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ABSTRACT  

Satellite Scheduling Problems (SSP) are NP-hard and constraint programming and 

metaheuristics solution methods yield mixed results.  This study investigates a new version of 

the SSP, the Satellite Constellation Time-Window Optimization Problem (SCoTWOP), 

involving commercial satellite constellations that provide frequent earth coverage.   

The SCoTWOP is related to the dual of the Vehicle Routing Problem with Multiple Time-

windows, suggesting binary solution vectors representing an activation of time-windows.  

This representation fitted well with the MatLab® Genetic Algorithm and Direct Search 

Toolbox subsequently used to experiment with genetic algorithms, tabu search, and simulated 

annealing as SCoTWOP solution methods.  The genetic algorithm was most successful and in 

some instances activated all 250 imaging time-windows, a number that is typical for a 

constellation of six satellites. 
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1 INTRODUCTION AND MOTIVATION 

1.1 General 

A number of different problems involving the optimization of the use of either 

satellite resources only, or a combination of ground station and space satellite 

resources, have collectively become known as Satellite Scheduling Problems 

(SSP).  The SSP has lately received more attention due to the increasing 

commercial exploitation of earth observation (EO) satellite imagery.  Previously 

the purview of security and scientific communities, the commercial demand for 

imagery is fuelled by the spread of newly declassified technology that makes 

high-resolution images available for general use.  The demand for this imagery 

has grown to the point where it easily surpasses supply, creating a need to 

optimise the use of the scarce space and ground resources used to produce earth 

observation imagery.  

A survey of literature has shown that the term “Satellite Scheduling Problem” 

denotes a class of related problems rather than a single problem.  The class of 

problems are also not necessarily “scheduling” problems in the sense that the 

word is normally used in operations research, although they are all at least 

related to this kind of problem.  Different kinds of SSP arise depending on the 

object of optimization.  Most frequently the objective is to optimize imaging 

operations of the satellites, i.e. the space resources or so called “space segment”.  

A related problem has the objective of optimizing the activities of receiving and 

control stations, i.e. the “ground segment” that receive data from, and send 



12 

commands to the satellites.  Both these kinds of SSP have to deal with the hard 

constraints imposed by orbit geometry and the rotation of the earth and are 

therefore very similar, to the extent that they are sometimes combined in a single 

problem.  

The focus of this dissertation is on the first kind of SSP, i.e. optimizing satellite 

imaging operations, and more specifically, on a new variant of this problem that 

arises when the imaging operations of a number of identical satellites that are 

orbiting as a constellation in the same orbit plane have to be optimized.  In the 

past, problems that involve optimizing the imaging activities of a number of 

satellites have been investigated but these satellites were most often of different 

types and in different orbits.  The commercial demand for, and myriad uses of, 

satellite imagery have lead entrepreneurs to the idea of constructing purpose-

built commercial constellations of identical satellites that will cover areas of 

interest at suitably frequent intervals.  In an effort to reflect more clearly the true 

nature of problem, we term the SSP applicable to constellations, the Satellite 

Constellation Time-Window Optimization Problem and will accordingly be 

using the acronym SCoTWOP.  We retain however the less precise but more 

commonly used SSP as acronym when referring to the problem of optimizing 

satellite imaging operations in general. 

The SSP has been  proven to be NP-complete (Barbulescu et al. (2004)), and 

since its inception in the military and scientific spheres, optimization attempts 

have primarily focussed on heuristic techniques of various kinds.  On another, 

more practical tack, the problem has been viewed as over-constrained i.e. having 

no or very few feasible solutions.  The focus has therefore been on constraint 

satisfaction techniques to try and find at least one feasible solution or if not, to 

maximise the number of constraints satisfied.  Both the optimization and 

constraint satisfaction strategies have met with varying degrees of success in 

practical systems. 

Genetic algorithms have been employed with mixed success for finding good 

solutions to the SSP.  As with many genetic algorithm applications, the challenge 

is to find a suitable representation of a solution to the problem in the form of 
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some genotype.  A rather obvious and intuitive way of representation is to 

allocate a number to each image that has to be taken, and to represent a feasible 

sequence of imaging events as a genotype comprising an ordered subset of these 

image numbers.  However, the benefit of a constellation of satellites in the same 

orbit plane is their collective higher coverage rate and frequent revisit period.  

This means that there is often more than one opportunity to image the same spot 

on the earth within a given time frame, whether by different satellites or the same 

one.  This means that an image can no longer be represented by a single number 

making the representation of solutions as a relatively simple genotype no longer 

feasible. 

1.2 Concepts in earth observation satellite operati ons   

A brief overview of EO satellite operations is provided below as background to 

the SSP.  More information can be found in Wertz et al. (1999) and an informal 

description of the global SSP problem is provided by Verfaillie et al. (2002). 

A typical EO satellite orbits the earth in Low Earth Orbit (LEO) at a speed of 

about seven km/s at an altitude of 400 to 1200 km.  The duration of each orbit is 

about 90 to 100 minutes, resulting in approximately 14 to 15 orbits in a 24-hour 

period.  Most of these satellites are in a slightly elliptical orbit, with an orbit 

plane inclined at about 8 degrees from the pole axis.  This near-polar orbit is 

designed to be sun-synchronous so that the satellite maintains a constant 

orientation with respect to the sun.  While the satellite is orbiting the earth, the 

earth itself is of course rotating, so that the area of the earth beneath the satellite 

is constantly changing.  Figure 1-1 and Figure 1-2 illustrate the orbit geometry of 

a typical sun-synchronous orbit in three and two dimensions respectively. 
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Figure 1-1: A Three Dimensional View of a Satellite in Sun-synchronous 

Orbit around the earth showing the Near Polar Orientation of its Orbit 

Plane (Copyright © CRISP, 2001) 

 

  

Figure 1-2: A Two Dimensional View of the earth showing the Ground 

Trace of a Satellite in Sun-synchronous Orbit (Copyright © Keldysh Institute 

of Applied Mathematics, Russian Academy of Sciences, 2004) 

Many optical satellites typically use a movable mirror to scan the area of the 

earth up to some distance away from its nadir to provide adequate field of view.  

The scanning motion can be parallel to the flight direction (push-broom 
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scanning) or orthogonal to the line of flight (whisk-broom scanning).  Newer 

satellites are much more agile and can point its instrument by changing its 

attitude through a rolling or pitching motion, a manoeuvre known as slewing.  

Modern synthetic aperture radar (SAR) satellites employ electronic focussing to 

steer the pulses from their phased array antennas in the range (cross-track) 

direction.  

Depending on the field-of-view of the satellite’s sensor, this means that every 

point on the earth’s surface can be accessed within a finite period.  This revisit 

period can vary from around 20 to 30 days on the equator to only hours near the 

poles.  This means that, in order to be able to acquire daily images of the same 

geographical area, a constellation of satellites is required.   

The satellite receives detailed instructions, on which activities to perform during 

each orbit, in the form of a schedule transmitted to it via radio signal from its 

controlling ground station.  This can only happen when the satellite is in view of 

the ground station and is therefore not feasible on every orbit.  Rather, 

instructions for a number of upcoming orbits are up-linked at the same time.  

Similarly, the satellite cannot always downlink imagery data obtained by its 

sensor in real time.  The imagery data obtained during a number of orbits is 

recorded on-board and down-linked when the satellite comes into view of a 

ground station.  Depending on the altitude of the satellite and the location of the 

ground station, time-in-view available for up and down-link averages about ten 

minutes.  

From the above, it should be evident that actual imaging may only be possible 

for 30 minutes or less during each orbit.  This may be restricted further by 

limitations on on-board data storage capacity, limits on electrical power or the 

capability of the satellite to get rid of dissipated heat. 

Potential customers usually specify the image/s they require in terms of the 

geographical co-ordinates of its boundaries, a delivery time, resolution and, if 

required, type of processing.  Before accepting a customer’s order, these 

requirements are checked for executability.  If executable, the image requested 
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are translated into basic imaging operations that suit the satellite’s sensor and 

operational characteristics before being converted into commands to the 

spacecraft. 

An area that needs to be imaged is only in view of the satellite for limited time 

periods and then only during some orbits.  The frequency of imaging 

opportunities depends on the nature of the orbit and the latitude of the target 

area.  Due to the near-polar geometry of a sun-synchronous orbit, areas near the 

Arctic and Antarctic can be imaged during every orbit while an area on the 

equator may only be in view occasionally.  Since satellite orbits repeats 

periodically, it follows that over a period of weeks or months, there will be 

several opportunities to acquire an image of a specific target. 

Usually a customer for an image has a delivery date in mind.  The customer may 

want the image within 24 hours, a number of days or even weeks.  Obviously, 

the longer the lead-time a customer provides the satellite operator, the more 

opportunities there will be to acquire the images.  As time goes by, and the due 

date grows nearer, the number of imaging opportunities for a particular target 

obviously diminishes and it becomes more urgent to include that image in an 

upcoming imaging schedule. 

On the other hand, some customers may require images of the same area at 

regular time intervals, e.g. daily, weekly, and monthly; to be able to monitor 

change – the monitoring of ice thickness in the Arctic during winter to guide 

shipping comes to mind.  The image requests for customers like these obviously 

have to be included in every relevant imaging schedule.  In short, any set of 

image acquisition orders for an upcoming number of orbits, may contain a mix 

of orders, ranging in urgency from high to low, and this mix makes the 

optimization process more tractable. 

If more than one EO satellite are launched in such a way that they are phased in 

the same orbit plane, the resulting constellation of satellites can obviously 

provide better customer service by affording more frequent imaging 

opportunities of the same area on earth.  There are numerous constellations in 
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geosynchronous orbit but, at time of writing, constellations of commercial EO 

satellites are still being planned or in early stages of commissioning.  For 

example, the RapidEye constellation, one of the first purely commercial earth 

observation constellations, was launched on August 29, 2008, and has a primary 

purpose of providing daily coverage of Western Europe.  

If we call the period between successive up / down-link opportunities an imaging 

cycle (consisting of say five orbits), we illustrate the SCoTWOP in the entity-

relationship diagram shown in Figure 1-3. 

 

Figure 1-3: Entity-Relationship Diagram illustratin g the various entities 

associated with a satellite image and the relationship between them  
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The diagram in Figure 1-3 indicates that every image has the following entities 

associated with it: 

• A single duration  (the time it takes to acquire the image); 

• A predecessor (an image taken immediately before it – in the case of the 

first image of the planning cycle, the ground station is the predecessor); 

• A set-up time (required to re-orientate the instrument – perhaps through 

slewing of the spacecraft)  

•  A value; 

• One or more time-windows during which it would be feasible to acquire the 

image (i.e. when it is in view of the instrument) during the planning period; 

• An earliest and latest starting time for each feasible time-window; 

• A delivery or due date. 

Note that: 

• Set-up times depend on the specific predecessor and by implication also on 

the specific time-window; 

• The value of an image is dependent on priority , which is determined by 

how many feasible time-windows are left before the image is due for 

delivery; 

• Every time-window belongs to only one orbit  

• Every orbit belongs to only one spacecraft in the constellation 

• An imaging period span several upcoming orbits of one or more spacecraft 

• Valid predecessors of an image belong to the same set of orbits (and hence 

the same spacecraft) 
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1.3 Research objective 

The research reported on in this dissertation was aimed at finding answers to the 

following research question: 

Investigate the feasibility and efficacy of a selection of metaheuristic algorithms 

to find global solutions for the commercial imaging scheduling problem for a 

constellation of multiple identical satellites intended to provide frequent 

coverage of the same geographical area.  

By way of explanation the following should be emphasized: 

• The focus is on the scheduling of commercial satellites that form part of the 

capital of a private business venture with the aim of making a profit.  This is 

to be contrasted with scheduling of scientific or military satellites that 

usually belong to government institutions although, in some cases, their 

imagery may also be sold;   

• The emphasis is on scheduling the activities of a constellation of  identical 

or similar spacecraft  that are phased along the same orbit, sharing the same 

orbit plane  and having a common purpose: that of providing more frequent 

coverage of the same geographical area than a single satellite; 

• The idea is to find optimal or near optimal global solutions for the 

constellation as a whole since optimal solutions for individual satellites do 

not necessarily translate to optimal solutions for the constellation; 

• The problem is restricted to imaging activities as these are the source of 

revenue.  Other on-orbit activities such as orbit maintenance will not be 

considered, and;  

• The interest is on the performance of the different metaheuristics in finding 

solutions for the SSP. 



20 

1.4 Study outline 

The rest of this dissertation addresses the following: 

• Chapter 2 provides and overview of the state of the art in solutions for the 

SCoTWOP in the form of a review of current literature on the subject. 

• Chapter 3 is devoted to a detailed analysis of the specific problem under view 

and culminates in a mathematical presentation of the problem. 

• The implementation of the genetic algorithm is described in Chapter 4. 

• Chapter 5 presents the results obtained, draws conclusions from the results, 

and discusses potential avenues for further study. 
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2 LITERATURE REVIEW  

A review of available literature indicates that the SSP has been receiving 

attention from researchers for the past ten years or so.  This chapter examines the 

findings of a review of publications with reference to the following: 

• Types of SSP; 

• Characterization or class of problem;  

• Solution methods employed, and; 

• Justification of the research objective. 

2.1 Types of SSP 

2.1.1 Different perspectives on the SSP  

As mentioned in Chapter 1, the term Satellite Scheduling Problem does not refer 

to a single problem but in fact to a family of related problems that are all linked 

through the inviolable constraint of satellite orbit geometry. A satellite system 

for observation of the earth typically consists of one or more satellites in low 

earth orbit and one or more ground stations that receive image data from these 

satellites and/or transmit command and control data to the satellites. There are 

therefore two major categories of SSP:  
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• The first type of SSP pertains to the scheduling of the imaging activities 

of the satellite/s, i.e. it attempts to answer the question:  Which images 

should be taken and when should they be taken? The activities that are 

scheduled happen in space. 

• The second type of SSP focus on the activities of the ground station and 

attempts to answer the question: With which satellites should I 

communicate to up-link/down-link information and when should this 

communication happen? The activities that are scheduled are interactions 

between the ground and space. 

Attempts have also been made to combine these two problems into a single 

problem that seeks to obtain an integrated schedule encompassing both ground 

and space activities. A third type of problem, though fairly rare, involves the 

scheduling of multiple instruments on the same satellite. This only applies to 

large satellites like SPOT-5 that have a number of different sensors on board that 

cannot necessarily be used at the same time. The SSP then needs to answer the 

question: Which instrument should I use to obtain a specific image and when 

should I use it? Alternatively, the question may be: Given that I have to use two 

sensors at the same time to acquire different images, which one should have 

priority? 

Normally the generation of schedules for satellite activities take place on earth in 

a ground station. The schedule for upcoming orbit/s is prepared, tested for 

feasibility and safety, translated into spacecraft commands and then up-linked to 

the spacecraft when it passes overhead. There is, however, some research being 

done on moving at least some of the scheduling activities to the spacecraft itself. 

The problem remains an SSP of the first kind but the computing power to solve 

it moves from the earth to the spacecraft, giving the spacecraft greater autonomy. 

The idea is to make the problem dynamic in the sense that the spacecraft, given 

its knowledge of its own state and the images already taken, can perhaps make 

better informed decisions as to when to take images in response to new requests. 

This approach to the problem is also referred to as “automation of the scheduling 
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process”. The survey below makes it clear that all these kinds of SSP have been 

topics of research in the past. 

Barbulescu et al. (2002), (2004) and Howe et al. (2000) deal with the second 

type of SSP when they view the problem from the perspective of the Satellite 

Control Network of the United States Air Force.  The network coordinates 

communications between 16 antennas, located at nine ground stations around the 

earth, and more then 100 satellites.  User requests typically specify a time-

window and duration for communication with a specific satellite.  Similarly, 

Burrowbridge (1999) addresses the problem of scheduling multiple low altitude 

satellite communication contacts across one or more space tracking networks.  

The objective is to maximize the number of satellite contact opportunities.  

Dungan et al. (2002), Frank et al. (2001) and Globus et al. (2002), (2003),   

(2004) address the problem of coordinating the imaging activities of NASA’s 

growing fleet of EO satellites.  This is an example of the first kind of SSP. Past 

practices of scheduling imaging activities on different satellites, or on different 

instruments on the same satellite independently of one another, required the 

manual coordination of observations by communicating teams of mission 

planners.  Given the increasing number of satellites and the increasing demand 

for observation time, this approach is no longer viable, suggesting the need for a 

centralised scheduling function relying on automated techniques. 

Pemberton (1999) and also Pemberton and Galiber (2000) view the broader 

problem of scheduling all operations on-board a satellite, and hence include not 

only instrument operations (sensor activities) in the scheduling problem, but also 

platform operations (e.g., maintaining the health, orbit and status of the 

spacecraft), and communications operations (between satellites or between the 

satellite and a ground station).  This is therefore an instance of combining the 

first and second kind of SSP.  In addition to EO satellites they also address the 

scheduling of operations of telecommunications and broadcast satellites.  

Dimitrov and Galiber (1998) also define satellite mission planning as the 

problem of mapping tasks (observation, communication, downlink, control 
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manoeuvres, etc.) to resources (sensor satellites, relay satellites, ground stations, 

etc.).  Again, this combined the first and second kind of SSP.  

Harrison and Price (1999) also have the first kind of SSP in view when they 

restrict themselves to the scheduling of a single Synthetic Aperture Radar (SAR) 

equipped satellite and seek to find out how many images can be acquired in a 

single (three minute) overpass over a typical area of interest and whether the 

scheduling process can be automated given a lead time of between ten and 

fifteen minutes.  Ruan et al. (2005) and Cordeau and Laporte (2005) also address 

the single satellite problem without confining themselves to a specific type of 

satellite.  Lemaître et al. (2000) also confine themselves to imaging operations 

but point to the fact that the greater flexibility of newer agile (body pointing) 

satellites, with their three degrees of freedom,  makes them more difficult to 

schedule than the older mirror scanning satellites with their single degree of 

freedom. 

Kitts (1994) addresses satellite scheduling from a completely different 

perspective: that of moving the scheduling function at least partially from the 

ground to the spacecraft itself i.e. an approach of automation of the scheduling 

process as alluded to earlier.  The context is that of a number of satellites 

operating within a cross-linked constellation.  This real-time control strategy 

merges the payload scheduling function, traditionally considered a high-level 

planning problem, with low level actuator control.  This is a special instance of 

the first kind of SSP in which the scheduling function has been moved from the 

ground to spacecraft itself. 

Khatib et al. (2003) also propose providing the satellite with a limited on-board 

scheduling capability.  The idea is to allow the satellite to dynamically update 

up-linked schedules generated on the ground to allow for consideration of actual 

conditions or unforeseen changes in priority.  Similarly, Pemberton and 

Greenwald (2002) advocate dynamic updating of up-linked static schedules to 

accommodate contingencies and recounts details of a number of potential 

approaches to effect this. 
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Vasquez and Hao (2000), (2001) investigate the problem of scheduling the 

imagining of a single satellite with multiple instruments such as SPOT-5, which 

is the latest in the series of SPOT satellites operated by France. 

Muccio et al. (1999) take the position of a commercial satellite company that 

would like to find an optimal schedule for a constellation of satellites.  They 

restrict themselves to imaging operations (the first kind of SSP) and solved the 

problem for a constellation of three identical satellites.  

2.1.2 Commercial satellite operations 

It is evident from the literature surveyed that the commercial aspects of satellite 

operations have received little attention.  Most of the work in the field has 

focussed on military or scientific satellites.  Examples of work in the military 

field are that of Barbulescu et al. (2002), (2004) and Howe et al. (2000) on the 

scheduling of the Satellite Control Network of the United States Air Force.  

NASA’s focus has been primarily on scientific applications as the work of 

Dungan et al. (2002), Frank et al. (2001) and Globus et al. (2002), (2003),   and 

(2004) attests.  

Outside the United States, many satellites often have a dual purpose: a primary 

one of providing scientific or strategic imagery to government institutions, and a 

second, commercial objective to defray some of the costs of the government 

investment.  The work of Vasquez and Hao (2000), (2001) on scheduling the 

various instruments aboard SPOT 5 applies to this kind of situation.  The SPOT 

series of satellites were built and paid for by the French Space Agency CNES, 

but are operated for commercial purposes by the company SPOT Image.  

Similarly, the Radarsat satellites are paid for by the Canadian Space Agency but 

operated for profit by the private company Radarsat International.  A similar 

arrangement is in place for the EROS satellites of Israel.  While the purveyance 

of archived imagery is a prime source of income for these organisations, it is fair 

to assume that new strategic image acquisitions for government users will take 

precedence over commercial requests for new imagery.  This aspect often makes 
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the scheduling problem less of a purely commercial one and more a matter of 

juggling externally imposed priorities.  

The literature survey indicate that only  Muccio et al. (1999) placed themselves 

in the position of a purely commercial, if fictitious, satellite company that would 

like to find an optimal schedule for a constellation of  three satellites.  This is 

perhaps not surprising seeing that purely commercial satellites have only recently 

come to the fore.  The first high resolution satellite launched for purely 

commercial purposes was IKONOS (USA) in 1999, with QuikBird (USA) 

following two years later. 

2.1.3 Constellations of satellites 

For the purpose of this dissertation a distinction will be made between a fleet of 

satellites and a constellation of satellites.  The term fleet will refer to a grouping 

of satellites, the orbits of which are not necessarily geometrically coordinated, 

and which do not share the same purpose although their activities may be 

coordinated for some reason or other.  In general, the different satellites in the 

fleet may have different capabilities so that it may not be possible to allocate the 

same imaging task to different satellites.  In contrast, the term constellation will 

be used for a number of satellites that share a common purpose and the orbits of 

which are geometrically coordinated to provide a specific rate of earth coverage.  

The satellites in the constellation are generally identical in capabilities so that all 

of them can perform the same imaging tasks. 

Given this definition, the literature survey reveals that few, if any, instances of 

earth observation constellations exist.  In contrast, constellations of geostationary 

satellites, that provide communication and global positioning services, are more 

common.  An example of a fleet of satellites is the group of satellites operated by 

the United States Air Force which is being controlled by their Satellite Control 

Network.  This fleet is alluded to in the work of  Barbulescu et al. (2002), (2004) 

and Howe et al. (2000), but it is important to note that they focus on scheduling 

the activities of a network of ground stations for this fleet rather than the 

activities of the fleet itself (the second kind of SSP).  The work is however still 
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relevant in that the scheduling problem also has to deal with the complexity 

induced by satellite orbit geometry. 

The subject of the work of Dungan et al. (2002), Frank et al. (2001) and Globus 

et al. (2002), (2003), and (2004) is on the scheduling of NASA’s diverse and 

large satellite fleet rather than on purpose built constellations. 

At time of writing only a few groupings of EO satellites may conceivably qualify 

for the term commercial constellation: France’s individual SPOT-2, SPOT-4, 

and SPOT-5 satellites are operated as a constellation of satellites, as are EROS A 

and B of Israel.  However, these satellites do not share the same capabilities, nor 

were they launched closely together or simultaneously.  In a certain sense they 

may almost be called accidental constellations since they came into being 

because the older satellites, like SPOT-2, simply lasted longer than expected.  

