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Abstract

The specification of enterprise information systeussng formal specification languages
enables the formal verification of these systemmadRning about the properties of a formal
specification is a tedious task that can be fatéd much through the use of an automated
reasoner. However, set theory is a corner stormaasfy formal specification languages and
poses demanding challenges to automated reasditethis end a number of heuristics has
been developed to aid the Otter theorem proverindirfg short proofs for set-theoretic
problems. This dissertation investigates the appllity of these heuristics to next generation

theorem provers.
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Chapter 1
Introduction

This is a dissertation on evaluating the utilityesofet of reasoning heuristics that have
been developed to aid an automated reasoner ianmegsabout the properties of formal
specifications. The focus is on set-theoretic [mois and first-order logic resolution-

based automated theorem provers. The motivatipresented below.

1.1 Motivation

Mathematical set theory is a building block of ammer of formal specification
languages, e.g. both Z (Spivey 1992) and B (Abt#6) are based on strongly-typed
fragments of Zermelo-Fraenkel (Enderton 1977) kebrty. One of the advantages in
using a formal notation for specifying a systenthist the specifier may reason formally
about the properties of the system. In particute may want to prove that the proposed
system will behave in a certain way or that someamted behaviour will not occur.
However, writing out such proofs is a tedious taskmay be observed in (Potgral
1996). Hence of particular interest to a specitieuld be the feasibility of using an
automated reasoning program (Riazanov & Voronkod22@Wos 2006) to reason about

such properties.

Set-theoretic problems, however present difficufblglerns to automated reasoners
(Boyeret al 1986, Quaife 1992a, Wos 1988, Wos 1989). Mddhecomplexity arises
from the fact that sets may be elements of othist Set-theoretic constructs are strongly
hierarchical and could lead to deeply nested coatsrthat greatly increase a problem’s
search complexity (Quaife 1992a, Van der Poll & wsdhagne 1999). For example, in
the following equality

P(A)=P(B) -« A=B



a reasoner has to move from the level of elementet A to the level of elements in

P(A) in its search for a proof, but should be preednfrom transcending to the level of
P(P(A)) which would greatly and unnecessarily enlafge search space. This reasoning

heuristic tends to come naturally to humans. Hanefor the automated reasoner to
preserve completeness it should still traverseetipessibly unlikely search paths when
the other paths fail.

It is generally accepted that heuristics are neddegluide reasoners, especially in the
context of set-theoretic proofs (Bundy 1999). \tam Poll and Labuschagne developed
such a set of heuristics for reasoning about setryh(Van der Poll 2000, Van der Poll &
Labuschagne 1999), mainly through observing theawelr of the resolution-based
reasoner, Otter (McCune 2003) in its search foofsroln total 14 heuristics, based on

recognisable patterns, were developed.

1.2 Research Question

The CADE ATP System Competitions (CASC) (Pelletieal 2002, Sutcliffe & Suttner
2006) is an annual competition that evaluates #opmance of automated theorem
provers using classical first-order logic. Otterlanger features as a worthy opponent in
this competition, since it has to a large extenérbsuperseded by next generation
theorem provers e.g. Vampire (Riazanov & Voronkd@02) and Gandalf (Tammet

1997). Otter is however still used as a relatieedhnmark for other provers.

The question therefore arises whether the hewisteveloped by Van der Poll and
Labuschagne (Van der Poll & Labuschagne 1999, VanRbll 2000) have a wider
applicability to other resolution-based reasonbeg tan be considered state of the art.
The research reported on in this dissertation adds=the above research question and

leads to the following hypothesis.

1.3 Hypothesis

The Van der Poll-Labuschagne heuristics developedetisoning with set theory are also

applicable to later, state of the art resolutiosdabautomated theorem provers.



For the remainder of this dissertation we shalerdd the Van der Poll-Labuschagne

heuristics as the VdPL set of heuristics.

1.4 Approach

To verify the hypothesis we select two theorem prevthat can be considered state of
the art when using the CASC (Pellettral 2002, Sutcliffe & Suttner 2006) competition
as a benchmark. The chosen theorem provers sheutésolution-based to make the
comparison with Otter more direct. Since the Vdiuristics were developed on set-
theoretic problems the chosen provers must aldompegenerally well with set-theoretic

problems to ensure that the heuristics are indppticable and useful.

Each heuristic is then tested in turn on a samgtiehgoretic problem. Otter is used to
discharge the proof. After a failed proof attentpg relevant VdPL heuristic is applied
to the problem specification that enables Ottefirtd a proof. The original problem is
then discharged on the chosen theorem provers. h&hbdstic is similarly applied to
failed proof attempts. If the heuristic is foundtrto be applicable using the next
generation theorem prover, we increase the contglefi the problem, and attempt

again.

The use of automated reasoning in formal specifindanguages was mentioned as one
of the motivations for research in reasoning héigss The heuristics are further tested
on a case study specified in Z (Spivey 1992) andgusne of the chosen reasoners to

discharge proof obligations that arise.

1.5 Dissertation Layout

Chapter 2 gives an overview of set theory. Them&do-Fraenkel axiomatisation of set
theory in first-order logic is presented. The wudeset theory in formal specification
languages is then highlighted followed by the tgpissues that arise when reasoning

about set-theoretic problems.

An overview of resolution-based theorem provingpigsented in Chapter 3. The

decision problem and Herbrand’s universe is disigs highlight the theoretical limits

3



of automated theorem proving. Resolution is pregskas a refutation proof procedure

followed by a discussion on efficiency enhancemémtgsolution theorem proving.

The resolution-based automated reasoners VampadeGamdalf used in this work are
presented in Chapter 4 including the motivationtfair selection.

The utility of the VAPL heuristics for Vampire a@hndalf is investigated in Chapter 5.
For each heuristic a sample problem is preseniéte problem is first attempted using
Otter. From a failed proof attempt the heuristic applied to enable a successful
refutation. The same problem in then applied tmy@@e and Gandalf. In some cases the
problem complexity must be increased to illustiie utility of the heuristic. Some of
these results were published in Steyn and Van dé{Z007).

An order management system case study is presentedhapter 6 using the Z
specification language. Typical proof obligatiothat arise from Z specifications are
presented and discussed.

In Chapter 7 a sample of the proof obligations fritve case study is converted to first-
order logic and discharged using Vampire. Varibaaristics are then applied to some
failed proof attempts to facilitate a successftltation.

Chapter 8 summarises the conclusions to be drawwn fhe research reported on in this
dissertation and indicates directions for furthesrerarch.



Chapter 2
Introduction to Mathematical Set Theory

Set theory is a foundational theory of mathematicthe sense that many mathematical
theorems, including arithmetic and Euclid’s geometan be formulated as theorems of
set theory (Nerode & Shore 1997). The problemiradifig the truth of a mathematical

statement can therefore be reduced to a probleshawing that its truth can be derived

from the axioms of set theory (Enderton 1977).

In this chapter we give an overview of the Zermiétaenkel (ZF) axiomatisation of set
theory that allows for the first-order logic repeatation of set-theoretic problems. In the
next section we discuss the use of set theorynmdb specification languages. This is
followed by a discussion of the limits of the ZFH@xrs in automated theorem proving
due to its infinite axiomatisation. The chaptec@cluded with the challenges that are

posed by automated set-theoretic reasoning asaw@lsummary.

2.1 Zermelo-Fraenkel Set Theory

The concept of a set has been used in mathematingsrsince ancient times (Enderton
1977). George Cantor's work at the end of th8 déntury put set theory on a proper
mathematical basis with a series of papers puldighging the period from 1874 to
1897. He is generally regarded as the father ahsetrry (Enderton 1977).

This early set theory originated in a non-axiomdtom that relied on an informal
understanding of sets as collections of objectsttg&yturn of the nineteenth century a
number of paradoxes were discovered in set th&ng of these is Russell’'s paradox
that was discovered in 1901 by Bertrand Russeltdéon 1977, Pottest al 1996). He
showed that Gottlob Frege’s treatment of set the@y contradictory. Frege published a

two-volume work in 1893 and 1903 in which he shovwmiv mathematics could be



developed from principles of set theory. Russgibsadox stems from a well defined set
in Frege set theory:

A={x|x0Ox}

That is, x is an element of A if and only if x istran element of itself. The question that
arises is whether or not A contains itself. If aed, then by definition it is not a member
of A and thus a contradiction. On the other hanit does not contain itself, then by

definition it is a member of A which is also a a@aliction.

The paradoxes found in set theory led to the dewveémt of axiomatic set theory. This
showed that certain assumptions were inconsistetith@nce totally flawed. The non-
axiomatic approach to set theory is now often refeito as “naive set theory” (Quine
1971).

Ernst Zermelo proposed the first system of axioonssét theory in 1908. The paradoxes
that have plagued set theory could not occur ud@melo’s system since the sets
required by the paradoxes cannot be constructengusis axioms. However it was

discovered that rather simple sets could not begatdo exist based solely on these
axioms. Abraham Fraenkel and others proposed timmawf replacement, discussed
below, to enable the creation of such sets (Ender®y7). This list of set theory axioms,

10 in total, became known as the Zermelo-Fraenkiehas.

Next we present a brief introduction to the ZF ax$o It is important to note that every

object it deals with is a set. Every element ofe is itself a set. Therefore, all

mathematical objects must therefore be definecets sAs an example the non-negative
integers (natural numbers) can be represented theery as the set of all smaller natural
numbers:

0=0,1={0}={2},2=1{0, 1} ={D, {D}}, ....

This specific method of encoding the natural numelvesis proposed by von Neumann in
1923 (Enderton 1977).



2.1.1 Extensionality Axiom

The action of Extensionality states the conditioer which two sets are equal. Two
sets are the same if they have the same elemerdst & therefore determined by its

elements.

DAOB(OX(x OA « xOB) - A=B)

Note, this axiom only state when two sets are equdbes not guarantee the existence of
any sets. Also, note that equality reasoning ist-firder logic requires the axioms

presented in section 3.6.1.

2.1.2 Empty set Axiom

There exists a set having no elements called thetyeset. The empty set is usually

denoted by the symbal.

(M0Ox (x O 0O)

The empty set axiom asserts that there existsaat tne set, the empty $&t From the

axiom of Extensionality it follows that there islpimne such set.

2.1.3 Pairing Axiom

If u and v are sets, then there exists a set Bagung u and v as its only elements. This

set is called the unordered pair of u and v anttmoted by {u, v}.

OuOvBOX(X OB » x=ulx=vV)

It follows from the axiom of Extensionality thatishset is uniquely determined and since
the elements in a set are unordered we have {uf4u. Pairing implies the existence
of sets containing only one element called singletets. For example, given any set v,
the singleton set {v} exists and is equal to theraered pair {v, v}. Repeated application
of this axiom asserts the existence of sets ofdha {{x}, {X,y}}, which is a standard

way of representing the ordered pair (X, y).



2.1.4 Union Axiom

Normally the union axiom is first stated in simpkerms for just two sets (Enderton
1977) and thereatfter it is given for the generalecd&very set has a union. That is, for
any set A there exists a set B whose elementsxalg the elements of the elements of
A. For example if A={a, b, c, d}, thenBHa, b, c,d} =all b cO d.

OAMBOX(x OB o Ch(b 0 A Ox 0 b))

Finite sets like {a, b, ¢} can be constructed udimg axiom and the pairing axiom above.
For example, given any a, b and ¢ we can conssetst{a} and {b, c} using the pairing

axiom. Set {a, b, c} can then be constructed usinegunion axiom, that is, {aJ {b, c}.
2.1.5 Subset Axiom
For each formulap(c, t,..., t,) not containing B, the following is an axiom (Emnia

1977):

Ot; ...06,0cBOX(X OB « (xOcOg (X, t,..., t))

Again from the axiom of Extensionality it followkdt the set B is uniquely determined
by ¢, t,...,t,. B can be denoted by X c |$ (X, t,..., t,)}. It is important to note that the

set B being defined is a subset of the given detige the name subset axiom.
As an example, the following formula is an instantéhe subset axiom:

DAOCIBOX(x OB « x O COxOA)

It asserts the existence of the set intersecti@ratipn such that B = A C. Similarly
the existence of the relative complement of C indAnoted A — C, is asserted by the

subset axiom instance:

OCOABOx(xUOB o« xOAOxOC)

An unrestricted version of the subset construciigiom was often used to specify sets

before the development of axiomatic set theory:



Oty ...Ot,OCBOX(X OB o 6 (X, t,..., 1)

Here the restricting term K c is omitted. This formulation leads directly Russell’'s

paradox referred to earlier by takiggto be x[0 x. Most of the other axioms can be
implied by the unrestricted form, for example thepgy set, pairing and union axioms
(Enderton 1977). These other axioms must therefb@eexplicitly stated since they
cannot follow from the restricted subset form ame tunrestricted form leads to

inconsistencies.

2.1.6 Power set Axiom

For any set A there exists a set B whose elemestpracisely the subsets of A. B is
called the power set of A and is usually denote&®y).
OAMBOx(x OB o xOA)

The statement “Xd A” is unfolded as:

Ot Ox - tOA)

For example if A ={a, b, ¢}, theR(A) = {0, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}}.

2.1.7 Infinity Axiom

There exists a set A such thatis in A and whenever x is in A, so is the unionl Xx}.

A0 OADOx(x DA » (xO{x}) OA)]

An infinite set of this form contains a copy of thatural numbers as proposed by von
Neumann in 1923 (Nerode & Shore 1997). In thigesgntation the first four natural

numbers would be represented as:
0=0
1=00{0}={0}

2={cy 0{{}={9 {}



3={9,{g}} O{{D,{h}={ D, {}, {9, {T}}}

2.1.8 Axiom of replacement
For each formul@(x, y) not containing B, the following is an axiq@nderton 1977):
[OxOyaOy2(¢(x, y2) Do(X, ¥2) - y1=y2)] -
OABOyly OB « x(x OA O¢(x, y)]

This axiom states that if A is a set and the foaquls a functional mapping, then there
exists a set B that is the image of A unde(Nerode & Shore 1997). The functional
property of¢ is asserted by the hypothesis of the axiom. Tresequent of the axiom

states that B is then the set:

B={y|x(xDOATX y)}

As an example we can show that if the set A extbEx) the set B of all power sets of
members of A also exists. That is, BB(4) | all A}. This is done by taking(x, y) to

be y =P(x).
2.1.9 Axiom of foundation or regularity
Every non-empty set A contains an element disjworh A (Enderton 1977).

DAA 20 - kx DA Ox n A=0)]

The axiom of foundation restricts set theory t® setwhich the elements of a set must be
known or must have been constructed before thédsstt can be realised. Some of the

consequences of this axiom are (Enderton 1977,d¢etoShore 1997):
* No set can be a member of itself.
* There exist no sets x and y such that x and ylJ x.

* There exists no infinite descending sequence of set ...00 f(2) O f(1) O

f(0), where f is a function with the domain of tha&tural numbers.
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A proof of these three properties is beyond thesadf this dissertation. Details may be
found in (Enderton 1977).

As an example, let A = {1, 2} = {{I}, {0, {U}}} and x = {O}. It is then true that
xOA and xn A =0, sincel] O {0} but OA.

2.1.10 Axiom of choice

For any set A of nonempty sets, there is a functiaith domain A such that for each
x OA, f(x) Ox. Function fis called a choice function for Adathe range of f is called
the choice set of A. In other words, f is a fuaotthat chooses one element from each
setin A.

OA[Ox(x OA - x#0) - O(func(f) Ddom(f) = ADDOx(x O A - f(x) O x))]

For finite sets A, the axiom of choice is not reqdi since the existence of a choice
function can be proved using the other axioms (BEndel977). However, for infinite
sets A, which are usually uncountable as well,akiem of choice is needed. This is
because it is either impossible or very difficutt tonstruct a rule that makes an
uncountable number of selections. In the caseevités very difficult to construct such
a rule, the axiom of choice is not required buhiékes proofs simpler by postulating that

such a rule exists.

The axiom of choice has been controversial evaresgermelo explicitly stated it as an
axiom (Enderton 1977, Nerode & Shore 1997). On¢hefreasons for this is that it
asserts the existence of an object without telifat it is. Objects that are proved to
exist using the axiom of choice can generally reotibscribed by any kind of systematic

rule. These proofs are therefore non-constructive.

The following example illustrates how one may widteset-theoretic formula using the

axioms above.

2.1.11 Example

Consider the following set-theoretic statement:

11



P{{1}} ={ S.{1}}}

This statement can be represented in first-ordgiclavith the conjunction of the

following list of formulae:

(VA)(VB)(VX)(X OA < X 0B)= A =B) (extensionality)
(VX)(—=(X O empty)) (empty =)
(VX)X Dae X =1) (a={1})
(VX)X Obe X =a) (b ={a})
(VX)X Dce (VY)Y OX =Y Ob)) (c=P(b))
(VX)(X 0 de X =emptyv X = b) (d = {empty,b})
c=d (c=d)

2.2 Limitations of ZF Axioms in Automated Theorem

Proving

The ZF axioms of subset construction and of repiece are infinite axiom schemas,
since any well defined formulfx can be used to yield a relevant axiom. As a te&ul
cannot be finitely axiomatised (Montague 1961) atfrefore cannot be input to an
automated theorem prover. The user must theréfiprg the relevant axiom instances
from the subset construction and replacement asicimemas. For example, a proof that
would require the premise that the relative compglehof two sets exists, A = B — C,

must have the following subset axiom instance $ieekci

OCOBOAOX(xOA « xOBUOxOC)

There are other axiomatisations of set theory dt wiEhe one used most often in the
automated theorem proving community is that of Weumann-Bernays-Godel (NBG)
(Enderton 1977, Quaife 1992a). NBG differs from iaFthat it makes a separation

between concepts of a class and a set. A set Hmssdme meaning as in ZF.

12



Additionally, any set is a class and any collectdrsets is also a class. However, some
classes are too large to be sets. An exampleabf giclass is the class of all sets. Itis
not possible to refer to the class of all classeshe set of all sets which avoids any

paradoxes due to self referencing.

Arguably, the most important aspect of NBG set thdor the automated reasoning
community is the fact that it can be finitely axiatised. NBG set theory is therefore
mostly used for automated reasoning. It unforteiyasuffers from having to deal with
two sorts of objects (classes and sets) insteashef(sets). For more information on
NBG and automated reasoning, the reader is reféeor&byeret al (1986) and Quaife

(1992a).

Formal specification languages like Z and B areetlasn ZF’s set theory despite its
infinite axiomatisation. This is because its liatibns in theorem proving only become a
problem when dealing with advanced mathematicabfgravhich do not occur in the day-
to-day software engineering industry. For exantipdgemathematical toolkit of Z (Spivey
1992) contains a finite number of axioms some ofcivhare instances of the subset
axiom. In this work we will therefore also use Z&t theory.

2.3 Summary

In this chapter we gave an overview of ZF set thetis axioms and an example of
specifying a simple set-theoretic statement int-farsler logic. We further highlighted

the role of set theory in formal specification laages. NBG was mentioned as an
alternative axiomatisation to ZF. Unlike ZF, th&@® axioms are finite which makes it
attractive for automated reasoning. However, thBGNaxiomatisation is more

cumbersome to use with little advantage for comsetrtheoretic problems. As a result,
in this work we will go the route of ZF. The chaptconcluded by discussing the

difficulties of set-theoretic reasoning.
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Chapter 3
Resolution

In this chapter we present an overview of resofdbased theorem proving. The chapter
starts with a discussion on decidability and Handia universe (Nerode & Shore 1997).
These two concepts specify the theoretical limftaidomated theorem proving (Leitsch
1997). Resolution is presented as an efficientta¢ion-based proof procedure. The rest
of the chapter is dedicated to efficiency enhancgmé resolution theorem proving.
These enhancements include resolution refinemedyndancy tests, theory resolution

and heuristics.

3.1 Decidability and Herbrand’s Universe

At the heart of automated theorem proving lies“ttexision problem” (Leitsch 1997). It
is the challenge in symbolic logic to find a gemalgorithm which decides for any first-
order statement whether it is universally validnmt. As early as the T7century,
Leibniz had the vision of building a machine thatuld solve this problem. The problem
was revived in the early #century by Hilbert who posed it as one of sevprablems

to the mathematical community. He called the degigproblem the “fundamental
problem of mathematical logic” (Leitsch 1997 p. P12Progress was made in the
following years by several mathematicians who fodedidable subclasses of predicate

logic.

It was not until the year 1936 that Alonzo Churadd &lan Turing independently showed
that the problem has no solution (Epstein & Calin2000). Church developed an
analysis of computability with his system of thecalculus (Church 1936a). He then
showed that tha-definable functions are undecidable. He latediadphis conclusions
to first-order predicate logic to show that theteoaexists no effectively calculable
procedure to determine the validity of a logicarnfola (Church 1936b). Turing

independently developed his own analysis of coniplitta using the concept of a
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machine that can only perform the most elementgrgration (Turing 1936). This
machine concept is now known as a Turing machinging received a copy of Church’s
paper in time to include an appendix to show thatumction is Turing machine
computable if and only if it ia-definable. By using a diagonal argument, Turingveed
that the question of whether a Turing machine hallt on some arbitrarily chosen input

is undecidable. This is known as the halting probl

Herbrand contributed an important approach to nmasttieal theorem proving in 1930
(Chang & Lee 1973) by proposing a refutation procedo determine the unsatisfiability
of a set of clauses. He associated with each lfmgioula-S an infinite sequence of
propositional logic formulas called the Herbrandverse of S (Nerode & Shore 1997).
He then showed thatS is provable if and only if there is a finite disgtion of formulas
in H that is provable. Based hereon he developedlgorithm to find an interpretation
that can falsify a given formula. However, if th@mula is indeed valid, no such
interpretation can exist since it is by definitimne under all interpretations. Herbrand’s

method forms the basis for most modern automatiofgrocedures.

The commercial availability of computers during t@50’s enabled Gilmore (Gilmore
1960) to write a program to implement the refutatiwocedure of Herbrand’s theorem.
Since a formula is valid if and only if its negaties inconsistent, his program was
designed to detect the inconsistency of the negatiache formula. Based on Herbrand’s
theorem, the unsatisfiability problem is reducegbtopositional unsatisfiability and then
check for inconsistency. Unfortunately Gilmore’sthrod was only able to prove the

simplest of formulas.

Davis and Putnam published a paper in 1960 (DaviBWlnam 1960), shortly after
Gilmore’s implementation, to improve on Gilmore’setinod by suggesting a more
efficient method to test for the unsatisfiabilitf the ground sets. Their method was a
major improvement but also lacked the necessargi@ity. As with Gilmore’s method
the generation of ground sets of formulas usingrectlimplementation of Herbrand’s

theorem was very inefficient (Leitsch 1997).
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3.2 Resolution

All the refutation procedures that are based diyemt Herbrand’s theorem suffer from
the same inefficiency that requires the generaifaground clause sets of the input clause

set. Itis typical for each successive set to gegponentially.

In 1965, John Alan Robinson (1965a) published armdus paper on resolution-based
theorem proving. It was a major breakthrough sihcan be applied directly to any set
of first-order logic clauses to test its unsatisiisy without the need to generate

successive sets of ground clauses based on Heibthadrem.

In the years that followed, many refinements ofohetson have been suggested in
attempts to further increase its efficiency. Somie these refinements include
hyperresolution (Robinson 1965b), set-of-suppomatsgy (Wos 1965), semantic
resolution (Slagle 1967) and paramodulation (Rainn& Wos 1969).

3.2.1 Clausal Form

Many computer implementations of first-order logise the clausal form to represent
formulas (Quaife 1992b), which is an apparentlyrgifi@r-free conjunctive normal form.
This form was introduced by Davis and Putnam (1960formulas are therefore
represented by a more restricted syntax-type tables more efficient inference rules to
be defined and makes it easier to control proofckeaThe clausal form of a formula is
not necessarily logically equivalent to the origifmmula. However, the clausal form
has the important property that it is unsatisfiailbland only if the original formula is
unsatisfiable (Hamilton 1991).

A clause is a finite disjunction of zero or moreeials (Chang & Lee 1973). 1t is
sometimes convenient to regard a set of literalsya®nymous with a clause. For
example-P(x) O Q(f(x)) = {=P(x), Q(f(x))}. A clause with only one literal ixalled a

unit clause. A clause that contains no literalscédled the empty clause and is

represented biyl. The empty clause is always false since it hakteix@l and cannot be
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satisfied by any interpretation. The following idiées hold for empty clauses (Leitsch
1997): AODLJ OB=A0OBandl] O] =L1.

A set S of clauses is regarded as a conjuncti@hl afauses in S, where every variable in
S is considered governed by an implicit universardgifier (Chang & Lee 1973). For
example the formulalx)[(-P(x) O Q(f(x))) T (- Q(x) O P(f(x)))] that is represented by

the set of clauses-{P(x) 0 Q(f(x)), =~ Q(x) O P(f(x))}.

For every formula in first-order predicate logi@th exists a procedure that maps it to a
set of clauses (Wost al 1992). There is more than one method of exegutiis
procedure. The first method consists of the foillmthree steps (Chang & Lee 1973).

* The formula is converted into prenex normal forrA formula is in prenex

normal form if all the quantifiers appear at thgibaing. For example a prenex

normal form of Ix)P(x) ~ (Cy)Q(y) is (X)(Ly)(P(X) ~ Q(y)).

* The formula is then transformed to conjunctive nalrform. The above formula

then becomes {x)(Ly)[(=P(x) U Q(Y)) U (=Q(x) UP(y))]-

* The last step is to eliminate all existential qiféers using Skolem functions. In
this step logical equivalence is usually lost hogrethe transformation is still
equisatisfiable. For every formulakx;...0x,0yy the transformed formula
Oxs1...0xnd whereo is obtained by replacing every variable ywirby the Skolem
function f(x,...,X,). By repeating this transformation, every exigtdrguantifier
can be eliminated. The last formula then becomeég[(-P(x) O Q(f(x))) U

(=Q0) TOP(E(X)))]-

Another method of executing the procedure is givgheitsch (1997). Here the formula
is not required to be transformed to prenex forrfotgethe existential quantifiers are

eliminated.
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3.2.2 Resolution in Propositional Logic

In this section we first discuss how the resolupoimciple applies to propositional logic.
In essence this principle may be viewed as an siirrof the one-literal rule of Davis
and Putnam (Chang & Lee 1973).

The cut rule (reading from top to bottom) states:th
if P then Q.
P.
therefore Q.

It may also be written in the following format:

-P,Q
P

Q

The top line in the above box is the clausal fofr? o> Q where the comma represents a
disjunction. The two clauses above the dividime lirepresent the premises of the

inference rule and the clause below the line reprssits conclusion. Q is therefore a

logical consequence of: PLIQ) and P.

3.2.2.1Binary Resolution Inference Rule

The propositional resolution principle extends tigove rule of modus ponens by
allowing any number of additional literals togetlhgth P and-P. The principle states

that (Chang & Lee 1973, Leitsch 1997):
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Definition 3.1

Let C, and G be two clauses where, @as the form 0OM;[...00M; for i = 0 and
C, has the form=LIN.0...0N; for j 2 0. From G and G we can then infer
M, O...OMO Ny .. ON;.

The resolution inference rule can also be represess (Eisinger & Ohlbach 1993):

LMy,....M;
~LNg,...,N

Ml!"'!Mil Nl!"'!Nj

The resulting inferred clause is called tfesolvent of C; and G. We say that we

resolved on(the literal) L.

3.2.2.2Resolution Deduction or Refutation

The next step is to show how a resolution deducifam clause C can be deduced from a

given formula S.
A resolution deduction is defined as (Chang & L8&3, Leitsch 1997):
Definition 3.2

Let S be a set of clauses. A resolution deduaifahe clause C from S is a finite
sequence of clauses,C.,GC, such that C = gand for all i=1,...,n either ds a

clause in S or s a resolvent of Gand G for j, k <.

A resolution deduction of the empty clausé from S is called a resolution

refutation of S.
Example 3.1

Consider the clause set S=d[1b, a,~c}.
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The following deductions can then take place:

Ci=|-alb Clause in S
C=la Clause in S
C=|-cC Clause in S
Ci=|b Resolvent of €and G

No further application of the resolution rule isspible and the empty clause was not

deduced, therefore S is satisfiable, e.g. a = truetrue and c = false.
Now let S be the following set of clauses:
S={-alb,a~c,~blc}

The following deductions can then take place:

Ci=|-alb Clause in S
C=la Clause in S
Cs=|-c Clause in S
Ci=|-b0Oc Clause in S
Cs=|b Resolvent of €and G
Ce=|cC Resolvent of Gand G
C=|0 Resolvent of @and G

The empty clause was deduced from S and therefm@issatisfiable.
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3.2.2.3Propositional Factoring or Reduction Rule

The resolution inference rule on its own is notfisignt to provide a complete

refutational inference system (Leitsch 1997). Td&e example the following two

clauses:
C,=POP
C,=-PUO-P

It is clear that these two clauses are contradictamd is unsatisfiable under all
interpretations. However, by just employing theotation inference rule, we cannot
deduce the empty clause to show this unsatisfigbilClauses €and G have resolvent
Cs; = PO -P. Resolving g with either G or G will just yield G and G again as

resolvents.

We therefore require another inference rule to ceda clause by getting rid of any
redundant literals. This reduction rule statestfioch 1997):

Definition 3.3

Let C be a clause. Clause C'is a factor of @ i iobtained by removing any

duplicate literals from C.

Applying this rule to the two example clausesddd G above will give us P and
C,=~P. The empty clause is then a resolvent paiitl G.

3.2.2.4Soundness and Completeness

There are many texts that give the proofs for giatational soundness and completeness
of propositional resolution. The soundness theooémesolution deduction states that if
there is a resolution refutation of a set of clauSethen S is unsatisfiable (Leitsch 1997,
Chang & Lee 1973). The completeness theorem fopgsitional resolution deduction
states that if a set of clauses S is unsatisfiahbn there exists a resolution refutation
from S (Leitsch 1997, Nerode & Shore 1997). Theofs of these two properties are
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beyond the scope of this dissertation, but detady be observed in Leitsch (1997) and
Nerode and Shore (1997).

3.2.3 Resolution in First-order Predicate Logic

3.2.3.1Substitution and Unification

The resolution principle for predicate logic is g8anto that of propositional logic in that

one attempts to deduce the empty clause from af s¢duses. However, with predicate
logic, the clauses normally contain implicitly qtified variables that must be kept in
mind when the resolution rule is applied (Nerod&Bore 1997). Take for example the

following clauses:
Cy1: 2P(X) O Q(X)
Co: P(a)

Variable x in clause Cmay be unified with any constant e.g. a. We niardfore

substitute the constant a for x to obtain the daus
Cs: -P(@)0Q(a)
C, and G can now be resolved upon to obtain resolvent Q(a).

In general a substitutioB can be defined as a sei/f, ..., t/vy} where every vis a
distinct variable and everyis a term other than for 1<i < n, e.g. {f(z)/x, g(a)/y}. Let

E be an expression denoting any term, atom oalitel® is then also an expression that
is obtained by simultaneously replacing each véziapin E with the term;t(Chang &
Lee 1973).

For example, le® = {u/x, aly, f(v)/z} and E = Q(X, f(y), z). The8 = Q(u, f(a), f(v)).

Two or more expressionsE..., E, can be unified if there exists a substitutibisuch
that EO = E6 = ... = EB. The substitutiord is called a unifier of the expressions.

Expressions are called unifiable when they haveiteu.
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Unification is always applied using the most geheréfier to be more effective (Nerode
& Shore 1997). A unifie® of a set of expressions,E.., E, is called a most general

unifier if and only if for every unifieo of the set, there exists a substituttosuch that
Ei0 = (E.O)A = ExB = (E.0)A = ... = BB = (E.0)A.

A set of expressions always has a most generaleunifthe set is unifiable and the
problem of obtaining the most general unifier isidable (Leitsch 1997). Most texts on

resolution provide algorithms to determine the ngesteral unifier.

In the next section we turn our attention to theohation principle for predicate logic.

Examples of the application of substitution andiaation are shown.

3.2.3.2Binary Resolution

Substitution and unification as discussed in thevipus section allow us to apply the
resolution principle to predicate logic. The resimn principle for predicate logic is
stated as (Chang & Lee 1973, Leitsch 1997):

Definition 3.4

Let C, and G be two clauses where; @as the form OM;0...00M; for i = 0 and
C; has the form-L'ON,[L..0ON; for j = 0. G and G also have no variables in
common. If@ is a most general unifier of L andl', then we can infer clause
C = M;60...0M;600 N1 6L1... [IN;6.

The resolution inference rule can also be represess (Eisinger & Ohlbach 1993):

LMy,....M;
~L',Ny,...,N,

M36,....Mi6, Ni6,...,N,®

wheref is the most general unifier of L ard.'.
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The resulting inferred clause C is called the nemal of G and G. We say that we
resolved on (the literal) L. Clause C is alsoexhithe child clause of parent clauses C
and G (Nerode & Shore 1997).

The requirement that the parent clauses have nablas in common is due to the fact
that the variables within each clause are loc#th&b clause. This is because the clause is
a Skolem standard form (Chang & Lee 1973) of thigimal formula with implied
universal quantifiers for the variables at the hagig of the formula. The variables
within different clauses are often renamed to awaidfusion. This renaming is referred
to as standardising the variables apart (Nerod&éé&&1997).

A resolution deduction for predicate logic is penmi@d in the same way as for
propositional logic. The difference is that thedy inference rule for predicate logic is
used (Nerode & Shore 1997).

Example 3.2
Let the clause set S be:
S ={-PX)UQ((f(a)), P(2)rQ(X)}

We can then show that S is unsatisfiable usindath@wing refutation deduction:

Ci= | =-P(x)0Q(f(a)) Clausein S

C,= | P(a) Clause in S
Cs= | =Q(x) Clause in S
Cs= | Q(f(a)) Resolvent of Cand G

Unifier is {a/x}

C=|[J Resolvent of gand G
Unifier is {f(a)/x}
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Example 3.3: The farmer, goat, cabbage and wolf paie

The problem of the farmer, goat, cabbage and wdfclassic puzzle that is often used to
illustrate state space search problems (EisingeOlbach 1993). These types of
problems usually have an initial state and a gtakes The solution to the problem is a
path through all the valid states from the initak to the goal.

The puzzle goes as follows:

A farmer has a goat, a cabbage and a wolf thaiakedtake across a river. He
has a small boat with which to accomplish this. fddmnately the boat is very

small and can only carry himself ande of the goat, cabbage or wolf. In his
absence the goat would eat the cabbage and thewvolél eat the goat. How can
he cross the river with the goat, cabbage and ti&w

The above puzzle will be used to illustrate howohetson deduction can be used as a

decision procedure to determine whether the puzdea solution.

A state in the problem is presented by the predictmbol S with arity 4. The
parameters indicate on which side of the riverfdreer, goat, cabbage and wolf are as
follows:

fh — farmer here

fa — farmer across
gh — goat here

ga — goat across

ch — cabbage here
ca — cabbage across
wh — wolf here

wa — wolf across
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Theinitial state is given by the predicate:
S(fh, gh, ch, wh)

Thegoal stateis given by:
S(fa, ga, ca, wa)

A safe state is one in which neither the goat aabage nor the goat and wolf are left
unsupervised. The predicate symbol SAFE with atityill be used to indicate a safe
state. The parameters are similar to those ofigatelS. The following are the safe
states:

SAFE(fh, gh, ch, wh)
SAFE(fh, gh, ch, wa)
SAFE(fh, gh, ca, wh)
SAFE(fh, gh, ca, wa)
SAFE(fh, ga, ch, wh)
SAFE(fa, gh, ca, wa)
SAFE(fa, ga, ch, wh)
SAFE(fa, ga, ch, wa)
SAFE(fa, ga, ca, wh)
SAFE(fa, ga, ca, wa)

The farmer can cross the river with or without of¢he goat, cabbage and wolf if we are
in a safe state and the state after the river trgss also safe. In the light of the

resolution deduction, it means we can deduce astate from an existing state if both
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the current and new states are safe. The variges ¢rossing rules are given by the

following formulae:
Farmer goes across alone:
O(x,y,2) [S(fh,x,y,z)d SAFE(fh,x,y,z)0d SAFE(fa,x,y,z)- S(fa,x,y,z)]
Farmer comes back alone:
0(x,y,2) [S(fa,x,y,z)d SAFE(fa,x,y,z)d SAFE(fh,x,y,z) - S(fh,x,y,z)]
Farmer takes goat across:
O(y,z) [S(fh,gh,y,z)d SAFE(fh,gh,y,z)]1SAFE(fa,ga,y,z)» S(fa,ga,y,z)]
Farmer brings goat back:
0(y,z) [S(fa,0a,y,z)] SAFE(fa,ga,y,z)] SAFE(fh,gh,y,z)-» S(fh,gh,y,z)]
Farmer takes cabbage across:
0(x,z) [S(fh,x,ch,z)] SAFE(fh,x,ch,z)] SAFE(fa,x,ca,z)-» S(fa,x,ca,z)]
Farmer brings cabbage back:
0(x,z) [S(fa,x,ca,z)]1 SAFE(fa,x,ca,z)] SAFE(fh,x,ch,z)- S(fh,x,ch,z)]
Farmer takes wolf across:
a(x,y) [S(th,x,y,wh)0 SAFE(fh,x,y,wh) SAFE(fa,x,y,wa)- S(fa,x,y,wa)]
Farmer brings wolf back:

O(x,y) [S(fa,x,y,wa)] SAFE(fa,x,y,wa)] SAFE(fh,x,y,wh)- S(fh,x,y,wh)]
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The resolution deduction is presented in Appendik. Alt represents one of a number of

solutions:

The farmer takes the goat across and returns. héfetakes the wolf across and
returns with the goat. He leaves the goat andstéke cabbage across. He then

returns and take the goat across.

Referring to Appendix A.1, clauses 1 to 20 are itiputs to the resolution deduction.
Clauses 1 to 8 are the above formulae convertedawsal form. Clauses 9 to 18
represent all the safe states. Clause 19 is filiel istate. The goal state is given by
clause 20 and is the negation of the actual goaksive are using refutation to show that

a solution exists.

We deduced the empty clause and thereby a refnfaimwing that a solution exists.

3.2.3.3Factoring

As in the case of propositional resolution, theabynresolution inference rule for
predicate logic is sound but not refutation conpléiVoset al 1992). Take the

following two clauses as example:
Ci=P(a)UP(y)
C2=-P(w)0-P(2)

Clauses ¢and G are unsatisfiable, but binary resolution alonedssufficient to deduce

the empty clause. Any deduced clause will stititaan two literals.

Factoring is an inference rule that overcomes piiablem (Woset al 1992) and is
defined as (Chang & Lee 1973):

Definition 3.5

If © is a most general unifier of two or more literalsa clause C, then &is

called a factor of C.
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Returning to the above example, a factor 9i<CP(a) and a factor of,Gs -P(w). The
conjunction of these two clauses is then unsaltikdia Note that unification of P(a) and
P(y) in G for example results in P(&) P(a) and not just P(a). However, a clause is
considered to be a set of literals and since oms dot repeatedly list the same element

of a set, unification produces the set {P(a)}.

3.2.3.4Soundness and Completeness

The combination of the binary resolution and faciinference rules provides us with a
refutational sound and complete inference systeros(& al 1992). The soundness

theorem of resolution deduction states that iféhisra resolution refutation of a set of
clauses S, then S is unsatisfiable (Nerode & Sh68¥). The completeness theorem of
resolution deduction states that if a set of clauSas unsatisfiable, then there exists a
resolution refutation from S (Nerode & Shore 198Fang & Lee 1973, Leitsch 1997).

