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ABSTRACT 

 

Software project management has been less effective as a result of being focused on 

resource management and the completion of projects within allocated resources and 

other confines. There has not been much focus on improving software project 

management quality through improved decision-making, software project 

management standards and methodologies, hence the focus of this study to explore 

the possibility of using data analytics with project management standards and 

methodologies to improve software project management quality.  

 

The main question to be addressed in this study is: Can data analytics use in software 

project management improve decision-making and project management quality? This study, 

therefore, explores and provides insight on data analytics use, by means of a survey 

that was completed by software project managers. A questionnaire was used to collect 

data from software project managers. The gathered data was captured and analysed 

using the Statistical Package for the Social Sciences (SPSS), and the analysed data 

was used for validity testing, while the reliability of the measurement items was tested 

using Cronbach’s Alpha. A hypothesis was used to evaluate the effect of data analytics 

use on software project management quality. The research made use of the positivist 

research method.  

 

The study established that data analytics has not yet been widely adopted by software 

project managers and organisations alike, as both the project managers and 

organisations have not done enough to promote the training in, and the adoption of 

data analytics. The research also established that data analytics can improve software 

project management quality through improved decision-making and in complementing 

software project management standards. The study findings will be beneficial to 

software project managers, researchers and organisations as it reveals the factors that 

are necessary to effectively use data analytics in software project management, as 

well as highlighting how data analytics improves software project management quality. 
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Chapter 1:  Introduction 

1.0 Background 

Project management has not only become many organisations’ means for achieving 

set organisational goals, but is now also a way of managing change in business 

operations, and also being used to achieve competitive advantage (Andersen & 

Jessen 2003:457). Software Project Management is a sub-discipline of project 

management, dedicated to the planning, implementation, monitoring and control of 

software and web projects (Joyce 2006). 

The functionality of software project management has however been largely limited to 

that of control and monitoring, meant among other things to facilitate the completion 

of projects within specified confines and resources (Stolovitsky 2014:1; Špundak 

2014:941), which has limited it to being an aiding tool in tactical decision-making. 

Despite using this approach, many projects have experienced huge delays, and many 

more have failed, notwithstanding the use of enhancing tools in software project 

management (Buse & Zimmermann 2012:987). Such a phenomenon is what many, 

including Špundak (2014:942), concur as being the traditional project management’s 

approach that is  responsible for prescribing the same methods and techniques across 

all projects. This is in addition to projects having been treated in isolation of their 

environment, which has made software project management to appear highly 

inadequate and criticised amid growing eagerness to try the technological innovations 

which have positively impacted other industries, for example fraud detection in law 

enforcement as cited by Chaudhuri (2012:2). This has necessitated the enhancement 

of software project management approaches.  

Due to the high levels of many projects’ failure to meet the set goals and the high 

failure rate averaging 33% as indicated by Buse and Zimmermann (2010:79), software 

project management is now regarded by many as a complicated practice (Stamelos 

2010:52). This high failure rate, as has been acknowledged by Maqsood and Javed 

(2007:471), is essentially due to effective project management not being practiced 

despite being a crucial aspect which influences the success or failure of a project. 

Effective software project management as indicated by Maqsood and Javed 

(2007:471) is realised through the application of theoretical and practical aspects of 
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managing software projects which should be taught to software project managers 

rather than the current varying practices being advised by literature that maybe  

available. Therefore, blending the practical lessons learnt from project management 

with project management theory will equip project managers for effective software 

project management.  

 

One of the important elements that is critical to software project management quality 

is the  set of tools being used to achieve the desired goals or objectives. Some of the 

tools used including PROM and Hackystat, though they are capable of collecting data, 

monitoring and reporting on a number of software project statistics, they have not been 

widely adopted and used as they focus primarily on data collection and lack the ability 

to analyse large volumes of data from varied sources and presentation (Buse & 

Zimmermann 2010:79).  In addition, Traditional database schemas for example are 

rigid and have made data analysis difficult as opposed to newer technologies like 

Hadoop MapReduce which offer redesigned analytics and makes it possible to use 

huge data sets from various sources and combine such data which was not possible 

with the rigid traditional database schemas (Ames & Sokol 2012:2). 

 

The analytic systems, among other tools that are being used in traditional project 

management have failed to leverage on the growing unstructured volumes of data to 

extract actionable information for quick and sound decision-making which would 

enhance project management (Ames & Sokol 2012:1; Buse & Zimmermann 2010:77). 

An example of traditional analytic tools include basic Business Intelligence (BI) which 

as explained by Rouse (2017:1), focus on historical data as opposed to advanced 

analytics that focus on future forecasting and predictions based on data analyses. 

Experience has shown that traditional analytic systems and tools become challenged 

as data grows bigger quickly and becomes increasingly unstructured (Ames & Sokol 

2012:1), as they cannot handle the huge data volumes from different sources to 

provide accurate and timely analysis in near real time. Project management 

effectiveness has therefore, been significantly reduced since such tools offer little 

support, even for simple tasks (Gopalkrishnan & Steier 2012:10), thereby making 

projects to remain risky to conduct, and with many failing or being delayed despite the 

abundance of data. 
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Due to some inferior analytic tools being used, projects have been treated in isolation, 

partly to handle the huge data volumes involved and to avoid complexities that would 

result from processing such data volumes (Gopalkrishnan & Steier 2012:10). The lack 

of data integration as suggested by Ames and Sokol (2012:6), is responsible for many 

organisations’ reluctance to invest in recent analytic technology innovations which 

would improve decision-making and project management quality. In the absence of 

effective tools and methods, past experience and intuition has been sorely relied upon 

for critical decision-making, resulting in sub-optimal and less effective decision-

making, leading to poor project quality or complete projects failure (Buse & 

Zimmermann 2012:987).  

These traditional project management practices’ shortcomings underpin the need to 

improve software project management, so that it becomes a strategic asset which 

provides insight for improved decision-making. This has resulted in a concerted 

advocacy to enhance software project management quality, which this study proposes 

can be realised through enhanced user requirements analysis, decision-making and 

improved project management standards, taking advantage of the new technological 

advances in analytics, as has also been suggested by Ames and Sokol (2012:1). 

Project Management Body of Knowledge (PMBOK) is one among sundry standards 

that are widely adopted and used in project management (PMI 2008:443) in a bid to 

advance project management and its increased acceptance suggests that, among 

other standards, if complemented it can significantly influence projects’ success.  

It is unequivocal, as has been argued by Hans and Mnkandla (2013:1), that project 

managers require tools which enable them to make effective project management 

decisions. This observation is further affirmed by Buse and Zimmermann (2010:79), 

who indicate that there is a substantial divide between the required information by 

software project managers for good decision-making, as opposed to what is being 

supplied by current analytic tools.  

This study, therefore, looks at the possibility of incorporating data analytics into the 

software project management process to improve software project management 

quality. It seeks to establish if data analytics can assist software project managers to 

realise this by improving decision-making and complementing project management 

standards in software project management. To realise quality software project 
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management, the study considers how data analytics would facilitate decision-making 

which improves the carrying out of project activities and, ultimately, the chances of 

consistent successful projects completion.   

1.1 Definition of Key terms 

Project: A temporary attempt to produce a unique service or product. 

(PMI 2008:5).  

Project Management: The use of skills, tools, knowledge and techniques on project 

activities to be able to satisfy stakeholders’ expectations from 

a project (PMI 2008:6). 

Software Project Management:  A sub-discipline of project management dedicated 

to the planning, implementation, monitoring and control of 

software and web projects (Joyce 2006) 

Traditional project management: A projects management approach which treats 

projects as being fairly simple, linear and predictable, with 

defined boundaries, making it easy to have a detailed plan 

and to follow the project plan without much change (Špundak 

2014:941). 

Quality: Refers to the extent to which a process or system satisfies 

user expectations and the stated requirements (Al-Kilidar et 

al. 2005:126). 

Analytics:   The practice of using data to manage information and 

performance (Deloitte 2013:3). 

Quantitative data:  Refers to the evidence or data that is founded on numbers 

(Oates 2006:245). 

Decision-making:  A process of choosing a favourable option or plan of action 

from available alternatives, using a defined criteria or 

approaches (Wang, Liu & Ruhe 2004:124).  
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1.2  Research Purpose   

This research mainly focuses on establishing the prospect of using data analytics to 

improve software project management quality through enhanced decision-making and 

project management standards. It has been observed in previous research including 

as noted by Chaudhuri (2012:2) the fact that use of data analytics has been 

successfully used and had even led to increased productivity and efficiency in other 

sectors, including fraud detection and law enforcement. However, its introduction into 

software project management is a concept that this study anticipates will improve 

software project management quality. 

This research, therefore, focuses on determining the possibility of using data analytics 

in conjunction with project management standards, such as PMBOK, to improve 

software project management quality. This will be realised through questionnaires, 

which will be completed by software project managers in South Africa and reviewing 

randomly selected online documents. 

1.3  Research Problem  

Non-integration of data analytics into software project management, a major contributor to poor 

quality software project management. 

Software projects continue being risky and difficult to envisage despite the abundance 

of data, widespread adoption and use of project management standards and 

methodologies by organisations (Buse & Zimmermann 2012:987). Organisations are 

still experiencing budget overruns and projects failure despite engaging different tools, 

project management standards and methodologies. It would appear that the issue lies 

with ineffective project management practices which Maqsood and Javed (2007:471); 

Barber and Warn (2005:1033) concur are now required to evolve and become 

proactive, as project managers improve their technology management skills. For 

project management to become proactive, it is critical that vital information should be 

extracted from data to improve software project management decision-making and 

realise optimum results (Lavalle, Lesser, Shockley, Hopkins & Kruschwitz 2015:2). 

Data analytics use is anticipated to improve project management quality through 

improved data analysis and effective decision-making, as Barber and Warn 

(2005:1033) opine that software project management has continuously benefited from 



6 
 

other methods and innovative technical advances, which have also sought to control 

potentially chaotic events. The role of technological advances, including this study’s 

proposal of using data analytics to improve software project management quality, is 

underscored by Hans and Mnkandla (2013:2) as being what software project 

managers require, among other project management tools to enable them to improve 

decision-making processes and project management capabilities. This study reveals 

how data analytics use in software projects’ decision-making and project management 

standards can help improve software project management quality. 

1.4  Significance of the Study   

This research aligns with the observation by Graham and Englund (2004:10) that 

project management is increasingly becoming an important part of management 

organisations world-wide and its significance and how the frequency of use continues 

to increase. In light of this, the study focuses on using data analytics in software 

projects’ decision-making and project management standards, thereby enhancing 

software project management quality. Maqsood and Javed (2007:471) acknowledge 

that projects have continued to fail due to the traditional project management methods 

being limited in the massaging of data to get actionable information to make timely 

decisions in software projects.  

 

Apart from the limitation in data analysis by the traditional project management 

methods, project managers to an extent, compound the problem. Maqsood and Javed 

(2007:472) highlight that this is due to their limited skills in the use of technology, hence 

in certain instances their reluctance to embrace new innovations which would advance 

software project management. This study is, therefore, significant as it brings value to 

software project managers and researchers alike by revealing how data analytics can 

be taken advantage of in decision-making and in complementing project management 

standards in the endeavour to enhance software project management quality.  

 

Much of the consulted literature indicates that this relatively new field of data analytics 

has been successfully used in other industry sectors and this study contributes to this 

knowledge by exploring how to leverage on this fairly new technology to improve 

software project management quality. 
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1.5 Research Questions  

The main research question for this dissertation is: 

How can data analytics be used in software project management to improve 

software project management quality?  

The sub questions that will be addressed are;  

i. What challenges and obstacles necessitate using data analytics to improve 

software project management quality? This question is meant to establish the 

problems currently being experienced by software project managers, which 

necessitates using data analytics in software project management.  

 

ii. What is the level of preparedness of software project managers to adopt and 

use data analytics for the improvement of software project management 

practices? The purpose of this question is to determine the willingness of 

software project managers to use data analytics to improve software project 

management and the project managers’ level of knowledge and experience in 

data analytics. 

 

iii. What are the necessary factors required to effectively use data analytics in 

software project management? This question seeks to establish the necessary 

factors for data analytics use and the preparedness of companies to incorporate 

data analytics use in their project management operational processes. 

 

iv. What are the dimensions of software project management quality, and does 

data analytics use in software project management improve the quality 

dimensions? This question establishes whether data analytics use leads to an 

improvement in software project management quality dimensions. 

1.6 Research Objectives  

This research was conducted in the South African software project management 

context. The cited increasing rate of projects’ failure to meet budgets, timelines, set 

objectives and, worse still, their cancellation despite the adoption and use of project 

management methodologies and standards, necessitates a relook at software project 

management for improvement.  
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This study, more precisely has the following objectives: 

i. To investigate the challenges necessitating data analytics, use to improve 

software project management quality. This objective was realised by means of 

a questionnaire. 

ii. To establish the current level of data analytics knowledge among software 

project managers. This objective was realised through a questionnaire. 

iii. To ascertain the basic factors that are required to use data analytics to improve 

software project management quality. This objective was realised by means of 

a questionnaire. 

iv. To examine whether data analytics use in software project management 

improves software project management quality dimensions. This objective was 

realised through literature review and a questionnaire. 

1.7 Research Methodology 

This research is guided by the objectivism epistemology with its underlying premise 

being that things are in existence as meaningful objects from which research can get 

unbiased facts and meaning (Crotty 1998:5). Objectivism guides this research since it 

underscores the significance of researching the nature of relationships among 

elements in their constituents (Bahari 2010: 25) and, in the context of this study, 

assists in establishing the relationship between data analytics use and software project 

management quality.  

The study takes a positivist theoretical perspective which Oates (2006:286) indicates 

as calling for the neutrality of the researcher while remaining objective in discovering 

facts. Positivism is used in this study in line with the argument by Bahari (2010:23) 

that it enables the researcher to search for patterns and causal relationships amongst 

elements.  

In addition, positivism helps to identify causal explanations and the important laws that 

explain uniformities (Smith, Thorpe & Lowe 2002:1) which assist this study to establish 

the effect of data analytics use on project management quality. Furthermore, 

positivism allows this study to use a hypothesis to empirically test the theory that data 

analytics use improves software project management quality.  
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The survey research strategy employing questionnaires was used in this study. 

Questionnaires were used in this study as they are relatively economical and easy to 

administer (Oates 2006:229; Auriat & Siniscalco 2005:3). Furthermore, a 

questionnaire survey enabled this study to get data from many people in a 

standardised and systematic way, as indicated by Oates (2006:220). In addition the 

survey methodology assists this study in confirming an association of elements, an 

aspect explained by MacDonald and Headlam (2009:35) which enabled this study to 

establish the depth of understanding on data analytics use in software project 

management. 

This study employs the survey strategy which Oates (2006:103) states is commonly 

used in computing for evaluation of software systems and in the investigation of project 

managers’ practices and views about an information system aspect. The questionnaire 

survey strategy has been used as Kelley et al. (2003:262) indicates that this enables 

the accessibility of many people across the country as questionnaires can also be 

emailed to and from the respondents. Furthermore, using a survey questionnaire 

offers a broad and all-encompassing coverage of people which is likely more 

representative of the broader population as agued by Oates (2006:104) and Kelley et 

al. (2003:261). Purposive sampling is used in conjunction with Snowball Sampling, as 

the study targeted software project managers; some with data analytics knowledge 

and experience and focused on potential respondents from the initial target 

respondents. 

1.8 Assumptions, limitations and delineations 

This study uses the survey approach to get the important information from project 

managers through a questionnaire and documents review. Some assumptions, 

limitations and delineations are being made, and these are summarised as follows: 

1.8.1 Assumptions 

The following assumptions  are made: 

 Questionnaires are properly structured to collect relevant data to effectively 

establish project managers’ views across South Africa. 

 The questionnaire survey offers a decent representation of the population under 

consideration. 
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 The respondents do not misinterpret the questions in the questionnaire and that 

the responses that are given are sincere. 

 Enough respondents with data analytics knowledge or experience are 

interviewed, providing enough relevant data to arrive at a representative 

conclusion of the population under study.  

 Questions are appropriately structured to gather the required data for an 

analysis of the effects of data analytics on project management quality. 

1.8.2 Limitations 

This study has the following limitation: 

 Questionnaires were limited to South Africa but are not evenly distributed 

across the country for a true representative survey population. 

 The study was conducted in 36 months, with no financial sponsors, which 

restricted the study’s survey to South Africa. 

1.8.3 Delineations 

 The study does not gather data from any other population except project 

management professionals in South Africa. 

 The research does not look at the impact of data analytics on decision-making 

in software projects across the whole world. 

1.9    Outline of the research report 

This study report outline is given as follows: 

 Chapter 1 gives an introduction and an overview of the study.  

 Chapter 2 contains the study’s theoretical foundation, based on the literature analysis. 

 Chapter 3 details the research methodology.  

 Chapter 4 presents data collection and analysis of results.  

 Chapter 5 contains the results obtained and the findings made.  

 Chapter 6 gives the conclusions and recommendations of the research based on the 

obtained results. 

 

1.10 Chapter Conclusion 

This chapter provided background to the study, research questions, objectives and the 

significance of the study. The chapter also provided an outline of the research. The 
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following chapter presents literature review which will introduce the theoretical 

background for this research.  
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Chapter 2:  Literature Review 

2.0    Introduction  

There is a noticeable rise in project management use in software projects and data 

analytics use in general (Fauser, Schmidthuysen & Scheffold 2016:67), but there has 

not been a positive association established between data analytics use in software 

projects and projects management quality. 

The use of various methods, techniques and standards spanning across all aspects 

of project management show a progression in project management and has led to 

software project management now being globally accepted as a basis for professional 

expertise practice (White & Fortune 2002:1). However, despite the acknowledgement 

of its significance, Nayebi, Ruhe, Mota and Mufti (2015:18), in agreement with Ika 

(2009: 309), highlight that software project management is still lacking in maturity and 

that it is essential to regulate this crucial innovation among the range of fast evolving 

technologies. This suggests that the current software project management quality 

levels beg for improvement. 

 

The widespread use of different project management standards including the Software 

Engineering Body of Knowledge (SWEBOK), Project Management Body of 

Knowledge (PMBOK) and methodologies such as Projects in Controlled Environments 

(PRINCE 2) in traditional project management practices is indicative of a concerted 

effort to improve software project management quality. Despite these progressive 

innovations, the way in which data is analysed in software project management brings 

the effectiveness of the traditional data analysis tools into question amid continued 

projects failure, with authors including Guillaume-Joseph and Wasek (2015:26) 

acknowledging that software projects failure are pervasive and persistent in spite of 

research being continually conducted.   

 

The effect of the inadequacy of data analysis tools, as expressed by Buse and 

Zimmermann (2012:987), is that ineffective data analysis is hampering good decision-

making in project management and remains responsible for software projects’ 

inconsistency in attaining successful software projects delivery. Therefore, it is highly 

anticipated that improving projects data analysis in project management will improve 
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data quality, decision-making and project management standards which enhances 

software projects management quality.   

 

To effectively investigate the relationship between data analytics use in software 

project management and software project management quality, the meaning of these 

constructs is explained. 

2.1 Project Management Quality 

The element of quality is very critical in software projects since it is the basic integrative 

component, which exerts influence on the quality project management concept 

(Bobera & Trninić 2006:45). It is commendable that the significance of software project 

management is highlighted in the works of several researchers, including Sangeeta 

and Sharma (2016:3589) as well as Nayebi et al. (2015:18), making it essential that 

this study should contextualise the aspect of software project management quality.  

There is a common understanding among authors on the concept of quality, with Al-

Kilidar, Cox and Kitchenham (2005:126) expressing quality as; “the degree to which a 

system, component, or process meets specified requirements and customer or user 

needs or expectations”. Likewise, Jamsutkar, Patil and Chawan (2012:686) define 

quality as a product or services’ totality of features with the capacity of satisfying the 

specified or inferred needs. Similarly, Newton describes quality in the project 

management context as the process of establishing an expected quality level when a 

project starts, then maintaining that quality standard throughout the project (Newton 

2015:4). Therefore, software project management quality in this study refers to the 

application of knowledge, skills and tools in entirety during planned project activities 

to realise set objectives and to consistently deliver successful software projects.  

2.1.1  Assessing project management quality 

The criteria to measure software projects management quality has not yet been 

universally agreed upon, and set as a defined measurement standard guidance, as 

indicated by Liberatore and Pollack-Johnson (2013:518) and Ika (2009:322). Issac, 

Rajendran and Anantharaman (2004:334) acknowledge that; “the quality of software 

is very difficult to define, and its measurement is quite cumbersome”. In light of this, 

Agarwal and Rathod (2006:359) concur with Grobler and Steyn (2006:151) that 
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software projects’ quality is linked and measured by the success of the software 

produced. Therefore, to measure software project management quality, it is vital to 

assess the success of the produced software and quality-contributing standards.  

However, measuring software projects’ success has been a highly contentious topic, 

with the measuring criteria being traditionally limited to the time, cost and quality 

factors (Ika 2009:7; Atkinson 1999:339). Nonetheless, a more inclusive measure of 

software projects’ success with which this study aligns, indicates a project’s level of 

quality as measurable by  business success, impact on customers and preparing for 

the future (Atkinson 1999:340; Carvalho, Patah & Bido 2015:1510).  

The Impact on Customer factor is also singled out by several other sources, including 

Liberatore and Pollack-Johnson (2013:519), Ika (2009:316), as well as Agarwal and 

Rathod (2006:359) as being a key factor that is used to measure projects quality. 

Customer satisfaction by the system that meets user requirements and delivers what 

it has been designed for essentially reflects on project management quality. To 

effectively outline the quality concept in software project management, related quality 

issues are also taken into consideration.  

2.1.2 Project Quality Management Issues 

The quality of software project management essentially hinges on the quality of data 

involved and the processes followed. The low levels of quality in software project 

management has been influenced by several factors, including lack of business 

requirements documentation or lack of maintenance upon their change (Piprani & 

Ernst 2008:3).  Piprani and Ernst in addition, state that these undocumented software 

definitions, coupled with the inadequacy in the auditing or monitoring of changes to 

the architecture and gathered data are among the common traits observed in failing 

software projects (Piprani & Ernst 2008:3). These cited observations by Piprani and 

Ernst (2008:3) suggest the need to step up quality management during user 

requirements gathering, related documentation and the project management 

processes.  

