HARDWARE, SOFTWARE AND PEOPLEWARE

SAICSIT 2001

Edited by
Karen Renaud
Paula Kotzé
Andries Barnard
HARDWARE,
SOFTWARE
AND PEOPLEWARE

South African Institute of Computer Scientists and Information Technologists
Annual Conference
25 – 28 September 2001
Pretoria, South Africa

Edited by Karen Renaud, Paula Kotzé & Andries Barnard
University of South Africa, Pretoria
Proceedings of the Annual Conference of the South African Institute of Computer Scientists and Information Technologists

First Edition, First Impression

© The South African Institute of Computer Scientists and Information Technologists (SAICSIT)

Abstracting is permitted with credit to the source. Liberties are permitted to photocopying beyond the limits of South African copyright law for private use for research purposes. For other photocopying, reprint or republication permission write to the SAICSIT President, Department of Computer Science and Information Systems, UNISA, P O Box 392, Pretoria, 0003, South Africa.

The Publisher makes no representation, expressed or implied, with regard to the accuracy of the information contained in this book and cannot accept liability for any errors or omissions that may be made. The Publisher is not responsible for the use which might be made of the contents of this book.

Published by Unisa Press
University of South Africa
P O Box 392, Pretoria, 0003

Cover Design by Tersia Parsons

Editors: Karen Renaud, Paula Kotzé & Andries Barnard

Electronic Publication by the Editors

Printed by Unisa Press
2001
Table of Contents

Message from the SAICSIT President ... iv
Message from the Chairs ... vi
Conference Organisation .. vii
Referees .. viii

Keynote Speakers

Cyber-economies and the Real World ... xi
Alan Dix
Computer-aided Instruction with Emphasis on Language Learning xiv
Lut Baten
Internet and Security Trends .. xv
Arthur Goldstuck
The Future of Data Compression in E-technology ... xvi
Nigel Horspool
Strategic Planning for E-Commerce Systems: Towards an Inspirational Focus xvii
Raymond Hackney

Research Papers

Human-Computer Interaction / Virtual Reality

The Development of a User Classification Model for a Multi-cultural Society 1
M Streicher, J Wesson & A Calitz
Real-Time Facial Animation for Virtual Characters ... 11
D Burford & E Blake
The Effects of Avatars on Co-presence in a Collaborative Virtual Environment 19
J Casanueva & E Blake

Education

Structured Mapping of Digital Learning Systems .. 29
E Cloete & L Miller

Formal Methods

The specification of a multi-level marketing business ... 35
A van der Poll & P Kotzé
Finite state computational morphology - the case of the Zulu noun 45
L Pretorius & S Bosch
Combining context provisions with graph grammar rewriting rules: the three-dimensional case ... 54
A Barnard & E Ehlers

Human-Computer Interaction / Web Usability

Web Site Readability and Navigation Techniques: An Empirical Study 64
P Licker, R Anderson, C Macintosh & A van Kets
Jiminy: Helping Users to Remember Their Passwords 73
K Renaud & E Smith

Information Security

Computer Security: Hacking Tendencies, Criteria and Solutions 81
M Botha & R von Solms
An access control architecture for XML documents in workflow environments 88
R Botha & J Eloff
Graphics and Ethics
Model-based Segmentation of CT Images ... 96
O Marte & P Marais
Towards Teaching Computer Ethics.. 102
C de Ridder, L Pretorius & A Barnard

Human-Computer Interaction / Mobile Devices
Ubiquitous Computing and Cellular Handset Interfaces – are menus the best way forward? ... 111
G Marsden & M Jones
A Comparison of the Interface Effect on the Use of Mobile Devices.................. 120
J Franken, A Stander, Z Booley, Z Isaacs & R Rose
The Effect of Colour, Luminance, Contrast, Icons, Forgiveness and Closure on
ATM Interface Efficiency .. 129
A Stander, P van der Zee, & Y Wang

Object Orientation
JavaCloak - Considering the Limitations of Proxies for Facilitating Java
Runtime Specialisation .. 139
K Renaud

Hardware
Hierarchical Level of Detail Optimization for Constant Frame Rate Rendering....... 147
S Nirenstein, E Blake, S Windberg & A Mason
A Proposal for Dynamic Access Lists for TCP/IP Packet Filtering 156
S Hazelhurst

Information Systems
The Use of Technology to Support Group Decision-Making in South Africa 165
J Nash, D Gwilt, A Ludwig & K Shaw
Creating high Performance I.S. Teams .. 172
D C Smith, M Becker, J Burns-Howell & J Kyriakides
Issues Affecting the Adoption of Data Mining in South Africa 182
M Hart, E Barker-Goldie, K Davies & A Theron

Information Systems / Management
Knowledge management: do we do what we preach? 191
M Handzic, C Van Toorn, & P Parkin
Information Systems Strategic Planning and IS Function Performance:
An Empirical Study ... 197
J Cohen