The detailed proof of the above soundness and @ierm@ss properties is beyond the
scope of this dissertation. Nevertheless the pstafts by showing that the system is
complete for ground clauses. The lifting lemmathen the key to proving the
completeness of the system for predicate logic.e Tfiing lemma shows that any
instantiation of a deduction can be replaced byogengeneral one. It is called the lifting

lemma because it “lifts” ground deductions to deduns in predicate logic.

3.3 Efficiency Enhancements

The field of automated reasoning concerns itseihimavith searching for the existence
of proofs. The size of the search space and thkadef traversing the search space are

of vital importance to the efficiency of automatedorem proving (Leitsch 1997).

Robinson’s resolution principle (Robinson 1965aught about a major advancement to
the field of automated reasoning. With each apgibo of the binary inference rule, the

search space grows by a bounded number of bramdtiels are generally not too many,

compared to methods based on Herbrand’s theorenotiied classical methods where
the search space could grow at an unbounded resieger & Ohlbach 1993).
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Implementations of binary resolution are able tlyesanuch more complex problems. It
is however still not efficient enough to solve ey mathematical problems. One of
the problems is that of the unbounded generatioesislvents. Another problem is the
presence of redundant clauses and literals. Raoiasknowledged these problems and
proposed three principles that automated implenientashould employ when searching
for a refutation (Robinson 1965a). These pring@ee those of purity, subsumption and
replacement. The reasoning steps taken by bimsglution are also very small (Quaife
1992b) and result in a high number of unnecesssylvents (Leitsch 1997). Robinson
has also seen this as a problem and published er paphyper-resolution (Robinson
1965b) that uses more than two clauses simultahe@usa reasoning step. Hyper-

resolution is discussed in Section 3.4.4.

Numerous other techniques have been proposed txeetthe search space. Leitsch
(1997) lists three categorises of techniques: eefients of resolution, redundancy tests

and heuristics. Another category is theory resmtugEisinger & Ohlbach 1993).

We shall expand on Leitsch’s treatment of heussdiied look at it from two perspectives.
The first is that of the automatic deduction impégation. The order in which
derivations are generated may have a significapagnon the cost of the search. One
such heuristic could be to give preference to deois containing smaller clauses. The
second perspective is that of the problem specifiehere are usually many different
ways to model a problem in first-order logic. Tieblem specification provides the
initial set of clauses and therefore could havegaificant impact on the search space
(Van der Poll & Labuschagne 1999, Van der Poll 2000set al 1992).

The next sections will be dedicated to exploringnemf these techniques.

3.4 Refinements

A technique X is a refinement of technique Y if fhessible resolution deductions from

X are a subset of those of Y. Since X has fewdudgons, the search space is smaller.

A possible implementation of resolution is knowntfas level-saturation method (Chang

& Lee 1973). The first levelSs the initial set S of clauses. The resolventdauses in
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Sy are added to ;Suntil no more resolutions are possible, that istiluhe level is
saturated. The resolvents @f(3$ S; are then added taSThis process is continued until

the empty clause is found.
The level sets are defined as:
SH=S
S,={resolventsof cand G | G O {Sp I ... O Sy.1}, Co 0 S,.1}, n=1,2,...

The level-saturation method of resolution is a d$enalgorithm to implement on a
computer but generates an extremely high numbelaates. The example of the farmer,
goat, cabbage and wolf puzzle in Appendix A.1 wghin be used to illustrate this point.
However, we will use a different start state, orteere the goat is on this side and the
farmer, cabbage and wolf on the other side. Adsdy two levels of resolvents will be
generated and only an adequate set of input clasaesed. All the initial clauses will

keep the same clause numbering as before.

The level-saturation deduction is shown in Apperdi®. Nine clauses are generated in
the first level and 28 in the second level. Thisvgs that the number of resolvents for

each level grows at a phenomenal rate.

3.4.1 Linear Resolution

The above level saturation implementation of resaiuis not a natural way for people to
carry out a proof using resolution. Humans woulastiikely start with a clause, resolve
it with another clause and use the resolvent ferréxt resolution step, until the empty
clause is deduced (Chang & Lee 1973). This methforesolution is a called linear

resolution and is a refinement of resolution (Ner&dShore 1997).

3.4.1.1Linear Resolution Deduction

We can formally define linear resolution as (Ch&ngee 1973, Leitsch 1997, Nerode &
Shore 1997):
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Definition 3.6

Let S be a set of clauses and C a clause in $nearldeduction of D from S with

top clause C is a sequen&®, B, G, ..., By, G, of clauses (for & 1) such that
+ Cy=Cand
« D=GC,and

« forl<i<n, Gisaresolvent of G and B and

Bi is either in S or is a;@or some j <.

C is called the top clause, all &e called side clauses and alla@ called centre
clauses. There is a linear resolution refutatibrs of the empty clause can be
deduced from S.

Example 3.4

Let S be the set of clauses S = {QXR(x), = Q(x) O R(f(y)), Q(x) O -R(f(x)), ~Q(x) O

= R(x)}. The following is a linear resolution refti@n of S:

Clausesin S

Ci=| Q(X) OR(X)

C2= | =Q() OR(f(y))

Cs= | Q) O=R(f(x))

Ci= ] -Q(X) O0-R(x)

Linear refutation with top clause C,

Cs = | =Q(x) O-Q(f(y)) C,and G
Ce = | R(f(y) Csand G
Cr=| QKX Csand G
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Cg = |- R(X) C7 and Q

Cg = D Cg and Q

Note that clause £&wvas obtained after factoring was applied to claigdollowed by a

resolution step with C

The farmer, goat, cabbage and wolf puzzle that used as an example of binary

resolution (Appendix A.1) is also an example oé&nresolution.

3.4.1.2Soundness and Completeness

Linear resolution is a special case of binary nasmh with factoring which is sound,

therefore linear resolution is also sound (Nerodsh®re 1997).

Linear resolution is also a complete resolutiomtaion procedure. A proof is provided
by Leitsch (1997). It must be noted however tlswg the incorrect top clause can cause
incompleteness. For example, let S be the sdaases S = {P(X)7 P(y) O Q(y), - Q(u),

R(a)}. The following linear deduction shows thaisSinsatisfiable:

Clauses in S

C.=| P()

C2=| =P(y)DQ(y)

Cs=| -Q)

C4 = R(a)

Linear refutation with top clause C,

Cs=1 Q) C,and G

CG = l:‘ Cs and Q
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However, if clause £is chosen as the top clause, then there are o ctwuses that can

be resolved with it. £is therefore the only linear deduction and isaa¢futation.

3.4.1.3Refinements of Linear Resolution

There are various refinements for linear resoluflagitsch 1997). Some of these include
clause ordering and literal information (Chang &L#973) as well as input and UR

resolution. The latter two will be discussed ia tbllowing sections.

3.4.1.4Input Resolution

Input resolution is a refinement of linear resalatbut is not refutation complete (Wets

al. 1992). Input resolution is still useful despiteincompleteness. The reason for this is
that a large class of theorems can be proved wéhd it is very efficient (Chang & Lee
1973).

Input resolution can be defined as (Chang & Lee312@itsch 1997):
Definition 3.7

Let S be a set of clauses. A clause in S is calednput clause. An input
resolution is a resolution in which one of the pai@auses is an input clause. An
input deduction is a linear deduction in which #@le side clauses are input

clauses. An input refutation is an input deductbthe empty clause.

The class of theorems for which input resolutionamplete is called Horn logic (Leitsch
1997):
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Definition 3.8

Horn logic is the class of all finite sets of Harlauses, where a Horn clause is a
clause with one of the following forms:
1. P
2. PO-Q0...0-Q,
3. Q. 0...0-Qp
Form 1 is called a fact, 2 is called rule and 8alked a goal.
A Horn clause is therefore a clause with at most jpositive literal. The terminology of

facts, rules and goals comes from the field of dogrogramming. A proof of the

completeness of input resolution on Horn logicrisvimled by (Leitsch 1997).

The following example serves to show that inpubh&son is not complete in predicate
logic.

Example 3.5

Let S be the set of clauses S = {QXR(x), ~Q(x) O R(f(y)), Q(x) O -R(f(x)), ~Q(x) O

- R(x)}. Note that this is the same set of refutatiluses that was used in Examplé

S does not contain any unit clauses or unit facbdrslauses. Also, S contains a non-
Horn clause Q(x)J R(x). Let D =(Cy, By, G, ..., By, G, be an arbitrary linear input
deduction from S (for 2 1). G must be a clause from S., B also a clause from S.,C
is a resolvent of £ and B. However, G cannot be the empty clause since neither B
nor any factor of it is a unit clause. D can there not be an input refutation of S.

Example 3.6

This example shows an input refutation. It is &aneple about the relationship between
being a parent and grandparent, father and grdredfat this case.
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Clauses in S

C. = | ~FATHER(X, y)O~FATHER(Y,z) ] GRANDFATHER(X, z)

C, = | FATHER(johnSr, johnBoy)

Cs; = | FATHER(zebulon, johnSr)

C,= | ~GRANDFATHER(zebulon, johnBoy)

Input refutation with top clause C,

Cs = | ~FATHER(zebulon, yY1-FATHER(y, johnBoy) Csand G
Cs = | ~FATHER(zebulon, johnSr) Csand G
C:=| ] Csand G

The farmer, goat, cabbage and wolf puzzle thatwgasl above as an example for binary

resolution is also an example of input resolution.

3.4.1.5Unit Resolution

Unit resolution is a refinement of resolution, bot linear resolution. 1t is discussed here
because it is refutation equivalent to input reofu Unit resolution can be viewed as
an extension of the one-literal rule of Davis amtihi@m and may be defined as (Chang &
Lee 1973):

Definition 3.9

A unit resolution is a resolution in which at leaske parent clause is a unit clause
or a unit factor thereof. A deduction in which gveesolution step is a unit
resolution is called a unit deduction. A unit detilon of the empty clause is
called a unit refutation.
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Unit resolvents are always smaller as opposednarpiresolution where the resolvents
tend to be longer clauses (Quaife 1992b). Thipgnty is very important since to deduce
the empty clause, shorter clauses ought to be ddduds a result, unit resolution is a
very efficient refinement of resolution (Chang &d_&973).

As was stated above, input- and unit resolution rafatation equivalent. That is, a
theorem can be proved with input resolution if awdy if it can be proved by unit
resolution. A proof of this equivalence can benfdun (Chang & Lee 1973). This
equivalence then implies that unit resolution, a$ wnput resolution, is not refutation
complete but is complete for Horn logic (Wetsal. 1992).

The proof of the completeness of unit resolutiom Forn logic follows from its
equivalence with input resolution and the prookrefd to in the previous section that

input resolution is complete over Horn logic (Lehsl997).

Since input resolution and unit resolution are egl@nt, Example3.5 that was used to
show that input resolution is not refutation conplalso suffices to show that unit
resolution is not refutation complete. Recall green set S = {Q(x)J R(x), ~Q(x) U
R(f(y)), Q(x) O =R(f(x)), -Q(x) O =R(x)}. This time it is easier to see that unit
resolution is not sufficient to refute S. Thidbmcause there is no unit clause in S that can

be used as a parent clause to perform a unit resolu

Example3.6 that was used to illustrate an input refutatiomlso an example of a unit
refutation. The farmer, goat, cabbage and wolfzfmuzs another example of a unit
refutation.

3.4.2 Semantic Resolution

Semantic resolution was proposed by Slagle (196%).unifies Robinson’s hyper-
resolution (Robinson 1965b), Meltzer's renamabsohation (Meltzer 1966) and the set-
of-support strategy of Wos, Robinson and CarsoB8319 These resolution concepts will
be discussed below.
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3.4.2.1Splitting into Two Groups

The first method that semantic resolution provitteseduce the number of resolvents is
to split a given set S of clauses into two groupar®l $. Clauses within the same group
are not allowed to be resolved with each othere @titerion by which the given set is
split in two is determined by a Herbrand interptietg M (Bachmair & Ganzinger 2001).
All clauses that are true under M are put into greaip and the rest are put into the other
group. It should be noted that if the set of cbmuss unsatisfiable, then there is no

interpretation that can make all the clauses tris. a result, all interpretations would

split the set of clauses in two groups.

Example 3.7

Consider clauses;@nd G of the puzzle (in Appendix A.1) that are repediete:

Cy=| =S(fh, x, y, 2)J-SAFE(fh, x, y, z)J
- SAFE(fa, X, y, zZXdS(fa, X, y, 2)

Farmer goes across

C,=| =S(fa, x, y, Z)J-~SAFE(fa, X, y, z)J
= SAFE(fh, X, y, 2O S(fh, X, y, 2)

Farmer returns

C; and G have the following resolvents:

= S(fh, x, y, 2)d=SAFE(fh, X, y, z)d-SAFE(fa, X, y, z[J
- SAFE(fa, x, y, zZ1-SAFE(fh, x, y, 2)d S(fh, x, vy, 2)

Resolved on S(fa, X, Yy, z)

- SAFE(fh, X, y, zZ)J-SAFE(fa, X, y, zd S(fa, X, y, z)1
= S(fa, X, y, zd-SAFE(fa, X, y, zZJ1-SAFE(th, X, y, 2)

Resolved on S(fh, X, y, z)

Let M be an interpretation in which every litersithe negation of an atom:

M= {=S(th, gh, ch, wh);7 S(fh, gh, ch, wa);S(fh, gh, ca, wh), ...,
- SAFE(fh, gh, ch, wh);x SAFE(fh, gh, ch, wa); SAFE(fh, gh, ca, wh), ... }
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Further, let all clauses that are true under Mrgo group $ and the rest into group.S
Both G and G in the puzzle are true under M and therefore lgetorthe same group,.S
C; and G are therefore not allowed to be resolved with eztbler under the principle of

semantic resolution with splitting.

3.4.2.20rdering of Predicate Symbols

The second concept of semantic resolution thatvallos to cut down on the number of
generated resolvents is the ordering of predicatésls. Given an ordering of predicate
symbols, we can only resolve a clause X fromn8h a clause Y from Sif the literal

resolved upon contains the largest predicate synmb®. Such ordering of predicate

symbols is specified beforehand.
Example 3.8

Consider clauses;@nd G of the puzzle that is repeated here:

Cy=| =S(fh, x, y, Z)J-SAFE(fh, x, y, z)J Farmer goes across
- SAFE(fa, X, y, 2 S(fa, X, y, 2)

Cy = | SAFE(fh, gh, ch, wh) Safe state

C; and G has the following resolvent:

= S(th, x, y, z)D-~SAFE(fa, X, y, zJ1S(fa, X, Y, 2) Resolved on SAFE(fh, gh, ch, wh)
Unifier {gh/x, chly, wh/z}

We will use the same interpretation M as beforevimich every literal is the negation of
an atom. Also, let clauses that are true underoMngp S and the rest into,S C; is

therefore in group Sand G is in group & Let the predicate ordering be S > SAFE. C
and G are in different groups and therefore the splittinteria do not prevent them from
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being resolved with each other. However, the tgsm would be on SAFE(fh, gh, ch,
wh) which does not have the largest predicate symmbolause ¢ based on the chosen
predicate ordering. Clauses @d G can therefore not be resolved under the specified
ordering. If the predicate ordering was chosendtier way round, then the resolution

would have been allowed.

3.4.2.3The Clash

The final concept of semantic resolution that weokiuce is the clash (Slagle 1967). To
illustrate the concept, consider the following cles from the farmer, goat, cabbage and

wolf puzzle:

Cs= | =S(fh, gh, y, zZd-SAFE(fh, gh, y, z1 Farmer takes goat acrosg
- SAFE(fa, ga, y, zZ)1S(fa, ga, vy, 2)

Cy = | SAFE(fh, gh, ch, wh)

Ci5= | SAFE(fa, ga, ch, wh)

Cio=| S(fh, gh, ch, wh) Start state

Take goat across

C,1 = | = SAFE(fh, gh, ch, whjd = SAFE(fa, ga, ch, wh)l Resolvent of gand Go
S(fa, ga, ch, wh) Unifier {ch/y, wh/z}

Cz2 = | =SAFE(fa, ga, ch, wh)l S(fa, ga, ch, wh) Resolvent of gand G,

Cx3= | S(fa, ga, ch, wh) Resolvent of ¢ and G,

Clauses & and G, were intermediate resolvents to allow the resofutf clause &.
This is just one way of generating clausg. CBy using the level-saturation method
(Section 3.4), clause ;& would occur more than once via some other interated

resolvents. Some of the other ways that duplicatetause @ could be generated are:
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Variant 1

Ci21= | ~SAFE(fh, gh, ch, whj1-SAFE(fa, ga, ch, wh)l
S(fa, ga, ch, wh)

Resolvent of gand Gq
Unifier {ch/y, wh/z}

Ci.22= | = SAFE(fh, gh, ch, whld S(fa, ga, ch, wh)

Resolvent of s and G.,;

Ci123=| S(fa, ga, ch, wh)

Resolvent of gand G5,

Variant 2

Cz.21= | = S(fh, gh, ch, wh)1 -~ SAFE(fa, ga, ch, whi)]
S(fa, ga, ch, wh)

Resolvent of gand G
Unifier {ch/y, wh/z}

Cs.22= | = S(fh, gh, ch, wh)1 S(fa, ga, ch, wh)

Resolvent of ¢ and G.»;

C,.o3=| S(fa, ga, ch, wh)

Resolvent of ¢ and G.,,

There are at least three other ways in which cl&ysenay be deduced. All of these

deductions use clauses, @y, C;5 and Go. The only difference between them is the
order in which they use the clauses. The semala#h avoids this redundant generation
of clauses by generating clausg; @irectly from clauses £ Co, Ci5 and Gg without the

need of the intermediate clauses likg @xd G,. In this scenario the set §CCqy, Cis,

Cigq} is called a clash.
A clash can formally be defined as (Slagle 1967):

Definition 3.10

A clash S is a finite set of clauses;{E.., E,, N} for n=1 such that

1. clause N contains at least n literals L., L,

2. foralli=1, ..., nclause jcontains the complementL; of literal L, but

not the complement of any other literal in N noy éiteral in E for j = 1,

.o N
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N is called the nucleus and all&e called electrons.

3.4.2.4Semantic Resolution

Semantic resolution refers to the technique whemaliyie interpretation M is used to
divide a set of clauses into two groups and a uieol step must use clauses from both

groups. Itis defined as (Leitsch 1997):
Definition 3.11

Let S be a set of clauses and let M be an intatoet of S. Let C and D be
clauses in S such that either C or D is false in Mresolvent with C and D as

parent clauses is then called a semantic M-resbbresimply an M-resolvent.
A semantic deduction is defined as (Leitsch 1997):
Definition 3.12

Let S be a set of clauses and let M be an inteapioet of S. A semantic
deduction of the clause C from S is a finite segeesf clauses £...,G, such that
C =G, and for all i=1,...,n either @s a clause in S or;& an M-resolvent.

3.4.2.5Semantic Clash Resolution

Semantic resolution can be strengthened by intiaduthe concept of the semantic
clash. This kind of resolution is called semaotash resolution. It is defined as (Leitsch
1997):

Definition 3.13

Let M be an interpretation of a finite set of classS = {g, ..., K, N} for g=1

that satisfies the following conditions:

1. Ei, ..., Ejare false under M.
2. Let Ry =N. There exists a resolventfof R and Efor 1<i<q.

3. Rg+1is false under M.
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Set S is then called a semantic clash with resfped, or simply an M-clash.
Clauses k..., E; are called electrons and clause N is called tldens. R.qis

called an M-resolvent of the M-clash S.
A semantic clash deduction is defined as (Leit®®i7):
Definition 3.14

Let S be a set of clauses and let M be an inteaxpoet of S. A semantic clash
deduction of the clause C from S is a finite segeesf clauses £...,G, such that
C = G, and for all i=1,...,n either Gs a clause in S or;@& an M-resolvent of an
M-clash.

A proof of the completeness of semantic clash el is provided by (Leitsch 1997).
The ground completeness is first proved as a lemitaereafter, the completeness for
first-order logic is proved by using the liftinghena. Details of the proof are beyond the

scope of this dissertation.

3.4.2.6Semantic Clash Resolution with Predicate Ordering

Semantic Clash Resolution can be strengthened By@gredicate ordering. This is
how Slagle (1967) originally proposed semantic ggm. It is defined as (Slagle 1967,
Chang & Lee 1973):

Definition 3.15

Let M be an interpretation and P be an orderingreflicate symbols of a finite
set of clauses S = {E..., B, N} for g=1 that satisfy the following conditions:

1. E, ..., Ejare false under M.

2. Let Ry =N. There exists a resolventfof R and Efor 1<i<q.

3. The literal that was resolved upon in &ntains the largest predicate

symbol in Efor 1<i<q.

4. Ry+1is false under M.
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Set S is then called a semantic clash with resjpeBt and M, or simply a PM-
clash. Clauses;E.., E; are called electrons and clause N is called tludens.

Rg+11s called a PM-resolvent of the PM-clash S.

A semantic clash resolution deduction with predicatdering is then defined as (Slagle
1967, Chang & Lee 1973):

Definition 3.16

Let S be a set of clauses, M an interpretation agin8 P an ordering of the
predicate symbols appearing in S. A semantic ctasblution deduction with
predicate ordering of the clause C from S is adisequence of clauses, C.,G,
such that C = g€and for all i=1,...,n either Qs a clause in S or;@s a PM-

resolvent of a PM-clash.

Proofs of the completeness of semantic clash reésolwith predicate ordering are
provided by both Slagle (1967) and Chang and L&¥3L As for semantic clash
resolution, the ground completeness is first prov&thereafter, the completeness for

first-order logic is proved by using the liftinghena.

Next we discuss a number of important subclassesewfantic resolution namely UR-

resolution, hyperresolution and set-of-support lrggm.

3.4.3 UR-resolution

Unit resulting resolution or simply UR-resolutiorasvproposed in 1967 by McCharen

al. (1967). It derives its name from the fact thgroduces unit clauses as resolvents.
UR-resolution inference rule can be formally defirzs (Eisinger & Ohlbach 1993):
Definition 3.17

Let S be a set of clauses S = {E., E, N} for n=1. E, ..., E, are unit clauses.
Clause N has the form N 5 ... OL,+. Let® be a most general unifier such

that 1,6 and EB are complementary for alli=1, ..., n.
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L.+1 is called a UR-resolvent of S and is a unit clau§ke clause N is called the

nucleus.0 is called a simultaneous unifier S.

The inference rule can also be defined in the ¥ahg format (Van der Poll 2000, Quaife
1992b):

Ex

En
Ll1 ey Ln+l

Ln+1e

where is a simultaneous unifier such tha® land EB are complementary for all i = 1,

ey N
A UR-resolution deduction is defined as (Wasal 1992, Eisinger & Ohlbach 1993):
Definition 3.18

Let S be a set of clauses. A UR-resolution dedoatif the clause C from S is a
finite sequence of clauses,C.,G, such that C = Cand for all i=1,...,n either C

is a clause in S or;@& a UR-resolvent of S.

The unit clause resolvent can also be derived usinary resolution (Wost al 1992).
However, in this case binary resolution has sorsadliantages (Quaife 1992b). This is
because a number of applications of the binaryluésa rule are required. As a result
intermediate clauses are generated that unnedgssamiarge the search space.
Depending on the search algorithm used e.g. leaeiration (Chang & Lee 1973), the
same intermediate clauses may be generated mameothze because every possible
combination of resolution could be attempted. Tdwacept is known as a clash (Slagle
1967) and was discussed under semantic resolutiovea
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UR-resolution eliminates the unnecessary generaiforesolvents by replacing all the
individual inferences by just one inference stepor this reason, UR-resolution is

referred to as a macro resolution step (Eising&h8bach 1993).

UR-resolution essentially combines several appboat of the unit resolution rule into
one macro resolution rule by using the concept aflash. Unit resolution is not
refutation complete, but is complete for Horn lo@i¢os et al 1992). As a result UR-
resolution is not refutation complete, but is coetglfor Horn logic (Quaife 1992b). UR-
resolution is usually used in conjunction with athaference rules due to its

incompleteness.

Appendix A.3 shows an example of the farmer, goalbbage and wolf puzzle with UR-
resolution applied. Note that the initial clauge is not repeated in the appendix. The
use of UR-resolution substantially shortens theophy simultaneously resolving more

than two parent clauses.

3.4.4 Hyperresolution

Hyperresolution was proposed by Robinson (1965hénsame year that he proposed
binary resolution. Hyperresolution is a speciaecaf semantic clash resolution (Leitsch
1997) based on the interpretation that is usederéltare two variants, positive and
negative hyperresolution. The difference betwdentivo variants is the interpretation
that is used. Hyperresolution can be defined imseof semantic clash resolution as
(Chang & Lee 1973):
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Definition 3.19

Positive hyperresolution is a special case of semantichctasolution (with or
without predicate ordering) where the interpretatd is chosen such that every

literal is negative.

Negativehyperresolution is a special case of semantichctasolution (with or
without predicate ordering) where the interpretatd is chosen such that every

literal is positive.

Hyperresolution can also be defined independeritsemantic clash resolution (Eisinger
& Ohlbach 1993):

Definition 3.20

A clause is called positive if none of its literdélas a negation sign. A clause is
called negative if all of its literals have a negatsign. A clause is called mixed

if it is neither positive nor negative.
Definition 3.21

Let S be a set of clauses S ={E.., E, N} for n > 1. Clause N is negative
(positive) or mixed and has the form N £[M... OLysmform=0. Forall i =1,
..., N B is positive (negative) and has the forp=EK; O H; where K is a literal
and H a possibly empty clause. L@te a most general unifier such th@ and
Ki0 are complementary foralli=1, ..., n. Claus®H ... OH0OLp+1O... O

Ln+mis then called a positive (negative) hyperresdioérs.

A resolution that yields a positive (negative) hypsolvent is called a positive
(negative) hyperresolution. Clause N is called rtheleus and all jEare called

electrons or satellited is called a simultaneous unifier of S.

The inference rule can also be defined in the ¥ahg format (Van der Poll 2000, Quaife
1992b):
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Ky, Hi

Km HI
Ll1 ey I—n+m

where all symbols have the same meaning as in iDefir8.21

Positive hyperresolution derives its name from tlaet that all electrons and
hyperresolvents are positive. Negative hyperreéswiuderives its name similarly namely
all electrons and hyperresolvents are negative.

A hyperresolution deduction is defined as (Sla§lé7):
Definition 3.22

A positive hyperdeduction is a semantic clash deduac(with or without
predicate ordering) in which the interpretation ¢chosen such that every literal
IS negative.

A negative hyperdeduction is a semantic clash demugqwith or without
predicate ordering) in which the interpretation $/chosen such that every literal
IS positive.

Example 3.9

This example refutation is the same as ExarB@eabout the relationship between being
a father and grandfather except for the last dealuctep G that makes use of positive
hyperresolution.
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Clauses in S

C. = | ~FATHER(X, y)O~FATHER(Y,z) ] GRANDFATHER(X, z)

C, = | FATHER(johnSr, johnBoy)

Cs; = | FATHER(zebulon, johnSr)

C,= | ~GRANDFATHER(zebulon, johnBoy)

Input refutation with top clause C,

Cs = | ~FATHER(zebulon, yY1-FATHER(y, johnBoy) Csand G

Co=|[] GCs,Gand G

Hyperresolution can be regarded as a generalisaiffolJR-resolution (Eisinger &
Ohlbach 1993). As with UR-resolution, hyperresiolutis also a macro inference rule
(Leitsch 1997). It has the same advantages aseddlution in that it combines more
than one inference step into a single step, i@intinates the generation of intermediate
clauses. Therefore, the order in which intermedrasolution steps would have been
carried out for the semantic clash becomes irrefeva

Hyperresolution has the additional advantage thatsirefutation complete. Its
completeness is implied by the completeness of semaash resolution. A direct proof

is also provided by (Leitsch 1997) and is beyoredgtope of this dissertation.

The input to a theorem-proving attempt is usuailye as positive or mixed clauses and
the negated conclusion as negative clauses. \Veghtive hyperresolution, the negative
conclusion clauses are typically used as electrdime negative hyperdeduction therefore
tends to be suitable for backward reasoning froen dbnclusion towards the axioms.

Similarly, positive hyperdeduction tends to cor@sp to forward reasoning from the

axioms towards the conclusion (Chang & Lee 1978inger & Ohlbach 1993).
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In the next section we discuss an important advaece in the automated reasoning
arena namely the use of a set-of-support.

3.4.5 Set-of-Support strategy

The set-of-support strategy is a widely used andyfguccessful restriction strategy
(Eisinger & Ohlbach 1993). It was proposed by WRsbinson and Carson (Wos 1965)
in 1965. Similar to hyperresolution, the set-oport strategy is a special case of
semantic clash resolution (Slagle 1967) based @imterpretation that is used.

The input to a refutation-based proof attempt tgityc consists of a set of axioms,
theorems and a negated conclusion. The set ofmaxamd theorems should be satisfiable
and therefore a refutation should involve the negjatonclusion. The set-of-support
strategy takes advantage of this general form fftaBon-based proofs by preventing
clauses from the set of axioms and theorems tesawed with each other (Eisinger &
Ohlbach 1993). The more general case would béadose any satisfiable subset of the
initial clause set. This is the “unsupported” seto resolutions among its members are
allowed. The complement of the “unsupported” sethe “supported” set oset-of-
support Any resolution must include a “supported” clafigen the set-of-support. The
resolvent is also “supported”. It therefore pregetne expansion of a set of consistent

clauses in a proof procedure where the aim isi d contradiction (Wost al 1992).

Linear resolution (Section 3.4.1) is also compatillith the set-of-support strategy
(Chang & Lee 1973). That is, its refutation congess is preserved. A completeness
proof is provided by Nerode and Shore (1997).

The set-of-support strategy is defined as (Nerodgh&re 1997, Chang & Lee 1973):
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Definition 3.23

Let T be a subset of a set of clauses S. If Sis-shtisfiable then T is a set-of-

supportin S.

A resolution of which the parent clauses are nti h@m S — T is called a set-of-

support resolution.

A deduction in which every resolution is a set-opjgort resolution is called a

set-of-support deduction.

The set-of-support strategy is refutation compldRather lengthy proofs of completeness
are given by Wos (1965, 1992). A very concise detepess proof is provided by Slagle
(1967) in terms of semantic clash resolution. His proof, the interpretation M that is

used for the semantic clash deduction is any intéspon that satisfies the set S — T.
The set S — T is assumed to be satisfiable byitiefin Based on this assumption it must
have an interpretation that satisfies all of itauskes. It is however possible that the
satisfiable set is chosen incorrectly which will the assumption the proof is based on.
In such a case all proofs might be blocked (Wbal 1992). The following example

illustrates how the wrong choice for the set-ofsap could block a refutation:

Given set

Ci= | PX)OQWY)

C2= | -P(b)

Cs=| ~Q(c)

Set-of-support

C4 = P(a)

The clause set S = {CC,, G5, G4} is unsatisfiable, but no resolution is possibéeng the

set-of-support strategy. No resolvent is possstdeting with clause £

51



The following two examples show how powerful the-alesupport strategy is in
restricting the growth of the search space. Tmeesaxample (Appendix A.2) that was
used to illustrate the level saturation method waging just binary resolution is again
used here. The only difference is that the sedupiport strategy is used. The negated
goal clause-S(fa, ga, ca, wa) is put in the set-of-support tedrest of the clauses in the

unsupported set.

The first example is given in Appendix A.4 and skowp to saturation level 3. In this

example the first level has only 1 clause instde@ dauses in the original example. The
second level has only 3 clauses instead of 28. tfiha level has 8 clauses and the forth
level that has not been shown in Appendix A.4 hhglauses. The number of clauses
per saturation level started to grow very fastha third and forth levels. The example
was therefore not completed since the level grdveitomes too large to apply resolution

manually.

The second example is given in Appendix A.5. Bhis same as the previous one except
that this time a predicate ordering is applied siet S > SAFE. This greatly reduced
the number of clauses, enabling the example toctenéed up to a refutation. Note that
the initial set of clauses has been omitted. Tits¢ three levels have only one clause as
opposed to the previous example’s 1, 3 and 8 réspbc Level four has 3 clauses
instead of 21. Level five has 6 clauses and aagfun was found immediately on level
6.

3.5 Redundancy and Deletion

The various resolution refinements introduced aboweld still contain redundancies
such as tautologies and circular derivations. Rddocy tests can eliminate these and
thereby reduce the search space.

3.5.1 Subsumption

Subsumption is a deletion strategy whereby du@icduses or clauses that are more

specific than certain other clauses are discariéoksEt al 1992). This is in line with
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the resolution principle that works on the mostegahlevel (Leitsch 1997). The case for
deletion can be defined as (Eisinger & Ohlbach }993

Definition 3.24

A clause C subsumes a clause D if and only if tiere substitutior® such that

Co 0 D. Dis called a subsumed clause.

The symbol in the above definition is used to indicate substiom of one clause by
another. Note that according to this definitionlause D is regarded as redundant not

only if it is an instance of C, but also if it cairis an instance of C.

For example, let C = PO Q(y) and D = P(a)d Q(b) O R(a). Fom® = {a/x, bly} we get
CO =P(a)JQ(b). But ® [0 D and therefore C subsumes D. From this exampini be

seen that clause C implies clause D and is therefamre general.

Subsumption is often employed as a pre-processepgvshereby a set of clauses is first
reduced before resolution takes place. Subsumptonalso be used during resolution
deductions (Leitsch 1997). Forward subsumptiothésprocess that discards any newly
generated clauses that are subsumed by previoesdyned clauses. Backward
subsumption occurs when newly generated clausesused to discard previously
retained clauses by subsumption. Lastly, if deriglauses are periodically reduced by

subsumption, the process is called replacement.

The pruning of the search space using subsumpsian general refutation complete
(Wos et al. 1992). Proofs of the completeness and incompste of subsumption in
combination with some resolution refinements arevigled by (Leitsch 1997). An
example of incompleteness is the combination ofwéwd subsumption with lock
resolution. Another example is the use of subsionpwith the set-of-support strategy
(Wos et al 1992). A clause D with support can be subsumea lelause C without
support. Clause D might however be required infithed proof, hence the problem can

be solved by also giving clause C support.
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Appendix A.6 illustrates the use of subsumption borad with the set-of-support

strategy. The same example that was used tordlesthe set-of-support strategy without
predicate ordering (Appendix A.4) is used here ragdth the addition of subsumption.

Subsumption greatly reduces the size of the segpelce thereby making it viable to
extend it up to a refutation. The number of get@erzlauses in the first four levels was
1, 2, 4 and 2 as opposed to the original exam@dle’3, 8 and 21 respectively, also in
Appendix A.4. Level five has 2 clauses and a s¢fah was found on level six. The
total number of clauses was 18 of which 9 werdmethand 9 discarded.

3.5.2 Tautologies

A tautology is a clause that is valid under alenpretations. A clause is a disjunction of
literals therefore a clause is a tautology if amdyaf it is true or if it contains a
complementary pair of literals (Leitsch 1997). Tdeuse P(f(x))J Q(y) O - P(f(x)) is an
example of a tautology. This is because eithefxp(br its complement will be valid

regardless of the interpretation that is used.

The tautology rule states that a clause D thatt@gitology can be removed from a clause
set S resulting in set S — {D}. Since D is saéidfby all interpretations it follows that an
interpretation satisfies S if and only if it saigsf S — {D} (Eisinger & Ohlbach 1993).
The two sets S and S — {D} are therefore logicalijpivalent as far as a subsequent proof

attempt is concerned.

Clauses that are subsumed are redundant, andetthismidancy depends on the other
clauses that are present. A tautology is reduniddependently of any other clauses that
may be present. As an algorithmic test, tautolefyination is therefore simpler and

faster than subsumption since the algorithm ongdsdo check whether or not the clause

contains a complementary pair (Chang & Lee 1973).

The tautology rule is in most cases refutation detep(Leitsch 1997). Proofs of the
completeness and incompleteness of the tautolo¢yy iu combination with some
resolution refinements are provided by (Leitsch 7)99 Tautology elimination is for

example complete when used as pre-processing avmbination with subsumption or
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hyperresolution. An example of incompleteness he tombination of forward

subsumption with lock resolution (Leitsch 1997).

3.6 Theory Resolution

Any unsatisfiable first-order predicate formula dam refuted by resolution (Robinson
1965a). Resolution is therefore a universal rdlenterence. A disadvantage of this
generality is that resolution does not have anyasgim knowledge of the symbols it
manipulates. As a result domain specific knowledge algorithms cannot be employed
to perform macro inference steps. To perform senguldition for example the axioms of
number theory must be specified and the correclugsn steps must then be selected to
simulate the addition of two numbers. The seapats therefore tends to become very

big for resolution steps that appear to be trivial.

Tailored inference rules that incorporate the sdim&mowledge of a theory have been
proposed for specific cases thereby eliminatingied to add the axioms of the relevant
theory. These macro inference rules have the aagarof reducing the length of proofs
as well as the size of the search space. Gergaihyt resolution that incorporates these
special cases was proposed by Stickel (1985). @dgwerview of theory resolution is
provided by Eisinger and Ohlbach (1993).

The equality predicate was one of the first symlamisvhich special inference rules were
developed (Eisinger & Ohlbach 1993). One reasonhis is that many theorems can be
specified more elegantly using the equality refati@hang & Lee 1973). This is

especially the case for mathematical reasoningif®@®892b).

In this section we shall look at how the equalitgdicate is used in proofs and which
axioms must be included to make the decision puareedomplete. Paramodulation is
thereafter discussed as a special case of themgluton applied to the equality

predicate. Lastly demodulation is discussed.
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3.6.1 The Equality Predicate

An equality predicate by convention starts with EQIUWos et al 1992), using prefix
notation. For example, to state that a = b thesdeEQUAL(a,b) is provided. However,
to make clauses more readable the equals symbolitt’'sometimes be used, infix

notation instead.

Through inspection we can see that the followirayisé set is unsatisfiable:

C,=|P (a)

C,= | EQUAL(a,b)

C:= | =P®)

However, the unsatisfiability of the above set laiuses cannot be formally proved using
only the resolution techniques introduced so feere is equality involved which is only
complete if a number of equality axioms are incthde the proof attempt. These extra
axioms are (Eisinger & Ohlbach 1993):

Ox (x = x) Reflexivity
Oxy(x=y-y=Xx) Symmetry
Ox,y,z(x=yOy=z- x=2) Transitivity

OX1, oo XYoo Xa =1 O OXn = Yo = f(Xayeea%0) = F(Yay-en, Vi) Substitution

OX1,ee e XYoo Yo e =Ya O OXy = Yo OP( e, %) = POYL--.0Y0) Substitution

The above substitution rules must be added foryefianction and predicate symbol

appearing among the formulae.
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These equality axioms formalise the ‘identity ofliscernibles’ principle which states
that if there is no way of telling two entities aptihen they are the same. This principle

is also known as Leibniz’s law (Eisinger & Ohlbak$03).

