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ABSTRACT

Satellite Scheduling Problems (SSP) are NP-hard eadstraint programming and
metaheuristics solution methods yield mixed resuliis study investigates a new version of
the SSP, the Satellite Constellation Time-Windowti@jzation Problem (SCoTWOP),

involving commercial satellite constellations tpabvide frequent earth coverage.

The SCoTWOP is related to the dual of the Vehiobutig Problem with Multiple Time-
windows, suggesting binary solution vectors représg an activation of time-windows.
This representation fitted well with the Matl%atGenetic Algorithm and Direct Search
Toolbox subsequently used to experiment with geratjorithms, tabu search, and simulated
annealing as SCoTWOP solution methods. The gealgfizithm was most successful and in
some instances activated all 250 imaging time-wivgjoa number that is typical for a

constellation of six satellites.

Key terms:

Satellite scheduling; Genetic algorithms; Earth ebstion; Metaheuristics; Constellation of
satellites; Time-window optimization; Tabu sear8imulated annealing; Vehicle Routing

Problem; Multiple time-windows.



ACKNOWLEDGEMENTS

| would like to thank the following people withouthom this dissertation would not have
been possible:

My wife Christa for continued support and encouraget over the years.
My supervisor, Prof J. S. Wolvaardt, for his guidanencouragement, and patience.

Prof Michael G. Kay of the North Carolina State umsity, for permission to use his

MatLog Toolbox in my research.



TABLE OF CONTENTS

INTRODUCTION AND MOTIVATION ... oo ettt e e e e 11
1.1 (=] 1= - | 11
1.2  Concepts in earth observation satellite opmmati...............coevvvvviviiiiiiiieinnss s 13
1.3 Research objective ... 19
O (1 0 1Yo TU 1 ] 1= 20
LITERATURE REVIEW ot 21.
2.1 TYPES OF SSP .iiiiiiiiiii ittt ettt e e e e e ettt e e e e e e e e e e e e e e e e e anne 21
211 Different perspectives on the SSP ... eeevevevveieiiiiiiiinn 21
2.1.2 Commercial satellite operations ......ccccccceieeiiiiiiiiieeeiee 25
2.1.3 Constellations of SatelliteS.........uceeeeeieieieei e 26
2.2 Characterisation of the SSP in literature ...............eeveiiiiiiiiiieiee e 28
2.3 Solution methods employed for the SSP ...ccceceiiiiiiiii e 29
2.4  Justification of the research ODJECHVE e .ooeeiiiiiii s 31
P2 T ©7o ] [od [1 1o o [P PPPPPT 33
PROBLEM ANALYSIS ..ottt ettt e ettt e ee e e e e e s samnnneeeaeeeananns 35
3.1 Problem CONTEXL .......cooi ettt ee e eesesnennnne 35
3.2  The objectives of OPtIMISALION ..........oaccciiiiiiiiei e 36
3.3 The constraints imposed 0N OPtIMISALION ceeieiiiiiiiiiiiieeee e 37
3.4  Mathematical model for the SCOTWOP for comnaroonstellations ..................... 38
3.4.1 The vehicle routing problem with multiple 8avindows.............ccccceeeeees 40
3.4.2 The analogy between the VRPMTW and the SCoPWO...........ccccccee.... 44
3.4.3 Mathematical formulation of the SCOTWOR..............ooovvviiviiiiiiiiiiiiinnnns 47
3.5 (@0} T3 101 0] o 52
SOLUTION METHODOLOGY ...eiiiiiiiieeiisiiiiiieiiniiteereeeas e e e e e s e ssssssseeeesaeesesansnnnneeens 54
4.1 Heuristics and metaheuristics for combinatg@tablems................cccovvvvvvvviinnnnn 54.
4.1.1 The tabu search NEUNISTIC ..........iiceeeeeeeee e 55

4.1.2 The simulated annealing NeUNSEIC ........ccuiieiiiiiiiiii e 56



4.1.3 The genetic algorithm metaheuristic .....cccc...vvveeiiiiiiiiii e, 57.

4.2  Common aspects of applying the three metalHBISrS. .........cccoceeeieiiiiiiiiiieneee. 58
421 SolUtioN repreSENtatiON ..............coememerrrriiiiiiir e e e e e e e e e e e e e e aeaaaaens 58
4.2.2 Testing for feasibility ...........ooo i eeeiiii e 60
4.2.3 Determining the fitness of SOIUtIONS...cceeeuviiiiiiiiiiiiie e 62
42.4 INPUL JAEAL. ... 63
425 Reading and interpreting the iNPUt dat@u. .. ..eveeeeiiiiiiiiieieeeeeeeeeen, 6.6
4.3 Implementation of the algorithms in Matah............cccooveeieeeeee e, 67
431 Implementation of the tabu search algorithm.....................ccceviiiinins 67
4.3.2 Implementation of the simulated annealing@dgm ..................ccccceeeeeeen. 68
4.3.3 Implementation of the genetic algorithm. .............ccccceeiniiiiiiiiiiiiieeeen. 68
4.4 COMPULING FTESOUICES ....cceiieeeee e eeeeeee e e e eas 75
4.5 EXperimental PrOCERAUIE .............vvvtcemememe et e e e e e e e e e e e e e e e e e e e e e e e e ae e 76
5 RESULTS AND DISCUSSION ....ciiiiiiiaiiiieettime ettt e s siee e ssbe e s sninessaneesssseee s 78
5.1  Comparing the performance of the three metaies ...............oooeeviiiviiiiieeeennn. 78
511 Results of the performance comparison ex@erign.............ccccceeveereriinnnnns 78
5.1.2 Conclusions on the performance compariSoB@RRNLS ..............ccevvveeeee. 81
5.2 Determining the impact of constraint type orfgrenance of the
(o L=T L=y il {o o111 ] o ¢ TP PRSPPIt 83
521 RESUILS OVEIVIEW ...ttt 83
522 The influence of the number of satellites.............ccccviiiiiiniiniinee 8.8
5.2.3 The influence of progressively tightening So&INtS..............ccccceeeeeeeiinines 98
5.3 Determining the efficacy of using different meguctive options ............................. 110
5.3.1 The influence of varying the elite count pagter ....................ccccoeeee. 111
53.2 The influence of varying the crossover f@ciparameter........................ 114
5.3.3 The influence of selecting different CrosSaMaions...............cccvveeeeeeenn. 116
5.4  The influence of the penalization scheme ftedsible solutions.................cceeeeee. 117
5.5 A note about OptiMality............euuurmimmmmmieeeee e e e 118
5.6  Conclusions and suggestions for further study................cccceriiiiiiiiiiiiiiiiieeee, 122
6 REFERENCES. ...ttt sttt ettt e e s e b e nabe e e 125

APPENDIX A: ABBREVIATIONS AND ACRONYMS



APPENDIX B:

APPENDIX C:

APPENDIX D:

SAMPLE TEST DATA SET ... 132
MATLAB ® COMPUTER CODE.........ccccovuiveieuereeeeesmmeseseesenesseness 143
EXAMPLE OF GENETIC ALGORITHM OUTPUT .........ccccc. woiiinns 165



Figure 1-1:

Figure 1-2:

Figure 1-3:

Figure 3-1:

Figure 5-1:

Figure 5-2:

Figure 5-3:

Figure 5-4:

Figure 5-5:

Figure 5-6:

Figure 5-7:

LIST OF FIGURES

A Three Dimensional View of a SatelliteSun-synchronous Orbit

around the earth showing the Near Polar Orientatfats Orbit Plane

(Copyright © CRISP, 2001) ......uveiiiuieie st e et ee et site e e s e e eneees 14
A Two Dimensional View of the earth slinng the Ground Trace of a

Satellite in Sun-synchronous Orbit (Copyright © #edh Institute of

Applied Mathematics, Russian Academy of Scienc@84P..............ccccceeevvriiiinnnnn. 14
Entity-Relationship Diagram illustragithe various entities associated

with a satellite image and the relationship betwdem..............cccoeeeeveeeeeeen . 01
Although ground distances between imtaggets remain constant, travel

and slewing distances may vary with the satellipetsgress through its

OFDIE CYCIE. ettt e e e e e e e e e e e e e e e e ennnes 46
The computer processing time neededitaplete the maximum number

of iterations for each of the three metaheurigéc®rded over 10

LoTo] 0 0] o] UL (=] o 1 U1 1 80
The number of time-windows activateéroe maximum number of

iterations for each of the three metaheuristicens®d over 10

(o70] 0 ] 00T g U TP 81
The computing time to find 100 genexagi of feasible solutions for

Constraint Group A as a function of the numberat@lites..............cccceeeeeeeenen. 89
The computing time to find 100 genenadi of feasible solutions for

Constraint Group B as a function of the numberabglfites...............ccceeeeeeee. 90
The computing time to find 100 genenagi of feasible solutions for

Constraint Group C as a function of the numberodIites...............cccoooiiiiiiinennn. 91
The computing time to find 100 genenadi of feasible solutions for

Constraint Group D as a function of the numberapéiites...................ooeeee. 92
The number of time-windows activatedry 100 generations of feasible

solutions for Constraint Group A as a functionle# humber of

(Y= 1 =] [ (TR 94



Figure 5-8: The number of time-windows activatedray 100 generations of feasible
solutions for Constraint Group B as a functiontef humber of

oY= 10 |1 (=TT 95

Figure 5-9: The number of time-windows activatedray 100 generations of feasible

solutions for Constraint Group C as a functionhaf humber of

SALEIITES. ...t ee ettt st e e e e e e e e e reeeaeeas 96
Figure 5-10: The number of time-windows activatedry 100 generations of

feasible solutions for Constraint Group D as a fiomcof the number

OF SALEIIEES ... 97
Figure 5-11: The computing time to find 100 gerieret of feasible solutions for a

single satellite as a function of tightening CORIBIIS ................cccceeeeeeririiiiiiei e 99
Figure 5-12: The computing time to find 100 generwt of feasible solutions for two

satellites as a function of tightening constraints............ccccccvvviviiiiiiece e 100
Figure 5-13: The computing time to find 100 generat of feasible solutions for

three satellites as a function of tightening C@IBLS .............ccccceeeiiiiiiiiiiiiiiii e 101
Figure 5-14: The computing time to find 100 generst of feasible solutions for four

satellites as a function of tightening constraints.............ccccccceveeeeiiiniiiiiiiieen. 102
Figure 5-15: The computing time to find 100 generat of feasible solutions for five

satellites as a function of tightening constraints............cccccvvvvviiiiieece e 103
Figure 5-16: The computing time to find 100 generat of feasible solutions for six

satellites as a function of tightening constraints.............ccccccceeeeniiiniiiiiiieen. 104
Figure 5-17: The number of time-windows activatedm 100 generations of

feasible solutions for a single satellite as a fimmcof tightening

(000§ Y1 2= 1] | £SO P PP PRSP UPPPPPPPPPPPRPN 105
Figure 5-18: The number of time-windows activatedry 100 generations of

feasible solutions for two satellites as a funcbtightening

(o0] 01511 7= 1] | KU PP U PP TPPP 106
Figure 5-19: The number of time-windows activatedm 100 generations of

feasible solutions for three satellites as a funmctif tightening

(010 ] 011 (= 11 0| TP 107



Figure 5-20: The number of time-windows activatedm 100 generations of
feasible solutions for four satellites as a funttd tightening

(010 ] 011 (= 11 0| TP 108

Figure 5-21: The number of time-windows activatedm 100 generations of
feasible solutions for five satellites as a funetad tightening

(o{0] 153 1 1= 11 01 £ TR 109

Figure 5-22: The number of time-windows activatedry 100 generations of

feasible solutions for six satellites as a functidtightening

(000§ Y1 2= 1] | £SO P PR UPPPPPPPPPPPRPN 110
Figure 5-23: The computing time to find 100 gerierat of feasible solutions for six

satellites as a function of the elite count par@met.............ccccceeeeeiriiiiiiiieneins 112
Figure 5-24: The number of time-windows activatedm 100 generations of

feasible solutions for six satellites as a functiéthe elite count

(0= 1= 1 013 =] PP POPPIN 113
Figure 5-25: The computing time to find 100 gerieret of feasible solutions for six

satellites as a function of the crossover fracfarBmeter ............ccccceeeerviniiinnnnnn 411
Figure 5-26: The number of time-windows activatedm 100 generations of

feasible solutions for six satellites as functidth@ crossover fraction

(02 1= 1 013 =] PP UPOPPIN 115
Figure 5-27: Genetic algorithm results for one litgever 1000 generations...............c..eeeee... 121
Figure 5-28: Genetic algorithm results for six Bags over 1000 generations...............cowem... 122
LIST OF TABLES
Table 3-1: The Correspondence between the VRPMTiM@SCOTWORP ..........ccciiiiiiiiineneen 4.4

Table 4-1: Implementation Options Selected forNteLab® Genetic Algorithm and
Direct SEarch TOOIDOX ......c.ouuiiiiiiii e e 73

Table 5-1: Comparison of the performance of thedhmetaheuristics for the same set

of input data over 10 cOMpPULEr rUNS €ACK ..comeeeeiiiiiiiiiieeeeeeee s 79
Table 5-2: Results obtained for Constraint GroUR.A...........cooaiiiiiiiiiiiiie e 84

Table 5-3: Results obtained for Constraint Group.B............coooiiiiiiiiii e 85



Table 5-4: Results obtained for Constraint Group.C...........oooiiiiiiiiiiiiiii e 86

Table 5-5: Results obtained for Constraint GroUp.D..............uuuiuiiiiiiiiiiei e 87
Table 5-6: Results obtained for different crossauechanisms ...........cccccoeeeeeeeeeeeecc e 117
Table 5-7: Results obtained for different penalBClions .............cccceeeiiiiiiiiiiii o i 118

Table 5-8: Comparison of results obtained for a@mst Group D over 1000

generations with average results obtained overggd@rations ...............cceeeeeeeeenn. 120



1.1

INTRODUCTION AND MOTIVATION

General

A number of different problems involving the optration of the use of either
satellite resources only, or a combination of gobgtation and space satellite
resources, have collectively become known as 8ateficheduling Problems
(SSP). The SSP has lately received more atterdiom to the increasing
commercial exploitation of earth observation (E@feHite imagery. Previously
the purview of security and scientific communitids commercial demand for
imagery is fuelled by the spread of newly declasditechnology that makes
high-resolution images available for general usde demand for this imagery
has grown to the point where it easily surpassemplgu creating a need to
optimise the use of the scarce space and groundrees used to produce earth

observation imagery.

A survey of literature has shown that the term éBis¢ Scheduling Problem”
denotes a class of related problems rather thangée sproblem. The class of
problems are also not necessarily “scheduling” lemols in the sense that the
word is normally used in operations research, alghothey are all at least
related to this kind of problem. Different kinds $SP arise depending on the
object of optimization. Most frequently the objeetis to optimize imaging
operations of the satellites, i.e. the space ressuor so called “space segment”.
A related problem has the objective of optimizihg fctivities of receiving and

control stations, i.e. the “ground segment” thateree data from, and send
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commands to the satellites. Both these kinds & B&ve to deal with the hard
constraints imposed by orbit geometry and the immaof the earth and are
therefore very similar, to the extent that they ssmetimes combined in a single

problem.

The focus of this dissertation is on the first kofdSSP, i.e. optimizing satellite
imaging operations, and more specifically, on a nawant of this problem that
arises when the imaging operations of a numbedeiitical satellites that are
orbiting as a constellation in the same orbit plaaee to be optimized. In the
past, problems that involve optimizing the imagimgfivities of a number of
satellites have been investigated but these sateliere most often of different
types and in different orbits. The commercial dechéor, and myriad uses of,
satellite imagery have lead entrepreneurs to tkea iof constructing purpose-
built commercial constellations of identical satei that will cover areas of
interest at suitably frequent intervals. In aroefto reflect more clearly the true
nature of problem, we term the SSP applicable wstdations, the Satellite
Constellation Time-Window Optimization Problem amdll accordingly be

using the acronym SCoTWOP. We retain however #éiss precise but more
commonly used SSP as acronym when referring tgothblem of optimizing

satellite imaging operations in general.

The SSP has been proven to be NP-complete (Badwit al (2004)), and

since its inception in the military and scientiipheres, optimization attempts
have primarily focussed on heuristic techniquesafous kinds. On another,
more practical tack, the problem has been viewealas-constrained i.e. having
no or very few feasible solutions. The focus Heerdfore been on constraint
satisfaction techniques to try and find at least Geasible solution or if not, to
maximise the number of constraints satisfied. Btth optimization and

constraint satisfaction strategies have met wittyimg degrees of success in

practical systems.

Genetic algorithms have been employed with mixectess for finding good
solutions to the SSP. As with many genetic alpariipplications, the challenge

is to find a suitable representation of a solutiorthe problem in the form of

12



1.2

some genotype. A rather obvious and intuitive vedyrepresentation is to

allocate a number to each image that has to be takel to represent a feasible
sequence of imaging events as a genotype compasiraydered subset of these
image numbers. However, the benefit of a constetiaof satellites in the same
orbit plane is their collective higher coverageerand frequent revisit period.

This means that there is often more than one oppitytto image the same spot
on the earth within a given time frame, whethedlferent satellites or the same
one. This means that an image can no longer bbesepted by a single number
making the representation of solutions as a redbtisimple genotype no longer

feasible.

Concepts in earth observation satellite operati  ons

A brief overview of EO satellite operations is pided below as background to
the SSP. More information can be found in Wettal. (1999) and an informal

description of the global SSP problem is providgd/brfaillie et al. (2002).

A typical EO satellite orbits the earth in Low Hafrbit (LEO) at a speed of
about seven km/s at an altitude of 400 to 1200 Kime duration of each orbit is
about 90 to 100 minutes, resulting in approximalelyto 15 orbits in a 24-hour
period. Most of these satellites are in a sligktlyptical orbit, with an orbit
plane inclined at about 8 degrees from the pols.axihis near-polar orbit is
designed to be sun-synchronous so that the satattidintains a constant
orientation with respect to the sun. While theslligé¢ is orbiting the earth, the
earth itself is of course rotating, so that theaasethe earth beneath the satellite
is constantly changing. Figure 1-1 and Figureillu&trate the orbit geometry of

a typical sun-synchronous orbit in three and twoeatisions respectively.
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Satellite
Ground Track

Equator
Earth's Rotation

Satellite Direction

Figure 1-1: A Three Dimensional View of a Satellitén Sun-synchronous

Orbit around the earth showing the Near Polar Orieration of its Orbit
Plane (Copyright © CRISP, 2001)

Figure 1-2: A Two Dimensional View of the earth sheing the Ground
Trace of a Satellite in Sun-synchronous Orbi{Copyright © Keldysh Institute
of Applied Mathematics, Russian Academy of Scien2é64)

Many optical satellites typically use a movable nmirto scan the area of the
earth up to some distance away from its nadir twigde adequate field of view.

The scanning motion can be parallel to the flighteation (push-broom

14



scanning) or orthogonal to the line of flight (wkiisroom scanning). Newer
satellites are much more agile and can point igriment by changing its
attitude through a rolling or pitching motion, a moauvre known as slewing.
Modern synthetic aperture radar (SAR) satelliteplegnelectronic focussing to
steer the pulses from their phased array antenmake range (cross-track)

direction.

Depending on the field-of-view of the satellite'snsor, this means that every
point on the earth’s surface can be accessed witliinite period. This revisit

period can vary from around 20 to 30 days on theatq to only hours near the
poles. This means that, in order to be able taiseglaily images of the same

geographical area, a constellation of satellitesqsiired.

The satellite receives detailed instructions, onctviactivities to perform during
each orbit, in the form of a schedule transmitidt tvia radio signal from its
controlling ground station. This can only happdrew the satellite is in view of
the ground station and is therefore not feasible every orbit. Rather,
instructions for a number of upcoming orbits arelinked at the same time.
Similarly, the satellite cannot always downlink igeay data obtained by its
sensor in real time. The imagery data obtainedndua number of orbits is
recorded on-board and down-linked when the satetitmes into view of a
ground station. Depending on the altitude of #uelste and the location of the
ground station, time-in-view available for up analaeh-link averages about ten

minutes.

From the above, it should be evident that actualgimg may only be possible
for 30 minutes or less during each orbit. This nhayrestricted further by
limitations on on-board data storage capacity,tBnoin electrical power or the

capability of the satellite to get rid of dissipdteeat.

Potential customers usually specify the image/y tleguire in terms of the
geographical co-ordinates of its boundaries, aveslitime, resolution and, if
required, type of processing. Before acceptinguatamer’'s order, these

requirements are checked for executability. Ifoeable, the image requested
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are translated into basic imaging operations tbéttee satellite’s sensor and
operational characteristics before being converieid commands to the

spacecraft.

An area that needs to be imaged is only in viewhefsatellite for limited time
periods and then only during some orbits. The Uesgy of imaging
opportunities depends on the nature of the orbuk te latitude of the target
area. Due to the near-polar geometry of a sunksgnous orbit, areas near the
Arctic and Antarctic can be imaged during everyitorhile an area on the
equator may only be in view occasionally. Sincéelite orbits repeats
periodically, it follows that over a period of weelr months, there will be

several opportunities to acquire an image of aipearget.

Usually a customer for an image has a delivery gateind. The customer may
want the image within 24 hours, a number of daysvan weeks. Obviously,
the longer the lead-time a customer provides thellgéa operator, the more
opportunities there will be to acquire the imagés time goes by, and the due
date grows nearer, the number of imaging oppoiasitor a particular target
obviously diminishes and it becomes more urgennéttude that image in an

upcoming imaging schedule.

On the other hand, some customers may require snafjeghe same area at
regular time intervals, e.g. daily, weekly, and nhdy; to be able to monitor
change — the monitoring of ice thickness in theti&rduring winter to guide
shipping comes to mind. The image requests faioousrs like these obviously
have to be included in every relevant imaging sateed In short, any set of
image acquisition orders for an upcoming numbeorbits, may contain a mix
of orders, ranging in urgency from high to low, atilds mix makes the

optimization process more tractable.

If more than one EO satellite are launched in suglay that they are phased in
the same orbit plane, the resulting constellatidnsatellites can obviously
provide better customer service by affording moneqdient imaging

opportunities of the same area on earth. Theraamegerous constellations in
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geosynchronous orbit but, at time of writing, cefistions of commercial EO
satellites are still being planned or in early ssagf commissioning. For
example, the RapidEye constellation, one of thet faiurely commercial earth
observation constellations, was launched on Aug8sP008, and has a primary

purpose of providing daily coverage of Western fpetro

If we call the period between successive up / dbmknepportunities an imaging
cycle (consisting of say five orbits), we illusgathhe SCoTWOP in the entity-

relationship diagram shown in Figure 1-3.

