a memory limit
of 128MB were imposed which causes Vampire to use its limited resource strategy.
No changes were made to Vampire’s other default settings.

3.1 Equality versus Extensionality

Our first sample problem based on equality and the power set axiom is given by:

P{{1}} = { ∅, {{1}}} (1)

Currently neither Otter nor Vampire accept formulae in the highly evolved notation
of ZF set theory, hence the user has to rewrite set-theoretic formulae like (1) above in
a weaker first-order language. Therefore, proof obligation in (1) is rewritten as:

A = {1} ∧ B = {A} ∧ C = P(B) ∧ D = {∅, B} → C = D (2)

Further decomposition is required for P(B) as follows:

∀x(x ∈ C ↔ ∀y(y ∈ x → y ∈ B)) (3)

Otter finds no proof for (2) in 20 minutes. Next, using the extensionality axiom we
replace the consequent (C=D) by

∀x(x ∈ C ↔ x ∈ D) (4)

and this allows Otter to find a proof in 0.03 seconds. These findings lead to the
following heuristic (for the sake of this paper we call it Heuristic #1):

Heuristic #1: Use the principle of extensionality to replace set equality with the
condition under which two sets are equal, i.e., when their elements are the same.

When the same problem (2) is given to Vampire, it has no difficulty in finding a

proof in 1.3 seconds. The application of the above extensionality heuristic leads to an
equally fast proof in 0.1 seconds. These times are too short to determine the utility of
the heuristic for Vampire. However, consider the following, more complex example
involving a subset axiom of arbitrary intersection:

 199

∩ {{1,2,3}, {2,3,4}} = {2,3} (5)

As before formula (5) is rewritten to make the relevant constructions explicit:

A = {1,2,3} ∧ B = {2,3,4} ∧ C = {A,B} ∧ D = {2,3}→ ∩C = D (6)

This time Vampire finds no proof within 30 minutes. When we however apply the
principle of extensionality to the consequent of formula (6) as in

∀x(x ∈ ∩C ↔ x ∈ D) (7)

then Vampire finds a short proof in 0.4 seconds. Therefore Heuristic #1 appears to
be useful for Vampire as well, depending on the complexity of the problem.

3.2 Nested Functors

An effective heuristic is to give preference to deductions containing smaller clauses
[5], i.e. clauses containing fewer literals or clauses of smaller term depth. The use of
nested function symbols (called functors) leads to larger term depth and complicates
unification. The nesting of function symbols occurs often, e.g.:

(A + B) + C = A + (B + C) (8)

Formula (8) states that set-theoretic symmetric difference (denoted by ‘+’) is
associative. The symmetric difference of sets A and B is defined as A + B = (A – B)
∪ (B – A) = {x | ((x ∈ A) ∧ (x ∉ B)) ∨ ((x ∉ A) ∧ (x ∈ B))}. Therefore formula (8)
employs equality as well as a ZF subset axiom as instantiated by set-theoretic
difference. A first-order definition of the symmetric difference functor is:

∀A∀B∀x(x ∈ symmdiff(A,B) ↔ ((x ∈ A ∧ x ∉ B) ∨ (x ∉ A ∧ x ∈ B))) (9)

The conclusion of the proof is then stated as:

∀x(x ∈ symmdiff(symmdiff(A,B), C) ↔
x ∈ symmdiff(A, symmdiff(B,C)))

(10)

With this formulation it takes Otter 4 minutes 3 seconds to find a proof of (10).
Unfolding, and thereby effectively removing, the nested functors as

D = A + B ∧ E = D + C ∧ F = B + C ∧ G = A + F →
∀x(x ∈ E ↔ x ∈ G)

(11)

allows Otter to find a proof in only 0.17 seconds, suggesting:

Heuristic #2: Avoid, if possible, the use of nested functor symbols in definitions.

Vampire quickly finds a proof of (10) in less than 0.1 seconds, both with or

without the use of the nested functor heuristic. We therefore increase the complexity
of the problem to further investigate the utility of Heuristic #2 for Vampire. Note that
in both problem formulations the extensionality heuristic was already applied to
problem conclusions. Rewriting (10) without using extensionality as

 200

symmdiff(symmdiff(A,B), C) = symmdiff(A, symmdiff(B,C)) (12)

results in Vampire finding no proof after 30 minutes. Next we apply the nested
functor heuristic by rewriting our problem using Skolem constants:

D = A + B ∧ E = D + C ∧ F = B + C ∧ G = A + F → E = G (13)

Vampire now finds a proof after only 0.5 seconds.