Quality assessment is one way of identifying the extent of data quality, which Veregin 

(1999:178) indicates as being achieved by determining the levels of reliability, 

completeness, accuracy, consistency, validity and the uniqueness of data. The Project 
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Management Institute (PMI 2008:293), in agreement with Piprani and Ernst (2008:4), 

also indicate that quality assessment is another way which can be conducted as either 

detection tests that assess quality, and is used to determine risk mitigation efforts or 

as faulty data that is then used in a system to help identify system deficiencies and 

contribute towards improved quality. It is therefore imperative to concentrate on 

ensuring the quality of data at the source equally as during analysis, which is one of 

this study’s suggested ways of eliminating the flaws that are contributory to ineffective 

decision-making and projects’ failure. Software project management data sources 

have been looked at to establish how data gathering and its subsequent processing 

can be improved by data analytics use. 

2. 2 Data Analytics use 

“Data analytics is a science of exploring raw data and elicitation of the useful 

information and hidden pattern” (Dwivedi, Kasliwal & Soni 2016:1). There are 

essentially three forms of data analytics, namely descriptive, predictive and 

prescriptive analytics. This study, by advocating for the improvement of data analysis, 

decision-making and project management standards, proposes the use of predictive 

analytics, which Sanjay and Alamma (2016:3) state as predicting future behaviours 

based on past events using statistical models.   

The use of data analytics is expected to improve data analysis and decision-making, 

which in turn improves software project management. Software development as a 

tools-driven process, involves some automation, with many potential breakdown 

points which lead to poor quality software (Kaulgud & Sharma 2016:10). Since 

analytics increases the focus on execution and promises low tolerance on projects’ 

failure (Fauser, Schmidthuysen & Scheffold 2016:67), its introduction in software 

project management improves processing and projects’ success rate. It counters a 

major limitation with traditional data analysis which Chawda and Thakur (2013:2) 

indicate moves data from one system, transforms it into relational data form and is 

passed to another system for processing, whereas with data analytics the data is 

stored in one place and processed with much accuracy and speed.  

This limitation, as echoed by Rao, Gudivana and Raghavan (2015:2654) epitomises 

the challenge of the traditional Extract, Transform and Load (ETL) data quality 

management tools, which have contributed to the persistent experience of missing 
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data, realising inconsistent or incorrect data, and the non-identification of associated 

data and failure to link the data for analysis. The application of predictive analytics in 

project management data analysis and processes promises to counter these 

traditional data analysis tools’ limitations. This includes enabling consistent and faster 

decision-making based on data analysis, allowing detecting and forecasting trends in 

data which enable anticipation for change and allows resources allocation where they 

are needed most (Buse & Zimmermann 2012:989; Singh 2015:2). 

2. 2.1  Predictive Analytics 

Predictive analytics will potentially improve decision-making and judgements of 

possible future events’ outcomes in software projects. This is due to predictive 

analytics’ ability to establish probable future outcomes of projects events or chances 

of situations occurring by its automatic analysis of multi-variable high volume data 

(Mishra & Silakari 2012:4434). The quick analysis of high volume data enables data-

based decision-making, which, according to Mishra and Silakari (2012:4435), 

indicates what predictive analytics offers by its suggestion of  the actions to be taken, 

along with the timing and production of insights, for strategic decision-making.  

The ability of predictive analytics to leverage projects data and predict possible future 

events’ outcomes with a greater degree of accuracy, which complements project 

management as indicated by Fauser et al. (2016:67), makes it ideal for use in this 

study. As data processing and forecasting improves, it enhances the maturity of 

projects’ processes. In addition Fauser et al. (2016:67) highlights that one of the main 

benefits of predictive analytics over other technologies is that it is forward-looking, 

rather than reporting or being analytical of past events. This introduces more projects’ 

insight and allows adequate reactions to upcoming challenges.  

Predictive analytics’ reliance on considering the associations between the predicted 

and explanatory variables from previous experiences, as cited by Mishra and Silakari 

(2012:4435), makes it instrumental in forecasting the future outcomes of projects’ 

decisions. Predictive analytics, being data-driven is preferred in this study’s approach 

to project management quality improvement, as Fauser et al. (2016:68) note that it 

has not only been successfully implemented in the financial and retail sectors, but 

more so for its provision of empirical and fact-based justification. The sources above 

suggest that decision-making and the forecasting of future outcomes in project 
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management may improve from data analytics use. 

Predictive analytics use therefore, will enhance project management quality, as it is 

forward-looking, it can improve decision-making, making the project management 

process proactive to any coming challenges.  

2.3 Decision-making contribution to quality 

Project management, as highlighted by White and Fortune (2002:1), has significantly 

advanced with the entire project management processes now being covered. 

However, a major cause for concern as contended by White and Fortune (2002:1) is 

that over 50% of software projects undertaken globally continue to fail. Many authors 

as indicated in the sources that follow, concur that these failures are partly attributed 

to poor decision-making. Therefore, decision-making is key for software project 

management’s success, and its significance is highlighted by Nayebi et al. (2015) who 

acknowledge that software project management is a process which is decision-

intensive and that the failure or success of projects is extremely reliant on the decisions 

made.  

 

An analysis by Vasconcellos, Silva, Cunha and Moura (2016:26) reveals that 47% of 

projects fail as a direct result of poor decision-making. This high failure rate is being 

experienced despite the availability of the tools and techniques like decision models 

and traditional decision analysis that are meant to assist in decision-making. It, 

therefore, can be contended that effective decision-making is not solely dependent on 

the aiding tools that are being used, but is also reliant on the quality of the data that is 

being used. In addition, Vasconcellos et al. (2016:27) are of the view that what makes 

decision-making even more difficult is that there is no systematic approach of how 

software project managers make decisions in various contexts. This indicates that 

good project management decision-making is neither dependent on one factor, nor 

can it be prescribed, making it a complex process that relies on data quality as a 

fundamental element for its improvement. 

The need to improve decision-making as a quality improving factor in project 

management is supported by the identified weaknesses in the current practice. One 

of the weaknesses with traditional software project management, as stated by Mcavoy 

and Butler (2009:372), is that decision-making is less effective since the responsibility 
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solely lies with the project manager, who operates from a position of command and 

control. This management approach is inhibiting, as Singh (2015:4) acknowledge that 

the majority of project managers due to their lack of training in embracing the 

knowledge and use of analytical tools, technologies and processes are reluctant to 

move away from the subjective legacy approach of decision-making in project 

management. In situations where some analytical tools are being used, Bose 

(2009:170) contends that the existing software packages lack enough support for 

directing analytic processes and are limited to a somewhat narrow set of techniques. 

In light of this limitation, Delen and Demirkan (2013:360) highlight that, to be effective, 

decision-making requires tools and systems that are proficient in providing the correct 

and appropriate information to consistently make the right decisions.   

 

The decision-making improvement process is hinged upon projects data quality. The 

significance of quality data in decision-making is emphasised by Haug, Arlbjorn, 

Zachariassen and Schlichter (2013:238), who state that 88% of projects involving data 

integration fail or go over budget, with less than 50% of the companies regarding 

themselves to be confident in their own data quality. At the heart of this dilemma 

appears to be the poor quality of data to support good decision-making. This sentiment 

is supported by Singh and Singh (2010:41), who argue that the abundance of data 

alone or the availability of methodologies, although very critical, are in themselves 

insufficient to warrant good decision-making and to provide consistent successful 

software projects delivery.  

 

Likewise, White and Fortune (2002:7) state that despite the majority of project 

managers using a combination of tools, methods and methodologies in projects, a 

considerably high percentage of 52% of project managers do not use any decision-

making techniques. Against this backdrop, Haug et al. (2013:237) established that 

poor quality data has largely led to inefficient decision-making processes, causing lack 

of confidence on the data and resistance to initiatives founded on such data.  

 

This observation highlights the necessity of improving software projects’ data quality 

and decision-making processes, of which data analytics is one initiative that is being 

explored by this study to induce such a difference. In agreement, Stamelos (2010:57) 

points out that traditional software project management practices have gaps and 
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appear insufficient as more than half of the Information Technology (IT) projects 

continue to fail, indicating the need for an improvement. Given these observations of 

inferior data quality and ineffective decision-making practices amounting to poor 

project management quality, Sanjay and Alamma (2016:3) suggest that data analytics’ 

aggregation and analyses of information in real-time adequately assists in decision-

making. This supports the notion that data analytics holds the promise to improve 

project management decision-making and to enhance project management quality. 

The sources which feed the decision-making process and the rest of the project 

management processes with data are therefore considered. 

2.4 Software Projects Data sources  

User requirements data gathering being a very important source of data in software 

development projects establishes what the users require of the software to deliver 

(PMI 2008:105). The process of data gathering, therefore, is of interest if the quality of 

data is to be enhanced. Traditional methods, including interviews, observations and 

studying documentation, as highlighted by the PMI (2008:107–109),  are arguably the 

most common means through which data is gathered. The process of data gathering 

and the traditional way of documenting user requirements which provide a 

requirements checklist, constituting an agreement between developers and the project 

sponsor, requires improvement to ensure a high degree of data accuracy and 

consistency.  

There are essentially three data sources, namely primary, secondary or tertiary 

sources, and their characteristics influence data quality. Primary data is acquired from 

a source and is used without the processing it goes through, thus changing its 

elements (Bruce 2014:20). Primary sources of data are the least potential error 

sources since their data is acquired first hand. Shankaranarayanan and Cai 

(2006:308) however contend that such data may, nonetheless, undergo formatting or 

inspection, even though not being changed but resulting in component data.  

Secondary data source, as explained by Bruce (2014:20), provides data which 

originates from a source and gets transformed into another format before it is reported 

on. The process of compiling user requirements data into a single user requirements 

list forms the secondary source, which in turn is used for coding. This compilation 

process exposes data to potential errors during transfer.  
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Tertiary data is the third category, which is made up of secondary sources’ processed 

information that is transformed into appropriate and easily readable forms (Bruce 

2014:20). The processing and transformation of data creates an opportunity for data 

spoiling, hence the need for data monitoring and analysis, as data quality threats exist 

at source and during transformation.  

2.4.1  User Requirements Specification data quality 

In the software development cycle, the requirements gathering phase is highly critical 

as the quality of data gathered influences the chances of success in software projects. 

However, an unfavourable situation exists, as has been pointed out by Young 

(2002:11), reflecting that an estimated 85% of defects in developed software have 

their roots in the requirements’ specification. Alshazly, Elfatatry and Abougabal 

(2014:514) along with Anuar and Ahmad (2015:102), concur that the quality of 

software requirements specification is plagued by inaccurate, incomplete, 

inconsistent, ambiguous and duplicate data among other defects as a result of human, 

processes and documentation errors. In addition, Guillaume-Joseph and Wasek 

(2015:40) state that changing user requirements, poor requirements management and 

vague requirements are among the leading causes of software projects failures.  

 

The inadequacy of technology in traditional project management data analysis is also 

identified as a cause for projects failure from poor quality data processing. Walia and 

Carver (2009:1094) state that some of the user requirements’ quality issues are due 

to ineffective technology use during analysis and inadequate skills. Some of the 

technologies currently in use include the famous spreadsheets and relational 

databases requirements repositories. These are, as argued by Anuar and Ahmad 

(2015:102), insufficient as they make it difficult to sort, query or maintain the 

requirements due to their incapability to manage critical detail, including the source, 

priority, status and type of the requirements’ data.  Furthermore, the traditional 

spreadsheets and paper requirements lists have a limitation of abstracting all the 

requirements, thereby offering little context and making it difficult to identify the most 

important requirements (Dorfman 2010:3). In addition, Dorfman (2010:3) indicate that 

due to the resulting generalisation, different people get different versions of the system 

when they read such requirements. The existence of such a challenge during user 
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requirements data gathering puts the eventual quality of any project’s end-product in 

an uncertain position. 

 

In light of the importance of ensuring quality in data at the source and during 

processing, Young (2002:11) suggests that improved validation and verification of the 

requirements data will ensure traceability, consistency and eliminate any ambiguities. 

In agreement, Anuar and Ahmad (2015:102), assert that insufficient validation and 

verification, coupled with poor tools, constitute a major contributor to poor quality 

requirements and data management. The process of validation requires accurate data 

analysis, which calls for the use of newer technologies, including data analytics. Using 

data analytics will therefore assist in quick data validation and processing, eliminate 

redundancy, and improve data consistency, even during requirements gathering. Such 

agility may be made possible through the data analytics’ features, which in summary, 

as indicated by Herodotou et al. (2011:1), offer appeal, swiftness and depth to the 

users. 

2.5 The significance of Software projects data quality 

Any data set’s level of quality attributes determines the degree of quality passed onto 

the final software product that would have been produced. To deliver successful 

software projects consistently, it is imperative that the gathered user requirements 

data be of high quality, to facilitate relevant and timely decision-making. This is 

acknowledged by various authors, including Rodríguez and Riveill (2010:1), who 

concur that highly relevant data provision presents a greater possibility of correct 

information processing, interpretation and appropriate interventions. In addition, Lucas 

(2010:3) further qualifies that data is regarded to be of high quality when it is suitable 

for its intended purpose in planning, operations and decision-making. Similarly, Bruce 

(2014:3) explains the concept of data quality as the value or correctness of the 

collected information to meet requirements, resulting from a high standard of data 

capturing, verifying and analysis.  

 

To enhance data quality, emphasis is placed on the role and significance of validation 

coupled with verification during data capturing and processing. In support of this, 

AHIMA (2009:1) state that a commonly agreed-upon practice to enhance data quality 

is by continuously subjecting data to optimal quality management, which is a 
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continuous improvement process. Likewise, the North Carolina Department of Public 

Instruction (2010:1) by stating that the data quality management process, which 

includes the use of procedures and policies regarding the collection, maintenance and 

reporting of data contribute towards data quality demonstrates the significance of 

validation and verification towards attaining the highest form of data quality.  

 

The quality of data in software projects is inarguably critical for successful software 

delivery and in sustaining quality in project management. However, in spite of the 

awareness of the importance of data quality in software projects, Haug et al. 

(2013:235) established that, in practice, poor quality data is among the main 

challenges that companies continue to face to this day. It is this persistent challenge 

of poor data quality that has rendered the objective to deliver quality software projects 

to appear to be far-fetched. Therefore, it is imperative that what constitutes data quality 

in this study be put into perspective.  

 

Data quality refers to the degree to which data characteristics fulfil set requirements 

(Laranjeiro, Soydemir & Bernardino 2015:179). Different authors on different scales 

agree on categorising data quality dimensions as a means to manage data quality. 

Haug et al. (2013:236) postulate that these data quality dimensions are summarised 

into at least 26 categories. Likewise, Bruce (2014:5) and Yeo et al. (1999:2) affirm that 

data quality is commonly assessed on a broader scale, in terms of timeliness, validity, 

reliability, confidentiality, precision, completeness, integrity and ethics. On the 

contrary, Shankaranarayanan and Cai (2006:303) as well as Laranjeiro et al. 

(2015:179) nonetheless choose to narrow down the main and commonly-addressed 

qualities of data to accuracy, completeness, timeliness and consistency.  

Further to the attributes earlier alluded to, data is generally considered to be of high 

quality, hence being relevant for effective decision-making and being contributory to 

project management quality if it exhibits some of the following common attributes: 

i. Completeness -  Singh and Singh  (2010:41) state that it is the extent to which 

an entity has all the expected attribute values. Shankaranarayanan and Cai 

(2006:304) reiterate that completeness is a significant data quality element, as it 

measures the extent to which there are no missing values. Equally important are 
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the end users who have to be identified to warrant complete data  collection for 

the application and to clarify how the data will be used (AHIMA 2009:1). 

ii. Consistency is another important attribute which, according to Singh and Singh 

(2010:41), denotes the extent of an information object’s consistent occurrence in 

the same compatible format as the  other similar information objects. AHIMA 

(2009:1) argues that it calls for data value to be identical across applications and 

systems for it to be reliable. 

iii. Accuracy - The level that data qualities appropriately represent the correct value 

of the planned object, referred to as accuracy, is also a commonly identified as 

a significant attribute. Butt et al. (2013:4569) state that accuracy denotes the 

preciseness of software in giving the correct results. In addition, Bruce (2014:11) 

states that for data to be precise, only relevant information should be collected 

and in situations where the data is sample-based, an error margin should be 

tolerable for the obtained data.  

iv. Accessibility is an attribute of quality data, which refers to how easily available 

data is in a certain context of use. Maydanchik (2007:212) states that accessibility 

is the level of the easy obtainability of data and how quickly reachable it is. It is 

essential to take note, as indicated by AHIMA (2009:1), that despite data being 

easily accessible, it should nevertheless be legally obtainable, and within the 

reasonable legal and financial confines, and applications.  

v. Currency of data shows the extent to which data possesses the right age 

attributes and timeliness of the results from the frequency of collection, which has 

to be recent (Bruce 2014:11). Peralta (2008:7) postulates that some surveys and 

studies conducted have shown that data currency is directly related to the 

success of information systems.  

vi. Validity refers to how data adequately represents performance and is measured 

in terms of face validity, which denotes the sound relationship between an activity 

and what is to be measured (Bruce 2014:3).  

vii. Validity takes three different forms, which according to Bruce (2014:3) are 

measurement validity, where data measurement tools and procedures are used 

to limit the potential for errors, such as sampling and non-sampling errors. 

Transcription validity, on the other hand, depends on sound data entry and, 
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collation procedures, where steps are taken to ensure that data was transcribed, 

entered and tallied correctly (Bruce 2014:9).  

viii. Data reliability, as expressed by Veregin (1999:177), is produced by stable and 

consistent processes and instruments that are used over time to collect data and 

use procedures to deal with any missing data. Internal quality controls are 

essential to guide periodic data collection, maintenance and assessment and, to 

realise reliability, there has to be transparency which is achievable by means of 

data gathering, cleaning, inspection, reporting and quality valuation processes 

(Veregin 1999:182).  

ix. The Integrity of data is also very important, where data must be accurate and be 

free from human or technologically-introduced errors (Pipino et al. 2002:212). 

There is a need for measures to be put in place to warrant that no manipulation 

or prejudice is introduced in the data. Bruce (2014:10) hints that there is need to 

guard against manipulation which may unconsciously arise from rushed data 

collection or entry, and wilful integrity issues, such as intentionally providing false 

data in a survey due to pressure or non-supervision.  

x. Maydanchik (2007:212) cites the appropriate amount of data as one of the 

requisite qualities which expresses the appropriateness of the data volume in 

relation to the task to be performed. 

2.6 Data Quality Issues and their impact 

Data quality issues currently being experienced date back as far as the early days of 

computing, with issues such as missing data, inconsistent data, non-identification of 

linked data from multiple sources and incorrect data being among the focus areas of 

data quality and transformation investigations (Rao, Gudivada & Raghavan 

2015:2654). These data quality issues have been compounded by contributory factors 

like the introduction of the internet and the data availed by the internet in the early 

1960’s (Rao et al. 2015:2654).  

Notwithstanding that it is readily available, data from the internet adds to the quality 

woes as Rao et al. (2015:2654) state that it adds to the bulk of big data whose 

emergence in the last five years has magnified the data quality problems and also 

brought in several new research challenges.   
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One of the reasons of information systems’ failure to deliver is attributable to poor data 

quality (Piprani & Ernst (2008:1).  This poor data quality being suffered is, as indicated 

by Haug et al. (2013:237), due to insufficient data analysis techniques and ineffective 

decision-making among other main causes. Rodríguez et al. (2010:4) classify these 

data quality issues as relating to technology, such as the erroneous manipulation of 

data, human intervention, input errors and some to data-processing errors. The 

ineffective traditional data analysis techniques and the errors due to human 

intervention are among the most conspicuous shortcomings which data analytics is 

anticipated to curb in projects data processing.   

 

Rao et al. (2015:2655) identifies one of the initial data quality issues experienced to 

date, as record linking that requires determining if more than one data object is linked 

to the same entity without a key identification value. Such situations require an 

intervention to conduct a search to pair the matched records, which increases the 

chances of data corruption.  Quality issues also emanate from faulty data creation and 

the transformations it goes through, which necessitates embedding data quality 

measures into queries to deal with propagated and accumulated quality errors (Rao 

et al. 2015:2655). 

2.6.1 Data Quality classifications 

Data qualities can be categorised as inherent and pragmatic qualities. Laranjeiro et al. 

(2015:181) describe inherent qualities as having static quality characteristics, which 

include data completeness and conformance to business rules, whereas pragmatic 

quality refers to how clear and understandable data allows users to achieve their 

goals. Data qualities can be further classified into fifteen dimensions under four 

categories, as explained by Haug et al. (2013:236) are; 

 Intrinsic: Addresses the concept of believability, objectivity, accuracy and 

reputation. 

 The contextual category focuses on the timeliness, completeness, relevance 

and suitable amount of data. 

 Accessibility looks at access security and how easy data can be accessed. 
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 Representational refers to how easy it is to understand, concise 

representation, consistency in representation and how easily interpretable data 

is. 

 

Conversely, Sidi et al. (2012:301) classify these data quality issues as single or multi 

source issues having the schema level and Instance level categories. The single 

source schema level problem is characterized by substandard schema design and 

lack of referential integrity, whereas the instance level issues include data-capturing 

errors, redundant duplicates and inconsistent values (Sidi et al. 2012:301). Multi-

source schema level problems, on the other hand, as expressed by Sidi et al. 

(2012:301), include diverse models of data and schema design, as well as conflicting 

names, while the instance level problems include contradictory, overlapping and 

inconsistent data. 

 

A different categorisation by Laranjeiro et al. (2015:185) classifies these issues into a 

hierarchy of four levels, as follows; 

 Multiple source data problems, which include the heterogeneity of syntaxes, 

measure of units and representation.  