Duration ,
acquires

A

has

Predecessor

depands on
depends/on

Set-up Time Starting Time

many

depends|on

must fall
within

depends on \i \d

which
Time windows Priority

determined by how many are Teft

belongs|to

A 4

i i . belongs to
Imaging Period <overal Orbits Spacecraft
A
depends on belongs to
Falls i same
A vy
Orbit Plane Constellation

Has a single

Figure 1-3: Entity-Relationship Diagram illustratin g the various entities

associated with a satellite image and the relatiohgp between them
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The diagram in Figure 1-3 indicates that every ienhgs the following entities

associated with it:

* Asingleduration (the time it takes to acquire the image);

» A predecessor(an image taken immediately before it — in theecakthe

first image of the planning cycle, the ground statis the predecessor);

» A set-up time (required to re-orientate the instrument — perhidgpsugh

slewing of the spacecraft)

e Avalueg

» One or morgime-windows during which it would be feasible to acquire the

image (i.e. when it is in view of the instrumentyidg the planning period;
* An earliest and latestarting time for each feasible time-window;
* A delivery ordue date
Note that:

» Set-up times depend on the speqgtiedecessorand by implication also on

the specific time-window;

* The value of an image is dependentpiority , which is determined by
how many feasible time-windows are left before theage is due for

delivery;

» Every time-window belongs to only ooebit

» Every orbit belongs to only orspacecraftin the constellation

* Animaging period span several upcoming orbits of one or more spattecr

» Valid predecessors of an image belong to the sanhefsrbits (and hence

the same spacecraft)
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Research objective

The research reported on in this dissertation wasdaat finding answers to the

following research question:

Investigate the feasibility and efficacy of a setetof metaheuristic algorithms

to find globalsolutions for the commerciamaging scheduling problem for a

constellation of multiple identical satellites intended to pmi frequent

coverage of the same geographical area.
By way of explanation the following should be emgikad:

» The focus is on the scheduling of commercial séslthat form part of the
capital of a private business venture with the afrmaking a profit. This is
to be contrasted with scheduling of scientific oilitary satellites that
usually belong to government institutions although,some cases, their

imagery may also be sold;

» The emphasis is on scheduling the activities obrstellation of identical
or similar spacecraft that are phased along theesarbit, sharing the same
orbit plane and having a common purpose: thato¥igding more frequent

coverage of the same geographical area than &satgllite;

» The idea is to find optimal or near optimal globsdlutions for the
constellation as a whole since optimal solutionsifdividual satellites do

not necessarily translate to optimal solutionsiier constellation;

» The problem is restricted to imaging activitiesthese are the source of
revenue. Other on-orbit activities such as orb#intenance will not be

considered, and;

» The interest is on the performance of the differaetaheuristics in finding

solutions for the SSP.
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1.4

Study outline

The rest of this dissertation addresses the follgwi

» Chapter 2 provides and overview of the state ofdtiein solutions for the

SCoTWORP in the form of a review of current literaton the subject.

» Chapter 3 is devoted to a detailed analysis osgeific problem under view

and culminates in a mathematical presentationeptoblem.
» The implementation of the genetic algorithm is diéscl in Chapter 4.

» Chapter 5 presents the results obtained, drawslugioos from the results,

and discusses potential avenues for further study.
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2.1

211

LITERATURE REVIEW

A review of available literature indicates that t&&P has been receiving
attention from researchers for the past ten yaass.o This chapter examines the

findings of a review of publications with referertoethe following:
» Types of SSP;
» Characterization or class of problem;
» Solution methods employed, and;

» Justification of the research objective.

Types of SSP

Different perspectives on the SSP

As mentioned in Chapter 1, the teBatellite Scheduling Probledoes not refer

to a single problem but in fact to a family of teld problems that are all linked
through the inviolable constraint of satellite argeometry. A satellite system
for observation of the earth typically consistsooie or more satellites in low
earth orbit and one or more ground stations thegive image data from these
satellites and/or transmit command and control tatdne satellites. There are

therefore two major categories of SSP:

21



» The first type of SSP pertains to the schedulinghefimaging activities
of the satellite/s, i.e. it attempts to answer goestion: Which images
should be taken and when should they be taken?attigties that are

scheduled happen in space.

» The second type of SSP focus on the activitiehefground station and
attempts to answer the question: With which satsllishould |
communicate to up-link/down-link information and evh should this
communication happen? The activities that are adeddare interactions

between the ground and space.

Attempts have also been made to combine these talolgms into a single
problem that seeks to obtain an integrated schezhdempassing both ground
and space activities. A third type of problem, thlouairly rare, involves the
scheduling of multiple instruments on the samellgateThis only applies to
large satellites like SPOT-5 that have a numbeliféérent sensors on board that
cannot necessarily be used at the same time. TRetl&® needs to answer the
guestion: Which instrument should | use to obtaispacific image and when
should | use it? Alternatively, the question may Gesen that | have to use two
sensors at the same time to acquire different isjaghich one should have

priority?

Normally the generation of schedules for satedlitévities take place on earth in
a ground station. The schedule for upcoming orhk#/repared, tested for
feasibility and safety, translated into spaceatafimands and then up-linked to
the spacecraft when it passes overhead. Therewse\ver, some research being
done on moving at least some of the schedulingities to the spacecraft itself.
The problem remains an SSP of the first kind batabmputing power to solve
it moves from the earth to the spacecraft, giviigygpacecraft greater autonomy.
The idea is to make the problem dynamic in the eséhat the spacecraft, given
its knowledge of its own state and the images dlir¢aken, can perhaps make
better informed decisions as to when to take imagessponse to new requests.

This approach to the problem is also referred taatomation of the scheduling
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process”. The survey below makes it clear thathase kinds of SSP have been

topics of research in the past.

Barbulescuet al. (2002), (2004) and Howet al. (2000) deal with the second
type of SSP when they view the problem from thespective of the Satellite
Control Network of the United States Air Force. eThetwork coordinates
communications between 16 antennas, located atgnmand stations around the
earth, and more then 100 satellites. User requgptsally specify a time-
window and duration for communication with a specgatellite. Similarly,
Burrowbridge (1999) addresses the problem of sdiegmultiple low altitude
satellite communication contacts across one or mspexe tracking networks.

The objective is to maximize the number of saeeltibntact opportunities.

Dunganet al. (2002), Franket al. (2001) and Globut al. (2002), (2003),
(2004) address the problem of coordinating the intagctivities of NASA’s
growing fleet of EO satellites. This is an examplehe first kind of SSP. Past
practices of scheduling imaging activities on dif& satellites, or on different
instruments on the same satellite independentlpred another, required the
manual coordination of observations by communicatieams of mission
planners. Given the increasing number of satsliéted the increasing demand
for observation time, this approach is no longabie, suggesting the need for a

centralised scheduling function relying on autorddézhniques.

Pemberton (1999) and also Pemberton and Galibéd0f20Giew the broader
problem of scheduling all operations on-board albt&, and hence include not
only instrument operations (sensor activities)ie $cheduling problem, but also
platform operations (e.g., maintaining the healtibit and status of the
spacecraft), and communications operations (betvgeggllites or between the
satellite and a ground station). This is therefmneinstance of combining the
first and second kind of SSP. In addition to E@liges they also address the
scheduling of operations of telecommunications amdadcast satellites.
Dimitrov and Galiber (1998) also define satellitdéssion planning as the

problem of mapping tasks (observation, communioatidownlink, control
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manoeuvres, etc.) to resources (sensor sateliglag, satellites, ground stations,

etc.). Again, this combined the first and secomd lof SSP.

Harrison and Price (1999) also have the first kiidSSP in view when they
restrict themselves to the scheduling of a singietl®tic Aperture Radar (SAR)
equipped satellite and seek to find out how mangges can be acquired in a
single (three minute) overpass over a typical areaterest and whether the
scheduling process can be automated given a leag ¢f between ten and
fifteen minutes. Ruaat al.(2005) and Cordeau and Laporte (2005) also address
the single satellite problem without confining themives to a specific type of
satellite. Lemaitret al. (2000) also confine themselves to imaging openatio
but point to the fact that the greater flexibildy newer agile (body pointing)
satellites, with their three degrees of freedomakes them more difficult to
schedule than the older mirror scanning satelltés their single degree of

freedom.

Kitts (1994) addresses satellite scheduling fromca@mpletely different

perspective: that of moving the scheduling functadrieast partially from the
ground to the spacecraft itself i.e. an approachuddbmation of the scheduling
process as alluded to earlier. The context is tiaa number of satellites
operating within a cross-linked constellation. Shmeal-time control strategy
merges the payload scheduling function, traditignabnsidered a high-level
planning problem, with low level actuator contrdlhis is a special instance of
the first kind of SSP in which the scheduling fuosthas been moved from the

ground to spacecratft itself.

Khatib et al. (2003) also propose providing the satellite witlin@ted on-board
scheduling capability. The idea is to allow théeBi#e to dynamically update
up-linked schedules generated on the ground tevdtdo consideration of actual
conditions or unforeseen changes in priority. &irly, Pemberton and
Greenwald (2002) advocate dynamic updating of okeld static schedules to
accommodate contingencies and recounts details ofuraber of potential

approaches to effect this.
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2.1.2

Vasquez and Hao (2000), (2001) investigate the lpnobof scheduling the
imagining of a single satellite with multiple instnents such as SPOT-5, which

is the latest in the series of SPOT satellitesatpdrby France.

Muccio et al. (1999) take the position of a commercial sateltitenpany that
would like to find an optimal schedule for a cofisten of satellites. They
restrict themselves to imaging operations (the kisd of SSP) and solved the

problem for a constellation of three identical Beiés.

Commercial satellite operations

It is evident from the literature surveyed that doenmercial aspects of satellite
operations have received little attention. Mosttlod work in the field has
focussed on military or scientific satellites. BExales of work in the military
field are that of Barbulescet al. (2002), (2004) and Howet al. (2000) on the
scheduling of the Satellite Control Network of thmited States Air Force.
NASA’s focus has been primarily on scientific apptions as the work of
Dunganet al. (2002), Franlet al. (2001) and Globust al. (2002), (2003), and
(2004) attests.

Outside the United States, many satellites oftere leadual purpose: a primary
one of providing scientific or strategic imagerygavernment institutions, and a
second, commercial objective to defray some of dbsts of the government
investment. The work of Vasquez and Hao (20000012 on scheduling the
various instruments aboard SPOT 5 applies to tind &f situation. The SPOT
series of satellites were built and paid for by Brench Space Agency CNES,
but are operated for commercial purposes by thepeospn SPOT Image.
Similarly, the Radarsat satellites are paid fotth®y Canadian Space Agency but
operated for profit by the private company Radatstdrnational. A similar
arrangement is in place for the EROS satellitelsmaiel. While the purveyance
of archived imagery is a prime source of incometli@se organisations, it is fair
to assume that new strategic image acquisitiongd@ernment users will take

precedence over commercial requests for new imagenis aspect often makes
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the scheduling problem less of a purely commeraied and more a matter of

juggling externally imposed priorities.

The literature survey indicate that only Muceibal. (1999) placed themselves
in the position of a purely commercial, if fictitis, satellite company that would
like to find an optimal schedule for a constellatiof three satellites. This is
perhaps not surprising seeing that purely commiesaiallites have only recently
come to the fore. The first high resolution sételllaunched for purely
commercial purposes was IKONOS (USA) in 1999, w@hikBird (USA)

following two years later.

Constellations of satellites

For the purpose of this dissertation a distinctioh be made between fieet of
satellites and aonstellationof satellites. The terrfieet will refer to a grouping
of satellites, the orbits of which are not necelsageometrically coordinated,
and which do not share the same purpose althougin #ctivities may be
coordinated for some reason or other. In gendnal different satellites in the
fleet may have different capabilities so that itymat be possible to allocate the
same imaging task to different satellites. In castt the terntonstellationwill

be used for a number of satellites that share aremmpurpose and the orbits of
which are geometrically coordinated to provide acsc rate of earth coverage.
The satellites in the constellation are generaéntical in capabilities so that all

of them can perform the same imaging tasks.

Given this definition, the literature survey rege#hat few, if any, instances of
earth observation constellations exist. In comtiamstellations of geostationary
satellites, that provide communication and gloladifioning services, are more
common. An example of a fleet of satellites isgheup of satellites operated by
the United States Air Force which is being conaolby their Satellite Control
Network. This fleet is alluded to in the work 8arbulesctet al. (2002), (2004)
and Howeet al. (2000), but it is important to note that they fean scheduling
the activities of a network of ground stations tbis fleet rather than the

activities of the fleet itself (the second kindS$P). The work is however still
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relevant in that the scheduling problem also hasldal with the complexity

induced by satellite orbit geometry.

The subject of the work of Dungat al. (2002), Franlket al. (2001) and Globus
et al. (2002), (2003), and (2004) is on the schedulingNaSA’s diverse and

large satellite fleet rather than on purpose loaitistellations.

At time of writing only a few groupings of EO sditels may conceivably qualify
for the term commercial constellation: France’sividbal SPOT-2, SPOT-4,
and SPOT-5 satellites are operated as a constellatisatellites, as are EROS A
and B of Israel. However, these satellites doshaire the same capabilities, nor
were they launched closely together or simultanigoub a certain sense they
may almost be called accidental constellations esitttey came into being
because the older satellites, like SPOT-2, simabteld longer than expected.
Since the operating life of a satellite is typigaleven years, a true constellation
can only be ensured if the satellites are launetigun a reasonable time frame
or even simultaneously on the same launch vehiclg. for example, the
constellation is to be comprised of seven sats|lisach with a design life of
seven years and they are launched at a rate gbemgear, the full constellation
may in practice be difficult to achieve, since finst satellite will have only one
year of its life left by the time the last one @uhched, leaving little margin to

compensate for launch failures and project delays

At time of writing, the only real example of thigpe of constellation, built for
purely commercial purposes, is the five satellitapidEye constellation of
Germany which has been launched in August 2008e drly other existing
constellation that comes close to this is the Bagellite Disaster Monitoring
Constellation (DMC) collectively owned by the Alger, Nigerian, Turkish,
British and Chinese governments and which has leestructed to provide
emergency earth imaging for disaster relief. Spaaglable imaging capacity of
the DMC is sold under contract, but commercial deitess will obviously be pre-

empted by the dictates of disaster relief.
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Characterisation of the SSP in literature

Most researchers refrain from categorizing the $8/e specifically than an
example of anoversubscribed scheduling problemmeaning there are more
requests for a resource than can be satisfiedhab some requests remain
unfulfilled. Given that it is impossible to schéelall the activities, the focus is
on scheduling as many of the urgent activitiesassiple in a given time period
by assigning appropriate weights to each activi#ctivities relating to less
urgent unfulfilled requests are then scheduledaféater time period. Notably
this approach is taken both by those working frone tground station
perspective, like Barbules@t al. (2004), as well as those that view the problem
from the satellite perspective like Globeisal. (2004)

There is also general agreement that this typealflem is intractable. Muccio
et al. (1999) point out that one formulation for the SiSRhe machine shop
scheduling formulation which involves integer assignt variables, real start
time variables, and potentially thousands of otfetables and constraints. As a
large machine shop scheduling problem the SSP earldssified as NP-

complete.

Pemberton and Galiber (2000) emphasize the mosbabwifference between
traditional scheduling problems and the SSP: Thetfat the resources (i.e., the
satellites) are orbiting the earth places an aoiti set of constraints on when a
task can be executed. In agreeing that the S&Riteascheduling problems are
usuallyover-constrainedthey approach it as@nstraint-optimizatiorproblem
rather than &onstraint-satisfaction problemThe term over-constrained simply
means that there are few (if any) feasible solstiarnen the objective is to
schedule all requested activities. The constrsatisfaction approach is
therefore to try and find at least one feasibleusmh without regard for
optimality. Another approach is to seek solutitimst maximize the number of
constraints that are satisfied. This is in essehee constraint-optimization
approach which relies on the concept sufft vs. hard constraints. Hard
constraints cannot be violated whereas there mapb® leeway to violate soft

constraints. In the case of the SSP, constralats dre imposed by orbit and
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earth geometry are hard, whereas the customer'sceeg delivery time for an

image may be somewhat flexible.

Vasquez and Hao (2000) provides a Knapsack formouldéor the SSP following
Bensana et al. (1996) who employed a Multi-Dimensional Knapsack

formulation.

Solution methods employed for the SSP

Predictably, the methods employed for the SSP raingem exact integer
programming methods for smaller problems to staohagarch methods and

constraint programming for larger ones.

Harrison and Price (1999) developed a partial ematioen method that exploited
time constraints to prune the search tree to malsmaller problem more
tractable. Similarly, Pemberton (1999) employedmniy segmentation and then
used branch-and-bound to solve sub problems. Muetial. (1999) also
considered the problem in two parts, solving fitse allocation and then

scheduling problem through linear and integer @ogning.

Among those that investigated metaheuristics, Veotf Sorenson (2000) found
that their genetic algorithm offers considerablg@iavement when compared to
a look-ahead algorithm, which in turn, performedtdrethan a simple priority
dispatch method. Barbulesetial. (2004) found genetic algorithms and squeaky
wheel optimization both successful at schedulirgAlr Force Satellite Control

Network.

Globuset al. (2004) compared thirteen scheduling algorithméutfiog variants
of stochastic hill climbing, simulated annealinge tgenetic algorithm, squeaky
wheel optimization, and iterated sampling. Thayni that simulated annealing

outperformed the other methods.

Among those that employed constraint programmirny @ches are Pemberton
and Galiber (2000) and Dungan al. (2002). Lemaitreet al. (2000) used two

quite different methods: a constraint programmiagriework, and a local search

29



method. They found that each one has its own ddgas: the former being very

flexible, while the latter gives better performance

The fact that scheduling activities to date havienarily focussed on single
satellites and fleets of diverse satellites rathan true constellations makes its
easy to understand why the focus has been on gni@asible solutions rather
than optimal or near optimal ones. Hence the peafe for constraint
programming methods by some researchers. Inifaetfleet of satellites there
may not be much scope for optimisation at all. c8ithe satellites often do not
have the same purpose or capabilities, they camewsssarily be employed for
the same imaging tasks and a specific task caaftirernot be switched between

satellites to find a better scheduling solution.

In this case satellites can be treated as moreserihdependent when it comes to
task allocation and the primary objective of thhestuling problem seems to be
to find a solution where access to common scarseurees such as a ground
station has to be scheduled. Again we refer towhek of Barbulesciet al.
(2002), (2004) and Howet al. (2000) on the Satellite Control Network of the
United States Air Force and the work of Dunganal. (2002), Franket al.
(2001) and Globuset al. (2002), (2003), (2004) on NASA's fleet of EO
satellites. The same is often true for a singtell#® with multiple instruments
as pointed out by Vasquez and Hao (2000), (20045f0T-5. In this case
there is not so much a choice as to which instrarteense for which task, but
rather when each instrument should be allowed e haccess to spacecraft

resources such as power.

The advent of commercial constellations that areraed to maximise profit,

opens up new optimisation opportunities, sinceftleas is on acquiring as many
images as possible in a given time period. Theiiaigpn of some images may
be more easily deferred to later planning perio&nce the satellites in the
constellation are identical, and since they careadt at higher latitudes, cover
the same ground within a short space of time, theag also be more than one
opportunity to collect imagery of the same areth@nsame planning cycle. As a

result the problem is no longer over constrained ane or more feasible
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solutions may exist, at least until demand overmisethe extended supply
offered by the constellation. There may thereftre opportunities for

optimization in choosing which satellite to taskiwacquiring a specific image
and when the image should be taken. Since thesieeshcreate a number of
feasible solutions and the scheduling problem fammercial constellations is
therefore not over constrained, the use of metatteutechniques becomes a

more attractive proposition.

Even so, metaheuristics have been applied to the I8Sseveral researchers,
sometimes with conflicting results. Notable amotigse is the fact that
Barbulescu et al. (2004) found genetic algorithms and squeaky wheel
optimization both successful at scheduling the Rorce Satellite Control

Network whereas Globust al. (2004) found that simulated annealing
outperformed genetic algorithms and other methdaksnwit comes to scheduling
the NASA satellite fleet. The fact that these tgvoups view the problem from

different perspectives, i.e. ground segment vsces@gment scheduling, may
account for the different experience but it needsgng out again that both

problems share the constraints imposed by orbimgéy that make the SSP

distinctive. This difference remains thereforeigmting.

Unfortunately most articles do not say much abbet gpecific ways in which
solutions were encoded as genotypes. Wolfe anénSen (2000) report a
genetic approach that is novel in that it uses additional binary variables, one
to allow the dispatcher to occasionally skip andmg task in the queue and
another to allow the dispatcher to occasionallgcate the worst position to the
imaging task. The resulting schedules seem todmgon the results of other

methods they investigated.

Justification of the research objective

Given the literature overview above, it is evidémit the problem of finding
optimal schedules for a constellation of identiE@ satellites has not received
much attention in the past. The reason for thith& such constellations are

mostly still in the planning stage. It is alsodant that scheduling efforts in the
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past have not been widely successful and that hiley of the research in this
field has found its way into practical schedulirygtems. One reason for this is
that in practice operational imperatives simplycpude any real optimization

effort — there is simply not enough time.

To understand this, one may consider the casesofgie satellite in near-polar
orbit, with a ground station at high latitude sattthe satellite is in contact with
the ground station during almost every orbit. Tgtly there would then be 90
minutes or so between contacts with the satellRaring this period a schedule
for the upcoming orbit is generated, tested, artifienl into a set of commands
for the satellite. Given the high premium placedtioe safety of the satellite, it
is not unreasonable for the satellite operator émahd that the schedule be
finalized at least one hour before it is uplinkebhis leaves time to ensure that
demands resulting from the schedule would not piheesatellite in any danger,
for example: requiring impossible or risky mano@svr The duration of the
contact with the satellite is typically ten minutasso, leaving approximately 20

minutes out of every 90 minute orbit to find anioja schedule.

The question may well be asked why these schecduiesiot prepared well in

advance, say days before they are to be execilteglanswer lies in the fact that
new requests to confirm executability of potentiabge acquisitions arrive

continuously at a rate of about 3000 per day aatiahout 500 of these result in
confirmed orders every day. Furthermore, images liave already been taken
may turn out to be defective in some way and mas hia be rescheduled. The
result is that scheduling operations take place €ull-time basis and that there
is little or no time to optimize schedules. Sitelbperators therefore merely
seek to maintain a schedule in which each imagéiromed request has been
allocated a feasible timeslot. Any scheduling athm that is intended to find

optimal or near optimal solutions will thereforeviaao be very fast.

Metaheuristics such as genetic algorithms that deiéh a population of
solutions are much more effective when they cam wéh large populations of
feasible solutions. If there are only a few feksibolutions, a lot of time is

wasted on evaluating infeasible solutions in ordetry and maintain a viable
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population with enough genetic variability to coetel a specified number of
generations without stagnating. It follows that tiigher the number of feasible
solutions, the faster the genetic algorithm, aleotfactors being equal. The
concept of a constellation of identical satelliteshe same orbit plane not only
enables the satellite operator to acquire andrmsele images, it also affords
more opportunities to obtain the same image. Daipgnon the latitude of the

area of interest, it may be possible to acquirénzage of the same spot on the
earth a number of times by more than one satedllteit from different angles.

The increased number of imaging opportunities fog same image should
translate into a higher number of feasible soliand therefore the potential for

a faster algorithm.

However, while increasing the number of feasibléutsuns, the potential to
acquire an image of the same area on multiple @amtsscomplicates the
representation of solutions in terms of genotypas$ tan be manipulated by the
algorithm. In ensuring that an image is taken amlge, the representation of the
solution must now encode the information pertainioga sequence of images
each having multiple potential imaging time-slothieh, in turn, belong to
different satellites. The challenge is therefaredpresent solutions in a form
that is simple to manipulate while preserving theoren comprehensive

information it encodes.

In the light of the above it seems that the obyectof determining which
metaheuristic (among a selection of those empldgedthe SSP by other
researchers) will be quick and effective at findsmjutions for the scheduling of
a constellation of satellites (i.e. the SCoTWOPR)a iworthwhile endeavour. Of
course a number of metaheuristics will have todsted in order to provide a
testing environment, and this literature overviawggests that the tabu search,

simulated annealing, and genetic algorithm metasiges are prime candidates.

Conclusion

Different perspectives have yielded a number dfed#nt but related problems

that all carry the SSP moniker and there is no easiss on a standardised or
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canonical form for the problem. Characterizatiohghe problem in terms of
more general classes of optimization problems aésy but there is a general
consensus that the problem is NP-complete. Inrgéiteappears that constraint
programming has been the favourite solution metioodarger problems. The
efficacy of results obtained though metaheuristiggears to depend on the type

of problem.