Formal Methods
Implication in three-valued logics of partial information 207
A Britz
Optimal Multi-splitting of Numeric value ranges for Decision Tree Induction 212
P Lutu
Abstracts of Electronic Papers

Lessons learnt from an action research project running groupwork activities on the Internet: Lecturers' experiences .. 221
T Thomas & S Brown

A conceptual model for tracking a learners' progress in an outcomes-based environment .. 221
R Harmse & T Thomas

Introductory IT at a Tertiary Level – Is ICDL the Answer? ... 222
C Dixie & J Wesson

Formal usability testing – Informing design .. 222
D van Greunen & J Wesson

Effectively Exploiting Server Log Information for Large Scale Web Sites 223
B Wong & G Marsden

E von Solms & J Eloff

A Pattern Architecture, Using patterns to define an overall systems architecture .. 224
J van Zyl & A Walker

Real-time performance of OPC .. 224
S Kew, & B Dwolatzky

The Case for a Multiprocessor on a Die: MoaD .. 225
P Machanick

Further Cache and TLB Investigation of the RAMpage Memory Hierarchy 225
P Machanick & Z Patel

The Influence of Facilitation in a Group Decision Support Systems Environment 226
T Nepal & D Petkov

Managing the operational implications of Information Systems 226
B Potgieter

Finding Adjacencies in Non-Overlapping Polygons .. 226
J Adler, GD Christelis, JA Deneys, GD Konidaris, G Lewis, AG Lipson, RL Phillips,
DK Scott-Dawkins, DA Shell, BV Strydom, WM Trakman & LD Van Gool
Message from the SAICSIT President

The South African Institute of Computer Scientists and Information Technologists (SAICSIT) was formed in 1982 and focuses on research and development in all fields of computing and information technology in South Africa. Now in the 20th year of its existence, SAICSIT has come of age, and through its flagship series of annual conferences provides a showcase of not only the best research from the Southern-African region, but also of international research, attracting contributions from far afield. SAICSIT does, however, not exist or operate in isolation.

More than 50 years have passed since the first electronic computer appeared in our society. In the intervening years technological development has been exponential. Over the last 20 years there has been a vast growth and pervasiveness of computing and information technology throughout the world. This has led into the expansion and consolidation of research into a diversity of new technologies and applications in diverse cultural environments. During this period huge strides have also been made in the development of computing devices. The processing speed of computers has increased thousand-fold and memory capacity from megabytes to gigabytes in the last decade alone. The Southern African region did not miss out on these developments.

It is hardly possible for such quantitative expansion not to bring a change in quality. Initially computers had been developed mainly for purposes such as automation for the improvement of processing, labour-reduction in production and automation control of machinery, with artificial intelligence, which made great strides in the 1980s, seen as the ultimate field to which computers could be applied. As we moved into the 1990s it was recognized that such an automation route was not the only direction in the improvement of computers. The expansion of processing power has enabled image data to be incorporated into computer systems, mainly for the purpose of improving human utilisation. For most computer technologies of the 1990s, including the Internet and virtual reality, automation was not the ultimate purpose. Humans were increasingly actively involved in the information-processing loop. This involvement has gradually increased as we move into the 21st century. Development of computer technology based not on automation, but on interaction, is now fully established.

The method of interaction has significantly changed as well. The expansion of computer ability means that the same function can be performed far more cheaply and on smaller computers than ever before. The advent of portable and mobile computers and pervasive computing devices is ample evidence of this. The need for users to be at the same location as a computer in order to reap the benefits of software installed on that computer is becoming an obsolete notion. Time and space are no longer constraints. One of the most discussed impacts of computing and information technology is communication and the easy accessibility of information. This changes the emphasis for research and development – issues such as cultural, political, and economic differences must, for example, be accommodated in ways that researchers have not previously considered. Our goal should be to enable users to benefit from technological advances, hence matching the skills, needs, and expectations of users of available technologies to their immense possibilities.
The conference theme for the SAICSIT 2001 Conference – *Hardware, Software and Peopleware: The Reality in the Real Millennium* – aims to reflect technological developments in all aspects related to computerised systems or computing devices, and especially reflect the fact that each influences the others.

Not only has SAICSIT come of age in the 21st century, but so has the research and development community in Southern Africa. The outstanding quality of papers submitted to SAICSIT 2001, of which only a small selection is published in this collection, illustrates both the exciting and developing nature of the field in our region. I hope that you will enjoy SAICSIT 2001 and that it will provide opportunities to cultivate and grow the seeds of discussion on innovative and new developments in computing and information technology.

Paula Kotzé
SAICSIT President
Running this conference has been rewarding, exciting and exhausting. The response to the call for papers we sent out in March was overwhelming. We received 64 paper submissions for our main conference and twelve for the postgraduate symposium. We had a panel of internationally recognized reviewers, both local and international. The response from the reviewers was impressive – accepting a variety of papers and mostly returning the reviews long before the due date. We were struck, once again, by the sheer magnanimity of academia – as busy as we all are, we still manage to contribute fully to a conference such as SAICSIT.