Since the operating life of a satellite is typically seven years, a true constellation 

can only be ensured if the satellites are launched within a reasonable time frame 

or even simultaneously on the same launch vehicle.  If, for example, the 

constellation is to be comprised of seven satellites, each with a design life of 

seven years and they are launched at a rate of one per year, the full constellation 

may in practice be difficult to achieve, since the first satellite will have only one 

year of its life left by the time the last one is launched, leaving little margin to 

compensate for launch failures and project delays 

At time of writing, the only real example of this type of constellation, built for 

purely commercial purposes, is the five satellite RapidEye constellation of 

Germany which has been launched in August 2008.  The only other existing 

constellation that comes close to this is the five satellite Disaster Monitoring 

Constellation (DMC) collectively owned by the Algerian, Nigerian, Turkish, 

British and Chinese governments and which has been constructed to provide 

emergency earth imaging for disaster relief.  Spare available imaging capacity of 

the DMC is sold under contract, but commercial schedules will obviously be pre-

empted by the dictates of disaster relief. 
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2.2 Characterisation of the SSP in literature 

Most researchers refrain from categorizing the SSP more specifically than an 

example of an oversubscribed scheduling problem, meaning there are more 

requests for a resource than can be satisfied, so that some requests remain 

unfulfilled.  Given that it is impossible to schedule all the activities, the focus is 

on scheduling as many of the urgent activities as possible in a given time period 

by assigning appropriate weights to each activity.  Activities relating to less 

urgent unfulfilled requests are then scheduled for a later time period.  Notably 

this approach is taken both by those working from the ground station 

perspective, like Barbulescu et al. (2004), as well as those that view the problem 

from the satellite perspective like Globus et al. (2004)  

There is also general agreement that this type of problem is intractable.  Muccio 

et al. (1999) point out that one formulation for the SSP is the machine shop 

scheduling formulation which involves integer assignment variables, real start 

time variables, and potentially thousands of other variables and constraints.  As a 

large machine shop scheduling problem the SSP can be classified as NP-

complete. 

Pemberton and Galiber (2000) emphasize the most obvious difference between 

traditional scheduling problems and the SSP: The fact that the resources (i.e., the 

satellites) are orbiting the earth places an additional set of constraints on when a 

task can be executed.  In agreeing that the SSP satellite-scheduling problems are 

usually over-constrained, they approach it as a constraint-optimization problem 

rather than a constraint-satisfaction problem.  The term over-constrained simply 

means that there are few (if any) feasible solutions when the objective is to 

schedule all requested activities.  The constraint-satisfaction approach is 

therefore to try and find at least one feasible solution without regard for 

optimality.  Another approach is to seek solutions that maximize the number of 

constraints that are satisfied.  This is in essence the constraint-optimization 

approach which relies on the concept of soft vs. hard constraints.  Hard 

constraints cannot be violated whereas there may be some leeway to violate soft 

constraints.  In the case of the SSP, constraints that are imposed by orbit and 
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earth geometry are hard, whereas the customer’s expected delivery time for an 

image may be somewhat flexible.  

Vasquez and Hao (2000) provides a Knapsack formulation for the SSP following 

Bensana et al. (1996) who employed a Multi-Dimensional Knapsack 

formulation.   

2.3 Solution methods employed for the SSP 

Predictably, the methods employed for the SSP range from exact integer 

programming methods for smaller problems to stochastic search methods and 

constraint programming for larger ones.  

Harrison and Price (1999) developed a partial enumeration method that exploited 

time constraints to prune the search tree to make a smaller problem more 

tractable.  Similarly, Pemberton (1999) employed priority segmentation and then 

used branch-and-bound to solve sub problems.  Muccio et al. (1999) also 

considered the problem in two parts, solving first the allocation and then 

scheduling problem through linear and integer programming.  

Among those that investigated metaheuristics, Wolf and Sorenson (2000) found 

that their genetic algorithm offers considerable improvement when compared to 

a look-ahead algorithm, which in turn, performed better than a simple priority 

dispatch method.  Barbulescu et al. (2004) found genetic algorithms and squeaky 

wheel optimization both successful at scheduling the Air Force Satellite Control 

Network.   

Globus et al. (2004) compared thirteen scheduling algorithms including variants 

of stochastic hill climbing, simulated annealing, the genetic algorithm, squeaky 

wheel optimization, and iterated sampling.  They found that simulated annealing 

outperformed the other methods. 

Among those that employed constraint programming approaches are Pemberton 

and Galiber (2000) and Dungan et al. (2002).  Lemaître et al. (2000) used two 

quite different methods: a constraint programming framework, and a local search 
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method.  They found that each one has its own advantages: the former being very 

flexible, while the latter gives better performance. 

The fact that scheduling activities to date have primarily focussed on single 

satellites and fleets of diverse satellites rather than true constellations makes its 

easy to understand why the focus has been on finding feasible solutions rather 

than optimal or near optimal ones.  Hence the preference for constraint 

programming methods by some researchers.  In fact, in a fleet of satellites there 

may not be much scope for optimisation at all.  Since the satellites often do not 

have the same purpose or capabilities, they can not necessarily be employed for 

the same imaging tasks and a specific task can therefore not be switched between 

satellites to find a better scheduling solution.  

In this case satellites can be treated as more or less independent when it comes to 

task allocation and the primary objective of the scheduling problem seems to be 

to find a solution where access to common scarce resources such as a ground 

station has to be scheduled.  Again we refer to the work of Barbulescu et al. 

(2002), (2004) and Howe et al. (2000) on the Satellite Control Network of the 

United States Air Force and the work of  Dungan et al. (2002), Frank et al. 

(2001) and Globus et al. (2002), (2003), (2004) on NASA’s fleet of EO 

satellites.  The same is often true for a single satellite with multiple instruments 

as pointed out by Vasquez and Hao (2000), (2001) for SPOT-5.  In this case 

there is not so much a choice as to which instrument to use for which task, but 

rather when each instrument should be allowed to have access to spacecraft 

resources such as power. 

The advent of commercial constellations that are operated to maximise profit, 

opens up new optimisation opportunities, since the focus is on acquiring as many 

images as possible in a given time period.  The acquisition of some images may 

be more easily deferred to later planning periods.  Since the satellites in the 

constellation are identical, and since they can, at least at higher latitudes, cover 

the same ground within a short space of time, there may also be more than one 

opportunity to collect imagery of the same area in the same planning cycle.  As a 

result the problem is no longer over constrained and one or more feasible 
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solutions may exist, at least until demand overwhelms the extended supply 

offered by the constellation.  There may therefore be opportunities for 

optimization in choosing which satellite to task with acquiring a specific image 

and when the image should be taken.  Since these choices create a number of 

feasible solutions and the scheduling problem for commercial constellations is 

therefore not over constrained, the use of metaheuristic techniques becomes a 

more attractive proposition.  

Even so, metaheuristics have been applied to the SSP by several researchers, 

sometimes with conflicting results.  Notable among these is the fact that 

Barbulescu et al. (2004) found genetic algorithms and squeaky wheel 

optimization both successful at scheduling the Air Force Satellite Control 

Network whereas Globus et al. (2004) found that simulated annealing 

outperformed genetic algorithms and other methods when it comes to scheduling 

the NASA satellite fleet.  The fact that these two groups view the problem from 

different perspectives, i.e. ground segment vs. space segment scheduling, may 

account for the different experience but it needs pointing out again that both 

problems share the constraints imposed by orbit geometry that make the SSP 

distinctive.  This difference remains therefore intriguing.  

Unfortunately most articles do not say much about the specific ways in which 

solutions were encoded as genotypes.  Wolfe and Sorensen (2000) report a 

genetic approach that is novel in that it uses two additional binary variables, one 

to allow the dispatcher to occasionally skip an imaging task in the queue and 

another to allow the dispatcher to occasionally allocate the worst position to the 

imaging task.  The resulting schedules seem to improve on the results of other 

methods they investigated. 

2.4 Justification of the research objective 

Given the literature overview above, it is evident that the problem of finding 

optimal schedules for a constellation of identical EO satellites has not received 

much attention in the past.  The reason for this is that such constellations are 

mostly still in the planning stage.  It is also evident that scheduling efforts in the 
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past have not been widely successful and that very little of the research in this 

field has found its way into practical scheduling systems.  One reason for this is 

that in practice operational imperatives simply preclude any real optimization 

effort – there is simply not enough time. 

To understand this, one may consider the case of a single satellite in near-polar 

orbit, with a ground station at high latitude so that the satellite is in contact with 

the ground station during almost every orbit.  Typically there would then be 90 

minutes or so between contacts with the satellite.  During this period a schedule 

for the upcoming orbit is generated, tested, and codified into a set of commands 

for the satellite.  Given the high premium placed on the safety of the satellite, it 

is not unreasonable for the satellite operator to demand that the schedule be 

finalized at least one hour before it is uplinked.  This leaves time to ensure that 

demands resulting from the schedule would not place the satellite in any danger, 

for example: requiring impossible or risky manoeuvres.  The duration of the 

contact with the satellite is typically ten minutes or so, leaving approximately 20 

minutes out of every 90 minute orbit to find an optimal schedule. 

The question may well be asked why these schedules are not prepared well in 

advance, say days before they are to be executed.  The answer lies in the fact that 

new requests to confirm executability of potential image acquisitions  arrive 

continuously at a rate of about 3000 per day and that about 500 of these result in 

confirmed orders every day.  Furthermore, images that have already been taken 

may turn out to be defective in some way and may have to be rescheduled.  The 

result is that scheduling operations take place on a full-time basis and that there 

is little or no time to optimize schedules.  Satellite operators therefore merely 

seek to maintain a schedule in which each image confirmed request has been 

allocated a feasible timeslot.  Any scheduling algorithm that is intended to find 

optimal or near optimal solutions will therefore have to be very fast. 

Metaheuristics such as genetic algorithms that deal with a population of 

solutions are much more effective when they can deal with large populations of 

feasible solutions.  If there are only a few feasible solutions, a lot of time is 

wasted on evaluating infeasible solutions in order to try and maintain a viable 
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population with enough genetic variability to complete a specified number of 

generations without stagnating.  It follows that the higher the number of feasible 

solutions, the faster the genetic algorithm, all other factors being equal.  The 

concept of a constellation of identical satellites in the same orbit plane not only 

enables the satellite operator to acquire and sell more images, it also affords 

more opportunities to obtain the same image.  Depending on the latitude of the 

area of interest, it may be possible to acquire an image of the same spot on the 

earth a number of times by more than one satellite, albeit from different angles.  

The increased number of imaging opportunities for the same image should 

translate into a higher number of feasible solutions and therefore the potential for 

a faster algorithm.  

However, while increasing the number of feasible solutions, the potential to 

acquire an image of the same area on multiple occasions complicates the 

representation of solutions in terms of genotypes that can be manipulated by the 

algorithm.  In ensuring that an image is taken only once, the representation of the 

solution must now encode the information pertaining to a sequence of images 

each having multiple potential imaging time-slots which, in turn, belong to 

different satellites.  The challenge is therefore to represent solutions in a form 

that is simple to manipulate while preserving the more comprehensive 

information it encodes. 

In the light of the above it seems that the objective of determining which 

metaheuristic (among a selection of those employed for the SSP by other 

researchers) will be quick and effective at finding solutions for the scheduling of 

a constellation of satellites (i.e. the SCoTWOP), is a worthwhile endeavour.  Of 

course a number of metaheuristics will have to be tested in order to provide a 

testing environment, and this literature overview suggests that the tabu search, 

simulated annealing, and genetic algorithm metaheuristics are prime candidates.  

2.5  Conclusion 

Different perspectives have yielded a number of different but related problems 

that all carry the SSP moniker and there is no consensus on a standardised or 
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canonical form for the problem.  Characterizations of the problem in terms of 

more general classes of optimization problems also vary but there is a general 

consensus that the problem is NP-complete.  In general it appears that constraint 

programming has been the favourite solution method for larger problems.  The 

efficacy of results obtained though metaheuristics appears to depend on the type 

of problem. 

Research into the problem of scheduling the imaging operations of constellations 

of commercial satellites using metaheuristics such as a genetic algorithm appears 

to be a worthwhile endeavour because:  

• The first truly commercial constellations have only recently been launched; 

• The nature of these constellations should make them more amenable to 

optimisation efforts and therefore perhaps more suitable for the application 

of metaheuristics, and 

• The results obtained thus far with a variety of metaheuristics appear not to 

be conclusive, yielding mixed results as to their relative efficacy. 

• Encoding of solutions in the form of a genotype for use in metaheuristics 

like a genetic algorithm becomes very challenging when multiple imaging 

opportunities exist for the same spot on the earth. 
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3 PROBLEM ANALYSIS 

3.1 Problem context 

The kind of problem of interest here involves a constellation of at least two but 

probably not more than ten, identical satellites that share the same orbit plane.  

The purpose of such a constellation would be to cover the same geographical 

area more frequently than is possible with a single satellite.  This higher rate of 

coverage is sought after by customers who would like to monitor change over a 

certain geographical area.  An example of this kind of use is the need to monitor 

the extent of damage caused by natural disasters.  Whereas a particular area 

could be covered by a single satellite over a period of days, the constellation 

makes it possible to cover the same area within a day or even a few hours.  The 

orbit of the satellites in the constellation would typically be sun-synchronous and 

the satellites would be phased equidistantly around the orbit so that they 

collectively provide coverage of the whole earth within a period of days.  The 

nature of a sun-synchronous orbit results in a situation where areas of the earth 

closer to the poles will be covered more frequently than those closer to the 

equator.  In addition, the number of satellites in the constellation will also 

determine the number of imaging opportunities of the same area over a given 

time period.  

Customers order images from the satellite operator and agree on an acceptable 

lead-time, the length of which will factor into the price of the image.  During the 

lead-time, which may be anything up to 120 days, there may be numerous 
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opportunities or time-windows when the area to be imaged may be imaged by the 

satellites in the constellation.  Every satellite in the constellation completes 14 to 

15 orbits every 24 hours.  During some orbits the satellite comes within line-of-

sight of the ground station and then commands may be up-linked to the satellite 

while raw imagery data and telemetry are down-linked to the ground station. 

Among the commands up-linked to the satellite is a series of imaging 

instructions telling the satellite where to point the imager and when to turn it on 

and off during the upcoming number of orbits when it is not in contact with the 

ground station.  It is the determination of series of imaging instructions that 

forms the heart of the SCoTWOP.  

We assume the following: 

• The number of orders waiting to be imaged exceeds the daily imaging 

capacity of the constellation and the satellite operator needs to prioritise the 

orders in terms of when they should be filled, and  

• The satellite operator has at his disposal both orbit propagator and satellite 

simulator software that allows him to determine time-windows and 

instrument orientations for each image for each satellite. 

• The operator has already accounted for other on-board activities such as 

warm-up periods, heat dissipation, orbit maintenance, etc. so that all that 

remains is to schedule the imaging activities.      

3.2 The objectives of optimisation 

The objective of the commercial satellite operator is to maximize income on the 

investment in the constellation of satellites.  This can be achieved if the imaging 

activities for each planning period, i.e. the period between successive ground 

station-to-satellite contacts, are such that the constellation as a whole acquires 

those images that yield the highest value given the constraints.    
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The term value is not necessarily used in the strictly monetary sense i.e. the price 

of the image.  Rather it is an appropriate weighing factor that incorporates 

aspects such as price, urgency, the number of imaging opportunities left and, in 

the case of optical satellites, the probability of cloud cover over the area to be 

imaged.  Value should thus be seen as an indicator of the importance or priority 

that the satellite operator may attach to an image and this value may change over 

time depending on the specific planning period under consideration. 

The obvious primary objective for optimisation is therefore to maximise the 

value of image data acquired over the planning period under consideration.  Note 

that it does not make sense to consider a longer-term objective, since new orders 

will probably arrive while the current planned series of imaging instructions is 

being executed and may make any long term schedules obsolete.  Some 

researchers would however add a secondary objective to that of maximising the 

value of image data, such as minimising the slewing of the spacecraft required to 

acquire the image data. 

While it is possible to cope with the problem of multiple objective functions by, 

for example, assigning relative weights to the objectives, we note that time taken 

up by slewing leaves less time for imaging and thus can be handled by 

appropriate constraints. 

The objective function is therefore: 

Maximise the value of image data acquired by the constellation over the 

upcoming planning period. 

3.3 The constraints imposed on optimisation 

We assume that the images considered for the upcoming planning period have 

been selected from a larger set on the basis that they meet the orbit and visibility 

constraints.  Furthermore, some constraints, such as those dealing with priority 

or cloud cover probability can be effectively incorporated by suitable 

adjustments in the value of the image.  For example, if weather forecasts indicate 

a high probability of cloud cover for an image, the value of that image should be 
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adjusted such that the image is forced out of the solution.  Similarly, if the 

upcoming orbit is the last or only opportunity to acquire a specific image, the 

value of the image should be adjusted such that it is forced into the solution.  It 

stands to reason that some common sense is required here, for it doesn’t matter 

how high the priority of an image is, if it cannot be imaged because of excessive 

cloud cover then increasing the priority cannot produce the image 

We will now consider the constraints that need to be taken into account 

explicitly. 

• On-board memory.  The total amount of memory required by the images 

scheduled to be taken by a satellite during the planning period should not 

exceed the capacity of its on-board Solid State Recorder (SSR). 

• Visibility.   An image can only be imaged if it’s within the sensor’s field of 

view so that imaging should start and finish within a specific time-window.  

Note that there can be more than one time-window per image per satellite. 

• Sequence.  Since satellites only move in one direction around the earth it 

has to take images in the sequence that it encounters them. 

•  Non-interference.  Two images cannot be taken at the same time by the 

same satellite. 

• Singularity.   Every image should only be taken once during the planning 

period.  

3.4 Mathematical model for the SCoTWOP for commerci al 
constellations 

The realisation that optimisation problems from diverse disciplines can be 

expressed with similar mathematical models and that most problems can in some 

way be related to classes of standard problems had an organising influence on 

operations research.  In keeping with this spirit, superficial examination of the 

SCoTWOP reveals that it too shares characteristics with well-known problems: 
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• The objective function and on-board memory constraint, taken together 

forms the classic Knapsack Problem. 

• The remaining constraints relating to visibility, non-interference and 

singularity, reminds strongly of Machine Scheduling Problems.  

Researchers such as Bensana et al. (1996) and Vasquez and Hao (2000) have 

recognised the knapsack characteristics of the problem, and most researchers 

seem to agree that it is a kind of scheduling problem without really questioning 

the truth of this characterization.  However, while some of the constraints seem 

to justify this view, the problem does not really have the hallmarks of a classic 

scheduling problem.  In the classic scheduling problem the task is typically to 

find a sequence of time slots during which a set of activities are to be performed 

and the objective is to complete all the activities before their respective 

deadlines.  In the SCoTWOP, the sequence of the time-windows during which 

images can be taken is determined by orbit configuration and the sequence is 

therefore fixed.  All that can really be decided is which of these time-windows to 

use for imaging, with the objective of taking as many images as possible or to 

maximize the value of the images.  We therefore note that the SCoTWOP has 

more in common with what may be regarded as a version of the dual of the 

classic scheduling problem.  This is the reason for referring to “time-window 

optimisation” rather than calling it a “scheduling” problem.        

It would be more useful if the SCoTWOP could be related to a single type of 

standard problem rather than being viewed as a hybrid knapsack-scheduling 

problem.  Careful examination reveals that this is indeed possible: the 

SCoTWOP is strongly related to the well known Vehicle Routing Problem 

(VRP), specifically to a variant of the VRP known as the Vehicle Routing 

Problem with Multiple Time-windows (VRPMTW).  To see this, we need to 

digress and examine the VRPMTW more closely before we return to the 

mathematical formulation of the SCoTWOP. 
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3.4.1 The vehicle routing problem with multiple tim e-windows 

The Vehicle Routing Problem (VRP) encompasses a whole class of problems in 

which a set of minimum-cost routes must be determined for a fleet of vehicles to 

deliver goods to a set of geographically dispersed customers with known 

demands.  Vehicle routes originate and terminate at one or more depots.  The 

VRP was recognised as early as 1959 by George Dantzig as a central problem in 

the fields of transportation, distribution and logistics and has become a well-

known integer-programming problem, which falls into the category of NP Hard 

problems.  The problem is considered to lie at the intersection of the well-studied 

Traveling Salesman Problem (TSP) and the Bin Packing Problem (BPP).  

Common variants of the VRP are: 

• The Capacitated VRP (CVRP) in which every vehicle has a limited capacity, 

and; 

• The VRP with time-windows (VRPTW) in which every customer has to be 

supplied within a certain time-window. 

The variant of the VRPTW with more than one time-window per customer is 

known as the VRP with Multiple Time-windows or VRPMTW. 

Normally the objective of the VRPMTW is to minimize the set-up cost of the 

size of the vehicle fleet (number of vehicles) plus the sum of travel time and 

waiting time needed to supply all customers in their required hours.  The 

following formulation of the VRPMTW is adapted from that of De Jong et al. 

(1996).  The notation is derived from that of Desrocher et al. (1988): 

• G  is a graph with a set of vertices V and a set of arcs A  so that ( ),G V A= ; 

• N  is the set of ncustomers, with { }1, ,N n= K and i  is the index; 

• V is the set of vertices so that { }0V N= ∪ where 0 corresponds to the depot; 

• A is the set of arcs { }( ) { }( )0 0A N I N= × ∪ ∪ × ; where: 
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• I  is the set of arcs connecting the customers,I N N⊆ × ; 

• { }0 N×  is the set of arcs from the depot to the customers, and 

• { }0N ×  is the set of arcs from the customers to the depot. 

• Z  is any proper subset of the set of vertices V so that its complement 

Z V Z= − ; 

• { }1, ,
i iF w= K  is the set of time-windows associated with customer i ; 

• f  is the index for the time-windows of each customer i , so that
i

f F∈ ; 

• ifTW is time-window f of customer i , with ,if if ifTW e l =    such that 

if ife l< and 1if ifl e +< ; 

• iq  is the  positive demand of customer i N∈ ; 

• Q is the capacity of each of the (identical) vehicles; 

• ijc  is the cost associated with arc ( ),i j A∈ ; where 0ic includes the fixed 

vehicle cost.  This enters the fixed costs of the vehicles into the objective 

function; 

• ijt  is the travel time along arc ( ),i j A∈  (the cost of which is included in ijc  

above); 

• id  is the duration of time to serve the customer i N∈ ; 

• C  is the cost for one unit of waiting time. 

The variables of the problem are the following: 

• iS  is the time instant that service starts for customer i N∈ ; 

• iW  is the waiting time at customer i N∈  if the vehicle arrives early; 
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• iy  is the load of the vehicle when it arrives at customer i N∈ ; 

• ijx  is a binary variable equal to 1 if arc ( ),i j A∈  is used by a vehicle, 0 

otherwise; 

• ifu  is a binary variable equal to 1 if customer i N∈  is served in time-

window 
i

f F∈ . 