Research into the problem of scheduling the imagjerations of constellations
of commercial satellites using metaheuristics sagh genetic algorithm appears

to be a worthwhile endeavour because:

The first truly commercial constellations have ordgently been launched,;

* The nature of these constellations should make there amenable to
optimisation efforts and therefore perhaps moréabie for the application

of metaheuristics, and

» The results obtained thus far with a variety of aheuristics appear not to

be conclusive, yielding mixed results as to theliative efficacy.

* Encoding of solutions in the form of a genotype fige in metaheuristics
like a genetic algorithm becomes very challengirfgem multiple imaging

opportunities exist for the same spot on the earth.
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PROBLEM ANALYSIS

Problem context

The kind of problem of interest here involves asteltation of at least two but
probably not more than ten, identical satellitest tthare the same orbit plane.
The purpose of such a constellation would be tcecdkie same geographical
area more frequently than is possible with a sisglellite. This higher rate of
coverage is sought after by customers who woulel itk monitor change over a
certain geographical area. An example of this kihdse is the need to monitor
the extent of damage caused by natural disasté&/bereas a particular area
could be covered by a single satellite over a peab days, the constellation
makes it possible to cover the same area withiayaod even a few hours. The
orbit of the satellites in the constellation wotydically be sun-synchronous and
the satellites would be phased equidistantly arotmel orbit so that they
collectively provide coverage of the whole earthihivi a period of days. The
nature of a sun-synchronous orbit results in aaiin where areas of the earth
closer to the poles will be covered more frequetiign those closer to the
equator. In addition, the number of satellitesthie constellation will also
determine the number of imaging opportunities & s#ame area over a given

time period.

Customers order images from the satellite operator agree on an acceptable
lead-time, the length of which will factor into tipeice of the image. During the

lead-time, which may be anything up to 120 daygréhmay be numerous

35



3.2

opportunities or time-windows when the area torbaged may be imaged by the
satellites in the constellation. Every satellitehe constellation completes 14 to
15 orbits every 24 hours. During some orbits telite comes within line-of-
sight of the ground station and then commands meaypblinked to the satellite

while raw imagery data and telemetry are down-ltht@the ground station.

Among the commands up-linked to the satellite issexies of imaging
instructions telling the satellite where to poiné imager and when to turn it on
and off during the upcoming number of orbits wheis inot in contact with the
ground station. It is the determination of serdsimaging instructions that
forms the heart of the SCoTWOP.

We assume the following:

* The number of orders waiting to be imaged exceédsdaily imaging
capacity of the constellation and the satelliterafpe needs to prioritise the

orders in terms of when they should be filled, and

» The satellite operator has at his disposal botlit propagator and satellite
simulator software that allows him to determine éimindows and

instrument orientations for each image for eacéllsat

» The operator has already accounted for other ordbaetivities such as
warm-up periods, heat dissipation, orbit mainteearatc. so that all that

remains is to schedule the imaging activities.

The objectives of optimisation

The objective of the commercial satellite operagdio maximize income on the
investment in the constellation of satellites. sTb@an be achieved if the imaging
activities for each planning period, i.e. the périoetween successive ground
station-to-satellite contacts, are such that theswdlation as a whole acquires

those images that yield the highest value giverctmstraints.
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The termvalueis not necessarily used in the strictly monetaryss i.e. the price
of the image. Rather it is an appropriate weighiagtor that incorporates
aspects such as price, urgency, the number of hngampportunities left and, in
the case of optical satellites, the probabilityctsfud cover over the area to be
imaged. Value should thus be seen as an indichtibre importance or priority
that the satellite operator may attach to an inaagethis value may change over

time depending on the specific planning period urdasideration.

The obviousprimary objective for optimisation is therefore to maximithe

value of image data acquired over the planningoplesinder consideration. Note
that it does not make sense to consider a longer-dbjective, since new orders
will probably arrive while the current planned ssriof imaging instructions is
being executed and may make any long term schecubsslete. Some
researchers would however addexondaryobjective to that of maximising the
value of image data, such as minimising the slewinfpe spacecraft required to

acquire the image data.

While it is possible to cope with the problem ofltiple objective functions by,
for example, assigning relative weights to the cibyes, we note that time taken
up by slewing leaves less time for imaging and tltas be handled by

appropriate constraints.
The objective function is therefore:

Maximise the value of image data acquired by thestslation over the

upcoming planning period.

The constraints imposed on optimisation

We assume that the images considered for the upgopianning period have
been selected from a larger set on the basishibgtrheet the orbit and visibility
constraints. Furthermore, some constraints, ssctin@se dealing with priority
or cloud cover probability can be effectively ingorated by suitable
adjustments in the value of the image. For exanipieeather forecasts indicate

a high probability of cloud cover for an image, tradue of that image should be
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adjusted such that the image is forced out of tlatisn. Similarly, if the
upcoming orbit is the last or only opportunity teqaire a specific image, the
value of the image should be adjusted such thatfdrced into the solution. It
stands to reason that some common sense is redwgredfor it doesn’t matter
how high the priority of an image is, if it canrize imaged because of excessive

cloud cover then increasing the priority cannotdpice the image

We will now consider the constraints that need ® thken into account

explicitly.

* On-board memory. The total amount of memory required by the insage
scheduled to be taken by a satellite during thenptay period should not
exceed the capacity of its on-board Solid StateoRiesr (SSR).

* Visibility. An image can only be imaged if it's within thenser’s field of
view so that imaging should start and finish withispecific time-window.

Note that there can be more than one time-windavirpage per satellite.

» Sequence. Since satellites only move in one direction adbtine earth it

has to take images in the sequence that it enasuhiem.

* Non-interference. Two images cannot be taken at the same time dy th

same satellite.

» Singularity. Every image should only be taken once duringpia@ning

period.

Mathematical model for the SCoTWOP for commerci al
constellations

The realisation that optimisation problems from edgée disciplines can be
expressed with similar mathematical models andrtfast problems can in some
way be related to classes of standard problemsahaorganising influence on
operations research. In keeping with this spattperficial examination of the

SCoTWORP reveals that it too shares characterigfittswell-known problems:
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* The objective function and on-board memory constraiaken together

forms the classic Knapsack Problem.

* The remaining constraints relating to visibility,ominterference and

singularity, reminds strongly of Machine SchedulPrgblems.

Researchers such as Bensahal. (1996) and Vasquez and Hao (2000) have
recognised the knapsack characteristics of thelgmgband most researchers
seem to agree that it is a kind of scheduling mnobivithout really questioning
the truth of this characterization. However, wtitame of the constraints seem
to justify this view, the problem does not realgve the hallmarks of a classic
scheduling problem. In the classic scheduling lembthe task is typically to
find a sequence of time slots during which a setabivities are to be performed
and the objective is to complete all the activitiesfore their respective
deadlines. In the SCoTWOP, the sequence of the-wwimdows during which
images can be taken is determined by orbit corditipm and the sequence is
therefore fixed. All that can really be decideavisich of these time-windows to
use for imaging, with the objective of taking asnypamages as possible or to
maximize the value of the images. We therefore nbat the SCoTWOP has
more in common with what may be regarded as a aersf the dual of the
classic scheduling problem. This is the reasonréferring to “time-window

optimisation” rather than calling it a “schedulingfoblem.

It would be more useful if the SCOTWOP could beatedl to a single type of
standard problem rather than being viewed as aidhybrapsack-scheduling
problem.  Careful examination reveals that this insleed possible: the
SCoTWORP is strongly related to the well known Véhi®outing Problem
(VRP), specifically to a variant of the VRP knows the Vehicle Routing
Problem with Multiple Time-windows (VRPMTW). To eedhis, we need to
digress and examine the VRPMTW more closely befoee return to the

mathematical formulation of the SCoTWOP.
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3.4.1

The vehicle routing problem with multiple tim e-windows

The Vehicle Routing Problem (VRP) encompasses dentlass of problems in
which a set of minimum-cost routes must be detezthiior a fleet of vehicles to
deliver goods to a set of geographically dispersedtomers with known
demands. Vehicle routes originate and terminatenat or more depots. The
VRP was recognised as early as 1959 by George igaagz central problem in
the fields of transportation, distribution and ktgis and has become a well-
known integer-programming problem, which falls i@ category of NP Hard
problems. The problem is considered to lie atirtkersection of the well-studied
Traveling Salesman Problem (TSP) and the Bin PgckPnoblem (BPP).

Common variants of the VRP are:

» The Capacitated VRP (CVRP) in which every vehias h limited capacity,

and;

* The VRP with time-windows (VRPTW) in which everystamer has to be

supplied within a certain time-window.

The variant of the VRPTW with more than one timexdow per customer is
known as the VRP with Multiple Time-windows or VRAMW.

Normally the objective of the VRPMTW is to minimizkee set-up cost of the
size of the vehicle fleet (humber of vehicles) ptbe sum of travel time and
waiting time needed to supply all customers in rtheiquired hours. The
following formulation of the VRPMTW is adapted frothat of De Jonget al.
(1996). The notation is derived from that of Desmeret al. (1988):

* G is agraph with a set of verticesand a set of arcé so thatG = (V, A);
N is the set ofncustomers, witiN ={1....,n} andi is the index;

* Vs the set of vertices so th\dt={0} O Nwhere 0 corresponds to the depot;

Ais the set of arcsA:({O} X N)D I D(NX{O}) : where:
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* | isthe set of arcs connecting the customersN x N ;

« {0} xN is the set of arcs from the depot to the custonaerd,
* N ><{0} is the set of arcs from the customers to the depot

e« Z is any proper subset of the set of vertidéso that its complement

Z=V-2Z;

 F :{1,... ,W} is the set of time-windows associated with customer

* f isthe index for the time-windows of each customeso thatf O F ;

» Tw,is time-window f of customeri, with TW, =[g,} ] such that
& <l andlif <€

* (@ is the positive demand of customefrIN ;

* Q is the capacity of each of the (identical) vehicles

* ¢ Iis the cost associated with a('cj)DA; where ¢, includes the fixed
vehicle cost. This enters the fixed costs of thhidles into the objective
function;

. ti'

, is the travel time along ar@, j )JA (the cost of which is included ig

above);

» d is the duration of time to serve the custorne ;

C isthe cost for one unit of waiting time.
The variables of the problem are the following:

« § is the time instant that service starts for custonIN ;

* W is the waiting time at customefIN if the vehicle arrives early;

41



* vy is the load of the vehicle when it arrives at cosoi [IN ;

« X is a binary variable equal to 1 if af¢, j)OJA is used by a vehicle, 0

otherwise;

* U, is a binary variable equal to 1 if customerlN is served in time-

window f OF .

Normally the objective of the VRPMTW is to minimizlee number of vehicles
and the sum of travel time and waiting time neettedupply all customers in

their required hours. Since fixed vehicle costgsounted for in the arc cos;

of arcs leaving the depadnd travel time are accounted for in all the arstgo

G; » the VRPMTW problem can be formulated as:

Minimize

(;mc.j %+ W (1)
subject to:
%xj =1 0iON @)
;xji =1 Oi ON 3)
éu” =1 0i ON 4)
;“"E?fs*%; N i ON 5)
2x(s+drprw=s 0j OV (6)
2% (v-9)=y 0j ov (7)
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22 %21 0z OV ®)

G<y<Q 0i ON 9)
x, 0{0,3 O(i,j)OA (10)
u, 0{0,3 OiON, fOF, (11)
S=0 Oi ON (12)
W >0 0i ON (13)

Constraints (2), (3), and (10) ensure that evestaruer is visited exactly once.
As a consequence no two vehicles ever use the aammnensuring that as many
of the arcs (0j) are used as there are vehicles, and that thd firsts of all
vehicles are counted. Constraints (4), (5), arld €hsure that the service of
each customer starts within one of its time-windoaveld constraints (6) and (13)
ensures that a vehicle has enough time to travet tustomer to customey.
Constraint (8) is a sub-tour elimination constrdinat is retained here even
though constraints (5) and (6) usually serve tmiglate sub-tours in practical
applications. Constraints (7) and (9) ensure thatloads of the vehicles are
feasible when they arrive at a customer. Note toattraints (5) and (9) can
easily be written as two inequalities each and thatresult would be a mixed
integer program in standard form that can readdysblved exactly for small

instances.

Many formulations of the VRPMTW do not attempt ténimize waiting time
explicitly, or apply less rigid bounds on the tiw@idows. In this case the

objective function reduces to:

Minimize
2. 6% (1a)
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3.4.2

In keeping with this formulation, constraint (6)actges to:

%:’%(SJ’(#J’J)S P

0j oV

The analogy between the VRPMTW and the SCoTWO P

At first glance, the analogy between the VRPMTW #r@lSCoTWORP is at once
evident and, at least superficially, fairly obviousApart from the objective

function, which will be discussed later, the cop@sdence set out in Table 3-1

below seems logical.

Table 3-1: The Correspondence between the VRPMTW ahthe SCoTWOP

VRPMTW Entity

SCoTWOP Entity

Customers

Images

Routes (Sequence of customers)

Sequence of imagegihg

opportunities

Vehicles Satellites
Demands Image memory requirement
Depot Ground Station /s

Distance (travel time) between

customers

Set-up (slewing) and travel time

between images

Vehicle capacity

Satellite SSR capacity
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VRPMTW Entity SCoTWOP Entity

Customer service time-windows Image time-windows

This analogy between the VRPTW and SCoTWOP can iskeading because

there are subtle but important differences betvikertwo problems:

* In the VRPMTW, the time-window constraint is impddey the customer on
the vehicles, but in the SCoTWOP the oppositeuis: tthe times-windows are
imposed by the satellite (vehicle) on the imagesst@mers). The
consequence of this is that the satellites in 8eTWOP, unlike vehicles in
the VRPMTW, are not necessarily interchangeableestheir time-windows
for the same image are not the same. In VRPMTWAapee it would mean
that two vehicles (no constraints) cannot possiijt the same customer at

the same time.

* In the graph of the VRPMTW the distance between @y customers is
normally the same regardless of direction of traveln contrast, the
constraints imposed by satellite orbits in the SGAP results in a situation
where the distance between two image locations @\ Bris not the same
when travelling from A to B than when traveling fmoB to A. Once the
satellite has passed location A on its way to Baitnot return to location A

without orbiting the earth at least once.

» Due to the nature of satellite orbits, the distane®veen image locations, and
therefore travelling and slew time, is not constauit varies according to the
satellites’ progress through its orbit cycle. hagh-theoretical terms it means
that there can be more than one arc connecting afganages. This concept

is illustrated in Figure 3-1 below.
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Nadir ground trace

of orbit B Nadir ground trace

of orbit A

During orbit A the satellite has to slew first
right to image target 1 and then across its
ground track to image target 2.

During orbit B, both targets lie directly
below the satellite and no slewing is
necessary

This illustrates that even though the
targets are stationary, set-up times can
vary from orbit to orbit

Figure 3-1: Although ground distances between imageargets remain
constant, travel and slewing distances may vary witthe satellite’s progress

through its orbit cycle.

» The differences in objectives of the VRPMTW and 8@oTWOP extend
beyond the fact that the one seeks to minimize wbde the other seeks to
maximise value. More important is the fact the WRRV has a fixed
number of customers that all have to be servicethéyninimum number of
vehicles, whereas the SCoTWOP seeks to take as immages as possible

given a fixed number of satellites. More abous tater.

In addition to the important differences noted abahere is also a number of
other, perhaps less significant differences thdateeto slightly different
interpretations of parameters and constraintsappear in both the VRPMTW
and the SCoTWOP. As such they present no addittfiulties and do not in
themselves define the unique characteristics of 8@TWOP. These

differences include the following:
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3.4.3

* The time-windows in the VRPMTW apply to the stamé of the service
only and do not bound the completion time of thwise. In the SCoTWOP
imaging has to start and end within the bounds h&f time-windows
otherwise the image won't be in sight anymore. Time-window
constraint in the SCoTWOP is a hard constraint e&®rtime-window

constraints in the VRPMTW are often consideredasft.

» Since satellites always travel forward in fixed itgptheir travel time is not
really a factor because the satellite travels pasimage target whether it
intends to acquire the image or not. This alsoaibs the need to account

for waiting time since the satellite determinestilee-windows.

* Since the number of satellites is fixed there isiped to account for a fixed

cost component.

* In the SCoTWOP, the satellites pick-up loads atviserlocations, whereas
in the VRPMTW vehicles deliver loads at servicealbans.

Mathematical formulation of the SCoTWOP

Given the similarities and differences between MHMBPMTW and the
SCoTWOP pointed out above, the formulation previpougiven for the
VRPMTW can now be adapted to the specific needek@SCoTWOP. The key
to this adaptation is that the set of vertieesf graphG should be associated
with the time-windows of images rather than thegesmitself. In other words,
the correspondence between the VRPMTW and the S@HAVghould be
between customers and time-windows rather than dstwcustomers and
images. The arcs in the graph would then correporthe non-imaging time
periods between imaging time-windows. In this wgre will still be a
maximum of one arc connecting the members of any qfavertices (time-

windows) in subseit of the graplG.

The characteristics of each image, such as valwatidn, memory requirement
etc. can be associated with each of its time-wirslo®imilarly, parameters like

the setup (slew) time should be associated withaths between time-windows
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rather than the arcs between images. Furthermareshould account for the
fact that the number of satellites (vehicles) isedi and that time-windows
belong to satellites rather images. For this psepwe introduce the indeéxto

denote thd-th member of the set of identical satelliies

We also need to account differently for the seinpetassociated with each arc
(time interval) between time-windows. During thime interval the satellite
may have to slew or set up its instrument to aegilie next image. Since this is
to be discouraged, we associate a penalty withtithe spent slewing but not
with any remaining travelling time if slewing is roplete before the next time-
window starts. To account for the highly asymneetiature of the graph we also
associate a large time penalty with the arcs cdimgea specific time-window
and those that preceded it in time. This is jieddiby the fact that the spacecraft
has to circle the earth at least once before balrg to acquire an image of the
area that it has already passed. In other wordsalow the satellite to go
“back” in time but only at the penalty of assoacigtwith this move a very large
“setup” time. In this way the grapB is asymmetric but at least bi-directional
with two arcs, a “long setup time” one and a “stsmtup time” one, connecting
vertices associated with the same spacecraft. Weuat for this penalty by
taking the maximum of the slew or setup time aradtthvel time. In the case of
travelling “forward” the cost of the travelling tenleft after slewing (if needed)

is zero.

Using similar notation as presented in 3.4.1 t8e BNOP can now be defined

as follows:

* Mis the set ofm images with indexf , so thatf OM ;
* Pis the set ofp satellites with index, so thatk O P;

* Nis the set ontime-windows with index , so thati ON ;

* N, is the set of imaging time-windows associated wétellite k , with

N, ={L..n}, N, ={n+1....n}, ... N, ={n +1....n}. itis
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assumed that no two time-windows are identicalis T$hin any case highly
unlikely but can be achieved by slight change$éostarting time of an

offender. As a result the time-windows indexedMy..., N, form a

categorical system with union the set of time-windd! .

O, is the set of imaging time-windows associated witage f , with

O, :{1,...,nf};

G, =(V. A)is a graph with a set of verticesand a set of arcs

A associated with satellite;

V,is the set of vertices representing time-windovepesited with satellite

k so thatV, ={0} O N, where0 corresponds to the time-window associated

with ground station contact;

A is the set of arcs representing time intervals betwtime-windows

associated with satelliteso thatA, = ({0} x N, ) 0 1, 0(N,x{0}); where:

o I, =N,xN,is the set of arcs corresponding to the time iratisrv
between time-windows that belong to the same #atel;

o] {0} x N, is the set of arcs corresponding to the time iratisrv

between the ground station contact time-windowthedmaging
time-windows of satellitk , and;

o N, ><{0} is the set of arcs corresponding to the time iratisrv

between the imaging time-windows of satellitand the ground
station contact time-window.

G= (V, A) is then a graph consisting of the union of alb-guaphsG, so

that G = J G, with a setv = ]\, of vertices and a set of ards= | A ;

kaOP kOP kOP

Z is any proper subset of the set of vertidéso that its complement

Z=V-2Z:
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[e.1]denotes the time interval of time-winddwsuch thatg + d < | and
Ii <Q+1;

d, is the duration of the imaging activity associatath time-window

iON ;

g is the positive memory requirement for time-windawf the image

associated with it is taken;

Qis the solid state recorder (SSR) capacity of eatéllite k assuming that

they are identical;

t. is the slewing or manoeuvring time required bytel8te if it has to take

j
image j immediately after image. This time period has a finite value in

cases where the same satellite can take both intagiesy the planning

t. assumes amfinite

period. In cases where imag@recedes imagg, t;

value;

Ris a large positive number used for the penaltgtassociated with every
arc connecting a time-window with one already passebelonging to a

different satellite;
¢; is the time penalty associated with the time iraébetween two time-

windows iand j where c; =max(l;j ,R);

v, is the value of the image associated with time-wid [N , considered

constant for this planning period;

The variables of the problem are the following:

S is the time instant that imaging starts during twiadow i (IN ;

X Is a binary variable equal 1af an image is taken during time-window

i ON, Ootherwise;
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Yi (| j)D A is a binary variable equal 1af satellite k J P uses time-
window | to take an image directly following on taking anaige during
time-window i without using an intervening time-window, i.g, =1 if

(i,j) OAis used (by satellité [0 P), otherwisey, =0.

The SCoTWOP can be formulated as follows:

Maximize:

2% (14)
Subject to:
>x <1 Of OM (15)
xg<$s< x(I- d) OiON (16)
> ax<Q OkOP (17)
dY(s+d+g)yss 0jON (18)
PPRVES! 0z Ov (19)
x 0{0,3 0i ON (20)
y, 0{0,3 O(i, j)OA (21)
S=0 0i ON (22)

Constraint (15) ensures that every image is takenast once for all the time-
windows associated with it. Constraint (16) ensuhat imaging starts and ends

within one of the time-windows associated with tirabge. Constraint (17)
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3.5

ensures that the capacity of each satellite’s diegrdevice is not exceeded.
Constraint (18) ensures that the satellite has gimdume to slew between any
pair of time-windows used by it. It also ensurest tsatellites only move in the

forward direction in time and that attempts to mdwackward in time or

excessive slewing is impossible because of the laadue thatc; = max(qj ,R)

assumes sinc® is very large. The value gf, together with constraints (16)

and (19) usually serve to eliminate sub-tours,dult-tours are in principle still
possible in cases where there is a large overlapelea time-windows with short
imaging durations. Constraint (19) is the usudd-®wr elimination constraint

that is retained here for that purpose.

Conclusion

The VRPMTW appears to provide a useful paradigmafalysing the nature of
the SCoTWOP. Instead of viewing the SCoTWOP aylaidh problem that
incorporates characteristics of a number of stahgaoblems, the VRPMTW
makes it possible to relate the SCoTWOP to a sikigleé of standard problem.
The SCoTWOP may in fact be seen as a variant ofitia of the VRPMTW.

To see this consider the following:

« The VRPMTW seeks to minimise the total cost of daly, given it has to
deliver to all of a fixed number of customers withime-windows dictated

by the customers.

» The dual of the VRPMTW would seek to maximise thember of
customers serviced (value), given it has a fixednloer of routes (i.e.
number of vehicles) to perform the service andadiset of time-windows

dictated by the routes.

If we apply the correspondence set out in Table Belwould replace customers
with images and vehicles with satellites in thdestent about the dual of the
VRPMTW above. The result would be a statement Waild conform to the
SCoTWOP. As explained in the next chapter, theilaiies between the
VRPMTW and the SCoTWOP assisted greatly in arrivdhg very useful way of
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encoding potential solutions to the SCoTWOP in amea that was amenable to

the three metaheuristics investigated.
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4.1

SOLUTION METHODOLOGY

This chapter describes the nature of heuristics methheuristics in general

before providing details of the three metaheusstised in this study, namely:
» The tabu search metaheuristic;
* The simulated annealing metaheuristic, and;
» The genetic algorithm metaheuristic.