After an exhaustive review process, where each paper was reviewed by at least three reviewers, the program committee accepted 26 full research papers and 14 electronic papers. Five papers were referred to the postgraduate symposium, since they represented work in progress – not yet ready for presentation to a full conference but which nevertheless represented sound and relevant research. The papers published in this volume therefore represent research of an internationally high standard and we are proud to publish it. Full electronic papers will be available on the conference web site (http://www.cs.unisa.ac.za/saicsit2001/).

Computer Science and Information Systems academics in South Africa labour under difficult circumstances. The popularity of IT courses stems from the fact that IT qualifications are in high demand in industry, which leads in turn to a shortage of IT academic staff to teach the courses, even when posts are available. The net result is that fewer people teach more courses to more students. IT departments thus rake in ever-increasing amounts of state subsidy for their universities. These profits, euphemistically labelled “contribution to overhead costs”, are deployed in various ways: cross-subsidization of non-profitable departments; maintenance of general facilities; salaries for administrative personnel, etc. Sweeteners of generous physical resources for the IT departments may be provided. We have yet to hear of a University in South Africa where significant concessions have been made in terms of industry-related remuneration. At best, small subventions are provided. As a result, shortages of quality staff remain acute in most IT departments – especially at senior teaching levels. What is even worse is that academics in these departments have to motivate the value of their conference contributions and other IT outputs to selection committees, often dominated by sceptical academic power-brokers from the more traditional departments whose continued survival is underwritten by IT’s contribution to overhead costs.1

The papers published in this volume are conclusive evidence of the indefatigability and pertinacity of Computer Science and Information Systems academics and technologists in South Africa. We are proud to be part of such a prestigious and innovative group of people.

In conclusion, we would like to thank the conference chair, Prof Paula Kotze, for her support. We also specially thank Prof Derrick Kourie for his substantial contribution. Finally, to all of you, contributors, presenters, reviewers and organisers – a big thank you – without you this conference could not be successful.

Enjoy the Conference!
Karen Renaud & Andries Barnard

1 This taken almost verbatim from Professor Derrick Kourie’s SACLA 2001 paper titled: “The Benefits of Bad Teaching”.

v1
Conference Organisation

General Chair
Paula Kotzé

Programme Chairs
Karen Renaud
Andries Barnard

Organising Committee Chairs
Lucas Venter, Alta van der Merwe

Art and Design
Tersia Parsons

Sponsor Liaison
Paula Kotzé, Chris Bornman

Secretarial & Finances
Christa Prinsloo, Elmarie Havenga

Marketing & Public Relations
Klarissa Engelbrecht, Elmarie van Solms, Adriaan Pottas, Mac van der Merwe

Audio Visual
Tobie van Dyk, Andre van der Poll, Mac van der Merwe

Program Committee

Bob Baber – McMaster University, Canada
Andries Barnard – University of South Africa
Judy Bishop – University of Pretoria
Andy Bytheway – University of the Western Cape
Andre Calitz – University of Port Elizabeth
Elsabe Cloete – University of South Africa
Carina de Villiers – University of Pretoria
Alan Dix – Lancaster University, United Kingdom
Jan Eloff – Rand Afrikaans University
Andries Engelbrecht – University of Pretoria
Chris Johnson – University of Glasgow, United Kingdom
Paul Licker – University of Cape Town
Paula Kotzé – University of South Africa
Derrick Kourie – University of Pretoria
Philip Machanick – University of the Witwatersrand
Gary Marsden – University of Cape Town
Don Petkov – University of Natal Pietermaritzburg
Karen Renaud – University of South Africa
Ian Sanders – University of the Witwatersrand
Derrick Smith – University of Cape Town
Harold Thimbleby – Middlesex University, United Kingdom
Theda Thomas – Port Elizabeth Technikon
Herna Viktor – University of Pretoria, South Africa
Bruce Watson – Universities of Pretoria and Eindhoven
Janet Wesson – University of Port Elizabeth
Referees

Molla Alemayehu Klarissa Engelbrecht Pekka Pihlajasaari
Trish Alexander David Forsyth Nelisha Pillay
Adi Attar John Galletly Laurette Pretorius
Bob Baber Vashti Galpin Karen Renaud
Andries Barnard Wayne Goddard Ingrid Rewitzky
John Barrow Alexandre Hardy Sheila Rock
Judy Bishop Scott Hazelhurst Markus Roggenbach
Gordon Blair Johannes Heidema Ian Sanders
Arina Britz Tersia Hörne Justin Schoeman
Andy Bytheway Chris Johnson Martie Schoeman
André Calitz Bob Jolliffe Elsje Scott
Charmain Cilliers Paula Kotzé Derek Smith
Elsabe Cloete Derrick Kourie Elmé Smith
Gordon Cooper Les Labuschagne Adrie Stander
Richard Cooper Paul Licker Harold Thimbleby
Annemiek Craig Philip Machanick Theda Thomas
Thad Crews Anthony Maeder Judy Van Biljon
Quintin Cutts David Manlove Alta Van der Merwe
Michael Dales Gary Marsden André van der Poll
Carina de Villiers Thomas Meyer Tobias Van Dyk
Alan Dix Elsa Naudé Lynette van Zijl
Dunlop Mark Martin Olivier Lucas Venter
Elize Ehlers Don Petkov Herna Viktor
Jan Eloff
Andries Engelbrecht