Normally the objective of the VRPMTW is to minimize the number of vehicles 

and the sum of travel time and waiting time needed to supply all customers in 

their required hours.  Since fixed vehicle cost is accounted for in the arc cost 0ic  

of arcs leaving the depot, and travel time are accounted for in all the arc costs, 

ijc , the VRPMTW problem can be formulated as: 

Minimize  

 
( ),

ij ij i
i j A i N

c x C W
∈ ∈

+∑ ∑  (1) 

subject to: 

1ij
j V

x
∈

=∑  i N∀ ∈   (2) 

1ji
j V

x
∈

=∑  i N∀ ∈  (3) 

1
i

if
f F

u
∈

=∑  i N∀ ∈  (4) 

i i

if if i if if
f F f F

u e S u l
∈ ∈

≤ ≤∑ ∑  i N∀ ∈  (5) 

( )ij i i ij i j
i V

x S d t W S
∈

+ + + =∑  j V∀ ∈  (6) 

( )ij i i j
i V

x y q y
∈

− =∑  j V∀ ∈  (7) 
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1ij
i Z j Z

x
∈ ∈

≥∑∑           Z V∀ ⊂                  (8) 

i iq y Q≤ ≤  i N∀ ∈  (9) 

{ }0,1ijx ∈  ( ),i j A∀ ∈  (10) 

{ }0,1ifu ∈  , ii N f F∀ ∈ ∈  (11) 

0iS ≥  i N∀ ∈  (12) 

0iW ≥  i N∀ ∈  (13) 

Constraints (2), (3), and (10) ensure that every customer is visited exactly once.  

As a consequence no two vehicles ever use the same arc, ensuring that as many 

of the arcs (0, i) are used as there are vehicles, and that the fixed costs of all 

vehicles are counted.  Constraints (4), (5), and (11) ensure that the service of 

each customer starts within one of its time-windows, and constraints (6) and (13) 

ensures that a vehicle has enough time to travel from customer i to customer j. 

Constraint (8) is a sub-tour elimination constraint that is retained here even 

though constraints (5) and (6) usually serve to eliminate sub-tours in practical 

applications.  Constraints (7) and (9) ensure that the loads of the vehicles are 

feasible when they arrive at a customer.  Note that constraints (5) and (9) can 

easily be written as two inequalities each and that the result would be a mixed 

integer program in standard form that can readily be solved exactly for small 

instances. 

Many formulations of the VRPMTW do not attempt to minimize waiting time 

explicitly, or apply less rigid bounds on the time-windows.  In this case the 

objective function reduces to:  

 

Minimize  

 
( ),

ij ij
i j A

c x
∈
∑  (1a) 
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In keeping with this formulation, constraint (6) changes to: 

( )ij i i ij j
i V

x S d t S
∈

+ + ≤∑  j V∀ ∈  (6a) 

 

3.4.2 The analogy between the VRPMTW and the SCoTWO P 

At first glance, the analogy between the VRPMTW and the SCoTWOP is at once 

evident and, at least superficially, fairly obvious.  Apart from the objective 

function, which will be discussed later, the correspondence set out in Table 3-1 

below seems logical. 

Table 3-1: The Correspondence between the VRPMTW and the SCoTWOP 

VRPMTW Entity SCoTWOP Entity 

Customers Images 

Routes (Sequence of customers) Sequence of images / imaging 

opportunities 

Vehicles Satellites 

Demands Image memory requirement 

Depot Ground Station /s 

Distance (travel time) between 

customers 

Set-up (slewing) and travel time 

between images 

Vehicle capacity Satellite SSR capacity 
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VRPMTW Entity SCoTWOP Entity 

Customer service time-windows Image time-windows 

 

This analogy between the VRPTW and SCoTWOP can be misleading because 

there are subtle but important differences between the two problems: 

• In the VRPMTW, the time-window constraint is imposed by the customer on 

the vehicles, but in the SCoTWOP the opposite is true: the times-windows are 

imposed by the satellite (vehicle) on the images (customers).  The 

consequence of this is that the satellites in the SCoTWOP, unlike vehicles in 

the VRPMTW, are not necessarily interchangeable since their time-windows 

for the same image are not the same.  In VRPMTW parlance it would mean 

that two vehicles (no constraints) cannot possibly visit the same customer at 

the same time. 

• In the graph of the VRPMTW the distance between any two customers is 

normally the same regardless of direction of travel.  In contrast, the 

constraints imposed by satellite orbits in the SCoTWOP results in a situation 

where the distance between two image locations A and B is not the same 

when travelling from A to B than when traveling from B to A. Once the 

satellite has passed location A on its way to B, it cannot return to location A 

without orbiting the earth at least once.   

• Due to the nature of satellite orbits, the distance between image locations, and 

therefore travelling and slew time, is not constant but varies according to the 

satellites’ progress through its orbit cycle.  In graph-theoretical terms it means 

that there can be more than one arc connecting a pair of images.  This concept 

is illustrated in Figure 3-1 below.   
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Figure 3-1: Although ground distances between image targets remain 

constant, travel and slewing distances may vary with the satellite’s progress 

through its orbit cycle.  

• The differences in objectives of the VRPMTW and the SCoTWOP extend 

beyond the fact that the one seeks to minimize cost while the other seeks to 

maximise value.  More important is the fact the VRPMTW has a fixed 

number of customers that all have to be serviced by the minimum number of 

vehicles, whereas the SCoTWOP seeks to take as many images as possible 

given a fixed number of satellites.  More about this later. 

In addition to the important differences noted above, there is also a number of 

other, perhaps less significant differences that relate to slightly different 

interpretations of parameters and constraints that appear in both the VRPMTW 

and the SCoTWOP.  As such they present no additional difficulties and do not in 

themselves define the unique characteristics of the SCoTWOP.  These 

differences include the following: 
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• The time-windows in the VRPMTW apply to the start time of the service 

only and do not bound the completion time of the service.  In the SCoTWOP 

imaging has to start and end within the bounds of the time-windows 

otherwise the image won’t be in sight anymore.  The time-window 

constraint in the SCoTWOP is a hard constraint whereas time-window 

constraints in the VRPMTW are often considered to be soft. 

• Since satellites always travel forward in fixed orbits, their travel time is not 

really a factor because the satellite travels past an image target whether it 

intends to acquire the image or not.  This also obviates the need to account 

for waiting time since the satellite determines the time-windows. 

• Since the number of satellites is fixed there is no need to account for a fixed 

cost component. 

• In the SCoTWOP, the satellites pick-up loads at service locations, whereas 

in the VRPMTW vehicles deliver loads at service locations.  

3.4.3 Mathematical formulation of the SCoTWOP 

Given the similarities and differences between the VRPMTW and the 

SCoTWOP pointed out above, the formulation previously given for the 

VRPMTW can now be adapted to the specific needs of the SCoTWOP.  The key 

to this adaptation is that the set of vertices A of graph G should be associated 

with the time-windows of images rather than the images itself.  In other words, 

the correspondence between the VRPMTW and the SCoTWOP should be 

between customers and time-windows rather than between customers and 

images.  The arcs in the graph would then correspond to the non-imaging time 

periods between imaging time-windows.  In this way there will still be a 

maximum of one arc connecting the members of any pair of vertices (time-

windows) in subset I of the graph G.   

The characteristics of each image, such as value, duration, memory requirement 

etc. can be associated with each of its time-windows.  Similarly, parameters like 

the setup (slew) time should be associated with the arcs between time-windows 



48 

rather than the arcs between images.  Furthermore, we should account for the 

fact that the number of satellites (vehicles) is fixed and that time-windows 

belong to satellites rather images.  For this purpose we introduce the index k to 

denote the k-th member of the set of identical satellites P.  

We also need to account differently for the setup time associated with each arc 

(time interval) between time-windows.  During this time interval the satellite 

may have to slew or set up its instrument to acquire the next image.  Since this is 

to be discouraged, we associate a penalty with the time spent slewing but not 

with any remaining travelling time if slewing is complete before the next time-

window starts.  To account for the highly asymmetric nature of the graph we also 

associate a large time penalty with the arcs connecting a specific time-window 

and those that preceded it in time.  This is justified by the fact that the spacecraft 

has to circle the earth at least once before being able to acquire an image of the 

area that it has already passed.  In other words, we allow the satellite to go 

“back” in time but only at the penalty of associating with this move a very large 

“setup” time.  In this way the graph G is asymmetric but at least bi-directional 

with two arcs, a “long setup time” one and a “short setup time” one, connecting 

vertices associated with the same spacecraft.  We account for this penalty by 

taking the maximum of the slew or setup time and the travel time.  In the case of 

travelling “forward” the cost of the travelling time left after slewing (if needed) 

is zero. 

Using similar notation as presented in 3.4.1  the SCoTWOP can now be defined 

as follows: 

• M is the set of  m  images with index f , so that f M∈ ; 

• P is the set of p  satellites with index k , so that  k P∈ ; 

• N is the set of n time-windows with index i , so that i N∈ ; 

• kN  is the set of imaging time-windows associated with satellite k , with 

{ }1 11, ,N n= K , { }2 1 21, ,N n n= + K , . . . , { }1 1, ,p p pN n n−= + K .  It is 
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assumed that no two time-windows are identical.  This is in any case highly 

unlikely but can be achieved by slight changes to the starting time of an 

offender.  As a result the time-windows indexed by 1, , PN NK form a 

categorical system with union the set of time-windowsN .  

• fO is the set of imaging time-windows associated with image f , with 

{ }1, ,f fO n= K ; 

• ( ),k k kG V A= is a graph with a set of vertices kV and a set of arcs 

kA associated with satellite k ; 

• kV is the set of vertices representing time-windows associated with satellite 

k so that { }0k kV N= ∪ where 0 corresponds to the time-window associated 

with ground station contact; 

• kA is the set of arcs representing time intervals between time-windows 

associated with satellite k so that { }( ) { }( )0 0k k k kA N I N= × ∪ ∪ × ; where: 

o k k kI N N= × is the set of arcs corresponding to the time intervals 

between time-windows that belong to the same satellite  k ; 

o { }0 kN× is the set of arcs corresponding to the time intervals 

between the ground station contact time-window and the imaging 
time-windows of satellite k , and; 

o { }0kN × is the set of arcs corresponding to the time intervals 

between the imaging time-windows of satellite k and the ground 
station contact time-window. 

• ( ),G V A= is then a graph consisting of the union of  all  sub-graphs kG so 

that k
k P

G G
∈

= U with a set k
k P

V V
∈

= U of vertices and a set of arcs k
k P

A A
∈

= U ; 

• Z  is any proper subset of the set of vertices V so that its complement 

Z V Z= − ; 
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• [ ],i ie l denotes the time interval of time-window i , such that i i ie d l+ < and 

1i il e +< ; 

• id  is the duration of the imaging activity associated with time-window 

i N∈ ; 

• iq  is the  positive memory requirement for time-window i if the image 

associated with it is taken; 

• Q is the solid state recorder (SSR) capacity of each satellite k assuming that 

they are identical; 

• ijt  is the slewing or manoeuvring time required by a satellite if it has to take 

image j immediately after image i .  This time period has a finite value in 

cases where the same satellite can take both images during the planning 

period.  In cases where image j precedes image i , ijt  assumes an infinite 

value;  

• R is a large positive number used for the penalty time associated with every 

arc connecting a time-window with one already passed or belonging to a 

different satellite; 

• ijc is the time penalty associated with the time interval between two time-

windows  i and j where  ( )max ,ij ijc t R= ; 

• iv is the value of the image associated with time-window i N∈ , considered 

constant for this planning period; 

The variables of the problem are the following: 

• iS is the time instant that imaging starts during time-window i N∈ ; 

• ix  is a binary variable equal to1 if an image is taken during time-window 

i N∈ , 0 otherwise; 
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• ( ), ,ij ky i j A∈  is a binary variable equal to1 if satellite k P∈ uses time-

window j to take an image directly following on taking an image during 

time-window i without using an intervening time-window, i.e. 1ijy =  if 

( ), ki j A∈ is used (by satellite k P∈ ), otherwise 0ijy = . 

The SCoTWOP can be formulated as follows: 

Maximize:     

 i i
i N

v x
∈
∑  (14) 

Subject to: 

1
f

i
i O

x
∈

≤∑  f M∀ ∈  (15) 

( )i i i i i ix e S x l d≤ ≤ −  i N∀ ∈  (16) 

k

i i
i N

q x Q
∈

≤∑  k P∀ ∈  (17) 

( )i i ij ij j
i N

S d c y S
∈

+ + ≤∑  j N∀ ∈  (18) 

1ij
i Z j Z

y
∈ ∈

≥∑∑           Z V∀ ⊂                                                (19) 

{ }0,1ix ∈  i N∀ ∈  (20) 

{ }0,1ijy ∈  ( ),i j A∀ ∈  (21) 

0iS ≥  i N∀ ∈  (22)

  

Constraint (15) ensures that every image is taken at most once for all the time-

windows associated with it.  Constraint (16) ensures that imaging starts and ends 

within one of the time-windows associated with that image.  Constraint (17) 
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ensures that the capacity of each satellite’s recording device is not exceeded.  

Constraint (18) ensures that the satellite has enough time to slew between any 

pair of time-windows used by it.  It also ensures that satellites only move in the 

forward direction in time and that attempts to move backward in time or 

excessive slewing is impossible because of the large value that ( )max ,ij ijc t R=  

assumes since R  is very large.  The value ofijc , together with constraints (16) 

and (19) usually serve to eliminate sub-tours, but sub-tours are in principle still 

possible in cases where there is a large overlap between time-windows with short 

imaging durations.  Constraint (19) is the usual sub-tour elimination constraint 

that is retained here for that purpose.    

3.5 Conclusion 

The VRPMTW appears to provide a useful paradigm for analysing the nature of 

the SCoTWOP.  Instead of viewing the SCoTWOP as a hybrid problem that 

incorporates characteristics of a number of standard problems, the VRPMTW 

makes it possible to relate the SCoTWOP to a single kind of standard problem.  

The SCoTWOP may in fact be seen as a variant of the dual of the VRPMTW.  

To see this consider the following: 

• The VRPMTW seeks to minimise the total cost of delivery, given it has to 

deliver to all of a fixed number of customers within time-windows dictated 

by the customers. 

• The dual of the VRPMTW would seek to maximise the number of 

customers serviced (value), given it has a fixed number of routes (i.e. 

number of vehicles) to perform the service and a fixed set of time-windows 

dictated by the routes.    

If we apply the correspondence set out in Table 3-1, we would replace customers 

with images and vehicles with satellites in the statement about the dual of the 

VRPMTW above.  The result would be a statement that would conform to the 

SCoTWOP.  As explained in the next chapter, the similarities between the 

VRPMTW and the SCoTWOP assisted greatly in arriving at a very useful way of 
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encoding potential solutions to the SCoTWOP in a manner that was amenable to 

the three metaheuristics investigated.  
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4 SOLUTION METHODOLOGY 

This chapter describes the nature of heuristics and metaheuristics in general 

before providing details of the three metaheuristics used in this study, namely: 

• The tabu search metaheuristic; 

• The simulated annealing metaheuristic, and;  

• The genetic algorithm metaheuristic. 

Aspects that are common to the implementation of all three techniques are 

discussed with particular reference to the way solutions are represented and 

evaluated for fitness; the common input dataset and the way feasibility of 

solutions are verified.  The software components peculiar to each method are 

discussed before the experimental procedure is outlined.  

4.1 Heuristics and metaheuristics for combinatorial  
problems 

Two of the methods employed to solve the SCoTWOP involve the use of a 

metaheuristic to guide a simpler search algorithm.  We used simulated annealing 

and tabu search.  The third heuristic used, a genetic algorithm, belong to a class 

of heuristics that is biologically inspired and includes the ALife (artificial life) 

algorithms of particle swarm optimisation and ant colony optimisation.  

Reeves et al (1993) define a heuristic as: 
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“…a technique which seeks good (i.e. near-optimal) solutions at a reasonable 

computational cost without being able to guarantee either feasibility or 

optimality, or even in many cases to state how close to optimality a particular 

feasible solution is.” 

The local neighbourhood search heuristic starts with a sub-optimal solution and 

searches a defined neighbourhood of the solution for a better one.  However, this 

strategy alone cannot be relied upon to find a global optimal solution since it 

may converge to a local optimum.  This problem may be overcome by employing 

an additional strategy, or metaheuristic, to guide the local neighbourhood search 

heuristic in its search.  Such strategies, employed by some metaheuristics to deal 

with the problem of heuristics converging to a local optimum, include the 

following: 

• Enlarging the search neighbourhood;  

• Restarting the search from different initial solutions, and; 

• Allowing uphill moves.  (We solve the SCoTWOP reformulated as a 

minimization problem.) 

The metaheuristics tabu search and simulated annealing that have been evaluated 

for solving the SCoTWOP, both allow uphill moves.  The third, a genetic 

algorithm, operates on a population of solutions and uses evolutionary strategies 

to breed consecutive generations of better (fitter) solutions.  These metaheuristics 

are discussed in more detail below. 

4.1.1 The tabu search heuristic 

The tabu search metaheuristic seeks to avoid convergence to local optima by 

declaring a limited number of recently generated solutions off-limits (tabu) for a 

number of upcoming iterations.  It does this by keeping track of recent solutions 

and/or their attributes in a dynamic memory called the “solution history” or “tabu 

list.”  Potential solutions in the current iteration that matches those in the tabu 

list are ignored, so redefining the search heighbourhood and forcing the 
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algorithm to diversify even if it means temporarily allowing a worse solution.  

The tabu list is updated after every iteration so that no solution remains on the 

list for more than a specified number of iterations (the “tabu tenure”).  The 

process ends after a specified maximum number of iterations have been reached.  

If the focus is on solution attributes rather than complete solutions “aspiration 

criteria” may be used to override the tabu tenure rule so that improved solutions 

that share attributes with those on the tabu list may be allowed. 

The implementation of tabu search for the SCoTWOP focuses on complete 

solutions and aspiration criteria are not used.  The outline of the algorithm is as 

follows: 

Generate an initial feasible solution 
Set the number of iterations and the tabu tenure 
Initialize the iteration counter and the logging ve ctors 
Initialize the tabu list 
Initially, let the optimal solution be equal to the  
initial estimate (current solution) 
WHILE number of iterations is less than the maximum :  

Update tabu list  
Find an improved feasible solution  
WHILE an improved feasible solution is not yet 
found: 

Generate a candidate solution in the 
neighbourhood through modification of the 
current solution 
Repair the solution if the same image is 
taken more than once 
Test solution for feasibility 
Determine the fitness of the new solution 

END WHILE    
Replace the current solution with the new solution 
Declare the new solution off limits for the tenure 
period 
Update the iteration counter 

END WHILE 

 

4.1.2 The simulated annealing heuristic 

The simulated annealing metaheuristic seeks to avoid convergence to local 

optima by occasionally allowing moves to worse solutions.  It mimics the 

behaviour of a metal that is slowly being cooled to promote crystal growth and 

relieve stresses.  The probability of replacing the current solution with a worse 

neighbourhood solution depends on the difference δ  between the solution 

values and on a global parameter T (called the temperature): 
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• If the new solution is worse than the current one, accept it with probability 

( ) Tp e
δ

δ
 − 
 =  

• If the new solution is a better solution that the current one, always accept it 

(meaning ( ) 1p δ = ) 

When T  is large the current solution changes almost randomly but favours better 

solutions as T  goes to zero.  The outline of the algorithm as implemented for the 

SCoTWOP is as follows: 

Generate an initial feasible solution 
Set the number of iterations and initial temperatur e 
Initialize the iteration counter and the logging ve ctors 
Initially, let the optimal solution be equal to the  
initial estimate (current solution) 
WHILE number of iterations is less than the maximum :  

Update tabu list  
Find an improved feasible solution  
WHILE an improved feasible solution is not yet 
found: 

Generate a candidate solution in the 
neighbourhood through modification of the 
current solution 
Repair the solution if the same image is 
taken more than once 
Test solution for feasibility 
Determine the fitness of the new solution 

END WHILE    
If the new solution is superior, use it to replace 
the current solution 
If the new solution is inferior use it to replace 
the current solution with a probability equal to 
e((old-new)/T)  
Update the iteration counter 

END WHILE 

4.1.3 The genetic algorithm metaheuristic 

 Genetic algorithms mimic the concept of survival of the fittest in sequential 

populations of solutions that are produced by replacing selected couples by their 

offspring (sometimes parents and other members of a generation are retained in 

the next generation) and introducing mutations. 

Solutions are encoded as genotypes and compared using a fitness function.  

During each generation a selection of solutions are paired and allowed to 

reproduce through a crossover operation.  A small portion of the parent 
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population is also allowed to change through mutation to prevent getting stuck in 

local optima.  The new generation generated through crossover and mutation 

replaces some of the solutions in the previous generation that exhibit inferior 

fitness.  The process terminates after a prescribed number of generations or some 

other stopping criteria.  The outline of the algorithm as implemented for the 

SCoTWOP is as follows: 

Set the number of iterations or other stopping crit eria 
Specify the fitness function 
Select criteria for parent selection 
Select crossover methods 
Select criteria for mutation 
Generate an initial population of feasible solution s 
WHILE the stopping criteria have not been met:  

WHILE the new generation of solutions is still 
incomplete 

Select parent solutions 
Apply crossover method 
Apply mutation criteria and method  
Test solutions for feasibility 
Determine the fitness of the new solutions 
If the new solutions are superior, use it to 
replace the same number of inferior solutions  

END WHILE    
Update the iteration counter 

END WHILE 
 
 

4.2 Common aspects of applying the three metaheuris tics  

There are several common aspects to the application of the three metaheuristics 

to the SCoTWOP.  It was convenient to represent solutions to the SCoTWOP in 

exactly the same way for all three algorithms, the feasibility of solutions were 

evaluated in the same way, and the relative merit or fitness of individual 

solutions were evaluated in the same way.  These aspects are discussed in more 

detail below. 

4.2.1 Solution representation  

Given the similarities between the SCoTWOP and the VRPMTW it seems 

natural to encode the SCoTWOP in a similar way as is common for the 

VRPMTW.  In that case a solution is typically encoded as a bit string in which a 

1 would correspond to inclusion of the image (customer) in an image sequence 
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(route) and a 0 indicating the contrary.  The length of the bit string would 

correspond to the number of images. 

However, a problem arises in the case of the SCoTWOP where an image may 

have more than one imaging opportunity (time-window) in a specific planning 

period and where time-windows are associated with the satellite (vehicle) rather 

than the customer (image).  In this case there is no longer a one-to-one 

correspondence between images and the bits in the bit string.  This makes it 

extremely difficult to represent a solution as a genotype that can be easily 

handled by the genetic algorithm and can also be easily translated into a set of 

image sequences.  The notion that the SCoTWOP is related to the dual of the 

VRPMTW as pointed out in Section 3.5, offers a way out of this problem.  The 

solution of the dual of the VRPMTW could be represented by a bit string, the 

length of which corresponds to the number of time-windows.  An occupied time-

window can then be denoted by a 1 and a 0 would similarly denote an unused 

time-window.  In this way a one-to-one correspondence can be retained making 

genotype transcription much easier.     