Aspects that are common to the implementation bfttake techniques are
discussed with particular reference to the way tgmis are represented and
evaluated for fitness; the common input dataset #med way feasibility of

solutions are verified. The software componentsupar to each method are

discussed before the experimental procedure igedit!

Heuristics and metaheuristics for combinatorial
problems

Two of the methods employed to solve the SCoTWORIwe the use of a

metaheuristic to guide a simpler search algoritife used simulated annealing
and tabu search. The third heuristic used, a gealgforithm, belong to a class
of heuristics that is biologically inspired and lumes the ALife (artificial life)

algorithms of particle swarm optimisation and asibay optimisation.

Reevest al (1993) define a heuristic as:
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41.1

“...a technique which seeks good (i.e. near-optinsalutions at a reasonable
computational cost without being able to guarantegher feasibility or
optimality, or even in many cases to state howeclosoptimality a particular

feasible solution is.”

The local neighbourhood search heuristic starth wisub-optimal solution and
searches a defined neighbourhood of the solutioa feetter one. However, this
strategy alone cannot be relied upon to find a @laptimal solution since it

may converge to a local optimum. This problem fp@yvercome by employing
an additional strategy, or metaheuristic, to guldelocal neighbourhood search
heuristic in its search. Such strategies, empldyesome metaheuristics to deal
with the problem of heuristics converging to a looatimum, include the

following:
» Enlarging the search neighbourhood;
» Restarting the search from different initial sabnt, and;

» Allowing uphill moves. (We solve the SCoTWOP refdated as a

minimization problem.)

The metaheuristics tabu search and simulated angehht have been evaluated
for solving the SCoTWOP, both allow uphill movesThe third, a genetic

algorithm, operates on a population of solutiond ases evolutionary strategies
to breed consecutive generations of better (figelitions. These metaheuristics

are discussed in more detail below.

The tabu search heuristic

The tabu search metaheuristic seeks to avoid cgemee to local optima by
declaring a limited number of recently generatddtsms off-limits (tabu) for a
number of upcoming iterations. It does this bygieg track of recent solutions
and/or their attributes in a dynamic memory cathesl“solution history” or “tabu
list.” Potential solutions in the current iteratithat matches those in the tabu

list are ignored, so redefining the search heighmed and forcing the
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algorithm to diversify even if it means temporardijowing a worse solution.
The tabu list is updated after every iteration Isat no solution remains on the
list for more than a specified number of iteratidtise “tabu tenure”). The
process ends after a specified maximum numbeewdtions have been reached.
If the focus is on solution attributes rather tlteomplete solutions “aspiration
criteria” may be used to override the tabu tenufe so that improved solutions

that share attributes with those on the tabu lesy be allowed.

The implementation of tabu search for the SCoTWO&uses on complete
solutions and aspiration criteria are not usede dttline of the algorithm is as

follows:

Generate an initial feasible solution
Set the number of iterations and the tabu tenure
Initialize the iteration counter and the logging ve ctors
Initialize the tabu list
Initially, let the optimal solution be equal to the
initial estimate (current solution)
WHILE number of iterations is less than the maximum
Update tabu list
Find an improved feasible solution
WHILE an improved feasible solution is not yet
found:
Generate a candidate solution in the
neighbourhood through modification of the
current solution
Repair the solution if the same image is
taken more than once
Test solution for feasibility
Determine the fithess of the new solution
END WHILE
Replace the current solution with the new solution
Declare the new solution off limits for the tenure
period
Update the iteration counter
END WHILE

4.1.2 The simulated annealing heuristic

The simulated annealing metaheuristic seeks todaeonvergence to local
optima by occasionally allowing moves to worse 8ohs. It mimics the
behaviour of a metal that is slowly being coolegptomote crystal growth and
relieve stresses. The probability of replacing ¢herent solution with a worse
neighbourhood solution depends on the differedcebetween the solution

values and on a global parametefcalled the temperature):
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4.1.3

reproduce through a crossover operation.

)

(meaningp(J) =1)

Generate an initial feasible solution

Set the number of iterations and initial temperatur
Initialize the iteration counter and the logging ve
Initially, let the optimal solution be equal to the

initial estimate (current solution)

WHILE number of iterations is less than the maximum

Update tabu list
Find an improved feasible solution
WHILE an improved feasible solution is not yet
found:
Generate a candidate solution in the
neighbourhood through modification of the
current solution
Repair the solution if the same image is
taken more than once
Test solution for feasibility
Determine the fithess of the new solution
END WHILE
If the new solution is superior, use it to replace
the current solution
If the new solution is inferior use it to replace
the current solution with a probability equal to
e ((old-new)/T)

Update the iteration counter

END WHILE

The genetic algorithm metaheuristic

the next generation) and introducing mutations.
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If the new solution is worse than the current aeeept it with probability

If the new solution is a better solution that tlierent one, always accept it

WhenT is large the current solution changes almost nantglbut favours better
solutions asI' goes to zero. The outline of the algorithm aslemgnted for the
SCoTWORP is as follows:

ctors

Genetic algorithms mimic the concept of survivéltize fittest in sequential
populations of solutions that are produced by @ptaselected couples by their

offspring (sometimes parents and other membersgen@ration are retained in

Solutions are encoded as genotypes and compared asifitness function.
During each generation a selection of solutions paged and allowed to

A smaltign of the parent
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42.1

population is also allowed to change through mateto prevent getting stuck in
local optima. The new generation generated throzrglssover and mutation
replaces some of the solutions in the previous rg¢io@ that exhibit inferior
fitness. The process terminates after a prescrnibetber of generations or some
other stopping criteria. The outline of the algum as implemented for the
SCoTWAORP is as follows:
Set the number of iterations or other stopping crit eria
Specify the fitness function
Select criteria for parent selection
Select crossover methods
Select criteria for mutation
Generate an initial population of feasible solution s
WHILE the stopping criteria have not been met:
WHILE the new generation of solutions is still
incomplete
Select parent solutions
Apply crossover method
Apply mutation criteria and method
Test solutions for feasibility
Determine the fithess of the new solutions
If the new solutions are superior, use it to
replace the same number of inferior solutions
END WHILE

Update the iteration counter
END WHILE

Common aspects of applying the three metaheuris  tics

There are several common aspects to the applicafitime three metaheuristics
to the SCoTWOP. It was convenient to representtigois to the SCoTWOP in
exactly the same way for all three algorithms, femsibility of solutions were
evaluated in the same way, and the relative marifitness of individual
solutions were evaluated in the same way. Thegsectsare discussed in more

detail below.

Solution representation

Given the similarities between the SCoTWOP and MWrRPMTW it seems
natural to encode the SCoTWOP in a similar way sasammon for the
VRPMTW. In that case a solution is typically eneddas a bit string in which a

1 would correspond to inclusion of the image (cosg in an image sequence
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(route) and a O indicating the contrary. The lbangt the bit string would

correspond to the number of images.

However, a problem arises in the case of the SCoPW@ere an image may
have more than one imaging opportunity (time-winylawa specific planning
period and where time-windows are associated vighsatellite (vehicle) rather
than the customer (image). In this case there dslamger a one-to-one
correspondence between images and the bits inith&ring. This makes it
extremely difficult to represent a solution as axagpe that can be easily
handled by the genetic algorithm and can also kédyemanslated into a set of
image sequences. The notion that the SCoTWORHRatedeto the dual of the
VRPMTW as pointed out in Section 3.5, offers a way of this problem. The
solution of the dual of the VRPMTW could be repréasd by a bit string, the
length of which corresponds to the number of timeelows. An occupied time-
window can then be denoted by a 1 and a 0 wouldasigndenote an unused
time-window. In this way a one-to-one correspor@ecan be retained making

genotype transcription much easier.

A solution to the SCoTWOP, termed: an “activatioh timne-windows” is
therefore represented as a vectoof N binary variables,N-2 of which
correspond to image time-windows and the otherdarmesponding to the time-
windows for ground station access. If a time-wiwds included in the planning
period the corresponding variable would take thee/d and 0 otherwise. The
solution vectorX is mapped to a vector containing the integeréo N -1 in
ascending order which corresponds in turn to thexes of a row consisting of

time-window start times in chronological order. dther words, a solution

vector of say,X =(0,1,1,0,0,1,.. 1): is translated through element-by-element
multiplication with the vector(2,3,4,.. ,24&), to a vector of active time-
window indices:(0,3,4,0,0,7... ,246,0,248), meaning that time-windows 3,

4,7,..., 246, 248 have been included in the salutio
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4.2.2 Testing for feasibility

Feasible solutions to the SCoTWOP must of courset mliethe constraints: that
of restricted on-board memory, visibility, sequena®n-interference, and
singularity. Each potential new solution generatgdhe algorithms therefore
needed to be evaluated for its feasibility befaserélative merit (fithess) could
be evaluated. The similarities with the VRPMTW maitl possible to use
existing MatLall code that had originally been developed to evaluhi
feasibility of solutions for VRP and VRPTW problem§he utility,rteTC.m,
that forms part of the MatLog Toolbox developedKay (2004), was adapted
for the SCoTWOP application to test image sequefarefeasibility. For VRP
type problems, rteTC.mcalculates the total cost of a route ensures thad-t
window constraints are not violated and calculdtes starting times for each
loading operation within the time-window. The i§ilreturns the following exit

flag indicating either that the route is feasibtefmot, why it is infeasible:

XFlg = exit flag

1, if route is feasible

-1, if infeasible due to capacity

-2, if infeasible due to time-windows

-3, if infeasible due to custom feasibility funct ion

“Custom feasibility function” refers to a provisiam the software for the user to
define an additional feasibility function that irephients a constraint that is
unique to the problem of interest, in addition ke tapacity and time-window
constraints. This option was not used for the S®@OP although it was
contemplated to use it for the singularity consirailn the end it was thought to
be more efficient to either repair solutions thialated the singularity constraint,
before submitting it tateTC.m , or if that was not possible, to declare such a
solution as infeasible and not submitting it teTC.m at all. More

clarification on this approach is provided in Sewt4.2.3.

Although rteTC.m is suitable for VRPMTW problems, it had to be stlgh
adapted and used slightly differently for solvilg tSCoTWOP. In the case of
the SCoTWOP, a “route” is, of course, a sequencdimé-windows for a

particular satellite. The VRPMTW capacity consitais the same as the on-
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board memory constraint of the SCoTWOP. The notdntime-window

feasibility in the case of the VRPMTW takes careboth the non-interference
and visibility constraints for the SCoTWOP. The RMRTW seeks to minimise
total cost (including vehicle cost, travel costdamaiting cost) of a network of
routes subject to a constraint on the maximal alloe total cost per route. This
constraint is required to prevent the inclusionngpractically long routes in the
network and is represented by theaxTC parameter inrteTC.m. In the

SCoTWOP, the number of routes (satellites) is amiand the focus is on
maximising the number of customers (images) peterouThis problem was
resolved by settingnaxTCto a value that will always allow feasible routes

pass the cost constraint test but which will caumseasible routes to still be
rejected. This provides a way to enforce the secjng constraint in the
SCoTWOP: By setting maxTC at a value that allowgddinite values but not
infinitely large values, any sequence of images$ Wauld require the satellite to
move “backwards”, would be excluded since the itdircost of such an arc

would causenaxTC to be exceeded.

This leaves the singularity constraint to be dedh. In cases where a violation
of this constraint was due to a crossover operatios was overcome by simply
“repairing” any solution that violated the singuticonstraint before submitting
it for feasibility evaluation byteTC.m . This was achieved by eliminating all
but one of any duplicate time-windows for a patacumage from the proposed
sequence. The specific time-window to be elimidétem a set of duplicates
was chosen at random. In cases where some dwersitld have been lost if a
solution was repaired, such as when it was thdtreba mutation operation, the
solution was declared infeasible and penalizedcrorance with the scheme

outlined in Section 4.2.3.

The result of the above is thaeTC.m could be used to enforce all but the
singularity constraint for the SCoTWOP. It wasréiere not necessary to create
a custom feasibility function fateTC.m to account for any of the constraints.

A listing of the modifiedteTC.m is included in Appendix C.
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In several of the experiments conducted with theege algorithm, some of the
constraints were artificially relaxed to evaluateeit impact on algorithm

performance. This was achieved by appropriatesaaients to the input data
rather than changing the code. This aspect isisissr] in more detail in Section
4.2.4 below.

4.2.3 Determining the fitness of solutions

For all three algorithms the fitness of a feasibtdution is determined by

calculating the inner produet(\_/ DZ), where V is the vector consisting of the

values of the images. The fitness function thysasents the negative value of
the objective function of the SCoTWOP. This ises=ary because the software
has been designed to solve minimization problendetasult. In the case of the

SCoTWOP, we therefore minimize the negative ofdbgective function. For

the genetic algorithm, the fithess function was ogled in the utility
Satfitness.m.

To take full advantage of the genetic algorithmlslity to exploit inferior
solutions to maintain genetic diversity, infeasibtdutions were retained in the
population of solutions but penalized by artifigtathanging the value of the
fitness functions of infeasible solutions so tlnit fitness became worse. Since
the value of the fitness function is calculatedtlas negative of the objective
function value, infeasible functions were penalibgceither declaring the fitness
function value to be infinitely positive or incréag the (negative) fitness value
by adding a fixed percentage of the (positive) gatd the objective function.
Satfitness.m evaluates solutions first for violation of the cuarity
constraint before submitting for further feasililitesting to rteTC.m .
Solutions that violate the singularity constrainé ammediately penalized and
not submitted for further evaluation. All solutooreturned byteTC.m with

an exit flag indicating violation of the other ctmagnts are similarly penalized.
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4.2.4

Input data

The SCoTWOP input data for the evaluation of thedhalgorithms comprises
four groups of six data sets, one each for the chsme through six satellites,
for a total of 24. The data in the datasets prewiibr the same, fixed number of
250 imaging time-windows that has to be serviceghrdless of the number of
satellites in the constellation. This correspamthe situation where the number
of 250 time-windows can be serviced by one sagetliter a period of days, by
two satellites in about half that time, etcetemthat imaging rate increases with
the number of satellites until all 250 time-windowan be serviced by six
satellites in a matter of hours. Keeping the nundb¢ime-windows constant is
crucial for investigating the comparative meritloé different algorithms and the
relative impact of the different constraints. Quwmuld, of course, increase the
number of time-windows to be serviced as the nurobeatellites increases but
this would obscure the effect of the singularitysaint that one expects to be
more exacting as the number of satellites growsegihg the number of time-
windows to be serviced at 250 therefore not onlgeaistic in terms of what is

expected of constellations, but also enables casgrar

The four groups of data sets, denoted A througled2h contains data for 250
time-windows, the nature of which is such that¢bastraints on the SCoTWOP
described in a specific group, become more resteicthan the constraints
described in the previous group. The input datatatns some fields that are
associated with the constraints. Whether a pdaticzonstraint is active or not,
depends on the value assigned to such a field. ekample, by adjusting the
available on-board memory to a value much largen tithe sum of that required
by all images under consideration, the constraint am-board memory is
effectively removed without having to change thgoathm computer code. By
reducing the value assigned to the on-board mefield; the constraint can be
introduced. In this way, all constraints are alsvapnsidered, but the specific
value assigned to a limiting parameter determinégther the constraint is
implemented or not. This principle is implementasl follows for the four

constraint groups A through D:
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» Group A comprises six datasets, in which only tregbility and sequencing
constraints are active (see Section 3.3). The datsuch that all other
constraints are relaxed. In other words, on-boaedhory is abundant, time-
windows do not overlap (no interference constraiatyd there is only one

imaging opportunity per image (no singularity coastt).

» Group B data sets have the same constraints ap@vdot also add a limit
on on-board memory while the non-interference andwarity constraints

are still relaxed.

» Group C data sets add the non-interference constaihat of Group B, i.e.
time-windows do overlap in many cases while th@gliarity constraint is still

relaxed.

» Group D data sets represents the SCoTWORP in itpledenform, adding to
the Group C constraints the singularity constraiitjch means that there
may be several opportunities for the same imagl, @me of which must be

selected.
The four groups of datasets were used as follows:

» Dataset D6, representing the most difficult problemthat it allows for 6
satellites and the most stringent set of conssaiwvas used to compare the

relative performance of the three algorithms;

« All four groups of datasets were then used togatiliir the genetic algorithm
to investigate the influence of the types of caaists and the number of

satellites on algorithm performance, and,

 Finally, Dataset D6 was once again employed tostigate the influence of

changing certain genetic algorithm parameters.

Each dataset contains data that is typical of lgatein sun-synchronous orbit at
an altitude of approximately 600 km with a capapito slew rapidly at about
one degree per second. The satellites are assiug@etical in capabilities but

phased around the same orbit plane. The dataseésprepared in the form of
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Microsoft Excef spreadsheets, a format that is readable by M&tLaBach

dataset provides values for the following imagédtlaites:

* n is the number of time-windows that have to be mmred for scheduling
during a planning period comprising a number ofiterby all satellites. It
includes the time-window of initial ground statiaecess. In all cases the

value of n is 250;

* lookangle is the bore-sight angle of the imager, relative nadir,
associated with the image to which the time-windmiongs. The value of

lookangle in the datasets varies between -30 and +30 degrees;

* |d is the image duration associated with the imagehtich the time-window

belongs. The value & in the datasets varies between 5 and 15 seconds;

* TW is a pair of values, denoting the start and eneégiwf the time-window
for each imaging opportunity. The duration of tte-widows in the

datasets varies between 30 and 60 seconds;

* q Is the memory requirement for the image to whick thme-window
belong. The value aj is 10 times that of the image duratileh so that it
varies between 50 and 150;

* Q is the total on-board memory capacity of the ssliate recorder on the
satellite. The value dDis set as the product of a multiplier and the ager
sum of the image memory requirement of the imalgasdan theoretically be
acquired by a specific satellite. After some ekpentation, the value of this
multiplier was set at 1.2 for the datasets belogpdnGroup A. This amounts
to a 20 % overcapacity in available memory whicls Waund to be sufficient
to ensure that the constraint is relaxed. (Redwt Group A models the
SCoTWOP with only the visibility and sequencing swaint — all other
constraints are relaxed.) In all other cases thkiphiar was set at 0.7 after
some experimentation meaning that on average theomyeis sufficient for
only 70% of the images. This value was found tekicient to ensure that

the constraint is active in all cases;
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4.2.5

* Value is the value of the image associated with the tviredow during the
current planning periodValue varies between 100 and 200 times the value

of the image duratiold, so that it varies between 500 and 3000;

e Satno is an index associated with the specific satelgsociated with the
time-window. The maximum value &atno corresponds to the number of

satellites in the constellation which varied frorto16, and;

» viewno is the number of the earliest time-window wheres tharticular
image can be captured and can be any number be®vaad 249 since the

index 1 denotes the ground station.

One of the 24 input data sets used for evaluatiegaigorithm is included in

Appendix B

Reading and interpreting the input data

The utility DataReader.m was created in MatL&hto read the input data into
the MatLalf workspace memory. It then proceeds to calculatesetup time
between all possible image pairs as the differdrateveen their slew angles. It
also allocates a travelling time for each pairiofetwindows in the network;
time-windows that occur prior to any given time-daw are allocated an infinite
travel time, while those that are chronologicaliiel are allocated a travel time
of zero. In this way the highly asymmetric natuoé the network is
accommodated. The cost of each arc between timdewis is then calculated
as the maximum of the setup time and travellingetiior the arc. A listing of

DataReader.m is included in Appendix C.
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4.3

43.1

Implementation of the algorithms in MatLab ~ ©

Implementation of the tabu search algorithm

The tabu search Algorithm for the SSP is codified the MatLab M-File
TabuSat.m (see Appendix C) that is based on code origineflyated by
Aurdal (2003)

The utility DataReader.m is used to read the input data into the workspace

memory and to calculate the setup time betwegposiible image pairs.

TabuSat.m first generates a random solution vectoof N ones and zeros,
N -2 of which correspond to image time-windows and thimer two
corresponding to the time-windows for ground stati@cess. If a time-window
is included in the planning period the correspogduariable would take the
value 1 and O otherwise. It then proceeds to repaivector by making sure that
no images are taken twice. The repaired vecttihhas split into portions that
correspond to the different satellites and fornthtte image sequences. The set
of image sequences is submitted to tt&TC.m utility and checked for
feasibility. If any of the sequences are infeasilthe process outlined above

starts anew.

Once the set of image sequences is feasible the gabrch is executed as
outlined in Section 4.1.1 above. The feasible tsmiuis subjected to a
neighbourhood search in which one of the vectametds is randomly selected
and changed to a 1, if it was O, or to a O if iswla One such neighbourhood
solution is generated at a time and this neighlkmadatsolution is then repaired if
necessary and checked for feasibility by invokirtgTC.m. If the
neighbourhood solution is feasible, its fitnessction is then evaluated as the
negative value of the objective function of the $@HOP since the algorithm
was encoded to solve minimization problems. Impdbsgolutions found in this
way are put on the tabu list for tenure of 5 itiewra. The process is repeated for

a total of 100 iterations.
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4.3.2

4.3.3

4331

Implementation of the simulated annealing alg  orithm

The simulated annealing Algorithm for the SSP idifted as the MatLab M-File
SimulanSat.m (see Appendix C) that is based on code createdurgal
(2003)

The utility DataReader.m is used to read the input data into the workspace

memory and to calculate the setup time betwegposiible image pairs.

The program is structured similar T@abuSat.m for the tabu search algorithm
and operates in the same way apart from applyirg simulated annealing
algorithm as described above in Section 4.1.2. ikl solution vectorx is
generated randomly and repaired before being ispditimage sequences for the
different satellites. The set of image sequensesubmitted to theteTC.m
utility and checked for feasibility. If any of theequences are infeasible, the

process outlined above is repeated until the fig@sible solution is found.

The feasible solution is then subjected to a neightood search in which one
of the vector elements is randomly selected andgethfrom to a 1 if it was O or
to a 0 if it was 1. This neighbourhood solutiorihien repaired if necessary and
checked for feasibility by invokingeTC.m. If the solution is feasible, its
fitness is then evaluated as the negative valuthefobjective function of the
SCoTWOP. The initial temperature for the algorithms set at a value of 100
and is decreased 0.1% per iteration until the marimmumber of iterations

(typically 1000) is reached.

Implementation of the genetic algorithm

General

As is the case for the tabu search and simulatedading algorithms, the genetic
algorithm also operates on solution vectotsonsisting of N-2 ones and
zeros. In genetic algorithm terminology, the veckocan be called genome
and its one or zero entry of the vector can beedaligene Rather than

evaluating a single solution at a time, the genetgorithm operates on a
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population of individual solution vectors simultaosly. For the SCoTWOP,
this population of solutions comprised 20 individsalutions. The initial
population of 20 solutions was generated throughe thutility
SequenceBuilder.m , described in Section 4.3.3.4 below. The genetic
algorithm uses a fitness function to determinertiative merit of each solution
in the population. In the case of the SCoTWOP fitmess function used was
the negative of the objective function. The salns are subsequently ranked in
accordance with their fitness function values. 8amh the solutions, with an
emphasis on higher ranking solutions, are theredaand allowed to reproduce
through a crossover operation. Some other solsitire altered through a
mutation operation. The solutions resulting frame ttrossover and mutation
operations are then allowed to replace lower rardadtions in the population
so that the number of solutions in the populatiemains constant. This is
repeated until one of various stopping criteriseigched. Stopping criteria used
for the SCoTWOP were the total number of generatiofi the solution
population (set at 100), the number of generatiatithout fithess function
improvement (set at 50) and time period in whickréhwas no fitness function

improvement (set at 20 minutes).