 Multiple relation level issues comprise of referential integrity violations.  

 Single relations level issues consist of approximate and inconsistent duplicate 

tuples and attributes.  

 Tuple or attribute level problems include missing values, syntax violations or 

misspellings, with missing values identified as being the most common problems 

which hinder completeness and impairs accuracy from the incorrect values. 

 

The classifications cited above, despite their different approaches, all focus and place 

an emphasis on data accuracy, completeness and consistency which is pivotal to 

effective decision-making. The classifications, therefore, reveal the areas of potential 

improvement in data quality which, with the introduction of data analytics, is anticipated 

to improve project management quality. In the same way, focusing on the sources of 

data quality issues also reveals areas where data analytics will potentially improve the 

data quality in project management’s data-gathering processes. 
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 2.6.2 Sources of data quality issues 

Issues of data quality essentially come up at any point in the data cycle, which can be 

at the point of the data sources, during data profiling or integration, during data staging 

stage, as well as at database modelling.  Singh and Singh (2010:42) state that data 

quality issues emanate from poor data management processes, migration errors in 

between systems, externally-acquired data not fitting with company data standards 

and the inability to keep to data recording and maintenance processes. Data quality 

problems, as summarised by Singh and Singh (2010:43), emanate from four common 

sources, namely:  

Data source – Due to the diverse methods of storing data, some sources offer 

unsecured access, which leads to unreliable and poor-quality data. Issues such as 

lack of validation routines, missing values, misspelled data and inconsistent data 

formatting, especially from legacy systems, are the identified common causes at data 

source.  

Data profiling – Through sources assessment, data quality problems including the 

propagation of poor data quality due to no data evaluation before integration, 

unidentified relationships in data, inadequate data analysis and poor quality from 

manually derived information have been found to be common. 

Data grooming -  This is done at data staging once data is collected from source 

systems, basically involving the validation of data quality and tracing the data 

problems. The causes of data quality issues include poor system conversions, 

migration, reengineering and consolidation; incorrect data extraction to the relevant 

fields, and issues caused by different business rules on handling data from different 

sources. 

Data modelling – Focuses on schema design issues such as the quality of information 

which depends on data quality, application programmes and the database schema. 

Some causes of the quality issues of schema design include incorrect requirements 

analysis resulting in substandard schema design, incorrect identification of facts or 

tables relationships leading to poor data quality and insufficient integrity and validation 

rules in the schema contributing to poor data quality. These sources of data quality 

problems have to be analysed for data to drive enterprise-wide decision-making. For 

this to be achievable, there should be support for the resources needed to maintain 
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quality which, as has been asserted by the North Carolina Department of Public 

Instruction (2010:1), includes ensuring that all the data-handling staff should 

understand the importance of data accuracy and become trained. In addition, Buse 

and Zimmermann (2010:79) suggest that validation checks through analytic tools in 

data collection systems, profiling and audit reports also have to be built into local 

source systems to ensure data quality processing. 

2.6.3 Summary of factors affecting software project management quality 

Factors that affect data quality, decision-making and subsequently software project 

management quality are briefly categorised as follows:  

 

Table 2.1:  Factors affecting software project management quality 

Factor Category Factor Description  Source 

Data Source and 
Quality Factors  
 
 

User requirements are not clearly captured when collected 
at source or keep changing resulting in different 
interpretations. 

 
 
 
Singh and Singh 
(2010:42- 48) 

Transferring of user requirements from different sources 
into a single user requirements list result in some incorrect 
data modification.  

Lack of validation and verification at data source and during 
processing result in missing and inconsistent data. 

Poor data quality with regards to accuracy, timeliness, 
completeness and consistency emanating from legacy 
software data. 

Lack of training in data collection and processing 
procedures.  

Lack of reviews during data entry. 

Inconsistent data and naming conflicts from multisource 
data.  

Lack of validity checks result in incorrectly entered, 
transcribed and tallied data. 

Lack of integrated data storage and refreshing. 

Lack of training in the use of analytic tools  

Data Analytic 
Tools Factors 

Lack of effective tools to track, handle and measure 
variables in decision-making. 

Singh (2015:4) 

Incapable and slow analytic methods to provide relevant 
information. 

White and Fortune 
(2002:5) 

Lack of data analytics use to extract actionable information. Dwivedi et al. 
(2016:1) 

Data not analysed quickly enough for quick decision-
making. 

Buse and 
Zimmermann 
(2010:77) 

Traditional tools depend on slow relational databases for 
query execution and data storage.  

Sanjay and Alamma 
(2016:2) 

Models such as Garbage Can model are not fully 
incorporated in project management to be able to improve 
decision-making. 

Ularu et al. (2012:7) 

Research 
Methodologies, 

More than 52% of project managers are not using any 
decision-making techniques resulting in projects failure.  

Judgev and Thomas 
(2002:6) 
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Models and 
Standards Factors 

Models and standards including PMBOK are not all 
inclusive or complete making them inadequate to 
guarantee project quality management.  

White and Fortune 
(2002:7) 

PMBOK focuses on project progress monitoring and 
appears not to be a strategic tool for decision-making.  

Stamelos (2010:57) 
White and Fortune 
(2002:1) 

SWEBOK knowledge areas are insufficient to adequately 
capture user requirements. 

Singh (2018:4) 

Conventional data quality management approaches 
including data cleansing and statistical process control do 
not offer a methodical approach to data quality 
management. 

Bourque et al. 
(1999:41) 

Software projects are under-staffed of project management 
experts hence the general lack of informed decision-
making in projects.  

Shankaranarayanan 
and Cai (2006:303) 

Human Resource 
factors  

Faulty data creation, capture and transformation, resulting 
in poor quality. 

Eriksson and 
Brannemo (2011:6) 

Poor system conversions, migration and consolidation of 
data. 

 Rao et al. 
(2015:2655) 

Lack of quality assessment to determine levels of accuracy 
in data consistency, reliability and data validity. 

Singh and Singh 
(2010:43) 

Business requirements documentation is either non-
existent or not maintained when changed. 

Haug et al. (2013: 
240) 

Unclearly specified business rules specification. Piprani and Ernst 
(2008:3) 

 Piprani and Ernst 
(2008:3) 

2.7 Data quality impact on decision-making 

Poor quality data negatively impacts the quality of software projects as it operationally 

causes customer dissatisfaction and increases costs due to more resources being 

required  to correct errors (Laranjeiro et al. 2015:179). The effect of inferior quality 

data on projects’ decision-making, strategic planning and project execution is 

highlighted by a number of authors. Laranjeiro et al. (2015:179) argue that poor quality 

data tactically affects decision-making resulting in mistrust and strategically makes it 

difficult to define and execute an organisation’s strategies. Rao et al. (2015:2654) 

correspondingly acknowledge that high data quality is critical in decision-making, as 

well as in strategic planning.  

 

Likewise, Haug et al. (2013:237) state that inefficient decision-making processes and 

increased operating costs being experienced result from poor quality data. In 

agreement, the North Carolina Department of Public Instruction (2010:1) also 

emphasises that data is a critical assert to business decisions and that  it must be valid 

in one system to be useful in another system. The mechanisms currently in use to 

improve data quality are therefore looked at. 
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2.8 Data quality improvement mechanisms 

Different approaches and strategies are being used in an effort to improve data quality 

in software projects. Sidi et al. (2012:300) cite data-driven and process-driven 

strategies as the two commonly-adopted approaches for improving data quality, where 

the former improves data quality by among other means directly adjusting data values, 

error correction and record linkage, as well as improving data integration. On the other 

hand, process-driven strategy as explained by Glowalla and Sunyaev (2014:1), 

redesigns the produced processes or processed data to enhance its quality. The 

process-driven strategy eliminates the bulk of the causes of the quality problems as it 

makes use of the process control technique which checks and manages data, while 

process redesign eliminates the low quality causes and controls formatting of data 

before storage (Glowalla & Sunyaev 2014:2; Sidi et al. 2012:300). 

 

These employed strategies are to an extent managing data quality by analysing factors 

that may influence its quality at any data cycle phase and they try to safeguard the 

data against being polluted, which improves data quality. To further enhance data 

quality, Bruce (2014:19-20) proposes some processes, which include: 

 Building data entry checks into the data collection process. 

 Improving data integrity by presenting relevant and accurate data. 

 Making relevant data easily accessible to key decision-makers for data based 

decision-making.  

The three proposals can be enhanced by making use of data analytics to improve 

automated data entry checks, which further enhances data accuracy and decision-

making. Quality data which is required for effective decision-making is also enhanced 

by the interdependency of the independent dimensions which include completeness, 

consistency, accuracy, quality and the dependent currency variables (Sidi et al. 

2012:303; Yeo et al. 1999:5).  

The interdependences illustrate that the data quality dimensions identified do not work 

in isolation, but are rather complementary and indicate that they would greatly benefit 

from technological advancement, including the use of data analytics. Peralta (2008:3) 

concurs that in most cases these attributes are treated independently, yet most of 

them are intensely interrelated, which makes their separate evaluation challenging. 
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Data entry checks, including human spot checks or software checks, have to some 

extent assisted in introducing some degree of cleanliness in the collected data (Bruce 

2014:21). However, to further enhance data quality, Bruce (2014:21) suggests that 

people should be trained in data collection methods and procedures, that data entry 

reviews be conducted to check for errors and data collection processes, including 

collection instruments and the consistent use of sampling. It is worth noting that these 

recommendations show a heavy reliance on the human element in the data collection, 

collating, and processing chain, which highlights the need to use data analytics to 

reduce human error, improve on data accuracy and quality during collection and 

processing. To effectively manage data quality, the classification of data quality issues 

for improved assessment and the use of quality models need to be complemented 

with the use of data analytics. 

2.9 Quality Management Models and Techniques’ contribution  

The effort to deliver successful software projects consistently has seen quality 

management models and techniques being widely adopted by project managers. In 

this attempt to improve data quality, Bruce (2014:6) states that project managers often 

use quality management plans, which essentially define how to manage data 

standards and evaluate data quality through assessments. The introduction of data 

quality management models is meant to continually improve the quality of data as the 

models include data collection, analysis and warehousing mechanisms (AHIMA 

1998:1).  

 

In an attempt to improve quality in software projects a three-staged process has often 

been used, which includes planning and defining quality, undertaking quality 

assurance and controlling quality. Quality management planning involves defining the 

level of quality required before the project begins, defining how quality will be 

measured, performing quality assurance, explaining how the quality plan is going to 

be executed and controlling quality by correcting problems as soon as they are 

identified (Kloppenborg & Petrick 2004:5). A number of other techniques, which 

include benchmarking, cost of quality and cost benefit analysis are also used in the 

quality planning process (Kloppenborg & Petrick 2004:14).  
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As part of the greater effort to improve software quality, Butt et al. (2013:4568) indicate 

that organisations dealing with software projects use quality assurance models 

including the Capability Maturity Model Integration (CMMI) and the ISO/IEC 90003 

standards to improve software quality. Similarly,  Khalid (2008:304) confirms that the 

principles  from these models introduce appropriate standards and defined procedures 

to be followed, which brings some level of management quality. These models 

introduce planned and systematic approaches, which bring some conformance of the 

software or processes to established principles, processes and measures (Khalid 

2008:304). Since these models have introduced some level of quality, some authors 

have argued that the low levels of management quality are in fact as a result of 

improper implementation. In agreement, Khalid (2008:304) argues that, despite the 

abundance of the software quality models, it is the improper implementation rather 

than the inadequacy of these models and the high costs involved which is leading to 

poor quality in software projects.  

2.10 Project management standards and methodologies 

The project management discipline though improved, however continues to show 

weak results since the conventional view of project success is still being limited to time, 

cost and objectives fulfilment only (Carvalho, Patah & Bido 2015:1519). Project 

management methodologies including PRINCE 2 and the PMBOK body of knowledge 

still account for 22.3% of limitations, which directly impacts on the quality of projects 

and the probability of the projects’ success (Joslin & Müller 2015:1378). This points to 

an underlying threat to the projects’ quality management and is an indication that 

software project management standards and methodologies should be improved if 

they are to become more effective. 

Some level of quality has been brought into software project management by the 

introduction of these standards and methodologies. These have assisted by dividing 

projects into partial phases for better project control; for instance, PRINCE 2 

introduces control by dividing a project into five sequential phases which are concept, 

definition, implementation, handover and closeout (Kostalova, Tetrevova & Svedik 

2015:97). Likewise, PMBOK body of knowledge also divides a project into nine 

knowledge areas to improve project management. Due to the improvements it has 

brought so far, PMBOK body of knowledge has become one of the generally-accepted 
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and widely-used project management standards, and its increased acceptance 

suggests that, if enhanced, it can significantly influence a project’s success (Ghosh, 

Forrest, DiNetta, Wolfe & Lambert 2012:2; PMI 2008:4).  

2.10.1    Project management body of knowledge (PMBOK)  

The PMBOK standard focuses on nine knowledge areas, which are Integration, 

Scope, Time, Cost, Quality, Human Resource, Communications, Risk and 

Procurement Management taking care of the different facets and processes in 

individual projects (PMI 2008:14).   

 

A brief preview of the nine PMBOK knowledge areas:  

Table 2.2: PMBOK Project Management knowledge areas (PMI 2008) 

Knowledge Area Function 

Integration Focuses on proper coordination of various project elements by 

means of project plan and execution control. 

Scope Management Covers the work required to successfully complete a project. 

Time Management Ensures timely project completion through scheduling and 

sequencing of activities. 

Cost Management Caters for resource planning and cost control to warrant 

completion of a project within the set budget. 

Quality Management Ensures quality is achieved and that the project meets the 

objectives it was set for. It involves: 

i. Quality planning - explains the formulated quality policy 

implementation. 

ii. Quality assurance - ensures a project meets the set quality 

values.  

iii. Quality control - responsible for project results monitoring 

against set quality standards and seeks to remove the 

sources of substandard results. 

Human Resource 

Management 

Sets out the processes to acquire and effectively use people in 

a project. 

Communisations 

Management 

Handles the generation, dissemination and disposal of project 

information. 
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Risk Management Identifies risks associated with a project and how to avert or 

manage the risks. 

Procurement 

Management 

Deals with the sourcing of goods and the handling of contracts 

to their logical conclusion. 

PMBOK Limitations 

Despite bringing some project management control, PMBOK’s limitation is that, if used 

in its original state in traditional project management, it is not all-inclusive nor complete 

(Ghosh et al.  2012:2). PMBOK’s insufficiency makes it a potential improvement area 

where data analytics can be used to enhance its integration, scope management and 

quality management. 

A major limitation with PMBOK’s knowledge areas is that they do not turn a project 

into a strategic tool which would influence decision-making as they simply monitor a 

project against development parameters (Stolovitsky 2011:1). Ghosh et al. (2012:3) 

concur that despite PMBOK being the most accepted and used standard, an average 

of 28% of projects continue to fail. Furthermore, Singh (2015:4) states that PMBOK, 

despite being considered a global standard for project management processes, is not 

sufficient in providing an analytics focused approach. Therefore, in addressing some 

of the concerns leading to projects failure, Ghosh et al. (2012:3) concur that PMBOK 

also needs to be improved if it is to enhance project management. It is upon this 

supposition that this study anticipates that using data analytics in project management 

will complement standards such as PMBOK and other methodologies to improve data 

processing and analysis in areas such as scope management and quality 

management. 

2.10.2     Software Engineering Body of Knowledge (SWEBOK) 

This guide makes use of knowledge areas to assist in quality improvement in software 

projects. One of the knowledge areas, the software requirements analysis knowledge 

area through its sub areas contribute towards quality in the following manner  

(Bourque, Dupuis & Abran 1999:42; IEEE Computer Society 2004:1–4): 

 The requirements elicitation subarea focuses on where the requirements come 

from during software development, and on the collection method.  
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 The requirements analysis subarea evaluates user requirements and seeks to 

detect and resolve conflicts in the requirements.   

 Requirements validation subarea checks if there are omissions, ambiguities or 

conflicts, and guarantees that requirements are in line with the set standards of 

quality. This process ensures that requirements are sufficiently described to 

avoid misinterpretation before the resources are devoted to addressing the 

requirements.  

 The Requirements management sub area caters for change management and 

accurately maintains the requirements, to mirror the software to be developed.  

 

Data Analytics will therefore improve the SWEBOK’s requirements analysis 

knowledge area by improving accuracy in requirements validation, requirements 

analysis and track the changes applied to the captured requirements.   

Besides the requirements analysis knowledge area, the software quality analysis 

knowledge area also endeavours to improve software quality by focusing on user 

requirements specification.  It concentrates on software quality assurance, verification 

and validation activities to try and avoid requirements specifications miss-representing 

the customer needs; for the developed software to avoid failing to fulfil any or related 

requirements, and to ensure that elusive errors get detected (Bourque et al. 1999:41). 

The software quality assurance component includes actions that attempt to offer 

confidence that a product follows the specified technical requirement and verification, 

as well as whether the validation processes deliver an objective valuation of software 

throughout the software’s life cycle (IEEE Computer Society 2004:1–6). 

 

However, despite SWEBOK best software engineering processes being in place, the 

requirements specification may still potentially not meet customer requirements or the 

code can still fail to fulfil user specified requirements (Bourque et al. 1999:41). In 

addition, Shankaranarayanan and Cai (2006:303) state that these conventional quality 

management approaches, including data cleansing, data tracking and process control 

even though being useful to an extent these however do not give a methodical 

approach for the management of data quality.  
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2.11 Quality management models and decision-making 

Decision-making is influenced by various interrelated aspects and models, such as the 

Garbage Can Model and the Mixed Scanning Model, which are based on the concept 

that rational decision-making processes lead to better results (Eriksson & Brannemo 

2011:1). In spite of the complexity of most of the software projects, Marques et al. 

(2010:1058) state that modelling has played an important role in supporting decision-

making.  However, Eriksson and Brannemo (2011:1) on the contrary argue that there 

are very few projects which are a direct result of the rational decision-making process. 

This shows that the element of decision-making has not been comprehensively 

exploited using quality management models to improve software project management.  

It is one of the core functions of decision-making to focus or refocus projects during 

implementation. In this regard, decision-making in relation to projects’ deviation and 

redirection has received little attention, resulting in 55% of the critical projects 

decisions being made on an ad-hoc basis (Eriksson & Brannemo 2011:2). The ad-hoc 

decision-making shows lack of planned direction or control of many of the projects. To 

emphasise on the significance of decision-making in guiding project management, 

Marques et al. (2010:1058) state that decision-making determines the progression of 

projects from the current status to the set objectives. The two prior arguments point to 

the fact that, regardless of the stage at which a project may be, decision-making is 

central for the focussing or refocussing of a project, based on the initial objectives. 

However, contrary to what is being practiced, Goff (2011:2) observes that, in practice, 

decision-making is being executed based on non-existent facts or on slow and not yet 

discovered facts. This underlines the importance of having accurate and quick 

processing of data for timely decision-making which directs or redirects projects. 

A good decision occurs when a situation is matched by an independent remedy in a 

satisfying way in line with the set goals (Eriksson & Brannemo 2011:10). To be able 

to make good decisions, project managers have to consider a number of variables in 

their activities and measure these, while evaluating the project’s progress in all 

aspects (Marques et al. 2010:1068). Goff (2011:3) emphasise that excellent decision-

making emanates from planning and tracing scope as a leading project indicator.  

To be able to track and evaluate the variables in project management, effective tools 

are required and this study focuses on data analytics as one such a critical tool. 
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Besides the necessity to have appropriate tools for effective decision-making, the need 

for project management experts is also equally crucial to be able to explore and 

effectively use the available data analytics technology. Eriksson and Brannemo 

(2011:6) underscore the need for project management experts to counter poor 

decision-making by stating that the shortage of project management experts, which is 

resulting in the understaffing of projects, has been one of the reasons for lack of 

informed decision-making leading to trial and error decisions being made. 

2.12   Using data analytics in decision-making 

Introducing data analytics into project management improves the existing project 

management methodologies and standards and assists in strategic decision-making 

(Bose 2009:167). As has been alluded to earlier, data analytics provides the means to 

sieve through the huge volumes of data in an organisation to come up with actionable 

information from the data (Buse & Zimmermann 2010:77; Talia 2013:98). The use of 

data analytics to extract meaningful information will thus turn the project management 

process from just being a process monitoring practice and translating operational data 

into strategic information, which helps to influence decision-making (Bose 2009:171; 

Buse & Zimmermann 2012:988).  

 

Data analytics being part of big data, comprises of analytics and business intelligence, 

of which big data refers to unstructured, voluminous data produced by various 

applications that requires further analysis to extract actionable information (Hansmann 

& Niemeyer 2014:44; Cuzzocrea et al. 2011:101). Big data leverages on both the 

structured and unstructured data and has successfully been used for predictive 

analysis in such fields as crime prevention, law enforcement and the medical fraternity 

(Tene & Polonetsky 2013:247; Bose 2009:162; Chaudhuri 2012:2). Consequently, this 

has influenced the premise of this study, that data analytics can also be used to get 

actionable information out of projects data, improve decision-making and ultimately 

attain satisfactory software project management quality.  

 

The proposal to use data analytics for decision-making improvement is beneficial, as 

has been echoed by Delen and Demirkan (2013:361), who state that data analytics 

facilitates the foreseeing of future problems or opportunities and allows optimisation 

of processes, thereby enhancing performance. This makes data analytics a crucial 
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element for extracting actionable information from data to influence decision-making. 

In agreement, Zhang et al. (2011:1) state that data analytics facilitates data-driven 

tasks, achieves appropriate decision-making and helps anticipate future problems. In 

addition, the statement by  Singh (2015:1) that data analytics uses analytics-based 

metrics suggests that project managers will make rational project decisions with 

analytical certainty.  