3.3 Divide-and-Conquer

The heuristic examined in this section is applicable to proofs where the consequence
of the proof contains a set equality or an if-and-only-if formula. A set equality in the
conclusion of a proof implies ‘if and only if’ via the axiom of extensionality. Owing
to the if-and-only-if formula, a specifier can perform two separate proofs, one for the
only-if part and another proof for the if part. Consider the following sample problem
based on equality and the power set axiom:

P{0,1} = { ∅, {0}, {1}, {0,1}} (14)

The formula is rewritten to make the relevant constructions explicit:

A = {0} ∧ B = {1} ∧ C = {0,1} ∧ D = P(C) ∧ E = {∅, A, B, C} →
D = E

(15)

Otter terminates without finding a refutation after 30 minutes. We resort to our
extensionality heuristic by changing the conclusion to:

∀x(x ∈ D ↔ x ∈ E) (16)

Otter now finds a proof in 3 minutes 23 seconds. An alternative approach is to
perform two separate proofs, one for each half of (16) and in the two proofs specify
the conclusions as in (17) and (18) below.

∀x(x ∈ D → x ∈ E) (17)

∀x(x ∈ E → x ∈ D) (18)

Otter proves (17) and (18) in 0.43 and 0.03 seconds respectively, leading to:

Heuristic #3: Perform two separate subset proofs whenever the problem at hand
requires one to prove the equality of two sets.

Vampire is also unable to find a proof for (15) after 30 minutes. However for (16),

(17) and (18) Vampire finds quick proofs in 0.8, 0.3 and 0.1 seconds respectively.
These times are too short to affirm the utility of the divide-and-conquer heuristic for
Vampire. As before we increase the complexity of the problem through the equality:

P{0,1,2} = {∅, {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}} (19)

Formula (19) is again rewritten to make the relevant constructions explicit:

 201

A = {0} ∧ B = {1} ∧ C = {2} ∧ D = {0,1} ∧ E = {0,2} ∧ F = {1,2} ∧
G = {0,1,2} ∧ H = P(G) ∧ I={ ∅, A, B, C, D, E, F, G} → H=I

(20)

Vampire terminates without finding a refutation after 8 minutes 53 seconds with
the message ‘no passive clauses left’. Note that this does not mean that a refutation
does not exist. Since Vampire was run with both a time and memory limit, it uses the
limited resource strategy [11], which is not a complete search strategy. Applying our
extensionality heuristic by rewriting (H = I) above as

∀x(x ∈ H ↔ x ∈ I) (21)

allows Vampire to find a proof after 8 minutes 40 seconds which is still too long.
By applying divide-and-conquer to (21) in the usual way allows Vampire to find short
proofs in 28 secs and 2 secs respectively, illustrating the utility of the heuristic.

3.4 Exemplification

When writing the contents of sets in list notation one naturally tends to define these
sets using one or more levels of indirection by moving from the various elements to a
symbol representing the collection of those elements. The sample problem used for
the divide-and-conquer heuristic will be used here as well, viz:

P{0,1} = { ∅, {0}, {1}, {0,1}} (22)

Recall that Otter failed to find a proof in 30 minutes for the initial unfolding in
(15). Suppose we remove one level of indirection by eliminating symbol E, i.e.

A = {0} ∧ B = {1} ∧ C = {0,1} ∧ D = P(C) → D = {∅, A, B, C} (23)

where D = {∅, A, B, C} is unfolded (repeatedly using the ZF pairing axiom) as

∀x(x ∈ D ↔ (x = ∅ ∨ x = A ∨ x = B ∨ x = C)) (24)

in the proof conclusion. With this formulation Otter finds a proof in 4 minutes 5
seconds. These results lead us to the following heuristic:

Heuristic #4: Avoid unnecessary levels of elementhood in formulae by using the
elements of sets directly.