4.3.3.2  Solving the SCOTWOP with the MatLab ® Genetic Algorithm and

Direct Search Toolbox

Implementation of the genetic algorithm for solvitlge SSP was achieved
through the use of two off-the-shelf “toolboxes’eated for the MatLdb
programming language. The first toolbox is the &enAlgorithm and Direct
Search Toolbox for by MathWorks the creators of M&f. This toolbox works
in conjunction with the second, the more generatir@pation Toolbox for
MatLab®. The Genetic Algorithm and Search Toolbox allofes the easy
specification of combinatorial problems and the lenpentation of various
options to customize the algorithm to the problestyiarities. Those of

importance to this application are as follows:

» The Population Type Option provides for representation of the genome

(solution vectorx ) as aDouble Vector(default) in which each gene (vector
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element) is a real number of double precision @4.bits), Bit String in
which each gene is either the whole numbers 1 oror0,a Custom

representation of the users own choice.

The Fitness Scaling Optionspecifies the function that performs the scaling
or relative merit of individual solutions in thepdation. The default fitness
scaling functionRank,assigns merit based on the rank of an individuatsi
position in the sorted scoresProportional scaling makes the merit of an
individual proportional to its raw fitness scor@op scaling gives a specified
number of the top individuals equal merighift Linearscaling adjusts the
raw scores so that the merit of the fittest indinaiblis equal to a constant
multiplied by the average scoreCustomprovides for the user to create a

customized scaling function.

Selection Optionsspecify how the genetic algorithm chooses partmtthe
next generation. The default selection functidtgchastic Uniformlays out

a line in which each parent corresponds to a seatiothe line of length
proportional to its scaled value. The algorithmvemalong the line in steps
of equal size. At each step, the algorithm choasgarent from the section it
lands on. Remainderselection chooses parents deterministically from t
integer part of each individual's scaled value #rah uses roulette selection
on the remaining fractional partUniform selection chooses parents using the
expectations and number of parenfRouletteselection chooses parents by
simulating a roulette wheel, in which the area lt section of the wheel
corresponding to an individual is proportional tee tindividual's fitness.
Tournamentselection chooses each parent by choosing a fixedber of
solutions at random and then choosing the bestioheil out of that set to be

a parent.

Reproduction Options specify how the genetic algorithm creates childoen
the next generationElite Countspecifies the number of individuals that are
guaranteed to survive to the next generation. dh&ault value is 2.
Crossover Fractionspecifies the fraction of the next generation.eottihan

elite children, that are produced by crossovere défault value is 0.8.
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» Mutation Options specify how the genetic algorithm makes small oamd
changes in the individuals in the population tcateemutation children. The
default mutation functionGaussian adds a random number taken from a
Gaussian distribution with mean 0 to each entryhef parent vector. The
standard deviation of this distribution is deteredrby the parametefcale
andShrink which respectively specifies the initial standdeviation and the
rate at which it changes over generations. I[fRbpulation Type option is
set atBit String as was the case for the SCoTW(Bale automatically
assumes the value 1 a8trinkthe value 0. If the result of adding the random
number falls outside the permitted range of theegéhe value is rounded to
the nearest range limit, i.e. a negative value tmes00, and so would 0.3,
while values of 0.65 or 2.5 become 1Uniform mutation is a two-step
process. First, the algorithm selects a fractibrihe vector entries of an
individual for mutation. In the second step, tHgodthm replaces each
selected entry by a random number selected unifofmoi the range for that
entry. Since this mutation results in real numpgrsannot be used for the
Bit String Population Type as is the case for the SCoTWORCustom

enables the user to write your own mutation fumctio

» Crossover Options specify how the genetic algorithm combines two
individuals, or parents, to form a crossover childthe next generation. The
default crossover functioscattered creates a random binary vector and
selects the genes where the vector has a 1 frorirsh@arent, and the genes
where the vector has a 0 from the second paredtcambines the genes to
form the child. In other words: a vector consigtof random 1 and O entries
is created first and its entries are then usedhasdex to select genes from
two parent solutions A and B. If a specific entfythe index vector is 1, a
gene for the new child is selected from the cowadmg entry of parent A.

If a specific entry of the index vector is O, thene for the new child is
selected from the corresponding entry of parenSiBgle Point chooses a
random integer n between 1 and the number of Vasadr gene® and then
selects vector entries numbered less than or équalfrom the first parent.

Vector entries numbered greater than n are selédedthe second parent. It
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then concatenates these entries to form a chiltbxetwo Pointselects two
random integersn andn (m<n) between 1 and the number of variabis
Vector entries numbered less than or equal to nselected from the first
parent, those numbered fram+1 to n, inclusive, from the second parent and
entries numbered greater tharfrom the first parent. The algorithm then
concatenates these selections to form a single. gémermediatecreates
children by taking a weighted average of the paredeuristicreturns a child
that lies on the line containing the two parentsmall distance away from the
parent with the better fitness value in the dim@tt@away from the parent with
the worse fitness valueCustomenables one to write a special crossover
function. This option was used for the SCoTWORsiit was necessary to
repair child solutions that violated the singulardonstraint as discussed

below and elsewhere.

» Stopping Criteria Options determine what causes the algorithm to
terminate. TheGenerations stopping criterion specifies the maximum
number of iterations the genetic algorithm will fjoem. The default is 100.
Time Limitsspecifies the maximum time in seconds the gendgjorithm
runs before stoppingFitness Limitprovides for the algorithm to stop if the
best fitness value is less than or equal to theevaf a known fitness limit.
This is a useful option if the lower bound of adtian to be minimized is
known (for maximization problems, this would coperd to the negative
value of a known upper bound since the toolbox @rdyks for minimization
problems as a defaulttall Generationgets the algorithm stop if there is no
improvement in the best fitness value for a spedifiumber of generations.
Stall Time causes the algorithm to stop if thereasmprovement in the best

fitness value for a specified interval of time ecends.

4.3.3.3 Implementation options

Table 4-1 below contains the values of the variMmstLab® GA Toolbox
implementation options used, as defined in Secti@B.2 above. In most cases
these correspond to the default values for theiqudat option. These values

were used for comparing the genetic algorithm \iligh other two algorithms as
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well as for exploring the effect of different cor@nts and number of satellites

on the performance of the genetic algorithm.

Table 4-1: Implementation Options Selected for thélatLab ® Genetic Algorithm and

Direct Search Toolbox

Implementation Option Value
Population Size 20
The Population Type Bit String

Initial Population Creation Function | SequenceBuilder.m

Fitness Function Satfitness.m (calculates the

negative of the objective function:

-(VIX))
Fitness Scaling Rank
Selection Stochastic Uniform
Reproduction Elite Count = 2.

Crossover Fraction = 0.8.

Mutation Gaussian
Crossover Custontrossoverspecial2.m
Stopping Criteria Generations = 100

Time Limits = Infinity
Fitness Limit= - Infinity
Stall Generations = 50

Stall Time limit = 20
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4.3.3.4

4.3.35

Creating the initial population of solution s

The Genetic Algorithm Toolbox provides the optiohspecifying a utility to
create an initial population of feasible solutions. The utility
SequenceBuilder.m was created for this purpose. This program first
generates a random vector consistingnefL ones and zeros whereis the
number of time-windows as defined above. The fitshe-window,
corresponding to the initial ground station cont@&tot included in the vector
generated. A one in a particular position in tleeter means that that time-
window is used. It then proceeds to repair theoreby making sure that no
images are taken more than once. The repairedniscthen split into portions
that correspond to the different satellites andnfatted as image sequences. The
set of image sequences is submitted torth€C.m  utility (see Section 4.2.2
below) and checked for executability, i.e. to sdether the satellite can in fact
capture this sequence of images. If any of theem®ces are not executable, the
process outlined above starts anew. The processnaes until an initial
population of 20 feasible solutions has been géeeéra A listing of

SequenceBuilder.m s included in Appendix C.

The custom crossover function

In order to maintain a population of feasible siolus$ it was necessary to create a
custom crossover function, callerdossoverspecial2.m , to repair any
children resulting from a crossover operation thailates the singularity
constraints. Based on the default crossover fon@&icatteredprovided in the
toolbox, this functiontests for violations of the singularity constraiafter
crossover and enacts repairs to ensure that a ggdmmlution does not contain
duplicate images before submitting it to theTC.m utility for further
determination of its feasibility. The code forossoverspecial2.m is

included in Appendix C.
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4.3.3.6

4.4

Running the genetic algorithm

The utility GeneticSat.m was created to automate the initialization and
running of the genetic algorithm. The utility weaseated using an automated
feature of the toolbox and resulting listing @eneticSat.m is included in
Appendix C. The fitness function for the SCoTWO&svencoded in the utility
Satfitness.m, which is called byGeneticSat.m . This utility also first
tests for violations of the singularity constraibat ascertain that a proposed
solution does not contain duplicate images befalarstting it to therteTC.m
utility for further determination of its feasibiit If a positive result is returned
from rteTC.m, Satfithess.m proceeds to calculate the value of the
objective function associated with the proposedutsmi. A listing of

Satfitness.m is also included in Appendix C.

Computing resources

The computing resources used for evaluating thécaeff of the genetic

algorithm for the SCoTWOP comprised the following:

« Hardware: Desktop Personal Computer with AMD Semptaorocessor
running at a clock speed of 1.8 GHz and havingd8&4of RAM.

« Operating System Microsoft Windows XP Home EditiénVersion 2002

Service Pack 2.
» Software:

« MathWorks MatLaB Student Version 7.0.1.15 (Rev 14) Service
Pack 1, 13-Sep-2004.

« MathWorks MatLal Genetic Algorithm and Direct Search
Toolbox Version 1.0.2 (R14SP1) 05-Sep-2004.

« MathWorks MatLaB Optimization Toolbox Version 3.0.1
(R14SP1) 05-Sep-2004.
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4.5 Experimental procedure

Three sets of experiments were conducted usingafierare tools and input

datasets described above:

» The first set of experiments was aimed the compattie performance of
the three metaheuristics in solving the SCoTWOPhe Experiments
consisted of using each of the three heuristicstuim to solve the
SCoTWOP for the Group D dataset with six satelliteataset D6. A

minimum of 10 runs were made per heuristic (3Mtal};

* The second set of experiments was aimed at detegnthe impact of
constraint type on the time taken to find a solutio the SCoTWOP when
using a Genetic Algorithm. The SCoTWOP was sofeedach of the 24
sets of input data. A minimum of 10 runs were mpeledata set (240 in

total), and;

* The third set of experiments focused on determitiggefficacy of using
different reproductive options (other than the d#&jafor the Genetic
Algorithm. Several runs were made for differeniuea of theElite Count
and Crossover Fractionparameters, while two alternative cross-over
techniques were also tried. In each case the Gibuataset with six

satellites Dataset D6 was used.

The last two sets of experiments were conductddviadg on the success of the
genetic algorithm in the first set of experimeni#lith the exception of the last
step below, each computer run in the experimengsl uke following simple

procedure:

. RunReaddata.m to first clear all variables and then read theutrgiata

into the MatLaf8 Workspace.

. RunGeneticSat.m ( or TabuSat.m  or SimulanSat.m) to run

the applicable algorithm, using the-toc function to measure CPU
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time. In the case of the genetic algorithm theaspto plot a graph of the

algorithm'’s progression was enabled.

*  When the algorithm terminates, verify that the fis@ution is still feasible
(all XFlg = 1) before recording the total number of imagedsedaled and
CPU time expended.

. Save the Workspace and graph (in the case of tietigealgorithm only).

The results obtained in this way are presenteddesulissed in the next chapter.
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5.1

5.1.1

RESULTS AND DISCUSSION

Comparing the performance of the three
metaheuristics

Results of the performance comparison experim  ents

This set of experiments was aimed at comparingptirdormance of the three
metaheuristics in solving the SCoTWOP. The expenits consisted of using
each of the three heuristics in turn to solve ti@BNOP for the Group D

dataset with six satellites. Each heuristic waalieated over ten computer runs,
and for each run the processing time, number oétvmdows scheduled, and
objective function value were recorded. The rasthltis obtained are recorded in

Table 5-1 and graphically displayed in Figure 5adl &igure 5-2.
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Table 5-1: Comparison of the performance of the thee metaheuristics for the same set of input data ew 10 computer runs each

Run Tabu Search Simulated Annealing Genetic Algorithm
# CP(ge'I:;ne N‘;)v :r):d "r)i‘r”n:- Objecti\\,/:IE:nction CPU Time (Sec) N‘;)v :r):d 1:;?:- Objecti\\,/:IE:nction CPU Time (Sec) N\;)v :]fd ':':\:1:- Objecti\\ll:hI::nction
1 1973.7 121 221524 170.7 127 200421 4663.3 175 251208
2 2035.3 130 224663 185.3 136 201720 2825.3 176 246290
3 22720 129 227120 129.8 137 204751 5970.3 183 251428
4 1821.2 147 217321 170.7 121 192955 5361.9 174 246015
5 1747.7 131 231496 239.8 122 214228 2366.8 174 250426
6 1850.4 134 220770 202.8 134 205765 2496.4 173 250781
7 1766.2 135 217299 340.0 127 206371 3050.7 173 246589
8 23775 133 221757 125.8 136 208325 1785.0 171 250964
9 23331 139 223588 119.0 140 198598 6705.3 173 252096
10 1652.2 129 220936 212.8 131 196984 1628.8 177 249986

Mean 1982.9 133 222647 189.7 131 203012 3685.4 175 249578
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Time to complete rraximum number of iterations
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Figure 5-1: The computer processing time needed ttomplete the maximum number of

iterations for each of the three metaheuristics remrded over 10 computer runs
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5.1.2

Number of time-windows activated over the maximum number of
Iterations
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Figure 5-2: The number of time-windows activated ogr the maximum
number of iterations for each of the three metaheustics recorded over 10

computer runs

Conclusions on the performance comparison exp eriments

When evaluating the computing time needed to comaplee maximum number
of iterations, it should be kept in mind that thenber of iterations was not the
same for all three methods. The default numbeiteoéitions was used in all
cases: 100 for tabu search, 1000 for simulatedadimgeand 100 generations for
the genetic algorithm. Sensitivity to the numbkEiterations was investigated by
performing runs using up to 10 times the defaufhbar of maximum iterations.
While computing time increased commensurately, pjoreciable difference was
found in the number of time-windows activated icleaase, indicating that the
default number of maximum iterations was sufficitaiteach of the methods to

converge to a solution.
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The differences in the maximum number of iteratidrevever pales into
insignificance when it is appreciated that the dated annealing algorithm
activates more or less the same number of timeavsdas the tabu search
algorithm in as little as one tenth of the compugtiime, even though it
completes ten times the number of iterations.héf time taken per iteration is
taken as a measure of performance, the simulateéadng algorithm can
therefore be said to be roughly 100 times fastan tthe tabu search algorithm.
The genetic algorithm performs even worse in teahsomputing time. Not
only is there considerable variation in computimget but in the worst case, the

algorithm takes almost three times as long as #wetabu search algorithm.

Although computing time is an important measurgeformance, it need not be
the determining factor in selecting an algorith&poor performance in terms of
computing time can potentially be improved througbre efficient software
design and implementation, faster processors amel cdomputing resources, or
techniques such as parallel computing. A more mapd measure of
performance is the number of time-windows activasette this reflects the
performance of the constellation of satellites (@gpnting a huge investment),
and in terms of this indicator, the simulated afingaand tabu search algorithm
perform equally well, both activating on average %3of the time-windows.
However, the genetic algorithm, activates 70 %rm&twindows on average, and
does so consistently, even though computing tineey eonsiderably. Since
computing time is not as important as number oktimndows activated, and
the genetic algorithm activates on average aboIviore time-windows than
the other two algorithms, it was decided to linitther experiments on the other
heuristics to explore the performance of the genalgorithm in more detail.

The results of these experiments are presentdeisdctions that follow.
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5.2

5.2.1

Determining the impact of constraint type on
performance of the genetic algorithm

Results overview

The raw results obtained through the 240 computes are summarized for each
of the constraint groups A through D in Table Sitbtigh Table 5-5 that follow
below. The tables show the computing time, nunalbéime-windows activated,
and final and best fitness (objective function)ueafor each of the computer
runs. In the paragraphs that follow the resultsioled are discussed from two

orthogonal perspectives.
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Table 5-2: Results obtained for Constraint Group A

1 Satellite 2 Satellites 3 Satellites 4 Satellites 5 Satellites 6 Satellites

CPU No of Objective | CPU No of Objective | CPU No of Objective | CPU No of Objective CPU No of Objective | CPU No of Objective

Run # Time :I'ime- Function | Time Time- Function || Time :I'ime- Function | Time :I'ime- Function Time Time- Function || Time Time- Function
(Sec) | windows Value (Sec) | windows Value (Sec) | windows Value (Sec) | windows Value (Sec) | windows Value (Sec) | windows Value
1 110.3 219 322292 130.6 215 318894 1294 212 317198 130.3 219 328135 128.9 215 338737 129.7 210 318962
2 113 215 335802 1121 210 324715 131.9 203 306646 125.0 219 321174 151.0 216 341057 155.4 216 321773
3 115.2 205 330739 129.7 207 317861 114.3 202 312931 132.7 220 326400 143.8 217 335236 122.3 221 324363
4 112.5 221 326052 125.9 212 314606 116.3 210 315075 143.3 210 318192 126.9 204 326978 130.8 218 321679
5 106.2 216 337380 124.3 221 321844 123.5 216 317797 124.3 210 313903 130.4 216 338720 130.1 220 324249
6 177 204 333758 116.1 214 331974 152.3 213 318056 128.0 212 314122 126.4 216 339039 140.0 214 316781
7 109.9 216 319923 156.3 218 314059 131.1 219 326935 120.9 215 324754 "7 212 336846 122.4 201 310972
8 109.5 209 327315 120.1 224 330593 116.0 210 315885 129.3 207 312344 119.7 205 324854 133.0 215 315416
9 11.8 210 322292 118.8 199 332782 118.9 212 316104 121.7 208 312209 95.3 215 338737 152.5 217 320491
10 129.6 209 324597 139.9 213 301629 1184 213 316672 1254 213 318481 "7 217 330558 160.3 218 323449
Mean | 1134 212 328015 1274 213 320896 125.2 211 316330 128.1 213 318971 125.8 213 335076 137.7 215 319814
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Table 5-3: Results obtained for Constraint Group B

1 Satellite 2 Satellites 3 Satellites 4 Satellites 5 Satellites 6 Satellites

CPU No of Objective | CPU No of Objective | CPU No of Objective | CPU No of Objective | CPU No of Objective CPU No of Objective

Run Time Time- Function | Time Time- Function | Time Time- Function | Time Time- Function | Time Time- Function Time Time- Function
# (Sec) | windows Value (Sec) | windows Value (Sec) | windows Value (Sec) | windows Value (Sec) | windows Value (Sec) windows Value
1 159.5 182 296682 120.3 182 300516 112.6 173 293367 118.8 177 279484 124.1 179 274661 193.1 173 266608
2 115.8 177 299719 1249 179 298772 113.1 174 279859 1271 179 280882 | 241.9 178 262030 169.7 178 259767
3 113.0 183 288547 1244 185 301523 109.5 171 284388 1241 180 280422 || 2409 176 267329 164.1 179 266980
4 97.9 176 288409 138.7 175 302406 109.2 176 285797 130.5 174 275749 191.0 177 277447 125.6 175 252309
5 157.8 178 293490 186.8 183 301660 109.7 175 283691 131.0 177 267726 130.6 181 269559 1335 175 266807
6 106.5 174 285284 115.7 185 299476 120.0 176 288897 225.8 174 277923 || 2472 181 283971 143.6 178 259909
7 100.8 184 291693 106.5 183 305262 139.8 178 291359 228.9 181 275868 186.6 181 278619 125.1 172 253771
8 110.8 180 289487 1231 181 302418 116.9 178 294021 2342 179 278350 186.8 180 272898 1413 176 262172
9 98.8 177 286553 116.7 185 299513 133.5 175 293761 231.0 180 280823 182.3 176 275304 119.0 173 268966
10 108.3 181 293159 116.3 180 305400 17.2 178 282811 229.9 175 281340 137.1 180 272794 156.6 178 256098
Mean | 116.9 179 291302 127.3 182 301695 118.1 175 287795 178.1 178 277857 186.9 179 273461 147.2 176 261339
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Table 5-4: Results obtained for Constraint Group C

1 Satellite 2 Satellites 3 Satellites 4 Satellites 5 Satellites 6 Satellites
CPU No of Objective | CPU No of Objective | CPU No of Objective | CPU No of Objective CPU No of Objective | CPU No of Objective
Run Time Time- Function || Time Time- Function | Time Time- Function | Time Time- Function Time Time- Function | Time Time- Function
# (Sec) | windows Value (Sec) | windows Value (Sec) | windows Value (Sec) | windows Value (Sec) | windows Value (Sec) | windows Value
1 112.6 176 282549 1154 177 272784 162.4 185 297839 1241 171 259673 116.4 175 267294 2574 175 272788
2 120.3 172 281004 113.8 176 281085 146.7 181 286244 119.7 171 252930 1184 173 274118 255.3 172 272520
3 181.9 172 281822 1133 178 276701 126.9 178 287371 1122 169 255300 115.9 173 263905 255.4 171 279598
4 116.3 172 277810 109.6 180 280386 115.8 182 284437 108.9 163 253914 119.6 176 274102 124.3 171 277772
5 17.9 168 277894 1235 178 274932 219.1 185 292703 1131 170 252380 122.1 173 273906 261.2 169 269401
6 14.7 170 281294 118.3 172 278957 2106 181 292575 116.5 171 266192 114.6 172 264897 262.8 177 277664
7 1741 170 285982 126.5 177 273012 151.5 184 287762 1235 171 258602 119.1 172 278280 139.2 176 286414
8 113.8 175 280862 125.7 175 278723 2230 182 291784 1234 173 264360 1224 174 276712 1321 173 270132
9 11.8 172 283238 114.5 178 279926 208.5 180 276384 115.7 177 268097 119.5 162 257948 155.3 171 271374
10 122.5 174 278051 114.8 180 282250 2183 185 292703 112.0 174 260684 236.0 172 266926 121.0 176 272383
Mean | 122.9 172 281051 175 177 277876 178.3 182 288980 116.9 171 259213 130.4 172 269809 196.4 173 275005
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Table 5-5: Results obtained for Constraint Group D

1 Satellite 2 Satellites 3 Satellites 4 Satellites 5 Satellites 6 Satellites
CPU No of Objective CPU No of Objective CPU No of Objective CPU No of Objective CPU No of Objective CPU No of Objective
Runi Time :I'ime- Function Time :I'ime- Function Time :I'ime- Function Time Time- Function Time Time- Function Time :I'ime- Function
(Sec) windows Value (Sec) windows Value (Sec) windows Value (Sec) windows Value (Sec) windows Value (Sec) windows Value
1 1160.9 181 281109 1673.0 182 279781 2571.5 177 276132 3018.5 180 263668 1900.9 177 243982 4663.3 175 251208
2 1005.2 181 281109 2211.6 181 274653 2056.3 173 267017 2662.0 178 258878 1954.4 177 243982 2825.3 176 246290
3 1166.9 181 281109 2107.5 175 265874 14284 173 267461 3951.5 178 259355 1501.1 184 243552 5970.3 183 251428
4 17923 176 286137 2253.0 176 271169 2054.8 175 265146 4296.9 177 258408 1691.7 177 241692 5361.9 174 246015
5 1582.6 180 290868 1880.0 178 280463 2178.0 177 265413 2212.3 184 259393 4220.0 183 244134 2366.8 174 250426
6 1310.0 179 296192 1954.2 179 272167 3866.0 174 265418 3081.8 173 261281 4220.0 179 243518 2496.4 173 250781
7 1539.0 174 283913 3634.1 175 274792 4052.8 174 262471 1704.2 178 259045 5680.7 174 243047 3050.7 173 246589
8 1606.3 178 280999 1930.1 177 273106 5614.6 177 264343 3960.2 175 260130 5581.4 179 244802 1785.0 171 250964
9 964.9 176 289652 2027.3 173 275860 2136.0 173 268217 4201.1 180 257756 1797.3 176 248209 6705.3 173 252096
10 1730.8 179 289639 2968.7 178 277522 3996.9 178 264123 3135.8 175 259540 3896.3 177 243372 1628.8 177 249986
Mean 1385.9 179 286073 2263.9 177 274539 2995.5 175 266574 32224 178 259745 32444 178 244029 3685.4 175 249578
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5.2.2

5.2.2.1

The influence of the number of satellites

The first perspective on the results looks at thiguénce of the number of
satellites in the constellation on algorithm pemiance for each of the four
groups (A though D) of data sets. The influencéhefnumber of satellites were
analysed in terms of its effect on computing timd ds impact on the number of

time-windows activated.