 

Singh (2015:8) further indicates that good decision-making is made possible through 

predictive analytic models which can be used to analyse the available factors before 

making rational decisions to effectively manage a risk. Likewise, Bose (2009:155) in 

agreement with Singh (2015:9)  further states that the handling of statistical analysis 

which assists in predicting certain processes or systems’ behaviours or projects in 

environments of uncertainity is essential for data-driven decision-making which 

becomes quicker and more accurate. These data analytics functions will potentially 

improve decision-making and assist in directing or redirecting projects. It has however 

not yet been substantially established if data analytics directly influences the quality of 

software project management. This is despite a survey finding by the Massachusetts 

Institute of Technology, as indicated by Tene and Polonetsky (2013:243), which 

confirmed that data-directed decision-making assists in information analysis and 

strategic planning, which resulted in a six percent, 6% increase in productivity.  

 

This increase in productivity suggests why data analytics, as has also been observed 

by Bose (2009:155), is increasingly being focused on across all industrial sectors for 

better operational, tactical and strategic decision-making. Therefore, it can be inferred 

that incorporating data analytics into software project management is anticipated to 

induce strategic planning and improve the analysis of projects’ user requirements data. 

This will facilitate extracting what forms the clear objectives a system under 

development will deliver from the gathered user requirements. The study, therefore, 

establishes the effect data analytics use by software project managers has on software 

project management quality. 

 

Introducing data analytics into user requirements gathering and processing of data is 

potentially beneficial in many ways. This is particularly so as Ularu et al. (2012:7) 

indicate that data analytics handles structured and unstructured data, thus offering 
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flexibility in the processing or analysis of the data, leading to quick and improved 

decision-making. In addition, the ability to handle highly unstructured data allows the 

user requirements gathered through interviews, documentation and observations, 

which are not in the same format at the point of capture, to be processed easily and 

accurately. The fact that data analytics offers deeper data analysis and insights by 

using new analytical methods as indicated by Ularu et al. (2012:6) and Chaudhuri 

(2012:2), makes user requirements and other projects data analyses quicker, while 

bringing better prospects of improved decision-making accuracy.  

 

Furthermore, Ularu et al. (2012:7) assert that data analytics combines the best tools 

as opposed to the traditional analysis tools that depend on relational databases for 

query execution and data storage. The use of better analytical tools indicates that data 

processing speed, accuracy and availability will subsequently improve when using 

data analytics. Likewise, Buse and Zimmermann (2012:988) also anticipate that data 

analytics would revolutionise decision-making by offering project managers flexibility 

in decision-making, using dedicated analytic tools.  

 

Similarly, Stolovitsky (2011:2), in agreement states that effectively incorporating data 

analytics into project management would allow data-driven decision-making, thereby 

turning project management into a strategic asset for effective decision-making. In 

support of this notion, the Analytics Advantage Survey results published by Deloitte 

(2013:3) indicate that a significant forty-nine percent, 49% of the respondents are of 

the view that the main benefit of analytics use is that it is a critical factor in better 

decision-making, which works by influencing decision-related cultures. Due to these 

contributions, data analytics therefore, can be viewed as being potentially key to 

improved data quality and decision-making, with its role becoming increasingly 

significant (Bose 2009:171), which this study suggests it can also be capitalised on to 

improve software project management decision-making.  

2.13 Complementing project management standards with data analytics 

The significance of data analytics in software project management lies in its potential 

to reinvigorate data analysis, project management standards and methodologies. Data 

analytic systems, by means of information flow evaluation, enable data and other 

project management issues to be identified in almost real time and to be corrected 
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quickly (Williams et al. 2014:315). This is beneficial during quality control when using 

standards such as Project Management Body of Knowledge (PMBOK), and the use of 

data analytic tools will enhance the quality control’s inspection or “walkthrough” 

process. 

 

Data analytics makes such techniques as inspection or walkthroughs to become quick 

and more useful. The outcomes from these tools get to be implemented before a 

project’s completion for corrective action, rather than to be used for review purposes 

after the project’s completion (Williams et al. 2014:313). That brings greater project 

control as analytics can be used during the process to break down a project’s 

processes and systems to predict their behaviour and outcomes (Singh 2015:4). The 

realised greater project control makes it possible for strategic decision-making to keep 

projects on course and within budget, based on the predictive information. The ability 

to use analytics to evaluate unstructured data previously not possible creates an 

opportunity for the new analysis methods to allow deeper insights in project 

management methodologies (Williams et al. 2014:313). Therefore, complementing 

project management standards and methodologies with data analytics will bring 

deeper data analysis and flexibility in decision-making during project management. 

2.13.1      Enhancing quality control’s Inspection technique with data analytics 

Quality management complements modern project management as it emphasises on 

prevention and not mere inspection (PMI 2008:190). As part of ensuring quality during 

user requirements gathering, Anda et al. (2002:128) state that a quality control’s 

inspection, which is an evaluation technique, assists by examining the user 

requirements and design to detect violations on the set standards. The handling and 

comparison of data in the inspection process needs accuracy, which is inherent in data 

analytics.  

 

As expressed by PMI (2008:124), inspection, which is an element of project 

management quality control, includes measuring, examining and testing and is 

conducted to ascertain if the project results conform to requirements. Inspections such 

as walk-throughs, reviews or audits which require improvement may, as indicated by 

PMI (2008:213), be conducted at any stage of the project to measure individual activity 

results or at the completion of a project, measuring the deliverables or the final product.  
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Anda and Sjøberg (2002:134) point out that, with different stakeholders involved in a 

project, inspection becomes a useful means to improve on quality as part of the review 

and checklists measure against the adopted quality policy elements. Data analytics 

would aid in detecting trends in past projects to assist in identifying potential risks and 

making data-based decisions when using the inspection techniques. On the contrary, 

Anda and Sjøberg (2002:128) however highlight that assessing data using 

walkthrough, checklist or review has some limitations.  Such limitations are the gap 

which data analytics is expected to address.   

2.14 Theoretical Framework 

Theories and models assist with the investigation of the factors which influence people 

to use computers, applications and their acceptance behaviour (Taiwo & Downe 

2013:48). Imenda (2014:189) defines a theoretical framework as the use of a 

philosophy or a collection of ideas acquired from a theory to give an account for an 

event, or to clarify a research problem. An established theoretical framework guides 

this study since in its absence a research lacks proper direction. A theoretical 

framework therefore, gives the researcher a specific perspective to discover, 

understand and explain events of the area under study (Imenda 2014:188). This 

research uses a quantitative study approach and makes use of the Capability Maturity 

Model Integration (CMMI). 

2.14.1    Capability Maturity Model Integration (CMMI) 

CMMI is a model which improves projects’ quality through its organised view of refining 

processes in an institution and providing direction on quality procedures, and offering 

a benchmark for evaluating existing practices (Modeling 2005:17). This model is 

instrumental in improving quality in projects as outlined by Modeling (2005:21) through 

its use of systems engineering rules in the development of software in addition to its 

increased focus on the requirements development, management and systems 

development. Judgev and Thomas (2002:6) concur that using CMMI has enabled 

software development organisations to deliver systems with predictable results by 

evolving the affected, benefitting or related organisations’ project management, from 

immature stages to the solid structures, accompanied by the relevant supporting 

infrastructure. 
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Khalid (2008:305) further states that this level of transformation is due to the CMMI 

providing guidance for quality processes by organising these processes into five levels 

of maturity to support and guide process-enhancement and to serve as a reference 

point for appraising current methods. The five CMMI levels of maturity responsible for 

the transformation stages towards quality in an organisation’s projects are Level 1 - 

Initial, Level 2 -Managed, Level 3 - Defined, Level 4 - Quantitatively Managed and 

Level 5 - Optimised (Thomas & Jugdev 2002:6).The CMMI (2001:11–13) summarises 

these levels as follows: 

 

Initial phase      Is characterised by poorly controlled, reactive and chaotic 

processes, with the organisation’s success mainly dependent on 

individual competence, and not on proven organisational 

processes. Projects at this level, though, produce working 

products that usually exceed budget and schedules, with 

processes usually being abandoned and there being a failure to 

repeat past successes. 

Managed level   

 

Involves projects being performed according to the documented 

plans, with managed requirements, planned and controlled 

processes. Work products and services meet their specified 

requirements and standards.  

Defined level     

 

Organisations have established set standards, which creates 

consistency across the organisation, with more detailed process 

descriptions tailored for the organisation. Processes are 

described in more detail and are proactively managed, with a 

better understanding of the processes’ interrelationships. 

Quantitatively 

Managed           

Is characterised by organisations that have realised all the goals 

from the previous three stages and focuses on a process’ 

performance and quality improvement, with an enhanced 

performance of the processes’ predictability. Quality and 

process performance measures are used to support future fact-

based decision-making. 

Optimising level  Organisations focus on the continuous improvement of 

processes through innovative incremental technological 
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improvements. Processes focus on correcting the common 

sources of process variation to achieve set objectives. 

 

Despite the alleged inflexibility of CMMI by some including Thomas and Jugdev 

(2002:6) and its supposed ignoring of people focussing on processes (Bach 1994:2), 

the model’s processes have a transformative capacity to improve projects’ maturity 

and quality. The quality management levels introduce quality measures as it has been 

established by Ika (2009:314) that attaining higher organisational levels of process 

maturity lead to higher quality being attained.   

2.15 Hypothesis and Conceptual Framework 

2.15.1    Hypothesis 

Given all the above, the following four hypotheses are constructed to establish the 

impact of data analytics use on software project management quality as assessed 

through a project’s success, Impact on Customer, preparation for future project 

management and project management efficiency: 

Hypothesis H1: Data analytics use in software project management is positively 

related to projects’ successes. 

Hypothesis H2: Data analytics use in software project management is directly 

related to a project’s Impact on Customer. 

Hypothesis H3: Data analytics use in software project management is directly 

related to organisational success.  

Hypothesis H4: Data analytics use in project management is directly related to 

improved project management efficiency. 

Hypothesis H5: Data analytics use with software projects management models 

and standards prepares organisations for future project 

management. 
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2.15.2    Conceptual Framework 

Conceptual Framework Diagram 
 

 

 

 

 

 

 

 

 

 

 

 

 

The purpose of this study is to establish if data analytics use in software project 

management improves project management quality. The conceptual framework 

section of this study defines and explains the key concepts, factors and variables of 

this study and how these are related. According to Tamene (2016:51), conceptual 

framework is a structure of ideas, beliefs, expectations, assumptions and theories that 

support a research by linking the core components of the research design responding 

to the research question.  

The CMMI model is one of the models being used to minimise risks in an endeavour 

to improve project management quality. Its levels of maturity’s policies guide 

organisations on improving project management. It is extensively being used in the 

United States and Europe in countering risk when awarding tenders, but its application 

in South Africa has been limited due to high costs and complexity (Van de Groenendaal 

2017). Powell-Morse (2017) acknowledge that, currently, there are only 5 000 

companies in more than seven countries using CMMI as a process improvement 

standard. There has been an annual increase in the use of CMMI in China, the US 

and India (CMMI 2017).  However, the Johannesburg Centre for Software Engineering 

(JCSE) at the University of Witwatersrand introduced CMMI to companies in South 

 

 

Figure 2.1: Conceptual Framework 

 

 



45 
 

Africa at a much-reduced cost (Van de Groenendaal 2017) to encourage its adoption 

and improve on project management quality.  CMMI’s levels are summarised as 

follows: 

 

i. Initial Phase and Project Success 

At this level much of the work is chaotic and ad-hoc and there are no set standards 

for processes in place and organisations do not have repeatable processes. 

According to the CMMI (2017), 42% of organisations do not have established 

standard planning processes, with 54% of the organisations not participating in 

any form of measuring. 

 

ii. Managed level and Impact on Customer 

The managed level is established by adhering to organisational policies, following 

establishes processes, descriptions and plans and monitoring and controlling 

processes performance against set plans and management requirements, among 

other activities (CMMI 2005). IBM SA is one of the organisations which attained 

the Managed level Key Process Areas (KPA) (IBM Africa Magazine Issue 08). In 

the initial stages of CMMI implementation, very few companies took up the 

implementation initiative. For an example, in July 2007, only 22 companies in 

Pakistan were implementing CMMI level 2, and only two of the companies attained 

the level 2 in that year (Shaa et. al 2012:1006) 

 

iii. Defined level and Organisational Success 

Organisations that attain this level will have well-defined engineering processes 

for process areas that include decision analysis, integrated project management 

and organisational process definition (Broadsword 2019). The majority of 

organisations working with the CMMI model are at this level. The JCSE has 

successfully worked with several companies in South Africa, with Bytes Group 

attaining CMMI’s level three, having realised all the process’ level two and level 

three attainment on several assigned goals (Van de Groenendaal 2017). Despite 

these successes, there is a perception that the CMMI model is now old-fashioned, 

too formal and process-centred, as opposed to the other models, including the 

Agile which the big banks in South Africa had switched to using, but have since 
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started looking for a more formal process akin to the CMMI (Van de Groenendaal 

2017).  

iv. Quantitatively Managed Level and Project Management Efficiency 

Organisations at this level are characterised by process performance 

predictability, with the projects processes controlled through the use of quantitative 

techniques. Organisations getting to this level believe in the investment based on 

the previous level that it would yield big returns by streamlining and automating 

the processes, eliminating the documentation burden and accelerating learning 

across projects (Alder, McGarry, Irion-Talbot and Binney 2005:221) 

v. Optimising Level and Preparing for the Future 

This is a level attained by very few organisations, with the current CMMI institute 

database revealing that only 344 organisations have been rated level 5 worldwide 

(IEEE COMPUTER SOCIETY 2014:80). Antoniol, Gradala and Venturi (2004:33) 

acknowledge that moving towards level 4 and 5 requires a radical change in the 

way projects’ life cycle activities are approached. A high level of diverse expertise 

is required for an organisation to attain level 5, including quantitative measuring 

techniques, statistical analysis, change management and process optimisation 

(IEEE COMPUTER SOCIETY 2014:83).  The 2019 updated list (Sharma 2014) 

indicate that there are 60 companies in India which have attained CMMI level 5.   

 

Hypotheses H1, H2, H3, H4 and H5 were tested using the collected survey data 

to establish if data analytics use in software project management processes 

influence software project management quality.  

Variables and Measures 

The variables used in the study are from three constructs; data analytics use, project 

management processes maturity, and projects success quality. 

 

Predictive data analytics use influence will be assessed based on the following:  

i. Processes and data analysis improvement. 

ii. Prediction of project event outcomes (Mishra & Silakari 2012:4434) 

 Financial Predictions and gain 

 Dealing with projects deviations or processes control  
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iii. Insight for strategic decision-making (Mishra & Silakari 2012:4438; Fauser et 

al. 2016:68) 

iv. Resources Management (Fauser et al. 2016:72) 

 Resource planning and management  

 

Project management process maturity’s contribution to quality will be assessed 

through organisations’ capability in progressing their project’s management maturity 

levels (Initial, Managed, Defined, Quantitatively Managed and Optimised), and in 

improving time management, quality management, scope management and 

integration. 

 

Project quality assessed through a project’s success will be measured using the 

following criteria, which aligns with the indication by Agarwal and Rathod (2006:359): 

i. Customer satisfaction, which is part of Impact on Customer; 

 Software delivered to the customer within planned time and cost.  

 Meeting software functionality goals, including reliability (Issac et al. 2004: 

317). 

 Satisfying user operational requirements (Agarwal & Rathod 2006:368). 

ii. Meeting project goals, which is part of Project efficiency;  

 Achieving planned project goals (Agarwal & Rathod 2006:367). 

 Handling changing requirements (Agarwal & Rathod 2006:361). 

iii. Contractor benefit, assessed through organisational projects’ success;  

 Financial gain from the project. 

 Consistency in projects’ completion according to set plans. 

iv. Preparation for future;   

 Preparation for future quality technology use. 

 Contribution to project management body of knowledge. 

In constructing this study’s conceptual framework, consultation was made from 

different sources to inform this framework, as suggested by Tamene (2016:52).  

 

There are, essentially, four potential sources of information that are used to build a 

conceptual framework.  Maxwell (2012:223) outlines these information sources as 

being; experiential knowledge, existing theories and research, pilot and exploratory 

studies and thought experiments.  
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These are explained as follows: 

Experiential knowledge - refers to the contribution one brings to the research from 

their background. 

Existing theories and research - Includes published and unpublished work, 

dissertations and presentations, which help in organising data, testing or 

modifying personal theories. The established theories assist in 

developing personal theories and presenting alternatives, instead of 

using the already established theories. Established theories, however, 

have the potential to deform an argument if individual insights are fitted 

into the established theories. 

Pilot and exploratory studies - Involves the designing of pilot studies to test an idea 

or method or to develop grounded theory. Pilot studies improve the 

understanding of concepts and philosophies held by other theorists. 

Thought experiments - Combines the aspects from theory and experiments, as it 

focuses on the implications of the properties of a study area. It 

encourages creativity and exploration since it is used to test a theory for 

logical problems, and to generate new theoretical insights. 

 

Both theoretical and conceptual frameworks provide a unified meaning of issues in a 

study area, enabling the addressing of a researcher’s specific problem (Imenda 

2014:189). As suggested by Imenda (2014:193), the variables and concepts for this 

study have been identified through establishing the study’s conceptual framework. The 

experiential knowledge of the researcher on data analytics use in project management 

is very limited to be used as a source of concepts to formulate this study’s conceptual 

framework. Experiential knowledge, therefore, could not be used to come up with a 

conceptual framework for this study.  

 

Likewise, the pilot and exploratory method was also not considered a viable option in 

this study, since the researcher required established frameworks to guide this study 

from its conception. The thought experiments has also not been considered the ideal 

option for this study as this requires one’s knowledge of experiments, drawing from 

experience, in which case the researcher has already acknowledged his limited 

experience in data analytics use in project management. The researcher has therefore 
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used content analysis, by reviewing and analysing literature, including theories and 

research work, as suggested by Krippendorff (2004:84) and Jabareen (2009:52) to 

develop a conceptual frame work for this study. 

 

2.16  Chapter Conclusion 

The traditional project management methodologies and standards have been 

identified to be limited and requiring improvement to enhance software project 

management.  There is potential in augmenting these standards and methodologies 

with data analytics, which would improve data quality, decision-making and software 

project management quality. This, as supported by the reviewed sources, is presumed 

attainable if the potential in data analytics is harnessed into the project management 

processes which improve on processing speed, accuracy and decision-making. Such 

exercises, including the quality control’s inspection techniques can become even 

better and help to correct issues during a project rather than after the project as part 

of a review. Integral to this anticipated improvement is the need for data quality to also 

be improved through rigorous checks and validation during creation, and the 

processing of the requirements data, as good decision-making also depends on data 

quality.  
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Chapter 3: Research Methodology 

3.0 Introduction 

This chapter of the study outlines the research methodology, and the approach used 

in this study for the effective collection of data and effective analysis. Research 

methodology describes how the research is conducted, while outlining the work plan 

for the research towards a solution to the identified problem (Rajasekar, Chinnathambi 

& Philominathan 2013:5). Scotland (2012:9) describes research methodology as a 

strategy or action plan behind the use of chosen research methods. Therefore, this 

chapter includes the explanation of the philosophy used in the research, the study 

approach, data gathering methods and the analysis techniques used to realise the 

goals of this study. This chapter does not only discuss the methodology and 

techniques employed, based on the chosen philosophical approach, but as suggested 

by Kothari (2004:8), also considers the logic behind the chosen methods and 

techniques selected to answer the research question. 

3.1 General research procedure outline 

The research approach used in this study follows the Onion Research process as 

explained by Saunders, Lewis and Thornhill (2009:107). Saunders et al. (2009:107), 

by means of the Onion Research process, explains the research methodology 

approach as encompassing the research philosophy, research approach, research 

strategy, research choice, time horizon and data collection techniques and analysis 

procedures. The research procedure sections are illustrated in Figure 3.1 
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3.2 Research Philosophies 

A research philosophy outlines the philosophical basis of the study, which forms the 

basis of the link between the theoretical basis and the practical aspects of the study. 

As guided by Crotty (1998:3), this section further discusses what the research 

intended to achieve through a defined methodology and techniques based on the 

chosen philosophical approach set to achieve the research goals.  

  

According to Dudovskiy (2019:1), there are mainly three research philosophies, 

namely; Positivism, Interpretivism and Critical Research which are briefly described 

as follows:  

 Positivism makes the assumption that the world is orderly and that we can 

investigate how it works objectively, without interference from our personal 

feelings (Ormston, Spencer, Barnard & Snape 2013:10). Oates (2006:284) 

further states that positivism allows establishing cause and effect based on 

hypothesis and theories testing, with its findings based on repeatability, 

producing the same results, and is mainly associated with quantitative data 

analysis.  

Figure 3.1: Research Process Onion (Saunders et al 2009:108) 

 

Research Philosophy 

Research Approach 

Research Strategy 

Research Choice 

Time Horizon 

Techniques 

and 

Procedures 
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 Interpretivism refers to approaches focusing on how we can gain knowledge 

through interpreting and understanding meanings attached to human actions 

(Reilly 2009:2). The central tenet, as argued by Bryman and Liao (2004:1) is 

that the study of social phenomena requires an understanding of people’s social 

world they live in, which they have created and have interpreted the meaning 

they produce.  

 

Similarly, Ritchie et al.(2013:12) also indicate that Interpretivism centres around 

producing knowledge by exploring and understanding people’s social world, 

focusing on their meanings and interpretations. Aliyu et al. (2014:82) as well as 

MacDonald and Headlam (1999:8–9) concur that Interpretivism has a strong 

preference for qualitative data analysis, which provides rich and detailed results 

from mostly non-numeric data analysis. Oates (2006:295), in addition states 

that Interpretivism has to show descriptions, explanations and interpretations 

supported by data evidence generated from interviews, observations, 

questionnaires and documents. 

 

Interpretivism is considered as not being the most appropriate philosophy for 

this study, considering the view by Scotland (2012:12) that its methods explain 

the participants’ actions and bring an understanding of their behaviour, but then 

disregard the external structural factors that are influencing behaviour. 

Although software project managers’ behaviour determines the extent of data 

analytics adoption in project management, the focus of this research is not 

based entirely on adoption, but on its impact on project quality management. 

Since interpretive research findings represent the participants’ sociological 

understanding, the results of this study would be greatly limited if Interpretivism 

is sorely used since issues of data use, ownership and the extent of control of 

findings by participants are not uncommon, as suggested by Scotland 

(2012:14). 