The first example above in the current subsectiam ©ow be refuted by adding the

relevant substitution clause for the predicate syirfb

Ci=| P(a)

C, = | EQUAL(a,b)

Cs;=| =P(b)

C,=| ~EQUAL(x,y) O-P(x)OP(y) Axiom of substitution applied to P
Cs=| ~P(a)JP(b) Resolvent of Gand G

Co=| P(b) Resolvent of Cand G

CG=10 Resolvent of gand G

3.6.2 Paramodulation

The above axioms provide a logically complete treait of equality but their use slows
down a proof attempt and makes it inefficient (Quei992b). Numerous redundant
clauses are generated (Nieuwenhuis & Rubio 200d)ltreg in a search space that is

rather large for relatively simple problems (Ei®ng. Ohlbach 1993).

Many solutions have been proposed (Chang & Lee )1®73wvhich paramodulation
became the most accepted. Paramodulation wagluted by G.A. Robinson and L.
Wos in 1969 (Robinson & Wos 1969). The name isvddrfrom the close relationship it
has with demodulation (Wat al 1992). Demodulation is discussed in Sectior33.6.

Paramodulation can formally be defined as (Charige& 1973):
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Definition 3.25

Let C, and G be two clauses with no variables in common; h@s the form
L[t] OM;[0...0OM; for i = O where L[t] is a literal containing the term t; Ras the
form (r = s}IN;[...[N; for j = 0. If © is a most general unifier of t and r, then we

can infer clause
C=L0[s6] OM060...OMBON060... ON;6
where LB[s0] is obtained by replacing a single occurrenceBontl0 by 9.

C is called a binary paramodulant of &d G. C; and G are called the parent
clauses of C. The literals L and r = s are calhedliterals paramodulated upon.

We also say the paramodulation is applied fromir@o G. As a result €is

called the ‘into’ clause and,@he ‘from’ clause.
The paramodulation inference rule can also be sepited as (Van der Poll 2000):

L[t], My, ..., M, ‘into’ clause

r=s,N, ... N 'from’ clause

LO[s6], M6, ..., M6, N:, ..., N6

where all symbols have the same meaning as in iDefir8.25above.

An E-model of a set S of clauses is a model ofetipgality axioms that also satisfies the
set S (Chang & Lee 1973). Paramodulation is sauiat if C is a paramodulant of any
two clauses in S then any E-model of S is also anoHel of SO {C} (Eisinger &
Ohlbach 1993).

A set S of clauses is E-unsatisfiable if and ohhyais no E-model otherwise S is called E-
satisfiable (Chang & Lee 1973). The use of theampadulation rule together with

resolution is refutation complete for any set ofifsatisfiable clauses that contains the
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reflexivity axiom (Plaisted 1993). The reflexivigkiom is required to be able to refute

the E-unsatisfiable set{a = a)}.

There are various refinements of paramodulatioh phaeserve completeness when used
with resolution. Some of these include hyper, ,umput and linear paramodulation
(Chang & Lee 1973) as well as the set-of-suppoate)y (Woset al 1992).

The following example shows that the two clauses & = x and P((g(y) + 0) + (b))

implies the clause P(z + f(b)) using paramodulation

C,; = | EQUAL(sum(x,0), x)

Cz = | P(sum(sum(g(y),0), f(b)))

Cs = | =P(sum(z, f(b)))

Cs= | P(sum(g(y), f(b))) Paramodulant from i@to G,
Unifier {g(y)/x}
C=|[] Binary resolvent of gand G

Paramodulation aids in reducing the search spapeobfems containing equalities. This
is because no unnecessary resolution steps cam wGitu and between the equality
axioms (Eisinger & Ohlbach 1993). Unfortunatelygraodulation still generates many
irrelevant clauses (Quaife 1992b). This is esjlgcibe case when the terms t and r in
Definition 3.25above are variables. Demodulation (Wos 1967)technique that helps

to restrict the number of inferences. Demodulatsodiscussed in the following section.

Ordered paramodulation (Nieuwenhuis & Rubio 20GLpamother restriction technique
that only performs replacements of large terms maler ones with respect to some
ordering. Knuth-Bendix completion (Plaisted 193®)ntained the first instances of
ordered paramodulation. It is often used succ#gsfuconjunction with other resolution

techniques. It provides an algorithm for a claBequational theories that permits the
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computation of a set of rewrite rules sufficientteeck the truth of every equation of the
theory by requiring that equal terms reduce tostimae normal form (Quaife 1992b).

3.6.3 Demodulation

Equality relations in many fields of mathematic¢eof tend to be very general with
expressions like (1) = x. In the presence of the expressitin=ac, equality resolutions
mechanisms like paramodulation will infer a setvefy closely related expressions like
(@' = c. The retention of all these related expressicauses an unacceptable high

growth of the search space.

Demodulation was one of the proposed solutionkitouncontrolled repeated application
of a given equality (Wos 1967). The aim of dematlah is to simplify the presentation
of information. Such simplification is achieved &pgplying a transformation to relevant
clauses that replacesin some clause b wheref3 = a andp is simpler thara. The

original clause is then discarded (see ExarB{lé).
An application of demodulation is defined as (Vébsal 1992):
Definition 3.26

Let C; and G be two clauses. (has the form L[tIM;[...00M; for i = O where
L[t] is a literal containing the term t.,@s a positive unit equality clause r = s that
has been designated to be used to rewrite expnsss(® is called a demodulator.
Let 8 be a substitution such th& # t. A clause C is then obtained by replacing t
in L with $9:

C=L[s9] OM6O... OM;B

Clause G is then discarded and replaced by C. Clausedalisd a demodulant
of C..

Note that one-way matching is used instead of cetifon. Also, in the above definition,

if sB@ =t then a demodulant can be obtained by replacing- with . It is however a
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common convention to consider only the first argntr&f the demodulator LWos et
al. 1992).

The application of demodulation can also be remteseas (Van der Poll 2000, Quaife
1992b):

L[t], M1, ..., M;

r=s

L[s6], M6, ..., M;®

where all symbols have the same meaning as inbitneezDefinition3.26 e.g. B = t.
Demodulation is then defined as (Wos 1967):

Definition 3.27

Let W be a set of positive equality unit claus&emodulation is the process of
replacing a clause C by a demodulant D of A red¢ativ W. D is obtained by
generating a sequence,C.., G such that G C;, D = G, Gs1 is a demodulant of
Ci as defined above using a demodulator in W fari k¥ k, G.1 has strictly fewer

symbols than Cand G has no demodulant relative to W with fewer symbols
Example 3.10

In the following example the demodulation rul@gplied to clause {using equality W

to obtain the simpler demodulans.C

Wi = | EQUAL(sum(x,0), x) An available equality.

Ci= | P(sum(1,0)J-Q(c) The given clause.

C=| P(1)0-Q(c) Demodulant of Wand G
Substitution {sum(1,0)/1}
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Demodulation typically applies all demodulatorstine system to all relevant terms of
any newly generated clause until the clause caherosimplified any further (Quaife

1992b). In the case where a new demodulator igrgésd, all the previously retained
clauses can be examined for possible demodulatitmthe new demodulator. This is
called back demodulation (Wes al. 1992).

Demodulation and paramodulation are similar in th@h cause an equality substitution
with a successful application. Demodulation algs lequivalent ‘from’ and ‘into’

clauses. In fact, paramodulation’s name was dérfuen the close relationship it has
with demodulation (Wost al 1992). Demodulation and paramodulation differs i
several aspects though (Weisal 1992). Unlike paramodulation, demodulation reegli

the equality literal to be in a unit clause. Demlation allows for variable replacement
only in the argument of the equality literal whp@aramodulation allows it also in the
term into which the substitution is being attemptdeéaramodulation retains the parent
clauses and the paramodulant whereas demodulaiscards the original clause into

which the substitution took place.
Example 3.11

The following example from group theory illustratbée simplification of the expression
(elle@)™))b = c to & = c. Suppose P(x,y,z) representg x z, function f(x,y)
represents ¥ and function g(x) represents’x Two equalities are availableiXe= x,

xHt=x.

W; = | EQUAL(f(e,x),x) An available equality.

W, = | EQUAL(g(g(x)),x) An available equality.

C, = | P(f(e,f(e,g(g(a)))),b,c) The given clause.

C, = | P(f(e,g(g(a))),b,c) Demodulant of V@nd G
Substitution {g(g(a))/x}
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Cs;=| P(g(g(a)),b,c) Demodulant of Vénd G
Substitution {g(g(a))/x}

Cs=| P(a,b,c) Demodulant of Wand G
Substitution {a/x}

The following section introduces a further aidhe tesolution process, namely heuristics
to be used in the search for a proof.

3.7 Heuristics

A general definition of a heuristic is an informgidgmental knowledge of an application
area that constitutes the rules of good judgenrette field (Turban & Frenzel 1992).

For example, a stock trading heuristic to redusk dould be to not buy stocks whose
price-to-earnings ratio is larger than 10.

The order in which derivations are generated dutivg search for a refutation has a
strong influence on the cost of the search (Leits@%i7). A simple but effective heuristic

would be to give preference to deductions contgirimaller clauses. Smaller clauses
could mean clauses containing fewer literals ous#a of smaller term depth, i.e. fewer

levels of nesting.

Different types of clause complexity may be combiirea weight function, resulting in a
preference for clauses having smaller weight. Wegght of a clause is determined
primarily by the number of literals in the clausetioe term depth of the clause. Other
examples of weight function parameters could bgite priorities to variables, function
symbols, predicate symbols and terms. An automiasioning program that employs
weighting chooses the clauses with the most faleraeight (e.g. a smaller weight).
Using weighting in this manner is referred to agiraction strategy (Wost al 1992).
Weighting can also be used as a restriction styatégthis case it will cause new clauses
whose weight is above some threshold to be deleted.
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The use of weighting as a direction strategy onfluences the ordering of derivations
and therefore does not influence the completenedsqroof procedure. This heuristic
differs from a restriction strategy heuristic theduld make the proof procedure
incomplete. For example, a restriction of prodgcamly clauses with fewer than four

literals (say) is an incomplete refinement (Leit4€97).

Another heuristic is the selection of the inferemsechanism for a specific class of
problem. An automated theorem prover could electuse paramodulation with
demodulation when identifying the use of equality.could identify the problem as a
Horn class problem and therefore use the morei@fticunit and input resolution
strategies that would otherwise be incomplete. rBasoner can also change its strategy
when detecting that a specific theory is relevarthe problem for example set theory as
is the case in this dissertation. This heuristiold lead to incompleteness for example
when forward subsumption is selected in combinatioth lock resolution (Leitsch
1997).

All the heuristics discussed above are used by modetomated reasoners. Theorem
provers also make many of these parameters awaitabthe user for configuration.

Some of these parameters include weighting, maop Isettings, inference rules,

restriction strategies, time and memory limits, maxm number of clauses to retain
(McCune 2003, Tammet 1997, Voronkov 2005).

The user can therefore apply his or her own hecsigh an attempt to guide the theorem
prover to find a proof by adjusting these paransetdtor example the weighting strategy
is suggested as a user heuristic by Van der PdllLatbuschagne (1999) whenever the
set-of-support contains an equality literal. Vasoconfigurations of the weighing
strategy are also suggested by Quaife (1992b) wweking with problems involving
sets and Tarski's geometry. He also proposesottetshould not use binary resolution as
an inference rule (Quaife 1992b). Wos also pravideuristics with regards to inference

rules and strategy selection (Wetsal 1992).

A further heuristic that can be applied by a usdhat of problem representation (\ais

al. 1992, Van der Poll & Labuschagne 1999). Theahoif problem representation can
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play an essential role in the theorem prover’s chasf succeeding and the time it takes
to succeed. Wos refers to the heuristics of probilgpresentation as an art because of its
subtleties and the difficulty of characterising tbgsential concepts that constitute a
problem representation. Various problem-represientdeuristics are provided by Wos

(1992), for example that unit clauses, shorter s¢guand equality predicates should be

given preference.

Quaife provides heuristics for problem represeotain set theory (Quaife 1992a). One
of these is to replace the axiom of extensionahgt contains a Skolem function when
clausified with an equivalent but simpler formul&@he Extensionality axiom (Section
2.1.1) states thalAOB(CIx(x 0 A - x 0 B) -~ A = B) where A and B are sets and x
represents elements of these sets (Enderton 194¥9.axiom can be replaced with the
equivalent formulaJACB(A =B - A OB OB [ A) that requires no Skolem function.

Van der Poll and Labuschagne have done extensseameh on heuristics that could be
applied to the representation of problems in sebh (Van der Poll & Labuschagne
1999, Van der Poll 2000). In their work they prasa set of problem frames or patterns
that captures the properties of a specification dam compromise the efficiency of a
theorem prover. For each of these problem franeeprbvides one or more heuristics
that can alleviate the problem as well as an exartit illustrates its effect. Some of

these heuristics are:

» Use the principle of extensionality to replace difyan the set-of-support. For
example, if C=D appears in the set-of-support it ba replaced by{x)(x I C
- x [OD).

» Perform two separate subset proofs whenever thielggnoat hand requires the
theorem prover to prove the equality of two sdter example, the above goal of
C = D can be replaced by a proof showing that)(x 0 C -~ x O D) and
thereafter a proof thaflk)(x 0 C - x O C).

* Avoid if possible the use of nested function synshialdefinitions.
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* Avoid the inclusion of information that is not obusly necessary in the input to

the theorem prover.

3.8 Summary

This chapter gave a brief overview of decidabibtyd Herbrand’s universe. The next
section presented resolution as an efficient rgarigprocedure. It was shown how a
first-order statement may be converted to clausahfwhich is required for resolution.
Resolution in propositional and predicate logic wascribed. The rest of the chapter
focused on efficiency enhancements for resolutibhese enhancements were classified
into four categories: resolution refinements, rethnty tests, theory resolution and
heuristics. The refinements that were addresserk Vieear resolution, semantic
resolution, UR-resolution, hyperresolution and&etupport strategy. Redundancy tests
included subsumption and tautologies. Theory tdésm covered paramodulation and
demodulation. Finally some heuristics that carabematically applied by the theorem

prover and those that must be applied by the Spewikre discussed.
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Chapter 4
Automated Theorem Provers

The VdPL heuristics (Section 1.3) were arrived a@hwhe aid of Otter, a first-order
automated resolution-based reasoner (McCune 200)e aim of this work is to
determine to what extent other state-of-the-artsomars can benefit from the said
heuristics. The Vampire and Gandalf theorem p®well be used for this purpose and a
motivation for using these reasoners is presem{adoverview of each of Vampire and

Gandalf as well as an example of the input to eexchthe resulting proofs are given.

Appendix B gives a list of some of the theorem pgrswhat were evaluated for this work.
The list is limited to automated theorem proversfifst-order logic. Within this list only

resolution-based theorem provers were considenee €dtter is also based on resolution.

The selection of possible reasoners was furtheucesdi by considering individual
performances in the CADE ATP System Competition83C) (Pelletieret al. 2002,

Sutcliffe & Suttner 2006). CASC is an annual coftitipn that evaluates the
performance of automated theorem provers usingickdirst-order logic. It has 6 main

divisions based on the types of problems.

Vampire is our first choice and will be the primasasoner used in this work. Vampire
fits the profile for two reasons. The first is base of its consistent success at the annual
CASC competitions. Vampire came first in two &f divisions every year from 2002 to
2007. In 2000 and 2001 it came first in one of dnasions. The second reason stems
from the fact that Vampire has solved more set+t@oproblems than any of the other
competing provers in the period from 2002 to 206iss all divisions involving these

problems.
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Vampire may therefore undoubtedly be consideredate-®f-the-art reasoner for set-
theoretic problems. If we can show that Vampiredbigs from the VdPL heuristics, then

it is plausible that other reasoners will benebinf these heuristics as well.

Gandalf was chosen as the secondary reasoner isin@s the only other automated,

resolution-based reasoner that has recently wandASC division.

The rest of this section will be used to descrilaenyire and Gandalf in more detail.

4.1 Vampire

Vampire was developed in the Computer Science Dmeat of the University of
Manchester by Andrei Voronkov previously togeth@hvAlexandre Riazanov. Vampire

is coded in C++. The version that was used invlug is version 7.0.

Vampire is described in a number of sources, ngnv@yonkov (2001, 2005), Riazanov
(2003) and Riazanov & Voronkov (2002, 2001). laisesolution-based system for fully
automatic theorem proving in first-order logic wahuality. It implements the calculi of
ordered binary resolution and superposition fordiiag equality. Superposition is a
calculus for reasoning in equational first-ordegitothat combines concepts from first-
order resolution with ordering-based equality hangllas developed in the context of
unfailing Knuth-Bendix completion (Nieuwenhuis & Bo 2001).

Vampire supports the inference rules of orderedaryinresolution (Bachmair &
Ganzinger 2001) with negative selection, superfmosiand a special form of splitting.
The splitting rule and negative equality splittisugg simulated by the introduction of new
predicate definitions and dynamic folding of sudfimitions.

Vampire makes use of a number of redundancy coatndl simplification techniques.
These include forward and backward subsumptionsiwsuption resolution, tautology
deletion, forward and backward demodulation, reagiby ordered unit equalities, basic
restrictions and irreducibility of substitution tes. The reduction orderings used are the
standard Knuth-Bendix ordering and a special naansve version of the Knuth-Bendix
ordering.
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A number of efficient indexing techniques are ugednplement the major operations on
sets of terms and clauses. Run-time algorithmialgation is used to accelerate some
costly operations for example checks on orderingstraints. Run-time algorithm

specialisation originated with Vampire and is déxad in Riazanov (2003).

Vampire is a saturation-based theorem prover.mfiléments three different saturation
algorithms that can be selected for its main loopihferring and processing clauses.
The three saturation algorithms are an Otter lodp o without the Limited Resource
Strategy and the Discount loop. These algorithelsry to the class of given-clause

algorithms.

The Otter algorithm used in Vampire is a slight mfiodtion of the saturation algorithm
used in the Otter reasoner (McCune 2003). A siiedliversion of the algorithm used by

Vampire is given below:

input: init: set of clauses;
var active, passive, unprocessed: set of clauses
var given, new: clause;

active = O;
unprocessed := init;
loop
while unprocessed z 0
new := pop(unprocessed);
if new = [J then return unsatisfiable;
if retained(new) then ( * retention test *)
simplify new by clauses in active O passive;(* forward simplification *)
if new = [ then return unsatisfiable;
if retained(new) then ( * another retention test *)
delete and simplify clauses in active and ( * backward simplification *)

passive usin g new;
move the simplified clauses to unprocessed;
add new to passive;

if passive = O then return satisfiable or unknown;

given := select(passive); ( * clause selection *)
move given from passive to active;

unprocessed := infer(given, active); ( * generating inferences *)

Clause selection in Otter is based on an age-wedgiotwhich is also known as the pick-
given ratio in Otter. The retention test consgdtsleletion rules plus a weight test. The

weight test discards any clause whose weight excaeser-defined limit, if specified.

The Limited Resource Strategy aims to improve fifectveness of the Otter algorithm

when a time limit is imposed. Usually when theeDttlgorithm reaches the time limit

69



many clauses remain passive. This means that ampwtational resources that were
used to generate, process and keep these claugesbbéen wasted. The aim of the
Limited Resource Strategy is therefore to identifgich passive clauses have little

chance to be processed by the time limit and it thiscards these clauses.

The set of passive clauses tends to become mugér [lHran the number of active ones.
As a result, its use in simplifying inferences ssodown the proof search. The Discount
algorithm, which is named after the theorem prawecount (Denzingeet al 1997)
aims to solve this problem by not allowing passilaises to be used at all. As a result
any new clauses can be processed faster sinceaoslyall subset of all clauses is
involved in simplifying inferences. A disadvantagethe algorithm is that a valuable
clause might not be generated by a simplificatioference, which would have been

generated by the Otter algorithm. The Discountidigm is given below:

input: init: set of clauses;
var active, passive, unprocessed: set of clauses
var given, new: clause;
active = O;
unprocessed := init;
loop
while unprocessed z 0
new := pop(unprocessed);
if new = [ then return unsatisfiable;
if retained(new) then (* retention test *)
simplify new by clauses in active; * forward simplification *)
if new = [ then return unsatisfiable;
if retained(new) then (* another retention test *)
delete and simplify clauses * backward simplification *)
in active using new;
move the simplified clauses to unprocessed;
add new to passive;

if passive = O then return satisfiable or unknown;
given := select(passive); * clause selection *)
simplify given by clauses in active; * forward simplification *)
if given = [ then return unsatisfiable;
if retained(given) then * retention test *)
delete and simplify clauses * backward simplification *)

in active using given;
move the simplified clauses to unprocessed;
add given to active;
unprocessed := infer(given, active); * generating inferences *)

Various heuristics for Vampire’s automatic mode énédeen derived from empirical data
obtained on problems from the TPTP (Thousands oblBms for Theorem Provers)
(Sutcliffe & Suttner 1998) problem library.
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Vampire is divided into a kernel and a shell comgran The kernel works only with
clausal normal forms. The shell or pre-processuvdver can accept a problem in first-
order logic syntax, clausify it and perform a numbé useful transformations before
passing the result to the kernel. The TPTP natasoused as input for Vampire. The
advantage of the TPTP syntax is that it is widedgduamong theorem provers. There are
also tools available to convert a problem specitisthg the TPTP notation into other

notations for those theorem provers that do nog¢ptcthe TPTP notation.

The following is an example TPTP input of a sewtietic problem to show that

P13 ={ O.{1}}

% A TPTP set-theoretic problem:
% Show that P{{1}} = {Empty.{{1}}}.

% Reflexivity

fof(reflexivity, axiom,
1[X]: X=X

).

% Extensionality
fof(extensionality, axiom,

HAB] : (([X]:(el(X,A) <=> el(X,B))) => (A = B))
)

% Empty = {}
fof(empty, axiom,
)~( ?[X]: el(X, empty) )

% A ={1}
fof(a_is_1, axiom,

IX]: (el(X,a) <=>(X=1))
).

% B = {A}
fof(b_is_a, axiom,

IX]: (el(X,b) <=> (X =a))
).

% C =P(B)
fof(c_is_power_b, axiom,

IIX]: (el(X,c) <=> ([Y]: (el(Y,X) => el(Y,b))) )
).

% D = {Empty {{1}}}
fof(d_is_empty_or_1, axiom,
) IX]: (el(X,d) <=> ((X = empty) | (X=b) ))

% Goal clause C =D

fof(c_is_d, conjecture,
c=d

).
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Vampire then finds a proof fd{{1}} = { U,{{1}}} in 0.2 seconds. The output appears

in Appendix C.1. It also lists the proof steps.anvpire tries to make the proof as
readable as possible and as a result the proolibutpkes up the largest part of the
output. Finally some global statistics are prodider example the number of clauses

generated, subsumed, discarded etc.

Note also that by default in the TPTP notation tamis start with a lower-case symbol
(e.g. empty above) while variables start with cpit The documentation (i.e.

comments) in the above example follow a more ti@ditl approach, e.g. Empty = {}.

4.2 Gandalf

Gandalf was developed by Tanel Tammet (1997)s # family of theorem provers for
classical first-order logic, intuitionistic firstrder logic and propositional linear logic. It
also includes a finite model builder. These prev@rare large parts of their code. The
name Gandalf is that of a powerful wizard in thedas fantasy books “The Hobbit” and
“The Lord of the Rings” written by J.R.R. Tolkieh966).

Gandalf is a resolution-based reasoner with equaht implements a large number of
inferences and strategies. Some of these includeyb, unit- and hyperresolution, set-
of-support, paramodulation, forward and back dertaithin, Knuth-Bendix ordering,

literal ordering, tautology elimination, forward dabackward subsumption and limits on

clause length and term depth.

Gandalf is written in Scheme (Dybvig 2003) and cdetpto C by the Scheme-to-C
compiler Hobbit which was also developed by Tam@®97). The platforms under
which Gandalf has been tested are Linux, Solari$ BIi$ Windows using Cygwin.
Gandalf is also optimised for handling problems rehHarge numbers of long clauses are
derived. It is freely available under the Gnu Rulbicence. A commercial version
called G is developed and distributed by Safel@ddsc This version contains numerous
additions, strategies and optimisations aimed fipally at the verification of large

systems. In this dissertation we used the freedylable version c-2.6.r1.
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Gandalf implements a large number of search siedegThe usage of these strategies
can be either controlled by the human user or l&y gbwerful automatic mode of
Gandalf. The automatic mode first selects a seiftdrent strategies that are likely to be
useful for a given problem and then attempts @ééhstrategies one after another. It uses
time-slicing to limit the time that a specific selarstrategy is executed. When the
strategy’s time runs out, the next strategy is ategt During each specific strategy run
Gandalf typically modifies its strategy as the timait for the run starts coming closer.
Selected clauses from unsuccessful runs are soseetised in later runs.

The basic strategies that Gandalf selects fromhgperresolution, binary set-of-support
resolution, unit resolution and ordered resolutidrypically Gandalf selects one or two
strategies to iterate over term depth limit and ondéwo strategies to iterate over the
selection of equality orderings. During the secbalf of each strategy run Gandalf will
impose additional restrictions, like introducingtuestriction and switching over to strict
best-first clause selection.

The strategy selection for a particular problernased on the following criteria:

» The CASC problem class (Pelletier 2002, SutcliffeSfttner 2006). These
classes include unit equality (UEQ), pure equal®¥Q), Horn logic with no
equality (HNE), Horn with some but not pure eqyalHEQ), non-Horn with
some but not pure equality (NEQ) and non-Horn withequality (NNE). These
strictly determine the list of basic strategiese Tbllowing criteria determine the

relative amount of time given to each strategy.

0 The problem size based on the number of clauséiseirproblem. The
classifications are small, medium or large. Fogbigproblems, the set of

support strategy gets relatively more time thareogtrategies.

0 The percentage of clauses that can be orderedrby depth are small,
medium and all. For larger percentages term dequtérimg gets relatively

more time than other strategies.
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Like Vampire, Gandalf is a saturation-based theopeaver. It implements the widely

used given-clause saturation algorithm, also ugetthdo Otter and Vampire provers. The
main loop for inferring and processing clauses Xactdy the same as that of Otter
(McCune 2003):

whi | e (sos is not empty and no refutation has been found )
1. Let given_clause be the lightest clause in sos ;
2. Move given_clause from sos to usable;

3. Infer and process new clauses using the infere nce rules in effect;
each new clause must have the given_clause as one of its parents and
members of usable as its other parents;
new clauses that pass the retention tests are appended to sos;

end of while | oop.

A subset of the Otter notation (McCune 2003) isdulse problem input. Gandalf does
not recognise formula syntax and requires the inpute inclausalform. The TPTP
utility tptp2X (Sutcliffe & Suttner 1998) can be used to conwegiroblem in TPTP

notation to the required Otter notation in cladeain that can be used by Gandalf.

The following example illustrates the use of Gahddt is the same example that was
used to illustrate Vampire’s use. The input ishie Otter clausal form notation and was
obtained by a conversion from the TPTP input usinggtptp2X utility. The input file has

been modified afterwards by adding comments andoverg some unnecessary

generated comments.

assign(max_seconds,1800).
set(prolog_style_variables).
set(tptp_eq).

set(auto).

clear(print_given).

% The usable list
list(usable).

% Reflexivity
equal(X,X).

% Extensionality
el($f1(A,B),A)|el($f1(A,B),B)|equal(A,B).
-el($f1(A,B),A)| -el($f1(A,B),B)|equal(A,B).

% Empty = {}
-el(X,empty).

% A ={1}
-el(X,a)|equal(X,1).
el(X,a)| -equal(X,1).

% B = {A}

-el(X,b)|equal(X,a).
el(X,b)| -equal(X,a).
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% C = P(B)
-el(X,c)| -el(Y,X)[el(Y,b).
el(X,c)|el($2(X),X).
el(X,c)| -el($f2(X),b).

% D = {Empty {{1}}}
-el(X,d)|equal(X,empty)|equal(X,b).
el(X,d)| -equal(X,empty).
el(X,d)| -equal(X,b).

end_of_list.

% The set of support

[0 ——

list(sos).

% Goal clause C =D
-equal(c,d).

end_of_list.

With the above input Gandalf is given 30 minuteB0(l seconds) to find a refutation by
the commandhssign(max_seconds,1800) . Also, no explicit inference strategies have

been set. The commasd(uto) instructs Gandalf to automatically select straegi

Gandalf finds a proof after 119.21 seconds and ywesl the output as shown in
Appendix C.2. The output also confirms that auttorstrategy selection is used and that
the time limit is 30 minutes. The problem class baen identified as NEQ, that is non-
Horn with some but not pure equality. The probkeme is classified as medium. The
strategies that have been selected are displagkalyéd by the steps of the proof. The
strategies that were actually used to obtain tlefpare also listed. Finally the output
gives some global statistics for example the nurobefauses generated, kept, subsumed
etc.

Note that the Gandalf algorithm attempts a numlbgraof strategies one after another.
It is possible that only the last strategy attempgisoduces a proof, hence the work done
during the previous strategies is effectively wdsta reporting the time taken to find a
proof, Gandalf does however give the total timeetalof which the time for the
successful strategy is a part. We observe thikerptoof output in Appendix C.2. This
phenomenon is similar to other reasoners explothng consequences of irrelevant

information, e.g. the Redundant Information heuzideveloped in Section 5.8.

4.3 Summary

The aim of this work is to determine to what extstdate-of-the-art resolution-based

reasoners may benefit from the VdPL heuristicshim $ame way that Otter benefited
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from these. This chapter identified the two theonerovers that we consider in this
dissertation. Vampire and Gandalf were selectexdree they are also resolution-based
reasoners like Otter and performed well in thetkebry sections of the CADE ATP
System Competitions (CASC) (Pelletegral 2002, Sutcliffe & Suttner 2006).

A brief introduction to the resolution techniques@oyed by Vampire and Gandalf was
given including a sample input problem and the e@epe outputs in appendices. In the
next chapter we shall investigate the utility oé tikdPL heuristics for Vampire and

Gandalf.
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Chapter 5
Evaluation of Set-Theoretic Reasoning

Heuristics

The VdPL heuristics were developed to aid automat@doners in solving set-theoretic
problems. The heuristics were arrived at throdghuse of the resolution-based reasoner
Otter. In this section we measure the utility loéde heuristics for Vampire and on a

scaled down version also for Gandalf.

We evaluate eleven of the fourteen heuristicsalitideveloped by Van der Poll and
Labuschagne (1999) and later extended by Van de(Z0®0). The three heuristics that
are not evaluated are weighting, inference rulecs®ein and set of support enlargement.
The use of these 3 heuristics would involve modtfans of prover default settings e.g.
inference rule selection, weighting and inferenitatsgy. A fair amount of time can be
consumed by experimenting with the large numbeseaifings and the combinations
thereof. For this reason the only default settitigg were changed are the time and

memory limits.

The experiments reported on in this chapter followattern: First a sample problem is
presented and the ZF axioms on which the problebased are stated. The performance
of Otter as researched by Van der Poll and Labugeh§1999) and Van der Poll (2000)
in their attempts to find proofs is then report&tie heuristic identified from a failed
proof attempt is then presented. Such heuristmnatl Otter to successfully solve the
given problem. Next Vampire and Gandalf are usetheroriginal problem to determine
the need for the particular heuristic. In some sase increase the complexity of the

problem as an additional test.

We used Vampire version 8.0 and Gandalf versior6a2 A time limit of 30 minutes
and a memory limit of 128MB were imposed on eathese limits cause Vampire to use
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its limited resource strategy, thereby allowing thasoner to selectively discard passive
clauses. No changes were made to the other defaitihgs of Vampire and Gandalf.
All the Vampire and Gandalf proofs were done orAMD Athlon 1700+ machine with
256MB RAM and a clock speed of 1.47GHz. The VdPluristics were previously
arrived at by running Otter on a slower machinenely an AMD K6-2 machine with
64MB RAM and a clock speed of 400MHz (Van der R8I00).

5.1 Equality versus Extensionality

The first heuristic that we consider is applicaolesituations where set-theoretic equality
is used in the input to the reasoner. The ZerrRed@nkel axiom of extensionality
(Enderton 1977) states that two sets are the sérardi only if they have the same

elements (Section 2.1.1):

DAOB(OX(x O A « x0B) -~ A=B) (5.0

A set is therefore determined by its elements. dafe therefore replace any set equality

formula with a formula stating that the elementshaf sets are the same.

Our first sample problem based on set-theoreti@akgiand the power set axiom is given

by:

P{{1}={ O, {11} (5.2

Neither Otter nor Vampire accepts formulae in tighly evolved notation of set theory,
which is the result of introducing a number of syistby meta-level definitions. Hence
the user has to rewrite set-theoretic formulae (k&) above in terms of a weaker first-
order language having the relevant relations andtions symbols in its alphabet (Van

der Poll & Labuschagne 1999). Therefore, our paimigation is rewritten as:

A={1} OB={A} OC=P(B)OD={0,B} - C=D (5.3

Further decomposition is required f&(B) as (refer Section 2.1.6):
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Ox(xOC o Oy(yOx - ylIB)) (5.9

Otter found no proof fory.3) in 20 minutes (Van der Poll 2000). Next, if aieough
extensionality replaces the consequéhtD) by

Ox(xOC - xOD) (5.5

then it allowed Otter to find a proof in 0.03 sedsn These findings led to the following

heuristic:

Heuristic #1: Use the principle of extensionality to replaceesguality with the

condition under which two sets are equal, i.e.,mineir elements are the same.

When the same probler.g) above is given to Vampire, it has little diffieylin finding

a proof in 1.3 seconds. The application of thevalextensionality heuristic #1 leads to a
relatively faster proof in 0.1 seconds. These $irme however too short to determine the
utility of the heuristic for Vampire. However, csider the following, more complex

example involving arbitrary intersection:

N{1,2,3}, {2,3,4}} = {2,3} (5.9

The arbitrary intersection of a sAtis defined as)A = {x | y)(y 0 A - x O y)}

(Enderton 1977). As before formula§) is rewritten to make the relevant constructions
explicit:
A={12310B={2,3,40C={AB} 0D={2,3} - NC=D (5.7)
This time Vampire finds no proof within 30 minutesVhen we, however, apply the
principle of extensionality to the consequent ohfala 6.7) as in
Ox(xONC « xOD) (5.9

then Vampire finds a short proof in 0.4 second$er&fore heuristic #1 appears to be
useful for Vampire as well, depending on the comipyeof the problem in which the set-

theoretic equality occurs.
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Gandalf is able to find a proof for the originabplem 6.3) in 1 minute 57 seconds.
When extensionality is applied a proof is foundd seconds. However, on the more
complex problem Gandalf is unable to find proofdobe or after application of the
extensionality heuristic. It is possible that theriable-strategy selection algorithm of
Gandalf may be responsible for this and more wookildl be needed to investigate this

result.

5.2 Nested Functors

A simple yet effective heuristic is to give prefece to deductions containing smaller
clauses (Section 3.7), i.e. clauses containing fditerals or clauses of smaller term
depth. The use of nested function symbols (cdiledttorsin the world of automated

reasoning) leads to larger term depth and makegttifieation of clauses more difficult.

The nesting of function symbols usually occurs radly as illustrated by the next

example:

(A+B)+C=A+B+0C) (5.9
Formula 6.9 states that set-theoretic symmetric differencenéded by ‘+) is
associative. The symmetric difference (Enderton7) @7 setsA andB is defined a#\ +
B=(A-B)OB-A)={x|((xOA) Ox0OB)) O(xOA) O(xOB))}. Therefore our
sample problem59) employs equality as well as a ZF subset axionmstaintiated by
set-theoretic difference. A first-order logic defion of the symmetric difference functor

(calledsymmdiffoelow to avoid possible confusion with ordinary-tbeoretic difference)

is:

OAOBOx(x O symmdiffAB) - (xOAOxOB) OXxOAOxOB))) (5.10

The conclusion of the proof is then stated as:

Ox(x O symmdifgsymmdiffA,B), C) - (5.1
x O symmdiffA, symmdifB,C)))
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With this formulation it took Otter 4 minutes 3 seds to find a proof of (5.11). The
problem can alternatively be formulated as by uhfg (i.e. effectively removing) the

nested functors in (5.11):

D=A+BOE=D+COF=B+COG=A+F - (5.12
OXxOE o xOG)

The use off.12 instead allowed Otter to find a proof in only D4econds (Van der Poll

2000). These results suggest the following hearisti
Heuristic #2: Avoid, if possible, the use of nested functor bgis in definitions.

Vampire quickly finds a proof of5(11) in less than 0.1 seconds, both with and without
the use of the nested functor heuristic #2. Weefloee increase the complexity of the
problem to further investigate the utility of theguristic for Vampire. Note that in both
problem formulations the extensionality heuristit was already applied to problem

conclusions. Rewritingg(11) without using extensionality as

symmdiffsymmdiffA,B), C) = symmdiffA, symmdif¢B,C)) (5.13

results in Vampire finding no proof after 30 minu{@nother illustration of the utility of
Heuristic #1 for Vampire). Next we apply the nesfaedctor heuristic #2 by rewriting

(5.13 using Skolem constants:

D=A+BUE=D+CUOF=B+CUG=A+F - E=G (5.19

Vampire now finds a proof fob(14) after only 0.5 seconds.

The nested functor heuristic #2 does not seem tosk&éul for Gandalf's algorithm. In
fact, it appears to lead the theorem prover astéandalf finds a proof for (5.11) in 41
seconds and fo5(12) in 5 minutes 43 seconds. Therefore, the apphicaif the nested
functor heuristic #2 resulted in a longer proofdimHowever, if we test Gandalf on the
more complex problem then it finds no proof f6rid after 30 minutes. Application of
the nested functor heuristic as B.X4) results in a proof after 5 minutes 44 seconds.

This time corresponds with Gandalf's time f&r12.
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One should keep in mind that the VdPL heuristies guwidelines and not hard and fast
rules and it is certainly possible that they might be applicable in every situation as
might be expected beforehand. Therefore more wattk Gandalf would be needed to
determine the cause of the above phenomenon.pibssible, therefore, that the nested

functor heuristic #2 may have to be augmented itaitecases.

5.3 Divide-and-Conquer

The heuristic examined in this section is applieatol proofs where the consequence of
the proof contains a set-theoretic equality or faand-only-if formula. A set-theoretic
equality in the conclusion of a proof implies ‘ihé only if via the axiom of
extensionality. Owing to the if-and-only-if formula specifier can perform two separate
proofs, one for the only-if part and another primsfthe if part.

Consider the following sample problem based on igguend the power set axiom:

P{0,1} = {0, {0}, {1}, {0,1}} (5.19

The formula is rewritten to make the relevant cargions explicit:

A={0} OB={1} 0C={0,1} OD =P(C) DE={0,A B, C} - (5.16
D=E

Otter found no proof fory.16 after 30 minutes. Resorting to the extensionddayristic

#1 by changing the conclusion to

Ox(xOD » xOE) (5.17

allowed Otter to find a proof in 3 minutes 23 set®rfVan der Poll 2000). A further
simplification is to perform two separate proofegdor each half of5(17) and in the two

proofs specify the conclusion as

Ox(xOD - xOE) (5.18

and
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Ox(xOE - xOD) (5.19

respectively. Otter then found a proof f&.18 in 0.43 seconds and f05.09 in 0.03

seconds. These results led to the following divadd-conquer heuristic:

Heuristic #3: Perform two separate subset proofs wheneverrtiidgm at hand

requires one to prove the equality of two sets.

The divide-and-conquer heuristic #3 is not only leaple to proof consequences
containing ‘if and only if’ formulae but also topaoof conclusion that is a conjunction. In

this case a separate proof may be performed fér @agunct in the proof's conclusion.