The influence of the number of satellites o n computing time

Figure 5-3 through Figure 5-6 below show the infice of the number of

satellites on computing time for each of the canstrgroups A through D.

Each figure shows the range of computing timesinbtafor a given number of
satellites and also indicates, within the ranges thean value for the 10
experiments associated with the given number @llgas. A trend line is fitted
though the mean values. As is to be expected,trfred line shows that
computing times increase with the number of saéslli The rate of increase as
indicated by the slope of the trend line is howewet particularly steep and the
ranges of computing times overlap. More experimare required. At this
stage one would cautiously say that it appearscibraputing time increases with
an increase in the number of satellites but nothto extent that it presents a

problem in practice.
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Time to Complete 100 Generations for Constraint Group A
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Figure 5-3: The computing time to find 100 generatins of feasible solutions

for Constraint Group A as a function of the numberof satellites

89



Time to Complete 100 Generations for Constraint Group B
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Figure 5-4: The computing time to find 100 generatins of feasible solutions

for Constraint Group B as a function of the numberof satellites
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Time to Complete 100 Generations for Constraint Group C
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Figure 5-5: The computing time to find 100 generatins of feasible solutions

for Constraint Group C as a function of the numberof satellites

91



Time to Complete 100 Generations for Constraint Group D

8000 T

7000

6000 T

5000

4000 |

CPU Time (sec)

3000 +

2000 T

1000 T

Number of Satellites

Figure 5-6: The computing time to find 100 generatins of feasible solutions

for Constraint Group D as a function of the numberof satellites
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5.2.2.2

The influence of the number of satellites o n the number of
time-windows activated

Figure 5-7 through Figure 5-10 below show the imfice of the number of
satellites on the number of time-windows succelsadtivated for each of the
constraint groups A through D. We note that tlgoathm performs reasonably
well, in that it consistently activates about 86o¥%time-windows successfully
for constraint group A, where there are no limits @apacity and only non-
interference constraints hold. This number drapakiout 70 % when on-board
memory is limited as is the case for constraintupgpoB, C, and D. This
reduction corresponds very well with the reductiormemory capacity which

was set at 70 %.

Each figure shows the range of the number of tinredaws activated obtained
for a given number of satellites and also indicatgghin the range, the mean
value for the 10 experiments associated with tkergnumber of satellites. A
trend line is also fitted though the mean valu@éith the exception of the case
for constraint group A, the trend lines appearhovs that the number of time-
windows activated decrease with the number of lgatel This seems
counterintuitive, since one would expect that msatellites will, in general, be
able to service more time-windows, as is indeedctise for constraint group A.
To investigate the significance of this appareendr for constraint groups B, C
and D, the Pearson product moment correlation iooeft, r, was calculated
using all 60 data points in the results obtainediie experiments conducted for
each of these constraint groups. The Pearsonideeff is a dimensionless
index that ranges from -1.0 to 1.0 inclusive aniteots the extent of a linear
relationship between two data sets. Values clos&.0 and 1.0 would indicate
strong linear relationships while values closeOtwould indicate weak or no
relationship. The values af obtained for constraint groups B, C and D
respectively are 0.157, 0.143 and -0.201. Theesponding values af are
0.025, 0.021, and 0.041 respectively, indicatingt tA-4 % of the variation
between the 60 data points for each constraintpyaan be explained by the
number of satellites. This is considered to béstieally insignificant, and the

apparent trend need not be investigated further.
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Number of Time-Windows Activated over 100 Generations for
Constraint Group A
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Figure 5-7: The number of time-windows activated dting 100 generations
of feasible solutions for Constraint Group A as adnction of the number of

satellites
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Number of Time-Windows

Number of Time-Windows Activated over 100 Generations for Constraint

Group B
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Figure 5-8: The number of time-windows activated dting 100 generations
of feasible solutions for Constraint Group B as aunction of the number of

satellites
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Number of Time-Windows

Number of Time Windows Activated over 100 Generations for
Constraint Group C
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Figure 5-9: The number of time-windows activated dting 100 generations
of feasible solutions for Constraint Group C as aunction of the number of

satellites
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Number of Time-Windows Activated over 100 Generations for
Constraint Group D
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Figure 5-10: The number of time-windows activated dring 100 generations of feasible

solutions for Constraint Group D as a function of he number of satellites
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5.2.3

5.23.1

The influence of progressively tightening con straints

The second perspective on the results looks anhthence of successively more
restrictive constraints on algorithm performancedach of the six cases where

the number of satellites in the constellation iptk@nstant.

The influence of tightening constraints on computing time

Figure 5-11 through 15 below show the influenceswdcessively applying more
restrictive constraints on computing time for eaoh the constellation

configurations of one though six satellites.

Each figure shows the range of computing timesiobthfor a constraint set and
also indicates, within the range, the mean value tfee 10 experiments
associated with the given constraint set. Conttargxpectations the graphs
consistently shows that computing times are vijutiie same for constraint
groups A, B and C but that there is an order of mtage jump in computing
times when constraint set D is introduced. Inl#teer case the computing times
increase between 12 and 20 fold and the change nsasked that no trend line
could be fitted. This is significant in that itashks that the requirement to select
a single time-window for a specific image from amher of possible options
introduces considerable inefficiency in the aldorit Also of great interest is

the fact that this is the case regardless of tinelbran of satellites.
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Figure 5-11: The computing time to find 100 genera&bns of feasible

solutions for a single satellite as a function ofghtening constraints
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Figure 5-12: The computing time to find 100 genera&ns of feasible

solutions for two satellites as a function of tighgning constraints
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Figure 5-13: The computing time to find 100 genera&ns of feasible

solutions for three satellites as a function of tigtening constraints
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Figure 5-14: The computing time to find 100 genera&ns of feasible

solutions for four satellites as a function of tigktening constraints
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Figure 5-15: The computing time to find 100 genera&ns of feasible

solutions for five satellites as a function of tigtening constraints
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Time to Complete 100 Generations (6 Satellites)
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Figure 5-16: The computing time to find 100 generabns of feasible

solutions for six satellites as a function of tighening constraints

5.2.3.2 The influence of tightening constraints on the number of time-
windows activated

Figure 5-17 through Figure 5-22 below show theuiefice of successively
applying more restrictive constraints on the numifetime-windows activated

for each of the constellation configurations of tmeugh six satellites.

Each figure shows the range of time-windows aotiddor a constraint set and
also indicates, within that range, the mean valoe the 10 experiments
associated with the given constraint set. A trigmel is fitted though the mean
values. As can be expected, the trend line shdwas the number of time-
windows activated decrease as constraints areetighitfor a given number of
satellites. The rate of decrease as indicatedhd\slope of the trend line is not

particularly steep but given the results discusdsale is nevertheless consistent.
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As one would expect, given the same number of timmelows to be activated,
but more constraints, the number of feasible smhstidecreases resulting in a
corresponding reduction in the number of time-wind@ctivated over the same
number of 100 generations of solutions. Again, itieges of time-windows
activated overlap significantly, regardless of tloenber the constraint so that the
trend may not be statistically significant. Intregly, the algorithm continue to
perform well in terms of the number of time-windoativated, as seen in the
previous section, efficiency suffers greatly wheonstraint Group D is

introduced.

Number of Time-Windows Activated over 100 Generations (1
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Figure 5-17: The number of time-windows activated dring 100 generations
of feasible solutions for a single satellite as arfiction of tightening

constraints
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Number of Time-Windows

Number of Time-Windows Activated over 100 Generations (2
Satellites)
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Figure 5-18: The number of time-windows activated dring 100 generations

of feasible solutions for two satellites as a funicin of tightening constraints
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Number of Time-Windows Activated over 100 Generations (3
Satellites)
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Figure 5-19: The number of time-windows activated dring 100 generations
of feasible solutions for three satellites as a fation of tightening

constraints
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Number of Time-Windows Activated over 100 Generations (4
Satellites)
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Figure 5-20: The number of time-windows activated dring 100 generations

of feasible solutions for four satellites as a funion of tightening constraints
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Number of Time-Windows Activated over 100 Generations (5
Satellites)
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Figure 5-21: The number of time-windows activated dring 100 generations

of feasible solutions for five satellites as a fution of tightening constraints
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5.3

Number of Time-Windows Activated over 100 Generations (6
Satellites)
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Figure 5-22: The number of time-windows activated dring 100 generations

of feasible solutions for six satellites as a funion of tightening constraints

Determining the efficacy of using different
reproductive options

Given the considerable deterioration in performaotehe genetic algorithm
when the full set of constraints is applied, anestigation was launched into
possible ways of improving the performance by atjgssome of the algorithm
parameters. Three avenues of investigation wenetifted, all of them relating
to the way in which new solutions are derived friti@ parent population. These

investigations comprised the following;

» The effect of changing the elite count parameter agorithm

performance;
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5.3.1

* The effect of changing the crossover fraction pat@mon algorithm

performance, and;

» The effect of changing the crossover mechanism dgorithm

performance.

The results of these investigations are outlinddvibe Given the long computing
times required to run these experiments, the appreeas to perform only a
single computer runs if initial results indicatera® or similar performance than

for the default case.

The influence of varying the elite count para  meter

This set of experiments was aimed at investigatireg influence of the elite
count parameter on the performance of the gendgicrithm in solving the
SCoTWOP. The elite count parameter specifies thmber of individuals that
are guaranteed to survive to the next generatidrisaa positive integer less than
or equal to the population size. The default value2. The experiments
consisted of varying the elite count from a valdeloto 10 when using the
genetic algorithm to solve the SCoTWOP for the @rdu dataset with six
satellites. A single computer run was performeadefach value of the elite count
parameter and for each run the processing timenantber of time-windows
activated were recorded. The results thus obtaamedyraphically displayed in
Figure 5-23 and Figure 5-24.
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Time to comolete 100 iterations as function of elite count
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Figure 5-23: The computing time to find 100 gener&ns of feasible

solutions for six satellites as a function of theliee count parameter

Figure 5-23 shows the variation of the computingetirequired to find 100
generations of feasible solutions as function daeetount. When interpreting
this data, it should be remembered that, for dliesof the elite count parameter
except its default value of 2, only one computen mas performed. The
computing time at an elite count of 2, is however &verage obtained from 10
computer runs. The computing times for the oth&ues of the elite count
parameter should therefore be interpreted relatwhe more firmly established

value of 3685 seconds obtained for an elite cotit o

Superficially, it appears that a case can perha&psade for a trend that will
have computing times decrease with increasing ebtet until a minimum is

reached at an elite count of 7, after which conmgutimes increase again.
However, the better established default value, adm¢sagree with such a trend.

It would therefore be more cautious to say thatcthraputing times of other elite
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counts bracket that of the default count of 2, witihsiderable variation. In fact,
this caution is reinforced when it is realized thia default value itself is the
average of a series of values that range fromgisds 6705 seconds to as low as
1628 seconds.

Number of time-windows activated over 100 iterations as function
of elite count
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Figure 5-24: The number of time-windows activated dring 100 generations
of feasible solutions for six satellites as a funion of the elite count

parameter

Examination of Figure 5-24 confirms that the intetption of Figure 5-23, given
above, is probably correct. The figure shows tgation in the total number of
time-windows activated with elite count. Companisa this figure with Figure

5-23 reveals that lower computing times are in g@nassociated with a lower

number of time-windows activated.

More numerical experiments are needed to exploratwiay be a possible

improvement in computational time.
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5.3.2

The influence of varying the crossover fracti  on parameter

This set of experiments was aimed at investigatiegnfluence of the crossover
fraction parameter on the performance of the gerdgorithm in solving the
SCoTWORP. The crossover fraction parameter spsdifie fraction of the next
generation, other than elite children, that arelpoed by crossover. The default
value is 0.8. The experiments consisted of vartlegcrossover fraction from a
value of 0.5 to 0.8 when using the genetic algoritb solve the SCoTWOP for
the Group D dataset with six satellites. A sirgenputer run was performed
for each value of the crossover fraction parameatelrfor each run the
processing time and number of time-windows actiyatere recorded. The

results thus obtained are graphically displayeligure 5-25 and Figure 5-26.

Time to complete 100 iterztions as function of crossover fraction
7000
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Figure 5-25: The computing time to find 100 generabns of feasible

solutions for six satellites as a function of therossover fraction parameter

Figure 5-25 shows the variation of the computingetirequired to find 100
generations of feasible solutions as a functiothefcrossover fraction. As was
the case above for the elite count experimenthould be remembered that the

computing times for other values of the crossovaction parameter should be
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interpreted relative to the more firmly establishealue of 3685 seconds
obtained as the average computing time for theutteaossover fraction of 0.8.
Given this, it appears that very little can be s#idut the possible influence of
crossover fraction on computing time. Although goring times for crossover
fractions other than the default value are highantthat of the default value, the

set of experimental data is too sparse to readfiait® conclusion.

Number of time-windows activated over 100 iterations as function of
crossover fraction
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Figure 5-26: The number of time-windows activated dring 100 generations
of feasible solutions for six satellites as functioof the crossover fraction

parameter

Examination of Figure 5-26 once again confirms ttie results should be
interpretation with caution. The figure shows Hagiation in the total number of
time-windows activated with crossover fraction. sééems that the crossover
fraction has very little, if any, influence on thmumber of time-windows

activated. Once again it can only be concluded thare experiments are

necessary.
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5.3.3

The influence of selecting different crossove  r options

The MatLal’ Genetic Algorithm and Direct Search Toolbox pregica number
of options for different crossover mechanisms tgrouvhich the genetic
algorithm combines the genome of two parents, tnfa crossover child for the
next generation. The following three mechanisnessaitable for use with bit

string genomes, as is the case for the SCoTWOP:

e Scattered crossover, the default crossover optiopates a random
binary vector and then selects a gene from thd fieent if the
corresponding entry of the random vector is a 1 fiach the second
parent if the corresponding entry of the randonmaeis a 0; Single point
crossover chooses a random integer n between thartdtal number of
genes in the genome and then selects genes numibesetthan or equal
to n from the first parent and genes numbered grahtin n from the
second parent, and;

» Two point crossover selects two random integersichrabetween 1 the
total number of genes in the genome and then setgaies numbered
less than or equal to m from the first parent @eihes numbered m+1 to

n, inclusive, from the second parent.

Table 5-6 below contains the results obtaineddfer3CoTWOP when the single
point and two point crossover mechanism are usHte results are compared

with the average obtained for the scattered cressmechanism, used for all

other experiments.
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5.4

Table 5-6: Results obtained for different crossovemechanisms

Crossover mechanism Computing time needed Number of time-
for 100 generations windows activated over
100 generations
(sec)
Scattered crossover 3685 175
Single point crossover 5388 175
Two point crossover 7431 181

Given the fact that only one computer run was cotetlifor each, the results
show that single point and two point crossover dbhave an obvious advantage
over the scattered crossover mechanism, since dorgpiimes appear to be at
least as long or longer than that obtained forsttadtered crossover mechanism.
In terms of number of time-windows activated, theeé crossover mechanisms
appear to perform equally well. The number of 1iBie-windows activated
when a two point crossover is used, is the bedopeance observed for all
experiments conducted. It does however come gbribe of an additional hour

(a doubling) of computing time.

The influence of the penalization scheme for
infeasible solutions

The results discussed above were obtained usingséiverest penalty for
infeasible solutions, i.e. allocating a fitnessueafunction of positive infinity to

infeasible solutions. Potentially infeasible smos arising from crossover
operations were, except where otherwise noted,refsaired if they violated the
singularity constraint. To investigate the inflaenof this on computing time
and the quality of solutions, a number of computars were made using the
default Scattered crossover option (i.e. no repair) and also usingnare

conventional penalty scheme in which a fixed peiage of the objective
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5.5

function was added to the fitness function valiide Group D dataset with six

satellites was used in all cases and the res@tprasented in Table 5-7 below.

Table 5-7: Results obtained for different penalty factions

Penalty Fraction Computing time needed Number of time-
for 100 generations windows activated over
(percentage of the 100 generations
objective function value (sec)

added to fitness value)

10 % 4322 175
20 % 3119 117
30 % 4289 176
40 % 3687 175
50 % 3572 176
100 % 9156 175

Comparison of the results presented in Table 5tf thiose obtained in Table 5-
5 for the main set of experiments show that theafsenrepaired solutions and
less stringent penalties have no discernable effacthe results. Computing
times did not improve and neither did the numbeinages scheduled. In fact,
in some cases it was noted that the algorithm atagnafter approximately 50
generations and in two cases even terminated pueehatecause of this. Its
appears that penalizing a solution in proportioitgddegree” of infeasibility is

counterproductive in that it leads to less divgrsitthe population of solutions.

A note about optimality

Given the lack of standardized test data againsichwho compare the
performance of the algorithm, it is difficult to @uate the experimental results
in terms of optimality. In an effort to investigathis issue, the algorithm was
run for 1000 generations for each of the casesnef through six satellites.

Constraint Group D was used and the algorithm Wlas/ed an infinite amount
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of time and 1000 stall generations so that it woubd terminate before 1000
generations have been reached. The results obitameepresented in Table 5-8
that provides a comparison between the resultsiratafor 1000 generations

and those obtained for 100 generations.

From Table 5-8 it is evident that there is not aked difference between the
total number of time-windows activated over 1000eyations compared to the
total over 100 generations. We also note the pémge of time-windows
activated over 1000 and 100 generations is verylainiThere is however a
significant difference in the fitness value betwelke 1000 and 100 generation
cases. While the number of time-windows activadains more or less the
same, the fitness value improves significantly. ajpears that the algorithm
spends approximately the first 50 generations iwipgp the fitness value by
adding time-windows to the sequence, after thateg#ms to seek out more
valuable time-windows while keeping the number iofetwindows the same.
This observation seems to be borne out by FiguZ7 @and Figure 5-28

respectively for the one and six satellites.

The fact that the number of time-windows scheduksdains more or less the
same regardless of the number of iterations maigatel that the algorithm has
reached a near optimal solution, at least in teshtee number of time-windows
to be scheduled. Although there is an improvenerfitness value, the rate
improvement eventually becomes very slow taking uab®00 generations
between successive improvements in the later stafyffse experiment. This

may be an indication that optimality is being aguteed.

Finally it is noted that, if all the images are eghled, a theoretical upper bound
on the objective function value would be 358 458tfee case of six satellites.
The achieved value of 260 559 achieved over 100@rg&ons represents 72.7
% of the upper bound. If we remember that theectile on-board memory
capacity for all satellites is limited to approxitely 70 % of the total that would

be required to acquire all images, it seems thatmatity is not far away.
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Table 5-8: Comparison of results obtained for consaint Group D over 1000 generations with average mults obtained over 100

generations
1000 Generations 100 Generations
No of Time- Proportion of Objective CPU No of Time- Proportion of Objective
No of CPU Time Windows Time-Windows Function Time Windows Time-Windows Function
Satellites (sec) Activated Activated (%) Value (sec) Activated Activated (%) Value

1 12789 186 75.3 313220 1386 179 72.5 286073

2 26999 184 74.8 297024 2264 177 72.0 274539

3 24393 175 71.4 273554 2996 175 71.4 266574

4 14074 176 72.1 267662 3222 177 72.5 259745

5 51637 177 72.8 250186 3244 178 73.3 244029

6 59870 178 73.6 260559 3685 175 72.3 249578
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Figure 5-27: Genetic algorithm results for one satbte over 1000

generations
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Figure 5-28: Genetic algorithm results for six sathites over 1000

generations

Conclusions and suggestions for further study

The results presented in the previous sectionsl yeelnumber of interesting
insights, some expected and others not:

» Although simulated annealing and tabu search pedobetter than the
genetic algorithm in terms of computing time, thremetic algorithm performs

much better in terms of the number of time-wind@aeBvated.

» The coding of the imaging times-windows insteadh# actual images as a
binary string used in all three algorithms appeairse effective on the whole,

yielding consistent results. In terms of the numdfdime-windows activated
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this representation and the genetic algorithm per$o very well and

consistently activates a very high number of timedows.

» The solution representation and genetic algoritlerfgpms very well in all
cases except for when multiple imaging opportusiéiee present for the same
image. In the former cases computing times rangena two to three
minutes or so, making for a practical system. He lkatter case, a marked
inefficiency is introduced, leading to computingnés as high as 6000
seconds which is clearly not practical, given thagtellite completes its orbit

in about 5400 seconds.

» The few experiments that were conducted using reiffereproductive options
for the genetic algorithm did not yield any realpmvements in computing
time. Apparent improvements in computing time 3lsveame at the expense

of a lower number of time-windows activated.

* It appears that the algorithm approaches optimadpecially if it is allowed
to generate 1000 generations of solutions. Howewer,computing time in

this case approaches 18 hours which make the @dgonmpractical.

It can be concluded that viewing the SCoTWOP aatedl to the dual of the
VRPMTW provides a valuable framework, primarily base it leads to a simple
representation of a solution as a binary genotiipé leads to an effective and,
for the most part efficient, solution process. @toations arise when multiple
imaging opportunities are present for the same @@yl an investigation into a
solution for this problem may be worth pursuing, particular since this is
probably the single most important complicationttbescerns the SCoTWOP
from all other SSPs.