A solution to the SCoTWOP, termed: an “activation of time-windows” is 

therefore represented as a vector x of N binary variables, 2N −  of which 

correspond to image time-windows and the other two corresponding to the time-

windows for ground station access.  If a time-window is included in the planning 

period the corresponding variable would take the value 1 and 0 otherwise.  The 

solution vector x  is mapped to a vector containing the integers 2 to 1N −  in 

ascending order which corresponds in turn to the indexes of a row consisting of 

time-window start times in chronological order.  In other words, a solution 

vector of say, ( )0,1,1,0,0,1, ,1,0x = K , is translated through element-by-element 

multiplication with the vector ( )2,3,4, , 249K , to a vector of active time-

window indices: ( )0,3,4,0,0,7, ,246,0,248,0K , meaning that time-windows 3, 

4, 7,…, 246, 248  have been included in the solution. 
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4.2.2 Testing for feasibility  

Feasible solutions to the SCoTWOP must of course meet all the constraints: that 

of restricted on-board memory, visibility, sequence, non-interference, and 

singularity.  Each potential new solution generated by the algorithms therefore 

needed to be evaluated for its feasibility before its relative merit (fitness) could 

be evaluated.  The similarities with the VRPMTW made it possible to use 

existing MatLab® code that had originally been developed to evaluate the 

feasibility of solutions for VRP and VRPTW problems.  The utility, rteTC.m, 

that forms part of the MatLog Toolbox developed by Kay (2004), was adapted 

for the SCoTWOP application to test image sequences for feasibility.  For VRP 

type problems, rteTC.m calculates the total cost of a route ensures that time-

window constraints are not violated and calculates the starting times for each 

loading operation within the time-window.  The utility returns the following exit 

flag indicating either that the route is feasible or if not, why it is infeasible:    

XFlg = exit flag 
= 1, if route is feasible 
= -1, if infeasible due to capacity 
= -2, if infeasible due to time-windows 
= -3, if infeasible due to custom feasibility funct ion 

 

“Custom feasibility function” refers to a provision in the software for the user to 

define an additional feasibility function that implements a constraint that is 

unique to the problem of interest, in addition to the capacity and time-window 

constraints.  This option was not used for the SCoTWOP although it was 

contemplated to use it for the singularity constraint.  In the end it was thought to 

be more efficient to either repair solutions that violated the singularity constraint, 

before submitting it to rteTC.m , or if that was not possible, to declare such a 

solution as infeasible and not submitting it to rteTC.m  at all.  More 

clarification on this approach is provided in Section 4.2.3. 

Although rteTC.m is suitable for VRPMTW problems, it had to be slightly 

adapted and used slightly differently for solving the SCoTWOP.  In the case of 

the SCoTWOP, a “route” is, of course, a sequence of time-windows for a 

particular satellite.  The VRPMTW capacity constraint is the same as the on-
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board memory constraint of the SCoTWOP.  The notion of time-window 

feasibility in the case of the VRPMTW takes care of both the non-interference 

and visibility constraints for the SCoTWOP.  The VRPMTW seeks to minimise 

total cost (including vehicle cost, travel cost, and waiting cost) of a network of 

routes subject to a constraint on the maximal allowable total cost per route.  This 

constraint is required to prevent the inclusion of impractically long routes in the 

network and is represented by the maxTC parameter in rteTC.m.   In the 

SCoTWOP, the number of routes (satellites) is a given and the focus is on 

maximising the number of customers (images) per route.  This problem was 

resolved by setting maxTC to a value that will always allow feasible routes to 

pass the cost constraint test but which will cause infeasible routes to still be 

rejected.  This provides a way to enforce the sequencing constraint in the 

SCoTWOP: By setting maxTC at a value that allows large finite values but not 

infinitely large values, any sequence of images that would require the satellite to 

move “backwards”, would be excluded since the infinite cost of such an arc 

would cause maxTC to be exceeded.  

This leaves the singularity constraint to be dealt with.  In cases where a violation 

of this constraint was due to a crossover operation, this was overcome by simply 

“repairing” any solution that violated the singularity constraint before submitting 

it for feasibility evaluation by rteTC.m .  This was achieved by eliminating all 

but one of any duplicate time-windows for a particular image from the proposed 

sequence.  The specific time-window to be eliminated from a set of duplicates 

was chosen at random.  In cases where some diversity would have been lost if a 

solution was repaired, such as when it was the result of a mutation operation, the 

solution was declared infeasible and penalized in accordance with the scheme 

outlined in Section 4.2.3. 

The result of the above is that rteTC.m  could be used to enforce all but the 

singularity constraint for the SCoTWOP.  It was therefore not necessary to create 

a custom feasibility function for rteTC.m  to account for any of the constraints.  

A listing of the modified rteTC.m is included in Appendix C. 
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In several of the experiments conducted with the genetic algorithm, some of the 

constraints were artificially relaxed to evaluate their impact on algorithm 

performance.  This was achieved by appropriate adjustments to the input data 

rather than changing the code.  This aspect is discussed in more detail in Section 

4.2.4 below. 

4.2.3 Determining the fitness of solutions 

For all three algorithms the fitness of a feasible solution is determined by 

calculating the inner product:( )v x− ⋅ , where v is the vector consisting of the 

values of the images.  The fitness function thus represents the negative value of 

the objective function of the SCoTWOP.  This is necessary because the software 

has been designed to solve minimization problems as default.  In the case of the 

SCoTWOP, we therefore minimize the negative of the objective function.  For 

the genetic algorithm, the fitness function was encoded in the utility 

Satfitness.m.   

To take full advantage of the genetic algorithm’s ability to exploit inferior 

solutions to maintain genetic diversity, infeasible solutions were retained in the 

population of solutions but penalized by artificially changing the value of the 

fitness functions of infeasible solutions so that their fitness became worse.  Since 

the value of the fitness function is calculated as the negative of the objective 

function value, infeasible functions were penalized by either declaring the fitness 

function value to be infinitely positive or increasing the (negative) fitness value 

by adding a fixed percentage of the (positive) value of the objective function.  

Satfitness.m  evaluates solutions first for violation of the singularity 

constraint before submitting for further feasibility testing to rteTC.m .  

Solutions that violate the singularity constraint are immediately penalized and 

not submitted for further evaluation.  All solutions returned by rteTC.m  with 

an exit flag indicating violation of the other constraints are similarly penalized. 
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4.2.4 Input data  

The SCoTWOP input data for the evaluation of the three algorithms comprises 

four groups of six data sets, one each for the case of one through six satellites, 

for a total of 24.  The data in the datasets provides for the same, fixed number of 

250 imaging time-windows that has to be serviced regardless of the number of 

satellites in the constellation.  This correspond to the situation where the number 

of 250 time-windows can be serviced by one satellite over a period of days, by 

two satellites in about half that time, etcetera, so that imaging rate increases with 

the number of satellites until all 250 time-windows can be serviced by six 

satellites in a matter of hours.  Keeping the number of time-windows constant is 

crucial for investigating the comparative merit of the different algorithms and the 

relative impact of the different constraints.  One could, of course, increase the 

number of time-windows to be serviced as the number of satellites increases but 

this would obscure the effect of the singularity constraint that one expects to be 

more exacting as the number of satellites grows.  Keeping the number of time-

windows to be serviced at 250 therefore not only is realistic in terms of what is 

expected of constellations, but also enables comparison. 

The four groups of data sets, denoted A through D, each contains data for 250 

time-windows, the nature of which is such that the constraints on the SCoTWOP 

described in a specific group, become more restrictive than the constraints 

described in the previous group.  The input data contains some fields that are 

associated with the constraints.  Whether a particular constraint is active or not, 

depends on the value assigned to such a field.  For example, by adjusting the 

available on-board memory to a value much larger than the sum of that required 

by all images under consideration, the constraint on on-board memory is 

effectively removed without having to change the algorithm computer code.  By 

reducing the value assigned to the on-board memory field, the constraint can be 

introduced.  In this way, all constraints are always considered, but the specific 

value assigned to a limiting parameter determines whether the constraint is 

implemented or not.  This principle is implemented as follows for the four 

constraint groups A through D:  
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• Group A comprises six datasets, in which only the visibility and sequencing 

constraints are active (see Section 3.3).  The data is such that all other 

constraints are relaxed.  In other words, on-board memory is abundant, time-

windows do not overlap (no interference constraint), and there is only one 

imaging opportunity per image (no singularity constraint).  

• Group B data sets have the same constraints as Group A but also add a limit 

on on-board memory while the non-interference and singularity constraints 

are still relaxed. 

• Group C data sets add the non-interference constraint to that of Group B, i.e. 

time-windows do overlap in many cases while the singularity constraint is still 

relaxed. 

• Group D data sets represents the SCoTWOP in its complete form, adding to 

the Group C constraints the singularity constraint, which means that there 

may be several opportunities for the same image, only one of which must be 

selected.      

The four groups of datasets were used as follows: 

• Dataset D6, representing the most difficult problem in that it allows for 6 

satellites and the most stringent set of constraints, was used to compare the 

relative performance of the three algorithms; 

• All four groups of datasets were then used together with the genetic algorithm 

to investigate the influence of the types of constraints and the number of 

satellites on algorithm performance, and; 

• Finally, Dataset D6 was once again employed to investigate the influence of 

changing certain genetic algorithm parameters.    

Each dataset contains data that is typical of satellites in sun-synchronous orbit at 

an altitude of approximately 600 km with a capability to slew rapidly at about 

one degree per second.  The satellites are assumed identical in capabilities but 

phased around the same orbit plane.  The datasets were prepared in the form of 
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Microsoft Excel® spreadsheets, a format that is readable by MatLab®.  Each 

dataset provides values for the following image attributes:   

• n is the number of time-windows that have to be considered for scheduling 

during a planning period comprising a number of orbits by all satellites.  It 

includes the time-window of initial ground station access.  In all cases the 

value of  n is 250; 

• lookangle is the bore-sight angle of the imager, relative to nadir, 

associated with the image to which the time-window belongs.  The value of 

lookangle in the datasets varies between -30 and +30 degrees; 

• ld  is the image duration associated with the image to which the time-window 

belongs.  The value of ld in the datasets varies between 5 and 15 seconds;  

• TW is a pair of values, denoting the start and end times of the time-window 

for each imaging opportunity.  The duration of the time-widows in the 

datasets varies between 30 and 60 seconds; 

• q is the memory requirement for the image to which the time-window 

belong.  The value of q is 10 times that of the image duration ld  so that it 

varies between 50 and 150; 

• Q is the total on-board memory capacity of the solid state recorder on the 

satellite.  The value of Q is set as the product of a multiplier and the average 

sum of the image memory requirement of the images that can theoretically be 

acquired by a specific satellite.  After some experimentation, the value of this 

multiplier was set at 1.2 for the datasets belonging to Group A.  This amounts 

to a 20 % overcapacity in available memory which was found to be sufficient 

to ensure that the constraint is relaxed. (Recall that Group A models the 

SCoTWOP with only the visibility and sequencing constraint – all other 

constraints are relaxed.) In all other cases the multiplier was set at 0.7 after 

some experimentation meaning that on average the memory is sufficient for 

only 70% of the images.  This value was found to be sufficient to ensure that 

the constraint is active in all cases;  
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• Value is the value of the image associated with the time-window during the 

current planning period.  Value  varies between 100 and 200 times the value 

of the image duration ld, so that it varies between 500 and 3000; 

• Satno is an index associated with the specific satellite associated with the 

time-window.  The maximum value of Satno corresponds to the number of 

satellites in the constellation which varied from 1 to 6, and; 

• viewno is the number of the earliest time-window where this particular 

image can be captured and can be any number between 2 and 249 since the 

index 1 denotes the ground station. 

One of the 24 input data sets used for evaluating the algorithm is included in 

Appendix B 

4.2.5 Reading and interpreting the input data 

The utility DataReader.m  was created in MatLab® to read the input data into 

the MatLab® workspace memory.  It then proceeds to calculate the setup time 

between all possible image pairs as the difference between their slew angles.  It 

also allocates a travelling time for each pair of time-windows in the network; 

time-windows that occur prior to any given time-window are allocated an infinite 

travel time, while those that are chronologically later are allocated a travel time 

of zero.  In this way the highly asymmetric nature of the network is 

accommodated.  The cost of each arc between time-windows is then calculated 

as the maximum of the setup time and travelling time for the arc.  A listing of 

DataReader.m  is included in Appendix C. 
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4.3 Implementation of the algorithms in MatLab ® 

4.3.1 Implementation of the tabu search algorithm 

The tabu search Algorithm for the SSP is codified as the MatLab M-File 

TabuSat.m  (see Appendix C) that is based on code originally created by 

Aurdal (2003)  

The utility DataReader.m  is used to read the input data into the workspace 

memory and to calculate the setup time between all possible image pairs. 

TabuSat.m  first generates a random solution vector x of N ones and zeros, 

2N −  of which correspond to image time-windows and the other two 

corresponding to the time-windows for ground station access.  If a time-window 

is included in the planning period the corresponding variable would take the 

value 1 and 0 otherwise.  It then proceeds to repair the vector by making sure that 

no images are taken twice.  The repaired vector is then split into portions that 

correspond to the different satellites and formatted as image sequences.  The set 

of image sequences is submitted to the rteTC.m utility and checked for 

feasibility.  If any of the sequences are infeasible, the process outlined above 

starts anew.  

Once the set of image sequences is feasible the tabu search is executed as 

outlined in Section 4.1.1 above.  The feasible solution is subjected to a 

neighbourhood search in which one of the vector elements is randomly selected 

and changed to a 1, if it was 0, or to a 0 if it was 1.  One such neighbourhood 

solution is generated at a time and this neighbourhood solution is then repaired if 

necessary and checked for feasibility by invoking rteTC.m.  If the 

neighbourhood solution is feasible, its fitness function is then evaluated as the 

negative value of the objective function of the SCoTWOP since the algorithm 

was encoded to solve minimization problems.  Improved solutions found in this 

way are put on the tabu list for tenure of 5 iterations.  The process is repeated for 

a total of 100 iterations. 
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4.3.2 Implementation of the simulated annealing alg orithm 

The simulated annealing Algorithm for the SSP is codified as the MatLab M-File 

SimulanSat.m  (see Appendix C) that is based on code created by Aurdal 

(2003)  

The utility DataReader.m  is used to read the input data into the workspace 

memory and to calculate the setup time between all possible image pairs. 

The program is structured similar to TabuSat.m  for the tabu search algorithm 

and operates in the same way apart from applying the simulated annealing 

algorithm as described above in Section 4.1.2.  An initial solution vector x  is 

generated randomly and repaired before being split into image sequences for the 

different satellites.  The set of image sequences is submitted to the rteTC.m 

utility and checked for feasibility.  If any of the sequences are infeasible, the 

process outlined above is repeated until the first feasible solution is found.  

The feasible solution is then subjected to a neighbourhood search in which one 

of the vector elements is randomly selected and changed from to a 1 if it was 0 or 

to a 0 if it was 1.  This neighbourhood solution is then repaired if necessary and 

checked for feasibility by invoking rteTC.m.  If the solution is feasible, its 

fitness is then evaluated as the negative value of the objective function of the 

SCoTWOP.  The initial temperature for the algorithm was set at a value of 100 

and is decreased 0.1% per iteration until the maximum number of iterations 

(typically 1000) is reached. 

4.3.3 Implementation of the genetic algorithm 

4.3.3.1 General 

As is the case for the tabu search and simulated annealing algorithms, the genetic 

algorithm also operates on solution vectors x consisting of 2N −  ones and 

zeros.  In genetic algorithm terminology, the vector x can be called a genome 

and its one or zero entry of the vector can be called a gene.  Rather than 

evaluating a single solution at a time, the genetic algorithm operates on a 
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population of individual solution vectors simultaneously.  For the SCoTWOP, 

this population of solutions comprised 20 individual solutions.  The initial 

population of 20 solutions was generated through the utility 

SequenceBuilder.m , described in Section 4.3.3.4 below.  The genetic 

algorithm uses a fitness function to determine the relative merit of each solution 

in the population.  In the case of the SCoTWOP, the fitness function used was 

the negative of the objective function.  The solutions are subsequently ranked in 

accordance with their fitness function values.  Some of the solutions, with an 

emphasis on higher ranking solutions, are then paired and allowed to reproduce 

through a crossover operation.  Some other solutions are altered through a 

mutation operation.  The solutions resulting from the crossover and mutation 

operations are then allowed to replace lower ranked solutions in the population 

so that the number of solutions in the population remains constant.  This is 

repeated until one of various stopping criteria is reached.  Stopping criteria used 

for the SCoTWOP were the total number of generations of the solution 

population (set at 100), the number of generations without fitness function 

improvement (set at 50) and time period in which there was no fitness function 

improvement (set at 20 minutes).  

4.3.3.2 Solving the SCoTWOP with the MatLab ® Genetic Algorithm and 
Direct Search Toolbox    

Implementation of the genetic algorithm for solving the SSP was achieved 

through the use of two off-the-shelf “toolboxes” created for the MatLab® 

programming language.  The first toolbox is the Genetic Algorithm and Direct 

Search Toolbox for by MathWorks the creators of MatLab®.  This toolbox works 

in conjunction with the second, the more general Optimization Toolbox for 

MatLab®.  The Genetic Algorithm and Search Toolbox allows for the easy 

specification of combinatorial problems and the implementation of various 

options to customize the algorithm to the problem peculiarities.  Those of 

importance to this application are as follows: 

• The Population Type Option provides for representation of the genome 

(solution vector x ) as a Double Vector (default) in which each gene (vector 
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element) is a real number of double precision (i.e. 64 bits), Bit String  in 

which each gene is either the whole numbers 1 or 0, or a Custom 

representation of the users own choice.  

• The Fitness Scaling Option specifies the function that performs the scaling 

or relative merit of individual solutions in the population.  The default fitness 

scaling function, Rank, assigns merit based on the rank of an individual in its 

position in the sorted scores.  Proportional scaling makes the merit of an 

individual proportional to its raw fitness score.  Top scaling gives a specified 

number of the top individuals equal merit.  Shift Linear scaling adjusts the 

raw scores so that the merit of the fittest individual is equal to a constant 

multiplied by the average score.  Custom provides for the user to create a 

customized scaling function. 

• Selection Options specify how the genetic algorithm chooses parents for the 

next generation.  The default selection function, Stochastic Uniform, lays out 

a line in which each parent corresponds to a section of the line of length 

proportional to its scaled value.  The algorithm moves along the line in steps 

of equal size.  At each step, the algorithm chooses a parent from the section it 

lands on.  Remainder selection chooses parents deterministically from the 

integer part of each individual's scaled value and then uses roulette selection 

on the remaining fractional part.  Uniform selection chooses parents using the 

expectations and number of parents.  Roulette selection chooses parents by 

simulating a roulette wheel, in which the area of the section of the wheel 

corresponding to an individual is proportional to the individual's fitness.  

Tournament selection chooses each parent by choosing a fixed number of 

solutions at random and then choosing the best individual out of that set to be 

a parent.  

• Reproduction Options specify how the genetic algorithm creates children for 

the next generation.  Elite Count specifies the number of individuals that are 

guaranteed to survive to the next generation.  The default value is 2.  

Crossover Fraction specifies the fraction of the next generation, other than 

elite children, that are produced by crossover.  The default value is 0.8.  
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• Mutation Options specify how the genetic algorithm makes small random 

changes in the individuals in the population to create mutation children.  The 

default mutation function, Gaussian, adds a random number taken from a 

Gaussian distribution with mean 0 to each entry of the parent vector.  The 

standard deviation of this distribution is determined by the parameters Scale 

and Shrink, which respectively specifies the initial standard deviation and the 

rate at which it changes over generations.  If the Population Type option is 

set at Bit String as was the case for the SCoTWOP, Scale automatically 

assumes the value 1 and Shrink the value 0. If the result of adding the random 

number falls outside the permitted range of  the gene, the value is rounded to 

the nearest range limit, i.e. a negative value becomes 0, and so would 0.3, 

while values of 0.65 or 2.5 become 1.  Uniform mutation is a two-step 

process.  First, the algorithm selects a fraction of the vector entries of an 

individual for mutation.  In the second step, the algorithm replaces each 

selected entry by a random number selected uniformly from the range for that 

entry.  Since this mutation results in real numbers, it cannot be used for the 

Bit String Population Type as is the case for the SCoTWOP.  Custom 

enables the user to write your own mutation function. 

• Crossover Options specify how the genetic algorithm combines two 

individuals, or parents, to form a crossover child for the next generation.  The 

default crossover function Scattered, creates a random binary vector and 

selects the genes where the vector has a 1 from the first parent, and the genes 

where the vector has a 0 from the second parent, and combines the genes to 

form the child.  In other words: a vector consisting of random 1 and 0 entries 

is created first and its entries are then used as an index to select genes from 

two parent solutions A and B.  If a specific entry of the index vector is 1, a 

gene for the new child is selected from the corresponding entry of parent A.  

If  a specific entry of the index vector is 0, the gene for the new child is 

selected from the corresponding entry of parent B. Single Point  chooses a 

random integer n between 1 and the number of variables or genes N and then 

selects vector entries numbered less than or equal to n from the first parent.  

Vector entries numbered greater than n are selected from the second parent.  It 
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then concatenates these entries to form a child vector.  Two Point selects two 

random integers m and n (m<n) between 1 and the number of variables N. 

Vector entries numbered less than or equal to m are selected from the first 

parent, those numbered from m+1 to n, inclusive, from the second parent and 

entries numbered greater than n from the first parent.  The algorithm then 

concatenates these selections to form a single gene.  Intermediate creates 

children by taking a weighted average of the parents.  Heuristic returns a child 

that lies on the line containing the two parents, a small distance away from the 

parent with the better fitness value in the direction away from the parent with 

the worse fitness value.  Custom enables one to write a special crossover 

function.  This option was used for the SCoTWOP since it was necessary to 

repair child solutions that violated the singularity constraint as discussed 

below and elsewhere.  

• Stopping Criteria Options determine what causes the algorithm to 

terminate.  The Generations stopping criterion specifies the maximum 

number of iterations the genetic algorithm will perform.  The default is 100.  

Time Limits specifies the maximum time in seconds the genetic algorithm 

runs before stopping.  Fitness Limit provides for the algorithm to stop if the 

best fitness value is less than or equal to the value of a known fitness limit.  

This is a useful option if the lower bound of a function to be minimized is 

known (for maximization problems, this would correspond to the negative 

value of a known upper bound since the toolbox only works for minimization 

problems as a default).  Stall Generations lets the algorithm stop if there is no 

improvement in the best fitness value for a specified number of generations.  

Stall Time causes the algorithm to stop if there is no improvement in the best 

fitness value for a specified interval of time in seconds. 

4.3.3.3 Implementation options 

Table 4-1 below contains the values of the various MatLab® GA Toolbox 

implementation options used, as defined in Section 4.3.3.2 above.  In most cases 

these correspond to the default values for the particular option.  These values 

were used for comparing the genetic algorithm with the other two algorithms as 
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well as for exploring the effect of different constraints and number of satellites 

on the performance of the genetic algorithm.  

Table 4-1: Implementation Options Selected for the MatLab ® Genetic Algorithm and 

Direct Search Toolbox   

Implementation Option  Value 

Population Size  20 

The Population Type  Bit String 

Initial Population Creation Function  SequenceBuilder.m , 

Fitness Function  Satfitness.m (calculates the 

negative of the objective function: 

( )v x− ⋅ )   

Fitness Scaling  Rank  

Selection  Stochastic Uniform 

Reproduction  Elite Count = 2. 

Crossover Fraction = 0.8. 