The divide-and-conquer heuristic can be applied to this last proof attempt to yield

proofs in 0.34 and 0.03 seconds for the ‘only-if’ and ‘if’ directions respectively.
Vampire was also unable to find a proof for (15) within 30 minutes. However, for
(23) Vampire finds a proof in 0.8 seconds. In this example, therefore, it was not
necessary to increase the complexity of the problem to illustrate the utility of the
heuristic for Vampire. If we do increase the complexity of the problem by again using
formula (19) as an example, but instead of unfolding it as in (20) we unfold it as

A = {0} ∧ B = {1} ∧ C = {2} ∧ D = {0, 1} ∧ E = {0, 2} ∧
F = {1, 2} ∧ G = {0, 1 ,2} ∧ H = P(G) → H = {∅, A, B, C, D, E, F, G}

(25)

 202

then Vampire finds a proof in 5 minutes and 50 seconds. The divide-and-conquer
heuristic can be applied to this last proof attempt to yield proofs in 31.5 and 1.6
seconds for the ‘only-if’ and ‘if’ directions respectively.

3.5 Multivariate Functors

Functors containing variables as arguments lead to more unifications, which in turn
lead to a larger search space. Functors are often introduced by Skolemisation [4],
which occurs when first order formulae are clausified to serve as input to the
resolution mechanism. If an existential quantifier occurs within the scope of any
universal quantifiers, the existential quantifier is replaced by a Skolem functor taking
each of the universally quantified variables as an argument.

The example problem (15) will be used again with the extensionality heuristic
applied to the conclusion as in (16). First we define the term D = P(C) indirectly as

∀x(x ∈ D ↔ x ⊆ C) (26)

where the subset functor ⊆ is defined as

∀A∀B(A ⊆ B ↔ ∀y(y ∈ A → y ∈ B)) (27)

With this formulation Otter finds no proof in 30 minutes. The clausification of (27)
results in variable y being replaced by a Skolem function of the two variables A and B.
The effect of Skolemisation may be reduced by eliminating one of the universally
quantified variables in (27), e.g. replace variable B by the constant C in (26):

∀A(A ⊆ C ↔ ∀y(y ∈ A → y ∈ C)) (28)

Now Otter finds a proof after 4 minutes 5 seconds. Variable y in the clausal form
of (28) is now replaced by a Skolem functor of only one variable as opposed to a
functor of two variables in (27). The possibility of irrelevant unifications with this
Skolem functor has therefore been reduced. It should also be noted that the subset
functor ⊆ in both cases has an arity of two, but in (27) it contains two variables as
opposed to one constant and one variable in (28). These results lead to:

Heuristic #5: Simplify terms in sets by either not involving functors, or else
functors with the minimum number of argument positions taken up by variables.

Vampire finds quick proofs with or without the heuristic applied. With the subset

functor formulated as in (27) it finds a proof in 21 seconds and for (28) in 0.1
seconds. The relative improvement in search time is significant. However, the search
time for (27) may still be too low to seriously justify the use of the heuristic. We
therefore increase the complexity of the problem to further test our heuristic. The
example problem (20) that was also used in the divide-and-conquer heuristic has
sufficient complexity and will be used again with the extensionality heuristic applied
to the conclusion as in (21). As before, the term H = P(G) is unfolded as

∀x(x ∈ H ↔ x ⊆ G) (29)

 203

where the subset functor ⊆ is again defined as in (27). With this formulation
Vampire finds no proof in 30 minutes. We next apply the multivariate functor
heuristic by defining the subset functor with variable B replaced by the constant G:

∀A(A ⊆ G ↔ ∀y(y ∈ A → y ∈ G)) (30)

Now Vampire finds a proof after 1 minute and 32 seconds. This result can further
be improved through divide-and-conquer. The times for the two sub-proofs are 5.2
and 0.3 seconds respectively.

4 Case Study: Football Fan Register

The following case study serves as a very small example of the specification of an
enterprise information system using Z and the subsequent reasoning about one of its
properties using the heuristics of the previous section.
A Football Identity Scheme allocates each fan a single unique identity code. It also
keeps a list of troublemakers who have been banned from attending matches.
PERSON and ID are two given sets and represent the set of people and the set of all
possible identity codes. The system state is recorded by FIS [8]:

»FIS______________________________
Æ members: ID © PERSON; banned: P ID
«_________
Æ banned z dom members
–_______________________________
The partial injective function members maps identity codes to fans. The set banned

is a set of banned identity codes and is a subset of the domain of members.
Schema AddMember adds members to the system. It takes a person as input and

returns a newly allocated identity code.