In this regard consideration should perhaps bengteea scheme in which the
problem is split into two parts which can be solgegarately. The first problem
would be dealing with selecting optimal time-windofer images with multiple
time-windows and the second problem with selectipgmal time-windows for
the majority of images that have only one time-wivd In other words separate

the images that are only subject to constraintgsdd, B, and C from those that
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are also subject to constraint group D. A soluaasing from such a separation
may not be optimal, but that is true for most h&tigs in any case. The quality
of such a solution may be improved if a suitablenbar of the neighbouring
images (in the time-window sense) of the imaged tleve multiple time-

windows are included in the first problem.
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APPENDIX A:

BPP

CNES

CRISP

CVRP

DMC

EO

EOS

LEO

NASA

NP

SAR

SCoTWOP

SPOT

SSP

TSP

VRP

ABBREVIATIONS AND ACRONYMS

Bin Packing Problem
Centre National d’Etudes Spatiales

Centre for Remote Imaging, Sensing and PsoagsNational

University of Singapore
Capacitated Vehicle Routing Problem
Disaster Monitoring Constellation
Earth Observation
Earth Observation Satellite
Low Earth Orbit
National Aeronautics and Space Administration
Nondeterministic polynomial-time
Synthetic Aperture Radar
Satellite Constellation Time-Window Optiatian Problem
Systeme Pour I'Observation de la Terre
Satellite Scheduling Problem
Travelling Salesman Problem

Vehicle Routing Problem
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VRPMTW Vehicle Routing Problem with Multiple Timeindows

VRPTW Vehicle Routing Problem with Time-windows
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APPENDIX B:

SAMPLE TEST DATA SET

Table B-1 below contains the test data used foeexyents relating to the

activation of 250 image windows for a constellatadrsix satellites subject to

the full set of constraints. The various paranseéee described in Paragraph

4.2.4,
Table B-1: Sample Test Data Set
Time- Time- Imaging Memory
Time- Lookangle Image
window window Duration Requiremen View # Satellite #
window # (deg) Value ($)
Start (sec) End (sec) (sec) t (MB)
1 0 600 0 0 0
2 3000 3042 -17 15 150 1 2 2010
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Time- Time- Imaging Memory
Time- Lookangle Image
window window Duration Requiremen View # Satellite #
window # (deg) Value ($)
Start (sec) End (sec) (sec) t(mMB)

3 3021 3062 5 15 150 2 2 1560
4 3090 3141 26 6 60 3 3 1158
5 3159 3217 -20 14 140 4 5 2016
6 3222 3268 -12 7 70 5 2 833
7 3252 3292 -28 14 140 6 1 1946
8 3291 3324 3 6 60 7 5 618
9 3314 3359 -2 10 100 8 2 1330
10 3377 3412 -11 14 140 9 5 2072
11 3382 3430 -3 6 60 10 1 1032
12 3424 3466 17 11 110 11 6 1991
13 3462 3508 9 15 150 12 3 2010
14 3500 3530 -10 9 90 13 5 1260
15 3500 3548 -14 13 130 14 2 2431
16 3551 3608 -16 6 60 15 3 1068
17 3611 3647 15 15 150 16 1 1860
18 3661 3703 -20 14 140 17 2 2184
19 3732 3792 6 9 90 18 5 1485
20 3789 3842 -17 14 140 19 3 1932
21 3832 3864 -4 11 110 20 6 1232
22 3883 3936 -25 12 120 21 4 1500
23 3941 3972 15 6 60 22 5 684
24 3989 4044 -22 5 50 23 1 840
25 4070 4115 -14 5 50 24 3 570
26 4091 4133 30 11 110 25 1 2145
27 4104 4139 -16 7 70 26 4 833
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Time- Time- Imaging Memory
Time- Lookangle Image
window window Duration Requiremen View # Satellite #
window # (deg) Value ($)
Start (sec) End (sec) (sec) t(mMB)

28 4133 4189 24 9 90 27 3 1341
29 4200 4253 26 12 120 28 1 2376
30 4257 4310 -27 7 70 29 2 1085
31 4310 4348 -15 8 80 30 5 1280
32 4357 4393 -27 13 130 31 1 2093
33 4370 4412 -13 6 60 32 1 840
34 4397 4444 7 13 130 33 6 1430
35 4446 4486 -18 10 100 34 5 1590
36 4482 4521 12 9 90 35 6 1296
37 4501 4556 11 7 70 36 4 1001
38 4535 4577 9 15 150 37 6 2610
39 4591 4643 -5 15 150 38 5 2235
40 4620 4662 -28 6 60 39 5 1044
41 4681 4724 -9 10 100 11 1 1030
42 4746 4792 29 15 150 41 6 2550
43 4817 4861 -6 12 120 42 1 1380
44 4855 4901 2 10 100 43 5 1890
45 4908 4939 -8 12 120 44 1 1692
46 4909 4950 -19 12 120 45 2 1788
47 4971 5015 9 11 110 46 2 1903
48 5005 5046 20 12 120 47 1 2244
49 5075 5107 3 12 120 48 3 2040
50 5134 5184 -26 5 50 49 5 810
51 5155 5197 10 7 70 50 2 784
52 5206 5240 0 8 80 51 5 1304
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Time- Time- Imaging Memory
Time- Lookangle Image
window window Duration Requiremen View # Satellite #
window # (deg) Value ($)
Start (sec) End (sec) (sec) t(mMB)

53 5220 5258 -8 14 140 52 5 2366
54 5282 5321 -3 12 120 53 4 1524
55 5337 5370 -29 7 70 54 1 1316
56 5367 5424 -22 14 140 55 6 1400
57 5441 5488 3 9 90 56 3 900
58 5500 5549 -16 14 140 57 5 1414
59 5579 5617 -19 5 50 58 5 895
60 5647 5695 -24 10 100 59 3 1230
61 5716 5764 4 14 140 60 1 1820
62 5750 5801 -8 8 80 61 3 1464
63 5813 5860 22 7 70 62 3 1064
64 5842 5893 27 12 120 63 2 2256
65 5901 5956 -5 6 60 64 5 882
66 5943 5977 22 5 50 65 2 655
67 5974 6019 -8 8 80 66 2 928
68 5999 6059 -13 14 140 67 1 2072
69 6046 6079 19 13 130 68 3 1833
70 6066 6113 -6 10 100 69 3 1760
71 6132 6175 -5 15 150 70 3 1710
72 6192 6223 6 11 110 71 6 1100
73 6250 6305 -20 9 90 72 5 1278
74 6329 6374 -19 15 150 73 2 2760
75 6347 6404 4 13 130 74 3 1963
76 6401 6439 -14 13 130 75 2 1300
77 6448 6491 -12 5 50 76 2 800
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Time- Time- Imaging Memory
Time- Lookangle Image
window window Duration Requiremen View # Satellite #
window # (deg) Value ($)
Start (sec) End (sec) (sec) t(mMB)

78 6461 6521 19 11 110 77 5 1232
79 6534 6579 9 14 140 78 4 1582
80 6559 6618 -8 15 150 79 6 1695
81 6592 6625 13 6 60 80 6 1110
82 6642 6702 29 5 50 81 3 665
83 6717 6766 -2 8 80 82 2 960
84 6740 6788 -2 15 150 83 6 1875
85 6763 6797 10 8 80 84 3 816
86 6812 6871 -4 5 50 85 1 675
87 6872 6902 -1 7 70 86 1 1169
88 6927 6963 -4 12 120 87 5 1800
89 6979 7031 -28 9 90 88 3 990
90 7036 7096 13 13 130 89 5 1885
91 7110 7156 -1 14 140 90 2 1722
92 7128 7178 -10 5 50 91 6 810
93 7203 7255 -12 15 150 92 4 2670
94 7281 7319 20 8 80 93 2 1224
95 7300 7332 -13 12 120 94 3 1596
96 7321 7362 10 11 110 95 3 1232
97 7357 7393 -13 10 100 96 2 1630
98 7409 7459 -28 13 130 97 5 1651
99 7484 7536 -27 5 50 98 3 815
100 7506 7545 -7 10 100 99 6 1510
101 7526 7582 13 15 150 100 6 1530
102 7552 7583 28 11 110 101 5 1331

136




Time- Time- Imaging Memory
Time- Lookangle Image
window window Duration Requiremen View # Satellite #
window # (deg) Value ($)
Start (sec) End (sec) (sec) t(mMB)

103 7602 7644 21 5 50 102 1 660
104 7627 7683 27 9 90 103 3 1539
105 7694 7752 -25 13 130 104 3 1859
106 7737 7788 -25 5 50 105 1 675
107 7809 7849 -25 15 150 106 4 1665
108 7847 7889 -2 14 140 107 6 2520
109 7879 7917 27 14 140 108 6 2198
110 7902 7943 5 6 60 109 1 1164
111 7951 7996 -29 6 60 110 3 780
112 7993 8040 9 12 120 111 2 2076
113 8019 8058 8 12 120 112 1 2124
114 8080 8128 -8 5 50 113 6 865
115 8102 8140 5 13 130 114 3 2509
116 8121 8171 -25 15 150 42 1 1665
117 8177 8226 -26 15 150 116 2 2685
118 8227 8266 -7 12 120 117 2 1956
119 8283 8330 21 10 100 118 5 1950
120 8357 8398 -5 13 130 7 3 2041
121 8375 8417 6 5 50 120 5 630
122 8419 8456 26 8 80 121 4 936
123 8468 8516 6 15 150 122 2 1995
124 8524 8582 7 11 110 123 3 1958
125 8571 8628 -14 11 110 124 1 1507
126 8625 8669 20 11 110 125 2 2024
127 8663 8718 -15 7 70 126 2 1393
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Time- Time- Imaging Memory
Time- Lookangle Image
window window Duration Requiremen View # Satellite #
window # (deg) Value ($)
Start (sec) End (sec) (sec) t(mMB)

128 8717 8747 -21 12 120 127 3 1236
129 8769 8814 -12 9 90 128 2 1224
130 8786 8841 0 11 110 129 5 1540
131 8864 8897 3 6 60 130 1 918
132 8871 8905 -19 8 80 131 6 1568
133 8883 8916 30 8 80 132 6 944
134 8926 8962 -16 5 50 133 5 685
135 8983 9038 -6 13 130 134 4 1664
136 9036 9077 12 5 50 135 3 990
137 9098 9157 24 13 130 37 1 2054
138 9142 9182 -16 11 110 137 4 1397
139 9177 9232 21 7 70 138 4 784
140 9212 9248 -2 12 120 139 5 1932
141 9250 9299 -6 15 150 140 4 2775
142 9305 9350 17 12 120 141 1 1920
143 9344 9374 -15 6 60 142 2 1200
144 9357 9388 -25 11 110 143 5 1705
145 9394 9439 15 9 90 144 3 1584
146 9450 9484 -26 15 150 145 5 1995
147 9506 9536 -12 11 110 146 4 1342
148 9536 9566 -17 13 130 28 6 2405
149 9555 9601 -12 15 150 148 3 2310
150 9631 9675 6 6 60 149 1 876
151 9700 9742 -28 14 140 150 1 1750
152 9748 9802 26 14 140 151 2 2142
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Time- Time- Imaging Memory
Time- Lookangle Image
window window Duration Requiremen View # Satellite #
window # (deg) Value ($)
Start (sec) End (sec) (sec) t(mMB)

153 9803 9851 -8 13 130 152 6 1924
154 9857 9901 -29 11 110 153 6 1210
155 9928 9980 6 7 70 154 1 1288
156 9961 9994 12 6 60 155 1 834
157 10015 10056 -28 13 130 156 1 2275
158 10065 10104 14 5 50 157 2 540
159 10086 10126 16 10 100 158 1 1740
160 10102 10144 -10 13 130 159 2 1443
161 10124 10156 -22 15 150 160 3 2445
162 10177 10229 -27 13 130 15 4 1482
163 10252 10305 7 15 150 162 6 1995
164 10316 10368 7 15 150 163 5 2325
165 10363 10417 -11 5 50 164 2 540
166 10439 10493 15 8 80 165 3 1312
167 10512 10554 18 11 110 166 1 1496
168 10580 10634 1 7 70 167 6 1057
169 10633 10672 -1 6 60 168 4 714
170 10661 10721 17 8 80 169 4 1408
171 10724 10784 5 9 90 170 3 1377
172 10798 10830 -23 10 100 171 2 1750
173 10842 10872 -7 9 90 172 2 1494
174 10868 10924 -12 11 110 173 3 1914
175 10922 10973 -3 7 70 174 4 1302
176 10967 11001 0 10 100 175 5 1520
177 11026 11057 -28 10 100 176 2 1250
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Time- Time- Imaging Memory
Time- Lookangle Image
window window Duration Requiremen View # Satellite #
window # (deg) Value ($)
Start (sec) End (sec) (sec) t(mMB)

178 11041 11073 23 6 60 177 4 1170
179 11046 11106 24 5 50 178 4 855
180 11111 11149 -18 7 70 179 4 980
181 11158 11188 -22 12 120 180 5 2376
182 11192 11223 13 6 60 181 2 1140
183 11206 11257 -9 13 130 182 3 1950
184 11276 11333 14 12 120 183 5 2340
185 11333 11388 -5 5 50 184 4 800
186 11359 11405 26 8 80 185 4 936
187 11427 11462 -1 6 60 186 1 1128
188 11435 11472 29 5 50 187 5 750
189 11488 11538 -25 8 80 188 2 1400
190 11542 11588 -20 15 150 189 6 1740
191 11582 11622 30 8 80 190 3 1176
192 11615 11669 -6 11 110 191 2 2134
193 11679 11728 13 5 50 192 5 795
194 11747 11801 -21 11 110 193 2 1375
195 11787 11842 5 9 90 194 5 1584
196 11859 11890 -10 8 80 195 4 1024
197 11903 11960 -21 12 120 196 1 1812
198 11938 11992 5 6 60 197 3 990
199 11991 12047 5 14 140 198 6 1568
200 12064 12122 2 14 140 199 6 2156
201 12102 12157 -1 15 150 200 1 2490
202 12173 12203 16 7 70 201 1 728
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Time- Time- Imaging Memory
Time- Lookangle Image
window window Duration Requiremen View # Satellite #
window # (deg) Value ($)
Start (sec) End (sec) (sec) t(mMB)

203 12199 12253 -22 5 50 202 5 560
204 12237 12283 -9 9 90 203 2 1683
205 12258 12290 -8 10 100 204 6 1100
206 12273 12303 0 10 100 205 4 1100
207 12320 12367 -9 9 90 206 2 1431
208 12371 12413 30 5 50 207 3 970
209 12420 12467 -1 13 130 208 2 1729
210 12454 12492 -5 11 110 209 2 1364
211 12464 12519 26 5 50 210 3 580
212 12525 12576 -5 9 90 211 3 1782
213 12573 12619 -29 8 80 212 6 848
214 12604 12652 -7 10 100 213 3 1840
215 12629 12670 11 5 50 214 6 815
216 12676 12720 -9 5 50 215 2 920
217 12698 12738 0 12 120 216 1 1848
218 12716 12764 10 7 70 217 4 749
219 12748 12798 12 8 80 218 3 1344
220 12815 12861 22 8 80 219 2 856
221 12845 12904 -2 5 50 220 2 660
222 12908 12958 -13 12 120 221 1 2040
223 12960 13013 -21 6 60 222 6 1158
224 13026 13060 -20 9 90 223 1 1575
225 13079 13139 8 13 130 224 6 1560
226 13141 13172 14 12 120 225 1 1800
227 13200 13235 -22 6 60 226 5 816
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Time- Time- Imaging Memory
Time- Lookangle Image
window window Duration Requiremen View # Satellite #
window # (deg) Value ($)
Start (sec) End (sec) (sec) t(mMB)

228 13241 13280 -1 8 80 227 5 1232
229 13265 13296 11 13 130 228 1 2314
230 13282 13314 17 7 70 229 6 875
231 13302 13339 -19 14 140 230 4 1582
232 13327 13359 7 12 120 231 1 1356
233 13384 13433 8 7 70 232 2 889
234 13451 13505 8 8 80 233 4 816
235 13499 13552 12 9 90 234 3 1368
236 13543 13577 13 11 110 235 5 1628
237 13600 13648 -1 12 120 236 3 2064
238 13669 13705 -13 15 150 237 5 1575
239 13732 13788 7 11 110 238 5 2123
240 13779 13832 -25 9 90 239 1 1710
241 13827 13875 -11 12 120 240 5 1452
242 13905 13964 -29 9 90 241 5 1602
243 13974 14009 15 9 90 242 1 1782
244 13985 14015 26 10 100 243 2 1410
245 14027 14064 -17 13 130 244 6 1859
246 14094 14136 13 13 130 245 4 2132
247 14110 14151 23 5 50 246 3 925
248 14131 14164 -28 15 150 247 3 2220
249 14148 14181 17 13 130 248 6 2288
250 14181 14236 -4 8 80 249 3 1008
251 14219 14253 0 0 0 - - -
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APPENDIX C:  MATLAB ® COMPUTER CODE
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Code for DataReader.m

clear all

global n TW g Q value C cap twin st satno viewno nosats

n = xlsread( '‘Bdata6’ ,'n'

lookangle = xIsread( '‘Bdata6' , 'lookangle’
Id = xlIsread( '‘Bdata6’ ,'ld" )

TW=xlIsread( 'Bdata6’" , TW'")

st=]

g = xlsread( '‘Bdata6' ,'q" )

Q =xlsread(  'Bdata6’ , 'Memory' )

value = xlIsread( '‘Bdata6' , 'Value' )
satno = xIsread( '‘Bdata6' , 'satno' )
nosats = xlIsread( '‘Bdata6' , 'nosats’ )
viewno = xlsread( 'Bdata6’ , 'viewno' )
maxTC = 100000
Early = TW(:,1)
Late = TW(:,2)
for i=1:n;
for j=2:n
if i==

setuptime(i,j)=abs(lookangle(i)-lookang
elseif  satno(j)~= satno(i)
setuptime(i,j)=9999999;

else
setuptime(i,j)=abs(lookangle(i)-lookangle(j
end
end
end
setuptime
for i=1:n;
for j=2:n
if Early(j) < Early (i) & Late(j) < Early(i);
traveltime (i,j)=999999;
else
traveltime (i,j)=0;
end
end
end
traveltime;

C = max(setuptime, traveltime)
T™W

cap ={q,Q}
twin = {Id, TW,st}
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Code for SequenceBuilder.m

function  Population = SequenceBuilder(GenomelLength, Fitness

global n TW g Q value C cap twin st satno viewno nosats
Pop = cell(20,1);
tmprte = cell(20,2)
for k=1:20
XFlg =-2;
while any (XFlg ~=1)
% Create a binary vector that has n-2 ones or zeros
X=[;
%Generate a random binary vector
for i=1:n-2
if rand <=0.5
v=0;
else
v=1;
end
X=[Xv];
end

% Fix binary vector if image is allocated to more t
for i=1:n-2
for j=i:n-2
if j~=i & viewno(j)==viewno(i)
if  X()==1 & X(i)==1

if rand >=0.5
X(j)=0
else
X(i)=0
end
end
end
end

end

% Split the binary vector in accordance with the sa
% the respective time-window
a=[2:n-1]
b=satno(2:n-1,1)'
c=X.*b
for r=1:nosats
for i=1:n-2;
if c(i)==r
d(i,n=1;
else
d(i,n=0;
end
end
end

for r=1:nosats

e=d(.,n);

tmprte{k,r}=nonzeros([1 e.*a 1])'

end
pp=[1 X]; _
[TC,XFlg,out] = rteTC(tmprte{k,r},C,cap,twin,]]
XFlg
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if any (XFlg ~=1)
continue
else
Pop{k}=pp;
end
end

tmprte;
Population = cell2mat(Pop);
viewno;

end
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Code for rteTC.m

function  [TC,XFlg,out] = rteTC(rte,varargin)
global nTW g Q value C cap twin st
%RTETC Calculate total cost of route with time-wind

% TC =rteTC(rte,C)

% [TC,XFlg,out] = rteTC(rte,C,cap,twin,rtefeas)

% = rteTC(rte), use arguments C,twin

% and do not check inp

% rte = vector of single-route vertices

% = m-element cell array of m routes

% (to get sum(TC) as output, use vector rt

%  C =nxn matrix of costs between n vertices

%  TC = m-element vector of route costs, where

% TC(i) = Inf if route i is infeasible

%

% Optional input and output arguments used to deter
% cap ={q,Q} = cell array of capacity arguments

% g = n-element vector of vertex deman
% Q = maximum route load

% twin = {ld,TW,st} = cell array of time-window a
% Id = n or (n+1)-element vector of loa

% timespans, where

% Id(rte(1)) =load at depot

% ld(n+1)  =unload at depo

% = scalar of constant values "ld" f

% and O for rte(1); or rte(2) ...

% rte(end), if rte(1) == rte(end)

% =0, default

% TW =n or (n+1) x 2 matrix of time-wi

% TW(i,1) = start of time-

% TW(i,2) = end of time-wi

% TW(rte(1),:) = start time-win

% TW(n+1,:) = finish time-wi

% if rte(1) =rt

% = (n+1)-element cell array, if mul

% TW{i} = (2 x p)-elemen

% (start,end) pa

% st = (optional) m-element vector of s

% =TW(1,1) or min(TW{1}), default (
%rtefeas = {'rtefeasfun',P1,P2,...} = cell array sp
% function to test the feasibility of a si

% to time-windows, capacity, and maximum ¢
% argument out(i) along with user-specifie
% are passed to function and a logical val
% isfeas = RTEFEASFUN(out(i),P1,P2,
% = {'maxTCfeas',maxTC} is a predefined rout
% to test if the total cost of a route (in

% unloading times "ld") exceeds the maximu
% (see below for code)

%XFlg(i) = exitflag

% 1, if route is feasible

% -1, if infeasible due to capacity

% -2, if infeasible due to time-windows
% -3, if infeasible due to user-defined fe
% out = m-element struct array of outputs

% out(i) = output structure with fields:

% .Rte  =route indices, rte{i}

% .Cost = cost from vertex j-1 to |,

% Cost(j) = C(r{i}(-1),Hi}())

% = drive timespan from vertex j-1

% .Demand = demands of vertices on route, q
% Arrive = time of arrival
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% Wait = wait timespan if arrival prior

% .Start = time loading/unloading started
% route is "Start(1)")

% .LD  =loading/unloading timespan, Id(
% .Depart = time of departure (finishing ti
% .Total = total timespan from departing v
% (= drive + wait + loading/unloa

% .EarlySF = earliest starting and finishing
% time is "st" and default finish

% .LateSF = latest starting and finishing t
%

% For each route rte{i}, feasibility is determined
% 1. Capacity feasibility: SUM(q(rte{i})) <=Q i
% 2. Time-window feasiblity: [TCi,ignore,outi] =

% TCi < Inf if feasib

% 3. User defined feasibility: isfeas = RTEFEASF
% isfeas == true if

%

% Copyright (c) 1994-2004 by Michael G. Kay
% Matlog Version 8 22-Nov-2004

% Input Error Checking * *
% Set to empty

if pargin<?2
if isempty(C)

error( '‘Additional input arguments required for first call

else
isfirstcall = 0;
end
else

isfirstcall = 1;
if length(varargin) < 4
[varargin{length(varargin)+1:4}] = deal([]);
end

[C,cap,twin,rtefeas] = deal(varargin{:});

[0,Q.ld, TW,st] = deal([]);

end
m=1;
if iscell(rte), m = length(rte); end

TC = Inf * ones(m,1);

to beginning of window
(starting time for

rte{i})

me is "Depart(end)")
tx j-1 to depart. vix j
ding timespan)

times (default starting
. time is "EarlySF(2)")
imes

in the following order:
f feasible
RTETC(rte{i},C,twin);
le

UN(outi,P1,P2,...);
feasible

% All routes initialized to infeasible

XFlg = ones(m,1); % All flags initialized to feasible

[n,nC] = size(C);

% Route

if isfirstcall & ~isempty(rte) & (~(isreal(rte) | isc
(~iscell(rte) & (min(size(rte)) ~=1 |
any(rte(:) < 1| rte(:) > n))) |

(iscell(rte) & (any(cellfun( '‘prodofsize’
cellfun( ‘length’  ,rte)) | any([rte{:}] <1 | [rte{:}] > n))))
error( "“rte" not a valid route.' )
end
% Cost
if isfirstcall
if n~=nC
error( 'C must be a square matrix.'
elseif  any(any(C<0))
error( ‘C must be a non-negative matrix.'

elseif any(diag(C) ~=0)
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error( 'C must have zeros along its diagonal.' )
end
end

% Capacity
if isfirstcall && ~isempty(cap)
if ~iscell(cap) || length(cap(;)) ~= 2
error( "'cap" must be a two element cell array.' )
end
q = cap{1}; Q = cap{2);
if length(q(:)) ~=n

error([ "q" must be an ' ,numa2str(n), "-element vector.' i)
elseif g(1)~=0
error( 'Depot"s demand, q(1), should equal 0.' );
elseif  length(Q(:))~=1||Q <0
error( 'Q must be a nonnegative scalar.' )
elseif any(g> Q)
error( ‘Elements of "g" can not be greater than Q. )
end
end