Mutation  Gaussian 

Crossover  Custom: crossoverspecial2.m  

Stopping Criteria  Generations = 100  

Time Limits = Infinity 

Fitness Limit= - Infinity 

Stall Generations = 50  

Stall Time limit = 20 
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4.3.3.4 Creating the initial population of solution s 

The Genetic Algorithm Toolbox provides the option of specifying a utility to 

create an initial population of feasible solutions.  The utility 

SequenceBuilder.m  was created for this purpose.  This program first 

generates a random vector consisting of n-1 ones and zeros where n is the 

number of time-windows as defined above.  The first time-window, 

corresponding to the initial ground station contact, is not included in the vector 

generated.  A one in a particular position in the vector means that that time-

window is used.  It then proceeds to repair the vector by making sure that no 

images are taken more than once.  The repaired vector is then split into portions 

that correspond to the different satellites and formatted as image sequences.  The 

set of image sequences is submitted to the rteTC.m utility (see Section 4.2.2 

below) and checked for executability, i.e. to see whether the satellite can in fact 

capture this sequence of images.  If any of the sequences are not executable, the 

process outlined above starts anew.  The process continues until an initial 

population of 20 feasible solutions has been generated.  A listing of 

SequenceBuilder.m  is included in Appendix C. 

4.3.3.5 The custom crossover function 

In order to maintain a population of feasible solutions it was necessary to create a 

custom crossover function, called crossoverspecial2.m  , to repair any 

children resulting from a crossover operation that violates the singularity 

constraints.  Based on the default crossover function Scattered, provided in the 

toolbox, this function tests for violations of the singularity constraint after 

crossover and enacts repairs to ensure that a proposed solution does not contain 

duplicate images before submitting it to the rteTC.m utility for further 

determination of its feasibility.  The code for crossoverspecial2.m is 

included in Appendix C. 
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4.3.3.6 Running the genetic algorithm 

The utility GeneticSat.m   was created to automate the initialization and 

running of the genetic algorithm.  The utility was created using an automated 

feature of the toolbox and resulting listing of GeneticSat.m  is included in 

Appendix C.  The fitness function for the SCoTWOP was encoded in the utility 

Satfitness.m,  which is called by GeneticSat.m .  This utility also first 

tests for violations of the singularity constraint to ascertain that a proposed 

solution does not contain duplicate images before submitting it to the rteTC.m 

utility for further determination of its feasibility.  If a positive result is returned 

from rteTC.m, Satfitness.m proceeds to calculate the value of the 

objective function associated with the proposed solution.  A listing of 

Satfitness.m  is also included in Appendix C. 

4.4 Computing resources 

The computing resources used for evaluating the efficacy of the genetic 

algorithm for the SCoTWOP comprised the following: 

• Hardware:  Desktop Personal Computer with AMD Sempron® processor 

running at a clock speed of 1.8 GHz and having 384 MB of RAM. 

• Operating System:   Microsoft Windows XP Home Edition® Version 2002 

Service Pack 2.   

• Software:  

• MathWorks MatLab® Student Version 7.0.1.15 (Rev 14) Service 

Pack 1, 13-Sep-2004. 

• MathWorks MatLab® Genetic Algorithm and Direct Search 

Toolbox Version 1.0.2 (R14SP1) 05-Sep-2004.  

• MathWorks MatLab® Optimization Toolbox Version 3.0.1 

(R14SP1) 05-Sep-2004. 
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4.5 Experimental procedure 

Three sets of experiments were conducted using the software tools and input 

datasets described above: 

• The first set of experiments was aimed the comparing the performance of 

the three metaheuristics in solving the SCoTWOP.  The experiments 

consisted of using each of the three heuristics in turn to solve the 

SCoTWOP for the Group D dataset with six satellites, Dataset D6.  A 

minimum of 10 runs were made per heuristic (30 in total); 

• The second set of experiments was aimed at determining the impact of 

constraint type on the time taken to find a solution to the SCoTWOP when 

using a Genetic Algorithm.  The SCoTWOP was solved for each of the 24 

sets of input data.  A minimum of 10 runs were made per data set (240 in 

total), and; 

• The third set of experiments focused on determining the efficacy of using 

different reproductive options (other than the default) for the Genetic 

Algorithm.  Several runs were made for different values of the Elite Count 

and Crossover Fraction parameters, while two alternative cross-over 

techniques were also tried.  In each case the Group D dataset with six 

satellites Dataset D6 was used. 

The last two sets of experiments were conducted following on the success of the 

genetic algorithm in the first set of experiments.  With the exception of the last 

step below, each computer run in the experiments used the following simple 

procedure: 

• Run Readdata.m  to first clear all variables and then read the input data 

into the MatLab® Workspace.  

• Run GeneticSat.m ( or TabuSat.m or SimulanSat.m) to run 

the applicable algorithm, using the tic-toc  function to measure CPU 
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time.  In the case of the genetic algorithm the option to plot a graph of the 

algorithm’s progression was enabled. 

• When the algorithm terminates, verify that the final solution is still feasible 

(all XFlg = 1) before recording the total number of images scheduled and 

CPU time expended. 

• Save the Workspace and graph (in the case of the genetic algorithm only).      

 The results obtained in this way are presented and discussed in the next chapter.  
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5 RESULTS AND DISCUSSION 

5.1 Comparing the performance of the three 
metaheuristics 

5.1.1 Results of the performance comparison experim ents 

This set of experiments was aimed at comparing the performance of the three 

metaheuristics in solving the SCoTWOP.  The experiments consisted of using 

each of the three heuristics in turn to solve the SCoTWOP for the Group D 

dataset with six satellites.  Each heuristic was evaluated over ten computer runs, 

and for each run the processing time, number of time-windows scheduled, and 

objective function value were recorded.  The results thus obtained are recorded in 

Table 5-1 and graphically displayed in Figure 5-1 and Figure 5-2. 
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Table 5-1: Comparison of the performance of the three metaheuristics for the same set of input data over 10 computer runs each 

Run 

# 

Tabu Search Simulated Annealing Genetic Algorithm 

CPU Time 
(Sec) 

No of Time-
Windows 

Objective Function 
Value 

CPU Time (Sec) 
No of Time-
Windows 

Objective Function 
Value 

CPU Time (Sec) 
No of Time-
Windows 

Objective Function 
Value 

1 1973.7 121 221524 170.7 127 200421 4663.3 175 251208 

2 2035.3 130 224663 185.3 136 201720 2825.3 176 246290 

3 2272.0 129 227120 129.8 137 204751 5970.3 183 251428 

4 1821.2 147 217321 170.7 121 192955 5361.9 174 246015 

5 1747.7 131 231496 239.8 122 214228 2366.8 174 250426 

6 1850.4 134 220770 202.8 134 205765 2496.4 173 250781 

7 1766.2 135 217299 340.0 127 206371 3050.7 173 246589 

8 2377.5 133 221757 125.8 136 208325 1785.0 171 250964 

9 2333.1 139 223588 119.0 140 198598 6705.3 173 252096 

10 1652.2 129 220936 212.8 131 196984 1628.8 177 249986 

Mean 1982.9 133 222647 189.7 131 203012 3685.4 175 249578 
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Figure 5-1: The computer processing time needed to complete the maximum number of 

iterations for each of the three metaheuristics recorded over 10 computer runs 
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Number of time-windows activated over the maximum number of 
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Figure 5-2: The number of time-windows activated over the maximum 

number of iterations for each of the three metaheuristics recorded over 10 

computer runs 

5.1.2 Conclusions on the performance comparison exp eriments 

When evaluating the computing time needed to complete the maximum number 

of iterations, it should be kept in mind that the number of iterations was not the 

same for all three methods.  The default number of iterations was used in all 

cases: 100 for tabu search, 1000 for simulated annealing and 100 generations for 

the genetic algorithm.  Sensitivity to the number of iterations was investigated by 

performing runs using up to 10 times the default number of maximum iterations.  

While computing time increased commensurately, no appreciable difference was 

found in the number of time-windows activated in each case, indicating that the 

default number of maximum iterations was sufficient for each of the methods to 

converge to a solution. 
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The differences in the maximum number of iterations however pales into 

insignificance when it is appreciated that the simulated annealing algorithm 

activates more or less the same number of time-windows as the tabu search 

algorithm in as little as one tenth of the computing time, even though it 

completes ten times the number of iterations.  If the time taken per iteration is 

taken as a measure of performance, the simulated annealing algorithm can 

therefore be said to be roughly 100 times faster than the tabu search algorithm.  

The genetic algorithm performs even worse in terms of computing time.  Not 

only is there considerable variation in computing time, but in the worst case, the 

algorithm takes almost three times as long as even the tabu search algorithm. 

Although computing time is an important measure of performance, it need not be 

the determining factor in selecting an algorithm.  A poor performance in terms of 

computing time can potentially be improved through more efficient software 

design and implementation, faster processors and other computing resources, or 

techniques such as parallel computing.  A more important measure of 

performance is the number of time-windows activated since this reflects the 

performance of the constellation of satellites (representing a huge investment), 

and in terms of this indicator, the simulated annealing and tabu search algorithm 

perform equally well, both activating on average 53 % of the time-windows.  

However, the genetic algorithm, activates 70 % of time-windows on average, and 

does so consistently, even though computing times vary considerably.  Since 

computing time is not as important as number of time-windows activated, and 

the genetic algorithm activates on average about 17 % more time-windows than 

the other two algorithms, it was decided to limit further experiments on the other 

heuristics to explore the performance of the genetic algorithm in more detail.  

The results of these experiments are presented in the sections that follow. 
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5.2 Determining the impact of constraint type on 
performance of the genetic algorithm 

5.2.1 Results overview 

The raw results obtained through the 240 computer runs are summarized for each 

of the constraint groups A through D in Table 5-2 through Table 5-5 that follow 

below.  The tables show the computing time, number of time-windows activated, 

and final and best fitness (objective function) value for each of the computer 

runs.  In the paragraphs that follow the results obtained are discussed from two 

orthogonal perspectives.
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Table 5-2: Results obtained for Constraint Group A  

Run # 

1 Satellite 2 Satellites 3 Satellites 4 Satellites 5 Satellites 6 Satellites 

CPU 
Time 
(Sec) 

No of 
Time-
windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-
windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-
windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-

windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-
windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-

windows 

Objective 
Function 
Value 

1 110.3 219 322292 130.6 215 318894 129.4 212 317198 130.3 219 328135 128.9 215 338737 129.7 210 318962 

2 111.3 215 335802 112.1 210 324715 131.9 203 306646 125.0 219 321174 151.0 216 341057 155.4 216 321773 

3 115.2 205 330739 129.7 207 317861 114.3 202 312931 132.7 220 326400 143.8 217 335236 122.3 221 324363 

4 112.5 221 326052 125.9 212 314606 116.3 210 315075 143.3 210 318192 126.9 204 326978 130.8 218 321679 

5 106.2 216 337380 124.3 221 321844 123.5 216 317797 124.3 210 313903 130.4 216 338720 130.1 220 324249 

6 117.7 204 333758 116.1 214 331974 152.3 213 318056 128.0 212 314122 126.4 216 339039 140.0 214 316781 

7 109.9 216 319923 156.3 218 314059 131.1 219 326935 120.9 215 324754 117.7 212 336846 122.4 201 310972 

8 109.5 209 327315 120.1 224 330593 116.0 210 315885 129.3 207 312344 119.7 205 324854 133.0 215 315416 

9 111.8 210 322292 118.8 199 332782 118.9 212 316104 121.7 208 312209 95.3 215 338737 152.5 217 320491 

10 129.6 209 324597 139.9 213 301629 118.4 213 316672 125.4 213 318481 117.7 217 330558 160.3 218 323449 

Mean 113.4 212 328015 127.4 213 320896 125.2 211 316330 128.1 213 318971 125.8 213 335076 137.7 215 319814 
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Table 5-3: Results obtained for Constraint Group B 

Run 
# 

1 Satellite 2 Satellites 3 Satellites 4 Satellites 5 Satellites 6 Satellites 

CPU 
Time 
(Sec) 

No of 
Time-

windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-

windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-
windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-

windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-

windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-

windows 

Objective 
Function 
Value 

1 159.5 182 296682 120.3 182 300516 112.6 173 293367 118.8 177 279484 124.1 179 274661 193.1 173 266608 

2 115.8 177 299719 124.9 179 298772 113.1 174 279859 127.1 179 280882 241.9 178 262030 169.7 178 259767 

3 113.0 183 288547 124.4 185 301523 109.5 171 284388 124.1 180 280422 240.9 176 267329 164.1 179 266980 

4 97.9 176 288409 138.7 175 302406 109.2 176 285797 130.5 174 275749 191.0 177 277447 125.6 175 252309 

5 157.8 178 293490 186.8 183 301660 109.7 175 283691 131.0 177 267726 130.6 181 269559 133.5 175 266807 

6 106.5 174 285284 115.7 185 299476 120.0 176 288897 225.8 174 277923 247.2 181 283971 143.6 178 259909 

7 100.8 184 291693 106.5 183 305262 139.8 178 291359 228.9 181 275868 186.6 181 278619 125.1 172 253771 

8 110.8 180 289487 123.1 181 302418 116.9 178 294021 234.2 179 278350 186.8 180 272898 141.3 176 262172 

9 98.8 177 286553 116.7 185 299513 133.5 175 293761 231.0 180 280823 182.3 176 275304 119.0 173 268966 

10 108.3 181 293159 116.3 180 305400 117.2 178 282811 229.9 175 281340 137.1 180 272794 156.6 178 256098 

Mean 116.9 179 291302 127.3 182 301695 118.1 175 287795 178.1 178 277857 186.9 179 273461 147.2 176 261339 
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Table 5-4: Results obtained for Constraint Group C 

 1 Satellite 2 Satellites 3 Satellites 4 Satellites 5 Satellites 6 Satellites 

Run 
# 

CPU 
Time 
(Sec) 

No of 
Time-

windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-

windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-

windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-
windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-

windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-

windows 

Objective 
Function 
Value 

1 112.6 176 282549 115.4 177 272784 162.4 185 297839 124.1 171 259673 116.4 175 267294 257.4 175 272788 

2 120.3 172 281004 113.8 176 281085 146.7 181 286244 119.7 171 252930 118.4 173 274118 255.3 172 272520 

3 181.9 172 281822 113.3 178 276701 126.9 178 287371 112.2 169 255300 115.9 173 263905 255.4 171 279598 

4 116.3 172 277810 109.6 180 280386 115.8 182 284437 108.9 163 253914 119.6 176 274102 124.3 171 277772 

5 117.9 168 277894 123.5 178 274932 219.1 185 292703 113.1 170 252380 122.1 173 273906 261.2 169 269401 

6 114.7 170 281294 118.3 172 278957 210.6 181 292575 116.5 171 266192 114.6 172 264897 262.8 177 277664 

7 117.1 170 285982 126.5 177 273012 151.5 184 287762 123.5 171 258602 119.1 172 278280 139.2 176 286414 

8 113.8 175 280862 125.7 175 278723 223.0 182 291784 123.4 173 264360 122.4 174 276712 132.1 173 270132 

9 111.8 172 283238 114.5 178 279926 208.5 180 276384 115.7 177 268097 119.5 162 257948 155.3 171 271374 

10 122.5 174 278051 114.8 180 282250 218.3 185 292703 112.0 174 260684 236.0 172 266926 121.0 176 272383 

Mean 122.9 172 281051 117.5 177 277876 178.3 182 288980 116.9 171 259213 130.4 172 269809 196.4 173 275005 
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Table 5-5: Results obtained for Constraint Group D 

Run# 

1 Satellite  2 Satellites  3 Satellites  4 Satellites  5 Satellites  6 Satellites  

CPU 
Time 
(Sec) 

No of 
Time-

windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-

windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-
windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-

windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-
windows 

Objective 
Function 
Value 

CPU 
Time 
(Sec) 

No of 
Time-
windows 

Objective 
Function 
Value 

1 1160.9 181 281109 1673.0 182 279781 2571.5 177 276132 3018.5 180 263668 1900.9 177 243982 4663.3 175 251208 

2 1005.2 181 281109 2211.6 181 274653 2056.3 173 267017 2662.0 178 258878 1954.4 177 243982 2825.3 176 246290 

3 1166.9 181 281109 2107.5 175 265874 1428.4 173 267461 3951.5 178 259355 1501.1 184 243552 5970.3 183 251428 

4 1792.3 176 286137 2253.0 176 271169 2054.8 175 265146 4296.9 177 258408 1691.7 177 241692 5361.9 174 246015 

5 1582.6 180 290868 1880.0 178 280463 2178.0 177 265413 2212.3 184 259393 4220.0 183 244134 2366.8 174 250426 

6 1310.0 179 296192 1954.2 179 272167 3866.0 174 265418 3081.8 173 261281 4220.0 179 243518 2496.4 173 250781 

7 1539.0 174 283913 3634.1 175 274792 4052.8 174 262471 1704.2 178 259045 5680.7 174 243047 3050.7 173 246589 

8 1606.3 178 280999 1930.1 177 273106 5614.6 177 264343 3960.2 175 260130 5581.4 179 244802 1785.0 171 250964 

9 964.9 176 289652 2027.3 173 275860 2136.0 173 268217 4201.1 180 257756 1797.3 176 248209 6705.3 173 252096 

10 1730.8 179 289639 2968.7 178 277522 3996.9 178 264123 3135.8 175 259540 3896.3 177 243372 1628.8 177 249986 

Mean 1385.9 179 286073 2263.9 177 274539 2995.5 175 266574 3222.4 178 259745 3244.4 178 244029 3685.4 175 249578 
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5.2.2 The influence of the number of satellites 

The first perspective on the results looks at the influence of the number of 

satellites in the constellation on algorithm performance for each of the four 

groups (A though D) of data sets.  The influence of the number of satellites were 

analysed in terms of its effect on computing time and its impact on the number of 

time-windows activated. 

5.2.2.1 The influence of the number of satellites o n computing time 

Figure 5-3 through Figure 5-6 below show the influence of the number of 

satellites on computing time for each of the constraint groups A through D. 

Each figure shows the range of computing times obtained for a given number of 

satellites and also indicates, within the range, the mean value for the 10 

experiments associated with the given number of satellites.  A trend line is fitted 

though the mean values.  As is to be expected, the trend line shows that 

computing times increase with the number of satellites.  The rate of increase as 

indicated by the slope of the trend line is however not particularly steep and the 

ranges of computing times overlap.  More experiments are required.  At this 

stage one would cautiously say that it appears that computing time increases with 

an increase in the number of satellites but not to the extent that it presents a 

problem in practice.    
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Figure 5-3: The computing time to find 100 generations of feasible solutions 

for Constraint Group A as a function of the number of satellites 
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Time to Complete 100 Generations for Constraint Group B
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Figure 5-4: The computing time to find 100 generations of feasible solutions 

for Constraint Group B as a function of the number of satellites 
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Time to Complete 100 Generations for Constraint Group C
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Figure 5-5: The computing time to find 100 generations of feasible solutions 

for Constraint Group C as a function of the number of satellites 
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Figure 5-6: The computing time to find 100 generations of feasible solutions 

for Constraint Group D as a function of the number of satellites 
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5.2.2.2 The influence of the number of satellites o n the number of 
time-windows activated 

Figure 5-7 through Figure 5-10 below show the influence of the number of 

satellites on the number of time-windows successfully activated for each of the 

constraint groups A through D.  We note that the algorithm performs reasonably 

well, in that it consistently activates about 86 % of time-windows successfully 

for constraint group A, where there are no limits on capacity and only non-

interference constraints hold.  This number drops to about 70 % when on-board 

memory is limited as is the case for constraint groups B, C, and D.  This 

reduction corresponds very well with the reduction in memory capacity which 

was set at 70 %. 

Each figure shows the range of the number of time-windows activated obtained 

for a given number of satellites and also indicates, within the range, the mean 

value for the 10 experiments associated with the given number of satellites.  A 

trend line is also fitted though the mean values.  With the exception of the case 

for constraint group A, the trend lines appear to show that the number of time-

windows activated decrease with the number of satellites.  This seems 

counterintuitive, since one would expect that more satellites will, in general, be 

able to service more time-windows, as is indeed the case for constraint group A.  

To investigate the significance of this apparent trend for constraint groups B, C 

and D, the Pearson product moment correlation coefficient, r, was calculated 

using all 60 data points in the results obtained for the experiments conducted for 

each of these constraint groups.  The Pearson coefficient is a dimensionless 

index that ranges from -1.0 to 1.0 inclusive and reflects the extent of a linear 

relationship between two data sets.  Values close to -1.0 and 1.0 would indicate 

strong linear relationships while values closer to 0 would indicate weak or no 

relationship.  The values of r obtained for constraint groups B, C and D 

respectively are 0.157, 0.143 and -0.201.  The corresponding values of r2 are 

0.025, 0.021, and 0.041 respectively, indicating that 2-4 % of the variation 

between the 60 data points for each constraint group can be explained by the 

number of satellites.  This is considered to be statistically insignificant, and the 

apparent trend need not be investigated further. 
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Figure 5-7: The number of time-windows activated during 100 generations 

of feasible solutions for Constraint Group A as a function of the number of 

satellites 
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Number of Time-Windows Activated over 100 Generations for Constraint 
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Figure 5-8: The number of time-windows activated during 100 generations 

of feasible solutions for Constraint Group B as a function of the number of 

satellites 
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Number of Time Windows Activated over 100 Generations for 
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Figure 5-9: The number of time-windows activated during 100 generations 

of feasible solutions for Constraint Group C as a function of the number of 

satellites 
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Number of Time-Windows Activated over 100 Generations for 

Constraint Group D
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Figure 5-10: The number of time-windows activated during 100 generations of feasible 

solutions for Constraint Group D as a function of the number of satellites 
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5.2.3 The influence of progressively tightening con straints 

The second perspective on the results looks at the influence of successively more 

restrictive constraints on algorithm performance for each of the six cases where 

the number of satellites in the constellation is kept constant. 

5.2.3.1 The influence of tightening constraints on computing time 

Figure 5-11 through 15 below show the influence of successively applying more 

restrictive constraints on computing time for each of the constellation 

configurations of one though six satellites. 

Each figure shows the range of computing times obtained for a constraint set and 

also indicates, within the range, the mean value for the 10 experiments 

associated with the given constraint set.  Contrary to expectations the graphs 

consistently shows that computing times are virtually the same for constraint 

groups A, B and C but that there is an order of magnitude jump in computing 

times when constraint set D is introduced.  In the latter case the computing times 

increase between 12 and 20 fold and the change is so marked that no trend line 

could be fitted.  This is significant in that it shows that the requirement to select 

a single time-window for a specific image from a number of possible options 

introduces considerable inefficiency in the algorithm.  Also of great interest is 

the fact that this is the case regardless of the number of satellites. 
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Figure 5-11: The computing time to find 100 generations of feasible 

solutions for a single satellite as a function of tightening constraints 
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Time to Complete 100 Generations (2 Satell ites)
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Figure 5-12: The computing time to find 100 generations of feasible 

solutions for two satellites as a function of tightening constraints 
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Time to Complete 100 Generations (3 Satell ites)
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Figure 5-13: The computing time to find 100 generations of feasible 

solutions for three satellites as a function of tightening constraints 
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Time to Complete 100 Generations (4 Satell ites)
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Figure 5-14: The computing time to find 100 generations of feasible 

solutions for four satellites as a function of tightening constraints 
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Figure 5-15: The computing time to find 100 generations of feasible 

solutions for five satellites as a function of tightening constraints 
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Time to Complete 100 Generations (6 Satell ites)
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Figure 5-16: The computing time to find 100 generations of feasible 

solutions for six satellites as a function of tightening constraints 

5.2.3.2 The influence of tightening constraints on the number of time-
windows activated 

Figure 5-17 through Figure 5-22 below show the influence of successively 

applying more restrictive constraints on the number of time-windows activated 

for each of the constellation configurations of one though six satellites. 