Vampire is also unable to find a proof f&.16 after 30 minutes. However f0b.17),
(5.18 and b.19 Vampire finds quick proofs in 0.8, 0.3 and 0.t@®ls respectively.
These times are again too short to affirm thetytdf the divide-and-conquer heuristic #3

for Vampire. As before we increase the complexftthe problem through the equality:
P{0,1,2} = {0, {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}} (520
Formula £.20) is again rewritten to make the relevant constonst explicit:
A={0} 0OB={1} 0C={2} OD={0,1} OE={0,2} OF={1,2} O (5.2
G={0,1,2}0H=P(G) OI={0,A,B,C,D,E,F,G} - H=I

Vampire terminates without finding a refutationeaft8 minutes 53 seconds with the
message ‘no passive clauses left’. Note that thés chot mean that a refutation does not
exist. Since Vampire was run with both a time anehmary limit, it uses the limited
resource strategy (Riazanov & Voronkov 2003), whishnot a complete resolution
strategy (see Section 4.1). If we apply our extamdity heuristic #1 to §.21) by

rewriting the consequent(=1) as

Ox(xOH - xO1) (5.22
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then Vampire finds a proof in 8 minutes 40 secomldih is still too long. Next we apply
the divide-and-conquer heuristic #3 by performing different proofs for each half of

(5.22 by specifying the proof consequents as

Ox(xOH - xO1) (5.23

and

Ox(xO1 - xOH) (5.29

respectively. Vampire then finds a proof f&.23 in 28 seconds and fob.@4) in 2
seconds.

Gandalf is also unable to find a proof of the ar@iproblem %.16) after 30 minutes.

Application of the extensionality heuristic #1 all® Gandalf to find a proof fob(17) in

1 minute 27 seconds. However, further applicabbthe divide-and-conquer heuristic
appears not to be useful for Gandalf in the contéxtormula 6.18 since a proof is

found in 1 minute 36 seconds. Similarly a proof {r19 is found in 1 minute 14

seconds.

On the more complex problem Gandalf is unable mal fa proof for %.21) after 30
minutes. Gandalf is still unable to find a proitaapplying the extensionality heuristic
#1in 6.22. The application of the divide-and-conquer h&tigi#3 leads to some degree
of success since, although it does not enable (fatedéind a proof for sub-problem

(5.23, it enables the reasoner to find a proof @24 in 1 minute 15 seconds.

5.4 Exemplification

When writing the contents of sets in list notatare naturally tends to define these sets
using one or more levels of indirection by movingnh the various elements to a symbol
representing the collection of those elements (danPoll & Labuschagne 1999). The

sample problem used for the divide-and-conquerisguwill be used here as well:
P{0,1} = {0, {0}, {1}, {0,1}} (5.29
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Recall that in the initial formulation

A={0} O0B={1} 0C={0,1} OD=P(C)OE={0,A B,C} - D=E (5.2

Otter was unable to find a proof within 30 minuteSuppose we remove one level of

indirection by eliminating symbd, i.e.

A={0} OB={1} 0C={0,1} 0D =P(C) - D={0, A B, C} (5.27)

whereD = {[1, A, B, C} is unfolded (repeatedly using the ZF pairing ajcas

Ox(xOD « (x=0 Ox=A0Ox=B0Ox=C)) (5.28

in the proof conclusion. With this formulation Qttéound a proof in 4 minutes 5

seconds. These results led to the following hearist

Heuristic #4: Avoid unnecessary levels of elementhood in foemuly using the

elements of sets directly.

The divide-and-conquer heuristic was applied te tast proof attempt to yield proofs in
0.34 and 0.03 seconds for the ‘only-if’ and ‘ifrections respectively. Vampire was also
unable to find a proof for5(26 within 30 minutes. However, fob(27) Vampire finds a
proof in 0.8 seconds. In this example, thereforeyas not necessary to increase the
complexity of the problem to illustrate the utilibf the heuristic #4 for Vampire. If we
do increase the complexity of the problem by ageimg formula $.20 as an example,

but instead of unfolding it as i®.21) we unfold it as
A={0} OB={1} OC={2} OD={0,1} 0E={0,2} O (5.29
F={1,20G={0,1,2,0H=PG) - H={O,A B,C,D,E,F, G}

then Vampire finds a proof in 5 minutes and 50 sdso The divide-and-conquer
heuristic can be applied to this last proof attetopgield proofs in 31.5 and 1.6 seconds

for the ‘only-if and ‘if’ directions respectively.
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Gandalf was able to refute the original probledi2¢ after 16 minutes 22 seconds.
Application of the exemplification heuristic enabl&andalf to find a proof in 1 minute
14 seconds. On the more complex problem unfoldeth &.29 Gandalf is unable to
find a proof with or without application of exemipdation. When the divide-and-
conquer heuristic is applied then Gandalf only $irdproof for the only-if sub-problem

in 12 minutes 56 seconds.

5.5 Multivariate Functors

Terms containing functors may contain both constamd variables as arguments. The
number of possible unifications with a clause coritg a functor increases with each
functor argument that occurs as a variable. Asaltrenore clauses are generated leading
to a larger search space. There are two main exantpat lead to functors containing
variables as arguments. The first is due to theiBpeusing functors that take variables
as arguments, typically because of indirect deéing. The second example is produced
by Skolemisation (Hamilton 1991, Section 0). Skadkation occurs when first-order
formulae are clausified to serve as input to tis®ltgion mechanism. An important step
is the elimination of existential quantifiers (Vaer Poll & Labuschagne 1999). If the
existential quantifier occurs after any universahutifiers, the existential quantifier is
replaced by a Skolem functor taking each of thevensally quantified variables as an

argument (Section 0).

The example problem5(16 will be used again with the extensionality heticigtl

applied to the conclusion as B.17). First we define the terfd =P(C) indirectly as

Ox(xOD - xOC) (5.30

where the subset functaris defined as

DAOBADB o Oy(yOA - yOB)) (5.3

With this formulation Otter found no proof in 30 mates. The clausification 06(31)
results in universally quantified variabféeing replaced by a Skolem functor of the two

variablesA andB. The effect of Skolemisation may be reduced byielating one of the
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universally quantified variables i5.31), e.g. replace variabI® by a constanC (say) in

(5.30:

OAADC « OyydA -~ yOO)) (5.39

Otter then found a proof after 4 minutes 5 secoMdsiabley in the clausal form of
(5.32) is now replaced by a Skolem functor of ome variable as opposed to a functor
of two variables in (5.31). The possibility of ilegant unifications with this Skolem
functor has therefore been reduced. It should laésooted that the subset functonn
both cases has an arity of two, but in (5.31) ittams two variables as opposed to one

constant and one variable in (5.32). These redeligered the following heuristic:

Heuristic #5: Simplify terms in sets by either not involvingnfitors, or else

functors with the minimum number of argument posisi taken up by variables.

Vampire finds proofs with or without heuristic #ppied. With the subset functor
formulated as inH.3)) it finds a proof in 21 seconds and fér32 in 0.1 seconds. The
relative improvement in search time is significadowever, the search time fd6.81)
may still be too low to seriously justify the uskeheuristic #5. We therefore increase the
complexity of the problem to further test our hetic. The example problens.@1) that
was also used in the divide-and-conquer heurigt& dufficient complexity and will be
used again with the extensionality heuristic #1liedpto the conclusion as ih.@2. As
before, the ternd = P(G) is unfolded as

Ox(xOH - xOG) (5.33

where the subset functar is again defined as ib31). With this formulation Vampire
finds no proof in 30 minutes. We next apply the twatiate functor heuristic by defining

the subset functor with variabBereplaced by the consta@t

OAADG o OyyOA - yOG)) (5.39
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Now Vampire finds a proof after 1 minute and 32osets. This result can further be
improved through divide-and-conquer. The timestlfa two sub-proofs are 5.2 and 0.3

seconds respectively.

Gandalf is also able to find a proof for the orajiproblem with and without heuristic #5
applied. A proof is found in 8 minutes 11 seconith the subset functor formulated as
in (5.3) and in 1 minutes 31 seconds f&.32. The original problem is therefore
sufficient to illustrate the usefulness of heudst5 in Gandalf's case. For the more
complex problem Gandalf is unable to find a proothwor without the multivariate

heuristic applied to the subset functor. Whendiv@e-and-conquer heuristic is applied
to the conjecture together with the multivariatedior heuristic then Gandalf is only able
to find a proof for the only-if direction in 1 mite1 16 seconds. Hence, further work

would have to investigate possible proofs for fhdirection above.

5.6 Intermediate Structure

The intermediate structure heuristic is applicatie formulae in which the direct
definition of intermediate structures leads to ctarpfunctor expressions. The
intermediate structure heuristic can be regarde@ apecial case of the Multivariate

functor heuristic as outlined below.

Consider the following example problem involvindgitrary union (Section 2.1.4):

AxUBOUAx X |X OB} (5.35

This set-theoretic formula can be unfolded as:

C=UBOD=AxCHOE={AxX|XUOB} UOF=UE - DOF (5.39

The intermediate structutestill needs to be expanded further. The followiognula is

a direct definition of:;

OXxOE o IX(XOBOOyOz(y,2 OX » yOAOzO X)) (5.37
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Otter could not find a proof with these inputs aad out of memory after 9 minutes 51
seconds. Closer inspection of the clausal fornthisf direct definition ofe shows that
the ordered pair y(2) clausifies into the functorORD(f1(x1,x2),f2(x1,x2)). The
Skolemisation of the variablgsandz results in Skolem functions of two variables that
are nested within the ordered pair functor. Thstegk functor and multivariate functor
heuristics showed that this clausal form compliedhe resolution process. To avoid this

clausal form foiE, one may resort to the following definition:

XX OE « IX(XOBOOyOz((y,2 OX « (y,2 O PRODOA,X)))) (5.38

PRODA,X) is further defined as:

OXOyOz((y,2 0 PRODAX) « yOAOzOX) (5.39

The clausal form for the ordered paywzf in (5.39 now remain®©ORD(y,z). As a result
the unification process is simplified and it enabletter to find a proof in just 0.06

seconds, leading to the following heuristic:

Heuristic #6: Use an indirect definition for an intermediateisture instead of a

direct definition when its clausification resultsless complex functors.

Vampire is also not able to find a proof after 3bwmes with the direct definition d in
(5.37. However, Vampire is able to find a proof in g€conds for the indirect definition
of Ein (5.38 and 6.39. Even though Vampire is now able to find a priooé relatively
short time, the time is strikingly larger than tbaOtter. Closer inspection of the clausal
form of (5.38 reveals that it still contains two variable Skoléunctors nested in the
ordered pair functor. The following reformulatiaf (5.38) uses equality instead of

extensionality:

XX O E « IX(X OB Ox=PRODOA,X))) (5.40

The clausal form the definition d& in (5.40 does not contain any of the complex
functors encountered above. As a result Vampiraolw able to find a proof in 0.1

seconds.
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Gandalf’s results are similar to those of Vampilteis also not able find a refutation after
30 minutes using%(37). Using the indirect definition dE in (5.38 and .39 enables
Gandalf to find a proof in 1 minute 15 seconds.isTiesult is further reduced to 0.3
seconds by using the equality formulation®#0).

5.7 Element Structure

The element structure heuristic, like the interragglstructure heuristic, is a special case
of the multivariate heuristic by focusing on anathguation in which formulae describe

the structure of elements of relations and funstion

Consider the following example problem (Van der RolLabuschagne 1999):

F={(0,a), {O}b), @b} ~ F*={(a0), b{0}), (ba) (5.41)

F is firstly defined as (ORD is a functor denotingadered pair):

Ox(x OF « (x>ORD(J,a) Ox=ORD({ I}, b) Ox=0ORD(a,b))) (5.42

The relationship betwedhandF™ (the inverse oF) is given by:

OyOzORDY,2) OF « ORD(zy) OFY) (5.43

The element structure &fis defined as:

Ox(x O F - Oylz(x = ORD(Y,2))) (5.49

The following theorem about ordered pairs is atguired (Enderton 1977):

OuOvOWOX(ORD(u,v) = ORDW,X) « (u=w v=Xx)) (5.45

Finally the goal is specified by:

Ox(x O F! - (x=ORD(a,0) Ox=0ORD(b,{0}) Ox=ORD(b,a))) (5.46

Otter was unable to find a proof after 20 minutéth whe above formulation.
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Next one may attempt another approach by ratheasifgjrey the elements of andF*

more directly at the level of ordered pairs. tHr& is defined as

OyOz(ORDY,2 OF « (y=0 Oz=a) O(y={0} Oz=b) O (y=a O0z=h)) (5.47

and the goal by:

OyOdz(ORD(Yy,2) OF"! - (y=aOz=0) O(y=b Oz={0}) O(y=b Oz=a)) (5.48

The more direct approach allowed Otter to find aoprin just 0.03 seconds. Closer
inspection indicated that the more direct defimtooes not require formula&.44 and

(5.49 to find a proof. The clausal form of these fota® contains nested Skolem
functors and two variable arguments to the ORD tlunt¢hereby contradicting the

multivariate functor heuristic #5. These resudts fo the following heuristic:

Heuristic #7: Specify elements of relations and functions nuirectly at the
level of ordered pairs or ordered n-tuples whendvertuples need to be opened
during the proof.

The results for Vampire are similar as for Ottetheut increasing the complexity of the
problem. Vampire is also not able to find a priwf(5.46 after 30 minutes. However

for the direct definition off.48 Vampire easily finds a proof in 0.1 seconds.

Gandalf is also not able to find a proof f&.46 after 30 minutes, but the direct
definition in 6.48 enables it to find a refutation in 0.2 secondse Element structure
heuristic #7 therefore appears to be a useful siurfior the next-generation theorem

provers.

5.8 Redundant Information

Redundant formulae that are provided as part ofpttodlem specification can cause
many unnecessary unifications that greatly incrésgproblem’s search space. This is
especially the case with general formulae like mngdhat contain variables instead of

constants found in the problem domain. This prob&# combinatorial explosion due to
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redundant information may seem rather obvious. &l@m, since it is such a common

problem the redundant information heuristic seteesmphasise it.

The following example problem is used as illustmati

[Fun(f) OFun(g) O Ox(x O dom(f) n dom(g) — f(X)=g(x))] — Fun(f O g) (5.49

The intention of functoFun is that its argument is a function. The unfoldiwigthis
formula into a first-order form makes extensive aséhe ordered pair functor. One may

therefore feel inclined to add the following fabioat ordered pair equality:

OuOvOwOx(ORD(u,v) = ORDW,X) « (u=w [v=X)) (5.50

The inclusion of the ordered pair equality factver@ed Otter from finding a proof
within 30 minutes. When the fact is removed Ottas able to easily find a proof in 0.08

seconds. This result led to the following heueisti

Heuristic #8: Refrain from using formulae in the problem speetion that do

not contribute to the proof.

It is generally difficult to know beforehand whetteeformula or axiom is required for a

proof attempt. The next heuristic will attemptlteviate this problem.

Vampire appears to have no problem in finding qugrkofs with or without the
inclusion of the ordered pair equality (5.50) isdethan 1 second for both cases. To
increase the effect of redundant information we solshe unnecessary axioms from set
theory that are relevant to relations and functionaddition to the equality axiond.(l).

Firstly we add a fact about cross products:

DADBOXOy(ORD(xy) 0 PRODOAB) « (xOA Oy O B)) (5.5))

Vampire is still able to find a quick proof in 1cemd. Next we remove the cross product

formula above and instead add the definition fogea

OROy(y 0 RANR) « CX(ORD(xy) O R)) (5.52
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It now takes Vampire 4.5 seconds to find a prodhe individual addition of these last
two formulae therefore did not increase the prouttsignificantly. However, if we add

both formulae at the same time, then Vampire idlen® find a proof in 30 minutes.

Gandalf is not influenced very much by any variataf the above formulae. With the
ordered pair equality (5.50) included in the praoblg finds a proof in 59 seconds and
without it in 57 seconds. Inclusion of both theuakity (5.1) and cross product (5.51)
formulae increases the refutation time slightlyltoninute 5 seconds. Inclusion of the
equality 6.1) and range axioms5(62 results in a similar proof time of 1 minute 7
seconds. Finally inclusion of all these unnecgsaaioms b.1), (5.51) and (5.52) has a
proof time of 1 minute 9 seconds. Gandalf theeefdwes not seem to be influenced too
much with the addition of redundant informationhis might be explained by the fact
that in Gandalf's automatic mode it first selectseaof different strategies that are likely
to be useful for a given problem and then triestladlse strategies one after another
(Tammet 1997). It uses time-slicing to limit theé that a specific search strategy is
executed. When the strategy’s time runs out, #h strategy is executed. Redundant
information may therefore only have an impact omsf the strategy runs, but not all
of them.

5.9 Search-Guiding

The redundant information heuristic suggests tbanfilae that do not contribute to a
proof attempt should be discarded since these @ssadly enlarge the search space. It
is however difficult to know beforehand which forlae and axioms will be required to
find a proof.

The purpose of the search-guiding heuristic isdeniify which parts of formulae are
most probably required for the proof attempt viaeghnique called resolution by
inspection. These parts are called half-defingiofihe parts that are less clearly relevant

can be provisionally excluded from the proof attemp

The following example problem for nonempty s&tandB will be used:
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NA D B) O ("A) n (NB) (5.53

This formula may be unfolded as:

C=AU0BUOD=NCUE=NA0OF=NBUOG=EnF-DUOG (5.59

The search-guiding heuristic will be illustrated tracing a small part of the proof
attempt. The goal of the problemDsl] G and must form part of the proof attempt. In

its unabbreviated first-order form it is definedthg formula:

Ox(xOD - xOG) (5.55

The goal of the proof is negated to find a proofrbfutation. The negated goal after

clausification is given by the following two classe

c10D (5.56

cl0G (5.57)

clis a Skolem constant that arises due to the reygati the universal quantifier that

becomes an existential quantifier. To find a proath of these clauses must be resolved.

The unabbreviated first-order definition of &eis:

x(xOG o xOEOXOF) (5.58

The literalcl O G in (5.57) can only be resolved with a literal loé formx [0 G which is
found in the “if” direction of the “if-and-only-ifformula (5.58). The “only-if” half can

therefore be discarded which gives:

Ox(xOG « xOEOXOF) (5.59

The same resolution by inspection technique cafolb@ved for the literalcl [0 D in
(5.56) and literatl 00 D which is found in the first-order definition foetD. The half

definition that is required is:
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Ox(xOD — Ob(b O C — xO b)) (5.60

Otter found a proof for the original unfolding in38 seconds. By using only the half
definitions Otter found a proof in 0.12 secondslthdugh the original time seems fast
enough, the half definitions enabled a 70 timegefggroof time. These results inspired

the following heuristic:

Heuristic #9: Use half definitions of if-and-only-if formulaeasthe technique of
resolution by inspection to guide the resolutioritefrals that will form part of a

proof starting at the goal.

Vampire is able to find quick proof in less thasecond with or without the use of the
half definitions. To illustrate the utility of theearch-guiding heuristic to Vampire we
will use the example problen.G85 of the intermediate structure heuristic #6 after

heuristic has been applied. For ease of refereecepeat its unfolding irb(36) here

C=UBUOD=AxCHOE={AxX|XUB} OF=UE - DUOF (5.6)

with the definition ofE as given by %.38. It took Vampire 40 seconds to find a proof
for this formulation. The goal of this problem @lsontains the subset functor which
clausifies into clauses similar to (5.56) and (».57he search-guiding heuristic #9 is
applied by using only half definitions for sdilsandF. Vampire is then able to find a

proof in 9 seconds.

We can apply the search-guiding heuristic #9 furth€he half definition of seb that

remained is:

OxOy((xy) DD - xOAOyOC) (5.62

Further note that s& is defined as:

Ox(xOC o Cy(yOBOxOY)) (5.63
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In its clausal form the literal O C in (5.62) will resolve with a clause in a half ihtion
of setC in (5.63). By discarding the half definition thatnot used for se€ in (5.63),
allows Vampire to find a quick proof in 0.5 seconds

Gandalf also finds quick proofs for the originabblem in less than one second with or
without search guiding. For the more complex peoblb.61) Gandalf finds a proof after
1 minute 15 seconds. This time is reduced to luteirB seconds when only half
definitions for set® andF are used. The time is slightly reduced furtheboseconds
by using a half definition for sef. It is plausible, therefore, that a more compéda
problem would necessitate the use of the seardtirguiheuristic #9 for Gandalf even

more.

5.10Resonance

The resonance heuristic aims to identify formules tan be rewritten in a format that is
syntactically similar to facilitate the resolutiggrocess. This heuristic was originally
proposed by Wos (1995, 1996). The example usdtustrate it is taken from the area of

databases.

Let Emp be a partial function from personnel identificagoin ID to personnel
information INPERSON

Emp ID -~ PERSON (5.69

Suppose the structure BERSONS defined as:

PERSON= Namex Rolex Deptx Salaryx Address (5.6H

Suppose we want to increase the salary of an em@loyith personnel number by
amount LetEmpg represent the updated employee function. Theea@se operation can

then be specified as:

OxOnOrOdOsDa (5.66
(ORD(x, 5TUP(n, 1, d, s,a)) D EmpP -

96



(kzp OORD(X, 5TUP(n, r, d, s, a)) O Emp O

&k =p OCB(s =s+amountdORD(X, 5TUP(n, r, d, s, a)) 0 EmMP)))
A proof obligation (PO) arises from (5.66) abovamely, to show thaEmg is (still) a
function. This involves showing that each and evagment inEmg is a tuple of the

correct kind (this PO is not addressed further weland thatEmp is single valued, i.e.

functional:

SIMEmp) (5.67)

whereSivis defined as:

OR(SMR) « OuDOvOw(ORD(u,v) OROORD(U, W) OR - (Vv=w))) (5.68

Lastly we add the following two facts about ordepadt equality and 5-tuple equality:

CuOvOwOx(ORD(u, v) = ORDW, X) « (u=wOv=X)) (5.69

OubvOwUxOyUOu'Ov' Dw' DXLy (5.70
(5TUP(u, v, w, X, y) = 5TUP (u', v, W', X, ¥) -
(u=ubOv=vOw=wOx=x0Oy=Y))
Otter failed to find a proof for this formulatiofter 20 minutes. The resonance heuristic

#10 was applied next to formula (5.68) by rewritihgnto a form that is syntactically

similar to corresponding terms in (5.66):

OR(SIMR) (5.70)
UuDvOwUxOyOzOviDw' DX Oy' 0z
ORD(u, 5TUP(v, w, X,y,2) O RO
ORD(u, 5TUP(V, W, X,y,Z)) OR -
FUP(v,w, X, Y, 2) = 5TUP (V', W, X, ¥, Z)))
This reformulation enabled Otter to find a prooflih.62 seconds. These results led to
the following heuristic:

97



Heuristic #10: Rewrite formulae to give corresponding terms atagtically
similar structure to aid the resolution process.

Vampire is also unable to find a proof for the orad formulation ofSivin (5.68). After
the application of the resonance heuristicSte Vampire is able to find a proof in less

than 1 second.

Gandalf is unable to find any proof after 30 mirsutgth or without the application of the

resonance heuristic, hence further work needsviesiigate this phenomenon.

5.11Tuple Condense

The last heuristic that we consider may also beardsyl as a special case of the
multivariate functors heuristic #5. The tuple cense heuristic in this section is
applicable to tuples containing multiple variableyanents that are not changed or
referred to in operations that change some of theracoordinates in the tuples. This
heuristic suggests that these irrelevant argumesitipns be folded up into one argument
for the purposes of the proof attempt (Van der Po00).

Example (5.66) from the resonance heuristic #10 aghin be used here. The salary
increase operatiod = s + amountonly changes the salary argument of a tuple of the
larger typePERSON We can therefore reorder the argument positeorts fold all the
irrelevant arguments into one for the purposesisf proof attempt. Formula (5.66) can
then be redefined as:

OxOy0s (5.72
(ORD(x, ORD(y, s)) DEMP -
(&#p DORD(x, ORDY, s)) 0 Emp O
& =p OB(s =s+amountld ORD(x, ORD(y, s)) L1 Emp)))

In the above formulation the positions ftame rank, departmentindaddresshave been

abstracted into one position represented by variabl
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The resonance heuristic is applied again to thglesimalued formula (5.67) to be

applicable to the syntactic form of (5.72):

OR(SIMR) o (5.73
HuvOwOvDOw!
ORD(u, ORD(v, w)) O ROORD(u, ORD(V,W)) OR -
ORD(v, w) = ORD(V', W)))

With this formulation Otter was able to find a prao 0.07 seconds as opposed to the
11.62 seconds using only the resonance heurisicoflthe previous section. These

results suggested the following heuristic:

Heuristic #11: Reduce the number of arguments of a functor Igirfg those

arguments that are irrelevant to the proof atteimtptone.

Vampire finds quick proofs for the example problémless than 1 second with or
without tuple condensing. A more complex problenthierefore required to illustrate the
utility of this heuristic for Vampire. Various pgotems were used but none was able to

show a noticeable difference in refutation timeapylying the tuple condense heuristic.

Gandalf on the other hand was unable to find afpia@othe example problem after 30
minutes with or without the heuristic. It should beted therefore that more work is
needed to determine the general utility or nottheftuple condense heuristic #11, either

in its current form, or some enhanced version thfere

5.12Summary and Conclusions

In this chapter we investigated to what extent\Md@L heuristics may be useful to other
reasoners with similar characteristics. The Vamgi@orem prover was chosen as the
primary reasoner for this task owing to its steati&uperior performance at recent CASC
competitions. Gandalf was used as a secondary iproteis evaluation.

We evaluated 11 of the original 14 VdPL heuristicBable 5.1 below summarises the

results of this chapter. A * in the ‘Times Fasteolumn indicates a proof found versus
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no proof found. The results that best illustratesl applicability of the various heuristics

for Vampire and Gandalf were used.

Heuristic Otter Vampire Gandalf

(AMD K6-2 64MB 400MHz)

Before | After | Times | Before | After | Times | Before | After | Times

Faster Faster Faster

Equality vs - 0.03 * - 04 * 17 43 2.7
Extensionality
Nested Functors 243 0.17 1429 - 0.5 * - 344 *
Divide-and-Conquer 203 0.46 441 520 30 17 87 170 05
Exemplification - 14.74 * - 0.8 * 982 74 13
Multivariate Functor - 245 * - 92 * 491 91 5.4
Intermediate Structure - 0.06 * - 0 * - 75 *
Element Structure - 0.03 * - 0.1 * - 0.2 *
Redundant Information - 0.08 * - 0 * 69 57 1.2
Search-Guiding 8.36 0.12 70 40 8.9 45 75 59 1.2
Resonance - 11.62 * - 0 * - - -
Tuple Condense 11.62 0.07 166 0 0 0

Table 5.1: Summary of theorem-proving results

It was found that Vampire needed 10 of the 11 Iséins that were evaluated. In some
cases the original problem had to be enlargedlustiite the usefulness of the given
heuristic using the new reasoner. This is sigmifidar two reasons: Firstly it is evident
that Vampire may be considered as a next generatioresolution-based reasoners.
Secondly, illustrating the utility of a particuldreuristic when the complexity of a
problem is increased suggests a real need foraidehguristic when the given problem
becomes part of a larger problem and a specifieitsv@ discharge a proof obligation in

a single proof attempt, rather than breaking itnip smaller steps.

Gandalf in general performed better than Otterrmitas well as Vampire. Using the

theorem-proving defaults of the reasoners throughGandalf was not able to solve

100



some of the more complex problems that Vampiredc@uld the ones it could solve,
usually took longer than Vampire. Of the 11 hdigssevaluated, 9 heuristics were
shown to be useful for Gandalf. In all the caséene Gandalf was able to find proofs
with and without the relevant heuristics the tinangis diluted by the fact that in any
given proof run Gandalf tries various strategiee after the other. For example, if a
proof was found during a strategy that started Buteis after the proof run was initiated
by the human user and such strategy is allocatathte then the best possible time gain
can only be 6/5 =1.2.

In the next chapter we define a case study in Zidewtify a number of proof obligations
that arise from the specification. Some of theseopobligations will be addressed in
Chapter 7.
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Chapter 6
An Order management System in Z

In this chapter we present a simplified order managnt system that caters for order
capturing and processing as well as customer aodupt information. The problem
statement of the case study is presented firseréegtiter a high level conceptual model of
the problem is given, highlighting the various ges that the case study aims to capture.
The goal here is neither to present a treatmentrofobject-oriented development
methodology nor to serve as an exercise in reg@nesnelicitation. Next we examine
the patterns that were used to translate the heghl lobject-oriented concepts of the
conceptual model to Z. The full Z specificationtleé problem can be found in Appendix
D. Lastly we highlight typical proof obligationkat arise from such a Z specification.
The next chapter applies the set-theoretic hecsigf the Chapter 5 to proof obligations

that arise from the case study.

6.1 Problem Statement

An order management system facilitates the camjuaimd processing of orders. It could
contain various subsystems for handling differeéagss of the order fulfilment process
for example stock, customers, marketing, order yenfinancials, processing, and
management information. The scope of this casdysiocludes order capturing and

processing as well as customer and product infoomat

The order management system keeps stock of vapmducts. For each product its
name, price and quantity in stock is recorded. tWm products can have the same name.
Free products are also kept in stock. A produnttbarefore have a price of 0.0. New
products can be added. A product’'s name, priceqarehtity in stock can be updated.
Products can also be deleted. A list of all praslubat is below a specified threshold

guantity can be obtained.
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The system has two types of customers namely coepamd persons. The addresses
and phone numbers of all customers are kept. huahdilly, the first and last names of
persons and the names and government registrationbers of companies are
maintained. New persons and companies can be adirdons and companies can only
be removed if they have not placed orders beféiéthe information of a customer can

be modified.

An order for a customer can be created. The inddion that is associated with an order
includes the customer, date, status and order .iterAsnew order has a status of
“pending” and no items. While in pending statusocader can be cancelled which will

change its status to “cancelled”.

New order items can be added to an order thataspending status. An order item is for
a specific product. No two order items may retethe same product; instead an item
should have a quantity greater than one. The guaritthe product as well as the price
of the product at the time the order item was eebais also kept. An order item must
have a quantity that is more than zero. An ortesnican be added regardless of the
amount of stock that is available. The quantityanforder item can be updated. Order

items may be deleted.

An order with status “pending” can be processettéfe are enough products in stock.
Processing an order changes its status to “prodessel the quantities of products in

stock are reduced by the corresponding item quesitirdered.

6.2 Conceptual Model

The following UML (Booch et al 2005) class diagram is an object-oriented
representation of the problem domain. It also shadkae various operations for the
domain.
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Customers Orders Products

CreateCompany() Create() Create()
CreatePerson() Cancel() Delete()
DeleteCompany() Update()
DeletePerson() 1 SelectBelowThreshold()
1 * +orders 1
* +customers Order * +products
date
Customer customer orders  |status Product
address Cancel() name
phone . |Process() price .
Update() 1 Createltem() quantity
Updateltem() Update()
Deleteltem() Reduce()
1 | order +item | 1
Company Person * items
name firstname
regno lastname Item )
price
quantity
*
Update()

Figure 6.1: A UML class diagram of an order managernt system

The class diagram contains the main classes ofptiélem: Product Customey
CompanyPerson Order anditem It also contains the classesoducts Customersand
Orders The purpose of these latter classes is to peowfEkrations that can manage the

collective states dProduct CustomerandOrder.

6.3 The Z Specification Language

Z (Spivey 1992) is a formal specification langudggsed on first-order logic and a
strongly-typed fragment of Zermelo-Frankel set tigedZ attained ISO standardisation in
2002 (ISO 2002).

Since the purpose of this study is not to conswmlgect-oriented aspects per se, the
specification of the case study presented abovebeitione using conventional Z instead
of, for example, Object-Z (Derrick & Boiten 2001uke et al. 1995). One of the main
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differences between Z and object-oriented versisnthat mathematical functions are
used for attributes instead of schemas that entapsihe class instance state (Wieringa
1998, Amalio & Polack 2003). The “Birthday Bookitorial that is provided by Spivey

(1992) gives a good overview of a specificatiostandard Z.

The following sections examine the patterns that ased to translate the high level
object-oriented concepts of the conceptual modeZ.to These are classes, attributes,

associations, association classes, aggregation@angosition and inheritance.

The full Z specification of the case study is pd®d in Appendix D.

6.4 Specifying Classes and their Attributes

A UML class describes a set of objects that shhee dame attributes, operations,
relationships and semantics (Boogthal 2005). Objects and object classes are usually
identified as nouns in a problem statement. F@angde, the statement “an order is
placed by a customer” refers to two classes of adbjéhat are order and customer.
Similarly, the statement “an order is for one orrenproducts” identifies the order class
as well as the product class. All orders haveciiramon attributes of order date (the
date the order was placed) and a status (whetbesrtter is pending, whether it has been
processed, delivered etc.). The objects withinpaciic class mostly derive their
individuality due to differences in attribute vasuand relationships to other classes. It is
possible though that objects can have the sanmbuérvalues and relationships. But, as
stated earlier, all objects have an implicit idgntwhich means that in this case they are

still separate objects.

This section focuses on the specification of lessmicated classes and their attributes.
By this is meant classes that do not utilise obpeinted concepts like relationships,
inheritance, aggregation and so forth. Also, tlhesattributes will be pure data values,
i.e. an attribute type will not be a class otheenitswould constitute a relationship with
that class. Nevertheless, the concepts discussedpply to more complex cases. The
classProductin the case study will be used in this sectiordéscribe a less complex

class.
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The Product class is an abstraction of the merchandise soldustomers. It has no
inheritance associations with another class addes not refer to any other class (it has
no attribute with a class type). The fact tRadbductdoes not refer to another class does
not mean it has no association with another cldsdias an association with them
class becauskem refers to it (see Figure 6.1). This type of assamn is discussed in

the following section.

A product has three attributes: name, price andhtifya The name attribute has a
character string type, the price attribute’s typean amount and the quantity is a non-
negative (i.e. natural) number. A Nokia 3650 galone could be an example of a
product object. In this case, the name attributédcbave the value “Nokia 3650” and the
price attribute could have the value R4495.00 (say)

In Z a UML class may be represented by a singlerseh The following example shows

how theProductclass and its attributes may be specified in Z.

_ Product
products? PRODUCT
prodName: PRODUCTH» STRING
prodPrice: PRODUCT» AMOUNT
prodQuantity: PRODUCTF» N

dom prodName = products
dom prodPrice = products
dom prodQuantity = products

The schema name has been chosen to be the saimat a$ the class (see Figure 6.1).
The schema contains a component that represent&généties of all the available

products in the system i.products P PRODUCT

Each attribute is declared as a function from amtidy to the type of the attribute. For
example, the product price attribute is declaredthy partial functionprodPrice

PRODUCT— AMOUNT. No two products can have the same name, thereferuse a
partial injective functiopprodNamePRODUCT- STRING
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The domain of each attribute function must equa ttlentities collection. This
constraint is specified in the predicate sectiothefschema. For example, pr@edName

function is constrained as: dggnodName= products

Finally, any additional constraints can also bec8jgel in the schema’s predicate section.
For example, if the product name was not definedabyinjective function, then the
constraint that no two products can have the saamencould be specified with the

predicatevpl, p2 products. pl = p2= prodNamépl) = prodNamép?2).

A possible state of the Product schema has thre@upts in theproductsidentity set,
with the corresponding names, prices and quantidesrded by functionprodName
prodPriceandprodQuantity

products = {38627, 39241, 41189}

prodName = {38627 “Nokia 3650”,
3924% “Sony Playstation 37,

41189 “Microsoft Windows Vista Home Premium”}

prodPrice = {38627 R4495.00,
39244 R5299.00,
41189 R1353.18}

prodQuantity = {38627 37,
3924% 29,
41189 13}

6.5 Specifying Associations

A link specifies that an object instance of onesglas connected to an object instance of
another or the same class. For example, the pHradph (a customer) placed an order
on the 11'th of October 2008, describes a linkweetn aCustomerinstance and an
Order instance.
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A link is an instance of an association. An assmn specifies a set of links with
common structure and semantics that exist betweerttasses. For example, the phrase
“a customer places an order”, describes an assmtiatlt is also possible to have an
association between more than two classes, calley associations. This is however

not as common and will not be considered furthehis dissertation.

An association can also have a minimum and maximuttiplicity at each end. For
example, a customer can be associated with zerairfmin) or more (any finite
maximum) orders and an order can be associated ami¢gh(minimum) and only one

(maximum) customer. This is commonly referredd@ane-to-many relationship.

Navigation of associations refers to the abilitynfvigate from one object to another via
the association that exists between their classEsr example, if the one-to-many
relationship between customer and order can begated only from customer to order,
then given a customer instance, one can referénoeders. On the other hand, given an

order instance one cannot reference the customestigi

An association can also have a role at each endexample, let there be a one-to-many
relationship between company and person. Theabfgerson in this association is an
employee and the role of the company is employiérere could also be another one-to-
one relationship between company and person wihereole of person is CEO (Chief

Executive Officer).

The association betwee@ustomerand Order will be used to illustrate the various
specification styles. As with the specificationatlass and its attributes using Z, the
specification of associations is not as expli¢gitowever, in the opinion of the author of

this dissertation it does not fail to be simple affdctive.

Let us have a look at how the association betvi@estomerandOrder may be specified

for the case study (see also Appendix D).
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__ Customer
customersP CUSTOMER
custAddress: CUSTOMER> STRING
custPhone: CUSTOMER> STRING

dom custAddress = customers
dom custPhone = customers

__Order
ordersP ORDER
orderDate: ORDER~ DATE
orderStatus: ORDER» STATUS
orderCustomer: ORDER> CUSTOMER

dom orderDate = orders
dom orderStatus = orders
dom orderCustomer = orders

The UML model in Figure 6.1 specified the assooiatbetweerCustomerandOrder as

a one-to-many relationship that can be navigatedath directions while thérder
schema has a componeatderCustomeérthat maps th©RDERIidentity to its associated
CUSTOMERIidentity. Therefore, given an order identity wancfind the related
customer identity using therderCustomerfunction. So we can navigate from an order

to the customer who placed the order.

In the Z schema foCustomerthere is no explicit reference to an associatietwben a
customer and its orders. However, it is still poiesto find the orders of a customer
through an operation.SelectOrdersForCustomeas an example of an operation that

returns all the order identities for a given customdentity.

__ SelectOrdersForCustomer
EOrder
customer?: CUSTOMER
orders!:P ORDER

orders! = {o: orders | orderCustomer(o) = custoer?

It is therefore possible to navigate from a custoneeall the orders placed by the

customer.
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The components in a schema (esglectOrdersForCustomebove) that are decorated
with question marks (?) represent input to the esyst Components decorated with

exclamation marks (!) represent output from an af@n. The declaratio®EOrder

indicates that (1) theOrder schema is included into th8electOrdersForCustomer
schema and (2) the state ©fder is not changed by the operation. In an expanded
version of SelectOrdersForCustomerthe Order schema is shown twice, thereby
representing the operation schema’s respectiverdefnd after states. The included

components of the after state instance are decbwate dash symbols’() to distinguish

them from the corresponding before state componettspredicate is also added to
specify that all the before and after state comptmare equal, thereby stating that the

state does not change.