% Time-window

if isfirstcall && ~isempty(twin)
if ~iscell(twin) || length(twin(:)) < 1 || length(twi ni)) >3
error( "twin" must be a one or three element cell array.'
end

Id = twin{1};

if ~isempty(ld), Id =1d(:)"; end
if length(twin) > 1, TW = twin{2}; else TW =[] end
if ~isempty(TW) && ~iscell(TW), TW = padmat2cell(TW); end
if length(twin) > 2, st = twin{3}; st = st(:); else st=1; end

if ~isempty(ld) && all(length(ld) ~= [1 n n+1])

error( ‘Length of "ld" must equal 1, n, orn + 1. )

elseif  ~isempty(TW)
if iscell(TW), TW = cell2padmat(TW); end
if all(size(TW,1) ~= [n n+1]) || mod(size(TW,2),2) ~= o]l
any(all(isnan(TW")) ||

any(any(TW(:;,1:2:end-1) > TW(:,2:2:end) NI
any(any(xor(isnan(TW(:,1:2:end-1)),isna n(TW(:,2:2:end)))))
error( "TW not valid time-windows.' )
end
elseif  ~isempty(st) && ~isempty(rte) && length(st(:)) ~= m
error( 'Starting time "st" must be an m-element vector.' )
end

end

% Route feasibilty function

if ~isempty(rtefeas) && strcmp(rtefeas{1}, 'maxTCfeas' ) &&
all(isinf(rtefeas{2}))
rtefeas = []; % maxTC = Inf => always feasible
end

if isfirstcall && ~isempty(rtefeas)
if length(rtefeas(:)) <1

error( "rtefeas" must be at least a one element cell arra y.' )
end
if ~ischar(rtefeas{1})
error( 'First element of "rtefeas" must be a string."' )
elseif  ~strcmp(rtefeas{1}, 'maxTCfeas' ) &&
~exist(lower(rtefeas{1}), file' )
error([ 'Function ™ rtefeas{1} " not found.' )}
end
end
% Empty "rte" used for error checking and to store input arguments
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if isempty(rte)
if nargout>0, TC =[]; XFIg =[]; out = [J; end
return

end

% End (Input Error Checking)

% Initial timing output structure
if nargout > 2 || ~isempty(rtefeas)
out = struct( 'Rte' ,[], 'Cost' ,[], 'Demand' ,[], 'Arrive’ 0, ‘waitt ], ..
'Start' 0, 'LD" ,[], 'Depart ,[], 'Total' ,[], ‘'EarlySF'" ], ‘LateSF' |[]);
out(1:m) = out;
end

% Evaluate each route
for i=1m

if iscell(rte), r = rtefi}; else r=rte(); end

% 1. Capacity feasibility

if ~isempty(q) && ~isinf(Q)
if nargout > 2 || ~isempty(rtefeas), out(i).Demand = q(); end
if sum(q(r)) > Q; XFlg(i) = -1; continue , end

end

% Calculate route cost
¢ = diag(C(r(1:end-1),r(2:end)));
if isempty(ld) || all(ld == 0)
Idi = zeros(1,length(r));
else
if length(ld) ==
Id = [0 Id*ones(1,n-1)];
if r(1)==r(end), Id=[ld O]; end
end
Idi = 1d(r);
if r(1) ==r(end)
if length(ld) ~= n+1
error( ‘Length of "Id" must equal n + 1.' )
end
Idi(end) = Id(n+1);
end
end
TC(i) = sum(c) + sum(Idi);
if nargout > 2 || ~isempty(rtefeas)
out(i).Rte =r;
out(i).Cost = [0 cJ;
if ~isempty(ld), out(i).LD = Idi; end
out(i).Total = [0 c] + Idi;
end

% 2. Time-window feasibility
if ~isempty(TW)
B = TW(;,1:2:end-1);
E = TW(;,2:2:end);
Br = B(r,:); Er = E(r,:);

if r(1) ==r(end)

if size(B,1) ~=n+1, error( ‘Length of TW must equal n + 1.’ ), end
Br(end,:) = B(n+1,:); Er(end,:) = E(n+1,:) ;
end

if ~isempty(st), sti = st(i); else sti=[]; end
if nargout < 3 && isempty(rtefeas)

TC(i) = rteTW(c,Idi,Br,Er,sti);
else

[TC(i),s,w] = rteTW(c,Idi,Br,Er,sti);
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if ~isinf(TC(i))
s_late = latestart(c,Idi,Br,Er);
else
s_late = NaN;
end
out(i).Arrive = [0 s(2:end)-w(2:end)];
out(i).Wait = w;
out(i).Start = s;
out(i).Depart = s + Idi;
out(i).Total = [0 c] + w + Idi;
out(i).EarlySF = [s(1) s(end) + Idi(end)];

out(i).LateSF = [s_late(1) s_late(1) + TC( l;
end
if isinf(TC(i)), XFlg(i) = -2; continue , end
end

% 3. User defined feasibility function
if ~isempty(rtefeas)

isfeas = feval(rtefeas{1},out(i),rtefeas{2:en d});
if length(isfeas(})) ~=1 % | ~islogical(isfeas)
error( 'Output argument "isfeas" must be a scalar logical
end
if isfeas==0,
TC(i) = Inf; XFlg(i) = -3; continue , end
end

end % FOR loop

value.'

%
function [TC,s,w] = rteTW(t,Id,B,E,st)
%RTETW Single route time-window.

tol = 1e-8;
n = size(B,1);
if isempty(st), s = min(B(1,:)); else s=st; end
s=s+1d(2);
for i=2:n % Forward scan to determine earliest finish time
s =s +t(i-1) + Id(i);
Bi = B(i,:) + Id(i);

if ~any(s +tol >= Bi && s - tol <= E(i,:))
s = min(Bi(Bi >= s));
if isempty(s)
TC = Inf; s = NaN; w = NaN; return
end
end
end
f=s;

s =f-Id(n);
for i=n-1:-1:1 % Reverse scan to determine latest start time for t
% earliest finish
s = s - t(i) - Id(i);
Ei = E(i,:) - Id(i);
if ~any(s + tol >= B(i,:) & s - tol <= Ei)
s = max(Ei(Ei <= s));
end
end
TC=f-s;
if isnan(TC), TC = sum(t) + sum(ld); end % If all Br == -Inf and all Er =
Inf

if nargout>1
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s =[s zeros(1,n-1)];
w = zeros(1,n);

for i=2:n % Second forward scan to delay waits as much as pos sible
% to the end of the route in case unexpected events occur
s(i) = s(i-1) + Id(i-1) + t(i-1);
Bi = B(i,:);
if ~any(s(i) + tol >= Bi & s(i) + Id(i) - tol <= E(i, D))
w(i) = s(i);
s(i) = min(Bi(Bi >= s(i)));
w(i) = s(i) - w(i);
end
end
end
%
function s = latestart(t,Id,B,E)
%LATESTART Determine latest start time.
tol = 1e-8;
n = size(B,1);
s = max(E(end,:)) - ld(n);
for i=n-1:-1:1 % Reverse scan to determine latest start time
s =s - t(i) - Id(i);
Ei = E(i,) - 1d(i);
if ~any(s + tol >= B(i,;) && s - tol <= Ei)
s = max(Ei(Ei <= s));
end
end
%
function isfeas = maxTCfeas(outi,maxTC)
%MAXTCFEAS Maximum total cost route feasibility fun ction.
% isfeas = maxwaitfeas(outi,maxTC)
% outi = struct array of outputs from RTETC for s ingle route i

% (automatically passed to function)

% maxTC = scalar maximum total cost (including un/
%

% Route is feasible if sum(outi.Total) <= maxTC

%

% This function can be used as a template for devel
% route feasibility functions.

% Input error check

if ~isnumeric(maxTC) || length(maxTC(:)) ~=1 || maxT
error( "maxTC" must be a nonnegative scalar.’

end

% Feasibility test
if sum(outi.Total) <= maxTC

isfeas = true;
else

isfeas = false;
end
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Code for TabuSat.m

%PFind an initial feasible route of n-1 vertices.

tic

global

XFlg =-2
while XFlg ~=1

x=[
for i=1l:n-1
g=rand;
if g<=0.5
v=0;
X=[X v];
elseif g>0.5
v=1,;
X=[XVv];
end
end
% Fix bit string if image is allocated to more than
for i=1:n-2
for s=i:n-2
if s~=i & viewno(s)==viewno(i)
if  X(s)==1 & X(i)==1

h=rand
if h>=0.5
X(s)=0
else
X(i)=0
end
end
end
end

end

% Determine if the bit string represent a feasible
% sequences
a=[2:n]
b=satno(2:n,1)'
c=X.*b
for r=1l:nosats
for i=1:n-1;
if c(i)==r
d@i,n=1;
else
d(i,n=0;
end
end
end
f=[1 X]
for r=1:nosats
e=d(:,n";
rte{r}=nonzeros([1 e.*a 1])'
end
celldisp (rte)
[TC,XFlg,out] = rteTC(rte,C,cap,twin,[])
if XFlg~=1
continue
else
optc=-sum(f*value)
end
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end

9%0%%%0%%% % %% %% %% %% %% %% %% % %% % %% %% % %% %09
%

% Start the Tabu Search routine

k_max =100 %was 100

L=5%was 5

% Initialise number of iterations

AVAVAVaVaVaVaVaVaWaVaVaVaVaVaVaVsVaVsVaVsVaVaVaVsVaVsValsVays¥a 0%%%% % %%

k=1;
% Initialise logging vectors

E=zeros(1,k_max);
optE=zeros(1,k_max);

% Initialise tabu list

tL=zeros(1,n-1);

% Initially, let the optimal X be equal to the init ial estimate of x
optX=X

% Loop

while (k<=k_max)

% Update tabu list

tL=tL-(tL>0);

% Go through neighbourhood looking for
% best allowed solution

currc=optc;
for j=1l:in-1
if (tL(j)==0)
m=n-1
XFlg = -2
while XFlg ~=1
indeks = round(rand*m)
if indeks==
rand( 'state’ ,sum(100*clock))
indeks = round(rand*m)+1
if indeks==m+1

indeks=m
end
end
if X(indeks)==1
X(indeks)=0
elseif  X(indeks)==0
X(indeks)=1
end
% Fix bit string if image is allocated to more than one time-
window
for i=1:n-2
for s=in-2
if s~=i & viewno(s)==viewno(i)
if  X(s)==1 & X(i)==1
h=rand
if h>=0.5
X(s)=0
else
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X(i)=0
end
end
end
end
end

% Determine if the bit string represent a feasible
% sequences
a=[2:n]
b=satno(2:n,1)’
c=X.*b
for r=1:nosats
for i=1:n-1;
if c(i)==
d(i,n=1;
else
d(i,r)=0;
end
end
end
f=[1 X]
for r=1:nosats
e=d(;,n"
rte{r}=nonzeros([1 e.*a 1])'
end
celldisp (rte)
[TC,XFlg,out] = rteTC(rte,C,cap,twin,[]
if XFlg~=1
continue
else
tmpc=-sum(f.*value")
tmpX =X
end
end;
if (tmpc<currc)
currc=tmpc;
tmpj=j;
end
end
end

% Update X with best solution from its neighbourhoo
X=tmpX
% Log current status

E(k)=currc;
optE(k)=optc;

% Indicate that this permutation is invalid for
% L iterations

tL(tmpj)=L;

% If a globally better solution is found,
% update the corresponding variables

if (currc<=optc)
optc=currc;
optX=tmpX;
end
k=k+1;
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end
E
optE
optc
optX
celldisp (rte)
toc
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Code for SimulanSat.m

%Find an initial feasible route of n-1 vertices.(X,

tic
global n TW g Q value C cap twin st satno viewno nosats
k_max=10000
alpha=0.9999
T_0=100
newc=0
optc=0
tmpX=zeros(1,n-1)
XFlg = -2
while any (XFlg ~=1)
rand( 'state’  ,sum(100*clock))
S
for i=1l:n-1
g=rand;
if g<=0.5
v=0;
X=[Xv];
elseif g>0.5
v=1;
X=[XVv];
end
end
% Fix bit string if image is allocated to more than
for i=1:n-2
for s=in-2
if s~=i & viewno(s)==viewno(i)
if  X(s)==1 & X(i)==1
rand( 'state’ ,sum(100*clock))
h=rand
if h>=0.5
X(s)=0
else
X(i)=0
end
end
end
end
end

a=[2:n]
b=satno(2:n,1)'
c=X.*b
for r=l:nosats
for i=1:n-1;
if c(i)==
d(i,n=1;
else
d(i,n=0;
end
end
end
f=[1 X]
for r=1:nosats
e=d(:,n";
rte{r}=nonzeros([1 e.*a 1])'
end
celldisp (rte)
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[TC,XFlg,out] = rteTC(rte,C,cap,twin,[])
if any (XFlg ~=1)
continue
else
optc=-sum(f*value)
end
end

%%%%%% %

%% %% %% %% %% %% %% %% %% %% %% %% % % %% %% %% %% %
% Initialise temperature

T=T_O;
% Initialise logging vectors

E=zeros(1,k_max);
optE=zeros(1,k_max);
Cost=zeros(1,k_max);

% Initially, let the optimal X be equal to the
% initial estimate of x

OptX=X;

% Now calculate the cost of the initial tour. This is
% our initial old cost and our initial optimal cost

oldc=optc;

% Initialise number of iterations
k=1;

% Loop

while (k<=k_max)

% Find a solution in the neighbourhood

m=n-1
XFlg = -2
while any (XFlg ~=1)
indeks = round(rand*m)
if indeks==0
rand( 'state’ ,sum(100*clock))
indeks = round(rand*m)+1
if indeks==m+1
indeks=m
end
end
if X(indeks)==1
X(indeks)=0
elseif  X(indeks)==0
X(indeks)=1
end
% Fix bit string if image is allocated to more than one time-
window
for i=1:n-2
for s=iin-2
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if s~=i & viewno(s)==viewno(i)
if  X(s)==1 & X(i)==1

rand( 'state’ ,sum(100*clock))

h=rand
if h>=0.5

X(s)=0
else

X(i)=0
end

end
end
end
end

a=[2:n]
b=satno(2:n,1)'
c=X.*b
for r=1:nosats
for i=1:n-1;
if c(i)==r
d(i,n=1;
else
d(i,n=0;
end
end
end
f=[1 X]
for r=1:nosats
e=d(;,n"
rte{r}=nonzeros([1 e.*a 1])'
end

celldisp (rte)
[TC,XFlg,out] = rteTC(rte,C,cap,twin,[])
if any (XFlg ~=1)
continue
else
newc=-sum(f.*value')
tmpX=X
end
end;
% If this is a better solution, select it

if (newc<=oldc)
oldc=newc;
X=tmpX;

% If in addition this is the optimal solution found

if (newc<=optc)
optc=newc;
OptX=tmpX;

end

% If this is an inferior solution, select it with a
% probability

else
r=rand;
if (r<exp((oldc-newc)/T))
oldc=newc;
X=tmpX;
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Cost(k)=1;
end
end

% Log current status

E(k)=oldc;
optE(k)=optc;

% Update temperatur
T=alpha*T,;
% Now increment k

k=k+1;

end
E
optE
optc
OptX
celldisp (rte)
toc
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Code for GeneticSat.m

function  [X,FVAL,REASON,OUTPUT,POPULATION,SCORES] =

%% This is an auto generated M file to do optimiz
Algorithm and

% Direct Search Toolbox. Use GAOPTIMSET for defa
structure.

tic

%%Fitness function

fitnessFunction = @Satfitness;

%%Number of Variables

nvars = 249;

%Start with default options

options = gaoptimset;

%%Modify some parameters

Geneti cSat
ation with the Genetic

ult GA options

options = gaoptimset(options, 'PopulationType' , 'bitString' );
options = gaoptimset(options, ‘Generations' ,100);

options = gaoptimset(options, 'StallTimeLimit' ,Inf);

options = gaoptimset(options, '‘Crossoverkcn' ,@crossoverspecial2);
options = gaoptimset(options, ‘MutationFcn' { @mutationgaussian 1 1 });
options = gaoptimset(options, 'Display’ , 'offt);

options = gaoptimset(options, 'PlotFcns' { @gaplotbestf });

options = gaoptimset(options, ‘CreationFcn’ ,@SequenceBuilder);

%%Run GA
[X,FVAL,REASON,OUTPUT,POPULATION,SCORES] =
ga(fitnessFunction,nvars,options);

toc
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Code for Satfitness.m

function  z = Satfitness(x)
global nTW g Q value C cap twin st satno viewno nosats
X

Optz=0;
Optx=x;
Viewfeas= zeros(n-1);
% If the same image is taken more than once the seq uence is infeasible -
% return
for i=1:n-2
for j=1:n-2
if j~=i & viewno(j)==viewno(i)
if x()==1 & x(j)==1
Viewfeas(i,j)= 1
end
end
end
end
Viewfeas;
if any (Viewfeas ==1)
z=Inf;
return
% Determine if the proposed sequences are feasible and calculate the
% fitness value
else
a=[2:n];
b=satno(2:n,1);
C=X.*b;
for k=1:nosats
for i=1:n-1;
if c(i)==k
d(i,k)=1;

for k=1:nosats
e=d(:,k)";
rte{k}=nonzeros([1 e.*a 1])'
end
celldisp (rte)
[TC,XFlg,out] = rteTC(rte,C,cap,twin,[])
if any (XFlg ~=1)
z=Inf;
else
z=-sum(h.*value");
end
end
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Code for crossoverspecial2.m

function  xoverKids =

crossoverspecial2(parents,options,GenomelLength,Fitn essFcn,unused,thisPopula
tion)

%CROSSOVERSCATTERED Position independent crossover function.

% XOVERKIDS = CROSSOVERSCATTERED(PARENTS,OPTIONS;ENOMELENGTH, ...
% FITNESSFCN,SCORES, THISPOPULATION) creates the ¢ rossover children
XOVERKIDS

% of the given population THISPOPULATION using th e available PARENTS.
% In single or double point crossover, genomes th at are near each other
tend

% to survive together, whereas genomes that are f ar apart tend to be

% separated. The technique used here eliminates t hat effect. Each gene
has an

% equal chance of coming from either parent. This is sometimes called
uniform

% or random crossover.
%

% Example:

% Create an options structure using CROSSOVERSCA TTERED as the crossover
% function

%  options = gaoptimset('CrossoverkFcn' ,@crossov erscattered);

% Copyright 2003-2004 The MathWorks, Inc.
% $Revision: 1.9.4.1 $ $Date: 2004/08/20 19:48:0 8%
global nTW g Q value C cap twin st satno viewno

% How many children to produce?
nKids = length(parents)/2;

% Allocate space for the kids
xoverKids = zeros(nKids,GenomelLength);

% To move through the parents twice as fast as thek ids are
% being produced, a separate index for the parents is needed
index = 1;

% for each kid...
for i=1:nKids
% get parents
rl = parents(index);
index = index + 1;
r2 = parents(index);
index = index + 1,

% Randomly select half of the genes from each paren t
% This loop may seem like brute force, but it is tw ice as fast as the
% vectorized version, because it does no allocation
for j=1:GenomelLength
if (rand > 0.5)
xoverKids(i,j) = thisPopulation(rl,j);
else
xoverKids(i,j) = thisPopulation(r2,j);
end
end
%Customization to repair children that violate sing ularity constraint
for j=1:n-2
for k=jin-2
if k~=j & viewno(k)==viewno(j)
if xoverKids(k)==1 & xoverKids(j)==1
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h=rand
if h>=0.5

xoverKids(k)=0
else

xoverKids(j)=0
end

end
end
end
end
end
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APPENDIX D: EXAMPLE OF GENETIC ALGORITHM
OUTPUT

Figure D-1 below is a typical example of the reswlbtained for each of the test
cases. The particular test case is for a constellatf six satellites subject only
to the minimum set of constraints (constraint Gréyp The figure shows the
best and average value obtained for the objectimetion for each of the 100

generations consisting of a population of 20 sohdi
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Figure D- 1: Sample of the graphic results for ayipical computer run
showing best and mean fitness values obtained foaeh of the 100

generations in a solution population comprising 2@hdividuals.

Note that the fitness value improves steadily diiergenerations with no sense

of stagnation. This is typical of the results obéal.

The table below contains an example of a typicdlng of the results for the
same test case shown in Figure D-1. It shows stés”,rte {1 } though
rte {6} , as a vector of time-window numbers that makesthg imaging
sequence for the particular satellite. Next it shaosix values for thexFlg
parameter, the six ones denoting that each ofitheesjuences or “routes” are
feasible. The elapsed time for the 100 generatisrdisplayed next before the

final genotype of the solution is displayed asraby vector of size 249
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rte{1} =
Columns 1 through 12

1 2 22 32 58 59 62 6AlL 74 75 76
Columns 13 through 24

83 94 101 104 109 110 115 1380 142 144 166
Columns 25 through 32

175 183 196 203 210 213 231 1

rte{2} =

Columns 1 through 12

1 4 5 7 11 13 24 281 43 46 47
Columns 13 through 24

51 53 70 73 100 105 107 1125 126 128 135
Columns 25 through 36

146 152 158 163 164 165 176 1285 212 220 223
Columns 37 through 41

226 233 235 238 1

rte{3} =

Columns 1 through 12

1 20 39 48 52 56 57 617 82 85 103
Columns 13 through 24

108 111 113 114 121 123 127 1B37 145 149 150
Columns 25 through 36

153 156 159 161 167 172 177 1847 190 194 201
Columns 37 through 39

224 241 1

rte{4} =

Columns 1 through 12

1 9 12 18 21 35 38 480 67 79 87
Columns 13 through 24

88 93 95 99 112 116 131 1334 147 160 169
Columns 25 through 34

170 181 193 199 221 232 234 2223 1
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rte{5} =

Columns 1 through 12

1 15 16 19 30 33 54 58 72 78 90
Columns 13 through 24

118 122 124 129 136 139 148 1838 173 180 185
Columns 25 through 36

191 197 204 206 208 217 219 2227 228 229 236
Columns 37 through 40

240 245 248 1

rte{6} =

Columns 1 through 12

1 3 8 14 23 28 29 336 37 42 49
Columns 13 through 24

60 65 66 69 91 92 98 1280 157 162 174
Columns 25 through 36

182 186 188 189 192 195 198 2P02 214 218 237
Columns 37 through 38

247 1

XFlg =

Elapsed time is 149.000000 seconds.

ans =

Columns 1 through 12

111 1 0 1 1 1® 1 1 1
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Columns 13 through 24

1 1 1 0 1 1
Columns 25 through 36

1 0 1 1 1 1
Columns 37 through 48

11 1 1 1 1
Columns 49 through 60

11 1 1 1 1
Columns 61 through 72

11 1 1 1 1
Columns 73 through 84

1 1 1 1 1 1
Columns 85 through 96

0 1 1 0 1 1
Columns 97 through 108
1 1 1 1 0 1
Columns 109 through 120
11 1 1 1 1
Columns 121 through 132
1 1 1 1 1 1
Columns 133 through 144
1 1 1 1 1 1
Columns 145 through 156
11 1 1 1 1
Columns 157 through 168
11 1 1 1 1
Columns 169 through 180
1 0 1 1 1 1
Columns 181 through 192
1 1 1 1 1 1
Columns 193 through 204
1 1 1 1 1 1
Columns 205 through 216
1 0 1 0 1 O

Columns 217 through 228
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1 1 1 1 1 1
Columns 229 through 240
o 1 1 1 1 1
Columns 241 through 249

1 1 0 1 0 1
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