Each figure shows the range of time-windows activated for a constraint set and 

also indicates, within that range, the mean value for the 10 experiments 

associated with the given constraint set.  A trend line is fitted though the mean 

values.  As can be expected, the trend line shows that the number of time-

windows activated decrease as constraints are tightened for a given number of 

satellites.  The rate of decrease as indicated by the slope of the trend line is not 

particularly steep but given the results discussed above is nevertheless consistent.  
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As one would expect, given the same number of time-windows to be activated, 

but more constraints, the number of feasible solutions decreases resulting in a 

corresponding reduction in the number of time-windows activated over the same 

number of 100 generations of solutions.  Again, the ranges of time-windows 

activated overlap significantly, regardless of the number the constraint so that the 

trend may not be statistically significant.  Interestingly, the algorithm continue to 

perform well in terms of the number of time-windows activated, as seen in the 

previous section, efficiency suffers greatly when constraint Group D is 

introduced.  
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Figure 5-17: The number of time-windows activated during 100 generations 

of feasible solutions for a single satellite as a function of tightening 

constraints 



106 

Number of Time-Windows Activated over 100 Generations (2 

Satell ites)
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Figure 5-18: The number of time-windows activated during 100 generations 

of feasible solutions for two satellites as a function of tightening constraints 
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Number of Time-Windows Activated over 100 Generations (3 
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Figure 5-19: The number of time-windows activated during 100 generations 

of feasible solutions for three satellites as a function of tightening 

constraints 
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Number of Time-Windows Activated over 100 Generations (4 
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Figure 5-20: The number of time-windows activated during 100 generations 

of feasible solutions for four satellites as a function of tightening constraints 



109 

Number of Time-Windows Activated over 100 Generations (5 
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Figure 5-21: The number of time-windows activated during 100 generations 

of feasible solutions for five satellites as a function of tightening constraints 
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Number of Time-Windows Activated over 100 Generations (6 
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Figure 5-22: The number of time-windows activated during 100 generations 

of feasible solutions for six satellites as a function of tightening constraints 

5.3 Determining the efficacy of using different 
reproductive options 

Given the considerable deterioration in performance of the genetic algorithm 

when the full set of constraints is applied, an investigation was launched into 

possible ways of improving the performance by adjusting some of the algorithm 

parameters.  Three avenues of investigation were identified, all of them relating 

to the way in which new solutions are derived from the parent population.  These 

investigations comprised the following;  

• The effect of changing the elite count parameter on algorithm 

performance; 
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• The effect of changing the crossover fraction parameter on algorithm 

performance, and; 

• The effect of changing the crossover mechanism on algorithm 

performance. 

The results of these investigations are outlined below.  Given the long computing 

times required to run these experiments, the approach was to perform only a 

single computer runs if initial results indicate worse or similar performance than 

for the default case.   

5.3.1 The influence of varying the elite count para meter 

This set of experiments was aimed at investigating the influence of the elite 

count parameter on the performance of the genetic algorithm in solving the 

SCoTWOP.  The elite count parameter specifies the number of individuals that 

are guaranteed to survive to the next generation and is a positive integer less than 

or equal to the population size.  The default value is 2.  The experiments 

consisted of varying the elite count from a value of 1 to 10 when using the 

genetic algorithm to solve the SCoTWOP for the Group D dataset with six 

satellites.  A single computer run was performed for each value of the elite count 

parameter and for each run the processing time and number of time-windows 

activated were recorded.  The results thus obtained are graphically displayed in 

Figure 5-23 and Figure 5-24. 
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Figure 5-23: The computing time to find 100 generations of feasible 

solutions for six satellites as a function of the elite count parameter 

Figure 5-23 shows the variation of the computing time required to find 100 

generations of feasible solutions as function of elite count.  When interpreting 

this data, it should be remembered that, for all values of the elite count parameter 

except its default value of 2, only one computer run was performed.  The 

computing time at an elite count of 2, is however the average obtained from 10 

computer runs.  The computing times for the other values of the elite count 

parameter should therefore be interpreted relative to the more firmly established 

value of 3685 seconds obtained for an elite count of 2.  

Superficially, it appears that a case can perhaps be made for a trend that will 

have computing times decrease with increasing elite count until a minimum is 

reached at an elite count of 7,  after which computing times increase again.  

However, the better established default value, does not agree with such a trend.  

It would therefore be more cautious to say that the computing times of other elite 
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counts bracket that of the default count of 2, with considerable variation.  In fact, 

this caution is reinforced when it is realized that the default value itself is the 

average of a series of values that range from as high as 6705 seconds to as low as 

1628 seconds.  
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Figure 5-24: The number of time-windows activated during 100 generations 

of feasible solutions for six satellites as a function of the elite count 

parameter  

Examination of Figure 5-24 confirms that the interpretation of Figure 5-23, given 

above, is probably correct.  The figure shows the variation in the total number of 

time-windows activated with elite count.  Comparison of this figure with Figure 

5-23 reveals that lower computing times are in general associated with a lower 

number of time-windows activated.   

More numerical experiments are needed to explore what may be a possible 

improvement in computational time.  
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5.3.2 The influence of varying the crossover fracti on parameter 

This set of experiments was aimed at investigating the influence of the crossover 

fraction parameter on the performance of the genetic algorithm in solving the 

SCoTWOP.  The crossover fraction parameter specifies the fraction of the next 

generation, other than elite children, that are produced by crossover.  The default 

value is 0.8.  The experiments consisted of varying the crossover fraction from a 

value of 0.5 to 0.8 when using the genetic algorithm to solve the SCoTWOP for 

the Group D dataset with six satellites.  A single computer run was performed 

for each value of the crossover fraction parameter and for each run the 

processing time and number of time-windows activated were recorded.  The 

results thus obtained are graphically displayed in Figure 5-25 and Figure 5-26. 

Figure 5-25: The computing time to find 100 generations of feasible 

solutions for six satellites as a function of the crossover fraction parameter  

Figure 5-25 shows the variation of the computing time required to find 100 

generations of feasible solutions as a function of the crossover fraction.  As was 

the case above for the elite count experiments, it should be remembered that the 

computing times for other values of the crossover fraction parameter should be 
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interpreted relative to the more firmly established value of 3685 seconds 

obtained as the average computing time for the default crossover fraction of 0.8.  

Given this, it appears that very little can be said about the possible influence of 

crossover fraction on computing time.  Although computing times for crossover 

fractions other than the default value are higher than that of the default value, the 

set of experimental data is too sparse to reach a definite conclusion.   
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Figure 5-26: The number of time-windows activated during 100 generations 

of feasible solutions for six satellites as function of the crossover fraction 

parameter 

Examination of Figure 5-26 once again confirms that the results should be 

interpretation with caution.  The figure shows the variation in the total number of 

time-windows activated with crossover fraction.  It seems that the crossover 

fraction has very little, if any, influence on the number of time-windows 

activated.  Once again it can only be concluded that more experiments are 

necessary. 
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5.3.3 The influence of selecting different crossove r options 

The MatLab® Genetic Algorithm and Direct Search Toolbox provides a number 

of options for different crossover mechanisms through which the genetic 

algorithm combines the genome of two parents, to form a crossover child for the 

next generation.  The following three mechanisms are suitable for use with bit 

string genomes, as is the case for the SCoTWOP: 

• Scattered crossover,  the default crossover option, creates a random 

binary vector and then selects a gene from the first parent if the 

corresponding entry of the random vector is a 1 and from the second 

parent if the corresponding entry of the random vector is a 0; Single point 

crossover chooses a random integer n between 1 and the total number of 

genes in the genome and then selects genes numbered less than or equal 

to n from the first parent and genes numbered greater than n from the 

second parent, and; 

• Two point crossover selects two random integers m and n between 1 the 

total number of genes in the genome and then selects genes numbered 

less than or equal to m from the first parent and, genes numbered m+1 to 

n, inclusive, from the second parent. 

Table 5-6 below contains the results obtained for the SCoTWOP when the single 

point and two point crossover mechanism are used.  The results are compared 

with the average obtained for the scattered crossover mechanism, used for all 

other experiments.  
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Table 5-6: Results obtained for different crossover mechanisms 

Crossover mechanism Computing time needed 
for 100 generations 

(sec) 

Number of time-
windows activated over 

100 generations 

Scattered  crossover  3685 175 

Single point crossover  5388 175 

Two point crossover 7431 181 

 

Given the fact that only one computer run was conducted for each, the results 

show that single point and two point crossover do not have an obvious advantage 

over the scattered crossover mechanism, since computing times appear to be at 

least as long or longer than that  obtained for the scattered crossover mechanism.  

In terms of number of time-windows activated, the three crossover mechanisms 

appear to perform equally well.  The number of 181 time-windows activated 

when a two point crossover is used, is the best performance observed for all 

experiments conducted.  It does however come at the price of an additional hour 

(a doubling) of computing time.  

5.4 The influence of the penalization scheme for 
infeasible solutions 

The results discussed above were obtained using the severest penalty for 

infeasible solutions, i.e. allocating a fitness value function of positive infinity to 

infeasible solutions.  Potentially infeasible solutions arising from crossover 

operations were, except where otherwise noted, also repaired if they violated the 

singularity constraint.  To investigate the influence of this on computing time 

and the quality of solutions, a number of computer runs were made using the 

default Scattered crossover option (i.e. no repair) and also using a more 

conventional penalty scheme in which a fixed percentage of the objective 
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function was added to the fitness function value.  The Group D dataset with six 

satellites was used in all cases and the results are presented in Table 5-7 below. 

Table 5-7: Results obtained for different penalty fractions 

Penalty Fraction  

(percentage of the 
objective function value 
added to fitness value) 

Computing time needed 
for 100 generations 

(sec) 

Number of time-
windows activated over 

100 generations 

10 % 4322 175 

20 % 3119 117 

30 % 4289 176 

40 % 3687 175 

50 % 3572 176 

100 % 9156 175 

 

Comparison of the results presented in Table 5-7 with those obtained in Table 5-

5 for the main set of experiments show that the use of unrepaired solutions and 

less stringent penalties have no discernable effect on the results.  Computing 

times did not improve and neither did the number of images scheduled.  In fact, 

in some cases it was noted that the algorithm stagnated after approximately 50 

generations and in two cases even terminated prematurely because of this.  Its 

appears that penalizing a solution in proportion to its “degree” of infeasibility is 

counterproductive in that it leads to less diversity in the population of solutions.   

5.5 A note about optimality 

Given the lack of standardized test data against which to compare the 

performance of the algorithm, it is difficult to evaluate the experimental results 

in terms of optimality.  In an effort to investigate this issue, the algorithm was 

run for 1000 generations for each of the cases of one through six satellites.  

Constraint Group D was used and the algorithm was allowed an infinite amount 
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of time and 1000 stall generations so that it would not terminate before 1000 

generations have been reached.  The results obtained are presented in Table 5-8 

that provides a comparison between the results obtained for 1000 generations 

and those obtained for 100 generations. 

From Table 5-8 it is evident that there is not a marked difference between the 

total number of time-windows activated over 1000 generations compared to the 

total over 100 generations.  We also note the percentage of time-windows 

activated over 1000 and 100 generations is very similar. There is however a 

significant difference in the fitness value between the 1000 and 100 generation 

cases.  While the number of time-windows activated remains more or less the 

same, the fitness value improves significantly.  It appears that the algorithm 

spends approximately the first 50 generations improving the fitness value by 

adding time-windows to the sequence, after that it seems to seek out more 

valuable time-windows while keeping the number of time-windows the same.  

This observation seems to be borne out by Figure 5-27 and Figure 5-28 

respectively for the one and six satellites. 

The fact that the number of time-windows scheduled remains more or less the 

same regardless of the number of iterations may indicate that the algorithm has 

reached a near optimal solution, at least in terms of the number of time-windows 

to be scheduled.  Although there is an improvement in fitness value, the rate 

improvement eventually becomes very slow taking about 100 generations 

between successive improvements in the later stages of the experiment.  This 

may be an indication that optimality is being approached.  

Finally it is noted that, if all the images are scheduled, a theoretical upper bound 

on the objective function value would be 358 453 for the case of six satellites.  

The achieved value of 260 559 achieved over 1000 generations represents 72.7 

% of the upper bound.  If we remember that the collective on-board memory 

capacity for all satellites is limited to approximately 70 % of the total that would 

be required to acquire all images, it seems that optimality is not far away. 
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Table 5-8: Comparison of results obtained for constraint Group D over 1000 generations with average results obtained over 100 

generations  

No of 
Satellites 

1000 Generations  100 Generations 

CPU Time 
(sec) 

No of Time-
Windows 
Activated  

Proportion of 
Time-Windows 
Activated (%) 

Objective 
Function 

Value 

CPU 
Time 
(sec) 

No of Time-
Windows 
Activated  

Proportion of 
Time-Windows 
Activated (%) 

Objective 
Function 

Value 

1 12789 186 75.3 313220 1386 179 72.5 286073 

2 26999 184 74.8 297024 2264 177 72.0 274539 

3 24393 175 71.4 273554 2996 175 71.4 266574 

4 14074 176 72.1 267662 3222 177 72.5 259745 

5 51637 177 72.8 250186 3244 178 73.3 244029 

6 59870 178 73.6 260559 3685 175 72.3 249578 
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Figure 5-27: Genetic algorithm results for one satellite over 1000 

generations 
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Figure 5-28: Genetic algorithm results for six satellites over 1000 

generations 

 

5.6 Conclusions and suggestions for further study 

The results presented in the previous sections yield a number of interesting 

insights, some expected and others not: 

• Although simulated annealing and tabu search performs better than the 

genetic algorithm in terms of computing time, the genetic algorithm performs 

much better in terms of the number of time-windows activated. 

• The coding of the imaging times-windows instead of the actual images as a 

binary string used in all three algorithms appears to be effective on the whole, 

yielding consistent results.  In terms of the number of time-windows activated 
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this representation and the genetic algorithm performs very well and 

consistently activates a very high number of time-windows.  

• The solution representation and genetic algorithm performs very well in all 

cases except for when multiple imaging opportunities are present for the same 

image.  In the former cases computing times range around two to three 

minutes or so, making for a practical system.  In the latter case, a marked 

inefficiency is introduced, leading to computing times as high as 6000 

seconds which is clearly not practical, given that a satellite completes its orbit 

in about 5400 seconds. 

• The few experiments that were conducted using different reproductive options 

for the genetic algorithm did not yield any real improvements in computing 

time.  Apparent improvements in computing time always came at the expense 

of a lower number of time-windows activated.   

• It appears that the algorithm approaches optimality, especially if it is allowed 

to generate 1000 generations of solutions. However, the computing time in 

this case approaches 18 hours which make the algorithm impractical.   

It can be concluded that viewing the SCoTWOP as related to the dual of the 

VRPMTW provides a valuable framework, primarily because it leads to a simple 

representation of a solution as a binary genotype that leads to an effective and, 

for the most part efficient, solution process.  Complications arise when multiple 

imaging opportunities are present for the same image and an investigation into a 

solution for this problem may be worth pursuing, in particular since this is 

probably the single most important complication that discerns the SCoTWOP 

from all other SSPs.  

In this regard consideration should perhaps be given to a scheme in which the 

problem is split into two parts which can be solved separately.  The first problem 

would be dealing with selecting optimal time-windows for images with multiple 

time-windows and the second problem with selecting optimal time-windows for 

the majority of images that have only one time-window.  In other words separate 

the images that are only subject to constraint groups A, B, and C from those that 
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are also subject to constraint group D.  A solution arising from such a separation 

may not be optimal, but that is true for most heuristics in any case.  The quality 

of such a solution may be improved if a suitable number of the neighbouring 

images (in the time-window sense) of the images that have multiple time-

windows are included in the first problem.   
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APPENDIX A: ABBREVIATIONS AND ACRONYMS  

BPP  Bin Packing Problem 

CNES  Centre National d’Etudes Spatiales 

CRISP Centre for Remote Imaging, Sensing and Processing, National 

University of Singapore 

CVRP  Capacitated Vehicle Routing Problem 

DMC  Disaster Monitoring Constellation 

EO  Earth Observation 

EOS  Earth Observation Satellite  

LEO  Low Earth Orbit 

NASA  National Aeronautics and Space Administration 

NP  Nondeterministic polynomial-time 

SAR  Synthetic Aperture Radar  

SCoTWOP Satellite Constellation Time-Window Optimization Problem 

SPOT  Système Pour l'Observation de la Terre 

SSP  Satellite Scheduling Problem 

TSP  Travelling Salesman Problem 

VRP  Vehicle Routing Problem 
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VRPMTW Vehicle Routing Problem with Multiple Time-windows  

VRPTW  Vehicle Routing Problem with Time-windows 
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APPENDIX B: SAMPLE TEST DATA SET 

Table B-1 below contains the test data used for experiments relating to the 

activation of 250 image windows for a constellation of six satellites subject to 

the full set of constraints.  The various parameters are described in Paragraph 

4.2.4. 

Table B-1: Sample Test Data Set 

Time-

window # 

Time-

window 

Start (sec) 

Time-

window 

End (sec) 

Lookangle 

(deg) 

Imaging 

Duration 

(sec) 

Memory 

Requiremen

t (MB) 

View # Satellite # 
Image 

Value ($) 

1 0 600 0 0 0 - - - 

2 3000 3042 -17 15 150 1 2 2010 
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Time-

window # 

Time-

window 

Start (sec) 

Time-

window 

End (sec) 

Lookangle 

(deg) 

Imaging 

Duration 

(sec) 

Memory 

Requiremen

t (MB) 

View # Satellite # 
Image 

Value ($) 

3 3021 3062 5 15 150 2 2 1560 

4 3090 3141 26 6 60 3 3 1158 

5 3159 3217 -20 14 140 4 5 2016 

6 3222 3268 -12 7 70 5 2 833 

7 3252 3292 -28 14 140 6 1 1946 

8 3291 3324 3 6 60 7 5 618 

9 3314 3359 -2 10 100 8 2 1330 

10 3377 3412 -11 14 140 9 5 2072 

11 3382 3430 -3 6 60 10 1 1032 

12 3424 3466 17 11 110 11 6 1991 

13 3462 3508 9 15 150 12 3 2010 

14 3500 3530 -10 9 90 13 5 1260 

15 3500 3548 -14 13 130 14 2 2431 

16 3551 3608 -16 6 60 15 3 1068 

17 3611 3647 15 15 150 16 1 1860 

18 3661 3703 -20 14 140 17 2 2184 

19 3732 3792 6 9 90 18 5 1485 

20 3789 3842 -17 14 140 19 3 1932 

21 3832 3864 -4 11 110 20 6 1232 

22 3883 3936 -25 12 120 21 4 1500 

23 3941 3972 15 6 60 22 5 684 

24 3989 4044 -22 5 50 23 1 840 

25 4070 4115 -14 5 50 24 3 570 

26 4091 4133 30 11 110 25 1 2145 

27 4104 4139 -16 7 70 26 4 833 
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Time-

window # 

Time-

window 

Start (sec) 

Time-

window 

End (sec) 

Lookangle 

(deg) 

Imaging 

Duration 

(sec) 

Memory 

Requiremen

t (MB) 

View # Satellite # 
Image 

Value ($) 

28 4133 4189 24 9 90 27 3 1341 

29 4200 4253 26 12 120 28 1 2376 

30 4257 4310 -27 7 70 29 2 1085 

31 4310 4348 -15 8 80 30 5 1280 

32 4357 4393 -27 13 130 31 1 2093 

33 4370 4412 -13 6 60 32 1 840 

34 4397 4444 7 13 130 33 6 1430 

35 4446 4486 -18 10 100 34 5 1590 

36 4482 4521 12 9 90 35 6 1296 

37 4501 4556 11 7 70 36 4 1001 

38 4535 4577 9 15 150 37 6 2610 

39 4591 4643 -5 15 150 38 5 2235 

40 4620 4662 -28 6 60 39 5 1044 

41 4681 4724 -9 10 100 11 1 1030 

42 4746 4792 29 15 150 41 6 2550 

43 4817 4861 -6 12 120 42 1 1380 

44 4855 4901 2 10 100 43 5 1890 

45 4908 4939 -8 12 120 44 1 1692 

46 4909 4950 -19 12 120 45 2 1788 

47 4971 5015 9 11 110 46 2 1903 

48 5005 5046 20 12 120 47 1 2244 

49 5075 5107 3 12 120 48 3 2040 

50 5134 5184 -26 5 50 49 5 810 

51 5155 5197 10 7 70 50 2 784 

52 5206 5240 0 8 80 51 5 1304 
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53 5220 5258 -8 14 140 52 5 2366 

54 5282 5321 -3 12 120 53 4 1524 

55 5337 5370 -29 7 70 54 1 1316 

56 5367 5424 -22 14 140 55 6 1400 

57 5441 5488 3 9 90 56 3 900 

58 5500 5549 -16 14 140 57 5 1414 

59 5579 5617 -19 5 50 58 5 895 

60 5647 5695 -24 10 100 59 3 1230 

61 5716 5764 4 14 140 60 1 1820 

62 5750 5801 -8 8 80 61 3 1464 

63 5813 5860 22 7 70 62 3 1064 

64 5842 5893 27 12 120 63 2 2256 

65 5901 5956 -5 6 60 64 5 882 

66 5943 5977 22 5 50 65 2 655 

67 5974 6019 -8 8 80 66 2 928 

68 5999 6059 -13 14 140 67 1 2072 

69 6046 6079 19 13 130 68 3 1833 

70 6066 6113 -6 10 100 69 3 1760 

71 6132 6175 -5 15 150 70 3 1710 

72 6192 6223 6 11 110 71 6 1100 

73 6250 6305 -20 9 90 72 5 1278 

74 6329 6374 -19 15 150 73 2 2760 

75 6347 6404 4 13 130 74 3 1963 

76 6401 6439 -14 13 130 75 2 1300 

77 6448 6491 -12 5 50 76 2 800 
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78 6461 6521 19 11 110 77 5 1232 

79 6534 6579 9 14 140 78 4 1582 

80 6559 6618 -8 15 150 79 6 1695 

81 6592 6625 13 6 60 80 6 1110 

82 6642 6702 29 5 50 81 3 665 

83 6717 6766 -2 8 80 82 2 960 

84 6740 6788 -2 15 150 83 6 1875 

85 6763 6797 10 8 80 84 3 816 

86 6812 6871 -4 5 50 85 1 675 

87 6872 6902 -1 7 70 86 1 1169 

88 6927 6963 -4 12 120 87 5 1800 

89 6979 7031 -28 9 90 88 3 990 

90 7036 7096 13 13 130 89 5 1885 

91 7110 7156 -1 14 140 90 2 1722 

92 7128 7178 -10 5 50 91 6 810 

93 7203 7255 -12 15 150 92 4 2670 

94 7281 7319 20 8 80 93 2 1224 

95 7300 7332 -13 12 120 94 3 1596 

96 7321 7362 10 11 110 95 3 1232 

97 7357 7393 -13 10 100 96 2 1630 

98 7409 7459 -28 13 130 97 5 1651 

99 7484 7536 -27 5 50 98 3 815 

100 7506 7545 -7 10 100 99 6 1510 

101 7526 7582 13 15 150 100 6 1530 

102 7552 7583 28 11 110 101 5 1331 
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103 7602 7644 21 5 50 102 1 660 