Conference Sponsors

UNISA ABSA Group Microsoft Libra NRF

viii
Keynote Abstracts
Towards teaching Computer Ethics

C de Ridder ¹ L Pretorius ² A Barnard ³

University of South Africa, South Africa,
∗driddc@unisa.ac.za, ∗pretol@unisa.ac.za, ∗barnaa@unisa.ac.za

Abstract: With the advent of the Information Age and global connectivity, the ethical use of Information and Communication Technologies (ICT) has become essential. As the drive towards the establishment of a so-called IT profession gains momentum, ethical conduct and codes of ethics have recently been formulated and introduced formally. Forerunners in this initiative are the ACM and the IEEE. Of particular significance is the ImpactCS Project commissioned by the joint taskforce of the ACM and IEEE, and funded by the USA National Science Foundation. The increased globalisation and inherent nature of ICT, transcend physical and cultural borders, making it increasingly difficult to enforce accepted laws, regulations, and codes of conduct. It is thus the responsibility of Computer Science and Information Systems instructors to teach and instill values and ethics in each and every student. Therefore, we investigate some issues pertaining to the teaching of computer ethics. We conclude this paper by presenting a possible model to be used in the teaching of computer ethics, and apply this model to our own institution.

Keywords: Computer ethics, curriculum studies, computer science education
Computing Review Categories: K.3.2, K.4.1, K.7.4

1. Introduction

The terms “ethics”, and in particular “computer ethics” (CE), may seem vague and not at all important to many computer scientists, especially those who hold the view that technologists should deal with technology, and philosophers with philosophy and ethics [6]. It is therefore perfectly reasonable to expect that the teaching of CE may also be considered by some as of little importance. Yet many CS/IS instructors hold a different view, namely that the teaching of CE to CS/IS students is as important as the teaching of technological topics. In this paper we explore this topic in some detail, in particular what CE is, and why and how it may be taught.

We discuss a generic model based on the ImpactCS proposal that may be used when considering the teaching of CE, and then apply it to our own (distance education) institution. In this paper we restrict our attention to the ACM/IEEE approach to the teaching of CE.

2. Computer ethics

Many authors [1, 6, 11, 20, 21, 27] who discuss the topic of ethics simply assume that their audience is conversant with the notion of ethics. We find it useful to state clearly what we consider this broad term to imply, and its particular relevance to CE. The literature offers numerous definitions and notions of the terms ethics and computer ethics [15], but for the purposes of this discussion we concur with Britz [4] who attempts to define ethics as follows:

The ethical actions of a person can be described in general terms as those actions which fall within the range of those activities that would be regarded as “good”. It relates thus to the question of what is good and bad in terms of human actions,

and Baase [2] who simply says:

Ethics is the study of what it means to “do the right thing”.

These definitions may seem somewhat non-scientific. Surely that which one individual may understand under the term “good”, may differ from that of another individual. The Odhams Dictionary of the English Language defines the term “good” as a merit, a moral quality, a virtue, an advantage, benefit, profit. However, what appeals to us here is the strong emphasis on actions, and the practical nature of ethics. This conforms to Aristotle’s classification of different kinds of science, viz theoretical, productive and practical science [18], with ethics, politics, and economics constituting the practical sciences. This is but one of the reasons why we consider the teaching of CE to form an integral part of the training of any IT professional. Again, Baase [2], supports this by stating that computer ethics involves “ethical issues faced by a computer professional as part of the job”. We therefore describe the term computer ethics (CE), as the study of those behavioural
actions of IT professionals that will benefit all
of society.

3. Teaching computer ethics: a
broader perspective

Numerous ethical and social issues caused by
computer technology arise. According to
Martin and Yale-Weltz [17] these issues have
three unique characteristics:
- new concerns are rapidly emerging,
- computer ethics presents a continuous
stream of new situations, and
- computerised information systems are
usually complex.

Ideally students should be equipped with
theories of philosophy and ethics pertinent to
these characteristics, as well as the skills to
analyse, evaluate, and react appropriately to
ethical dilemmas which may arise during their
careers as IT professionals. Forester and
Morrison [9] identified the following main
categories (or groupings of topics) in which
these ethical and social concerns usually arise:
- computer crime and computer security,
- software theft and intellectual property
rights,
- computer hacking and the creation of
viruses,
- computer and information system failure,
- invasion of privacy,
- social implications of artificial intelligence
and expert systems, and
- workplace computerisation.