Multiplicity constraints can also be added to tlesaziation. For example, ti@rder
schema could be extended as follows to specify dhatistomer may have at most 10

orders (say):

__Order

vc: ran orderCustomer#(orderCustomas {c}) < 10

Note that the abov@rder schema is not complete; just the relevant preelispecifying

that a customer may have no more than 10 ordesboisn.

6.6 Specifying Association Classes

An association that exists between two classes atsxy contain attributes. Such an
association is called amssociation classince it is a class as well. We use the classes
Order and Productas an example. There is an association between Hezause a
product can appear on many orders and an order e or more products. However,
this association carries more information thatsseatial for the system i.e. the quantity
and price of the product on the order. This infation ought not to be stored on product

since it is not specific to the product (a nornatien issue in database terms). Neither
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can it be stored on the order because we needfitreniation for more than one product.
Therefore, it makes sense to store the attribiggsad of the association. The name of
the association class ieemin Figure 6.1. Note that the price attribute ltem is the

price of the product when the order was created.

The method used for the specification of the asdti clasdtemis the same as for one-
to-many associations used above. The difference isghatitem has two one-to-many
associations. The first is a one-to-many fromder to Item and the second is a one-to-

many fromProductto Item A partial schema fdtemis shown below:

__Item
items:P ITEM
itemOrder: ITEM-» ORDER
itemProduct: ITEM- PRODUCT

Viy, ip: items. iy # i, = itemOrder(j) = itemOrder(3) v itemProduct(i) = itemProduct()

An additional predicate is added to ensure thatwm items can reference the same

order-product combination. The full version of setaltemappears in Appendix D.

The UML model above (Figure 6.1) shows that theeassion betweer®Order andltem
may be navigated in both directions. This is iatkd by the absence of arrows on either
side of the association. To facilitate such natigathe operatiorselectitemsForOrder

was defined to allow one to obtain the set of itednan order, given its identity:

__ SelectltemsForOrder

Zltem
order?: ORDER
items!:P ITEM

items! = {i: items | itemOrder(i) = order?}
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6.7 Specifying Operations

So far the static aspects of the system have besorided. Next, we describe the
dynamic aspects of the system. These include peratons that are possible, the
relationships between their inputs and outputsthaadhanges of state that take place as a

result of the operations.

The most basic operations that are typically resgliin most systems are create, read,
update and delete (CRUD). The operations ofRhmduct class are used to illustrate
these. AdditionallyProcessOrder(see Section 6.7.5) is provided as an example of a
more complex operation. An order that is in a pegdtatus can be processed if there
are enough products in stock. Processing an cfamrges its status pyocessednd the
guantities of the relevant products in stock aceiced by the order’s item quantities.

6.7.1 Create Operation

A create operation adds a new instance of a claghd system. For example, an

operation to create a new product is:

__ CreateProduct
AProduct
product?: PRODUCT
name?: STRING
price?: AMOUNT
quantity?:N

product?z products

name?z ran prodName

products= productsu product?

prodNameée= prodNameu {product?— name?}
prodPricé= prodPriceu {product?— price?}
prodQuantity= prodQuantityu {product?— quantity?}

The declarationAProduct indicates that theProduct schema is included into the

CreateProducschema and the state Bfoductmay change as a result of the operations
specified. In the expanded version, tAeoduct schema is included twice, thereby

representing the operation schema’s respectiverdednd after states. The included
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components of the after state instance are decbvath dash symbols’() to distinguish

them from the corresponding before state components

The first predicate of the schema is a typical pnelition of a create operation stating
that the new order item may not already be in ffstesn. The following predicates state
that theproducts prodName prodPrice andprodQuantityfunctions are extended to map
the new name, price and quantity values to thengmeduct identity. Note that the

notationx — y is a graphic way of expressing the ordered pa)(

6.7.2 Read Operation

A read operation finds zero or more objects baseaertain criteria and return them.
The following schema definition is for a finder oggon that returns all products with

guantities below the specified threshold:

__ SelectProductsBelowThreshald
EProduct
quantity?:N
products!:P PRODUCT

products! = {p: products | prodQuantity(p) < queyit}

The output of this operatiorproductd) is a set of product identities. The predicate
further states that the output is a subset of prouientities of which the quantity is less
than the specified inpuguantity?. The notationX S| E}, where Sis a set an&E a

predicate, means the set of valueg tdken fromSwhich satisfyE.

6.7.3 Update Operation

An update operation changes the current value oblgact in the system. In Z it
specifies that the before and after state compsnarg related in certain ways. The

update operation fdProductis specified as:
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__ UpdateProduct
AProduct
product?: PRODUCT
name?: STRING
price?: AMOUNT
quantity?:N

product?e products

products= products

prodNameée= prodNames {product?— name?}
prodPricé= prodPrice» {product?— price?}
prodQuantity= prodQuantitys {product?— quantity?}

The first predicate of the schema is a typical pnelition of an update operation stating
that the product must exist in the system. Thdofohg predicates state that the
prodName prodPrice and prodQuantity functions are remapped to associate the new
name, price and quantity values to the given prothroduc®). These predicates use the
overriding operatom. The relationQ @ R relates everything in the domain Rfto the
same objects @ does Q is overridden byr), and everything else in the domain®to

the mappings iQ.
The state of thproductsset however does not change i.e.:

products= products

The following proof shows that the above restricttmuld be derived:

product$
= dom prodPrice (invariant after)
= dom (prodPrice {product?— price?}) (specification olUpdateProdudt

= dom prodPricey dom {product?- price?} (fact about ‘dom’)

= dom prodPrices {product?} (fact about ‘dom’)
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= productsu {product?} (invariant before)

= products Predicateproducf® e products

6.7.4 Delete Operation

A delete operation removes an object from the syst&he delete operation f&roduct
is specified as:
__ DeleteProduct

AProduct
product?: PRODUCT

product?e products

products= products \ {product?}
prodNamé= {product?}< prodName
prodPricé= {product?}< prodPrice
prodQuantity= {product?}< prodQuantity

Again, the first predicate of the schema is a tgpjrecondition of a delete operation

stating that the specified product must exist endfzsstem. The remaining predicates state
that prodName prodPrice and prodQuantity functions are changed by removing the
mapping for the given producproduc®?). These predicates use the domain anti-

restriction operatos. The relatiorS< Ris the set of all tuplex,y) in R wherex is not

in the domain ofs

The state of th@roductsset also changes to reflect the removal of thelyobidentity

i.e.:
products= products \ {product?}

The following proof shows that the above restricttmuld be derived:
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products

= dom prodPrice (invariant after)

= dom ({product?}« prodPrice) (specification oDeleteProdudt
= dom ((products \ {product?} prodPrice) (fact aboud)

= (products \ {product?}n dom (prodPrice)  (fact about ‘dom’)

= (productsn products) \ {product?} (fact aboutand \)

= products \ {product?} (fact about)

The relationS< R above is the set of all tuples §) in R wherex is in the domain o

6.7.5 ProcessOrder

An operation to process an order is:

__ProcessOrder
AOrder
AProduct
Eltem
order?: ORDER

order?e orders
orderStatus(order?) = pending
Vi: items. itemOrder(i) = order?> prodQuantity(itemProduct(i)) — itemQuantityf)0
orders= orders
orderDaté= orderDate
orderStatus= orderStatus {order?— processed}
orderCustomér orderCustomer
products= products
prodNamé= prodName
prodPriceé= prodPrice
prodQuantity= prodQuantitys
{i: items | itemOrder(i) = orderdtemProduct(i}» prodQuantity(itemProduct(i)) — itemQuantity(i)}
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The operation schema includes t&der, Product andIltem schemas. It further states
that it could change the states of Beder and Product schemas. It takes an order

identity as input.

The first three predicates ensure that the ordistsxhat it is in a pending status and that
there are enough products in stock to fulfil thdeor If all of these conditions are valid
the order’s status is changedpimcessedind the quantities of all products referenced by

the order’s items are reduced by the relevant gaantities.

6.8 Total Operations

All the operations above specify how the systentessaould change if correct input is
given and the relevant preconditions are satisfieHowever, the state change is

undefined for incorrect inputs. The operationsthezefore not total.

As an example we convert tkkreateProducbperation into a total one as an example of
specifying complete operations. The total versiglh be calledCreateProductTotal It

has three possible outcomes (some may overlapndeqgeon the input:
» It could be successful if the input is correct.
» The product could be already known.
* The product name could already exist.

These possible outcomes are specified using thenfiolg partial schemas:

__Success
result! : REPORT

result! = success

117



__ ProductAlreadyKnown
EProduct
product? : PRODUCT
result! : REPORT

product?e products
result! = already_known

__ DuplicateProductName
EProduct
product? : PRODUCT
name?: STRING
result! : REPORT

product?z products
name?e ran prodName
result! = duplicate_name

Using the schema calculus of Z, we can then spéo#fyotal create operation as:

CreateProductTotal= (CreateProduct Successy
ProductAldyKnowny

DuplicateBuctName

CreateProductTotals defined for all possible inputs and additiopdhe result output
component specifies whether the operation was ssfideor otherwise what error

occurred.

6.9 Specifying Aggregation and Compaosition

Aggregation is used to indicate a “whole-part” tiglaship, in which one class represents
a larger entity (the whole), which consists of deraéntities (the parts). Aggregation is
often referred to as a “has-a” relationship. Agateon does not change the meaning of
navigation across the association between the waraldts parts, nor does it link the life
spans of the whole and its parts (Boetlal 2005).

Composition however is a form of aggregation wittorsg ownership and a coincident
lifetime as part of the whole. This means thah icomposite aggregation, an object may

be a part of only one composite at a time and dnsecreated, it lives and dies with the
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composite. The whole is responsible for the digjosof its parts, which means that the

composite must manage the creation and destruatis parts.

Aggregation and composition are stronger formssgbaiation (refer Sections 6.5 & 6.6)

and therefore the various ways of specifying thasevery similar to associations.

Our case study has an instance of aggregation@ngasition between the clas@sler
andltemin Figure 6.1. However, to keep our Z specificatielatively simple, we shall

not consider aggregation and composition furthehis dissertation.

6.10Specifying Inheritance

A generalisation is the relationship between a ngmeeral element (the parent) and a
more specific element (the child). The child ifyfconsistent with the parent and adds
additional information. A child inherits the aktutes and operations of its parent and is
therefore substitutable for the parent, i.e. cbitgects may be used anywhere the parent
may appear. Generalisation is therefore also dadde inheritance or an "is-a"
relationship. Usually the child has attributes apeérations in addition to those found in

its parent. Polymorphism occurs when a child ades an operation of the parent.

The Customer Companyand Person classes can be used to illustrate the different
specification approaches for inheritance. All oustrs have an address, a phone number
and a fax number. There are two types of custome&rscompanies and individuals
(calledPersonin this case study)CompanyandPersonare specialisations @ustomer

since they add some extra attributes.

The identity sets of the child classes are declasesubsets of the customer identity set in

the following Z axiomatic definition:

COMPANY:P CUSTOMER
PERSONP CUSTOMER

(COMPANY, PERSON partition CUSTOMER
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The declaration further shows that the customentitje set is partitioned by the
company and person identity sets. Therefore, &ment of CUSTOMERSs an element
of COMPANYor PERSONout not both.

CustomerCompanyandPersonare specified below:

__ Customer
customersP CUSTOMER
custAddress: CUSTOMER> STRING
custPhone: CUSTOMER> STRING

dom custAddress = customers
dom custPhone = customers

_ Company
Customer

companiesP COMPANY
compName: COMPANY-> STRING
compRegNo: COMPANY-» STRING

companies customers
dom compName = companies
dom compRegNo = companies

— Person
Customer

personsP PERSON

perName: PERSON> STRING
perSurname: PERSOM STRING

personsc customers
dom perName = persons
dom perSurname = persons

6.11Specifying the System State

It is conventional in Z to specify a schema repnésg the whole system state (Potbér
al. 1996). Operations are defined on the whole stdethat all side effects may be

captured and the full invariant could be demonsttabd hold after the operation.
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The system state is given by:

__ System
Product
Order
Iltem
Customer
Company
Person

6.12Specifying an Initial State

An initial state of the system is specified andraop obligation arises to show that such
an initial state may be realised. It also providdmse case to show by induction that any
operation preserves the invariants of the systete.stThat is, given any valid system
state, one ought to be able to show that such statebe realised from the initial state

followed by zero or more operations.

The initial state of a class is specified by anrapen schema that only includes the after
state components (Pottet al 1996). For example, the initial state of tReoduct

scheme is specified as:

__InitProduct
Product

product§=J
prodNamé= &
prodPricé= &
prodQuantity= &

The initial state of the whole system is then:

__InitSystem
InitProduct
InitOrder
Initltem
InitCustomer
InitCompany
InitPerson
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6.13Proof Obligations Arising from the Specification

In this section we highlight a number of proof ghlions that arise from Z specifications
(Potteret al. 1996; Van der Poll 2000; Spivey 1992). Many aésh proof obligations

occur in the context of operations that changesiystem state. In Chapter 7 some of
these proof obligations will later be convertedfitet-order logic and discharged using

the Vampire theorem prover with the aid of varibesiristics presented in Chapter 5.

6.13.1 Initialisation Theorem

Whenever an initial state schema is specified,cafpobligation arises to show that such
a state may be realised (Pott¢ral 1996; Van der Poll 2000). The proof obligation f

thelnitProductinitialisation schema (refer Section 6.12) is:

3 Product. InitProduct

That is, we need to show that there exists an atte such that the predicate of the

initialisation schema is valid.

The “turnstile” symbol}, is used to state a theorem (Podeal 1996). The hypothesis

of the theorem is specified on the left hand sifi¢he turnstile and conclusion on the

right hand side.

6.13.2 Precondition Simplification

In Z the precondition of an operation is obtaingchlwling the after-state components by
existentially quantifying them in the schema’s pcate (Potteret al 1996). The

precondition for th&€€reateProducbperation would therefore be:
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__ PreCreateProduct
Product
product?: PRODUCT
name?: STRING
price?: AMOUNT
quantity?:N

3 Product.
productZ products
name?® ran prodName
products= productsu {product?}
prodName= prodNameu {product?— name?}
prodPrice= prodPriceu {product?— price?}
prodQuantity= prodQuantityu {product?— quantity?}

This precondition can be simplified using, amongiers, the one-point-rule (Potterr
al. 1996):

__ PreCreateProduct
Product
product?: PRODUCT
name?: STRING
price?: AMOUNT
quantity?:N

product?z products
name?z ran prodName

Whenever a precondition is simplified we need tovshthat it is equivalent to the
original version (Potteet al 1996), i.e. the precondition &reateProductis indeed

schema&reCreateProductbove:

+ pre CreateProduct =

[Product
product?: PRODUCT
name?: STRING
price?: AMOUNT
quantity?N

I
product? products

name? ran prodName]
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The “pre” prefix operator in Z indicates the prediion of a schema (Spivey 1992).
Also, note that the right hand side of the aboveaéty uses a linear form of schema
definition (Potteret al. 1996).

6.13.3 After State Type

Every component of a schema for which a possildée sthange is specified, a proof
obligation arises to show that the correspondingraftate component is of the correct
type (Van der Poll 2000). As an example considdiesiaUpdateProductin Section
6.7.3 above and in particular the componaadName Upon the successful completion
of UpdateProducbne typically has to show that:

(1) Every element oprodNaméis an ordered pair, i.orodNamé PRODUCT «

STRING This effectively verifies thearrier typeof the component. For the purposes
of this dissertation a carrier type is built fromppécations of the powerset operator,
Cartesian products and combinations of these tengdets (basic types). In particular
for any two setX andyY, we defindP(X x Y) = X «» Y (Potteret al 1996).

(2) ComponenprodName is actually more restricted that just its undiexdycarrier type,

i.e.prodNamé PRODUCT» STRING.

For reasons of simplicity in this dissertation, wgically do not discharge proof
obligations (1) above, but assume the carrier tfpthe component to be correct. Our
decision to not attend to proof obligations invatyicarrier types stem from the fact that
many type checkers for Z like the Community Z To@¥T) (Malik & Utting 2005)
ensure that the carrier types of components areatobut they do not provide for more

restrictive type checking, e.g. the kind mentiome(?) above.

Proof obligations like those in (2) above are hogreaddressed in our work. Discharging
these kind of proof obligations effectively showsitt the after state of a component is
indeed more restricted as expected. These progatioins are amongst other things the
topic of Chapter 7.
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For UpdateProducthe following proof obligation needs to be disge:

Product
productsP PRODUCT

prodName PRODUCT« STRING
prodPrice PRODUCT« AMOUNT
prodQuantity PRODUCT«— N

product?: PRODUCT
name?: STRING
price?: AMOUNT
quantity?iN

dom prodNanie= products

dom prodPrice= products

dom prodQuantity= products

product® products

name? ran prodName

products= products

prodName= prodNames {product?— name?}
prodPrice= prodPrices {product?— price?}

prodQuantity= prodQuantitys {product?— quantity?}

prodName= PRODUCT>= STRING
prodPricees PRODUCT—-» AMOUNT
prodQuantitye PRODUCT-» N

The above notation for stating a proof obligatitenss from Potteet al (1996).

6.13.4 Total Operations

For every total operation specified, a proof oligaarises to show that it is indeed total
(Van der Poll 2000). An operation is total if igecondition is a partition, i.e. the

precondition is total and any two constituent prettons are pairwise disjoint.
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We first need to show that the precondition isltotehis is true when the disjunction of
all the constituent preconditions is a tautologwyii\er Poll 2000). Here is an example

for CreateProductTotal

F pre (CreateProduet Successy pre ProductAlreadyKnown pre DuplicateProductName

An equivalent method of specifying that the precbon is total is:

F pre CreateProductTotal =

[Product
product?: PRODUCT
name?: STRING
price?: AMOUNT
quantity?N

| true]

Secondly we need to show that all the constitueatgnditions are pairwise disjoint.

This conjecture fo€reateProductTotais:

F (pre (CreateProduet Success) pre ProductAlreadyKnown) & A
(pre (CreateProdugt Success) pre DuplicateProductName)& A
(pre ProductAlreadyKnown pre DuplicateProductName)&

6.13.5 Operation Interaction

The composition of operations leads to various pottigations (Potteet al. 1996; Van
der Poll 2000). For example, most specificatiohsreate and delete operations have the
property that a create operation followed by a téelgperation of the same element
results in an unchanged state. This is the caseCfeateProductfollowed by

DeleteProduct

CreateProduct DeleteProduct = Product

Similarly, deletion of an element followed by it®ation leaves the state unchanged:

DeleteProducg CreateProduct =Z Product
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Another class of interactions is create, updatelalete operations followed by a find

operation of the corresponding element. The elémenlved in the state change may or
may not be expected to be found, depending ongbkeation composition. For example,

after creating a product with some quantity, onesdaot expect that product to be below
that quantity:

CreateProduct SelectProductsBelowThresholghroduct?z products!

6.13.6 Contents of a Set

A proof obligation arises when adding an elemenatset. One has to show that the
element is in the set afterwards provided thatrtbeessary precondition holds (Van der

Poll 2000). For example the following conjectuoeilcl be stated foCreateProduct

CreateProduct | produ@droductss name? ran prodName

productZ productsa (product?— name?) prodNamé

In the case of an update we also need to shovstitht update has been successful, given

a valid precondition:

UpdateProduct | product?roducts

productZ productsa (product?— name?) prodNameé

Similarly, after deleting an element we can shoat this not in the set anymore:

DeleteProduct | product2products- product?z productsa product?z dom prodNanie

In all of the above cases we need to show thabtiner elements are not affected (i.e. the
operation did not cause any side effects as fénesther elements are concerned). For

example:

CreateProduct | produadroductss name? ran prodName

V p: products; n: prodName ppproduct?a n.1= product? p e productsa n e prodName
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Note thatn.1 above is a projection of the first componenthef tuplen.

6.13.7 State Invariant

The expanded form of any Z operation explicitly gfpes the state invariant. It is
therefore not required to separately show thatthte invariant is preserved. However,
to ensure that an operation does not introduc@@nsistency in the state one can prove
that the after state invariant is preserved, gitvea operation with the after state
components only declared in terms of their cartigges. For example, the proof

obligation forCreateProductvould then be:

Product
productsP PRODUCT

prodName PRODUCT« STRING
prodPrice PRODUCT«— AMOUNT
prodQuantity PRODUCT«— N

product?: PRODUCT
name?: STRING
price?: AMOUNT
quantity?N

I
product® products

name? ran prodName

products= products

prodName= prodNames {product?— name?}
prodPrice= prodPrices {product?— price?}

prodQuantity= prodQuantitys {product?— quantity?}
Product

6.14Conclusion

In this chapter we presented a simple order managersystem. The system was

specified in Z by translating the high level speeifion using specific patterns. A
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number of typical proof obligations that result frosuch specifications were also

discussed.

In the next chapter we convert some of the casby gitoof obligations of Section 6.13 to
first-order logic and discharge these using the plaentheorem prover with the aid of

various heuristics presented in Chapter 5.
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Chapter 7
Discharging Case Study Proof
Obligations

In this chapter a number of proof obligations taaise from the case study presented in
Chapter 6 are converted from Z to first-order logid discharged using Vampire. The
heuristics discussed in Chapter 5 are finally agpto failed proof attempts in an attempt
to find a proof. From the results in Chapter 5 wesesved that Vampire generally

performed well, hence our decision to use just Viaengss our reasoner in this chapter.

7.1 Conversion of Z to First-Order Logic

To discharge Z proof obligations using Vampire weech to convert the Z notation
presented in Chapter 6 to the TPTP (Thousands abléms for Theorem Provers)
notation (refer Section 4.1) used by Vampire. T®® standardisation of Z (ISO 2002)
specifies how a Z specification can be converted tgped first-order logic. However,
first-order logic representation using the TPTPatioh is not typed. To avoid the
paradoxes of naive set theory the type informatrarst be incorporated in the TPTP
transformation. A typed version of TPTP has be@pgsed (Claessen & Sutcliffe 2008)
but has not been implemented yet. The typed csioreto TPTP notation in this chapter

is based on this proposal.
As an example of such a typed conversion we wélthe following conjecture:
FP{LY ={ @.{{1}}}

Note that this problem was also used in Sectiortatillustrate the TPTP notation. In Z
the type of the number literal 1 4s (arithmos) which represents all numbers (ISO 2002)
The type of {1} therefore iBA. Similarly the types of {{1}},P{{1}} and { &,{{1}}} are

PPA, PPPA andPPPA respectively. Since Z is strongly typed, all edmits of a set in Z
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must be of the same type (ISO 2002). Thereforéyihe ofJ is inferred to b&PA. The
TPTP representation to show ti{{1}} = { O,{{1}}} is then given by the following

input to a reasoner:

% A typed TPTP set-theoretic problem:
% Show that P{{1}} = {Empty {{1}}}.

% Types

fof(types, axiom,
el(number_literal_1,t A) &
el(empty,t_PPA) &
el(a,t_PA) &
el(b,t_ PPA) &
el(c,t_PPPA) &
el(d,t_PPPA)

).

% Reflexivity

fof(reflexivity, axiom,
1[X]: X=X

)

% Extensionality for types PA, PPA and PPPA
fof(extensionality, axiom,
I[A,BL:((el(A,t_PA) & el(B,t_PA)) =>

((IXT:(el(X LA) => (el(X,A) <=> el(X,B)))) => A=B)) &
IIA.Bl:((el(At_PPA) & el(B,t_PPA)) =>

((IX]:(el(X,L_PA) => (el(X,A) <=> el(X,B)))) => A=B)) &
I[A.Bl:((el(At_PPPA) & el(B,t_PPPA)) =>

((IX]:(el(X L_PPA) => (el(X,A) <=> el(X,B))) ) => A=B))

% Empty = {}
fof(empty, axiom,

1X]:(el(X,t_PA) => (~el(X,empty)))
).

% A={1}
fof(a_is_1, axiom,

1X]:(el(X,t_A) => (el(X,a) <=> (X = number_liter al_1)))
).

% B = {A}
fof(b_is_a, axiom,

IIX]:(el(X,t_PA) => (el(X,b) <=> (X = a)))
)

% C =P(B)
fof(c_is_power_b, axiom,

IXI:(el(X,;t_PPA) => (el(X,c) <=> I[Y]:(el(Y,t_PA ) => (el(Y,X) => el(Y,b)))))
)

% D = {Empty,{{1}}}
fof(d_is_empty_or_1, axiom,

IX]:(el(X,t_PPA) => (el(X,d) <=> (((X = empty) | X=0)))
)

% Goal clause C =D
fof(c_is_d, conjecture,
c=d
).
The following should be noted about the above TEX&mple. Each variable or constant

is specified to be of a specific type. For exanmg(&X,t_PPA) specifies that the type of
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variable X isPPA. The same would apply to any functor represendingexpression.

Lastly, the extensionality axiom must be givendach set type occurring in the problem.

The author of this dissertation wrote a systemiandlate a large part of Z into first-order
logic in TPTP notation. Such system allowed usutwimatically convert Z input to the
desired notation to be used as input to the reaséneumber of the heuristics were also
applied to the input during this automated tramshaprocess. All input to the proof
attempts reported on in this chapter were genenaitd the aid of the above system

written in Java.

7.2 Discharging of Proof Obligations

In this section we take some of the proof obligaicthat arise from the order
management system specification in Chapter 6 aow $fow they can be discharged

using Vampire with the aid of the heuristics of QGtes 5.

7.2.1 CreateProduct Invariant

The CreateProducboperation adds a new product type to the stotk.sdhema contains

the following predicate:

products= productsu {product?}

The following proof shows that this predicate mdgoabe derived from the other

predicates:
products
= dom prodNarmie (invariant after)
= dom (prodName {product?— name?}) (specification of CreateProduct)

= dom prodName dom {product?~ name?} (fact about ‘dom’)
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= dom prodName’ {product?} (fact about ‘dom’)

= productsu {product?} (invariant before)

We may, therefore, redefine th€reateProductschema to exclude theroducts

predicate. Also, to keep the schema simple weuebecthe price and quantity variables.

The final expanded schema is given below:

__ LeanerCreateProduct
products? PRODUCT
prodName: PRODUCH» STRING
products P PRODUCT
prodNamé PRODUCT>~ STRING
product?: PRODUCT
name?: STRING

dom prodName = products

dom prodName= products

product?z products

name?z ran prodName

prodNameée= prodNameu {product?— name?}

The proof conjecture can then be stated as:

LeanerCreateProdueiproducts= productsu {product?}

In the conversion to first-order logic all heurtstiare applied except for tipeoducts

predicate to which the extensionality heuristicafid exemplification heuristic #4 were

not applied.

The exclusion of the exemplification heuristic prets the union operator’s definition
from being used directly instead of a functor. Wiis transformation Vampire is unable
to find a proof by terminating after 7 minutes with more passive clauses left. We next

apply the extensionality heuristic by defining ti®ve set equalitgroducts = products

U {product®} in terms of its elements as:
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V x: PRODUCT. x e products< x e productsu {product?}

With this transformation Vampire is able to fingp@of in 1 minute 12 seconds. Next we

apply the exemplification heuristic by using a dtrdefinition of the union operator as:

Vv x: PRODUCT. x e products< x e {y: PRODUCT | ye productsv y = product?}

Vampire is then able to find a quick proof in 1 @ed. The input to this last proof

attempt is shown in Appendix E.1.

The following table summarises the above results:

Extensionality Exemplification Time to find a proof
(Heuristic #1) (Heuristic #4)
No No No proof after 7 minutes
Yes No 72s
Yes Yes 1s

From the above table we observe that the applicatidoth the extensionality heuristic

#1 and the exemplification heuristic #4 leads @iy short proof.

7.2.2 CreateProduct is Total

The CreateProducbperation adds a new product type. It is nottal mperation since it

is not defined for all possible inputs. The aftéaite for example is not defined if the
input product already existCreateProductTotals an enhanced version that caters for
all possible inputs. To show th&reateProductTotals indeed total we need to show
that its precondition is a partition (refer Secti®i13.4). This is done as two separate

proof obligations (POs):

1. The first is to show that the disjunction of thenstituent preconditions is a

tautology.
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2. Secondly we need to show that all the constitueatgnditions are pairwise

disjoint.
The following conjecture states that the precondits a tautology (PO 1 above):

F pre (CreateProduet Successy pre ProductAlreadyKnown pre DuplicateProductName

An expanded form of the above conjecture is:

Product

product?: PRODUCT
name?: STRING
price?: AMOUNT
quantity?N

(3 Product result!: REPORT
product2 products
name? ran prodName
products= productsu {product?}
prodNanie= prodNameu {product?— name?}
prodPrice= prodPriceu {product?— price?}
prodQuantity= prodQuantityu {product?— quantity?}

result! = success)

\4

(3 Product resultl: REPORT
product2 products
products= products
prodNanie= prodName
prodPrice= prodPrice
prodQuantity= prodQuantity

result! = already_known)

\%

@3 Product resultl: REPORT

product2 products
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name? ran prodName
products= products
prodNanie= prodName
prodPrice= prodPrice
prodQuantity= prodQuantity

result! = duplicate_name)

Most heuristics have been applied in the conversiofirst-order logic except for the
divide-and-conquer heuristic #3. With such transked input Vampire is unable to find
a proof after 30 minutes. Owing to the complexity the proof, the transformed
conjecture is a conjunction of 8 terms. We cametfoge apply the divide-and-conquer
heuristic #3 to the above conjecture by splittinginto 8 separate conjectures and
corresponding proof attempts. Vampire is then stiable to find any proof after 30
minutes for any of the conjectures. These 8 comjes also consist of conjunctions onto
which the divide-and-conquer heuristic may be auplio further. This application
results in 56 proofs. Each of these proofs iscalied 5 minutes of which only 1 is found
in less than 1 second. The divide-and-conquer isteuris further applied to the
remaining 55 proofs, resulting in 440 proof attespatl with the aid of the Java system
described in Section 7.1 above. Each of thesefgnsoagain allocated 5 minutes of
which 438 are found in less than 1 second. The@ng two proofs are further split up
into four proof attempts of which three proofs &vend in less than one second and the
last proof in 5.5 seconds. This one remaining predinally split into two proofs for
which Vampire finds refutations in 1 second eadthe following table summarises the

results of these proof attempts:

Proof Attempt # Number of Proof Number of Number of failed
Obligations Refutations found| attempts remaining
1 1 0 1
2 8 0 8
3 56 1 55
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Proof Attempt # Number of Proof Number of Number of failed
Obligations Refutations found| attempts remaining
4 440 438 2
5 4 3 1
6 1 1 0

As may be observed from the above table, the digiteconquer heuristic #3 proved to

be very useful.

Lastly we need to show that all the constituentpnelitions are pairwise disjoint (PO 2

above) as given by the following conjecture:

F (pre (CreateProduet Success) pre ProductAlreadyKnown) & A
(pre (CreateProdust Success) pre DuplicateProductName)& A

(pre ProductAlreadyKnown pre DuplicateProductName)&

Suppose we exclude the extensionality and dividkeamquer heuristics in the
conversion to first-order logic. Vampire is themable to find a proof after 30 minutes.
The conjecture to be proved is a conjunction thatbées us to apply the divide-and-
conquer heuristic. This results in three sepapap®fs. Vampire is now able to find
quick refutations for the first and third proofs 18 and 24 seconds respectively, but is
still unable to find a refutation for the secondgir attempt after 30 minutes. The

remaining proof is a set equality that enablewspply the extensionality heuristic as:

V X [X e (pre (CreateProduet Success) pre DuplicateProductName} x e <]

The application of the extensionality heuristic ldea Vampire to find a quick proof in 1
second. We can similarly apply extensionality he first and third proofs for which

Vampire then also find quick proofs in 1 second.

The following table summarises the above results:
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Divide-and-conquer Extensionality Time to find a proof
(Heuristic #3) (Heuristic #1)
No No No proof found
Yes No 18s, no proof, 24s
(3 proof attempts
Yes Yes 1s, 1s, 1s
(3 proof attempts

7.2.3 ProcessOrder set contents

The ProcessOrdeoperation (refer Section 6.7.5) changes the stiagégpendingorder to
processedand removes the relevant product quantities fremeksas indicated on the
order line items. The specification of tReocessOrderoperation is repeated here for

convenience:

__ProcessOrder
AOrder
AProduct
Eltem
order?: ORDER

order?e orders
orderStatus(order?) = pending
Vi items. itemOrder(i) = order? prodQuantity(itemProduct(i)) — itemQuantity£)0
orders= orders
orderDaté= orderDate
orderStatus= orderStatus {order?— processed}
orderCustomer= orderCustomer
products= products
prodNamé= prodName
prodPricé= prodPrice
prodQuantity= prodQuantitys
{i: items | itemOrder(i) = orderdtemProduct(i}» prodQuantity(itemProduct(i)) — itemQuantity(i)}
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ProcessOrdeupdatesrderStatusandprodQuantity A proof obligation therefore arises
from ProcessOrdeto show that:

» Other order statuses are not affected.
* Product quantities not appearing as line itembiénarder are not affected.

The conjecture for the above double proof obligat®ospecified as:

ProcessOrder
(V s: orderStatus | sA order? se orderStatu} A
(7 g: prodQuantity (3 i: items. itemOrder(i) = order? itemProduct(i) = gq.1)

e prodQuantitf)

The divide-and-conquer heuristic has not been agpii the transformation to first-order
logic. Furthermore the exemplification heuristiaswmnot applied to the instances of the

above override operators)( which are used in the specification of the afstate
variablesorderStatusand prodQuantity. Functors are therefore used instead of direct

definitions of the override operator.

With this transformation Vampire is unable to findefutation after 30 minutes. We next

apply the divide-and-conquer heuristic by doing separate proofs farderStatusand

prodQuantity.

Vampire is then able to find a proof for tbederStatussub-problem in 16 minutes 22
seconds but is still unable to find a proof for ghedQuantity sub-problem after 30

minutes.

The orderStatus sub-problem still contains a definition of the oiude operator for
prodQuantity. Similarly theprodQuantity sub-problem also contains a definition of the
orderStatus override operator. We can therefore apply theumddnt information

heuristic by removing these unnecessary definitiori@ampire is then able to find a proof
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for the orderStatussub-problem in 5 minutes 26 seconds and is stidlble to find a

proof for theprodQuantity sub-problem after 30 minutes.

Lastly we apply the exemplification heuristic teetbverride operators of the two sub-

problems by replacing the indirect definitions ianctors with direct definitions.

Vampire is then able to find quick proofs for bgttoblems in 1 second.

The following table summarises the above results:

Divide-and- Redundant Exemplification | Time to find a
conquer information (Heuristic #4) proof
(Heuristic #3) (Heuristic #8)
No No No No proof
Yes No No 982s, no proof
Yes Yes No 326s, no proof
Yes Yes Yes 1s, 1s

7.2.4 CreateDeleteltem leaves state unchanged

The CreateltemandDeleteltemoperations respectively add and remove a line ftem

an order. An operation interaction proof obligat{oefer Section 6.13.5) that arises is to

show that adding an item and then immediately rengpthe item will leave thdtem

state unchanged. This proof obligation is spetifigth the following theorem:

Createlteny Deleteltent = Iltem

An expanded version of this conjecture looks aefes:

Altem
ZProduct

item?: ITEM

order?: ORDER
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quantity?iN,
product?: PRODUCT

I
ditend” .

item? itemsa

items= itemsu {item?} A

itemOrdér= itemOrdeu {item? — order?}a
itemPrice= itemPriceu {item? — prodPrice(product?)A
itemQuantity= itemQuantityu {item? — quantity?}
itemProdutt itemProduct {item?— product?}a
item items A

items= items$ \ {item?} A

itemOrdéE {item?} « itemOrdef A

itemPrice= {item?} < itemPricé A

itemQuantity= {item?} < itemQuantity A

itemProduct {item?} < itemProduct

E Item

The double prime () decorated components above are the intermeskates that link

the outputs oCreateltemwith the inputs oDeleteltem

In the conversion to first-order logic all heurtstihave been applied except for the terms

resulting fromZEltem to which the extensionality heuristic has not baeplied. With

this conversion Vampire is unable to find a prot€a30 minutes.
When fully expanded, the terBitembecomes the following conjunction:

itemse P ITEM A itemSe P ITEM A

itemOrdere ITEM —» ORDERA itemOrdefe ITEM - ORDERA
itemPricee ITEM —- AMOUNT & itemPricée ITEM —» AMOUNT A
itemQuantitye ITEM — N; A itemQuantitye ITEM — N A

itemProduck ITEM - PRODUCTA itemProducdte ITEM - PRODUCTA

141



dom itemOrder = items dom itemOrdér= items A

dom itemPrice = items dom itemPrice= items A

dom itemQuantity = itema dom itemQuantity= items A

dom itemProduct = items dom itemProduct items A

(Viy, in: items. i # i, = itemOrder(j) = itemOrder(}) v itemProduct() = itemProductf)) A
(Viy, ip: items .« iy # i, = itemOrdel(i,) = itemOrdei(i,) v itemProdudi,) = itemProducti,)) A
items = itemsa

itemOrder = itemOrdén

itemPrice = itemPricex

itemQuantity = itemQuantityx

itemProduct = itemProduct

Of all these conjuncts above only the last 5 etpabnjuncts are required to prove that
the before and after states are the same:

items = item'sa

itemOrder = itemOrdén
itemPrice = itemPricex
itemQuantity = itemQuantityx

itemProduct = itemProduct

We can therefore apply the redundant informatioarisgéc #8 by only keeping the
equality conjuncts. In this case the use of tlieimeant information heuristic is similar
to the divide-and-conquer heuristic #3 except thay one half of the divide will be

pursued. Vampire is now able to find a proof imihute 44 seconds.

Similarly to termZltem, the use o=Productin the problem statement also results in a

large number of unnecessary formulae. Of thesg prddPrice is being used in the
function applicatiorprodPricgproduc®). We therefore apply the redundant information

heuristic again by only keeping the variable dedlan of prodPrice in EProduct

Vampire is then able to find a proof in 1 minutes&@onds.
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The next target for the redundant information h&iaiis the predicate in schentam

that states thatemOrderanditemProductcombinations must be unique:

Viy, ip: items. iy # i, = itemOrder(j) = itemOrder(}) v itemProduct(i) = itemProduct()

Removal of this predicate in each lbém, Itemi and Itemi” enables Vampire to find a

proof in 1 minute 5 seconds.

We next apply the divide-and-conquer heuristic ioglihg separate equality proofs for
the five state variables dfem Vampire now finds proofs in 0.2, 59, 55, 29 &#i

seconds for the respective conjectures.

The separation of the conjecture into five sepacatgectures allows us to apply the
redundant information heuristic even further. FEoample, the proof to show that

itemOrder= itemOrder does not require any terms that reference thewsamecorations

of itemPrice itemQuantityanditemProduct If we remove such unnecessary terms for
each of the five conjectures, then Vampire is ablénd proofs in 0, 1.5, 6.8, 13.5 and

1.4 seconds respectively.

The following table summarises the above resultzder:

Redundant information Divide-and- Time to find a proof
(Heuristic #8) conquer
(Heuristic #3)
Not applied No No proof
Keep only equality predicates In No 104s
Eltem
Keep only declaration gérodPricein No 90s
EProduct
Remove unique itemOrdeg No 65s

143



Redundant information Divide-and- Time to find a proof
(Heuristic #8) conquer
(Heuristic #3)

itemProduct predicate inltem, Item

andltent

Yes 0.2s, 59s, 55s, 29s, 22s
Remove declarations of unrelated Yes 0Os, 1.5s, 6.8s, 13.5s,
variables and predicates referring |to 1.4s

them inltem Iteni andltent

7.2.5 After State Type of CancelOrder

An order that has not been processed yet, thaissn a pending status, can be cancelled.