104 7627 7683 27 9 90 103 3 1539 

105 7694 7752 -25 13 130 104 3 1859 

106 7737 7788 -25 5 50 105 1 675 

107 7809 7849 -25 15 150 106 4 1665 

108 7847 7889 -2 14 140 107 6 2520 

109 7879 7917 27 14 140 108 6 2198 

110 7902 7943 5 6 60 109 1 1164 

111 7951 7996 -29 6 60 110 3 780 

112 7993 8040 9 12 120 111 2 2076 

113 8019 8058 8 12 120 112 1 2124 

114 8080 8128 -8 5 50 113 6 865 

115 8102 8140 5 13 130 114 3 2509 

116 8121 8171 -25 15 150 42 1 1665 

117 8177 8226 -26 15 150 116 2 2685 

118 8227 8266 -7 12 120 117 2 1956 

119 8283 8330 21 10 100 118 5 1950 

120 8357 8398 -5 13 130 7 3 2041 

121 8375 8417 6 5 50 120 5 630 

122 8419 8456 26 8 80 121 4 936 

123 8468 8516 6 15 150 122 2 1995 

124 8524 8582 7 11 110 123 3 1958 

125 8571 8628 -14 11 110 124 1 1507 

126 8625 8669 20 11 110 125 2 2024 

127 8663 8718 -15 7 70 126 2 1393 
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128 8717 8747 -21 12 120 127 3 1236 

129 8769 8814 -12 9 90 128 2 1224 

130 8786 8841 0 11 110 129 5 1540 

131 8864 8897 3 6 60 130 1 918 

132 8871 8905 -19 8 80 131 6 1568 

133 8883 8916 30 8 80 132 6 944 

134 8926 8962 -16 5 50 133 5 685 

135 8983 9038 -6 13 130 134 4 1664 

136 9036 9077 12 5 50 135 3 990 

137 9098 9157 24 13 130 37 1 2054 

138 9142 9182 -16 11 110 137 4 1397 

139 9177 9232 21 7 70 138 4 784 

140 9212 9248 -2 12 120 139 5 1932 

141 9250 9299 -6 15 150 140 4 2775 

142 9305 9350 17 12 120 141 1 1920 

143 9344 9374 -15 6 60 142 2 1200 

144 9357 9388 -25 11 110 143 5 1705 

145 9394 9439 15 9 90 144 3 1584 

146 9450 9484 -26 15 150 145 5 1995 

147 9506 9536 -12 11 110 146 4 1342 

148 9536 9566 -17 13 130 28 6 2405 

149 9555 9601 -12 15 150 148 3 2310 

150 9631 9675 6 6 60 149 1 876 

151 9700 9742 -28 14 140 150 1 1750 

152 9748 9802 26 14 140 151 2 2142 
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153 9803 9851 -8 13 130 152 6 1924 

154 9857 9901 -29 11 110 153 6 1210 

155 9928 9980 6 7 70 154 1 1288 

156 9961 9994 12 6 60 155 1 834 

157 10015 10056 -28 13 130 156 1 2275 

158 10065 10104 14 5 50 157 2 540 

159 10086 10126 16 10 100 158 1 1740 

160 10102 10144 -10 13 130 159 2 1443 

161 10124 10156 -22 15 150 160 3 2445 

162 10177 10229 -27 13 130 15 4 1482 

163 10252 10305 7 15 150 162 6 1995 

164 10316 10368 7 15 150 163 5 2325 

165 10363 10417 -11 5 50 164 2 540 

166 10439 10493 15 8 80 165 3 1312 

167 10512 10554 18 11 110 166 1 1496 

168 10580 10634 1 7 70 167 6 1057 

169 10633 10672 -1 6 60 168 4 714 

170 10661 10721 17 8 80 169 4 1408 

171 10724 10784 5 9 90 170 3 1377 

172 10798 10830 -23 10 100 171 2 1750 

173 10842 10872 -7 9 90 172 2 1494 

174 10868 10924 -12 11 110 173 3 1914 

175 10922 10973 -3 7 70 174 4 1302 

176 10967 11001 0 10 100 175 5 1520 

177 11026 11057 -28 10 100 176 2 1250 
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178 11041 11073 23 6 60 177 4 1170 

179 11046 11106 24 5 50 178 4 855 

180 11111 11149 -18 7 70 179 4 980 

181 11158 11188 -22 12 120 180 5 2376 

182 11192 11223 13 6 60 181 2 1140 

183 11206 11257 -9 13 130 182 3 1950 

184 11276 11333 14 12 120 183 5 2340 

185 11333 11388 -5 5 50 184 4 800 

186 11359 11405 26 8 80 185 4 936 

187 11427 11462 -1 6 60 186 1 1128 

188 11435 11472 29 5 50 187 5 750 

189 11488 11538 -25 8 80 188 2 1400 

190 11542 11588 -20 15 150 189 6 1740 

191 11582 11622 30 8 80 190 3 1176 

192 11615 11669 -6 11 110 191 2 2134 

193 11679 11728 13 5 50 192 5 795 

194 11747 11801 -21 11 110 193 2 1375 

195 11787 11842 5 9 90 194 5 1584 

196 11859 11890 -10 8 80 195 4 1024 

197 11903 11960 -21 12 120 196 1 1812 

198 11938 11992 5 6 60 197 3 990 

199 11991 12047 5 14 140 198 6 1568 

200 12064 12122 2 14 140 199 6 2156 

201 12102 12157 -1 15 150 200 1 2490 

202 12173 12203 16 7 70 201 1 728 
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203 12199 12253 -22 5 50 202 5 560 

204 12237 12283 -9 9 90 203 2 1683 

205 12258 12290 -8 10 100 204 6 1100 

206 12273 12303 0 10 100 205 4 1100 

207 12320 12367 -9 9 90 206 2 1431 

208 12371 12413 30 5 50 207 3 970 

209 12420 12467 -1 13 130 208 2 1729 

210 12454 12492 -5 11 110 209 2 1364 

211 12464 12519 26 5 50 210 3 580 

212 12525 12576 -5 9 90 211 3 1782 

213 12573 12619 -29 8 80 212 6 848 

214 12604 12652 -7 10 100 213 3 1840 

215 12629 12670 11 5 50 214 6 815 

216 12676 12720 -9 5 50 215 2 920 

217 12698 12738 0 12 120 216 1 1848 

218 12716 12764 10 7 70 217 4 749 

219 12748 12798 12 8 80 218 3 1344 

220 12815 12861 22 8 80 219 2 856 

221 12845 12904 -2 5 50 220 2 660 

222 12908 12958 -13 12 120 221 1 2040 

223 12960 13013 -21 6 60 222 6 1158 

224 13026 13060 -20 9 90 223 1 1575 

225 13079 13139 8 13 130 224 6 1560 

226 13141 13172 14 12 120 225 1 1800 

227 13200 13235 -22 6 60 226 5 816 
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228 13241 13280 -1 8 80 227 5 1232 

229 13265 13296 11 13 130 228 1 2314 

230 13282 13314 17 7 70 229 6 875 

231 13302 13339 -19 14 140 230 4 1582 

232 13327 13359 7 12 120 231 1 1356 

233 13384 13433 8 7 70 232 2 889 

234 13451 13505 8 8 80 233 4 816 

235 13499 13552 12 9 90 234 3 1368 

236 13543 13577 13 11 110 235 5 1628 

237 13600 13648 -1 12 120 236 3 2064 

238 13669 13705 -13 15 150 237 5 1575 

239 13732 13788 7 11 110 238 5 2123 

240 13779 13832 -25 9 90 239 1 1710 

241 13827 13875 -11 12 120 240 5 1452 

242 13905 13964 -29 9 90 241 5 1602 

243 13974 14009 15 9 90 242 1 1782 

244 13985 14015 26 10 100 243 2 1410 

245 14027 14064 -17 13 130 244 6 1859 

246 14094 14136 13 13 130 245 4 2132 

247 14110 14151 23 5 50 246 3 925 

248 14131 14164 -28 15 150 247 3 2220 

249 14148 14181 17 13 130 248 6 2288 

250 14181 14236 -4 8 80 249 3 1008 

251 14219 14253 0 0 0 - - - 
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APPENDIX C: MATLAB ® COMPUTER CODE 
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Code for DataReader.m 

clear all  
global  n TW q Q value C cap twin st satno viewno nosats  
n = xlsread( 'Bdata6' , 'n' )  
lookangle = xlsread( 'Bdata6' , 'lookangle' )  
ld = xlsread( 'Bdata6' , 'ld' )  
TW=xlsread( 'Bdata6' , 'TW' )  
st = []  
q = xlsread( 'Bdata6' , 'q' )  
Q = xlsread( 'Bdata6' , 'Memory' )  
value = xlsread( 'Bdata6' , 'Value' )  
satno = xlsread( 'Bdata6' , 'satno' )  
nosats = xlsread( 'Bdata6' , 'nosats' )  
viewno = xlsread( 'Bdata6' , 'viewno' )  
maxTC = 100000  
Early = TW(:,1)  
Late = TW(:,2)  
for  i=1:n;  
    for  j = 2:n  
        if  i == 1   
            setuptime(i,j)=abs(lookangle(i)-lookang le(j));  
        elseif   satno(j)~= satno(i)  
            setuptime(i,j)=9999999;  
        else  
        setuptime(i,j)=abs(lookangle(i)-lookangle(j ));  
        end  
    end  
end  
  
setuptime  
for  i=1:n;  
    for  j = 2:n  
        if  Early(j) < Early (i) & Late(j) < Early(i);  
           traveltime (i,j)=999999;  
        else  
            traveltime (i,j)=0;  
        end  
    end  
end  
traveltime;  
C = max(setuptime, traveltime)  
TW 
cap = {q,Q}  
twin = {ld,TW,st}  
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Code for SequenceBuilder.m  

 

function  Population = SequenceBuilder(GenomeLength, Fitness Fcn, options)  
  
global   n TW q Q value C cap twin st satno viewno nosats  
Pop = cell(20,1);  
tmprte = cell(20,2)  
for  k=1:20  
    XFlg = -2;  
    while  any (XFlg ~=1)  
    % Create a binary vector that has n-2 ones or zeros  
    X=[];  
    %Generate a random binary vector  
    for  i=1:n-2  
        if  rand <= 0.5  
           v = 0;  
        else  
           v=1;  
        end  
        X=[X v];  
    end  
  
    % Fix binary vector if image is allocated to more t han one time-window  
    for  i=1:n-2  
      for  j=i:n-2  
            if  j~=i & viewno(j)==viewno(i)  
                if  X(j)==1 & X(i)==1  
                    if  rand >= 0.5  
                    X(j)=0  
                    else  
                    X(i)=0  
                    end  
                end  
            end              
      end                        
    end     
  
    % Split the binary vector in accordance with the sa tellite number of  
    % the respective time-window  
    a=[2:n-1]  
    b=satno(2:n-1,1)'  
    c=X.*b  
    for  r=1:nosats  
        for  i=1:n-2;  
            if  c(i)==r  
               d(i,r)=1;  
            else   
               d(i,r)=0;  
            end  
        end  
    end  
  
    for  r=1:nosats  
        e=d(:,r)';  
        tmprte{k,r}=nonzeros([1 e.*a 1])'  
    end  
    pp=[1 X];  
    [TC,XFlg,out] = rteTC(tmprte{k,r},C,cap,twin,[] );  
    XFlg  
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    if  any (XFlg ~=1)  
       continue  
       else  
          Pop{k}=pp;  
       end  
    end  
  
    tmprte;  
    Population = cell2mat(Pop);  
    viewno;  
end  
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Code for rteTC.m  

function  [TC,XFlg,out] = rteTC(rte,varargin)  
global  n TW q Q value C cap twin st  
%RTETC Calculate total cost of route with time-wind ows.  
%            TC = rteTC(rte,C)  
% [TC,XFlg,out] = rteTC(rte,C,cap,twin,rtefeas)  
%               = rteTC(rte),  use arguments C,twin ,... from previous call  
%                              and do not check inp ut for errors  
%    rte = vector of single-route vertices  
%        = m-element cell array of m routes  
%          (to get sum(TC) as output, use vector rt e = [rte{:}] as input)  
%      C = n x n matrix of costs between n vertices  
%     TC = m-element vector of route costs, where  
%          TC(i) = Inf if route i is infeasible  
% 
% Optional input and output arguments used to deter mine route feasibility:  
%    cap = {q,Q} = cell array of capacity arguments , where  
%              q = n-element vector of vertex deman ds, with depot q(1) = 0  
%              Q = maximum route load  
%   twin = {ld,TW,st} = cell array of time-window a rguments, where  
%             ld = n or (n+1)-element vector of loa ding/unloading  
%                  timespans, where  
%                     ld(rte(1))   = load at depot  
%                     ld(n+1)      = unload at depo t, if rte(1) == rte(end)  
%                = scalar of constant values "ld" f or rte(2) ... rte(end)   
%                  and 0 for rte(1); or rte(2) ... rte(end-1) and 0 for  
%                   rte(end), if rte(1) == rte(end)  
%                = 0, default  
%             TW = n or (n+1) x 2 matrix of time-wi ndows, where  
%                     TW(i,1)      = start of time- window for vertex i  
%                     TW(i,2)      = end of time-wi ndow 
%                     TW(rte(1),:) = start time-win dow at depot  
%                     TW(n+1,:)    = finish time-wi ndow at depot,  
%                                    if rte(1) = rt e(end)  
%                = (n+1)-element cell array, if mul tiple windows, where  
%                     TW{i}        = (2 x p)-elemen t vector of p window  
%                                    (start,end) pa irs  
%             st = (optional) m-element vector of s tarting times at depot  
%                = TW(1,1) or min(TW{1}), default ( earliest starting time)  
%rtefeas = {'rtefeasfun',P1,P2,...} = cell array sp ecifying user-defined  
%          function to test the feasibility of a si ngle route (in addition   
%          to time-windows, capacity, and maximum c ost), where RTETC  
%          argument out(i) along with user-specifie d arguments P1,P2,...  
%          are passed to function and a logical val ue should be returned:  
%                 isfeas = RTEFEASFUN(out(i),P1,P2, ...)  
%        = {'maxTCfeas',maxTC} is a predefined rout e feasibility function  
%          to test if the total cost of a route (in cluding loading/  
%          unloading times "ld") exceeds the maximu m waiting time "maxTC"  
%          (see below for code)  
%XFlg(i) = exitflag  
%        =  1, if route is feasible  
%        = -1, if infeasible due to capacity  
%        = -2, if infeasible due to time-windows  
%        = -3, if infeasible due to user-defined fe asibility function  
%    out = m-element struct array of outputs  
% out(i) = output structure with fields:  
%        .Rte     = route indices, rte{i}  
%        .Cost    = cost from vertex j-1 to j,  
%                   Cost(j) = C(r{i}(j-1),r{i}(j)) and Cost(1) = 0  
%                 = drive timespan from vertex j-1 to j  
%        .Demand  = demands of vertices on route, q (rte{i})  
%        .Arrive  = time of arrival  
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%        .Wait    = wait timespan if arrival prior to beginning of window  
%        .Start   = time loading/unloading started (starting time for  
%                   route is "Start(1)")  
%        .LD      = loading/unloading timespan, ld( rte{i})  
%        .Depart  = time of departure (finishing ti me is "Depart(end)")  
%        .Total   = total timespan from departing v tx j-1 to depart. vtx j  
%                   (= drive + wait + loading/unloa ding timespan)  
%        .EarlySF = earliest starting and finishing  times (default starting  
%                   time is "st" and default finish . time is "EarlySF(2)")  
%        .LateSF  = latest starting and finishing t imes  
% 
% For each route rte{i}, feasibility is determined in the following order:  
%    1. Capacity feasibility: SUM(q(rte{i})) <= Q i f feasible  
%    2. Time-window feasiblity: [TCi,ignore,outi] =  RTETC(rte{i},C,twin);  
%                               TCi < Inf if feasib le  
%    3. User defined feasibility: isfeas = RTEFEASF UN(outi,P1,P2,...);  
%                                 isfeas == true if  feasible  
% 
  
% Copyright (c) 1994-2004 by Michael G. Kay  
% Matlog Version 8 22-Nov-2004  
  
% Input Error Checking **************************** ************************  
  
% Set to empty  
  
if  nargin < 2  
   if  isempty(C)  
      error( 'Additional input arguments required for first call .' )  
   else  
      isfirstcall = 0;  
   end  
else  
   isfirstcall = 1;  
   if  length(varargin) < 4  
      [varargin{length(varargin)+1:4}] = deal([]);  
   end  
   [C,cap,twin,rtefeas] = deal(varargin{:});  
   [q,Q,ld,TW,st] = deal([]);  
end  
  
m = 1;  
if  iscell(rte), m = length(rte); end  
TC = Inf * ones(m,1);                % All routes initialized to infeasible  
XFlg = ones(m,1);                    % All flags initialized to feasible  
  
[n,nC] = size(C);  
  
% Route  
if  isfirstcall & ~isempty(rte) & (~(isreal(rte) | isc ell(rte)) | ...  
      (~iscell(rte) & (min(size(rte)) ~= 1 | ...  
      any(rte(:) < 1 | rte(:) > n))) | ...  
      (iscell(rte) & (any(cellfun( 'prodofsize' ,rte) ~= ...  
      cellfun( 'length' ,rte)) | any([rte{:}] < 1 | [rte{:}] > n))))  
   error( '"rte" not a valid route.' )  
end  
  
% Cost  
if  isfirstcall  
   if  n ~= nC  
      error( 'C must be a square matrix.' )  
   elseif  any(any(C<0))  
      error( 'C must be a non-negative matrix.' )  
   elseif  any(diag(C) ~= 0)  
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      error( 'C must have zeros along its diagonal.' )  
   end  
end  
  
% Capacity  
if  isfirstcall && ~isempty(cap)  
   if  ~iscell(cap) || length(cap(:)) ~= 2  
      error( '"cap" must be a two element cell array.' )  
   end  
   q = cap{1}; Q = cap{2};  
   if  length(q(:)) ~= n  
      error([ '"q" must be an ' ,num2str(n), '-element vector.' ])  
   elseif  q(1) ~= 0  
      error( 'Depot''s demand, q(1), should equal 0.' );  
   elseif  length(Q(:)) ~= 1 || Q < 0  
      error( 'Q must be a nonnegative scalar.' )  
   elseif  any(q > Q)  
      error( 'Elements of "q" can not be greater than Q.' )  
   end  
end  
  
% Time-window  
if  isfirstcall && ~isempty(twin)  
   if  ~iscell(twin) || length(twin(:)) < 1 || length(twi n(:)) > 3  
      error( '"twin" must be a one or three element cell array.' )  
   end  
   ld = twin{1};  
   if  ~isempty(ld), ld = ld(:)'; end  
   if  length(twin) > 1, TW = twin{2}; else  TW = []; end  
   if  ~isempty(TW) && ~iscell(TW), TW = padmat2cell(TW);  end  
   if  length(twin) > 2, st = twin{3}; st = st(:); else  st = []; end  
    
   if  ~isempty(ld) && all(length(ld) ~= [1 n n+1])  
      error( 'Length of "ld" must equal 1, n, or n + 1.' )  
   elseif  ~isempty(TW)  
      if  iscell(TW), TW = cell2padmat(TW); end  
      if  all(size(TW,1) ~= [n n+1]) || mod(size(TW,2),2) ~=  0 || ...  
            any(all(isnan(TW'))) || ...  
            any(any(TW(:,1:2:end-1) > TW(:,2:2:end) )) || ...  
            any(any(xor(isnan(TW(:,1:2:end-1)),isna n(TW(:,2:2:end)))))  
         error( 'TW not valid time-windows.' )  
      end  
   elseif  ~isempty(st) && ~isempty(rte) && length(st(:)) ~= m 
      error( 'Starting time "st" must be an m-element vector.' )  
   end  
end  
  
% Route feasibilty function  
if  ~isempty(rtefeas) &&  strcmp(rtefeas{1}, 'maxTCfeas' ) && ...  
      all(isinf(rtefeas{2}))  
   rtefeas = [];  % maxTC = Inf => always feasible  
end  
if  isfirstcall && ~isempty(rtefeas)  
   if  length(rtefeas(:)) < 1  
      error( '"rtefeas" must be at least a one element cell arra y.' )  
   end  
   if  ~ischar(rtefeas{1})  
      error( 'First element of "rtefeas" must be a string.' )  
   elseif  ~strcmp(rtefeas{1}, 'maxTCfeas' ) && 
~exist(lower(rtefeas{1}), 'file' )  
      error([ 'Function "'  rtefeas{1} '" not found.' ])  
   end  
end  
  
% Empty "rte" used for error checking and to store input arguments  
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if  isempty(rte)  
   if  nargout > 0, TC = []; XFlg = []; out = []; end  
   return  
end  
% End (Input Error Checking) ********************** ************************  
  
% Initial timing output structure  
if  nargout > 2 || ~isempty(rtefeas)  
   out = struct( 'Rte' ,[], 'Cost' ,[], 'Demand' ,[], 'Arrive' ,[], 'Wait' ,[], ...  
      'Start' ,[], 'LD' ,[], 'Depart' ,[], 'Total' ,[], 'EarlySF' ,[], 'LateSF' ,[]);  
   out(1:m) = out;  
end  
  
% Evaluate each route  
for  i = 1:m  
     
   if  iscell(rte), r = rte{i}; else  r = rte(:)'; end  
    
   % 1. Capacity feasibility  
   if  ~isempty(q) && ~isinf(Q)  
      if  nargout > 2 || ~isempty(rtefeas), out(i).Demand = q(r); end  
      if  sum(q(r)) > Q; XFlg(i) = -1; continue , end  
   end  
    
   % Calculate route cost  
   c = diag(C(r(1:end-1),r(2:end)))';  
   if  isempty(ld) || all(ld == 0)  
      ldi = zeros(1,length(r));  
   else  
      if  length(ld) == 1  
         ld = [0 ld*ones(1,n-1)];  
         if  r(1) == r(end), ld = [ld 0]; end  
      end  
      ldi = ld(r);  
      if  r(1) == r(end)  
         if  length(ld) ~= n+1  
            error( 'Length of "ld" must equal n + 1.' )  
         end  
         ldi(end) = ld(n+1);  
      end  
   end  
   TC(i) = sum(c) + sum(ldi);  
   if  nargout > 2 || ~isempty(rtefeas)  
      out(i).Rte = r;  
      out(i).Cost = [0 c];  
      if  ~isempty(ld), out(i).LD = ldi; end  
      out(i).Total = [0 c] + ldi;  
   end  
    
   % 2. Time-window feasibility  
   if  ~isempty(TW)  
      B = TW(:,1:2:end-1);  
      E = TW(:,2:2:end);  
      Br = B(r,:); Er = E(r,:);  
      if  r(1) == r(end)  
         if  size(B,1) ~= n+1, error( 'Length of TW must equal n + 1.' ), end  
         Br(end,:) = B(n+1,:); Er(end,:) = E(n+1,:) ;  
      end  
      if  ~isempty(st), sti = st(i); else  sti = []; end  
      if  nargout < 3 && isempty(rtefeas)  
         TC(i) = rteTW(c,ldi,Br,Er,sti);  
      else  
         [TC(i),s,w] = rteTW(c,ldi,Br,Er,sti);  
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         if  ~isinf(TC(i))  
            s_late = latestart(c,ldi,Br,Er);  
         else  
            s_late = NaN;  
         end          
         out(i).Arrive = [0 s(2:end)-w(2:end)];  
         out(i).Wait = w;  
         out(i).Start = s;  
         out(i).Depart = s + ldi;  
         out(i).Total = [0 c] + w + ldi;  
         out(i).EarlySF = [s(1) s(end) + ldi(end)];  
         out(i).LateSF = [s_late(1) s_late(1) + TC( i)];  
      end  
      if  isinf(TC(i)), XFlg(i) = -2; continue , end  
   end  
    