» AddMember ______________________________
ÆDFIS
Æperson?: PERSON; id!: ID
«_________
Æperson? ‰ ran members ¶ id! ‰ dom members
Æmembers' = members U { id! å person?} ¶ banned' = banned
–____________________________________

A Proof Obligation

Next we show how some of the above heuristics may be used to successfully
discharge a proof obligation arising from the specification. We want to show that
members' is still an injective function. The following are given as input to Vampire:

 204

members e rel(id,person) ¶ isSiv(members) ¶ isInjective(members) (31)

banned e P(id) ¶ banned z dom(members) ¶ person? e person ¶ id! e id (32)
person? ‰ ran(members) (33)

id! ‰ dom(members) ¶ ![M]: (M e newMembers ¤ M=ord(id!,person?)) (34)
members’ = members U newMembers ¶ banned’ = banned (35)

These facts represent the state FIS and operation AddMember Formula (31) states

that members is a relation that is single valued and injective, i.e. a partial injective
function [13]. The axioms for rel, isSiv, isInjective, dom, ran, subset, union etc. are
not shown here but are part of the input to Vampire.

The proof obligation is stated as:

members’ e rel(id,person) ¶ isSiv(members’) ¶ isInjective(members’) (36)

Vampire finds no proof for (36) in 30 minutes. The divide-and-conquer heuristic
can be applied to (36), resulting in three separate sub-proofs with consequents:

members’ e rel(id,person)
isSiv(members’)

isInjective(members’)

(37)
(38)
(39)

Vampire finds proofs for (38) and (39) in 14 minutes 48 seconds and 14 minutes
24 seconds respectively, but fails to find a proof for (37) after 30 minutes. Next we
apply the multivariate functor heuristic by removing axioms for union, domain,
injectivity, single valued ness, power set, range, relation and subset and replace them
by instances of the same axioms where some variables are replaced by constants. For
example, (33) requires the following definition for the range of a relation:

AR AY[Y e ran(R) ¤ E(X)(ord(X,Y) e R)] (40)

A replacement instance of (40) is therefore added to the proof attempt where
variable R is replaced with constant members:

AY[Y e ran(members) ¤ E(X)(ord(X,Y) e members)] (41)

Vampire now finds quick proofs for (38) and (39) in 4 and 7 seconds respectively.
Vampire still cannot find a proof for (37) in 30 minutes. We finally apply the nested
functor heuristic to all the introduced axiom instances like (41). For example, (41)
contains the nested functors el(Y,ran(members)) and is replaced by:

ranMems = ran(members) ¶
AY[Y e ranMems ¤ E(X)(ord(X,Y) e members)]

(42)

Vampire finds a solution for sub-proof (37) in 9 minutes and 18 seconds. Solutions
for (38) and (39) are also found slightly faster in 2 and 4 seconds respectively.

 205

5 Conclusions and Future Work

In this paper we investigated to what extent a previously developed set of heuristics to facilitate
proofs in set theory for a resolution-based automated reasoner are applicable to another reasoner
with similar characteristics. The Vampire theorem prover was chosen for this task owing to its
steadfast performance at recent CASC competitions. We evaluated 5 heuristics and found that all
these heuristics are indeed needed, even though the original problem often had to be enlarged to
illustrate the utility of the given heuristic using the new reasoner. Our heuristics appear to have
an even larger support base since we also tested these on another reasoner, namely, Gandalf [14]
and comparable results as reported on in this paper were witnessed.

Future work in this area may include an investigation into the applicability of the rest of our
heuristics. Preliminary results indicate that at least 11 of the original 14 heuristics are useful,
some addressing the challenge of tuples and functors with arity 6 or more [15].

References

1. Abriel, J-R. 1996. The B Book: Assigning Programs to Meanings. Cambridge University Press.
2. Bundy, A. 1999. A Survey of Automated Deduction. Tech. Rep. EDI-INF-RR-0001, Division of

Informatics, University of Edinburgh. April.
3. Enderton, H. 1977. Elements of Set Theory. Academic Press, Inc.
4. Hamilton A. G. 1991. Logic for Mathematicians. Revised edition. Cambridge University Press.
5. Leitsch A. 1997. The resolution calculus. Springer-Verlag, New York.
6. McCune, W. W. 2003. OTTER 3.3 Reference Manual. Argonne National Laboratory, Argonne, Illinois.