This is done with th€ancelOrderoperation:

__ CancelOrder
AOrder
order?: ORDER

order?e orders

orderStatus(order?) = pending

orders= orders

orderDatée= orderDate

orderStatus= orderStatus {order?— cancelled}
orderCustomér orderCustomer

Component®rderStatusandorderStatusare partial functions frofdRDERto STATUS
and their carrier types a@RDER« STATUS Specification tools that do type checking

often only ensure that the carrier type of a vdeiab correct (see Section 6.13.3), but do

not cater for more restricted type checking. Hoe €ancelOrder operation they,
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therefore, do not verify whethesrderStatusis a partial function. The following

conjecture can be used to show thaterStatusis a partial function:

Order
ordersP ORDER

orderDate ORDER« DATE
orderStatusORDER« STATUS
orderCustomerORDER« CUSTOMER

order?: ORDER
|

dom orderDate= orders
dom orderStatus orders
dom orderCustomer orders
order?® orders

orderStatus(order?) = pending

orders= orders
orderDate= orderDate
orderStatus= orderStatus {order?— cancelled}

orderCustomer orderCustomer

orderStatusORDER—+ STATUS

In the conversion to first-order logic most heucstare applied except for the following

conjunct to which the exemplification heuristic wast applied to the override operator:

orderStatus= orderStatus {order?— cancelled}

The exclusion of the exemplification heuristic lsin the use of a functor instead of a
direct definition of the override operator. Thisables us to manipulate the override
operator’s definition independently to investigtte utility of some other heuristics. We
therefore do not use the following generic defamitiof the override operator in the
standard Z toolkit:
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X Y]
_o_1(Xe)XXeoY)—> (XaY)

Vrs:X—Y.res=((domsxr)us)

but rather define it instantiated f@RDER and STATUS as well as defining the

expression ((dom s r) u s) directly instead of using the domain, domaiti-gestriction

and union set operations that are evident in tloee@blefinition:

_® _: (ORDER« STATUS)x (ORDER« STATUS)— (ORDER«> STATUS)

Vr,s: ORDER— STATUS.re s = {x: ORDERX STATUS | (xe rAV p: s- X.1# p.1)v X € S}
Suppose we decide to not use the element struatwrenultivariate functor heuristics in
the definition of the override operator above fbe tconversion to first-order logic.
Vampire is then unable to find a proof after 30 ub@s. Next we apply the element
structure heuristic to the override operator intiggsformation to first-order logic. The
heuristic is applied by converting all instancesvafiables that are Cartesian product

types to tuples. One such example is the defmitibvariablex in the above definition

of ®. It can be rewritten as:
{X1: ORDER,; %: STATUS | ((X.X2) e r AV p: Se X1 # p.1)v (X1,X2) € S}

With this transformation of the override operataanvpire is able to find a proof in 2
minutes 47 seconds. However, if the element stradieuristic is only applied toas in
the example above and not to all instances of Sarieproduct variables then Vampire
only finds a proof after 5 minutes 53 seconds. sTikian example of the resonance
heuristic #10 that requires corresponding ternmfsalee a syntactically similar structure to

aid the resolution process.

Next we discard the element structure heuristicingttad apply the multivariate functor
heuristic. We do this by replacing the universatiable s in the definition of the

override operator with the constamirfler? — cancelleg:
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_® _: (ORDER«> STATUS)x (ORDER«> STATUS)— (ORDER«> STATUS)

V r: ORDER«— STATUS. r @ {order?— cancelled} =
{x: ORDERx STATUS |
(e r AV p: {order?— cancelled} x.1= p.1)v x e {order?— cancelled}}

Vampire now finds a proof in 3 minutes 31 seconds.

Lastly we apply both the element structure andntldtivariate functor heuristics to the
definition of the override operator. Vampire iethable to find a quick proof in 1

second. The input to this last successful proeinapt appears in Appendix E.2.

The following table summarises the above results:

Element structurel  Resonance | Multivariate functor| Time to find a
(Heuristic #7) (Heuristic #10) (Heuristic #5) proof
No No No No proof
Yes Yes No 167s
Yes No No 353s
No No Yes 211s
Yes Yes Yes 1s

7.3 Conclusion

Chapter 6 introduced a case study of an order nesnewgt system specified in Z and
highlighted typical proof obligations that ariserdr such specifications. This chapter
started by discussing the conversion of Z proofgalions to first-order logic. Finally

five proof obligations that arose from the casealgtwere converted to first-order logic
with the aid of a Java program written by the auvtbiothis dissertation and discharged

using the Vampire reasoner with the help of thesgméed heuristics.
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From the successes reported in this chapter wihaethe heuristics presented in Chapter
5 are indeed useful, not only in discharging tiadal set-theoretic problems, but also

problems on a larger scale, typically those presegtspecifications.

The next and final chapter takes stock of what setsout to be achieved in Chapter 1

and to what extent these aims have been met.
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Chapter 8
Summary and Conclusions

In this final chapter we revisit our original resgaquestion and hypothesis from Chapter
1. We then discuss how the proposed approachdtio8el.4 was applied and what our
findings were. The chapter concludes with a disiamsof the directions that future work

in this area could follow.

8.1 Contributions of this Dissertation

Van der Poll and Labuschagne developed a suited4ohduristics (Van der Poll &
Labuschagne 1999, Van der Poll 2000) to aid therCGititomated reasoner (McCune
2003) in finding proofs for set-theoretic problen@tter became dated since the work of
Van der Poll and Labuschagne and its performanteeafinnual CASC (Pelletiet al
2002, Sutcliffe & Suttner 2006) competitions sin2@00 indicates that it cannot be
considered a state of the art prover anymore. gt dlao been decommissioned by its
author and replaced by Prover 9 (McCune 2009).veNReless, Otter was used to arrive
at the VdPL heuristics described throughout thisselitation and its use led to the
qguestion of whether the VdPL heuristics are appleato other resolution-based

reasoners that have since surpassed Otter in penhoe.
Our hypothesis was:

The set-theoretic heuristics developed by Van dat 8&d Labuschagne are

applicable to state of the art resolution-basedraated theorem provers.

We selected Vampire (Riazanov & Voronkov 2002) la@ter 4 as our primary and state
of the art automated theorem prover to verify oypdthesis. Vampire was chosen
because it is a resolution-based automated regspegormed consistently well in the
annual CASC (Pelletieet al. 2002, Sutcliffe & Suttner 2006) competitions. nvare

also solved more set-theoretic problems than anyhefother competing provers in the
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period from 2002 to 2007 across all divisions. @Gdh(Tammet 1997) was chosen as the
secondary resolution-based reasoner since it adoréasonable success at the CASC

competitions some time ago.

In Chapter 5 each of the VdPL heuristics obtaitedugh the use of Otter was stated and
tested in turn on sample set-theoretic problemsgusiampire and Gandalf. Otter was
used to discharge the proof. After a failed pratiempt the relevant heuristic was
applied to the problem specification and it enalilter to find a proof. The original
problem was then discharged on Vampire and Gandalfsome of the cases Vampire
and Gandalf were able to solve the original probheithout the application of the
heuristic. In these cases the problem complexay imcreased to such an extent that a
proof could not be found. The heuristic was themilarly applied to failed proof
attempts. It was found that Vampire needed 10 @addalf 9 of the 11 heuristics
evaluated. However, Vampire generally found prapfker, hence it was chosen as the

reasoner to be used in the rest of our work.

In Chapter 6 an order management case study wasogexd using the Z specification
language (Spivey 1992) that is based on first-ololgic and a strongly-typed set theory.
Some of the proof obligations that arose from thgecstudy were selected in Chapter 7,
converted to first-order logic and discharged us#agmpire. In all these cases various

combinations of heuristics were required to enafalmpire to find proofs.

We have therefore provided empirical evidence ef ulility of the VdPL heuristics to
state of the art resolution-based automated theprerrers in the domain of set-theoretic

problems.

8.2 Future Work

The proofs in this work were done using the defaeltings of Vampire and Gandalf.
Three of the 14 heuristics were not evaluated mxdhey require changes to these
default settings. Future empirical work involvidganging and fine-tuning some of these

settings may yield further useful results.
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We limited our selection of reasoners to resolubased provers since Otter is
resolution-based. The applicability of the heissstto other types of automated
reasoners could be investigated, for example tabéea term rewriting (Bundy 1999).
The problem domain was also limited to set the@®ymilarly the utility of the heuristics

can be tested on other problem domains, espedradlse with similar characteristics as

set theory, e.g. deeply nested constructs.

The translation of Z specification proof obligatsoio first-order logic in Chapter 7 had to
incorporate the Z type information into the resgtiproblem. It was found that the
additional typed terms in the resulting clauses el restrict irrelevant search paths
resulting from the resolution of clauses with uatetl types. Some resolution of these
incompatible clauses can, however, still take plagethe resolvents can only be reduced
up to the type terms where further reductions asvented. It is plausible that these
undesired unifications may be prevented up frotheftype information becomes part of
the TPTP notation (Sutcliffe & Suttner 1998) thatused as the input to our proof
attempts. The incorporation of type information rmanifested in this dissertation
coincides with the mechanism proposed by Claesseh %utcliffe (2008). The
implementation of type information into the unificen algorithms of next generation
theorem provers may therefore create a more aitidkass of reasoners against which
the applicability of the VdPL heuristics may betéels

Since the VdPL heuristics appear to be more uréMgrapplicable as was known before
one may now consider building a library of suchoggisable patterns in proof attempts,
aimed at automatically transforming a specifiengut to a reasoner prior to an attempt at
discharging a proof obligation. Some progresshia tegard has already been made as
part of this work. The conversion of Z proof oldlipns in Chapter 7 to first-order logic
was largely automated through the use a Java prodexeloped for this purpose. It was
found that some of the heuristics could to somergxbe applied automatically during
the conversion. Further work in this area coukllein an automated conversion to first-
order logic of the full Z language with the VdPLunistics applied automatically where

applicable.
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Appendix A
Resolution Deductions of the Farmer,
Wolf, Goat and Cabbage (FWGC) Puzzle

A.1 A Possible Refutation Deduction of the FWGC

Puzzle

C= =S(fh, x, y, Z)J=SAFE(fh, x, y, z)J Farmer goes across
- SAFE(fa, X, y, z2XdS(fa, X, y, 2)

G = -~ S(fa, x, y, Z)J -~ SAFE(fa, X, y, zJ Farmer returns
= SAFE(fh, X, y, 2O S(fh, x, y, 2)

C= - S(fh, gh, y, zZJ1-SAFE(fh, gh, y, z[1 Farmer takes goat across
- SAFE(fa, ga, vy, zZl1 S(fa, ga, vy, z)

Cs= -S(fa, ga, y, ZJ1-SAFE(fa, ga, y, z1 Farmer returns goat
- SAFE(fh, gh, y, zJ1S(fh, gh, vy, 2)

Cs= = S(fh, x, ch, zYJ-SAFE(fh, x, ch, z[1 Farmer takes cabbage
- SAFE(fa, X, ca, zJ1 S(fa, x, ca, z) across
Ce= - S(fa, X, ca, zJ1-SAFE(fa, x, ca, z|] Farmer returns cabbage

= SAFE(fh, x, ch, zJd S(fh, x, ch, z)

G = = S(fh, x, y, wh)O = SAFE(fh, X, y, wh)O Farmer takes wolf across
- SAFE(fa, X, y, wallS(fa, X, y, wa)
Cg= = S(fa, X, y, wa)l-SAFE(fa, X, y, wa}l Farmer returns wolf

= SAFE(fh, x, y, wh)d S(fh, X, y, wh)
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SAFE(fh, gh, ch, wh)

Cpo= SAFE(fh, gh, ch, wa)

Cp = SAFE(fh, gh, ca, wh)

Cpp= SAFE(fh, gh, ca, wa)

Ci3= SAFE(fh, ga, ch, wh)

Cy= SAFE(fa, gh, ca, wa)

Ci5= SAFE(fa, ga, ch, wh)

Cis= SAFE(fa, ga, ch, wa)

Ci7= SAFE(fa, ga, ca, wh)

Cig= SAFE(fa, ga, ca, wa)

Cpo= S(fh, gh, ch, wh) Start state

Cypo= - S(fa, ga, ca, wa) Goal state negated
Take goat across

Co= - SAFE(fh, gh, ch, wh)d - SAFE(fa, ga, ch, wh)l Resolvent of gand Gq
S(fa, ga, ch, wh) Unifier {chly, wh/z}

Cy= -~ SAFE(fa, ga, ch, wh)l S(fa, ga, ch, wh) Resolvent of Gand G,

Cy3= S(fa, ga, ch, wh) Resolvent of ¢ and G,
Farmer returns

Cy= -~ SAFE(fa, ga, ch, wh)l - SAFE(fh, ga, ch, wh)] Resolvent of Gand G
S(fh, ga, ch, wh) Unifier {ga/x, chly, wh/z}

Cys= -~ SAFE(fh, ga, ch, wh)l S(fh, ga, ch, wh) Resolvent of @ and G,

Cys= S(fh, ga, ch, wh) Resolvent of ¢ and Gs
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Take wolf across

Cyr= -~ SAFE(fh, ga, ch, wh)l -~ SAFE(fa, ga, ch, wa)l Resolvent of Cand Gg
S(fa, ga, ch, wa) Unifier {ga/x, chly}

Cyp= -~ SAFE(fa, ga, ch, wa)l S(fa, ga, ch, wa) Resolvent of G and G

Cyo= S(fa, ga, ch, wa) Resolvent of ¢ and Gg
Bring goat back

Cso= - SAFE(fa, ga, ch, wa)l - SAFE(fh, gh, ch, wall Resolvent of Gand Gg
S(fh, gh, ch, wa) Unifier {chly, wa/z}

Cs = ~SAFE(fh, gh, ch, wall S(fh, gh, ch, wa) Resolvent of G and G

Cso= S(fh, gh, ch, wa) Resolvent of ¢ and G;
Take cabbage across

Css= - SAFE(fh, gh, ch, wa)l - SAFE(fa, gh, ca, wa)l Resolvent of gand G,
S(fa, gh, ca, wa) Unifier {gh/x, wa/z}

Cas= - SAFE(fa, gh, ca, wa)l S(fa, gh, ca, wa) Resolvent of ¢ and Gs

Css= S(fa, gh, ca, wa) Resolvent of ¢, and G,
Farmer returns

Cse= -~ SAFE(fa, gh, ca, wa)l - SAFE(fh, gh, ca, wal) Resolvent of Gand Gg
S(fh, gh, ca, wa) Unifier {gh/x, caly, wa/z}

Cyr= -~ SAFE(fh, gh, ca, wall S(fh, gh, ca, wa) Resolvent of ¢, and Gg

Cyg = S(fh, gh, ca, wa) Resolvent of ¢, and Gy
Take goat across

Cso= - SAFE(fh, gh, ca, wa)l - SAFE(fa, ga, ca, wd)l Resolvent of gand Gg

S(fa, ga, ca, wa)

Unifier {caly, wa/z}
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Cao= - SAFE(fa, ga, ca, wd) S(fa, ga, ca, wa) Resolvent of ¢z and Gy

Cp= S(fa, ga, ca, wa) Resolvent of g and G,

Goal achieved

Csr= ] Resolvent of g and G;

A.2 Level Saturation Method Deduction of FWGC

Puzzle
C,=| =S(fa, %, y, Z)J-SAFE(fa, X, y, z[J Farmer returns
- SAFE(fh, x, y, 2)O S(fh, x, y, 2)
Cs = | =S(fh, gh, y, zXJ-SAFE(fh, gh, y, zJ Farmer takes

- SAFE(fa, ga, y, zZ)1S(fa, ga, vy, ) goat across

Ci, = | SAFE(fh, gh, ca, wa)

Cius= | SAFE(fa, gh, ca, wa)

Cis= | SAFE(fa, ga, ca, wa)

Cio=| S(fa, gh, ca, wa) Start state
Cyo= | =S(fa, ga, ca, wa) Goal state
negated

Saturation Level 1

Co1= | = S(fh, gh, y, zZJ-SAFE(fh, gh, y, zZJ0-~ SAFE(fa, ga, y, 2) Cz Gzon
S(fa, ga, vy, 2)

C,, = | =SAFE(fh, gh, y, zZJ1-SAFE(fa, ga, vy, z)1 S(fa, ga, v, z) C,, Gon
S(fh, gh, y, 2)

Co3 = | = S(fa, gh, ca, wall - SAFE(fa, gh, ca, wa) S(fh, gh, ca, wa) | C, Ciz
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Coa= | =S(fa, gh, ca, wa)l- SAFE(fh, gh, ca, wal)l S(fh, gh, ca, wa) C,, Cis

Cys=| =S(fa, ga, ca, wa)l - SAFE(fh, ga, ca, wd)l S(fh, ga, ca, wa) C,, Cig

C6 = | =SAFE(fa, gh, ca, wa)l - SAFE(fh, gh, ca, wal)l C,, Cyg
S(fh, gh, ca, wa)

C,7= | =S(fh, gh, ca, wa)l - SAFE(fa, ga, ca, wd) S(fa, ga, ca, wa) Cs, Cio

Cos = | =S(fh, gh, ca, wa)l - SAFE(fh, gh, ca, wa)l S(fa, ga, ca, wa) Cs, Ci

Cy9= | =S(fh, gh, ca, wall - SAFE(fh, gh, ca, wal)l C;, Cxo
- SAFE(fa, ga, ca, wa)
Saturation Level 2
-S(fa, gh, y, zZ1-SAFE(fa, gh, y, zZJJ-SAFE(fh, gh, y, z1 C;, Con
-SAFE(fa, ga, y, 2) S(th, gh, v, 2)
-~ SAFE(fa, ga, y, zZ1-~SAFE(fh, ga, y, zZJ1 S(th, ga, y, zZ0 Cy Cpp0n
- SAFE(th, gh,y, 2) S(fa, ga, y, 2)
- S(fa, gh, ca, wa)l - SAFE(fa, gh, ca, wa)l C,, G,y 0n

- SAFE(fh, gh, ca, wal)l - SAFE(fa, ga, ca, wd)

S(fa, ga, ca, wa)

S(fh, gh, ca, wa

- SAFE(fa, ga, ca, wd)l - SAFE(fh, ga, ca, wa)
S(fh, ga, ca, wal)l = S(fh, gh, ca, wa)

C;, Cyy0n
S(fa, ga, ca, wa

- S(fa, gh, ca, wal)l - SAFE(fa, gh, ca, wd)l
- SAFE(fh, gh, ca, wa)l S(fa, ga, ca, wa)

C,, Cgon
S(fh, gh, ca, wa

- SAFE(fa, ga, ca, wd)l - SAFE(fh, ga, ca, wd)l
S(fh, ga, ca, wall-S(fh, gh, ca, wall - SAFE(fh, gh, ca, wa)

C,, Cgon
S(fa, ga, ca, wa

- S(fa, gh, ca, wal)l - SAFE(fa, gh, ca, wd)l
- SAFE(fh, gh, ca, wa)l - SAFE(fa, ga, ca, wa)

C;, Cpon
S(fh, gh, ca, wa

- SAFE(fh, gh, ca, wal)ll - SAFE(fa, ga, ca, wd)

Cs, Cyzon
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S(fa, ga, ca, wd)l -~ S(fa, gh, ca, wa)l - SAFE(fa, gh, ca, wa)

S(fh, gh, ca, wa

- SAFE(fth, gh, ca, wall - SAFE(fa, ga, ca, wd)
S(fa, ga, ca, wa)l - S(fa, gh, ca, wa)

GCs, Cu0n
S(fh, gh, ca, wa

- S(fh, gh, ca, wa)l-SAFE(fh, gh, ca, wal)l
- SAFE(fa, ga, ca, wd)l - SAFE(fh, ga, ca, wd)
S(fh, ga, ca, wa)

G, C50n
S(fa, ga, ca, wa

- SAFE(fh, gh, ca, wal)ll - SAFE(fa, ga, ca, wd)
S(fa, ga, ca, wa)l - SAFE(fa, gh, ca, wa)

Cs, Cyg 0N
S(fh, gh, ca, wa

- S(fh, gh, ca, wa)l - SAFE(fa, ga, ca, wa) Cio Gt
-~ SAFE(fa, ga, ca, wd) S(fa, ga, ca, wa) Ciz Cp2
- S(fa, gh, ca, wall S(fh, gh, ca, wa) Ci2 Caa
-~ SAFE(fa, gh, ca, wa)l S(fh, gh, ca, wa) Ci2 Cos
- S(fh, gh, ca, wa)l S(fa, ga, ca, wa) Cia Cos
- S(fh, gh, ca, wa)l - SAFE(fa, ga, ca, wa) Cia G
- S(fa, gh, ca, wall S(fh, gh, ca, wa) Cia, Cos
-~ SAFE(fh, gh, ca, wall S(fh, gh, ca, wa) Cia, Cos
- S(fh, gh, y, zZ1-SAFE(fh, gh, v, 2) Cis Cnn
~SAFE(fh, gh, y, zZ0 S(fa, ga, v, 2) Cis, G2
- S(fh, gh, ca, wa)l S(fa, ga, ca, wa) Cis, Co7
- S(fh, gh, ca, wal)l - SAFE(fh, gh, ca, wa) Cie Coo
-~ SAFE(fa, gh, ca, wa)l S(fh, gh, ca, wa) Cio Cos
-~ SAFE(fh, gh, ca, wall S(fh, gh, ca, wa) Cio, Coa
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- SAFE(fh, gh, y, zZ1-SAFE(fa, ga, vy, 2)

C201 022

- S(fh, gh, ca, wa)l-SAFE(fa, ga, ca, wa)

C201 027

- S(fh, gh, ca, wa)l - SAFE(fh, gh, ca, wa)

CZO: C/ZB

A.3 UR-resolution Deduction of FWGC Puzzle

Take goat across

C.1=| S(fa, ga, ch, wh) N: G E: G, Ci5, Cig
Farmer returns

C,= | S(fh, ga, ch, wh) N: C, E: Cig, Cis, Co1
Take wolf across

C,3=| S(fa, ga, ch, wa) N: C; E: C3, Ci6, Cr
Bring goat back

C.s=| S(fh, gh, ch, wa) N: C4 E: G, Cig, Co3
Take cabbage across

Cxs=| S(fa, gh, ca, wa) N: G5 E: Cig, Cia, Cos
Farmer returns

Cys= | S(fh, gh, ca, wa) N: G, E: Gy, Cisy Cs
Take goat across

C,7=| S(fa, ga, ca, wa) N: G E: C, Cis, Cy
Goal achieved

Cx=|1] Coo, Gy
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A.4 lllustration of Set-of-support Strategy of FWGC

Puzzle

Given set

C,=| =S(fa, x, y, ZJ-SAFE(fa, X, y, z[J Farmer returns
= SAFE(fh, x, y, z)J S(fh, X, y, 2)

Cs=| =S(fh, gh, y, zZI1-SAFE(fh, gh, y, z[J Farmer takes
-~ SAFE(fa, ga, y, z[1 S(fa, ga, y, 2) goat across

Ci2 = | SAFE(fh, gh, ca, wa)

Cys= | SAFE(fa, gh, ca, wa)

Cis= | SAFE(fa, ga, ca, wa)

Cio=| S(fa, gh, ca, wa) Start state
Set-of-support

Cy= | =S(fa, ga, ca, wa) Goal state

negated

Saturation Level 1

C1= | =S(fh, gh, ca, wall -~ SAFE(fh, gh, ca, wal)l Cs, Cxo
- SAFE(fa, ga, ca, wa)
Saturation Level 2

Cy = | =S(fa, gh, ca, wa)l - SAFE(fa, gh, ca, wa)l C,, G 0n
-~ SAFE(fh, gh, ca, wal)l - SAFE(fa, ga, ca, wa) S(fh, gh, ca, wa)

Cy3= | = S(fh, gh, ca, wall - SAFE(fa, ga, ca, wa) Cia Gt

Cos= | =S(fh, gh, ca, wall - SAFE(fh, gh, ca, wa) Cis Gt
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Saturation Level 3

Cys=| =S(fa, gh, ca, wa)l - SAFE(fa, gh, ca, wa)l C,, Gy
- SAFE(fh, gh, ca, wa)l - SAFE(fa, ga, ca, wa)

Cz6= | ~S(fa, gh, ca, wal)l - SAFE(fa, gh, ca, wal) Co
-~ SAFE(fh, gh, ca, wa)

C,7=| =S(fa, gh, ca, wa)l - SAFE(fa, gh, ca, wa)l Ciz Cx
- SAFE(fa, ga, ca, wa)

Cag=| = S(fh, gh, ca, wa) Ci2 Gy

Cyo = | =S(fa, gh, ca, wall-SAFE(fh, gh, ca, walll Cia, Co2
- SAFE(fa, ga, ca, wa)

Cs0=| =S(fa, gh, ca, wa)l - SAFE(fa, gh, ca, wa)l Cis Cx
- SAFE(fh, gh, ca, wa)

Cz1=| =S(fh, gh, ca, wa) Cis C3

Cs2 = | =SAFE(fa, gh, ca, wa)l - SAFE(fh, gh, ca, wal)l Cio, &
- SAFE(fa, ga, ca, wa)

A.5 Set-of-support Strategy with Predicate Ordering

Saturation Level 1

Cy1=| =S(fh, gh, ca, wall - SAFE(fh, gh, ca, wall GCs, Cy
- SAFE(fa, ga, ca, wa)

Saturation Level 2

Cz2=| = S(fa, gh, ca, wal)l - SAFE(fa, gh, ca, wa)l Cz, G on
-~ SAFE(fh, gh, ca, wa)l - SAFE(fa, ga, ca, wa) S(fh, gh, ca, wa

Saturation Level 3
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Ca3 = | =SAFE(fa, gh, ca, wa)l- SAFE(fh, gh, ca, wal)l Cio Gz
- SAFE(fa, ga, ca, wa)
Saturation Level 4
Caa= | =SAFE(fa, gh, ca, wa)l - SAFE(fa, ga, ca, wa) Cio Co3
Cys = | =SAFE(fh, gh, ca, wa)l - SAFE(fa, ga, ca, wa) Cia Gz
Co6 = | =SAFE(fa, gh, ca, wa)l - SAFE(fh, gh, ca, wa) Cis Cos
Saturation Level 5
C,7= | =“SAFE(fa, ga, ca, wa) Cis, Cu
Cys= | =“SAFE(fa, gh, ca, wa) Cis Cou
Cy = | -SAFE(fa, ga, ca, wa) Ci Cos
Cso = | = SAFE(fh, gh, ca, wa) Cis, Cos
Cs1 = | =SAFE(fh, gh, ca, wa) Cia, G
Cs2 = | =SAFE(fa, gh, ca, wa) Cio Cos
Saturation Level 6
Css=| [ Cis Cy

A.6 Set-of-support Strategy with Subsumption

Given set
C,=| =S(fa, %, y, zJ-SAFE(fa, X, y, z)J Farmer returns
= SAFE(fh, X, y, 2O S(fh, x, y, 2)
Cs= ~ghys —ghYs Farmer takes goat

across
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=SAFE(fargay—zH-Stlargay-2) Subsumed by £

Ci» = | SAFE(fh, gh, ca, wa)

Cis= | SAFE(fa, gh, ca, wa)

Cis= | SAFE(fa, ga, ca, wa)

Cio=| S(fa, gh, ca, wa) Start state
Set-of-support

Cx = | =S(fa, ga, ca, wa) Goal state negated
Saturation Level 1

Co= —ghea; —gh€a; Cs, Cxo
=SAFE{fa,-ga,ca;wa) Subsumed by 5
Saturation Level 2

Cao= RSAImEy €35 Ca Cu
~SARE(fh-ghr-ea-wall~SAFE(fa; gi-ca, wa) Subsumed by £

Cy3 = | =S{ihghcawal=SAFE{agaca;-wa) Cio Gy

Subsumed by £

Saturation Level 3

Caa= gh-€a; gh-€a; G, G
~SAFE(fh-gh-ca-wall~SAFE(fargarcarwa) Subsumed by £

Cas = G635 €35 Ci2 G2
=SAFE{a,ga,ca—wa) Subsumed by §

Cy6= | ~S(fh, gh, ca, wa) Cis Co3

C27 - v 0 v v v 7 C191 CQZ

Subsumed by &
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Saturation Level 4

Cos = | =S{far-ghcawal=SAFE({fa-ga,ca—wa) Cia G5
Subsumed by §
Cyo = | =SAFE{#fa;ghcawal=SAFE({a,ga;ca—wa) Ci Cyy
Subsumed by £
Saturation Level 5
Cs0=| = S(fa, gh, ca, wa) Cis G
Cs1 = | ~SAFE(fa, ga, ca, wa) Cia G
Saturation Level 6
Cs=| [ Cia Cyo
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Appendix B

Theorem Provers Evaluated

Prover Resolution-| CASC | Notes
Based Division
Winner

Bliksem Yes - Development has been abandoned arsd wa
replaced by the Smiley theorem prover.

Carine Yes - E-mail correspondence with the author
suggested that Carine would not be suitable
for the evaluation described in this
dissertation.

Darwin No 2007 E-mail correspondence with the autho
confirmed that Darwin only uses resolution
in a very limited way.

DCTP No 2005 Tableau based.

Discount No - Unfailing Knuth-Bendix.

E No 2000 Equational theorem prover.

E-KRHyper No - Tableau based.

E-Setheo No 2002 Uses DCTP, E and SETHEO in paralle

Equinox No - Based on model generation.
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Prover Resolution-| CASC | Notes
Based Division
Winner

Fampire Yes - Vampire using the SPASS clausifier.

FM-Darwin No - Based on model generation.

Gandalf Yes 2004 E-mail correspondence with authdicated
that Gandalf should be a good candidate| for
the evaluation described in this dissertation.

Geo No - Based on geometric resolution.

iProver No - Based on instantiation calculus.

LeanCoP No - Connection-driven proof search.

LeanTaP No - Implemented in Prolog.

Mace No - Based on model generation.

Meteor No - Based on model elimination.

Metis Yes - Based on resolution and model elimorati

Octopus Yes - Multiprocessor version of Theo.

OSHL No - Instance based - reduces problems to
propositional logic instances.

Otter Yes 1999 Considered to be the father of nrangern
automated theorem provers. It is also a good
benchmark for improvements in other

provers.
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Prover Resolution-| CASC | Notes
Based Division
Winner
Paradox No 2007 Based on model generation.
Prover9 Yes - Otter’s replacement.
RRL No - Based on rewriting techniques.
Setheo No - Tableau based.
Smiley Yes - Not available yet.
SOS Yes - Uses Otter as a sub-program.
SPASS Yes 1999
Theo Yes -
Vampire Yes 2007 Consistent CASC division winnenlv8s
more set theory problems than other prove
Waldmeister No 2007 E-mail correspondence with thathor

suggested that Waldmeister would not

suitable for our work.
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Appendix C

Sample Reasoner Output

C.1 Vampire

Refutation found. Thanks to Tanya!

=—========== Refutation ==========

*kkkkkkkkkk [7, Input] *hkkkkkkkkkk

(! X0)(el(X0,d) <=> X0=empty V X0=b)

kkkkkkkkkkk [7_>241 NNF transformatlon] kkkkkkkkkkk
(! X0)(el(X0,d) <=> X0=empty \/ X0=b)

(1 X0)((~el(X0,d) V (X0=empty V X0=b)) & ((~X0=
kkkkkkkkkkk [24'>25, ﬂattenlng] Fkkkkkkkkkk
(1 X0)((~el(X0,d) V (X0=empty \ X0=b)) & ((~X0=

(! X0)((~el(X0,d) V X0=empty \V X0=b) & ((~X0=em
kkkkkkkkkkk [25_>267 skolemlzatlon] dkkkkkkkkkk
(! X0)((~el(X0,d) V X0=empty V X0=b) & ((~X0=em

(~el(X0,d) V X0=empty V X0=b) & ((~X0=empty & ~
Fexkkxkiekk [26->39, enf transformation] ek
(~el(X0,d) V X0=empty V X0=b) & ((~X0=empty & ~

el(X0,d) V X0!=b ' '
Fhkkkkkokiik [39->42, literal permutation] *rxxxxerx
el(X0,d) V X0!=b

X11=b V el(X1,d)
Frkrinknk [42 555 equality resolution] *rirkeses
X1i=b V el(X1,d)

el(b,d)
Fexkxkiekk [26->38, onf transformation] ke
(~el(X0,d) V X0=empty V X0=b) & ((~X0=empty & ~

el(xX0,d) vV XO!:empty '
Fhxkkkiekk [38->43, literal permutation] *kker
el(X0,d) V X0!'=empty

X1l=empty V el(X1,d) ' _
Kkokkkkdokkkk [43_>56Y equallty resolutlon] Fkokkkkdokk
X1l=empty V el(X1,d)

el(empty,d)

Kkkkkkkkkkkk [3Y Input] kkkkkkkkkkk

~(? X0)el(X0,empty)

Fexikikiokk [3->14, ENNF transformation] s
~(? X0)el(X0,empty)

(! X0)~el(X0,empty)
Kkkkkkkkkkkk [l4_>157 skolemlzatlon] dkkkkkkkkkk
(! X0)~el(X0,empty)

~el(X0,empty)
Fkkkkkekik [15->29, cnf transformation] **xk
~el(X0,empty)

~el(X0,empty)
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empty & ~X0=b) V el(X0,d)))
empty & ~X0=b) V el(X0,d)))
pty & ~X0=b) V el(X0,d)))
pty & ~X0=b) V el(X0,d)))
X0=b) V el(X0,d)

X0=h) V/ el(X0,d))

X0=h) V/ el(X0,d))

*k
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kkkkkkkkkkk [6Y Input] *kkkkkkkkkk
(1 X0)(el(X0,c) <=> (! X3)(el(X3,X0) => el(X3,b)))
*kkkkkkkkkk [6_>10, rectlfy] *hkkkkkkkkkk

(1 X0)(el(X0,c) <=> (! X3)(el(X3,X0) => el(X3,b))

(1 X0)(el(X0,c) <=> (! X1)(el(X1,X0) => el(X1,b))

wwkr [10->20, ENNF transformation] *#s

(1 X0)(el(X0,c) <=> (! X1)(el(X1,X0) => el(X1,b))

(1 X0)(el(X0,c) <=> (! X1)(~el(X1,X0) V el(X1,b)

Fkkkkkkkkkk [20'>211 NNF transformation] Fkkkkkkkkk

(1 X0)(el(X0,c) <=> (! X1)(~el(X1,X0) V el(X1,b)

(1 X0)((~el(X0,c) V (! X1)(~el(X1,X0) V el(X1,b
V el(X0,c)))
kkkkkkkkkkk [21_>221 rectlfy] *kkkkkkkkkk

(1 X0)((~el(X0,c) V/ (! X1)(~el(X1,X0) V el(X1,b
V el(X0,c)))

(1 XO)((~el(X0,c) V (! X1)(~el(X1,X0) V el(X1,b
V el(X0,c)))
*hkkkkhkkkk [22_>23, Skolemlzatlon] Fhkkkkkhkkkk

(1 X0)((~el(X0,c) V (! X1)(~el(X1,X0) V el(X1,b
V el(X0,c)))

(~el(X0,c) V (~el(X1,X0) V el(X1,b))) & ((el(sk
el(X0,c))
Fxkkxkiekk [23->36, onf transformation] ek
(~el(X0,c) V (~el(X1,X0) V el(X1,b))) & ((el(sk
el(X0,c))

el(X0,c) V ~el(sk1(X0),b)
Fhkkkkkkkik [36->45, literal permutation] *rxxxxerx
el(X0,c) VV ~el(sk1(X0),b)

~el(sk1(X1),b) V el(X1,c)
Fexkdkxkioekk [23->35, onf transformation] ek
(~el(X0,c) VV (~el(X1,X0) V el(X1,b))) & ((el(sk
el(X0,c))

el(X0,c) V el(sk1(X0),X0)
Fikkkkxxiik [35->46, literal permutation] *xxxxik
el(X0,c) V el(sk1(X0),X0)

el(sk1(X1),X1) V el(X1,c)

*kkkkkkkkkk [45’46_>58’ I'ESO|UtI0n] *kkkkkkkkkk
~el(sk1(X1),b) V el(X1,c)
el(sk1(X1),X1) V el(X1,c)

el(b,c)
Fkkkkkekik [23->34, cnf transformation] ** ik
(~el(X0,c) V (~el(X1,X0) V el(X1,b))) & ((el(sk
el(X0,c))

el(X1,b) V ~el(X1,X0) \ ~el(X0,c)
Fikkkkxxiik [34->47, literal permutation] ik
el(X1,b) V ~el(X1,X0) \/ ~el(X0,c)

~el(X1,X2) V ~el(X2,c) V el(X1,b)
Fkkkkkekk [26->37, cnf transformation] ** e

(~el(X0,d) V X0=empty V X0=b) & ((~X0=empty & ~

X0=b V X0=empty V ~el(X0,d)
Fikkkkxxiik [37->44, literal permutation] **xxxk
X0=b V X0=empty V ~el(X0,d)

~el(X1,d) V X1=empty V X1=b

Fkkkkkdkkkk [2 iNpUL] ***xsxksrkxs
i

(1 X1 X2)((! X0)(el(X0,X1) <=> el(X0,X2)) => X1=X2)

Fkkkkkkkkkk [2_>9Y I’ectify] FkkkFxkkkkkk

(1 X1 X2)((! X0)(el(X0,X1) <=> el(X0,X2)) => X1=X

M) & (2 X1)(el(X1,X0) & ~el(X1,b))

M) & (2 X1)(el(X1,X0) & ~el(X1,b))

) & ((? X2)(el(X2,X0) & ~el(X2,b))

) & ((? X2)(el(X2,X0) & ~el(X2,b))

1(X0),X0) & ~el(sk1(X0),b)) V

*

1(X0),X0) & ~el(sk1(X0),b)) V

*k

*

1(X0),X0) & ~el(sk1(X0),b)) V

*k

*

1(X0),X0) & ~el(sk1(X0),b)) V

*k

*

X0=h) V/ el(X0,d))

*k
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(1 X0 X1)((! X2)(el(X2,X0) <=> el(X2,X1)) => X0=X
ek [9->11, ENNF transformation] s
(1 X0 X1)((! X2)(el(X2,X0) <=> el(X2,X1)) => X0=X

(1 X0 X1)((? X2)(el(X2,X0) <~> el(X2,X1)) V X0=X
wwkmiris [11->12, NNF transformation] x#ses
(1 X0 X1)((? X2)(el(X2,X0) <~> el(X2,X1)) V X0=X

(1 X0 X1)((? X2)((el(X2,X0) V el(X2,X1)) & (~el(
kkkkkkkkkkk [12_>131 SkO'eleathn] Fkkkkkkkkkk
(1 X0 X1)((? X2)((el(X2,X0) V el(X2,X1)) & (~el(

((el(sko(X1,X0),X0) V el(sk0(X1,X0),X1)) & (~el(
V X0=X1
Fexkkxkekk [13->27, enf transformation] ek
((el(sko(X1,X0),X0) V el(sk0(X1,X0),X1)) & (~el(
V/ X0=X1