 

 Critical research postulates that people create their social reality and that the 

social realities possess objective properties that dominate our experiences 

(Oates 2006:296). Oates (2006:296) further indicates that Critical Research 

focuses on trying to challenge and eradicate power relations, conflicts and 
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differences in our society and organisations, as these cause alienation and 

domination. Critical research is not regarded as ideal for this study, as the 

research does not focus on challenging any power relations or elimination of 

any societal or organisational conflicts. 

3.2.1 Research Philosophy for this research 

This study uses the positivist research strategy, also known by many as objectivism 

or realism, which Aliyu, Bello, Kasim and Martin (2014:81) indicate as being centred 

upon the ontological principle that reality and truth are independent of the researcher. 

Aliyu et al. (2014:82) state that the concepts of impartiality, repeatability and objectivity 

are central to the positivist approach, which makes use of methodologies including 

quantitative analysis and laboratory experiments. In addition, positivism uses a 

quantitative approach in investigating phenomena.  

 

Positivism is used in this study due to its principles, which Scotland (2012:10) 

highlights as allowing the researcher to impartially discover information about 

unbiased reality by maintaining the independence of the researcher from the study. 

Since positivism is focused on explaining relationships and finding what influences the 

outcomes, as indicated by Scotland (2012:10), it is particularly ideal for this study to 

be able to show the causative effect of data analytics use on improved projects 

decision-making and project management quality. As advocated by Saunders, Lewis 

and Thornhill (2009:114), this study by means of the positivist philosophy leverages 

on its structured methodology and uses statistical analysis on quantifiable 

observations. This assists in systematically gathering, analysing and interpreting the 

study’s data, given that positivism, as indicated by Oates (2006:286), has a strong 

preference for mathematical modelling which provides a sound and unbiased way of 

analysing observations and results. 

 

In addition, Scotland (2012:10) indicates that results from samples are attained 

through inferential statistics analysis, which is generalised to the populations. One 

other contribution that positivism brings even to this study, as further expressed by 

Oates (2006:286) and Scotland (2012:10) is that, with its methodology being neutral 

enables establishing patterns or indisputable facts from data, irrespective of the 
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researcher’s feeling, which as earlier alluded to, allows for the generalisation of its 

output. Part of the main considerations taken into account for the use of positivism in 

this study is, as argued by Scotland (2012:11), its implementation of high levels of 

rigor and methods, which attempt to yield commonly-accepted results. 

 

The study comes up with a set of recommendations that will assist project 

management professionals to take advantage of data analytics to improve software 

project management quality. To achieve this, the research is guided by the earlier 

defined research questions, the use of hypothesis, and makes use of the positivist 

theoretical perspective.   

3.3 Research approaches 

There are different levels of research methods classification and description, with the 

most basic among these being philosophical (Crossan 2016:48). Levy (2006:374) 

defines a research method as the planned course of action behind the selected 

methods in a study, where the selection and the use of methods are linked to the 

expected outcome. There are, essentially two research approaches, which are 

qualitative and quantitative research methods. The Qualitative Research approach, 

according to Kothari (2004:5), focuses on the subjective assessment of attitudes, 

behaviour and opinions; and the approach generates results that are non-quantitative 

and cannot be quantitatively analysed. In addition, Dawson (2002:14) states that 

qualitative research seeks to get an in-depth opinion from participants, making use of 

such methods as interviews and focus groups. 

 

The quantitative approach, on the contrary, and as explained by MacDonald and 

Headlam (1999:8), quantifies data, subjects this to rigorous, formal and quantitative 

analysis and generalises the results from a sample of the population that is being 

targeted. The quantitative study entails the researcher to remain objectively-separated 

from the study. Kothari (2004:5) suggests that quantitative research can be further 

sub-classified into three approaches as follows: 

 Simulation – involves establishing a mock setup from which relevant 

information can be generated. This allows the monitoring of a system in a 
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controlled environment and the building of models to understand future 

conditions. 

 Inferential – This includes establishing a database from which the 

characteristics of a population will be inferred. It generally takes the survey 

form, where a sample population is studied, and it will then be inferred that the 

observed characteristics are representative of the population. 

 Experimental – It involves better control of the study environment, with variables 

being changed in some instances to monitor how these impact other variables. 

3.3.1 This study’s research approach 

This study uses the quantitative research approach, as it explains phenomena through 

the gathering of numerical data which is analysed using mathematically-centred 

procedures. Quantitative research is used as Dawson (2002:15) indicates that it 

makes use of the survey research, employing the questionnaire method in this study. 

Surveys allow for the gathering of data from a broader spectrum of people at a 

manageable cost and the findings from the survey are generalisable. 

The fact that a quantitative approach requires the researcher to remain objectively-

separate from the subject under study ensures unbiased outcomes from the research, 

making it ideal for this study. The study follows a deductive approach, using a 

hypothesis and the CMMI maturity levels to assess the impact of data analytics use 

on project management quality through improved decision-making. Since the 

deductive approach begins with an expected general pattern which is tested against 

observations (Morgan 2014:48), it allows this study's hypothesis to be tested against 

observations from the study. Morgan (2014:48) further states that the deductive 

procedure of transitioning from theory to observation is linked to specific targets, for 

instance, connecting causes to effects, which enables this research to establish the 

causal impact of data analytics use on project management quality.  

3.4 Research Strategy 

Oates (2006:25) defines a research strategy as a general approach in responding to 

the research question. Research strategies include a survey which is used in this 

study, ethnography, experiment, design and creation, action research and case study. 
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3.4.1 Strategy for this study 

This study uses the survey research strategy, making use of a questionnaire. A survey 

was used as it allows the study to get the same type of data from many people in a 

homogenous and methodical way and confirms an association between the elements 

under study (Oates 2006:104). The survey questionnaire, as argued by MacDonald 

and Headlam (1999:35), enables the researcher to establish the depth of opinion on 

the subject being studied. The survey strategy is very much associated with positivism, 

as it seeks to establish patterns and generalisations (Oates 2006:93). 

3.5    Time Horizon 

This study was conducted over a period of 36 months. Given the time limitation of the 

study, data gathering is based on sample population of software project managers, 

which enabled the gathering and subsequent analysis of data in the available time. 

The actual gathering and analysis of the data was done in less than 24 months, but 

this time limitation does not suggest any compromised data gathering and analysis in 

this study. 

3.6 Data Collection and research sample 

A survey research methodology was chosen to gather data to test the research 

hypothesis. Questionnaires were sent to Software development organisations and to 

Project Management Institute members in South Africa, mostly in the Gauteng 

province. Since surveys allow for the acquisition of data from many people or events, 

using standardised and systematic means and establishes data patterns, as indicated 

by Oates (2006:93), this allows the related findings to be generalised to a much bigger 

population than the actual survey group. The questionnaire survey method has been 

used as Johnson (2011:2) indicates that it is relatively easy to administer and provides 

a wide range of information that can be easily categorised and is economical to 

conduct. 

 

Questionnaires have been used to obtain data from software project managers in 

software development organisations. Data collected has been about the inadequacies 

of project management standards and methodologies, in addition to the project 

managers’ experiences with data analytics and how that has influenced their software 

project management processes. A document review provided information on the 
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traditional software project management shortcomings that may have been 

experienced and helped to enlighten how data analytics use may improve decision-

making and software project management quality. 

3.6.1 Sampling  

This study was conducted over a period of 36 months with limited financial resources 

to gather data, therefore a sample population was used to collect data from the 

software project management professionals. A sample is a subgroup or representative 

of a population which may be probability-based for a required level of confidence in 

the collected data or non-probability based, which does not involve calculating and 

knowing the level of bias or error in the data (Latham 2007:1). The researcher’s goal 

in relation to the data-collection from certified project managers and ensuring validity 

of the collected data, therefore influenced the sampling method used in this study. 

3.6.1.1   Sampling Frame 

The online directory of software project management companies in South Africa and 

registered and accredited software project managers from the sampling frame were 

used in this study. A sampling frame is expressed as a group of elements in a target 

population or documents, which can be contained within  a survey from which a sample 

is selected and the related data is generalised to the entire population (Herek 2012:2). 

3.6.1.2   Sampling Technique 

The study used Purposive sampling and Snowball sampling to get the questionnaires 

to the respondents.  

 

Purposive Sampling 

Purposive sampling involves the researcher picking a sample, including instances that 

are likely to produce important data to realise the research purpose (Oates 2006:98). 

Purposive sampling is used in this study as the researcher identified and sampled 

software project managers who are accredited with the Project Management 

Institutions in South Africa and Software project managers from software development 

organisations, most of whom were based in Gauteng, some of these with experience 

in data analytics use.  
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Snowball Sampling 

Snowball sampling has been used in conjunction with purposive sampling in this study 

to get questionnaires to the respondents. Oates (2006:98) states that Snowball 

sampling is used when the researcher gets one person from the target population and 

gets data from the person before asking for suggestions about more people who may 

be relevant to the research subject. Snowball sampling was chosen for this study as it 

made it easier for the researcher to contact respondents from organisations the 

researcher’s company outsources from, members of the Institute of Information 

Technology Professionals of South Africa, the Project Management Institute, and got 

further referrals from these initial respondents.  

3.6.1.3 Sample Size 

The sample size, according to Glasow (2005:2–2), depends on the extent of the 

required precision, required statistical power or the researcher’s ability to gain access 

to the study’s subjects. This study uses a questionnaire for which there were 

responses from one hundred respondents, which was conducted in line with the 

suggestion by Oates (2006:100) that a sample of less than thirty responses produces 

unreliable analysis results. More than 300 questionnaire copies were issued, since it 

was anticipated that some of the given questionnaires would not be returned, as Oates 

(2006:100) indicates that a response rate of just ten per cent is not uncommon.  

3.6.2   Data gathering techniques 

Questionnaires have been used to gather data from software project managers on 

their current practices in Software project management and quality monitoring 

techniques. Furthermore, the questionnaires have also been used to establish the 

software project managers’ experiences in project management and their level of 

knowledge with data analytics use in project management. A documents review was 

also used to collect data on the project management standards, methodologies and 

the developments in data analytics use, of which the use of project management 

standards in conjunction with data analytics use is part of this study’s drive to establish 

the possibility of using the two to improve the quality of software project management. 
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3.6.2.1 Questionnaire design and distribution 

a. Questionnaire design 

A questionnaire as defined by Siniscalco and Auriat (2005:2) is a set of pre-defined 

questions, organised in a specific order that is designed to provide the researcher with 

data for analysis and interpretation. The questionnaires that were used included 

closed rating questions, which Glasow (2005:2–8) indicates as allowing for speedy 

completion, while keeping the participants’ responses within certain summarising 

responses, thus making classification and analysis of the responses easier. In line with 

the suggestion by Oates (2006:222) not to confine respondents to predefined 

responses, the questionnaire also has open-ended questions requesting respondents 

to self-report on their project management practices and their perceived projects 

success. The questionnaire is divided into demographics, background Information and 

open-ended sections and also seeks to measure the projects that were carried out not 

more than three years back. 

 

b. Research Variables and Measures 

As had been alluded to earlier in the preceding chapter, the variables used in this 

research are from the constructs data analytics use, project management processes 

maturity and projects success and quality. 

 

Predictive data analytics use influence will be assessed based on the following:  

i. Processes and data analysis improvement. 

ii. Prediction of project event outcomes (Mishra & Silakari 2012:4434) 

 Financial Predictions 

 Dealing with projects deviations or changes  

iii. Insight for strategic decision-making (Mishra & Silakari 2012:4438; Fauser et 

al. 2016:68) 

iv. Resources Management (Fauser et al. 2016:72) 

 Planning and resource allocation 

 

Project management processes maturity’s contribution to quality will be assessed 

through the organisations’ capability in progressing in their projects’ management 

maturity levels (Initial, Managed, Defined, Quantitatively Managed and Optimised); 
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improving time management, quality management, scope management and 

integration. 

 

Project quality assessed through the projects’ success will be measured using the 

following criteria, which aligns with the indication by Agarwal and Rathod (2006:359): 

i. Customer satisfaction, which is part of Impact on Customer. 

 Software delivered to the customer within a planned time and cost.   

 Meeting software functionality goals, including reliability (Issac et al. 2004: 

317). 

 Satisfying user operational requirements (Agarwal & Rathod 2006:368). 

ii. Meeting project goals – Project efficiency.  

 Achieving planned project goals (Agarwal & Rathod 2006:367). 

 Handling changing requirements (Agarwal & Rathod 2006:361). 

iii. Contractor benefit assessed through organisational projects success  

 Financial gain from the project. 

 Consistency in projects completion according to plan. 

v. Preparation for the future:   

 Preparation for future quality technology use. 

 Contribution to project management quality body of knowledge. 

 

Further to the success measures described above, a factor measuring contribution of 

data analytics to future project management and contribution to project management 

quality is also included in the questionnaire. 

c. Validation and the Reliability Assessment 

The questionnaire was assessed for reliability using the Cronbach’s Alpha Method, 

which Tavakol and Dennick (2011:53) suggest as enhancing the questionnaire’s 

accuracy of assessment and evaluation. Tavakol and Dennick (2011:53) also indicate 

that validity focuses on the extent to which an instrument measure what it intends 

measuring, while reliability looks at the instrument’s ability to measure consistency. To 

measure the internal consistency of a test, Santos (1999:1) suggests that Alpha may 

be used to describe the reliability of factors taken from multi-point formatted scales or 

questionnaires. Internal consistency ensures validity as it looks at how related items 

in a test are constituted, and describes the degree to which the elements in a test 
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measure the same concept (Tavakol & Dennick 2011:53). Field (2009:675) highlights 

that by using the Alpha to measure the reliability of the questionnaire, the reliability 

estimations will show the amount of errors that can be found in a related measurement 

in a questionnaire test.  

 

Using some closed ended questions in the questionnaire creates a level of similarity 

from the sample, which adds to reliability. To further check on reliability and minimise 

measurement errors, a pilot run of the questionnaire instrument was conducted as 

suggested by Kimberlin and Winterstein (2008:2277) to ensure consistency before the 

questionnaire was sent out to the respondents. 

d. Questionnaire Distribution 

Three hundred and twenty questionnaires were distributed to the respondents through 

LinkedIn and email of which one hundred and fifteen of them were completed and 

returned. One hundred complete responses were used for analysis as eleven were 

incomplete and four were returned without the participants’ consent forms.  Ninety-

seven of the questionnaires were self-administered by the respondents, while eighteen 

were researcher-administered which Oates (2006:221) suggests encourages the 

completion of the questionnaire by respondents and increases the questionnaire 

response and return rate. A log was created to keep track of the questionnaires given 

out and reminders were sent fortnightly to achieve the speedy completion and return 

of the questionnaires. As suggested by Siniscalco and Auriat (1998:72) a 

questionnaire pilot was run with five, project managers to determine if there were any 

ambiguous questions, to establish whether the predefined responses covered all 

desired answers, and to find out the time it would take to complete the questionnaire.  

 

A questionnaire was used in this research as it is relatively inexpensive, easy to 

administer and is not affected by geographic boundaries, having been distributed by 

email and in person. As warned by Siniscalco and Auriat (1998:24) and Oates 

(2006:222), the researcher anticipated that not all the questionnaires would be 

returned, and that the pre-specified responses in some questions would limit the 

respondents, where they could have provided their own responses. 
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3.6.2.2 Online Documents 

Online documents are used as a source of information on the existing project 

management practices, standards and methodologies, as well as the role of data 

analytics. Oates (2006:235) defines a document as any written material or symbolic 

representation that can be recorded and retrieved for analysis. Online documents 

(articles accessed through the internet) have been used to explore recent innovations 

in data analytics use to device how it can improve decision-making in project 

management. Documents have been used since they are obtained quickly and 

conveniently, without making any appointments, and Oates (2006:241) further 

indicates that, with these being in the public domain assists in checking this research 

against the available online publications, thus improving on its credibility. However, as 

Oates (2006:241) highlights that access to some internet-based documents is 

temporary, a few become inaccessible on initial sites which delayed access to some 

much-needed information. 

3.7 Data Analysis 

This research is a quantitative study which collected quantitative data for analysis. 

Quantitative data analysis involves looking at the collected data to establish general 

trends emerging from the data (Field 2009:18). Oates (2006:245) states that 

quantitative data is analysed by techniques, including tables, charts or graphs, which 

enable the identification of patterns in data. Data Analysis is the process of going 

through a data set, looking at the parts separately and learn how the data sets are 

related to other samples of  data while data analytics applies to the logic or techniques 

used to drive the analysis (Brown 2019). Data analytics involves using software tools 

and statistical techniques to assess data for decision making and improved future 

performance. 

 

To establish the strength of the correlation between data analytics use and decision-

making and the strength of correlation between decision-making and project 

management quality, Pearson’s correlation was used. Gogtay and Thatte (2017:78) 

indicates that Correlation Analysis measures the relationship between quantitative 

variables. Data analysis methods employed in this study are as explained in section 

3.7.1 and the software used to analyse the quantitative data is outlined in section 3.7.2. 
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3.7.1    Descriptive Demographics 

Reliability 

One of the main issues of reliability concerns a scale’s internal consistency, such as 

the extent to which the elements of a scale measures the same underlying construct. 

Cronbach’s alpha has been used to assess the reliability of the related variables. A 

reliability coefficient of 0.70 or higher is considered acceptable when using the 

Cronbach’s alpha (Tavakol & Dennik 2011:54).  

 

Exploratory Factor Analysis (EFA) Validity 

Exploratory Factor Analysis (EFA) is a statistical approach for establishing a data set’s 

variables correlation (Pallant 2013:188). EFA analysis allows the collection of 

variables based on strong correlations. Factor analysis functions on the conception 

that quantifiable and observable variables can be reduced to fewer latent variables 

that share a common variance, and that these are unobservable; known as reducing 

dimensionality (Yong & Pearce 2013:80). When conducting the EFA, factors are 

rotated to try and get to a factor solution equivalent to that which is found in the initial 

extraction but with a simpler interpretation. The two major forms of rotation are 

Orthogonal, which produce uncorrelated aspects; and Oblique rotations, which 

produces correlated factors. The best orthogonal rotation is regarded as Varimax, 

while the Oblique rotations popularly uses the Direct Quartimin, Promax, and Harris-

Kaiser Orthoblique (DeCoster 1998:3). 

 

The Mean  

The Mean is one of the descriptive statistics used in data analysis in this study. The 

Mean gives a central tendency, providing an idea of where data seems to cluster 

around (Kalla 2009). The Mean has been used to calculate the average score for the 

variables, as part of the descriptive statistics. The Mean has also been used as it 

includes every value in the data set and produces the lowest amount of error from all 

the values in the data set (Lund & Lund 2018). 

 

Regression 

Multiple regression describes how a response variable linearly depends on a number 

of predictor variables (Brema 2012:18). Regression is used to identify the strength of 

the effect of independent variables on dependent variables, helps with the 
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understanding of the change in dependent variable given the change in one or more 

independent variables and it is also used to predict trends and future values (Statistics 

Solutions 2013). Regression analysis being a statistical method used to estimate the 

relationships between independent and dependent variables; is an element of Data 

analytics which as stated by Wulff (2017), is the overarching discipline encompassing 

complete data management.  Regression analysis has been used in this study, as it 

indicates if the variables have a significant relationship with a dependent variable and can 

indicate the relative strength of the different independent variables’ effect on a dependent 

variable (Sarstedt & Mooi 2014:194). Regression has been used in this study to identify 

the impact of data analytics on: 

 

 Project Success. 

 Impact on Customer. 

 Organisation Success. 

 Project Management Efficiency.  

 Preparing project management for the future. 

 

The following regression assumptions have been applied (Sarstedt & Mooi 2014:20): 

 The expected mean error of the regression model is zero. 

 The variance of the errors is constant (homoskedasticity). 

 The errors are independent (no autocorrelation). 

 The regression model can be expressed in a linear way. 

 

Multiple linear regression makes use of more than one independent variable as 

compared to simple linear regression that uses one independent variable (Ray 2015). 

 

The study used the Statistical Package for the Social Sciences (SPSS) analysis 

software to analyse the quantitative data.  

3.7.2  SPSS 

Statistical Package for the Social Sciences (SPSS), is a data analysis software that 

allows for the entering data into a data editor through the data view and the definition 

of variables characteristics through the variable view (Field 2009:64). SPSS is used 
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as it is a quantitative analysis programme that allows the analysis of data without 

having to write a complex command syntax (Crossman 2016:1). 

 

The statistical measures observed from the collected data are grouped under 

descriptive statistics. Descriptive statistics provide summarised information about 

data, including Ordinal data, interval or ratio data and categorical data (Connolly 

2011:7). 

3.8 Ethical Considerations 

The researcher obtained ethics clearance from the University of South Africa (UNISA) 

and abides by the Unisa research ethics policy. Ethical issues were considered in this 

research and this research was guided by the Unisa research ethics rules including: 

i. Voluntary participation 

Participants identified in this study were furnished with details about the researcher. 

The reason for the study and the respondents’ involvement in the study were explained 

to the participants before the decisions whether or not to take part in the research were 

made. 

ii. Confidentiality, anonymity and participants’ privacy 

Anonymity of the respondents and the confidentiality of the collected data was 

guaranteed to the participants. The respondents were assured that their names and 

addresses, or names of the organisations they were linked to would not form part of 

the research publication. It is also explained to the participants that the information 

gathered was purely for research purposes and would not be used in any way beyond 

the intended purpose, which violates their privacy. 

3.9   Chapter Conclusion 

This Chapter explained the research approaches in general and discussed the 

approach that was used to conduct the study. This chapter further discussed the 

questionnaire used, the data collection approach used and the data analysis. This 

chapter also discussed the Ethical considerations. Chapter 4 focuses on data analysis  

and the data analysis results are then discussed and summerised in Chapter 5. 
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Chapter 4:  Experimentation 

4.0 Introduction 

This chapter focuses on data analysis and interpretation as described in the 

Methodology chapter. The analysis of the data was conducted using the Statistical 

Package for the Social Sciences (SPSS version 24.0). SPSS was used as it is a 

quantitative analysis programme that allows for the analysis of data without having to 

write a complex command syntax (Crossman, 2016:1). 