ANL/MCS-TM-263.
7. Pelletier, F. J., Sutcliffe, G., and Suttner, C. 2002. The development of CASC. AI Communications 15(2),

79-90.
8. Potter, B., Sinclair, J. and Till D., An Introduction to Formal Specification and Z, Prentice Hall, 1996.
9. Quaife, A. 1992. Automated Development of Fundamental Mathematical Theories. Automated

Reasoning Series. Kluwer Academic Publishers.
10. Riazanov, A. 2003. Implementing an Efficient Theorem Prover. Ph.D. thesis, University of Manchester.
11. Riazanov, A. and Voronkov, A. 2003. Limited resource strategy in resolution theorem proving. Journal

of Symbolic Computing 36(1-2), 101-115
12. Riazanov, A. and Voronkov, A. 2002. The design and implementation of VAMPIRE. AI

Communications 15(2), 91-110.
13. Spivey, J. M. 1992. The Z Notation: A Reference Manual, 2nd ed. Prentice-Hall, London.
14. Tammet, T. 1997. Gandalf. Journal of Automated Reasoning 18(2), 199-204.
15. van der Poll, J. A. 2000. Automated Support for Set-Theoretic Specifications. Ph.D. thesis, University

of South Africa.
16. van der Poll, J. A. and Labuschagne, W. A. 1999. Heuristics for Resolution-Based Set-Theoretic Proofs.

South African Computer Journal Issue 23, 3 – 17.
17. Wos, L. 2006. Milestones for automated reasoning with OTTER. International Journal on Artificial

Intelligence Tools, 15 (1): 3 – 19, February.

 206

References

References

1) Abriel, J-R. 1996. The B Book: Assigning Programs to Meanings. Cambridge

University Press.

2) Amalio, N., Polack F., Comparison of formalisation approaches of UML class

constructs in Z and Object-Z, Proceedings, ZB 2003, Turku, Finland. LNCS 2651,

Springer, June 2003.

3) Bachmair, L., Ganzinger, H., 2001. Resolution Theorem Proving. In: A. Robinson

and A. Voronkov, eds. Handbook of Automated Reasoning, Vol. I, Elsevier

Science, 2001, chapter 2, pp. 19-99.

4) Booch, G., Rumbaugh, J., Jacobson, I., 2005. The Unified Modeling Language

User Guide, 2nd Edition, Addison-Wesley.

5) Boyer, R. et al, 1986. Set theory in first-order logic: clauses for Gödel's axioms. J.

Automated Reasoning, 2(3), pp 287-327. Hingham, MA, USA: Kluwer Academic

Publishers.

6) Bundy, A. 1999. A Survey of Automated Deduction. Tech. Rep. EDI-INF-RR-

0001, Division of Informatics, University of Edinburgh. April.

7) Chang, C.L., Lee, R.C.T., 1973. Symbolic Logic and Mechanical Theorem

Proving. Boston: Academic Press.

8) Church, A., 1936a. An Unsolvable Problem of Elementary Number Theory.

American Journal of Mathematics, 58, 345-363.

9) Church, A., 1936b. A Note on the Entscheidungsproblem. Journal of Symbolic

Logic, 1, 40-41.

 207

10) Claessen K., Sutcliffe G., 2008, Department of Computer Science, University of

Miami, viewed 13 November, 2008,

<http://www.cs.miami.edu/~tptp/TPTP/Proposals/TypedFOF.html>.

11) Davis, M., Putnam, H., 1960. A Computing Procedure for Quantification Theory.

J. ACM, 7(3), pp 201-215.New York, NY, USA: ACM Press.

12) Davis, M., Logemann, G., Loveland, D., 1962. A machine program for theorem-

proving. Commun. ACM, 5(7), pp 394-397.New York, NY, USA: ACM Press.

13) Denzinger, J., Kronenburg, M., Schulz, S., 1997. DISCOUNT: A Distributed and

Learning Equational Prover. Journal of Automated Reasoning (18), pp 189-198.

14) Derrick, J., Boiten, E., 2001. Refinement in Z and Object-Z, Foundations and

Advanced Applications. Springer-Verlag.

15) Duke, R., Rose, G., Smith, G., 1995. Object-Z: a Specification Language

Advocated for the Description of Standards. Computer Standards and Interfaces,

17, pp 511-533. North-Holland.

16) Dybvig, R.K., 2003. The Scheme Programming Language. MIT Press.

17) Enderton, H. 1977. Elements of Set Theory. Academic Press, Inc.

18) Eisinger, N., Ohlbach, H.J., 1993. Deduction systems based on resolution. New

York, NY, USA: Oxford University Press, Inc..

19) Epstein, R.L., Carnielli, W.A., 2000. Computability. Functions, Logic, and the

Foundations of Mathematics, 2nd Edition. Wadsworth/Thomson Learning.