X0=X1V el(sk0(X1,X0),X1) V el(sk0(X1,X0),X0)
Fikkkkxxiik [27->54, literal permutation] *xxxxkik
X0=X1V el(sk0(X1,X0),X1) V el(sk0(X1,X0),X0)

el(sk0(X1,X2),X2) V el(sk0(X1,X2),X1) V X2=X1
Kkkkkkkkkkkk [44v54_>63v resolutlon] Kkkkkkkkkkkk

~el(X1,d) V X1=empty V X1=b

el(sk0(X1,X2),X2) V el(sk0(X1,X2),X1) V X2=X1

el(sk0(X1,d),X1) V skO(X1,d)=empty V skO(X1,d)=
*kkkkkkkkkk [47’54_>69’ I'ESO|UtI0n] *kkkkkkkkkk

~el(X1,X2) V ~el(X2,c) V el(X1,b)

el(sk0(X1,X2),X2) V el(sk0(X1,X2),X1) V X2=X1

~el(X1,c) V el(sk0(X1,X2),b) V el(sk0(X1,X2),X2
*kkkkkkkkkk [63’69_>ll4’ I’eSOlUtIOﬂ] *kkkkkkkkkk

el(sk0(X1,d),X1) V skO(X1,d)=empty V skO(X1,d)=

~el(X1,c) V el(sk0(X1,X2),b) V el(sk0(X1,X2),X2

el(sk0(sk0(c,d),X1),b) V el(skO(skO(c,d),X1),X1)
X1=sk0(c,d) V d=c
Frkkkkkkkkk [58,47,114->403, resolution, forward su
el(b,c)
~el(X1,X2) V ~el(X2,c) V el(X1,b)
el(sk0(sk0(c,d),X1),b) V el(sk0O(skO(c,d),X1),X1)
X1=sk0(c,d) V d=c

el(sk0(sk0(c,d),b),b) VV sk0O(c,d)=empty V skO(c,
Fexkkkiekk [13->28, onf transformation] ek

((el(sk0(X1,X0),X0) V el(sk0(X1,X0),X1)) & (~el(
V X0=X1

X0=X1 V ~el(sk0(X1,X0),X1) V/ ~el(sk0(X1,X0),X0)
Fxkkkiekk [28->53, literal permutation] *rker
X0=X1V ~el(sk0(X1,X0),X1) V ~el(sk0(X1,X0),X0)

~el(skO(X1,X2),X1) V ~el(sk0(X1,X2),X2) V/ X2=X1
kkkkkkkkkkk [5, Input] dkkkkkkkkkk
(1 X0)(el(X0,b) <=> X0=a)
*kkkkkkkkkk [5_>18, NNF transformatlon] Kkkkkkkkkkk

(1 X0)(el(X0,b) <=> X0=a)

(1 X0)((~el(X0,b) VV X0=a) & (~X0=a \/ el(X0,b)))
*kkkkkkkkkk [18_>19, Skolemlzatlon] Khkkkkkkkkkk
(1 XO)((~el(X0,b) VV X0=a) & (~X0=a \/ el(X0,b)))

(~el(X0,b) V X0=a) & (~X0=a V el(X0,b))
Fkkkkkekik [19->32, cnf transformation] **xk
(~el(X0,b) V X0=a) & (~X0=a V el(X0,b))

X0=aV ~el(X0,b)
Fikkkkrxiik [32->49, literal permutation] ki

1)
1
1)
1
X2,X0) V ~el(X2,X1))) V X0=X1)
X2,X0) V ~el(X2,X1))) V X0=X1)

skO(X1,X0),X0) V/ ~el(skO(X1,X0),X1)))

*

skO(X1,X0),X0) V/ ~el(skO(X1,X0),X1)))

*k

bV d=X1

)V X2=X1

bV d=X1
)V X2=X1

V skO(c,d)=empty V skO(c,d)=b V/

bsumption resolution] ¥kt
V sk0(c,d)=empty V sk0(c,d)=b V/

d)=b \/ d=c

skO(X1,X0),X0) \/ ~el(skO(X1,X0),X1)))

*k

*k

169



X0=aV ~el(X0,b)

~el(X1,b) V X1=a

Kkkkkkkkkkkk [49v54_>65v resolutlon] Kkkkkkkkkkkk
~el(X1,b) V X1=a
el(sk0(X1,X2),X2) V el(sk0(X1,X2),X1) V X2=X1

el(sk0(X1,b),X1) VV skO(X1,b)=a V b=X1
Fikkkkkxkik [49,47,65->92, resolution, forward subs

~el(X1,b) V X1=a

~el(X1,X2) V ~el(X2,c) V el(X1,b)

el(sk0(X1,b),X1) VV skO(X1,b)=a V b=X1

~el(X1,c) V skO(X1,b)=a V b=X1

kkkkkkkkkkk [63,92_>160’ resolutlon] kkkkkkkkkkk
el(sk0(X1,d),X1) V skO(X1,d)=empty V skO(X1,d)=
~el(X1,c) V skO(X1,b)=a V b=X1

skO(sk0(c,d),b)=a V skO(c,d)=empty V skO(c,d)=b
Frkkkkkkiik 1403,53,160->745, backward superpositio
el(sk0(sk0(c,d),b),b) VV skO(c,d)=empty V skO(c,
~el(sk0(X1,X2),X1) V ~el(sk0(X1,X2),X2) V X2=X1
skO(sk0(c,d),b)=a V skO(c,d)=empty V skO(c,d)=b

~el(a,sk0(c,d)) V skO(c,d)=empty V skO(c,d)=b \
Fkkkkkkkkkkk [29’54_>67’ I'ESO|UtI0n] kkkkkkkkkkk

~el(X0,empty)

el(sk0(X1,X2),X2) V el(sk0(X1,X2),X1) V X2=X1

el(sk0(X1,empty),X1) V empty=X1
Kkkkkkkkkkkk [47,67_>103’ resolutlon] kkkkkkkkkkk

~el(X1,X2) V ~el(X2,c) V el(X1,b)

el(sk0(X1,empty),X1) V empty=X1

el(sk0(X1,empty),b) V ~el(X1,c) V empty=X1
Kkkkkkkkkkkk [49v103_>1851 resolutlon] kkkkkkkkkkk

~el(X1,b) V X1=a

el(sk0(X1,empty),b) V ~el(X1,c) V empty=X1

~el(X1,c) V skO(X1,empty)=a \/ empty=X1
*kkkkkkkkkk [63’185_>272‘ resolutlon] *hkkkkkkkkk

el(sk0(X1,d),X1) V sk0(X1,d)=empty V skO(X1,d)=

~el(X1,c) V skO(X1,empty)=a \/ empty=X1

skO(skO(c,d),empty)=a V skO(c,d)=b V sk0O(c,d)=e
Fkkkkxxkik [29,745,54,272->1632, backward superpos

~el(X0,empty)

~el(a,sk0(c,d)) V skO(c,d)=empty \/ skO(c,d)=b \

el(sk0(X1,X2),X2) V el(sk0(X1,X2),X1) V X2=X1

skO(skO(c,d),empty)=a V skO(c,d)=b V sk0O(c,d)=e

skO(c,d)=empty \/ skO(c,d)=b V d=c
*kkkkkkkkkk [46’29_>62’ I'ESO|UtI0n] *kkkkkkkkkk

el(sk1(X1),X1) V el(X1,c)

~el(X0,empty)

el(empty,c)

Fkkkkxkikk 62,53,1632->1633, backward superpositi
el(empty,c)
~el(sk0(X1,X2),X1) V ~el(sk0(X1,X2),X2) V X2=X1
skO(c,d)=empty V/ skO(c,d)=b V d=c

~el(skO(c,d),d) V skO(c,d)=b V d=c
Fekkkxxkikk 56,1632,1633->1664, forward superposit
el(empty,d)
skO(c,d)=empty V/ skO(c,d)=b V d=c
~el(skO(c,d),d) V skO(c,d)=b V d=c

170

umption resolution] *xxxikkkix

bV d=X1

V d=c

n, forward subsumption resolution]
d)=b V d=c

V d=c

/ d=c

bV d=X1

mpty V d=c
ition, forward subsumption resolution]

/ d=c

mpty V d=c

on, forward subsumption resolution]

ion, forward subsumption resolution]



skO(c,d)=b V d=c

Fekkkxxxikk [58,53,1664->1665, backward superpositi
el(b,c)
~el(sk0(X1,X2),X1) V ~el(sk0(X1,X2),X2) VV X2=X1
skO(c,d)=b V d=c

~el(sko(c,d),d) V d=c
Fekkkxxxikk [55,1664,1665->1696, forward superposit
el(b,d)
skO(c,d)=b V d=c
~el(sk0(c,d),d) V d=c

d=c

*kkkkkkkkkk [8 Input] *hkkkkkkkkkk

~c=d

*kkkkkkkkkk [8_>40Y Cnf transformatlon] dkkkkkkkkkk
~c=d

cl=d
Fhxkkekiekk [40->41, literal permutation] *kr
cl=d

dl=c

Fkkkkxxiik 1696,41->1863, backward demodulation]
d=c
dl=c

Statistics
version: 7.41 Civatateo (v7.40 + more docs)
=== General:
time: 0.2s

memory: 18.4Mb

termination reason: refutation found
=== Generating inferences:
resolution: 2716

superposition: 1724
equality_resolution: 4

=== Simplifying inferences:
propositional_tautology: 9
equational_tautology: 718
forward_subsumption: 2120
forward_subsumption_resolution: 269
backward_subsumption: 373
backward_demodulation: 212

=== Generated clauses:

total: 4684
discarded_as_redundant: 2847
=== Retained clauses:

total: 1823

selected: 361

currently_active: 268
currently_passive: 969

======= End of statistics =======

C.2 Gandalf

Gandalf c-2.6 r1 starting to prove: ./heuristicl/he
Using automatic strategy selection.
Time limit in seconds: 1800
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ion, forward subsumption resolution]
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prove-all-passes started

detected problem class: neq
detected subclass: medium

strategies selected:

(hyper 75 #f 2 5)

(binary-unit 28 #f 2 5)

(binary-double 28 #f 2 5)
(binary-double 45 #f)

(binary-double 45 #t)

(binary 151 #t 2 5)

(binary-order 75 #f 2 5)
(binary-posweight-order 304 #f)
(binary-posweight-lex-big-order 75 #f)
(binary-posweight-lex-small-order 28 #f)
(binary-order-sos 151 #t)
(binary-unit-uniteq 75 #f)
(binary-weightorder 151 #f)
(binary-order 151 #f)

(hyper-order 90 #f)

(binary 328 #t)

wescont EMPTY CLAUSE DERIVED #enie

timer checkpoints:
¢(15,40,23,30,0,27,1629,50,968,1644,0,969,11438,4,5
,7471,17751,40,7471,17766,0,7472,18838,50,7647,1885
528,50,8467,24543,0,8467,27373,50,8882,27373,40,888
0983,43308,5,11683,43309,5,11683,43309,1,11683,4330
5)

START OF PROOF

35918 [?] ?

43311 [] el($$f1(X,Y),Y) | el($$fL(X,Y),X) | equal(
43312 [] -el($$f1(X,Y),Y) | -el($$f1(X,Y),X) | equa
43313 [] -el(X,empty).

43316 [] -el(X,b) | equal(X,a).

43318 [] -el(X,c) | el(Y,b) | -el(Y,X).

43322 [] -equal(X,empty) | el(X,d).

43323 [] -equal(X,b) | el(X,d).

43324 [] -equal(c,d).

43329 [binary:43313,43311] el($$f1(X,empty),X) | eq
43331 [binary:43324,43311.3,cut:35918] el($$f1(c,d)
43351 [binary:43324,43312.3,cut:43331] -el($$f1(c,d
43363 [binary:43351,43322.2] -equal($$f1(c,d),empty
43366 [binary:43331,43318] -el(X,$$f1(c,d)) | el(X,
43378 [binary:43351,43323.2] -equal($$f1(c,d),b).
43380 [binary:43311.3,43378,binarycut:43366] el($$f
43419 [binary:43316,43380] equal($$f1($$f1(c,d),b),
43420 [binary:43312,43380,demod:43419,cut:43378] -e
45960 [binary:43329,43366,cut:43363] el($$f1($$f1(c
46334 [binary:43316,45960] equal($$f1($$f1(c,d),emp
46539 [para:46334.1.1,43311.1.1,demod:46334,cut:433
END OF PROOF

Proof found by the following strategy:

using binary resolution

not using sos strategy

using double strategy

using dynamic demodulation

using ordered paramodulation

using kb ordering for equality
preferring bigger arities for lex ordering
using clause demodulation

seconds given: 45
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847,17751,5,7470,17751,1,7470,17751,50
3,0,7647,21683,50,8058,21698,0,8058,24
2,27388,0,8882,38896,3,10285,40526,4,1
9,50,11685,43309,40,11685,43324,0,1168

X,Y).
IX,Y).

ual(X,empty).
,C).

).d).

)

b).

1($$f1(c,d),b),b).
a

).
I(a,$$f1(c,d)).
,d),empty),b).
ty),a).
13,cut:43420,cut:43363] contradiction



**GANDALF_FOUND_A_REFUTATION***
Global statistics over all passes:

given clauses: 7037
derived clauses: 353789
kept clauses: 33845
kept size sum: 531726
kept mid-nuclei: 3933
kept new demods: 28
forw unit-subs: 36540
forw double-subs: 32898
forw overdouble-subs: 50491
backward subs: 672
fast unit cutoff: 7014

full unit cutoff: 920

dbl unit cutoff: 110

real runtime : 120.30
process. runtime: 119.21

specific non-discr-tree subsumption statistics:

tried: 1208228
length fails: 48201
strength fails: 171347
predlist fails: 249780
aux str. fails: 69703
by-lit fails: 142615
full subs tried: 383264
full subs fail: 362366
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Appendix D
Z Case Study of Order Processing System

D.1 Given Sets (Basic Types)

[STRING, AMOUNT, DATE]
[PRODUCT, ORDER, ITEM, CUSTOMER]

STATUS ::= pending | cancelled | processed

D.2 Product

— Product
products? PRODUCT
prodName: PRODUCTH» STRING
prodPrice: PRODUCTF> AMOUNT
prodQuantity: PRODUCF» N

dom prodName = products
dom prodPrice = products
dom prodQuantity = products

__InitProduct
Product

product§=J
prodName= &
prodPrice= &
prodQuantity= &
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__ CreateProduct

AProduct

product?: PRODUCT
name?: STRING
price?: AMOUNT
quantity?:N

product?z products

name?z ran prodName

products= productsy product?

prodNamé= prodNameu {product?— name?}
prodPricé= prodPriceu {product?— price?}
prodQuantity= prodQuantityu {product?— quantity?}

__ UpdateProduct

AProduct

product?: PRODUCT
name?: STRING
price?: AMOUNT
quantity?:N

product?e products

products= products

prodNameé= prodNames {product?— name?}
prodPricé= prodPrices {product?— price?}
prodQuantity= prodQuantitys {product?— quantity?}

__ DeleteProduct

AProduct
product?: PRODUCT

product?e products

products= products \ {product?}
prodNamé= {product?}< prodName
prodPricé= {product?}< prodPrice
prodQuantity= {product?}< prodQuantity

__ SelectProductsBelowThreshald

EProduct
quantity?:N
products!:? PRODUCT

products! = {p: products | prodQuantity(p) < queyit}
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D.3 Order

__Order

ordersP ORDER

orderDate: ORDER~ DATE
orderStatus: ORDER» STATUS
orderCustomer: ORDER> CUSTOMER

dom orderDate = orders
dom orderStatus = orders
dom orderCustomer = orders

__InitOrder

Ordef

orders=¢
orderDate=
orderStatuss &
orderCustomér &

__CreateOrder

AOrder

date?: DATE
customer?: CUSTOMER
order!: ORDER

order!z orders

order$= ordersu order!

orderDate= orderDateu {order! — date?}

orderStatus= orderStatus) {order! — pending}
orderCustomér orderCustomev {order! — customer?}
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__ CancelOrder
AOrder
order?: ORDER

order?e orders

orderStatus(order?) = pending

orders= orders

orderDaté= orderDate

orderStatus= orderStatus {order?— cancelled}
orderCustomér orderCustomer

__ProcessOrder
AOrder
AProduct
Eltem

order?: ORDER

order?e orders
orderStatus(order?) = pending
Vi: items. itemOrder(i) = order? prodQuantity(itemProduct(i)) — itemQuantity£)0
orders= orders
orderDaté= orderDate
orderStatus= orderStatus {order?— processed}
orderCustomér orderCustomer
products= products
prodNamé= prodName
prodPricé= prodPrice
prodQuantity= prodQuantitys
{i: items | itemOrder(i) = orderAtemProduct(i}» prodQuantity(itemProduct(i)) — itemQuantity(i)}

__ SelectOrdersForCustomer
EOrder

customer?: CUSTOMER
orders!:P ORDER

orders! = {o: orders | orderCustomer(o) = custoer?
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D.4 Item

__Item

items:P ITEM

itemOrder: ITEM-» ORDER
itemPrice: ITEM-» AMOUNT
itemQuantity: ITEM— Ny
itemProduct: ITEM- PRODUCT

dom itemOrder = items

dom itemPrice = items

dom itemQuantity = items

dom itemProduct = items

Viy, Io: items. iy # i, = itemOrder(j) = itemOrder(}) v itemProduct() = itemProductg)

__Initltem
Item
items =g
itemOrder=o
itemPricé=J

itemQuantity =<
itemProduct= &

__ Createltem

Altem

EProduct

item?: ITEM

order?: ORDER
quantity?:N,
product?: PRODUCT

item?e items

items = itemsu {item?}

itemOrdet = itemOrderu {item? — order?}

itemPrice = itemPriceu {item? — prodPrice(product?)}
itemQuantity = itemQuantityu {item? — quantity?}
itemProduct= itemProduct {item? — product?}
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__Updateltem

Altem
item?: ITEM
quantity?:N,

item?e items

items = items

itemOrdet = itemOrder

itemPricé = itemPrice

itemQuantity = itemQuantitys {item? — quantity?}
itemProduct= itemProduct

__ Deleteltem

Altem
item?: ITEM

item?e items

items = items \ {item?}

itemOrdef = {item?} < itemOrder
itemPrice = {item?} < itemPrice
itemQuantity = {item?} < itemQuantity
itemProduct= {item?} < itemProduct

__ SelectltemsForOrder

Eltem
order?: ORDER
items!:P ITEM

items! = {i: items | itemOrder(i) = order?}

D.5 Customer

COMPANY:P CUSTOMER
PERSONP CUSTOMER

(COMPANY, PERSON partition CUSTOMER
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__ Customer

customersP CUSTOMER
custAddress: CUSTOMER> STRING
custPhone: CUSTOMER> STRING

dom custAddress = customers
dom custPhone = customers

__ InitCustomer

Customer

customers= J
custAddresss &
custPhone= &

__ CreateCustomer

ACustomer

customer?: CUSTOMER
address?: STRING
phone?: STRING

customer? customers
customers= customerss {customer?}
custAddress= custAddress {customer?— address?}
custPhone= custPhone {customer?- phone?}

__ UpdateCustomer
ACustomer
customer?: CUSTOMER
address?: STRING
phone?: STRING

customer? customers
customers= customers
custAddress= custAddress {customer?— address?}
custPhone= custPhone {customer?- phone?}
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__ DeleteCustomer

ACustomer
EOrder
customer?: CUSTOMER

customer? customers

customer? ran orderCustomer
customers= customers \ customer?
custAddress= {customer?}« custAddress
custPhone= {customer?}« custPhone

D.6 Company

_ Company

Customer

companiesP COMPANY
compName: COMPANY-> STRING
compRegNo: COMPANY-» STRING

companies customers
dom compName = companies
dom compRegNo = companies

__InitCompany.

Company
InitCustomer

companiess J
compName=J
compRegNo=J

—_ CreateCompany
ACompany
CreateCustomer
name?: STRING
regNo?: STRING

companie’s= companiess {customer?}
compName= compNameJ {customer?- name?}
compRegNo= compRegNa {customer?- regNo?}
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__ UpdateCompany

ACompany

UpdateCustomer
name?: STRING
regNo?: STRING

customer? companies

companie’s= companies

compName= compName» {customer?- name?}
compRegNo= compRegNa {customer?- regNo?}

__DeleteCompany
ACompany
DeleteCustomer

customer? companies

companie’s= companies \ {customer?}
compName= {customer?}« compName
compRegNo= {customer?}< compRegNo

D.7 Person

__Person

Customer

personsP PERSON

perName: PERSON> STRING
perSurname: PERSOM STRING

personsc customers
dom perName = persons
dom perSurname = persons

__InitPerson

Persoh
InitCustomer

persons= &
perNamé= ¢
perSurname= &
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__ CreatePerson

APerson
CreateCustomer
name?: STRING
surname?: STRING

persons= personss customer?
perNamé= perNameu {customer?- name?}
perSurname= perSurname {customer?- surname?}

__UpdatePerson

APerson
UpdateCustomer
name?: STRING
surname?: STRING

customer? persons
persons= persons
perNameé= perName» {customer?- name?}
perSurname= perSurname {customer?- surname?}

__DeletePerson

APerson
DeleteCustomer

customer? persons
persons= persons \ customer?
perNameé= {customer?}« perName
perSurname= {customer?}«q perSurname

D.8 System

__ System

Product
Order
Iltem
Customer
Company
Person
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__InitSystem
InitProduct
InitOrder
Initlitem
InitCustomer
InitCompany
InitPerson
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Appendix E

Reasoner Inputs for Proof Obligations

E.1 CreateProduct Invariant

% If we didn't specifiy that products? = products ? {product?}, then it could be deduced

fof(anonymous, axiom,
% t_Product type
el(t_Product,t_PProduct) &
% t_String type
el(t_String,t_PString)

)

% +..

% products: P PRODUCT

% prodName: PRODUCT >-|-> STRING
% products: P PRODUCT

% prodName': PRODUCT >-|-> STRING
% product?: PRODUCT

% name?: STRING

% |

% dom prodName = products

% dom prodName' = products’

% product? /e products

% name? /e ran prodName

% prodName' = prodName u { product? |--> name? }
% ---

X

B

X

Yo --mmmmmmmm e rewritten to ------------- s
% +..

% products: P PRODUCT

% prodName: P { X31: PRODUCT; X32: STRING }

% products: P PRODUCT

% prodName'": P { X33: PRODUCT; X34: STRING }
% product?: PRODUCT

% name?: STRING

% A X60: PRODUCT; X61: STRING; X62: PRODUCT; X63: STRING @

% not (X60,X61) e prodName V not (X62,X63) e pr odName V not X61 = X63 \/ X60 = X62
% A X60: PRODUCT; X61: STRING; X62: PRODUCT; X63: STRING @

% not (X60,X61) e prodName V not (X62,X63) e pr odName V not X60 = X62 V X61 = X63
% A X68: PRODUCT; X69: STRING; X70: PRODUCT; X71: STRING @

% not (X68,X69) e prodName'V not (X70,X71) e p rodName' V not X69 = X71 \/ X68 = X70
% A X68: PRODUCT; X69: STRING; X70: PRODUCT; X71: STRING @

% not (X68,X69) e prodName' \/ not (X70,X71) e p rodName' V not X68 = X70 V X69 = X71
% A EL37: PRODUCT @

% (A X104: PRODUCT; X105: STRING @

% not (X104,X105) e prodName V not EL37 = X 104) V EL37 e products

% A EL37: PRODUCT @ not EL37 e products V (E X109 : STRING @ (EL37,X109) e prodName)
% A EL38: PRODUCT @

% (A X112: PRODUCT; X113: STRING @

% not (X112,X113) e prodName' V/ not EL38 = X112) V EL38 e products'

% A EL38: PRODUCT @ not EL38 e products' V (E X11 7: STRING @ (EL38,X117) e prodName')
% not product? e products

% A X93: PRODUCT; X94: STRING @ not (X93,X94) e pr odName V not name? = X94

% A X85: PRODUCT; X86: STRING @

% not (X85,X86) e prodName' V/ (X85,X86) e prodN ame V X86 = name?

% A X85: PRODUCT; X86: STRING @

% not (X85,X86) e prodName' V/ (X85,X86) e prodN ame \/ X85 = product?
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% A X89: PRODUCT; X90: STRING @
% (X89,X90) e prodName' V not X89 = product? V

% A X89: PRODUCT; X90: STRING @ (X89,X90) e prodNa

% ---

fof(anonymous, axiom,
el(products, t_PProduct) &
el(prodName, t3) &
el(products_, t_PProduct) &
el(prodName_, t3) &
el(productl, t_Product) &
el(namel, t_String) &

I[X60,X61,X62,X63]:

((el(X60,t_Product) & el(X61,t_String) & el(X62,
(~el(ord_t2(X60,X61),prodName) | ~el(ord_t2(X62
X60 = X62)) &

1[X60,X61,X62,X63]:

((el(X60,t_Product) & el(X61,t_String) & el(X62,
(~el(ord_t2(X60,X61),prodName) | ~el(ord_t2(X62
X61 = X63)) &

I[X68,X69,X70,X71]:

((el(X68,t_Product) & el(X69,t_String) & el(X70,
(~el(ord_t2(X68,X69),prodName_) | ~el(ord_t2(X7
X68 = X70)) &

I[X68,X69,X70,X71]:

((el(X68,t_Product) & el(X69,t_String) & el(X70,
(~el(ord_t2(X68,X69),prodName_) | ~el(ord_t2(X7
X69 = X71)) &

[EL37]: (el(EL37,t_Product) =>
(('[X104,X105]: ((el(X104,t_Product) & el(X105,

(~el(ord_t2(X104,X105),prodName) | ~(EL37 = X

I[EL37]: (el(EL37,t_Product) => (~el(EL37,product
(?[X109]: (el(X109,t_String) & el(ord_t2(EL37,X

[EL38]: (el(EL38,t_Product) =>
(('[X112,X113]: ((el(X112,t_Product) & el(X113,

(~el(ord_t2(X112,X113),prodName_) | ~(EL38 =

[EL38]: (el(EL38,t_Product) => (~el(EL38,product
(?[X117]: (el(X117,t_String) & el(ord_t2(EL38,X

~el(productl,products) &

1[X93,X94]: ((el(X93,t_Product) & el(X94,t_String
(~el(ord_t2(X93,X94),prodName) | ~(hamel = X94)

1[X85,X86]: ((el(X85, t_Product) & el(X86, t_Stri

((~el(ord_t2(X85,X86),prodName_) | el(ord_t2(X8

1[X85,X86]: ((el(X85,t_Product) & el(X86,t_String

(((~el(ord_t2(X85,X86),prodName_) | el(ord_t2(X

1[X89,X90]: ((el(X89,t_Product) & el(X90,t_String

((el(ord_t2(X89,X90),prodName_) | ~(X89 = produ

1[X89,X90]: ((el(X89,t_Product) & el(X90,t_String

(el(ord_t2(X89,X90),prodName_) | ~el(ord_t2(X89

)

fof(anonymous, axiom,
% set equality t_PPProduct

I[VAL197 VAL198]:((el(VAL197,t_PPProduct) & el(VA

(('[EL199]:(el(EL199,t_PProduct) =>
(el(EL199,VAL197) <=> el(EL199,VAL198)))) =>
).

fof(anonymous, axiom,
% t_PProduct membership
1[X196]:(el(X196,t_PProduct) => (el(X196,t_PProdu
1[Y]:(el(Y,t_Product) => (el(Y,X196) => el(Y,t_
% t_PProduct type
el(t_PProduct,t_PPProduct)

).

fof(anonymous, axiom,
% tuple equality t2
1[X201,X203,X202,X204]:
((el(X201,t_Product) & el(X203,t_String) & el(X2

(ord_t2(X201,X203)=0rd_t2(X202,X204) <=> (X201

% tuple type t2
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not X90 = name?
me'V not (X89,X90) e prodName

t_Product) & el(X63,t_String)) =>
,X63),prodName) | ~(X61 = X63) |

t_Product) & el(X63,t_String)) =>
,X63),prodName) | ~(X60 = X62) |

t_Product) & el(X71,t_String)) =>
0,X71),prodName_) | ~(X69 = X71) |

t_Product) & el(X71,t_String)) =>
0,X71),prodName_) | ~(X68 = X70) |

t_String)) =>

104)))) | el(EL37,products))) &
s) |

109),prodName))))) &

t_String)) =>
X112)))) | el(EL38,products_))) &

s |
117),prodName_))))) &

)) =>

) &

ng)) =>

5,X86),prodName)) | X86 = namel)) &

) =>

85,X86),prodName))) | X85=productl)) &
=>

ctl)) | ~(X90 = namel))) &
) =>
,X90),prodName)))

L198,t PPProduct)) =>

VAL197=VAL198))

ct) <=>
Product))))) &

02,t_Product) & el(X204,t_String)) =>
= X202 & X203 = X204))) &



1[X201,X203]:((el(X201,t_Product) & el(X203,t_Str
).

fof(anonymous, axiom,
% set equality t3
I[VAL205,VAL206]:((el(VAL205,t3) & el(VAL206,t3))
(el(EL207,VAL205) <=> el(EL207,VAL206)))) => VA
).

% { X31: PRODUCT; X32: STRING }
fof(anonymous, axiom,
% t2 membership
I[EL200]:(el(EL200,t2) => (el(EL200,t2) <=>
(?[X31,X32]: ((el(X31,t_Product) & el(X32,t_Stri
% t2 type
el(t2,t3)
).

fof(anonymous, axiom,
% set equality t1
I[VAL209,VAL210]:((el(VAL209,t1) & el(VAL210,t1))
(('[EL211]:(el(EL211,3) =>
(el(EL211,VAL209) <=> el(EL211,VAL210)))) => V
).

% P { X31: PRODUCT; X32: STRING }
fof(anonymous, axiom,

% t3 membership

1[X208]:(el(X208,t3) =>

(el(X208,t3) <=> I[Y]:(el(Y,t2) => (el(Y,X208)

% t3 type

el(t3,t1)
).

% |-? products' = products u { product? }
% mmmmmmmmmmmem e anaee rewritten to ------------—-

% |-? A EL135: PRODUCT @ not EL135 e products'V E

% AEL135: PRODUCT @ EL135 e products' V not E
% A EL135: PRODUCT @ EL135 e products'V not E
fof(conjecture, conjecture,
[EL135]: (el(EL135, t_Product) =>
(~el(EL135,products_) | el(EL135,products) | EL
I[EL135]: (el(EL135, t_Product) => (el(EL135,prod
[EL135]: (el(EL135, t_Product) => (el(EL135,prod
).

ing)) => (el(ord_t2(X201,X203), t2)))

=> (([EL207]:(el(EL207,12) =>
L205=VAL206))

ng)) & (EL200=ord_t2(X31,X32)))))) &

=>

AL209=VAL210))

=> el(Y,12))))) &

L135 e products V EL135 = product?
L135 = product?
L135 e products

135 = productl)) &
ucts_) | ~(EL135 = productl))) &
ucts_) | ~el(EL135,products)))

E.2 After State Type of CancelOrder

fof(anonymous, axiom,
% t_Order type
el(t_Order,t_POrder) &
% t_Customer type
el(t_Customer,t_PCustomer) &
% t_Date type
el(t_Date,t_PDate)

)

% STATUS ::= pending | cancelled | processed
fof(anonymous, axiom,

% t_Status type

el(t_Status,t_PStatus) &

% pending, cancelled, processed: STATUS

el(pending,t_Status) & el(cancelled,t_Status) & e
).

% +..
% orders: P ORDER
% orderDate: ORDER -|-> DATE

I(processed,t_Status)
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%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

o o

(S

o o o

o

SIS

o o

orderStatus: ORDER -|-> STATUS
orderCustomer: ORDER -|-> CUSTOMER
orders": P ORDER

orderDate": P (ORDER x DATE)
orderStatus': P (ORDER x STATUS)
orderCustomer’: P (ORDER x CUSTOMER)
orderl: ORDER

[

dom orderDate = orders

dom orderStatus = orders

dom orderCustomer = orders

dom orderDate' = orders'

dom orderStatus' = orders'

dom orderCustomer' = orders'

orderl e orders

orderStatus (orderl) = pending

orders' = orders

orderDate' = orderDate

orderCustomer' = orderCustomer

+..

orders: P ORDER

orderDate: P {X31: ORDER; X32: DATE}
orderStatus: P {X33: ORDER; X34: STATUS}
orderCustomer: P {X35: ORDER; X36: CUSTOMER}
orders": P ORDER

orderDate": P {X37: ORDER; X38: DATE}
orderStatus': P {X39: ORDER; X40: STATUS}
orderCustomer’: P {X41: ORDER; X42: CUSTOMER}
orderl: ORDER

% |

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

o

o o

o o

o o o o

o

o

o

SSELEEXELE

%

A X63: ORDER; X64: DATE; X65: ORDER; X66: DATE @
not (X63,X64) e orderDate \/ not (X65,X66) e o

A X73: ORDER; X74: STATUS; X75: ORDER; X76: STAT
not (X73,X74) e orderStatus \/ not (X75,X76) e

A X83: ORDER; X84: CUSTOMER; X85: ORDER; X86: CU
not (X83,X84) e orderCustomer V not (X85,X86)
not X83=X85 \/ X84=X86

A EL49: ORDER @ (A X134: ORDER; X135: DATE @
not (X134,X135) e orderDate \/ not EL49 = X134

A EL49: ORDER @ not EL49 e orders V (E X139: DA

A EL50: ORDER @ (A X142: ORDER; X143: STATUS @
not (X142,X143) e orderStatus V/ not EL50 = X1

A EL50: ORDER @ not EL50 e orders V (E X147: ST

A EL51: ORDER @ (A X150: ORDER; X151: CUSTOMER @
not (X150,X151) e orderCustomer V not EL51 =

A EL51: ORDER @ not EL51 e orders V (E X155: CU

A EL52: ORDER @ (A X158: ORDER; X159: DATE @
not (X158,X159) e orderDate' \/ not EL52 = X15

A EL52: ORDER @ not EL52 e orders'V/ (E X163: D

A EL53: ORDER @ (A X166: ORDER; X167: STATUS @
not (X166,X167) e orderStatus' \/ not EL53 = X

A EL53: ORDER @ not EL53 e orders'V (E X171: S

A EL54: ORDER @ (A X174: ORDER; X175: CUSTOMER @
not (X174,X175) e orderCustomer' V not EL54 =

A EL54: ORDER @ not EL54 e orders' \/
(E X179: CUSTOMER @ (EL54,X179) e orderCustome

orderl e orders

orderStatus (orderl) = pending

A EL55: ORDER @ not EL55 e orders' \/ EL55 e ord

A EL55: ORDER @ not EL55 e orders VV EL55 e orde

A X118: ORDER; X119: DATE @ not (X118,X119) e or

A X122: ORDER,; X123: DATE @ not (X122,X123) e or

A X126: ORDER; X127: CUSTOMER @
not (X126,X127) e orderCustomer'\/ (X126,X127

A X130: ORDER; X131: CUSTOMER @
not (X130,X131) e orderCustomer V (X130,X131)

fof(anonymous, axiom,
el(orders,t_POrder) &
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rderDate \/ not X63 = X65 \V X64 = X66
us @

orderStatus V not X73=X75 V X74=X76
STOMER @

e orderCustomer V/

)V EL49 e orders
TE @ (EL49,X139) e orderDate)

42) V EL50 e orders
ATUS @ (EL50,X147) e orderStatus)

X150) V EL51 e orders
STOMER @ (EL51,X155) e orderCustomer)

8) V EL52 e orders'
ATE @ (EL52,X163) e orderDate’)

166) \V EL53 e orders'
TATUS @ (EL53,X171) e orderStatus')

X174) V EL54 e orders'

r

ers
rs'

derDate' \/ (X118,X119) e orderDate
derDate V (X122,X123) e orderDate'

) e orderCustomer

e orderCustomer’



el(orderDate,t_P_OrderxDate_) &

el(orderStatus, t4) &

el(orderCustomer, t7) &

el(orders_,t POrder) &

el(orderDate_,t_P_OrderxDate_) &

el(orderStatus_, t4) &

el(orderCustomer _, t7) &

el(orderl,t_Order) &

I[X63,X64,X65,X66]:

((el(X63,t_Order) & el(X64,t_Date) & el(X65,t_Or
((((((~el(ord_t__OrderxDate_(X63,X64),orderDate
~el(ord_t__OrderxDate_(X65,X66),orderDate))) |

I[X73,X74,X75,X76]:

((el(X73,t_Order) & el(X74,t_Status) & el(X75,t_
((((((~el(ord_t3(X73,X74),orderStatus) |
~el(ord_t3(X75,X76),orderStatus))) | ~(X73=X75

1[X83,X84,X85,X86]:

((el(X83,t_Order) & el(X84,t_Customer) & el(X85,
((((((~el(ord_t6(X83,X84),orderCustomer) |
~el(ord_t6(X85,X86),orderCustomer))) | ~(X83 =

I[EL49]: ((el(EL49,t_Order)) =>
((('[X134,X135]: ((el(X134,t_Order) & el(X135,t
((~el(ord_t__OrderxDate_(X134,X135),orderDate)

~(EL49 = X134))))) | el(EL49,orders)))) &

I[EL49]: ((el(EL49,t_Order)) => ((~el(EL49,orders
(?[X139]: (el(X139,t_Date) & el(ord_t__OrderxDa

I[EL50]: ((el(EL50,t_Order)) =>
((('[X142,X143]: ((el(X142,t_Order) & el(X143,t
((~el(ord_t3(X142,X143),orderStatus) | ~(EL50

I[EL50]: (el(EL50,t_Order) => ((~el(EL50,orders)
(?[X147]: (el(X147,t_Status) & el(ord_t3(EL50,X

[EL51]: (el(EL51,t_Order) =>
((('[X150,X151]: ((el(X150,t_Order) & el(X151,t
((~el(ord_t6(X150,X151),orderCustomer) | ~(EL5

I[EL51]: (el(EL51,t_Order) => ((~el(EL51,orders)
(?[X155]: (el(X155,t_Customer) & el(ord_t6(EL51

I[EL52]: (el(EL52,t_Order) => (((![X158,X159]: ((
((~el(ord_t__OrderxDate_(X158,X159),orderDate_)
~(EL52 = X158))))) | el(EL52,0rders_)))) &

I[EL52]: (el(EL52,t_Order) => ((~el(EL52,orders_)
el(ord_t__OrderxDate_ (EL52,X163),orderDate_))))

I[EL53]: (el(EL53,t_Order) =>
((('[X166,X167]: ((el(X166,t_Order) & el(X167,t
((~el(ord_t3(X166,X167),orderStatus_) | ~(EL53

I[EL53]: ((el(EL53,t_Order)) => ((~el(EL53,orders
el(ord_t3(EL53,X171),orderStatus_)))))) &

I[EL54]: (el(EL54,t_Order) =>
((('[X274,X175]: ((el(X174,t_Order) & el(X175,t
((~el(ord_t6(X174,X175),orderCustomer_) | ~(EL

I[EL54]: (el(EL54,t_Order) => ((~el(EL54,orders_)
(?[X179]: (el(X179,t_Customer) & el(ord_t6(EL54

el(orderl,orders) &
orderStatus(orderl) = pending &

I[EL55]: (el(EL55,t_Order) => ((~el(EL55,orders_)

I[EL55]: (el(EL55,t_Order) => ((~el(EL55,0rders)

1[X118,X119]: ((el(X118,t_Order) & el(X119,t_Date

((~el(ord_t__OrderxDate_(X118,X119),orderDate_)
el(ord_t__OrderxDate_(X118,X119),orderDate))))

1[X122,X123]: (el(X122,t_Order) & el(X123,t_Date)

((~el(ord_t__OrderxDate_(X122,X123),orderDate)
el(ord_t__OrderxDate_(X122,X123),orderDate_)))

1[X126,X127]: ((el(X126,t_Order) & el(X127,t_Cust

((~el(ord_t6(X126,X127),orderCustomer_) | el(or

1[X130,X131]: ((el(X130,t_Order) & el(X131,t_Cust

((~el(ord_t6(X130,X131),orderCustomer) | el(ord

).

fof(anonymous, axiom,
% set equality t PPOrder
I[VAL524,VAL525]:((el(VAL524,t_PPOrder) & el(VAL5
(('[EL526]:(el(EL526,t_POrder) =>
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der) & el(X66,t_Date)) =>
)~|(X63:X65))) | X64=X66))) &
Order) & el(X76,t_Status)) =>

) | X74=X76))) &

t_Order) & el(X86,t_Customer)) =>
X85))) | X84 = X86))) &

_Date)) =>

)|
te_(EL49,X139),orderDate)))))) &

_Status)) =>
= X142))))) | el(EL50,o0rders)))) &

147),orderStatus)))))) &

_Customer)) =>
1 =X150))))) | el(EL51,orders)))) &

,X155),orderCustomer)))))) &
el(X158,t_Order) & el(X159,t Date)) =>
I

| (?[X163]: (el(X163,t_Date) &
) &

_ Status)) =>
= X166))))) | el(EL53,orders )))) &
)| (?[X171]: (el(X171,t_Status) &

_Customer)) =>
54 = X174))))) | el(EL54,orders_)))) &
|

,X179),orderCustomer_)))))) &

| el(EL55,0rders)))) &

| el(EL55,0rders_)))) &

)) =>

|

&

=>

I

) &

omer)) =>
d_t6(X126,X127),orderCustomer)))) &
omer)) =>
_16(X130,X131),orderCustomer_))))

25,t PPOrder)) =>



(el(EL526,VAL524) <=> el(EL526,VAL525)))) => V
).