It is often within the context of these
categories, that the behavioural actions of the
IT professional impact on society. We believe
this to be one of the main reasons as to why
CS/IS instructors should sensitise their
students, the IT professionals of the future to
actions that underpin concepts such as "good",
"moral", "ethical", and "beneficial" for society
at large. This is in agreement with Searls [24]
who states that the teaching of CE should aim
towards several important goals, viz.:
- increased sensitivity to ethical concerns
and situations, as well as
- reasoning about alternative courses of
action and the integrity to make moral
decisions.

A certain historical perspective is gained by
recalling three major contributions in the
teaching of computer science, viz. the
development of Computing Curricula 1991
(CC91) by a joint task force of the ACM and
the IEEE Computer Society as a framework for
the previous iteration of the computer science
curriculum, the subsequent ImpactCS Project,
and the Computing Curricula 2001 (CC2001)
for the current iteration of the computer
science curriculum.

The nine core subject areas in CC91 were
algorithms and data structures, architecture,
artificial intelligence and robotics, database and
information retrieval, human-computer
communication, numerical and symbolic
computations, operating systems, programming
languages, and software methodology and
engineering. The recognition of the social,
ethical and professional context of computer
science was included as one of the
foundational principles, but CC91 fell short
of providing sufficient detail and guidelines for
implementation of CE within the curriculum.

In 1994 the subsequent ImpactCS Project was
funded by the US National Research
Foundation to produce a more rigorous
definition of the content area of ethics and
social impact within computer science, and a
methodology for integrating these topics across
the computer science curriculum.

In 1998 another major review of curriculum
guidelines for undergraduate programs in
computing, Computing Curricula 2001
(CC2001), was undertaken [33]. Fourteen
knowledge areas were identified, including
one entitled Social and Professional Issues.
CC2001, Draft (February 1, 2001) [33]
contains extensive recommendations for all the
knowledge areas except for Social and
Professional Issues. This task still remains to
be completed. Since we are of the opinion that
the introduction of CE into our CS/IS
programs is a matter of some urgency, we
decided to use the ImpactCS Project framework
as the present guideline. When the CC2001
recommendations on CE become available, we
shall study and consider them for
incorporation.

4. Who should teach computer
ethics?

Computer ethics is by definition a subject that
involves multiple disciplines, certainly at least
computer science and philosophy. When
considering the teaching of CE an obvious
question arises: Should it be taught by
philosophers, or should computer scientists
take this task upon themselves?

The vast and growing literature on CE
distinguishes between at least two main schools
of thought. An argument in favour of
philosophers is based on the view that the
goals of such a course should determine who ought to teach it. According to Johnson [14] these goals are:

1) to make students (future computing professionals) aware of the ethical issues surrounding computers,
2) to sensitise them to ethical issues in the use of computers, and in the practice of the computing professions,
3) to convey to students a deep understanding of the ways in which computers change and impact on society, and
4) to provide conceptual tools and develop analytic skills for ethical decision making within the computing world.

Johnson maintains that, while having to do with computers, these goals and issues are at base ethical, social, and professional, and that: nothing in the training of computer scientists and engineers prepares them for these types of activities. ... Philosophers are specifically trained to analyze issues, to uncover the assumptions or implications of arguments and claims, and to develop arguments. Philosophers trained in ethical theory have a repertoire of concepts and frameworks that are useful for examining situations, identifying the moral core, and evaluating and justifying courses of action [14].

She therefore envisages the philosopher as the teacher, assisted by computer scientists when and where required.

While the goals of Johnson are readily recognised, her conclusions do not enjoy equal acceptance. Indeed, a general view is that computer scientists are capable of learning the ethical theories and strategies. Given some training in ethical issues, provided by books, workshops, seminars, etc., and assisted by philosophers when necessary, they would be able to effectively include computer ethics in their curricula (Gotterbarn as quoted in [14]). Moreover, the fundamental part that social and ethical issues should play in modern computer science would be best emphasised to students by the involvement of senior computer science faculty in the planning, implementation and teaching thereof (Martin as quoted in [14]). We anticipate that once computer ethics has been established as main stream computer science, it will be taught and researched like all other fields and that the question under discussion will simply disappear. Having established that computer scientists should be responsible for the teaching of CE, we now focus on the framework for our model, viz. the knowledge units proposed in [13, 16, and 17].

5. The ImpactCS framework

The ImpactCS Project proposes five knowledge units [16, 17] as the basis for CE courseware. These knowledge units and its associated topics are:

Unit 1 - Responsibility of the Computer Professional
1.a) history, development, and impact of computer technology,
1.b) why be ethical,
1.c) major ethical models,
1.d) definition of computing as profession, and
1.e) codes of ethics and professional responsibility for computer professionals (in [6, 23] the reader is presented with useful information as to the ACM and IEEE codes of conduct).