   % 3. User defined feasibility function  
   if  ~isempty(rtefeas)  
      isfeas = feval(rtefeas{1},out(i),rtefeas{2:en d});  
      if  length(isfeas(:)) ~= 1 % | ~islogical(isfeas)  
         error( 'Output argument "isfeas" must be a scalar logical value.' )  
      end  
      if  isfeas == 0,  
         TC(i) = Inf; XFlg(i) = -3; continue , end  
   end  
    
end  % FOR loop  
  
% ************************************************* ************************  
function  [TC,s,w] = rteTW(t,ld,B,E,st)  
%RTETW Single route time-window.  
  
tol = 1e-8;  
n = size(B,1);  
  
if  isempty(st), s = min(B(1,:)); else  s = st; end  
  
s = s + ld(1);  
for  i = 2:n  % Forward scan to determine earliest finish time  
   s = s + t(i-1) + ld(i);  
   Bi = B(i,:) + ld(i);  
   if  ~any(s + tol >= Bi && s - tol <= E(i,:))  
      s = min(Bi(Bi >= s));  
      if  isempty(s)  
         TC = Inf; s = NaN; w = NaN; return  
      end  
   end  
end  
f = s;  
  
s = f - ld(n);  
for  i = n-1:-1:1  % Reverse scan to determine latest start time for t he 
   % earliest finish  
   s = s - t(i) - ld(i);  
   Ei = E(i,:) - ld(i);  
   if  ~any(s + tol >= B(i,:) & s - tol <= Ei)  
      s = max(Ei(Ei <= s));  
   end  
end  
TC = f - s;  
if  isnan(TC), TC = sum(t) + sum(ld); end  % If all Br == -Inf and all Er = 
Inf  
  
if  nargout > 1  
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   s = [s zeros(1,n-1)];  
   w = zeros(1,n);  
   for  i = 2:n  % Second forward scan to delay waits as much as pos sible  
      % to the end of the route in case unexpected events  occur  
      s(i) = s(i-1) + ld(i-1) + t(i-1);  
      Bi = B(i,:);  
      if  ~any(s(i) + tol >= Bi & s(i) + ld(i) - tol <= E(i, :))  
         w(i) = s(i);  
         s(i) = min(Bi(Bi >= s(i)));  
         w(i) = s(i) - w(i);  
      end  
   end  
end  
 
% ************************************************* ************************  
function  s = latestart(t,ld,B,E)  
%LATESTART Determine latest start time.  
  
tol = 1e-8;  
n = size(B,1);  
  
s = max(E(end,:)) - ld(n);  
for  i = n-1:-1:1  % Reverse scan to determine latest start time  
   s = s - t(i) - ld(i);  
   Ei = E(i,:) - ld(i);  
   if  ~any(s + tol >= B(i,:) && s - tol <= Ei)  
      s = max(Ei(Ei <= s));  
   end  
end  
  
  
% ************************************************* ************************  
function  isfeas = maxTCfeas(outi,maxTC)  
%MAXTCFEAS Maximum total cost route feasibility fun ction.  
% isfeas = maxwaitfeas(outi,maxTC)  
%   outi = struct array of outputs from RTETC for s ingle route i  
%          (automatically passed to function)  
%  maxTC = scalar maximum total cost (including un/ loading times) of route  
% 
% Route is feasible if sum(outi.Total) <= maxTC  
% 
% This function can be used as a template for devel oping other  
% route feasibility functions.  
  
% Input error check  
if  ~isnumeric(maxTC) || length(maxTC(:)) ~= 1 || maxT C < 0  
   error( '"maxTC" must be a nonnegative scalar.' )  
end  
  
% Feasibility test  
if  sum(outi.Total) <= maxTC  
   isfeas = true;  
else  
   isfeas = false;  
end  
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Code for TabuSat.m   

%Find an initial feasible route of n-1 vertices.  
  
tic  
global   n TW q Q value C cap twin st satno viewno nosats  
  
XFlg = -2  
while  XFlg ~=1  
    X=[]  
    for  i=1:n-1  
        g=rand;  
        if  g<=0.5  
            v = 0;  
            X=[X v];  
        elseif  g> 0.5  
            v=1;  
            X=[X v];  
        end  
    end  
    % Fix bit string if image is allocated to more than  one time-window  
    for  i=1:n-2  
      for  s=i:n-2  
            if  s~=i & viewno(s)==viewno(i)  
                if  X(s)==1 & X(i)==1  
                    h=rand  
                    if  h >= 0.5  
                    X(s)=0  
                    else  
                    X(i)=0  
                    end  
                end  
            end              
      end                        
    end     
  
    % Determine if the bit string represent a feasible set of image  
    % sequences  
    a=[2:n]  
    b=satno(2:n,1)'  
    c=X.*b  
    for  r=1:nosats  
        for  i=1:n-1;  
            if  c(i)==r  
                d(i,r)=1;  
            else   
                d(i,r)=0;  
            end  
        end  
    end  
    f=[1 X]  
    for  r=1:nosats  
        e=d(:,r)';  
        rte{r}=nonzeros([1 e.*a 1])'  
    end  
    celldisp (rte)  
    [TC,XFlg,out] = rteTC(rte,C,cap,twin,[])  
    if  XFlg ~=1  
        continue  
    else  
        optc=-sum(f*value)  
    end  
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end  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
% Start the Tabu Search routine  
k_max = 100 %was 100  
L=5%was 5  
% Initialise number of iterations  
   
k=1;  
   
% Initialise logging vectors  
   
E=zeros(1,k_max);  
optE=zeros(1,k_max);  
  
% Initialise tabu list  
   
tL=zeros(1,n-1);  
   
% Initially, let the optimal X be equal to the init ial estimate of x  
   
optX=X  
  
% Loop  
   
while (k<=k_max)  
  
% Update tabu list  
     
tL=tL-(tL>0);  
     
% Go through neighbourhood looking for  
% best allowed solution  
     
currc=optc;  
for  j=1:n-1  
   if (tL(j)==0)  
    m=n-1  
    XFlg = -2  
        while  XFlg ~=1  
            indeks = round(rand*m)  
            if  indeks==0  
                rand( 'state' ,sum(100*clock))  
                indeks = round(rand*m)+1  
                if  indeks==m+1  
                    indeks=m  
                end  
            end  
            if  X(indeks)==1  
                X(indeks)=0  
            elseif  X(indeks)==0  
                X(indeks)=1  
            end  
             % Fix bit string if image is allocated to more than  one time-
window  
            for  i=1:n-2  
              for  s=i:n-2  
                    if  s~=i & viewno(s)==viewno(i)  
                        if  X(s)==1 & X(i)==1  
                            h=rand  
                            if  h >= 0.5  
                            X(s)=0  
                            else  
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                            X(i)=0  
                            end  
                        end  
                    end              
              end                        
            end     
  
            % Determine if the bit string represent a feasible set of image  
             % sequences  
            a=[2:n]  
            b=satno(2:n,1)'  
            c=X.*b  
            for  r=1:nosats  
                for  i=1:n-1;  
                    if  c(i)==r  
                       d(i,r)=1;  
                    else   
                       d(i,r)=0;  
                    end  
                end  
            end  
            f=[1 X]  
            for  r=1:nosats  
                e=d(:,r)';  
                rte{r}=nonzeros([1 e.*a 1])'  
            end  
            celldisp (rte)  
            [TC,XFlg,out] = rteTC(rte,C,cap,twin,[] )  
            if  XFlg ~=1  
               continue  
            else  
               tmpc=-sum(f.*value')  
               tmpX =X  
            end  
        end ;  
        if (tmpc<currc)  
            currc=tmpc;  
            tmpj=j;  
        end  
    end  
end  
     
% Update X with best solution from its neighbourhoo d  
     
X=tmpX 
     
% Log current status  
     
E(k)=currc;  
optE(k)=optc;  
     
% Indicate that this permutation is invalid for  
% L iterations  
     
tL(tmpj)=L;  
     
% If a globally better solution is found,  
% update the corresponding variables  
     
    if (currc<=optc)  
      optc=currc;  
      optX=tmpX;  
    end  
    k=k+1;  
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end  
  E  
  optE  
  optc  
  optX  
  celldisp (rte)  
  toc  
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Code for SimulanSat.m   

%Find an initial feasible route of n-1 vertices.(X, optc,M,k_max,alpha,T_0)  
  
tic  
global   n TW q Q value C cap twin st satno viewno nosats  
k_max=10000  
alpha=0.9999  
T_0=100  
newc=0  
optc=0  
tmpX=zeros(1,n-1)  
XFlg = -2  
while  any (XFlg ~=1)  
    rand( 'state' ,sum(100*clock))  
    X=[]  
    for  i=1:n-1  
        g=rand;  
        if  g<=0.5  
            v = 0;  
            X=[X v];  
        elseif  g> 0.5  
            v=1;  
            X=[X v];  
        end  
    end  
     % Fix bit string if image is allocated to more than  one time-window  
    for  i=1:n-2  
      for  s=i:n-2  
            if  s~=i & viewno(s)==viewno(i)  
                if  X(s)==1 & X(i)==1  
                    rand( 'state' ,sum(100*clock))  
                    h=rand  
                    if  h >= 0.5  
                    X(s)=0  
                    else  
                    X(i)=0  
                    end  
                end  
            end              
      end                        
    end     
  
  
    a=[2:n]  
    b=satno(2:n,1)'  
    c=X.*b  
    for  r=1:nosats  
        for  i=1:n-1;  
            if  c(i)==r  
                d(i,r)=1;  
            else   
                d(i,r)=0;  
            end  
        end  
    end  
    f=[1 X]  
    for  r=1:nosats  
        e=d(:,r)';  
        rte{r}=nonzeros([1 e.*a 1])'  
    end  
    celldisp (rte)  
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    [TC,XFlg,out] = rteTC(rte,C,cap,twin,[])  
    if  any (XFlg ~=1)  
        continue  
    else  
        optc=-sum(f*value)  
    end  
end  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
  % Initialise temperature  
   
  T=T_0;  
   
  % Initialise logging vectors  
   
  E=zeros(1,k_max);  
  optE=zeros(1,k_max);  
  Cost=zeros(1,k_max);  
   
     
  % Initially, let the optimal X be equal to the  
  % initial estimate of x  
   
  OptX=X;  
   
  % Now calculate the cost of the initial tour.  This  is  
  % our initial old cost and our initial optimal cost .  
   
  oldc=optc;  
    
   
  % Initialise number of iterations  
   
  k=1;  
   
  % Loop  
   
  while (k<=k_max)  
     
    % Find a solution in the neighbourhood  
  
     
    m=n-1  
    XFlg = -2  
        while  any (XFlg ~=1)  
            indeks = round(rand*m)  
            if  indeks==0  
                rand( 'state' ,sum(100*clock))  
                indeks = round(rand*m)+1  
                if  indeks==m+1  
                    indeks=m  
                end  
            end  
            if  X(indeks)==1  
                X(indeks)=0  
            elseif  X(indeks)==0  
                X(indeks)=1  
            end  
             % Fix bit string if image is allocated to more than  one time-
window  
        for  i=1:n-2  
          for  s=i:n-2  
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                if  s~=i & viewno(s)==viewno(i)  
                    if  X(s)==1 & X(i)==1  
                        rand( 'state' ,sum(100*clock))  
                        h=rand  
                        if  h >= 0.5  
                        X(s)=0  
                        else  
                        X(i)=0  
                        end  
                    end  
                end              
          end                        
        end     
  
  
    a=[2:n]  
    b=satno(2:n,1)'  
    c=X.*b  
    for  r=1:nosats  
        for  i=1:n-1;  
            if  c(i)==r  
                d(i,r)=1;  
            else   
                d(i,r)=0;  
            end  
        end  
    end  
    f=[1 X]  
    for  r=1:nosats  
        e=d(:,r)';  
        rte{r}=nonzeros([1 e.*a 1])'  
    end  
     
      
    celldisp (rte)  
    [TC,XFlg,out] = rteTC(rte,C,cap,twin,[])  
    if  any (XFlg ~=1)  
       continue  
       else  
       newc=-sum(f.*value')  
       tmpX=X  
       end  
    end ;  
    % If this is a better solution, select it  
     
    if (newc<=oldc)  
        oldc=newc;  
        X=tmpX;  
         
         % If in addition this is the optimal solution found  so far  
         
        if (newc<=optc)  
            optc=newc;  
            OptX=tmpX;  
        end  
     
    % If this is an inferior solution, select it with a  certain  
    % probability  
     
    else  
      r=rand;  
      if (r<exp((oldc-newc)/T))  
          oldc=newc;  
          X=tmpX;  
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          Cost(k)=1;  
      end  
    end  
     
    % Log current status  
     
    E(k)=oldc;  
    optE(k)=optc;  
     
    % Update temperatur  
     
    T=alpha*T;  
     
    % Now increment k  
     
    k=k+1;  
    
         
  end  
 E  
  optE  
  optc  
  OptX  
  celldisp (rte)  
  toc  
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 Code for GeneticSat.m   

 

function  [X,FVAL,REASON,OUTPUT,POPULATION,SCORES] =  Geneti cSat  
%%   This is an auto generated M file to do optimiz ation with the Genetic 
Algorithm and  
%    Direct Search Toolbox. Use GAOPTIMSET for defa ult GA options 
structure.  
tic  
%%Fitness function  
fitnessFunction = @Satfitness;  
%%Number of Variables  
nvars = 249;  
%Start with default options  
options = gaoptimset;  
%%Modify some parameters  
options = gaoptimset(options, 'PopulationType'  , 'bitString' );  
options = gaoptimset(options, 'Generations'  ,100);  
options = gaoptimset(options, 'StallTimeLimit'  ,Inf);  
options = gaoptimset(options, 'CrossoverFcn'  ,@crossoverspecial2);  
options = gaoptimset(options, 'MutationFcn'  ,{ @mutationgaussian 1  1  });  
options = gaoptimset(options, 'Display'  , 'off' );  
options = gaoptimset(options, 'PlotFcns'  ,{ @gaplotbestf });  
options = gaoptimset(options, 'CreationFcn'  ,@SequenceBuilder);  
%%Run GA 
[X,FVAL,REASON,OUTPUT,POPULATION,SCORES] = 
ga(fitnessFunction,nvars,options);  
toc  
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Code for Satfitness.m 

function  z = Satfitness(x)  
global   n TW q Q value C cap twin st satno viewno nosats  
x  
Optz=0;  
Optx=x;  
Viewfeas= zeros(n-1);  
% If the same image is taken more than once the seq uence is infeasible -  
% return  
for  i=1:n-2  
    for  j=1:n-2  
        if  j~=i & viewno(j)==viewno(i)  
           if  x(i)==1 & x(j)==1  
              Viewfeas(i,j)= 1  
           end  
        end              
    end              
end  
Viewfeas;  
if  any (Viewfeas == 1)  
   z=Inf;  
   return  
% Determine if the proposed sequences are feasible and calculate the  
% fitness value  
else  
    a=[2:n];  
    b=satno(2:n,1)';  
    c=x.*b;  
    for  k=1:nosats  
        for  i=1:n-1;  
            if  c(i)==k  
                d(i,k)=1;  
            else   
                d(i,k)=0;  
            end  
        end  
    end  
    h=[1 x];  
    for  k=1:nosats  
        e=d(:,k)';  
        rte{k}=nonzeros([1 e.*a 1])'  
    end  
    celldisp (rte)  
    [TC,XFlg,out] = rteTC(rte,C,cap,twin,[])  
    if  any (XFlg ~=1)  
       z=Inf;  
    else  
        z=-sum(h.*value');  
    end  
end 
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Code for crossoverspecial2.m 

function  xoverKids  = 
crossoverspecial2(parents,options,GenomeLength,Fitn essFcn,unused,thisPopula
tion)  
%CROSSOVERSCATTERED Position independent crossover function.  
%   XOVERKIDS = CROSSOVERSCATTERED(PARENTS,OPTIONS,GENOMELENGTH, ...  
%   FITNESSFCN,SCORES,THISPOPULATION) creates the c rossover children 
XOVERKIDS 
%   of the given population THISPOPULATION using th e available PARENTS.  
%   In single or double point crossover, genomes th at are near each other 
tend  
%   to survive together, whereas genomes that are f ar apart tend to be  
%   separated. The technique used here eliminates t hat effect. Each gene 
has an  
%   equal chance of coming from either parent. This  is sometimes called 
uniform  
%   or random crossover.  
% 
%   Example:  
%    Create an options structure using CROSSOVERSCA TTERED as the crossover  
%    function  
%     options = gaoptimset('CrossoverFcn' ,@crossov erscattered);  
  
%   Copyright 2003-2004 The MathWorks, Inc.  
%   $Revision: 1.9.4.1 $  $Date: 2004/08/20 19:48:0 8 $  
global   n TW q Q value C cap twin st satno viewno  
  
  
% How many children to produce?  
nKids = length(parents)/2;  
  
% Allocate space for the kids  
xoverKids = zeros(nKids,GenomeLength);  
  
% To move through the parents twice as fast as thek ids are  
% being produced, a separate index for the parents is needed  
index = 1;  
  
% for each kid...  
for  i=1:nKids  
    % get parents  
    r1 = parents(index);  
    index = index + 1;  
    r2 = parents(index);  
    index = index + 1;  
  
    % Randomly select half of the genes from each paren t  
    % This loop may seem like brute force, but it is tw ice as fast as the  
    % vectorized version, because it does no allocation .  
    for  j = 1:GenomeLength  
        if (rand > 0.5)  
            xoverKids(i,j) = thisPopulation(r1,j);  
        else  
            xoverKids(i,j) = thisPopulation(r2,j);        
        end  
    end  
    %Customization to repair children that violate sing ularity constraint   
    for  j=1:n-2  
        for  k=j:n-2  
            if  k~=j & viewno(k)==viewno(j)  
                if  xoverKids(k)==1 & xoverKids(j)==1  
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                    h=rand  
                    if  h >= 0.5  
                    xoverKids(k)=0  
                    else  
                    xoverKids(j)=0  
                    end  
                end  
            end              
        end                        
    end     
end  
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APPENDIX D: EXAMPLE OF GENETIC ALGORITHM 
OUTPUT  

Figure D-1 below is a typical example of the results obtained for each of the test 

cases. The particular test case is for a constellation of six satellites subject only 

to the minimum set of constraints (constraint Group A). The figure shows the 

best and average value obtained for the objective function for each of the 100 

generations consisting of a population of 20 solutions.  
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Figure D- 1:  Sample of the graphic results for a typical computer run 

showing best and mean fitness values obtained for each of the 100 

generations in a solution population comprising 20 individuals. 

Note that the fitness value improves steadily over the generations with no sense 

of stagnation. This is typical of the results obtained.  

The table below contains an example of a typical listing of the results for the 

same test case shown in Figure D-1. It shows six “routes”, rte {1 } though 

rte {6} , as a vector of time-window numbers that makes up the imaging 

sequence for the particular satellite. Next it shows six values for the XFlg  

parameter, the six ones denoting that each of the six sequences or “routes” are 

feasible. The elapsed time for the 100 generations is displayed next before the 

final genotype of the solution is displayed as a binary vector of size 249      
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rte{1} = 

Columns 1 through 12  

     1     2    22    32    58    59    62    64    71    74    75    76 

  Columns 13 through 24  

    83    94   101   104   109   110   115   138   140   142   144   166 

  Columns 25 through 32  

   175   183   196   203   210   213   231     1 

 

rte{2} = 

  Columns 1 through 12  

     1     4     5     7    11    13    24    25    41    43    46    47 

  Columns 13 through 24  

    51    53    70    73   100   105   107   117   125   126   128   135 

  Columns 25 through 36  

   146   152   158   163   164   165   176   178   205   212   220   223 

  Columns 37 through 41  

   226   233   235   238     1 

  

rte{3} = 

  Columns 1 through 12  

     1    20    39    48    52    56    57    61    77    82    85   103 

  Columns 13 through 24  

   108   111   113   114   121   123   127   132   137   145   149   150 

  Columns 25 through 36  

   153   156   159   161   167   172   177   184   187   190   194   201 

  Columns 37 through 39  

   224   241     1 

 

rte{4} = 

  Columns 1 through 12  

     1     9    12    18    21    35    38    40    50    67    79    87 

  Columns 13 through 24  

    88    93    95    99   112   116   131   133   134   147   160   169 

  Columns 25 through 34  

   170   181   193   199   221   232   234   242   243     1 
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rte{5} = 

  Columns 1 through 12  

     1    15    16    19    30    33    54    55    63    72    78    90 

  Columns 13 through 24  

   118   122   124   129   136   139   148   151   168   173   180   185 

  Columns 25 through 36  

   191   197   204   206   208   217   219   222   227   228   229   236 

  Columns 37 through 40  

   240   245   248     1 

 

rte{6} = 

  Columns 1 through 12  

     1     3     8    14    23    28    29    31    36    37    42    49 

  Columns 13 through 24  

    60    65    66    69    91    92    98   120   130   157   162   174 

  Columns 25 through 36  

   182   186   188   189   192   195   198   200   202   214   218   237 

  Columns 37 through 38  

   247     1 

 

XFlg = 

     1 

     1 

     1 

     1 

     1 

     1 

 

Elapsed time is 149.000000 seconds. 

 

ans = 

 

  Columns 1 through 12  

     1     1     1     1     0     1     1     1     0     1     1     1 
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  Columns 13 through 24  

     1     1     1     0     1     1     1     1     1     1     1     1 

  Columns 25 through 36  

     1     0     1     1     1     1     1     1     0     1     1     1 

  Columns 37 through 48  

     1     1     1     1     1     1     0     0     1     1     1     1 

  Columns 49 through 60  

     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 61 through 72  

     1     1     1     1     1     1     0     1     1     1     1     1 

  Columns 73 through 84  

     1     1     1     1     1     1     0     1     1     1     0     1 

  Columns 85 through 96  

     0     1     1     0     1     1     1     1     1     1     0     0 

  Columns 97 through 108  

     1     1     1     1     0     1     1     1     0     1     1     1 

  Columns 109 through 120  

     1     1     1     1     1     1     1     1     1     0     1     1 

  Columns 121 through 132  

     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 133 through 144  

     1     1     1     1     1     1     1     0     1     0     1     1 

  Columns 145 through 156  

     1     1     1     1     1     1     1     1     0     0     1     1 

  Columns 157 through 168  

     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 169 through 180  

     1     0     1     1     1     1     1     1     1     0     1     1 

  Columns 181 through 192  

     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 193 through 204  

     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 205 through 216  

     1     0     1     0     1     0     1     1     1     0     1     1 

  Columns 217 through 228  
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     1     1     1     1     1     1     1     0     1     1     1     1 

  Columns 229 through 240  

     0     1     1     1     1     1     1     1     1     0     1     1 

  Columns 241 through 249  

     1     1     0     1     0     1     1     0     0 

 

 

 

 