20) Gilmore, P.C., 1960. A proof method for quantification theory: its justification

and realization. j-IBM-JRD, 4, pp 28-35.

21) Hamilton A. G. 1991. Logic for Mathematicians. Revised edition. Cambridge

University Press.

 208

22) ISO 2002, ISO 13568:2002, Information technology - Z formal specification

notation - Syntax, type system and semantics, International Organization for

Standardization.

23) Leitsch, A., 1997. The resolution calculus. New York, NY, USA: Springer-Verlag

New York, Inc..

24) Malik, P. and Utting, M., 2005. CZT: A Framework for Z Tools. In: Treherne, H.,

King, S., Henson, M., Schneider, S. (Eds.), LNCS, 3455. Springer-Verlag. pp. 65-

84.

25) McCharen, J., Overbeek, R., Wos, L., 1967. Complexity and related

enhancements for automated theorem proving programs. Computers and

Mathematics with Applications, 2, pp 1-16.

26) McCune, W., 2003. OTTER 3.3 Reference Manual. CoRR, cs.SC/0310056.

27) McCune W., 2009. Prover9 Manual. Argonne National Laboratory, viewed 3

February, 2009, <http://www.prover9.org>.

28) Meltzer, B., 1966. Theorem-proving for computers: Some results on resolution

and renaming. TCJ, 8, pp 341-343".

29) Montague, R., 1961. Semantic Closure and Non-Finite Axiomatizability I, in

Infinitistic Methods, Proceedings of the Symposium on Foundations of

Mathematics, (Warsaw, 2-9 September 1959). Oxford, England: Pergamon, pp.

45-69, 1961.

30) Nerode, A., Shore, R., 1997. Logic for Applications. Secaucus, NJ, USA:

Springer-Verlag New York, Inc.

31) Nieuwenhuis, R., Rubio, A., 2001. Paramodulation-Based Theorem Proving. In:

A. Robinson and A. Voronkov, eds. Handbook of Automated Reasoning, Vol. I,

Elsevier Science, 2001, chapter 7, pp. 371-443.

 209

32) Pelletier, F.J., Sutcliffe, G., Suttner, C.B., 2002. The Development of CASC. AI

Communications, 15(2-3), pp 79-90.

33) Plaisted, D.A., 1993. Equational Reasoning and Term Rewriting Systems. In: Dov

Gabbay, Christopher Hogger and J. A. Robinson, eds. The Handbook of Logic in

Artificial Intelligence and Logic Programming, Volume 1: Deductive

Methodologies, Oxford: Oxford University Press, 1993, pp. 274-367.

34) Potter, B., Sinclair, J. and Till D., An Introduction to Formal Specification and Z,

Prentice Hall, 1996.

35) Quaife, A., 1992a. Automated deduction in von Neumann-Bernays-Gödel set

theory, Journal of Automated Reasoning, Volume 8, Issue 1, Feb 1992.

36) Quaife, A., 1992b. Automated Development of Fundamental Mathematical

Theories. Norwell, MA, USA: Kluwer Academic Publishers.

37) Quine, W. V. 1971. Set Theory and its Logic. Harvard University Press,

Cambridge, MA.

38) Riazanov, A., Voronkov, A., 2001. Vampire 1.1 (System Description). IJCAR

'01: Proceedings of the First International Joint Conference on Automated

Reasoning, London, UK: Springer-Verlag, 2001, pp. 376-380.

39) Riazanov, A., Voronkov, A., 2002. The design and implementation of VAMPIRE.

AI Commun., 15(2), pp 91-110. Amsterdam, the Netherlands: IOS Press.

40) Riazanov, A. 2003. Implementing an Efficient Theorem Prover. Ph.D. thesis,

University of Manchester.

41) Robinson, J.A., 1965a. A Machine-Oriented Logic Based on the Resolution

Principle. J. ACM, 12(1), pp 23-41.New York, NY, USA: ACM Press.

42) Robinson, J.A., 1965b. Automatic deduction with hyper-resolution. International

Journal of Computer Mathematics, 1, pp 227-234.

 210

43) Robinson, G., Wos, L., 1969. Paramodulation and theorem-proving in first-order

theories with equality. In: Bernard Meltzer and Donald Michie, eds. Machine

Intelligence 4, Edinburgh, Scotland: Edinburgh University Press, 1969, pp. 135-

150.

44) Rumbaugh J., Blaha M., Premerlani W., Eddy F., Lorensen W. Object-Oriented

Modelling and Design. Prentice-Hall, 1991.