Unit 2 - Basic elements of ethical analysis
2.a) ethical claims can and should be discussed rationally,
2.b) ethical choices cannot be avoided, and
2.c) easy ethical approaches and solutions are questionable, i.e. it is hard.

Unit 3 - Basic skills of ethical analysis
3.a) arguing from example, analogy, and counter-example,
3.b) identification of stakeholders in concrete situations,
3.c) identification of ethical issues in concrete situations,
3.d) application of ethical codes to concrete situations, and
3.e) identification and evaluation of possible courses of action.

Unit 4 - Basic elements of social analysis
4.a) social context influences the development and use of technology,
4.b) power relations are central in all social interactions,
4.c) technology embodies the values of the developers,
4.d) populations are diverse, and
4.e) empirical data are crucial to the design and development processes.

Unit 5 - Basic skills of social analysis
5.a) identification and interpretation of the social contexts of a particular implementation,
5.b) identification of assumptions and values embedded in a particular system, and
5.c) evaluation by means of empirical data of a particular implementation of a technology.
Applying this framework to one’s own institution, faculty, and department, as well as the formulation of an appropriate educational model, now needs to be considered.

6. Towards a model for teaching computer ethics

6.1 Integrated VS stand-alone approach

The ImpactCS Project [17] identified two main strategies for the teaching of CE. These are:
- the integration of the five knowledge units in the existing material on each level, and
- a stand-alone course dedicated to CE material.

However, it favours the teaching of CE in an integrated fashion [13, 16, 17, 19, 21]. According to [17], the key to the integrated approach lies in the overall coordination of the CE curriculum. One example of this approach is presented in [30] where Yale-Weltz describes a faculty initiative at the Seattle Pacific University for the teaching of CE at various levels. Although ImpactCS prefers the integrated approach, it is noteworthy that most literature references [3, 6, 11, 22, 25, 29] deal with the practical implementation from the point of view of a stand-alone course. A possible reason for this phenomenon could be that although CS/IS instructors are in agreement with the principle of teaching CE in an integrated fashion, the practical implementation thereof is problematic.

Various examples of stand-alone courses are presented in the literature. In [22] Roberts presents a curriculum as well as assignments to be completed by students, ranging from written, oral, to on-line participation for his course. Wahl [29] presents yet another stand-alone course curriculum with reference to Project ImpactCS, ACM, and IEEE professional codes of conduct. Other examples may be found in [3, 6, 11, 25].

6.2 Building the generic model

While we in principle support the integrated approach suggested by ImpactCS, it is clear from the literature [3, 6, 11, 22, 25, 28, 29] that in most cases, departmental pragmatics and logistics necessitate a combination of the integrated and stand-alone approach. Since our goal is to make all our students aware of the issues in CE, and to equip them with the capabilities and skills of evaluation, decision-making, and appropriate responsible action, we focus our attention on core modules as the vehicle for teaching CE. By core modules we mean those modules that are compulsory in all our degree programs. Our combined approach will facilitate an early introduction (on first level), continued discussion at following levels, and the integration of CE topics in the core modules. Together with our subsequent stand-alone third level module we expect to achieve maximum coverage with minimum overlap [17].

We propose a generic model for developing a CE curriculum, based on the topics associated with the knowledge units of section 5. A simple algorithm for mapping these topics to undergraduate modules in a coordinated way, is presented. This algorithm aims at achieving maximum coverage with minimum overlap. It may be applied at any institution regardless of the medium of instruction, but in section 7 we investigate its application in our distance education environment. In the algorithm we use set-theoretic notation and pseudo-code for clarity and conciseness. The topics defined by the ImpactCS Project (see section 5) are represented as the universal set T.

Algorithm to match these topics with the undergraduate core module structure

Step 1. Identify suitable first and second level core modules. Let m denote the number of such modules.

Step 2. Match applicable topics from T to existing module outcomes. Let these topics be the set A.

Step 3. Identify the topics not represented thus far as $N = T - A$.

Step 4: For each core module $i, 1 \leq i \leq m$, identify those topics from N which may be covered, and can be integrated into the core module. Call this set C_i.

Step 5: The pair-wise set-theoretic intersection of the sets C_i will determine overlap of topics identified in step 4:

$$\text{Algorithm to match these topics with } \text{undergraduate core module structure}$$

Step 1. Identify suitable first and second level core modules. Let m denote the number of such modules.

Step 2. Match applicable topics from T to existing module outcomes. Let these topics be the set A.

Step 3. Identify the topics not represented thus far as $N = T - A$.

Step 4: For each core module $i, 1 \leq i \leq m$, identify those topics from N which may be covered, and can be integrated into the core module. Call this set C_i.

Step 5: The pair-wise set-theoretic intersection of the sets C_i will determine overlap of topics identified in step 4:

$$\text{Algorithm to match these topics with } \text{undergraduate core module structure}$$

Step 6: Indicate the union of these modified sets C_i by C.