% P ORDER

fof(anonymous, axiom,
% t_POrder membership
1[X523]:(el(X523,t_POrder) =>
(el(X523,t_POrder) <=> I[Y]:(el(Y,t_Order) => (
% t_POrder type
el(t_POrder,t_PPOrder)
)

fof(anonymous, axiom,
% tuple equality t__OrderxDate_
1[X528,X530,X529,X531]:
((el(X528,t_Order) & el(X530,t_Date) & el(X529,
(ord_t__OrderxDate_(X528,X530)=ord_t__OrderxDa
(X528 = X529 & X530 = X531))) &
% tuple type t__OrderxDate_
1[X528,X530]:((el(X528,t_Order) & el(X530,t_Date)
(el(ord_t__OrderxDate_(X528,X530),t__OrderxDate
)

fof(anonymous, axiom,
% set equality t_P_OrderxDate_
[VAL532,VAL533]:((el(VAL532,t_P_OrderxDate_) & e
(('[EL534]:(el(EL534,t__OrderxDate_) =>
(el(EL534,VAL532) <=> el(EL534,VAL533)))) => V
).

% {X31: ORDER; X32: DATE}

fof(anonymous, axiom,
% t__OrderxDate_ membership
[EL527]:(el(EL527,t__OrderxDate_) =>
(el(EL527,t__OrderxDate_) <=> (?[X31,X32]: ((el
el(X32,t_Date)) & (EL527 = ord_t__OrderxDate_
% t__OrderxDate_ type

el(t__OrderxDate_,t P_OrderxDate_)
).

fof(anonymous, axiom,
% set equality t1
I[VAL536,VAL537]:((el(VAL536,t1) & el(VAL537,t1))
(('[EL538]:(el(EL538,t_P_OrderxDate_) =>
(el(EL538,VAL536) <=> el(EL538,VAL537)))) => V
)

% P {X31: ORDER; X32: DATE}
fof(anonymous, axiom,
% t_P_OrderxDate_ membership
1[X535]:(el(X535,t_P_OrderxDate_) => (el(X535,t_P
[Y]:(el(Y,t__OrderxDate_) => (el(Y,X535) => el
% t_P_OrderxDate_ type
el(t_P_OrderxDate_,t1)
)

fof(anonymous, axiom,
% tuple equality t3
I[X540,X542,X541,X543]:
((el(X540,t_Order) & el(X542,t_Status) & el(X541
(ord_t3(X540,X542)=ord_t3(X541,X543) <=> (X540
% tuple type t3
1[X540,X542]:((el(X540,t_Order) & el(X542,t_Statu
)

fof(anonymous, axiom,
% set equality t4
I[VAL544,VAL545]:((el(VAL544,t4) & el(VAL545,t4))
(('[EL546]:(el(EL546,t3) => (el(EL546,VAL544) <
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AL524=VAL525))

el(Y,X523) => el(Y,t_Order))))) &

t_Order) & el(X531,t_Date)) =>
te_(X529,X531) <=>

):>

)

I(VAL533,t_P_OrderxDate_)) =>

AL532=VAL533))

(X31,t_Order) &
(X31,X32))))) &

=>

AL536=VAL537))

_OrderxDate_) <=>
(Y,t__OrderxDate ))))) &

.t Order) & el(X543,t_Status)) =>
= X541 & X542 = X543))) &

s)) => (el(ord_t3(X540,X542), t3)))

=>
=> el(EL546,VAL545)))) =>



VAL544=VAL545))
).

% {X33: ORDER; X34: STATUS}
fof(anonymous, axiom,
% t3 membership
I[EL539]:(el(EL539,t3) => (el(EL539,t3) <=>
(?[X33,X34]: ((el(X33,t_Order) & el(X34,t_Statu
% t3 type
el(t3,t4)
).

fof(anonymous, axiom,
% set equality t2
I[VAL548,VAL549]:((el(VAL548,t2) & el(VAL549,t2))
(('[EL550]:(el(EL550,t4) =>
(el(EL550,VAL548) <=> el(EL550,VAL549)))) => V
).

% P {X33: ORDER; X34: STATUS}
fof(anonymous, axiom,
% t4 membership
1[X547]:(el(X547,t4)=>(el(X547,t4) <=> I[Y]:(el(Y
% t4 type
el(t4,t2)
).

fof(anonymous, axiom,
% tuple equality t6
1[X552,X554,X553,X555]:
((el(X552,t_Order) & el(X554,t_Customer) & el(X
(ord_t6(X552,X554)=ord_t6(X553,X555) <=> (X552
% tuple type t6
1[X552,X554]:((el(X552,t_Order) & el(X554,t_Custo
).

fof(anonymous, axiom,
% set equality t7
I[VAL556,VAL557]:((el(VAL556,t7) & el(VAL557,t7))
(('[EL558]:(el(EL558,t6) =>
(el(EL558,VAL556) <=> el(EL558,VAL557)))) => V
).

% {X35: ORDER; X36: CUSTOMER}
fof(anonymous, axiom,
% t6 membership
I[EL551]):(el(EL551,t6) => (el(EL551,t6) <=>
(?[X35,X36]:((el(X35,t_Order) & el(X36,t_Custom
% t6 type
el(t6,t7)
).

fof(anonymous, axiom,
% set equality t5
I[VAL560,VAL561]:((el(VAL560,t5) & el(VAL561,t5))
(el(EL562,VAL560) <=> el(EL562,VAL561)))) => VA
).

% P {X35: ORDER; X36: CUSTOMER}
fof(anonymous, axiom,

% t7 membership

1[X559]:(el(X559,t7) => (el(X559,t7) <=> ![Y]:(el
&

% t7 type
el(t7,t5)
).

% orderStatus (orderl)

fof(anonymous, axiom,
% orderStatus(A563) equality
I[A563,VAL564]:((el(A563,t_Order) & el(VAL564,t_S

191

s)) & (EL539 = ord_t3(X33,X34)))))) &

=>

AL548=VAL549))

13) => (el(Y,X547) => el(Y,13))))) &

553,t_Order) & el(X555,t_Customer)) =>
= X553 & X554 = X555))) &

mer)) => (el(ord_t6(X552,X554), t6)))

=>

AL556=VAL557))

er)) & (EL551=ord_t6(X35,X36)))))) &

=> (([EL562]:(el(EL562,t7) =>

L560=VAL561))

(Y.18) => (el(Y,X559) => el(Y,16)))))

tatus)) =>



((el(ord_t3(A563,VAL564),orderStatus)) => (orde
% orderStatus(A563) type
1[A563]:(el(A563,t_Order) => (el(orderStatus(A563

).

% +..

% override: (ORDER <=--> STATUS) x (ORDER <=--> ST
% |

% Ar: ORDER <=--> STATUS @

% override (r,{orderl |--> cancelled}) =

%  {x: ORDER x STATUS | (x e r A\ (A p: {orderl

% x e {orderl |--> cancelled}}

% ---

Yo --mmmmmmmm e rewritten to -------------

% +..

% override: P {X194: {X202: P {X210: ORDER; X211:
% X203: P {X212: ORDER; X213: STATUS}
% X195: P {X204: ORDER; X205: STATUS}

% |
% A X220: P {X229: ORDER; X230: STATUS}; X221: P {
% Ey: P {X240: ORDER; X241: STATUS} @ ((X220,X22
% (Ay'": P {X256: ORDER; X257: STATUS} @ not ((X
% (A X287: ORDER; X288: STATUS @ not (X287,X288
%  (Ay'": P {X256: ORDER; X257: STATUS} @ not (
% (A X291: ORDER; X292: STATUS @ not (X291,X2
% Ar: P {X207: ORDER; X208: STATUS}; X242: ORDER;
6 not (X242,X243) e override (r,{(orderl,cancell
(A X272: ORDER @ not X272 = orderl \/ not X24
o Ar: P {X207: ORDER; X208: STATUS}; X242: ORDER;
not (X242,X243) e override (r,{(orderl,cancell
(A X272: ORDER @ not X272 = orderl \/ not X24
Ar: P {X207: ORDER; X208: STATUS}; X242: ORDER,;
not (X242,X243) e override (r,{(orderl,cancell
(X242,X243) e r V X243 = cancelled
b Ar: P {X207: ORDER; X208: STATUS}; X242: ORDER,;
not (X242,X243) e override (r,{(orderl,cancell
(X242,X243) e r | X242 = orderl
% Ar: P {X207: ORDER; X208: STATUS}; X246: ORDER;
b (X246,X247) e override (r,{(orderl,cancelled)}
not X246 = orderl \V not X247 = cancelled
Ar: P {X207: ORDER; X208: STATUS}; X246: ORDER,;
(X246,X247) e override (r,{(orderl,cancelled)}
%  not (X246,X247) e r \/ X246 = orderl
% ---
fof(anonymous, axiom,
el(override, t10) &
1[X220,X221]: (el(X220, t4) & el(X221, t4) =>
(?[Y]: (el(Y, t4) & (el(ord_t9(ord_t11(X220,X221
IIY_]: (el(Y_, t4) => (~el(ord_t9(ord_t11(X220,
(1[X287,X288]: ((el(X287,t_Order) & el(X288,t_
(~el(ord_t3(X287,X288),Y_) | el(ord_t3(X287,X
IY_]: (el(Y_, t4) => (~el(ord_t9(ord_t11(X2
(1[X291,X292]: ((el(X291,t_Order) & el(X292
((~el(ord_t3(X291,X292),Y) | el(ord_t3(X29
1[R,X242,X243]: ((el(R, t4) & el(X242,t_Order) &
((~el(ord_t3(X242,X243),override(R,const9)) |
(1[X272]: (el(X272,t_Order) =>
((~(X272 = orderl) | ~(X242 = X272)))))) | X2
1[R,X242,X243]: ((el(R, t4) & el(X242,t_Order) &
((~el(ord_t3(X242,X243),override(R,const9)) |
(1[X272]: (el(X272,t_Order) =>
((~(X272 = orderl) | ~(X242 = X272)))))) | X2
1[R,X242,X243]: ((el(R, t4) & el(X242,t_Order) &
((~el(ord_t3(X242,X243),override(R,const9)) |
el(ord_t3(X242,X243),R)) | X243 = cancelled))
I[R,X242,X243]: ((el(R, t4) & el(X242,t_Order) &
((~el(ord_t3(X242,X243),override(R,const9)) |
el(ord_t3(X242,X243),R)) | X242 = orderl)) &
I[R,X246,X247]: ((el(R, t4) & el(X246,t_Order) &
((el(ord_t3(X246,X247),override(R,const9)) |
~(X246 = orderl)) | ~(X247 = cancelled))) &

XX

SEEER

SR

X

S8R
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rStatus(A563)=VAL564))) &

),t_Status)))

ATUS) --> (ORDER <=--> STATUS)

|-->cancelledf@ x.1/=p.1)V

STATUSY;
}
}

X231: ORDER; X232: STATUS} @
1),y) e override N\
220,X221),y") e override \/

) ey'V (X287,X288) e y)) \
(X220,X221),y") e override V
92) e y V/ (X291,X292) e y"))
X243: STATUS @

ed}p Vv

2 =X272) \| X243 = cancelled
X243: STATUS @

ed}p Vv

2 =X272) V X242 = orderl
X243: STATUS @

ed)) V

X243: STATUS @
ed)}) V

X247: STATUS @
)V

X247: STATUS @
)V

),Y),override) &
X221),Y_),override) |
Status)) =>

288),Y)))))) &
20,X221),Y_),override) |
t_Status)) =>
1,X292),Y_))N)) &
el(X243,t_Status)) =>

43 = cancelled)) &
el(X243,t_Status)) =>

42 = orderl)) &
el(X243,t_Status)) =>
&

el(X243,t_Status)) =>

el(X247.,t_Status)) =>



I[R,X246,X247]: ((el(R, t4) & el(X246,t_Order) &
((el(ord_t3(X246,X247),override(R,const9)) |
~el(ord_t3(X246,X247),R)) | X246 = orderl))

).

fof(anonymous, axiom,
% tuple equality t11
1[X566,X569,X567,X570]:((el(X566,t4) & el(X569,t4
(ord_t11(X566,X569) = ord_t11(X567,X570) <=> (!
(el(EL568,X566) <=> el(EL568,X567))) &
I[EL571]:(el(EL571,t3) => (el(EL571,X569) <=>
% tuple type t11
1[X566,X569]:((el(X566,t4) & el(X569,t4)) => (el(
).

fof(anonymous, axiom,
% set equality t12
I[VAL572,VAL573]:((el(VAL572,t12) & el(VAL573,t12
(("[EL574]:(el(EL574,t11) =>
(el(EL574,VAL572) <=> el(EL574,VAL573)))) => V
).

% {X202: P {X210: ORDER; X211: STATUS}; X203: P {X2
fof(anonymous, axiom,

% t11 membership

I[EL565]:(el(EL565,t11) => (el(EL565,t11) <=>

(?[X202,X203]: ((el(X202, t4) & el(X203, t4)) &

% t11 type

el(t11,t12)
).

fof(anonymous, axiom,
% tuple equality t9
I[X576,X578,X577,X579]:((el(X576,t11) & el(X578,t
(ord_t9(X576,X578) = ord_t9(X577,X579) <=>
(X576=X577 & ![EL580]:(el(EL580,t3) => (el(EL5
% tuple type t9
I[X576,X578]:((el(X576,t11) & el(X578,t4)) => (el
).

fof(anonymous, axiom,
% set equality t10
I[VAL581,VAL582]:((el(VAL581,t10) & el(VAL582,t10
(("[EL583]:(el(EL583,t9) =>
(el(EL583,VAL581) <=> el(EL583,VAL582)))) => V
).

% {X194: {X202: P {X210: ORDER; X211: STATUS}; X203
X195: P {X204: ORDER; X205: STATUS}}
fof(anonymous, axiom,

% t9 membership

I[EL575]):(el(EL575,t9) => (el(EL575,t9) <=>

(?[X194,X195]: ((el(X194, t11) & el(X194,t11) &
(EL575 = ord_t9(X194,X195)))))) &

% t9 type

el(t9,t10)
).

fof(anonymous, axiom,
% set equality t8
I[VAL585,VAL586]:((el(VAL585,t8) & el(VAL586,t8))
(('[EL587]:(el(EL587,t10) =>
(el(EL587,VAL585) <=> el(EL587,VAL586)))) => V
).

% P {X194: {X202: P {X210: ORDER; X211: STATUS}; X2
% X195: P {X204: ORDER; X205: STATUS}}
fof(anonymous, axiom,
% t10 membership
1[X584]:(el(X584,t10) =>
(el(X584,t10) <=> I[Y]:(el(Y,t9) => (el(Y,X584)
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el(X247.,t_Status)) =>

) & el(X567,t4) & el(X570,t4)) =>
[EL568]:(el(EL568,t3) =>

el(EL571,X570)))))) &

ord_t11(X566,X569), t11)))

)) =>
AL572=VAL573))

12: ORDER; X213: STATUS}}

(EL565 = ord_t11(X202,X203)))))) &

4) & el(X577,t11) & el(X579,t4)) =>
80,X578) <=> el(EL580,X579)))))) &

(ord_t9(X576,X578), 19)))

)) =>
AL581=VAL582))

1 P {X212: ORDER; X213: STATUS}};

el(X195, t4)) &

=>

AL585=VAL586))

03: P {X212: ORDER; X213: STATUS}};

=> el(Y,19))))) &



% t10 type
el(t10,t8)
).

% {X588: ORDER x STATUS | X588 = (orderl,cancelled)

fof(anonymous, axiom,
% const9 membership
1[X588]:(el(X588,t3) => (el(X588,const9) <=>
(el(X588, t3) & el(X588,t3) & X588 = ord_t3(ord
% const9 type
el(const9,t4)
).

% override (r,{(orderl,cancelled)})
fof(anonymous, axiom,
% override(A591,A592) equality
I[A591,A592 VAL593]:((el(A591,t4) & el(A592,t4) &
((el(ord_t9(ord_t11(A591,A592),VAL593),0override
(override(A591,A592)=VAL593))) &
% override(A591,A592) type
1[A591,A592]:((el(A591,t4) & el(A592,t4)) => (el(
).

% +..

% |

% orderStatus' = override (orderStatus,{(orderl,ca
0 -

% +..

% X464: ORDER
% X465: STATUS
% X466: ORDER
% X467: STATUS
% |

% A X312: ORDER; X313: STATUS @ not (X312,X313) e

% (X312,X313) e override(ord
% A X316: ORDER; X317: STATUS @
% not (X316,X317) e override (orderStatus,{(orde
% (X316,X317) e orderStatus'
% ---
% |-? not (X464,X465) e orderStatus' V not (X466,X
%  not X464 = X466 \/ X465 = X467
fof(anonymous, axiom,
el(x464,t_Order) &
el(x465,t_Status) &
el(x466,t_Order) &
el(x467,t_Status) &
1[X312,X313]: ((el(X312,t_Order) & el(X313,t_Stat
(~el(ord_t3(X312,X313),orderStatus_) |
el(ord_t3(X312,X313),override(orderStatus,const
1[X316,X317]: ((el(X316,t_Order) & el(X317,t_Stat
(~el(ord_t3(X316,X317),override(orderStatus,con
el(ord_t3(X316,X317),orderStatus_)))
).
fof(conjecture, conjecture,
~el(ord_t3(x464,x465),orderStatus_) | ~el(ord_t3(
~(x464 = x466) | x465 = x467
).

erl,cancelled)))) &

el(VAL593,t4)) =>
)) =>

override(A591,A592),t4)))

ncelled)})

orderStatus' V

erStatus,{(orderl,cancelled)})

rl,cancelled)}) V

467) e orderStatus' \/

us)) =>
) &

us)) =>
st9)) |

x466,x467),orderStatus_) |
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Abstract. The specification of enterprise information systeosing formal
specification languages enables the formal vetifica of these systems.
Reasoning about the properties of a formal spetifio is a tedious task that
can be facilitated much through the use of an aatedhreasoner. However, set
theory is a corner stone of many formal specifaratianguages and poses
demanding challenges to automated reasoners. Fo ehd a number of
heuristics has been developed to aid the Otterdhneg@rover in finding short
proofs for set theoretic problems. This paper itigages the applicability of
these heuristics to a next generation theorem pi\ampire.

1 Introduction

Mathematical set theory is a building block of amimer of formal specificatic
languages, e.g. both Z [13] and B [1] are basedstoonglytyped fragments 1
Zermelo-Fraenkel (ZF) [3] set theor®Pne of the advantages in using a fol
notation for specifying an enterprise informatisypstem is that the specifier n
formally reason about the properties of the systemparticdar one may want
prove that the proposed system will behave in gaiteway or that some unwan
behaviour will not occur. However, writing out suptoofs is a tedious task as r
be observed in [8]. Hence of particular interest &pecifier couldbe the feasibility ¢
using an automated reasoning program [12, 17]aea® about such properties.

When reasoning about the properties of a spedificatanguage based on
theory, one inevitably has to move to the levelsefs and the various opeaa
defined on them. These operations in turn are besdtie underlying axioms of t
particular set theory in question.

1.2 Set-Theoretic Reasoning Heuristics

Set theoretic reasoning brings about a numberaiflems, especially if one opts fc
resolutionbased reasoner like Otter [6]. Much of the compiearises from the fa
that sets may be elements of other sets. Constiuctst theory are often stron
hierarchical and may lead to deeply nested strasttirat greatly increase a proble
search complexity [9]. In the following equality

196



P(A) =P(B) <> A=B

a reasoner has to transcend from the level of alsmia set A to the level
elements irP(A) in its search for a proof, but should be preednfrom transcendit
to the level ofP(P(A)) which would greatly and unnecessarily enlathe searc
space. It is generally accepted that heuristicsaegled to guide reasoners, espec
in the context of seheoretic proofs [2]. One such set of heuristics rfeasonin
about set theory has been developed previously &, mainly throug observin
the behaviour of the resolutidrased reasoner, Otter in its search for proofsoti
14 heuristics, based on recognisable patterns, d&reloped and the question ar
whether these heuristics have a wider applicabitity other resolutiofrase:
reasoners, e.g. Vampire [12] and Gandalf [14]. Taper investigates the utility
the said heuristics for Vampire.

1.3 Layout of this Paper

Section 2 gives a brief introduction and justifioatof the use of the Vampire pro
in this work. Section 3 presents the main results of our woaknely, the extent
which Vampire also needs the heuristics previoasliyved at through the use
Otter. A case study in section 4 illustrates thiétyitof some of the heuristics or
small Z specification. We conclude with an analysid pointers for future work.

2 The Vampire Theorem Prover

We chose Vampire [10, 12], a resolution-based aatedhreasoner for firgirde|
logic with equality for evaluating the wider applimlity of the 14 heuristi
mentioned above for two reasons: The first is beeanf its consistent success al
annual CADE ATP System Competitions (CASC) [7]. Beeond reason stems fr
the fact that Vampire has solved more thewretic problems than any of the o
compeing provers in the period from 2002 to 2005 acraisCASC division
involving these problems. If we can show that Vamfienefits from the heurist
developed before, then it is plausible that othreasoners may benefit from th
heuristics as well.

Vampire is a saturatiobased reasoner and implements three differentagitc
algorithms that can be selected for its main lampiriferring and processing claus
The three saturation algorithms are an Otter lodfh wr without the Limite
ResourceStrategy and the Discount loop. These algorithimengeto the class
givenclause algorithms. Vampire’s algorithm is a slightodification of th
saturation algorithm used by Otter [6].

The Limited Resource Strategy [11] aims to improive efficiency 6 the Otte
algorithm when a time limit is imposed by identifgi and discardingassive claus
that have little chance to be processed withintifme limit. The Limited Resour:
Strategy is therefore not a complete proof prooedur
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3 Evaluation of Set-Theoretic Reasoning Heuristg

In this section we measure the utility of some fesly developed heuristics [15, 16]
for Vampire. Fourteen heuristics were originallweleped, but for reasons of space
we evaluate 5 heuristics. Our experiments followpadtern: First we present our
sample problem and the ZF axiom(s) on which thélera is based. Then we report
the performance of Otter in an attempt to solve gheblem. From a failed proof
attempt we define a heuristic that allows Ottesdocessfully solve the problem. Next
Vampire is used on the original problem to detesmits need for the particular
heuristic. In some cases we increase the compleXitihe problem as an additional
test.

We used Vampire version 8.0 that was also usechetGQADE ATP System
Competition [7] in 2005 (CASC-20). A time limit & minutes and a memory limit
of 128MB were imposed which causes Vampire to tsdimited resource strategy.
No changes were made to Vampire’s other defauingst

3.1 Equality versus Extensionality

Our first sample problem based on equality ancptheer set axiom is given by:

PN ={ O, {1}}} @)

Currently neither Otter nor Vampire accept formutaghe highly evolved notation
of ZF set theory, hence the user has to rewrit¢hsetretic formulae like (1) above in
a weaker first-order language. Therefore, prooigalblon in (1) is rewritten as:

A={1} OB={A} OC=P(B)OD={0,B} - C=D (2
Further decomposition is required #§B) as follows:

Ox(xOC o Oy(yOx - ydB)) 3

Otter finds no proof for (2) in 20 minutes. Nexsing the extensionality axiom we
replace the consequei@=D) by

Ox(x 0 C « x D) (4)

and this allows Otter to find a proof in 0.03 sed®nThese findings lead to the
following heuristic (for the sake of this paper @al it Heuristic #1):

Heuristic #1: Use the principle of extensionality to replace esguality with the
condition under which two sets are equal, i.e.,meir elements are the same.

When the same problem (2) is given to Vampireag ho difficulty in finding a
proof in 1.3 seconds. The application of the abextensionality heuristic leads to an
equally fast proof in 0.1 seconds. These timegareshort to determine the utility of
the heuristic for Vampire. However, consider thiofging, more complex example
involving a subset axiom of arbitrary intersection:
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N {{1,2,3}, {2,3,4}} = {2,3} ©)
As before formula (5) is rewritten to make the velet constructions explicit:
A={12,3}0B={2,340C={AB} 0OD={2,3}- nC=D (6)
This time Vampire finds no proof within 30 minut&%hen we however apply the
principle of extensionality to the consequent afriala (6) as in
Ox(x O NnC « x O D) (7)

then Vampire finds a short proof th4 secondsTherefore Heuristic #1 appears to
be useful for Vampire as well, depending on the giexity of the problem.

3.2 Nested Functors

An effective heuristic is to give preference to detibns containing smaller clauses

[5], i.e. clauses containing fewer literals or das of smaller term depth. The use of
nested function symbols (callédnctorg leads to larger term depth and complicates
unification. The nesting of function symbols occaften, e.g.:

(A+B)+C=A+(B+C) 8

Formula (8) states that set-theoretic symmetriéedihce (denoted by ‘+) is
associative. The symmetric difference of sets A Brid defined as A + B = (A — B)
OB-A)={|(xOA) OxOB))O((xOdA)O(xDO B))}. Therefore formula (8)
employs equality as well as a ZF subset axiom ataimiated by set-theoretic
difference. A first-order definition of the symmietdifference functor is:

DAOBOx(x O symmdiff(A,B) « (xOAOxOB)O(xOA Ox0OB))) (9)
The conclusion of the proof is then stated as:

Ox(x O symmdiff(symmdiff(A,B), C) - (10
x O symmdiff(A, symmdiff(B,C)))
With this formulation it takes Otter 4 minutes I@eds to find a proof of (10)
Unfolding, and thereby effectively removing, thestesl functors as

D=A+BOE=D+COF=B+COG=A+F_ (11)
Ox(xOE o xOG)

allows Otter to find a proof in only 0.17 seconsisggesting:
Heuristic #2: Avoid, if possible, the use of nested functor bgis in definitions.

Vampire quickly finds a proof of (10) in less th@nl seconds, both with or
without the use of the nested functor heuristic. WWerefore increase the complexity
of the problem to further investigate the utiliti/ldeuristic #2 for Vampire. Note that
in both problem formulations the extensionality fstic was already applied to
problem conclusions. Rewriting (10) without usingemsionality as
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symmdiff(symmdiff(A,B), C) = symmdiff(A, symmdiff(BC)) 12
results in Vampire finding no proof after 30 minutédext we apply the nested
functor heuristic by rewriting our problem usingoBm constants:
D=A+BOE=D+COF=B+COG=A+F- E=G (13

Vampire now finds a proof after only5 seconds

3.3 Divide-and-Conquer

The heuristic examined in this section is applieaol proofs where the consequence
of the proof contains a set equality or an if-amdiraéf formula. A set equality in the
conclusion of a proof implies ‘if and only if’ vidhe axiom of extensionality. Owing
to the if-and-only-if formula, a specifier can parh two separate proofs, one for the
only-if part and another proof for the if part. Gaer the following sample problem
based on equality and the power set axiom:

P{0,1} ={ 00, {0}, {1}, {0.1}} (14
The formula is rewritten to make the relevant camgtons explicit:
A={0} OB={1} 0OC={0,1}0D=P(C)JE={00, A B, C} - (15
D=E

Otter terminates without finding a refutation af@® minutes. We resort to our
extensionality heuristic by changing the conclugimn

Ox(xOD « xOE) (16)

Otter now finds a proof in 3 minutes 23 seconds. alternative approach is to
perform two separate proofs, one for each halflé) @nd in the two proofs specify
the conclusions as in (17) and (18) below.

Ox(x 0D - xOE) )

Ox(x O E - x 0 D) (19
Otter proves (17) and (18) in 0.43 and 0.03 secoesjzectively, leading to:

Heuristic #3: Perform two separate subset proofs whenever ritl@gm at hand
requires one to prove the equality of two sets.

Vampire is also unable to find a proof for (15)af80 minutes. However for (16),
(17) and (18) Vampire finds quick proofs in 0.83 @nd 0.1 seconds respectively.
These times are too short to affirm the utilitytieé divide-and-conquer heuristic for
Vampire. As before we increase the complexity efphoblem through the equality:

P{0,1,2} = {0J, {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}} 19

Formula (19) is again rewritten to make the relé¢\wamstructions explicit:
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A={0} O0B={1} 0C={2}0D={01} DE={0,2}0F={1,2y0 (20
G={0,1,2y0H=P(G)0I={0,A B,C, D, E,F, G}~ H=l

Vampire terminates without finding a refutationeaf8 minutes 53 seconds with
the message ‘no passive clauses left’. Note thatdbes not mean that a refutation
does not exist. Since Vampire was run with bothme tand memory limit, it uses the
limited resource strategy [11], which is not a ctetg search strategy. Applying our
extensionality heuristic by rewriting (H = |) aboae

Ox(xOH o xO1) (21

allows Vampire to find a proof after 8 minutes 4&@nds which is still too long.
By applying divide-and-conquer to (21) in the uswaly allows Vampire to find short
proofs in 28 secs and 2 secs respectively, illtisyahe utility of the heuristic.

3.4 Exemplification

When writing the contents of sets in list notatmme naturally tends to define these
sets using one or more levels of indirection by img\¥rom the various elements to a
symbol representing the collection of those elesefhe sample problem used for
the divide-and-conquer heuristic will be used resavell, viz:

P{0,1} = {0, {0}, {1}, {0.1}} (22)

Recall that Otter failed to find a proof in 30 mies for the initial unfolding in
(15). Suppose we remove one level of indirectiorlyinating symbol E, i.e.

A={0} OB={1} 0C={0,1}0D=P(C) - D={0, A, B, C} (23
where D = {1, A, B, C} is unfolded (repeatedly using the ZFrpaj axiom) as
Ox(xOD o (x=0 Ox=A0x=B0Ox=C)) (29

in the proof conclusion. With this formulation Qtténds a proof in 4 minutes 5
seconds. These results lead us to the followingistew

Heuristic #4: Avoid unnecessary levels of elementhood in foeauby using the
elements of sets directly.

The divide-and-conquer heuristic can be appliethi® last proof attempt to yield
proofs in 0.34 and 0.03 seconds for the ‘only-ifida‘if’ directions respectively.
Vampire was also unable to find a proof for (15)hivi 30 minutes. However, for
(23) Vampire finds a proof i®.8 secondsin this example, therefore, it was not
necessary to increase the complexity of the prodierilustrate the utility of the
heuristic for Vampire. If we do increase the comjileof the problem by again using
formula (19) as an example, but instead of unfgdiras in (20) we unfold it as

A={0} OB={1} 0C={2} 0D ={0, 1} OE ={0, 2} O (25)
F={1,200G={0,1,2}0H=P(G) -~ H={O, A, B, C,D,E, F, G}
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then Vampire finds a proof in 5 minutes and 50 sdso The divide-and-conquer
heuristic can be applied to this last proof attetaptyield proofs in31.5 and 1.6
seconddor the ‘only-if’ and ‘if’ directions respectively

3.5 Multivariate Functors

Functors containing variables as arguments leaddre unifications, which in turn
lead to a larger search space. Functors are dfteodiiced by Skolemisation [4],
which occurs when first order formulae are claesifito serve as input to the
resolution mechanism. If an existential quantifeacurs within the scope of any
universal quantifiers, the existential quantifieréplaced by a Skolem functor taking
each of the universally quantified variables asi@ument.

The example problem (15) will be used again wite txtensionality heuristic
applied to the conclusion as in (16). First we methe ternD = AC) indirectly as

Ox(x OD o xOC) (26)
where the subset functaris defined as
OAOB(AOB - Oy(yOA - yOB)) (27)

With this formulation Otter finds no proof in 30 miites. The clausification of (27)
results in variablg being replaced by a Skolem function of the twaaldesA andB.
The effect of Skolemisation may be reduced by elating one of the universally
quantified variables in (27), e.g. replace varidbley the constant in (26):

OAADOC . OylyOA - yOC)) (29)

Now Otter finds a proof after 4 minutes 5 secondmiabley in the clausal form
of (28) is now replaced by a Skolem functor of onlye variable as opposed to a
functor of two variables in (27). The possibility iorelevant unifications with this
Skolem functor has therefore been reduced. It shaldo be noted that the subset
functor O in both cases has an arity of two, but in (279dbtains two variables as
opposed to one constant and one variable in (2&sd results lead to:

Heuristic #5: Simplify terms in sets by either not involving fuars, or else
functors with the minimum number of argument posisi taken up by variables.

Vampire finds quick proofs with or without the histic applied. With the subset
functor formulated as in (27} finds a proof in 21 seconds and for (28) in 0.1
seconds. The relative improvement in search tinggsificant. However, the search
time for (27) may still be too low to seriously fifig the use of the heuristic. We
therefore increase the complexity of the problenfudher test our heuristic. The
example problem (20) that was also used in theddiaind-conquer heuristic has
sufficient complexity and will be used again wittetextensionality heuristic applied
to the conclusion as in (21). As before, the téetm AG) is unfolded as

Ox(xOH o xOG) (29
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where the subset functdr is again defined as in (27). With this formulation
Vampire finds no proof in 30 minutes. We next appie multivariate functor
heuristic by defining the subset functor with vatéB replaced by the consta@t

OAADG o OyyOA - yOG)) (30)

Now Vampire finds a proof after 1 minute and 32csets. This result can further
be improved through divide-and-conquer. The tinastlie two sub-proofs are 5.2
and 0.3 seconds respectively.

4 Case Study: Football Fan Register

The following case study serves as a very smalimgka of the specification of an
enterprise information system using Z and the syleset reasoning about one of its
properties using the heuristics of the previousicec

A Football Identity Scheme allocates each fan glsimnique identity code. It also
keeps a list of troublemakers who have been barfrem attending matches.
PERSONandID are two given sets and represent the set of peoulehe set of all
possible identity codes. The system state is recbbyFIS [8]:

__FIS
membersID ~» PERSON; banned ID

bannedc dommembers

The partial injective functiomembersnaps identity codes to fans. The sahned
is a set of banned identity codes and is a sulishea@omain ofnembers

SchemaAddMemberadds members to the system. It takes a persompas and
returns a newly allocated identity code.

— AddMember
AFIS
persor?: PERSON; id ID

persor?  ranmembers. id! ¢ dommembers
members = members {id! — persor?} A banned =banned

A Proof Obligation
Next we show how some of the above heuristics mayubed to successfully

discharge a proof obligation arising from the sfiegiion. We want to show that
membersis still an injective function. The following arévegn as input to Vampire:
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members: rel(id,personh isSiv(members) isInjective(members) (31
bannedk P(id) A bannedc dom(members) person% person id! € id (32

person? ran(members) (33
id! ¢ dom(members) ![M]: (M € newMembers= M=ord(id!,person?)) (34
members’ = members newMembers. banned’ = banned (39

These facts represent the stat8 and operatiolhddMember~ormula (31) states
that memberss a relation that is single valued and injective, a partial injective
function [13]. The axioms forel, isSiy, isInjective dom ran, subsetunion etc. are
not shown here but are part of the input to Vampire

The proof obligation is stated as:

members’s rel(id,personh isSiv(members’h islnjective(members’)  (36)

Vampire finds no proof for (36) in 30 minutes. THigide-and-conquer heuristic
can be applied to (36), resulting in three sepagalieproofs with consequents:

members’e rel(id,person) (37
isSiv(members’) (38)
isinjective(members’) (39

Vampire finds proofs for (38) and (39) in 14 mirmi#8 seconds and 14 minutes
24 seconds respectively, but fails to find a prfoof(37) after 30 minutes. Next we
apply the multivariate functor heuristic by remayimxioms for union, domain,
injectivity, single valued ness, power set, rarrgégtion and subset and replace them
by instances of the same axioms where some vasiabéereplaced by constants. For
example, (33) requires the following definition thie range of a relation:

VRVY[Y e ran(R)< 3(X)(ord(X,Y) € R)] (40)

A replacement instance of (40) is therefore addedhe proof attempt where
variableR is replaced with constantembers

VY[Y e ran(membersy 3(X)(ord(X,Y) € members)] (41

Vampire now finds quick proofs for (38) and (39)irand 7 seconds respectively.
Vampire still cannot find a proof for (37) in 30 mites. We finally apply the nested
functor heuristic to all the introduced axiom imstas like (41). For example, (41)
contains the nested funct@kY,ran(members@nd is replaced by:

ranMems = ran(members) (42
VY[Y e ranMems= 3(X)(ord(X,Y) e members)]

Vampire finds a solution for sub-proof (37) in 9nuaies and 18 seconds. Solutions
for (38) and (39) are also found slightly fasteRiand 4 seconds respectively.
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5 Conclusions and Future Work

In this paper we investigated to what extent a ipresty developed set of heuristics to facili
proofs in set theory for a resolutitbised automated reasoner are applicable to armethswne
with similar characterists. The Vampire theorem prover was chosen fortdsk owing to it
steadfast performance at recent CASC competitfesevaluated 5 heuristics and found the
these heuristics are indeed needed, even thougtritfieal problem often had to be enladytc
illustrate the utility of the given heuristic usitige new reasone®ur heuristics appear to h:
an even larger support base since we also tested thn another reasoner, namely, Gandal
and comparable results as reported on in this paper witnessed.

Future work in this area magclude an investigation into the applicability the rest of ot
heuristics.Preliminary results indicate that at least 11 & driginal 14 heuristics are use
some addressing the challenge of tuples and funetith arity 6 or more [15].
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