45) Slagle, J.R., 1967. Automatic Theorem Proving With Renamable and Semantic

Resolution. J. ACM, 14(4), pp 687-697. New York, NY, USA: ACM Press.

46) Steyn, P.S., Van der Poll, J.A., 2007. Validating Reasoning Heuristics Using

Next-Generation Theorem-Provers, In J.C. Augusto, J. Barjis, U. Ultes-Nitsche,

eds., Proc. 5th MSVVEIS'07, pp. 43-52, Funchal, Madeira, Portugal, June 2007.

47) Spivey, J. M. 1992. The Z Notation: A Reference Manual, 2nd ed. Prentice-Hall,

London.

48) Stickel, M.E., 1985. Automated deduction by theory resolution. J. Autom.

Reason., 1(4), pp 333-355.Hingham, MA, USA: Kluwer Academic Publishers.

49) Sutcliffe, G., Suttner, C.B., 1998. The TPTP Problem Library: CNF Release

v1.2.1. Journal of Automated Reasoning, 21(2), pp 177-203.

50) Sutcliffe, G., Suttner, C., 2006. The state of CASC. AI Communications, 19(1),

pp 35-48.

51) Tammet, T., 1997. Gandalf. Journal of Automated Reasoning, 18(2), pp 199-204.

52) Tammet, T., OCT 1997. Gandalf version c-1.0c Reference Manual.

53) Tolkien, J.R.R., 1966. The Lord of the Rings, 2nd ed. Allen & Unwin, London.

54) Turban, E., Frenzel, L.E., 1992. Expert Systems and Applied Artificial

Intelligence. Prentice Hall Professional Technical Reference.

 211

55) Turing, A.M., 1936. On Computable Numbers, with an Application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society, series

2, 42 (1936-37), 230-265.

56) Van der Poll, J. A. and Labuschagne, W. A. 1999. Heuristics for Resolution-

Based Set-Theoretic Proofs. South African Computer Journal Issue 23, 3 – 17.

57) Van der Poll, J. A. 2000. Automated Support for Set-Theoretic Specifications.

Ph.D. thesis, University of South Africa.

58) Voronkov, A., 2001. Algorithms, Datastructures, and other Issues in Efficient

Automated Deduction. IJCAR '01: Proceedings of the First International Joint

Conference on Automated Reasoning, London, UK: Springer-Verlag, 2001, pp.

13-28.

59) Voronkov, A., Mar 2005. Vampire 7 Reference Manual and Guide. School of

Computer Science, University of Manchester.

60) Wieringa, R., A survey of structured and object-oriented software specification

methods and techniques. ACM Computing Surveys, 30(4):459-527, December

1998.

61) Wos, L., Robinson, G.A., Carson, D.F., 1965. Efficiency and Completeness of the

Set of Support Strategy in Theorem Proving. J. ACM, 12(4), pp 536-541.New

York, NY, USA: ACM Press.

62) Wos, L. et al, 1967. The Concept of Demodulation in Theorem Proving. J. ACM,

14(4), pp 698-709.New York, NY, USA: ACM Press.

63) Wos, L. et al, 1984. Automated Reasoning: Introduction and Applications.

Prentice Hall Professional Technical Reference.

64) Wos, L., 1988. Research Problem #8: An Inference Rule for Set Theory. In

Automated Reasoning: 33 Basic Research Problems, pp. 137 - 138. Prentice-Hall.

 212

65) Wos, L., 1989. The problem of finding an inference rule for set theory, Journal of

Automated Reasoning, Volume 5, Issue 1, pp. 93 – 95.

66) Wos, L. et al, 1992. Automated reasoning (2nd ed.): introduction and

applications. New York, NY, USA: McGraw-Hill, Inc.

67) Wos, L., Veroff, R., 1994. Logical basis for the automation of reasoning: case

studies. New York, NY, USA: Oxford University Press, Inc.

68) Wos, L., 1995. The Resonance Strategy. Computers and Mathematics with

Applications, 29(2):133-178. (Special issue on Automated Reasoning)

69) Wos, L., 1996. The Power of Combining Resonance with Heat. Journal of

Automated Reasoning, 17(1):23-81.

70) Wos, L. 2006. Milestones for automated reasoning with OTTER. International

Journal on Artificial Intelligence Tools, 15 (1): 3 – 19, February.