Step 7: The remaining topics, $T - (A \cup C)$, should constitute the basis of the stand-alone module.

It is clear that this algorithm presents a combined (i.e. combination of the integrated and stand-alone) approach which guarantees meaningful integration of appropriate topics across the core modules of the CS/IS curriculum. Indeed, the stand-alone module is intended to cover the remaining topics (step 7). In determining the best matches the paper of Yale-Weltz [30] proved particularly useful (step 5).

7. Applying the model at our institution

Our own institution is a distance education one. Unisa, established in 1873, is the oldest and largest university in South Africa. It is one of 11 mega distance education universities (more than 100 000 students) in the world. Its Department of Computer Science and Information Systems, with a teaching staff of over 40, has 11 000 students, enrolled for 29 000 module papers - arguably the largest CS/IS department in the country! Indeed, teaching CE to thousands of students by means of distance education is certainly a unique but worthwhile challenge.

7.1 A team approach in teaching computer ethics

The Unisa BSc (three year) degree programmes have a modular structure, with fourteen modules at first level, eight at second level, and eight at third level. At Unisa the teaching is usually done in small teams, with particular emphasis on planning, coordination and student support. In our CS/IS department each module is offered by a team consisting of two to four lecturers, who are collectively responsible for the planning, implementation and teaching of their module. Each individual is typically involved in the teaching of two undergraduate modules, with student numbers per undergraduate module ranging from 100 to 1600 or more. This team approach turns out to be ideally suited to the teaching of CE, using our combined approach. The CE team will amongst other be responsible to:

1. Apply the algorithm above to determine the core modules on first and second level and to identify the topics from T already covered in these core modules, set A above.
2. The CE team should furthermore identify which of the remaining topics ($N = T - A$) can be addressed sensibly by the existing module outcomes, set C in the algorithm, and they should then ensure that these topics be introduced to the existing module structure so that the module outcomes match the topics in set C.
3. Lastly the CE team should design and teach a third level module that addresses all of the topics not covered by the sets A and C.

The advantages of this dedicated team based approach to the teaching of CE include the following:

- Lecturing staff involved with the instruction of the core modules will not be burdened with developing and teaching the CE topics as the CE team will be responsible for this.
- It guarantees the structured and co-ordinated teaching of ethical issues and concerns embodied by the topics, ensuring minimum overlap yet allowing for maximum coverage of ethical issues.

7.2 The status quo at Unisa

When embarking on such a project or investigation, it makes sense to take note of the status quo. So, let us briefly examine what is offered in terms of the teaching of CE in our courseware at Unisa at present.

While many of the text books and study material used by our department may in passing refer to aspects of CE, we only list those modules where it assumes a somewhat more central role. For each module we also list the relevant topics addressed in brackets:

CEM101 - End User Computing [31]
Topics: Security, copyright and the law, treating issues such as understanding software copyright and security questions, awareness of privacy issues, data protection, viruses and anti-virus measures, what happens in the case of a power failure. {1,a, 1.b, 4.a}

COS113 - Computer Systems - Fundamental Concepts [26]
Topic: Netiquette - focussing on the unwritten rules for acceptable conduct when using the internet. {None}

INF120 - Human Computer Interaction [32]
Topics: Netiquette, security of digital data, safety and the repercussions of computer hardware and software failure, the provocative question concerning human failure (which may include unethical conduct) is also posed. {1,a, 1.b, 3.b, 4.a}
We observe:
• The modules in question are all first level modules.
• Even at this basic level the overlap is significant.
• CEM101 and COS113 are core modules in the BCom Informatics and the BSc degree programs respectively. INF120 is an elective module.
• The positive side however is that students are sensitised at an early stage in their studies, and the spreading of the CE material across a number of modules emphasises the importance thereof.
• The negative side is that CE is neglected at the second and later levels. Many of the key CE issues and topics are not addressed.
• The topics 1.a, 1.b, 3.b, and 4.a are addressed in these modules. However not in an integrated manner, with the bulk of these topics dealt with in INF120, an elective.

7.3 Applying the algorithm
We apply the algorithm to facilitate our integration of CE in the computer science programs of the department (a similar iteration can be performed for the IS programs):

7.3.1 Step 1 of the algorithm, the core modules:
First of all we identify the following core modules:
COS113: Computer systems - fundamental concepts,
COS112: Introduction to programming,
COS211: Programming: data structures, and
COS212: Programming: practical.

7.3.2 Step 2 of the algorithm, set A:
From the previous section, A = {}, the empty set.

7.3.3 Step 3 of the algorithm, the set N:
N = T
Set N thus consists of all the topics.

7.3.4 Step 4 of the algorithm, the sets C_i:
Two programming core modules have been identified as modules which allow the inclusion of certain aspects of CE. We briefly mention the CE topics which could be incorporated in these modules - the associated ImpactCS topics are indicated in brackets.