The decision variables used in this research are multi-dimensional, and these are 

Project Success, Impact on Customer, Organisation Success, Project Management 

Efficiency, Preparing for the Future, Initial Phase, Managed Level, Defined Level, 

Quantitatively Managed, and Optimising Level; and they are made up of a number of 

factors. For the purpose of this research, the correlational, descriptive, and the 

reliability analysis comprise the respective factors of the variables, but regression was 

performed on the total scores of selected variables of this study. 

4.1   Data Collection 

Data collection is the process gathering of information from relevant sources which 

enables the researcher to answer research questions, test hypothesis and evaluate 

outcomes (Dudovskiy 2011). A questionnaire survey has been used to collect data 

from software project managers and the sample surveyed is outlined in section 4.1.1. 

4.1.1   Sample 

A total of three hundred and twenty questionnaires were sent out, of which one 

hundred and fifteen, were returned and the survey used one hundred complete 

responses for analysis and another eleven were not used as they were incomplete, 

and four were returned as these had come without the participants’ consent forms. 

Questionnaires considered incomplete would have had mainly the Background 

Information section answered, basically dealing with the demographics which did not 

contribute much towards answering the research variable questions in Section B. 

These questionnaires which had less than 15% of total questions answered were 

considered incomplete and were left out. The questionnaire was distributed to software 
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project Managers in South Africa, mostly in Gauteng. The questionnaires were 

distributed in person to respondents at the Project Management Institute of South 

Africa’s Gauteng Branch conferences, some through email and the request for 

participation in the survey was also placed on the Institute of Information Technology 

Professionals South Africa (IITPSA) Facebook page, while some of the software 

project managers were also identified and contacted using LinkedIn.  

The age of the surveyed respondents in relation to their age ranges and frequency is 

discussed under the following Age Statistics heading.  

 

Age Statistics 

Many of the participants (35%) are between the age of 30 and 39 years, 30 of the 

participants constituting (30%) were in the 40 to 49 years age range, 20 of the 

participants (20%) in the 20 to 29 years range and 15 participants (15%) were in the 

50 to 59 years age group. No respondents were under the age of 20 or above the age 

of 59 years. The statistics, as illustrated in Figure 4.1 show that many of the 

respondents who participated in the survey are in the middle aged range, from 30 to 

49 years, which is a group of people with project management experience, some of 

whom have used data analytics in their projects. 

 

Figure 4.1: Participants Age Ranges 
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Gender Statistics 

Table 4.1: Gender Statistics 

Gender Frequency Percentage 

Male 55 55% 

Female 45 45% 

The statistics as presented in Table 4.1 show that many of the participants in this 

research, 55 (55%) are males while 45 (45%) are females. The study received more 

input from males than females even though this does not have a bearing on the 

findings of this study  as a separate study conducted by Rodríguez, Montequín, Morán 

and De Arriba (2017:463) established that gender does not have a significant effect 

on software project management performance even though slight differences were 

found on male and female leadership behaviours on project teams leadership. 

Table 3.2: Project Management Position Statistics 

Position  Frequency Percentage 

Inhouse Project Manager 55 55 % 

Consulting Firm Consultant 35 35 % 

Freelance Project Manager 10 10 % 

Currently not managing software Projects 0 0 % 

 

Most of the survey participants are practicing as in-house software project managers 

in organisations, constituting 55% (55 participants) while 35% (35 participants) are 

software project managers employed and practicing within consulting firms as 

consultants. Software project Managers working for consulting firms brought in their 

experience from a variety of projects they have handled in different operating 

environments where they have managed projects. Ten percent of the participants are 

practicing as freelance Software project managers, who at the time of the survey were 

not attached to any organisation. There are no software project managers who are 

currently not practising in software project management among the respondents.  

Among the 55% of the project managers working in-house and the 35% working for 

consulting firms they have some knowledge on data analytics use and 27.78% (25) of 

the respondents indicated that the organisations they were working for in some form 

facilitate for their data analytics training, with 60% of them getting access to attend 
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project management workshops. The surveyed project managers who are attached to 

organisations brought in valued contribution to this study from their experience, as 

they got further training and upskilling through the organisations they are attached to. 

 

 

Figure 2.2: Data Analytics knowledge level Statistics 

 

Responses indicate that 50% of the surveyed participants have some experience in 

data analytics use in project management with 15% of the users having used it in five 

or more projects, five percent, have used it in less than five projects while 30% of the 

respondents have used data analytics in only one project. Equally, 50% of the 

respondents have not used data analytics in project management with 35% only 

having read about it and 15% with no knowledge of data analytics. The input of project 

managers with data analytics experience brought into this study the much-needed 

input from experienced people for effective assessment of its impact. A considerably 

high percentage of Project managers surveyed, 43.75%, confirm that they had used 

data analytics use in their past software projects, and that this had enhanced their 

various projects’ processes, and had helped to achieve set project goals 
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4.2   Descriptive Statistics of Variables and Frequency 

This Section discuses and presents the item descriptive statistics for the predictor and 

predicted variables and starts by presenting statistics per item. 

4.2 (a) Descriptive Statistics of Variables 

Table 4.3 presents the statistics per item calculated using the SPSS system in which 

the Item Colum has the decision variables whose Mean and standard deviation is 

computed for N participants per Item (Decision Variable). Each variable question 

responses were coded and the participants responses per Variable question where 

captured using the value code into a dataset. The dataset was imported into the SPSS 

system to compute the Minimum, Maximum, Mean and Standard Deviation per item 

(Decision Variable) as shown in Table 4.3.   

   

Table 4.3: Descriptive statistics per item 

 Item N Minimum Maximum Mean Std. Deviation 

IP 100 1.50 4.50 2.6250 0.93845 

PS 100 1.67 4.33 2.9000 0.84154 

MI 90 2.00 5.00 3.3056 1.08797 

IC 85 2.00 5.00 3.5294 1.07003 

DI 75 2.50 5.00 3.6000 0.86603 

OS 80 2.50 5.00 3.7813 0.92382 

QML 100 1.00 5.00 3.9000 1.26730 

OL 95 1.00 3.67 2.1842 0.89801 

PF 90 1.00 3.00 2.0000 0.74953 

PME 40 3.00 5.00 4.3125 0.61694 

 

Decision Variables or Items Description 

IP = Initial Phase 

PS = Project Success 

MI = Managed Level 

IC = Impact on Customer 

DI = Defined Level 

OS = Organisation Success  

QML = Quantitatively Managed Level 
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OL = Optimising Level 

PF = Preparing for the Future 

PME = Project Management Efficiency 

 

Project Management Efficiency, Quantitatively Managed and Organisation Success 

variables have the highest mean scores of 4.31, 3.9 and 3.78 respectively, with the 

standard deviations of 0.62, 1.27 and 0.92, respectively. The two decision variables 

with the least mean scores are; Preparing for the Future, and Optimising Level, with 

respective scores of 2 and 2.18 having standard deviations of 0.75 and 0.90, as shown 

in Table 4.3 . 

4.2(b) Frequency 

4.2.1 Quantitatively Managed level  

The aim of the variable question was to determine if data analytics use influences 

decision-making and the effect of improved decision-making on software project 

management quality. This variable response has a high mean score of 3.9 and a 

standard deviation of 1.26, as shown in Table 4.3.  

The respondents have indicated that data analytics use has an impact on decision-

making, with 30.77% of the respondents to the question agreeing that the use of data 

analytics in their projects led to quicker and timely decision-making. Twenty-three 

percent (23.08%) of the respondents said that this had led to greater project control, 

while 15.38% had concurred that there was improved resources allocation and 

management. Seven percent (7.69%) of the respondents pointed out that data 

analytics had no effect on decision-making in their projects as they had not used data 

analytics in their projects. A total of 65 participants responded to the question as to 

whether or not data analytics use has an impact on decision-making.  

 Furthermore, many of the respondents affirm that improved decision-making directly 

impacts software project management. The majority of the respondents, 40%, strongly 

agree that improved decision-making has a direct impact on software project 

management quality. Thirty five percent (35%) of the respondents agree that improved 

decision-making directly impacts software project management quality, while 10% of 
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the respondents somewhat agree. Only 10% of the respondents strongly disagree that 

improved decision-making directly impacts software project management quality.  

In addition, 47.06% of the respondents indicated that in their last projects they had 

less than 25% delayed or incorrect decision-making due to ineffective data analysis, 

23.53% of the respondents indicated they had between 25 and 49%, while 29.41% of 

them stated that they had experienced between 50% and 74% of delayed or incorrect 

decision-making due to ineffective data analysis. This strongly suggests that effective 

data analysis improves decision-making. 

A number of software project managers have used more than one quality control 

technique in their project management, with ten managers indicating that they have 

used the Cause and Effect diagram, another ten have used the Inspection technique 

while five have used the flow chart. Twenty-five respondents indicated that at least 

one software quality dimension was improved by using data analytics, bearing witness 

to the fact that data analytics does have an impact on quality control tools. 

Performance, Accuracy, Completeness and Consistency were indicated to have 

improved by 25% of the participants who responded to the question, with 40% of them 

stating that performance had improved, another 20% said that consistency had 

improved, and 25% confirmed that project product serviceability had improved. 

4.2.2 Organisation Success  

The purpose of this variable question was to find out if software project managers 

attend ongoing trainings, and if projects stakeholders’ involvement and data analytics 

use contributed to organisational success financially.  

The variable has a high mean score of 3.78 given that the average mean for the 

variables is 3.21 and it has a standard deviation of 0.92, as shown in Table 4.3. The 

mean score means the majority of the respondents agreed or strongly agreed. Many 

of the respondents (60%) indicated that they attended regular on the job project 

management training workshops and courses, with 10% among them strongly 

agreeing. This shows that the majority of the surveyed project managers keep 

updating their project management knowledge and skills through workshops which 

contribute to software project management quality. 
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Figure 4.3: On job project management training workshops and courses attendance 

Many of the software project managers who had used data analytics stated that data 

analytics use contributes towards organisational success through system reliability 

and efficiency. Of the 65 respondents to the question, 30% of the respondents agree, 

10% of those who strongly agree that the use of data analytics in their projects led to 

organisational success from system reliability and efficiency, while 30 more 

respondents somewhat agree. Twenty-five (38.46%) of the respondents to the 

question strongly agree that where they have used data analytics, it has enhanced 

standardisation in their respective organisations’ processes. Twenty (30.76%) of the 

respondents to the question agree, while 38.46% (25) somewhat agree. The results 

show that data analytics does contribute towards system reliability and efficiency and 

that it enhanced standardisation in organisational processes. 

In relation to stakeholders’ participation and its contribution towards projects success, 

40% of the respondents agree, while 25% respondents strongly agree that 

stakeholders’ participation led to their projects’ success. The result does show that 

stakeholder participation leads to projects success as confirmed by the majority (65%) 

of the respondents. 

4.2.3   Initial Phase  

The purpose of this variable question was to establish if the non-use of data analytics 

in software projects results in ad hoc projects processes and activities; whether this 
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impacted on measuring projects milestones, and how it affects repeating successful 

past projects processes. 

Thirty percent of the respondents disagreed that the initial phase projects they worked 

on, which had no defined processes and standards in place, had ad hoc processes 

and activities, while an equal percentage (30%) of the respondents somewhat agree. 

Twenty percent of the participants agree that the initial phase projects they worked on 

had ad hoc processes and activities, another 15% of the respondents strongly agreed, 

while five percent, 5% strongly disagreed. This indicates, as shown by the  35% of the 

respondents, that lack of defined standards and processes in the projects, result in ad 

hoc processes and activities in projects. 

Fifty five percent of the respondents disagreed that in their initial phase projects, the 

absence of data analytics had affected the repeating of their successful projects’ 

processes. Only 20% of the respondents agree that the non-use of data analytics in 

their initial phase projects had affected the repeating of their past successful projects’ 

processes. A total of 15% of the respondents agree that their projects’ milestones were 

not easily measurable when data analytics was not used, while 55% of the 

respondents disagree that the milestones were not easily measurable when data 

analytics was not used in their projects’ processes. The results show that to some 

extent measuring milestones is improved by data analytics use as supported by 15% 

of the respondents, however the majority of the respondents (55%) indicate that data 

analytics use does not affect measuring of projects milestones. 

On the other hand, 65% of the respondents specified that at least one, but not more 

than five of their initial phase projects where data analytics was not used had failed 

due to poorly controlled processes. It therefore suggests that data analytics brings 

processes control, which contributes towards projects success. 

4.2.4   Preparing for the Future 

The purpose of the questions for this variable were intended to establish if companies 

facilitate data analytics training for software project managers and how data analytics 

contributes towards future project management. The surveyed project managers have 

used at least one development methodology, with 18.5% of these using the traditional 

development method, and a further 18.5% using the Agile Development Method, while 
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62.5% of the respondents used both the Traditional and Agile software development 

methodologies.  

Seventy two percent (65) of the respondents indicated that the organisations they 

worked for do not facilitate or offer data analytics training. This indicates that many 

companies from the surveyed population are not investing in equipping the software 

project managers for the future possibility of project managers incorporating data 

analytics into project management. There are, however, some organisations that in 

some ways are facilitating for data analytics training, as 27.78% (25) of the 

respondents somewhat agree that the organisations they work for facilitated for their 

training. These results are an indication that more needs to be done by organisations 

in training software project managers in the use of data analytics for the improvement 

of software project management. 

4.2.5   Optimising Level 

The purpose of the questions for this variable were meant to establish if using data 

analytics assisted in achieving software design requirements; if using data analytics 

improved handling projects processes variations, and if project managers chose to 

use other automated data analysis tools besides data analytics. 

While establishing if software project managers used any other automated data 

analysis tools besides data analytics in their last three projects, 82.35% (70) of the 

respondents said that they had not used any other automated data analysis tools 

besides data analytics, while 5.88% had used one form of automated data analysis 

tools in their projects, and 11.76% have used two forms of automated data analysis 

tools in their projects. This suggests there is a preference by some of the project 

managers to use other automated data analysis tools besides data analytics. 

On the aspect of determining if using data analytics assists in realising software design 

requirements, 23.08% of the respondents disagree, while 38.46% of the respondents 

somewhat agree, 38.46% agree whereas 15.38% of the respondents strongly agree. 

These results show that data analytics use does assist in realising software design 

requirements as a total of 53.84% of the respondents indicated that it does. The 

respondents have further indicated that data analytics use improved handling projects 
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processes variations, as 71.43% of the respondents agree, while 28.57% respondents 

disagree. 

4.2.6   Project Success 

The purpose of the questions for this variable were intended to determine the effect of 

non-use on data analytics on the projects’ budgeted costs, the projects’ planned time, 

user requirements analysis and project scope. 

According to 50% of the respondents, the assertion that, based on their experience, 

the non-use of data analytics does not lead to the failure to complete projects within 

the budgeted cost is true.  On the contrary, 20% of the respondents agree that the 

non-use of data analytics in their projects led to the failure to complete projects within 

the planned cost budgets, which is in addition to 30% of the respondents who strongly 

agree that not using data analytics in their projects resulted in the non-completion of 

projects within the planned cost budgets. In response to the question, if the non-use 

of data analytics affected delivery of software projects within estimated time, 36.84% 

of the respondents agree that this was so, while 26.32% somewhat agree, as opposed 

to 31.58% who disagree. The results show that not using data analytics does affect 

completion of projects within budgeted cost as indicated by 50% of the respondents 

who agree. The results further show that non-use of data analytics to some extent 

affect the delivery of software projects within estimated time as 36.84% of respondents 

agree that it does. 

Not all of the participants responded to the question whether the projects not being 

completed in time or at budgeted cost was as a result of ineffective user requirements 

analysis. Almost thirty two percent (31.57%) of the participants agree that the non-

completion of projects in time and on budget resulted from ineffective user 

requirements analysis, with a further 47.37% somewhat agreeing, suggesting that 

there are some of their projects where it was true, yet in some projects this was not 

the case. However, 21.05% of the respondents disagree that ineffective user 

requirements analysis had mainly led to overtime and over-budget regarding the 

completion of some of their projects. The results show that to some extent ineffective 

user requirements analysis does affect completion of projects within planned time and 

budgeted cost as indicated by  31.57% who agree, with a further 47.37% somewhat 

agreeing despite a considerable 21.05% indicating that it does not.  
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Failure to meet project scope as a result of scope creep is one of the challenges that 

project managers face, with 25% of the respondents in this survey agreeing that such 

is common where data analytics might not have been used. Twenty percent of the 

respondents somewhat agree, while 50% of the respondents disagree that in 

instances where no data analytics had been used, failing to meet projects scope was 

not common. While many (50%) of the respondents disagree that not using data 

analytics results in scope creep and projects failure, 25% of the participants stated 

that there is a portion of such related project failures. The results show that using data 

analytics does not entirely reduce scope creep in project management even though to 

some extent it does as shown by the 25% of the respondents who agree it does. 

Fifty percent of the respondents have also indicated that more than 50% of their initial 

phase projects’ success had depended on individual talent. Thirty five percent of the 

respondents have specified that less than 25% of their initial phase projects success 

had depended on individual talent. The results therefore show that many of the initial 

phase projects’ success where data analytics was not used depended on individual 

talent. 

 4.2.7   Defined Level 

The purpose of the questions for this variable was to establish if the use of data 

analytics in software projects leads to consistency in the completion of software 

projects as had originally been planned, if it enhances management of projects’ 

interrelated processes and if the project managers comply with any software quality 

standards. 

Thirty-eight percent (38.46%) of the participants who responded to the question, if the 

use of data analytics in software projects leads to consistency in completion of 

software projects as planned, do agree, with 15.38% of them strongly agreeing and a 

further 38.46% somewhat agreeing. Despite a high 38.46% of respondents agreeing 

and a further 38.46% somewhat agreeing, twenty three percent (23.08%) of the 

respondents disagree that using data analytics in projects leads to consistency in the 

completion of software projects. The results as indicated by the majority of the 

respondents (76.92%) show that data analytics use does to a great extent improve 

consistency in the completion of software projects as planned. The results also show 
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that there are situations where it has not resulted in the consistency in the completion 

of software projects as planned as indicated by the 23% of the respondents. 

Seventy five percent of the respondents to the question whether data analytics use in 

software projects enhance management of interrelated processes or not agree that it 

does, with a further 33.33% of the respondents somewhat agreeing, and only 6.67% 

of the respondents to the question disagreeing. The result as indicated by 75% of the 

respondents show that management of interrelated processes in software projects can 

be improved by data analytics use. However, the 6.67% of the respondents who do 

not agree is an indication that merely using data analytics does not in itself guarantee 

improvement of management of interrelated processes as that percentage show there 

are cases where it has not been the case.  

However, 63.16% of software project managers surveyed do not comply with any 

software quality standards, while 36.84% of the software project managers comply 

with some software quality frameworks or standards. The results show that there is 

need for more software project managers to be complying with software quality 

standards for software project management quality to improve as only 36.84% of the 

surveyed project managers comply with some quality standards. 

4.2.8   Managed Level 

The objective of the questions for this variable was to establish if data analytics use in 

software projects improved projects’ processes and helped achieve set projects goals. 

Forty three percent (43.75%) of the respondents agree, with 25% of them strongly 

agreeing that data analytics use in their past software projects had enhanced the 

projects’ processes which had helped to achieve set project goals. A further 25% also 

somewhat agree that data analytics improved projects’ processes, thereby assisting 

in realising the set project goals. However, 31.25% of the respondents disagree that 

their past projects processes were enhanced by data analytics use, and that it did not 

assist in achieving the set project goals. The result show that though a considerable 

percentage (31.25%) of the respondents disagrees, data analytics use does improve 

projects process and helps achieve set project goals as indicated by 43.75% of the 

respondents. 
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Forty-one percent (41.17%) of the respondents to the question agree and a further 

35.29% somewhat agree that in their past projects, projects monitoring, and control 

processes were more attainable by using data analytics. However, 23.53% of the 

respondents do not agree.  

Thirty-six percent (36.36%) of the 55 respondents indicated that none of their projects’ 

managed level processes were further enhanced by data analytics use, while 27.27% 

of the respondents said that Measurement and analysis had been improved; of these, 

18.18% declared that Project planning had been improved, while, 9.09% had 

confirmed that Configuration Management and Processes and Product quality 

assurance were further enhanced by data analytics use. The results show that using 

data analytics does improve projects monitoring and control processes as indicated 

by 41.17% of the respondents who agree. The results further show that Measurement 

and analysis is also improved by data analytics use as indicated by 27.27% of the 

respondents. 

4.2.9 Impact on Customer 

The purpose of the questions for this variable was to assess if data analytics use in 

the respondents’ projects influenced realising user functionality requirements and if 

this had improved the chances of realising software performance goals. 

Eighty percent (80%) of the surveyed participants responded to the question; if data 

analytics use in their projects influenced realising user functionality requirements, of 

which 37.5% of the respondents agree that it does, with 18.75% of strongly agreeing. 

A further 37.5% somewhat agree, while 25% of the respondents disagree. 

Seventy-five percent (75%) of the participants responded to the question; if data 

analytics use in their projects enhanced chances of realising software performance 

goals. Sixty percent of the respondents agree that data analytics use in their software 

projects enhanced chances of realising software performance goals, with 33.33% of 

the participants strongly agreeing and a further 33.33% somewhat agreeing. Only 

6.67% of the respondents disagree, though, that data analytics use increased the 

chances of realising software performance goals. The results show that data analytics 

use improves chances of realising user functionality requirements as indicated by 

37.5% of the respondents. The results also show that using data analytics in projects 
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improves chances of realising software performance goals as indicated by 60% of the 

respondents.  

The descriptive statistics and Cronbach’s alpha coefficient for the questionnaire 

instrument is discussed as follows.  