 213

Index

Index

aggregation, 118

association, 107

association class, 110

automated theorem prover. See theorem prover

binary resolution, 23

example, 24

soundness & completeness, 21, 29

cade atp system competition. See casc

casc, 2, 67

class, 105

attribute, 105

clausal form, 16, 74

completeness, 21, 29, 33

composition, 118

decidability, 14

decision problem, 14

demodulation, 60

discount algorithm, 70

dissertation

contributions, 149

future work, 150

research question, 2

equality predicate, 56

factoring, 28

farmer goat cabbage wolf puzzle, 25

gandalf, 72, 77

example input, 74

given sets, 174

Herbrand’s universe, 14

heuristics

divide-and-conquer, 82, 136, 137, 139, 143

element structure, 90, 146

equality vs extensionality, 78, 133, 137

exemplification, 84, 134, 140

intermediate structure, 88

multivariate functors, 86, 146

nested functors, 80

redundant information, 91, 139, 142

resonance, 96, 146

search-guiding, 93

 214

tuple condense, 98

hyperresolution, 46

inheritance, 119

input resolution, 34

level-saturation method, 30

linear resolution, 31

soundness & completeness, 33

Neumann-Bernays-Gödel, 12

operations, 112

total, 117

otter, 2, 69, 77

otter algorithm, 69

paramodulation, 57

prenex normal form, 17

proof obligations, 132

case study, 102

CancelOrder after state type, 144

CreateDeleteItem leaves state unchanged,

140

CreateProduct invariant, 132

CreateProduct is total, 134

ProcessOrder set contents, 138

typical, 122

after state type, 124

contents of a set, 127

initialisation theorem, 122

operation interaction, 126

precondition simplification, 122

state invariant, 128

total operations, 125

reasoner. See theorem prover

refutation, 15

resolution, 16

binary resolution, 18, 23

factoring, 28

heuristics, 63

in predicate logic, 22

in propositional logic, 18

redundancy and deletion, 52

subsumption, 52

tautologies, 54

refinements, 30

hyperresolution, 46

input resolution, 34

linear resolution, 31

 215

semantic resolution, 37

set-of-support, 50

unit resolution, 36

ur-resolution, 44

theory resolution, 55

demodulation, 60

equality predicate, 56

paramodulation, 57

unification, 22

resolvent, 24

Russell’s paradox, 6

schema

CancelOrder, 144, 177

Company, 120, 181

CreateCompany, 181

CreateCustomer, 180

CreateItem, 178

CreateOrder, 176

CreatePerson, 183

CreateProduct, 112, 175

CreateProductTotal, 117

CreateProductZen, 133

Customer, 109, 120, 180

DeleteCompany, 182

DeleteCustomer, 181

DeleteItem, 179

DeletePerson, 183

DeleteProduct, 115, 175

DuplicateProductName, 118

InitItem, 178

InitOrder, 176

InitProduct, 121, 174, 180, 181, 182

InitSystem, 121, 184

Item, 111, 178

Order, 109, 110, 176

Person, 120, 182

PreCreateProduct, 123

ProcessOrder, 116, 138, 177

Product, 106, 174

ProductAlreadyKnown, 118

SelectItemsForOrder, 111, 179

SelectOrdersForCustomer, 109, 177

SelectProductsBelowThreshold, 113, 175

Success, 117

 216

System, 121, 183

UpdateCompany, 182

UpdateCustomer, 180

UpdateItem, 179

UpdatePerson, 183

UpdateProduct, 114, 175

semantic resolution, 37

predicate ordering, 39

splitting, 38

the clash, 40

set theory, 5

naive set theory, 6

Neumann-Bernays-Gödel, 12

paradoxes, 5

Zermelo-Fraenkel, 5

set-of-support, 50

Skolem functor, 17

Skolemisation, 17

soundness, 21, 29, 33

standardising variables apart, 24

subsumption, 52

system state, 120

tautologies, 54

theorem prover, 67

gandalf. See gandalf

otter. See otter

vampire. See vampire

tptp, 70, 130

unification, 22

most general unifier (mgu), 23

Unified Modelling Language (UML), 103

unit resolution, 36

ur-resolution, 44

vampire, 68, 77

example input, 71

Z, 1, 104

conversion to 1st order logic, 130

Zermelo-Fraenkel, 5

axioms

choice, 11

empty set, 7

extensionality, 7

foundation/regularity, 10

infinity, 9

 217

pairing, 7

power set, 9

replacement, 10

subset, 8

union, 8

limitations, 12