4.3 Reliability of Constructs 

Table 4.4: Descriptive statistics and Cronbach’s alpha coefficient for each variable 

 
 

Item Mean SD 
Total 

Correlation 

Cronbach 
Alpha / N 

Items 

Initial Phase 
IP_2 2.7000 0.818 0.793 

0.877 
IP_3 2.5500 1.159 0.793 

Project Success 

PS_1 8.8421 6.411 0.897 

0.876 
PS_2 8.8421 6.198 0.646 

PS_3 8.5263 7.273 0.735 

PS_4 8.8421 6.305 0.720 

Managed Level 
MI_1 3.4000 1.054 0.923 

0.957 
MI_2 3.4667 1.333 0.923 

Impact on Customer 
IC_1 3.7857 0.895 0.890 

0.942 
IC_2 3.5000 0.978 0.890 

Defined Level 
DI_2 3.6154 0.709 0.607 

0.749 
DI_3 3.3077 0.998 0.607 

Organisation Success 
OS_3 3.4615 0.877 0.567 

0.721 
OS_4 3.5385 0.721 0.567 

Optimising Level 
OL_2 3.2308 0.805 0.791 

0.881 
OL_3 3.3077 0.998 0.791 

Project management 
Efficiency 

PME_2 4.4286 0.546 0.600 
0.750 

PME_3 4.2857 0.504 0.600 

 

When using Cronbach’s alpha, a reliability coefficient of 0.70 or higher is considered 

acceptable (Tavakol & Dennik 2011:54). The alpha coefficients for all the  variables in 

this study lie between 0.72 and 0.96, which means that the variables have high internal 

consistency and are acceptable, as they are above the recommended 0.70 score. 

4.4   Validity  

In order to establish if the questions contributed to their constructs in the questionnaire, 

factor analysis was carried out. Factor Analysis is a technique which is applied to a 

set of observed variables and seeks to find the underlying factors from which the 

observed variables were generated (DeCoster 1998:1). There are two forms of Factor 

analysis: Exploratory Factor Analysis (EFA), which tries to discover the nature of 
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constructs influencing a set of responses; and Confirmatory Factor Analysis (CFA) 

which tests whether a specified set of constructs is influencing responses in a 

predicted way (DeCoster 1998:1). The study considered the Exploratory Factor 

Analysis as it is used to explore the possible underlying factor structure of a set of 

observed variables without imposing a preconceived structure on the outcome (Child, 

1990). By performing EFA, the underlying factor structure is identified. EFA was 

considered given that this study makes use of eight variables being measured in 

relation to project management quality.  

CFA is a theory oriented model which confirms the factor structure extracted by EFA  

and allows the testing of the hypothesis that a relationship between observed variables 

and their underlying constructs exists (Child 1990). CFA has not been considered as 

ideal as the researcher was not seeking to confirm or reject a measurement theory. 

4.4.1 The extraction and rotation method 

The Principal Component Analysis (PCA) was used for extraction and rotation before 

factors calculation. Principal Component Analysis is a data-reduction technique which 

reduces many variables into a smaller number of components yet still containing most 

of the information from the larger variables set (Yong & Pearce 2013:84). Reducing 

the data sets makes the analysis of data much faster and easier as there will be lesser 

dimensions of data to handle than in the original data set. The conversion from the 

larger data set of possibly correlated variables results into a set of values of linearly 

uncorrelated variables referred to as Principal Components (Tefas & Pitas 2016). 

When conducting PCA, Eigenvector referred to as Characteristic Vector is a nonzero 

vector that changes by a factor when the linear transformation is applied to it, while 

the corresponding factor by which the Eigenvector is scaled is called the Eigenvalue 

(Namboodiri 2011).  

Rotation is an integral part of  PCA which is used to get each variable load on as few 

factors as possible, allowing each factor to define a specific collection of interrelated 

variables for easier interpretation (Yong & Pearce 2013:84). Rotation takes two forms, 

Orthogonal rotation, where it is assumed that the factors are uncorrelated; and Oblique 

rotation, where the factors are considered as being correlated (Yong & Pearce 

2013:84). It is preferable to use the Oblique rotation when exploring the correlation 

between components. Tables 4.6 and 4.7 show the principal component analysis. 
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4.4.2   Bartlett’s test for Sphericity and the KMO  

Bartlett’s test for Sphericity was used to check if there is redundancy between the 

variables that can be summarised (Stephanie 2014) The test was performed before 

using the Principal component analysis to verify if the data reduction technique actually 

compresses the data 

Table 4.5 illustrates the results of Bartlett’s test for Sphericity and the KMO value. The 

KMO of 0.6 and the magnitude (p<0.05) of Bartlett’s test indicates that the correlation 

structure is significantly strong for performing a factor analysis of the items.  

4.4.3 Communalities 

The communalities show the extent to which an individual item correlates with the 

other variables (StatWiki 2019). A value close to 1 indicates an item that correlates 

highly with the rest of the variables. Variables with low communalities (near 0.2) should 

be reconsidered. For the 19 variables, communalities are reasonable, as their 

extraction ranges from 0.71 to 0.93 (see Table 4.5). All the variables use correlate with 

the other variables as all their extraction values are much closer to 1. There are no 

variables that were reconsidered as no variables with Extraction values close to 0.2 

as shown in Table 4.5  

 

 Table 4.5: Communalities 

Question Extraction Question Extraction Question Extraction 

IP_2 0,737 IC_1 0,884 PME_2 0,926 

IP_3 0,812 IC_2 0,750 PME_3 0,930 

PS_1 0,887 DI_2 0,872 OL_1 0,753 

PS_2 0,838 DI_3 0,830 OL_2 0,831 

PS_3 0,717 OS_3 0,849 OL_3 0,806 

MI_1 0,934 OS_4 0,923 PF_1 0,912 

MI_2 0,888 QML_2 0,864   
 

4.4.4  Rotated component matrix and factor loading  

The rotated component matrix converged after five iterations and each construct 

excluding IP_1, DI_1, OS_1, OS_2, OML_1 and PME_1 fits well. Since the researcher 

selected the principal component analysis as the method of extraction, the “Total”, “% 

http://statwiki.kolobkreations.com/index.php?title=StatWiki:About&action=edit&redlink=1
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of Variance”, and “Cumulative %” columns are identical to those of the first two 

components in the “Extraction Sums of squared Loadings” and “Rotation Sums of 

Squared Loadings”, see Tables 4.6 and 4.7. Table 4.6 shows the importance of each 

of the 19 components with only the first 5 having eigenvalues shown in the Total Colum 

of over 1.00, and these combined explain 84,7% of the total variability in the data (See 

Table 4.7). Table 4.6 shows a significant decline in variability after Component 5. 

 

Table 4.6: Extraction Method - Principal Component Analysis 

Component 

Initial Eigenvalues 

Total % of Variance Cumulative % 

1 9,696 48,478 48,478 

2 2,641 13,206 61,685 

3 2,175 10,876 72,561 

4 1,326 6,630 79,190 

5 1,105 5,523 84,713 

6 0,634 3,168 87,881 

7 0,614 3,069 90,950 

8 0,468 2,341 93,291 

9 0,316 1,581 94,872 

10 0,284 1,419 96,291 

11 0,216 1,081 97,372 

12 0,164 0,819 98,191 

13 0,155 0,774 98,965 

14 0,091 0,453 99,419 

15 0,056 0,282 99,701 

16 0,034 0,171 99,872 

17 0,016 0,079 99,950 

18 0,009 0,046 99,996 

19 0,001 0,004 100,000 

 

Table 4.7: Extraction Method - Principal Component Analysis 

Component 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 

Total 
% of 

Variance 
Cumulative 

% Total 
% of 

Variance 
Cumulative 

% 

1 9,696 48,478 48,478 9,696 48,478 48,478 

2 2,641 13,206 61,685 2,641 13,206 61,685 

3 2,175 10,876 72,561 2,175 10,876 72,561 

4 1,326 6,630 79,190 1,326 6,630 79,190 

5 1,105 5,523 84,713 1,105 5,523 84,713 
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4.5 Correlation Analysis 

This section focuses on the relationship between the decision variables, such as the 

Initial Phase, Project Success, Managed Level, Impact on Customer, Defined Level, 

Organisation Success, Quantitatively Managed Level, Optimising Level, Preparing for 

the Future and Project Management Efficiency.  

The relationship between the constructs of this study, expressed by means of 

Pearson Correlations, are reported in Table 4.8. 

4.5.1 Decision Variables’ Correlations  

Correlation refers to the relationship or association between two or more quantitative 

variables and is based on an assumption of a straight line (Gogtay & Thatte 2017:78). 

Correlation has been used as it allows measuring the extent of an association between 

variables. Correlation Analysis uses a correlation coefficient with values ranging from 

-1 to +1. A +1 denotes a perfect positive relation between two variables, where a 0 

shows no linear relationship between the variables, and a -1 shows that variables are 

perfectly related in a negative way (Gogtay & Thatte 2017:78). Positive relationship 

between variables means two variables increase or decrease at the same time 

(McLeod 2018:1),  implying high values on one variable are associated with high 

values on the other and low values on one variable are associated with low values on 

the other. A negative (inverse) relationship means high values on one variable is 

associated with a decrease in the other variable (McLeod 2018:1). Therefore, a perfect 

negative relationship is when the relationship between two variables is negative all the 

time (Picardo 2019:1) while a perfect positive relationship exists when variables’ 

percentages move together at the same percentage and in the same direction all the 

time  (Investopedia 2018:1) 

 

The variables’ relationships will be discussed with reference to Pearson’s correlation 

and linear regression as was reported in Table 4.8. The variable Initial Phase 

correlates with the Project and Organisation Success variable with a score of 0.773, 

as shown in Table 4.8. Since the score is less than 1, it shows that the variables are 

positively linearly related. Managed Level and Impact on Customer variables are 

positively linearly related as they have a correlation of 0.717 and p value <0.05. 

Defined Level and Organisation Success variables have a correlation of 0.918, 
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showing that the variables are almost perfectly positively related, as they have a score 

much closer to 1 and p value < 0.05. 

 

Quantitatively Managed and Project management Efficiency variables have a 

correlation score of 0.179, which shows a low linear positive relation, as the score is 

not too far off from 0 and p value < 0.05. Optimising Level and Preparing for the future 

variables have a correlation score of -0.273, showing that the two variables are 

negatively linearly related and p value < 0.05. 
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Table 4.8: Correlation Matrix of the variables 
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IP  1  .773 0.00 .821 0.00 .641 0.00 .592 0.00 .273 0.014 .329 0.001 .364 0.00 .244 0.021 
-

0.114 
0.484 

PS .773 0.000 1  .819 0.000 .628 0.000 .654 0.000 .389 0.00 .227 0.023 .447 0.000 
-

0.119 
0.262 

-
0.181 

0.264 

MI .821 0.000 .819 0.000 1  .717 0.000 .651 0.000 0.122 0.279 .588 0.000 .681 0.000 0.156 0.168 .365 0.021 

IC .641 0.000 .628 0.000 .717 0.000 1  .800 0.000 .328 0.003 .396 0.000 0.190 0.092 0.041 0.726 -.401 0.017 

DI .592 0.000 .654 0.000 .651 0.000 .800 0.000 1  .918 0.000 0.134 0.253 0.080 0.511 
-

0.016 
0.902 

-
0.245 

0.237 

OS .273 0.014 .389 0.000 0.122 0.279 .328 0.003 .918 0.000 1  -496 0.000 
-

0.060 
0.612 -.273 0.022 

-
0.020 

0.917 

QML .329 0.001 .227 0.023 .588 0.000 .396 0.000 0.134 0.253 -.496 0.000 1  .351 0.000 .286 0.006 0.179 0.270 

OL .364 0.000 .447 0.000 .681 0.000 0.190 0.092 0.080 0.511 
-

0.060 
0.612 .351 0.000 1  .248 0.019 .680 0.000 

PF .244 0.021 
-

0.119 
0.262 0.156 0.168 0.041 0.726 

-
0.016 

0.902 -.273 0.022 .286 0.006 .248 0.019 1  
-

0.064 
0.716 

PME 
-

0.114 
0.484 

-
0.181 

0.264 .365 0.021 -.401 0.017 
-

0.245 
0.237 

-
0.020 

0.917 0.179 0.270 .680 0.000 
-

0.064 
0.716 1  
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4.5.2 Hypothesis testing 

The Pearson correlation of continuous variables was considered besides the other 

correlations that exist for the ordinal variables. As illustrated in Table 4.8, the r values 

range from 0.014 to 0.918, which indicates a reasonably strong relationship between 

the variables, since the r value can range from -1 to 1. The relationship between the 

variables is stronger when the value of r is closer to 1. The p-values, smaller than 0.05, 

indicate a significant correlation between the decision variables.  

Using Table 4.8, I now look at the following Hypotheses which address some of the 

questions posed in Chapter 1.  

Alternate 

Hypothesis H1: 

There is a significant correlation (association) between non-use 

of data analytics in the Initial Phase projects and Project 

Success. 

Alternate 

Hypothesis H2: 

There is a significant correlation (association) between data 

analytics use on processes monitoring and control on Managed 

Level Projects and Impact on Customer. 

Alternate 

Hypothesis H3: 

There is a significant correlation (association) between data 

analytics use on interrelated process management, completion 

of projects according to plan on Defined Level projects, and 

Organisational financial Success. 

Alternate 

Hypothesis H4: 

There is no significant correlation (association) between data 

analytics use on decision-making in Quantitatively Managed 

Level projects and Project Management Efficiency. 

Alternate 

Hypothesis H5: 

There is a significant correlation (association) between 

Optimising Level data analytics use and project managers’ 

training and Preparing for the Future. 
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4.6  Analysis of variance (ANOVA) among constructs 

An ANOVA was conducted on the constructs to establish the items homogeneity. The 

results are reported in Table 4.9. 

 

Table 4.9: Test of homogeneity (ANOVA) 

Constructs  Sum of 
squares 

df 
Mean 

square 
F Sig. 

  

 
IP 
PS 

Regression 41,866 1 41,866 145,258 .000b 

Residual 28,245 98 0,288   

Total 70,111 99    
 

      

 
IC 
MI 

Regression 49,490 1 49,490 87,986 .000b 

Residual 46,686 83 0,562   

Total 96,176 84    
 

      

 
OS 
DI 

Regression 42,535 1 42,535 365,580 .000b 

Residual 7,912 68 0,116   

Total 50,446 69    
 

      

 
PME 
QML 

 

Regression 0,474 1 0,474 1,253 .270b 

Residual 14,370 38 0,378   

Total 14,844 39    

 
      

 
PF 
QL 

Regression 3,068 1 3,068 5,753 .019b 

Residual 46,932 88 0,533   

Total 50,000 89    

 

IP = Initial Phase 

PS = Project Success 

MI = Managed Level 

IC = Impact on Customer 

DI = Defined Level 

OS = Organisation Success  

QML = Quantitatively Managed Level 

OL = Optimising Level 

PF = Preparing for the Future 

PME = Project Management Efficiency 
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Test for Homogeneity of Variances and Test of Equality 

The assumption of homogeneity of variance needs to be tested when comparing three 

or more constructs with ANOVA. Homogeneity of Variances ensures the distributions 

of outcomes in each independent constructs are comparable or equal and to meet the 

assumption of homogeneity of variance, the p-value Levene's Test should be above 

.05 (Statistics Solutions 2019). 

The p value of .270  as shown in Tables 4.10 and 4.11 for Project Management 

Efficiency and Quantitatively Managed Level is greater than 0.05, indicating that the 

variances do not differ significantly and that the assumption of equality of the variances 

is satisfactory. IP, PS, IC, MI, OS, DI, PF and OL all have sig values less than 0.05, 

indicating that the variances do differ.  

 

Table 4.10: Test for Homogeneity of Variances and Test of Equality 

Constructs Statistic df1 df2 Sig. 

MI IC .717a 1 83 0,000 

IP PS .773a 1 98 0,000 

DI OS .918a 1 68 0,000 

QML PME .179a 1 38 0,270 

OL PF .248a 1 88 0,019 

 

 

4.7   Regression Analysis 

Regression analysis is a method of identifying the variables’ impact on a topic. It is a 

statistical method that is used to determine the degree to which the independent 

variables influence the dependent variables (Foley 2018). Regression analysis has 

been used in this study as it indicates if the variables have a significant relationship 

with a dependent variable and can indicate the relative strength of the different 

independent variables’ effect on a dependent variable (Sarstedt & Mooi 2014:194). 

 

Regression uses a significance level of 0.05, with the statistical values greater than 

0.05 being non-statistically significant (Frost 2019). Using Table 4.11, the variables’ 

Initial Phase and Project Success; Managed level and Impact on Customer; Defined 
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Level and Organisation Success have a significant value of 0.000, showing that the 

variables are statistically significant with the Organisation Level and Preparing for the 

Future having a value of 0.019.  

 

Quantitatively Managed Level and Project Management Efficiency have a value 0.270, 

which is not less than the usual 0.05 and, therefore not being significant. In regression, 

the dependant variable is the main factor trying to be predicted and the independent 

variable being hypothesised to have an impact on the dependent variable (Foley 

2018).  

 

 

Table 4.11: Regression Analysis 

Variable R 
R 

square 
Adjusted 
R square 

Std. error 
of the 

estimate 

R 
square 
change 

F 
change 

Sig. F 
change 

a. Predictors: 
(Constant), IP        
b. Dependent 
Variable: PS 

.773a 0,597 0,593 0,53686 0,597 145,258 0,000 

        

a. Predictors: 
(Constant), MI        
b. Dependent 
Variable: IC 

.717a 0,515 0,509 0,74999 0,515 87,986 0,000 

        

a. Predictors: 
(Constant), DI        
b. Dependent 
Variable: OS 

.918a 0,843 0,841 0,34110 0,843 365,580 0,000 

        

a. Predictors: 
(Constant), QML        
b. Dependent 
Variable: PME 

.179a 0,032 0,006 0,61494 0,032 1,253 0,270 

        

a. Predictors: 
(Constant), OL        
b. Dependent 
Variable: PF 

.248a 0,061 0,051 0,73028 0,061 5,753 0,019 
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4.8  Chapter Conclusion 

This chapter explained the procedure that was followed in gathering data and the 

analyses of the data. The chapter explained the sampling procedure that was used, 

the descriptive statistics of the variables and frequency and how the reliability of the 

constructs and validity was measured. The chapter also explained the correlation 

analysis that was carried out, the hypothesis testing done and the analysis of the 

variance among the constructs. Regression analysis carried out to identify the 

variables impact on a topic was also explained. 
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Chapter 5:  Discussion of the Results 

5.1 Introduction 

Chapter 5 discuses and summarises the findings of this study and attempts to answer 

the research questions presented in chapter one, based on the analysis of the results 

presented in Chapter 4. Guided by the research objectives and questions, the study 

made use of the questionnaire survey to obtain quantitative data from software project 

managers, which was used to establish if data analytics can be used in software 

project management to improve software project management quality. The survey 

allowed the researcher to establish the factors necessary for data analytics use in 

software project management. 

5.2 Discussion of Findings  

The data analysis section of the study has established some findings and provided 

some answers to the research objectives, questions and the hypotheses.  

 

The study’s investigation into the challenges necessitating the use of data analytics to 

improve software project management quality, revealed that, among other factors, 

ineffective data analysis and decision-making in project management where data 

analytics was not used compromised project management quality. Thirty percent 

(30.77%) of the respondents to this question indicated that data analytics use in their 

projects led to quicker and timely decision-making, indicating the gap that data 

analytics addresses with regards to decision-making in project management.  

 

This aligns with the argument by Buse and Zimmerman (2010:1), that there is a 

substantial disconnect between the available information required by project 

managers to make good decisions and the information being provided by the existing 

analytic tools. The study’s finding, that data analytics improves decision-making in 

project management also concurs with Singh  (2015:3), who states that analytics can 

be used to analyse projects’ multiple risk factors for effective decision-making and risk 

management.  

 



 

93 
 

The research further established that improved decision-making positively impacts 

project management quality, with 40% of the respondents based on their experience 

strongly agreeing that improved decision-making directly impacts software project 

management quality. The confirmation by 40% of the respondents shows that 

improving decision making though not entirely, still does improve software project 

management quality.  This finding confirms the statement by Linders (2015:1) that 

quality in project management can also be driven by taking and communicating timely 

decisions.  

 

The research further established that the projects processes control was not effective 

in projects were data analytics was not used with 41.17% of the respondents indicating 

that data analytics use led to greater projects processes control. Forty-One percent of 

the respondents is a considerably high percentage to acknowledge that data analytics 

does contribute towards software project management quality through improved 

projects processes control.  This research finding corresponds with the argument by  

Singh (2015:3) that data analytics use improves the quality of projects’ processes and 

the final project product by addressing the gap between the state of projects’ 

processes and the desired processes’ state. 

 

Time and cost overruns are the other challenges which have been considered as 

necessitating the use of data analytics to improve software project management 

quality. The non-use of data analytics in software project management has been 

shown to have an effect on project time frames and costs, as indicated by 36.84% of 

the surveyed project managers, who specified that the non-use of data analytics 

affects the delivery of software projects within the planned time; while 50% of the 

respondents agree that this affects the delivery of software projects within the planned 

cost and makes managing scope creep difficult. While the result i.e. 50% of 

respondents affirms  that using data analytics improves managing scope creep, it also 

show that there are cases where it has not been the case as not all the respondents 

agreed it does. The result, 36.84% of respondents also shows that though data 

analytics use improves projects time frames and costs management, it will not be the 

sole panacea to time and cost overruns as the remainder of the respondent to the 

question did not agree that data analytics use improves projects time frames and costs 

management. 
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The study findings on time and cost overruns affirm what Dhollander (2017:1) 

indicated, that data analytics use brings instant value through the saving of precious 

time and unlocking previously hidden opportunities for improvement. This was also 

echoed by Daddikar (2018:1), who stated that using data analytics helps project 

managers to forecast and manage tasks within the set time lines and budgeted costs, 

enabling the taking of proactive actions where early signs of slippage would have been 

detected.  

 

However, the study also established from 50% of the respondents based on their 

experience that the non-use of data analytics in software projects does not lead to 

failure to complete projects within budget. This, however, can be due to the 50% of 

the respondents not having used data analytics in their projects.  

 

The study survey established the current level of data analytics knowledge in software 

project managers. It has been revealed through the software project managers who 

participated in the survey that there is some level of data analytics knowledge among 

the software project managers, as 50% of the managers confirmed having used data 

analytics in at least one of their projects, as shown in Figure 4.2. This supports the 

argument by Jiwat (2017:2) that data analytics influence also stretches to project 

management, as it can bring improved decision-making changes. However, 15% of 

the surveyed project managers have no knowledge of data analytics, with 35% of the 

managers having reading knowledge only and having not used data analytics  in any 

project. Though the 50% of respondents who have used data analytics show the 

existence of some data analytics knowledge among software project managers, the 

population using data analytics needs to increase drastically. 

 

Regarding ascertaining basic factors required to use data analytics in software project 

management to improve software project management quality, the study also made 

some findings. The study has established through the survey that some of the basic 

factors necessary for data analytics to be successfully used in software project 

management include the need to have stakeholders’ participation in project 

management. It is critical to have buy-in and participation from all projects’ 

stakeholders, as their support with regards to adoption and the financing of data 
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analytics contributes towards projects’ success. This finding is in line with the 

argument by PMP (2018) that stakeholder support is required for a project’s success. 

However, their varying needs equally need to be managed, lest these jeopardise the 

project. Such crucial stakeholders, including the project managers should be willing to 

adopt new technology in project management.  

 

Likewise, organisations’ support and willingness to invest in the adoption of data 

analytics is critical for the projects’ success. The study’s findings on the participants’ 

companies offering or facilitating for data analytics training is concerning, as 72% of 

the participants’ companies do not offer data analytics training; nor do the companies 

facilitate for the training.  The result (72%) shows that many of the organisations are 

not yet making use of data analytics in their software project management probably 

due to financial constrains or some are just being conservative. 

 

Another factor which emerged from the study is for software project managers to be 

trained in data analytics use to be able to effectively use leverage on data analytics. 

The training would not only bolster the adoption of data analytics’ use, but also assist 

in improving on the interpretation of data from data analytics tools for effective software 

projects management. However, although some of the companies are facilitating for 

the adoption through the training as 27.78% of the respondents agree that the 

organisations they work for do facilitate for their training, more needs to be done to 

increase data analytics use.  Twenty seven (27.78%) percent of the respondents’ 

organisations is a low percentage to realise a significant effect on software project 

management quality through data analytics use and more organisations need to 

facilitate for data analytics use and incentivise their software project managers. 

 

It has also emerged from the study that data analytics use becomes effective with the 

use of automated data analytic notification tools which send notifications on any 

variances to project managers. Considering that about 17.64% of the respondents 

preferred to use other automated data analytic tools besides data analytics, data 

analytics training may improve the project managers’ willingness to adopt and use 

data analytics.  
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In as much as having data analytics tools and knowledge in place is good, collecting, 

integrating and preparing data must be done meticulously for the analysis to be 

effective. The respondents have indicated that processes followed in collecting and 

the analysis of data should be set out by means of clearly-defined policies and 

procedures. 

 

The objective to examine whether data analytics use in software project management 

improves software project management quality dimensions has been addressed by 

the study findings. In relation to the performance quality dimension, the survey 

established through 43.75% of the respondents that data analytics brings an 

improvement to the projects’ processes, which helps to attain set project goals. This 

corresponds with what Delen and Demirkan (2013:361) established, that data 

analytics allows the optimisation of processes, thereby enhancing performance. 

Likewise, Singh (2015:4) also established that data analytics brings greater projects 

control as analytics can be used during the process to break down a project’s 

processes and systems to predict their behaviour and outcomes. The 43.75% result 

may imply that the other respondents may have used other tools besides data 

analytics to manage projects processes. 

 

The improvements brought by data analytics complement the quality measures that 

standards including PMBOK may have introduced. This is confirmed by the survey 

findings that show that data analytics improve quality dimensions. Forty percent of the 

respondents on the quality dimensions improvement enquiry declared that 

performance had improved, 20% said that consistency improved and 25% revealed 

that the serviceability of the project product had improved. Despite the 40% confirming 

that data analytics does significantly complement other project management 

standards’ quality measures which is a much needed contribution, it is concerning that 

the remaining greater percentage did not realise the quality dimensions improvement. 

It is further concerning that only 20% of the respondents could confirm that data 

analytics did improve consistency in projects management but the inconsistency 

maybe as a result of the project managers not having consistently used data analytics 

in all their projects.  Jiwat (2017:1) concurs that data analytics can be used to develop 

quality standards, quality control procedures and monitor quality during a project’s 



 

97 
 

execution. The findings also show that the completeness and performance of the 

projects’ output were also improved by using data analytics. 

 

The study further made findings on the hypothesis, as illustrated in Table 4.8. The 

research established that a reasonably strong relationship exists between the 

variables, as the r values range from 0.014 to 0.918. Using the Pearson correlation of 

continuous variables and the feedback from the respondents, the following was arrived 

at on the Hypotheses; 

H1: Data analytics use in software project management is positively related to projects 

success. 

The results show that there is a significant correlation between data analytics use 

in Software project management and Projects Success. The hypothesis was 

accepted based on the results. 

 

H2: Data analytics use in software project management is directly related to project 

impact on customer. 

The research survey data analysis conducted shows that there is a significant 

association between data analytics use in software project management and 

project impact on customer. Based on the findings, the Hypothesis was accepted. 

H3: Data analytics use in software project management is directly related to 

organisational success. 

The results reveal that data analytics use on software project management has a 

direct relationship with organisational success.  

H4: Data analytics use in project management is directly related to improved project 

management efficiency. 

The results show that there is no significant association between data analytics 

use on project management’s decision-making and improved project management 

efficiency. 

 

H5: Data analytics use with software projects management models and standards 

prepares organisations for future project management. 
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The results reveal that there is a significant relationship between data analytic use 

in projects management and the preparation of organisations for future project 

management. 

5.3 Limitations 

Due to limited financial resources, the study was mainly restricted to Gauteng province 

in South Africa.  The research was conducted in South Africa, with the majority of the 

respondents being from the Gauteng province, hence the findings are particular to 

project management in the South African context and may not be generalised across 

the world. 

 

The questionnaire used in the survey was designed with the intention of the 

respondents to answer some of the questions, using their practical experience from 

data analytics use in their project management processes. However, a possibility that 

some may have answered using their theoretical knowledge of data analytics may not 

be ruled out.  

Despite these limitations, the findings of the research are still valid and important for 

both software project managers for their application, and for academics for further 

research. 

 

 

5.4   Chapter Conclusion 

This chapter discussed the findings of the research in relation to the research 

objectives and the question set in Chapter 1. The findings on the hypothesis are also 

presented in this chapter, following the testing conducted and as explained in chapter 

4. The limitations of this study were also discussed and presented in this chapter. The 

conclusion to this study and recommendations for future studies are presented and 

discussed in Chapter 6. 
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Chapter 6:  Summary and Conclusions 

6.1 Introduction  

 

The aim of the study was to establish the prospect of using data analytics to improve 

software project management quality through enhanced decision-making and project 

management standards. To achieve this objective, the study used a questionnaire 

survey involving software project managers as the respondents. The research had  

four objectives as listed in Section 1.6 to realise the research aim. Section 6.2 

summarises the study findings.  

6.2 Summary  

The study used a survey methodology were 100 completed questionnaires were 

analysed from the returned 115 questionnaires. Eleven questionnaires were 

incomplete and four did not have consent forms, so these could not be used.  

 

The findings from the study show that ineffective data analysis and decision-making 

in software project management are among the major contributory factors to poor 

software project management quality, aligning with the observation of Elgendy and 

Elragal (2016:1083) that effective data analysis reveals hidden insights in data and 

enhances decision-making.  

 

Time, cost overruns and projects’ processes control were also identified by the study 

as being the other contributory factors which necessitate the use of data analytics in 

software project management for their betterment. The research showed that software 

project management quality can be improved by using data analytics to enhance 

decision-making, project management processes control and enable the completion 

of software projects’ tasks within planned times and budget. Furthermore, the study 

revealed that the improvement of decision-making, processes control, time and costs 

management complement the project management standards’ quality control 

measures.  

 

The study revealed that there are few software project managers with data analytics 

knowledge, as 50% of the surveyed project managers do not have any knowledge of 
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data analytics; this compounded with the insufficient data analytics training facilitated 

by organisations among other challenges, is hampering the speedy adoption and 

effective use of data analytics in software project management. Many organisations 

are still undecided on adopting data analytics due to a lack of understanding and 

experience (Kwon, Lee & Shin 2014:386).  

 

Stakeholder participation has been found to be one of the key factors necessary for 

the adoption and effective use of data analytics in software project management. 

Kibera (2013:124) asserts that stakeholder participation raises support and ensures 

successful implementation and adoption. The study reveals that increased 

organisations’ support in training of Software project managers can lead to an 

accelerated adoption and use of data analytics, thus resulting in the improvement of 

software project management quality. The other factors that emerged from the study 

include the use of automated data analytic notification tools to alert on variances and 

deviations and establishing clearly defined processes and procedures for data 

gathering and analysis in organisations. 

 

The study has also established that data analytics does improve software project 

management quality dimensions. The study revealed that the main quality dimensions 

which data analytics improves include the performance quality dimension where, 

notably, projects processes control is greatly enhanced, and the consistency, 

completeness and serviceability of the project’s finished product is also improved. The 

significant relationship established by the study’s hypotheses between data analytic 

use and the postulation that this prepares organisations for future project management 

and its direct relationship with decision-making and project management efficiency, 

clarifies that data analytics ought to be used to improve software project management 

quality. 

 

6.3  Conclusion 

The research questions used in the study were shown as discussed in Chapter 4 

section 4.3 and 4.4, to be reliable and valuable for future research. All the variables  

used had high internal consistency coefficients between 0.72 and 0.96 which is above 

the recommended 0.70 score. The study established that there is a direct relationship 
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between effective data analysis and correct decision making as up to 74% of the 

delayed or incorrect decisions in the participants’ last projects had been due to 

ineffective data analysis. The marked improvement in consistency as indicated by 20% 

of the participants in their projects is evident in the consistency in timely and correct 

decision making. The confirmation by 69.22% of the respondents that data analytics 

use in their projects improved standardisation of processes and in turn improved 

system efficiency and reliability further confirmed financial organisational success 

through data analytics use.  

 

In terms of improving software project management quality dimension the study 

reveals the need for more project managers to comply with quality standards as 

63.16% of software project managers surveyed do not comply with any quality 

standards, while 36.84% of the software project managers comply with some quality 

frameworks or standards. The study established that data analytics complement the 

quality measures that standards including PMBOK  introduce.  

 

The study further revealed that there is a direct correlation between improved 

processes control and project success as 65% of the participants experienced at least 

one project failure in their last five projects due to poorly controlled processes where 

data analytics was not used. It has also emerged that the majority (72%) of the 

surveyed project managers’ companies need in terms of data analytics use, to do more 

towards future project management by facilitating for staff training in data analytics. 

This will affect the adoption and use of data analytics in software project management 

in future as only 27.78% of the surveyed participants’ companies do offer or facilitate 

for training in data analytics.  

 

Projects failure through inadequate user requirements analysis, scope creep and costs 

overruns are some of the challenges which data analytics has proved can mitigate. It 

has been established as confirmed by 50% of the respondents that improving user 

requirements analysis through data analytics use reduces projects failure from 

ballooned user requirements due to scope creep and cost overrun.  

Organisational success due to system reliability and efficiency has also proved to  be 

influenced by enabling factors for data analytics use. Stakeholder participation, 
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software project managers’ ongoing training and Organisational support through 

training are some of the key factors identified as necessary for effective data analytics 

use. 

 

6.4  Recommendations 

The following recommendations are made based on the findings from this study. 

 

It is recommended that Software project managers increase the rate of adopting and 

using data analytics in software project management, as 50% of the surveyed project 

managers indicated having no experience in data analytics, with 35% of the managers 

having read about data analytics only; and worse still 15% having no knowledge of 

data analytics at all. If these project managers adopt and use data analytics, this will 

improve software project management quality as 43.75% of the surveyed project 

managers confirmed that data analytics improved project processes’ control and 

assisted in achieving set project goals. 

 

Companies should play a more active role in encouraging the adoption and use of 

data analytics, as the study revealed that 72% of the companies do not facilitate or 

offer data analytics-related training. Companies can incentivise employees by paying 

for their training expenses or by rewarding project managers who attend the training 

and adopt data analytics in their project management practices. 

 

Software project management institutions and corporate sponsors should incentivise 

software project managers to adopt and use data analytics which would help to 

improve software project management by giving a discount on the members’ annual 

subscription fees to members who go for and complete training in data analytics. 

6.5  Future Research 

In light of the findings of this study, the following recommendations are made for future 

research: 

 

This study provides researchers with important information for further studies to be 

conducted to establish how data analytics can also be used to improve software 

development methodologies. The feedback from 62.5% of the participants who have 
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used both the traditional and agile software development methodologies, together with 

data analytics, provides the valuable basis for further research.  

Future studies could be done to assess the impact of data analytics use on individual 

quality dimensions per study to devote more time and resources and have an in-depth 

understanding of the individual dimensions. The study revealed that Performance, 

Accuracy, Completeness and Consistency improved by the use of data analytics, but 

further research should be conducted for in-depth analysis of how these dimensions 

are individually improved and how the rest of the quality dimensions are also impacted 

by data analytics use.   

This study was conducted in the South African context; hence a comparative study 

could be conducted in other technologically advanced countries to establish if the 

study conducted in other well-resourced environments would reach different findings 

and conclusions, especially in relation to the adoption and use of data analytics. It 

could be that project managers in other countries that are technologically ahead of 

South Africa may have embraced data analytics better and could lead to a different 

outcome of the same study.   

The study has revealed that only 20% of the surveyed software project managers have 

used data analytics in at least two projects, with 30% more having used data analytics 

in only one of their projects. Future research should therefore be conducted to 

establish the preparedness of software project managers in South Africa to adopt and 

use new data analysis technology including data analytics and the impact of their state 

of preparedness on software project management quality improvement. 
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Appendix B 

Questionnaire 
 

The purpose of this research is to establish if using data analytics in software project 

management improves software project management quality through enhanced decision-

making and project management standards. 

 
Please complete the questions by selecting the appropriate answers or filling in the provided 
spaces.  
 
The completed questionnaire should be emailed to Ngarira@yahoo.com or 
46893628@mylife.unisa.ac.za   
 

This Questionnaire forms part of research project in fulfilment of the requirements for the MSc 

in Computing (UNISA).  

The study is being conducted by Rutendo Ngarira and there is no organisation or group 

sponsoring the research. 

 

Please Note: 

Completion of this questionnaire is completely voluntary, and the information provided through 

this questionnaire is solely for research purposes as mentioned above. The confidentiality of 

the provided information will be maintained.  

 

Definition of Terms 

Quality: Refers to the extent to which a system or process satisfies the 

specified requirements and user expectations (Al-Kilidar et al. 

2005:126). 

Project Management: Is the use of knowledge, skills, tools and techniques on project 

activities to be able to satisfy stakeholders’ expectations from a 

project (PMI 2008:6). 

Decision-making:   Is a process of choosing a preferred option or a course of action 

from a set of available alternatives on the basis of given criteria or 

strategies (Wang, Liu & Ruhe 2004:124).  

 
 

mailto:Ngarira@yahoo.com
mailto:46893628@mylife.unisa.ac.za
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Name and Surname :    

Name of Company   :    

Email Address          :   

 

Pease tick or provide the appropriate answers 

SECTION A: Background Information 

1. What is your Age range? 

< 20 20-29 30-39 40-49 50-59 > 59 
   

   

 

2. What is your Gender? 

Male Female   

 
3. Which of the following best describes your current working project management 

position? 

 
 

 

In-house project manager  

Works for a consulting firm   

Freelance project manager  

Currently not managing software projects  

 
4. How do you measure your level of data analytics knowledge in software project 

management?  

 

Data Analytics knowledge level 
 

No knowledge of data analytics  

Only read about data analytics  

Elementary Knowledge - used data analytics in one project  

Average Knowledge- used data analytics in less than five projects  

Expert Knowledge- used data analytics in five or more projects  
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SECTION B: RESEARCH VARIABLES  

 

Initial Phase 

5. With the initial phase organisations’ software projects (without defined processes 

standards in place) you worked on, the projects’ processes and activities were mostly Ad-

hoc. 

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  

6. Where data analytics has not been used in your past initial phase projects, the successful 

projects processes were not easily repeatable. 

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  

7. Based on your past initial phase projects where data analytics was not used by the project 

team, the projects milestones were not easily measurable. 

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  

8. With the initial phase software projects, you were involved in (which you did not use data 

analytics), how many would you consider having failed due to poorly controlled 

processes? 

 
 

0  

1 - 5  

6 – 10  

> 10  
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Project Success 

9. In the projects where data analytics was not used, the projects failed to be completed 

within the budgeted cost.  

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  

 

10. Based on your past projects where data analytics was not used, it affected the delivery 

of software projects within estimated time? 

 

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  

 

11. The projects you were part of which failed to be completed in the estimated time and 

cost was mainly due to ineffective analysis of user requirements. 

 

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  

 

12. Projects failure in terms of the projects scope not being met due to scope creep where 

data analytics was not used in the projects was common. 

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  
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13. Based on your past projects, what percentage of the initial phase (with no prescribed 

organisational standards) projects’ successes depended on individual talent?  

 

Percentage (%) 
 

< 25  

25 – 49  

50 – 74  

75 – 100  

 

Managed level  

14. Given your past projects, data analytics use enhanced projects processes which helped 

achieve set projects goals. 

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  

 

15. Considering your past projects, the projects processes control (Project Monitoring and 

Control (PMC)) have been more attainable by using data analytics.  

 

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  

 

16. Which of the following managed level process areas would you say where further 

enhanced by data analytics use in your projects? 

 
 

None  

Project Planning (PP)  

Configuration Management (CM)  

Supplier Agreement Management (SAM)  

Measurement and Analysis (MA)  

Process and Product Quality Assurance (PPQA)  
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Impact on Customer 

17. The use of data analytics in your projects influenced realising projects user functionality 

requirements (Requirements Management (REQM))? 

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  

 

18. Given the projects you have been part of where data analytics was used, it enhanced 

chances of realising software performance goals. 

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  

Defined level  

19. Which of the following software quality frameworks or standards do you comply with? 

 
 

ISO 9000  

CMMI  

CMM  

PMMM  

NONE  

Other (Please Specify)  

20. The use of data analytics in your projects led to consistency in software projects 

completion according to plan?  

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  
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21. Based on your experience, data analytics use enhance management of projects 

interrelated processes? 

 

 

Organisational Success 

22. Your project team frequently attend on job project management training workshops and 

courses? 

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  

 

23. Projects stakeholders i.e. users, sponsors and management actively participated in the 

projects I worked on which led to the projects’ success. 

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  

 

24. Where data analytics was used in your projects it led to organisational success in terms 

of financial gain from system reliability and efficiency. 

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  
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25. In your projects where data analytics has been used it enhanced standardisation in 

organisations’ processes. 

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  

 

Quantitatively Managed Level  

26. What effect if any did data analytics use have on decision-making in your projects?  

Decision-Making Efficiency 
 

None  

Quicker and timely decision-making  

Greater project control  

Improved resource allocation and management  

Specify Other:   

27. Based on your past projects, improved decision-making has a direct impact on software 

project management quality. 

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  

 

28. From your last project, what percentage of delayed or incorrect decision-making can you 

attribute to ineffective data analysis? 

Percentage (%) 
 

< 25  

25 – 49  

50 – 74  

75 – 100  
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29. Which of the following quality control techniques have you used in your projects? 

 

 

Cause and Effect Diagram  

Inspection  

Flow Chart  

Control Chart  

Pareto Chart  

Histogram  

Run Chart  

Statistical Sampling  

Scatter Diagram  

Other (Specify) 

____________________________________ 
 

 

30. Which of the following software quality dimensions were improved in your last five 

projects by using data analytics? 

 

 
 

Reliability  

Performance  

Accuracy  

Completeness  

Consistency  

Serviceability  

Integrity  

 

Project Management Efficiency 

31. What software project management certification do you have? 

Certification 
 

CAPM: Certified Association in Project Management (PMI)  

PMP: Project Management Professional (PMI)  

CSM: Certified Scrum Master (Scrum Alliance)  

CSSBB: Certified Six Sigma Black Belt (ASQ)  

CSSGB: Certified Six Sigma Green Belt (ASQ)  

Global Association for Quality Management   

Prince2  

CompTIA Project +   

Other (Specify) ____________________________________  

https://certification.comptia.org/certifications/project
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32. Considering the projects you have used quality control’s inspection technique, how does 

data analytics improve the technique or other quality control techniques you have used? 

 

 

 

 

33. Based on your experience, how else can data analytics improve software project 

management quality? 

 

 

 

 

 

Optimising Level 

34. Have you used any automated data analysis tools besides data analytics in the last three 

software projects you were involved in? 

 
 

Not at all  

In one of the projects  

In two of the projects  

In all three projects  

 

35. Where you have used data analytics, achieving software design requirements was 

easier?  

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  

36. Based on your past projects, data analytics use improved handling projects processes 

variations.  
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Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  

Preparing for the Future 

37. Your company facilitate or offer data analytics training to software project managers? 

 
 

Strongly Disagree  

Disagree  

Somewhat Agree  

Agree  

Strongly Agree  

38. Which software development methodology do you use in your projects? Traditional 

methodologies include Spiral, Waterfall, SDLC and Agile methodologies include Scrum, 

Extreme Programming (XP), Feature Driven Development (FDD), Adaptive Software 

Development (ASD) etc. 

 
 

Traditional Software development Methodologies  

Agile Software Development Methodologies  

Both Methodologies  

Other (Specify)  

39. How does the use of data analytics improve the software development methodology that 

you have used, contributing towards enhanced future project management? 

 

 

 

 

40. What factors did you observe to be necessary for data analytics to be successfully used 

in software project management? 
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