COS113:
- History and evolution of computers and their impact on society (1.a, 4.a, 4.b).
- Virus protection, security and safety issues (1.a, 3.b, 3.c, 3.e).

COS112:
- The history and evolution of computers and their impact on society (1.a, 4.a, 4.b).
- Copyright and virus protection (3.b, 3.c, 3.e).

COS211:
- Ethical dilemmas should be introduced to students, with an emphasis on situations which present difficult choices, sometimes even no "good" option (2.a, 2.b, 2.c).
- Arguing from example, analogy, and counterexample (3.a).

COS212:
- Ethical models should be studied informally, and rational decision making should be emphasized (1.c).
- ACM and IEEE codes of conduct should be introduced (3.d).
- Students must be sensitised to ethical issues related to program design and should be provided with at least one programming assignment in which they should identify some of the ethical and social issues pertaining to the specific program (3.c). Riser and Gotternam [11, 21] provide applicable examples.

7.3.5 The pair-wise disjoint intersection of the sets C_i:
Below we only give the final result of step 5 of the algorithm, and note that in determining best matches, [30] provides useful information:

COS113:
- History and evolution of computers and their impact on society (1.a, 4.a, 4.b).
- Internet-related security and privacy issues (4.a).

COS112:
- Copyright and virus protection (3.b, 3.e).

COS211:
- Ethical dilemmas should be introduced to students, with an emphasis on situations which present difficult choices, sometimes even no "good" option (2.a, 2.b, 2.c).
- Arguing from example, analogy, and counterexample (3.a).

COS212:
- Ethical models should be studied informally, and rational decision making should be emphasized (1.c).
- ACM and IEEE codes of conduct should be introduced (3.d).
- Students must be sensitised to ethical issues related to program design and should be provided with at least one programming assignment in which they should identify some of the ethical and social issues pertaining to the specific program (3.c).
The modified set $C_4 = \{1.c, 3.c, 3.d\}$.

Therefore,

$$C = \{1.a, 1.c, 2.a, 2.b, 2.c, 3.a, 3.b, 3.c, 3.d, 3.e, 4.a, 4.b\}.$$

7.3.6 The stand-alone module:
The remaining topics will constitute the basis of the stand-alone module. They are:

$$\{1.b, 1.d, 1.e, 4.c, 4.d, 4.e, 5.a, 5.b, 5.c\},$$

and may be divided into three groups. While the algorithm guarantees maximum coverage with minimum overlap, it remains the prerogative of the CE team to repeat certain topics for the purpose of deepening knowledge and insight.

The three groups are as follows:

1. **Generic CE-topics**
 - Formal discussion of major ethical models (1.c).
 - Formal approach towards ethical decision-making (2.a, 2.c, 3.b).
 - Professionalism (1.b, 1.d, 1.e).
 - Codes of ethics, ACM and IEEE codes of conduct (1.e, 3.d).

2. **Concepts concerning programming languages**
 - The impact of the designers' values and assumptions (4.a, 4.c, 5.b).
 - Exception handling (5.c).
 - Security and safety issues (1.a, 3.d).
 - Extension and ownership (1.a, 3.b).

3. **Concepts concerning system design**
 - The developers responsibility (1.a, 4.e).
 - The implications of the fact that systems are designed for real people of different social and cultural backgrounds (4.a, 4.d, 4.e, 5.a).
 - File systems, security protection from hackers, viruses, worms and Trojan horses (1.a, 4.b).

Summarising, we presented a model that may be used to map the topics to module outcomes in a meaningful manner. We also applied this model to our own institution and showed how the algorithm provided us with a strategy for integrating the teaching of CE with our particular existing module structure. Our investigation resulted in a combination of the two approaches of section 6.1, [17], in a way which reflects our present departmental structure and distance mode of instruction.

8. Future initiatives

What remains to be done for the computer science curriculum is the development of the courseware and the investigation of various pedagogical strategies for teaching CE according to the schedule produced by our algorithm. A favoured pedagogical tool is case studies. Meaningful contributions on the use of case studies in the teaching of CE, are to be found in [3, 6, 11, 20, 22, 25]. The opportunities offered by modern communication technologies, including the world wide web and internet, need to be explored, [8, 10, 12].

In a similar way, CE may be introduced into our Information Systems curriculum.

While the ACM/IEEE approach to teaching CE as explored in this paper, may seem biased towards society, we plan to investigate other approaches in which the individual is afforded a somewhat more central role.

9. Conclusion

In conclusion we support the ACM/IEEE Joint Curriculum Taskforce's position regarding the teaching of CE [17]:

Undergraduates need to understand the basic cultural, social, legal, and ethical issues inherent in the discipline of computing. They should understand where the discipline has been, where it is, and where it is heading. They should understand their individual roles in this process, as well as appreciate the philosophical questions, technical problems, and aesthetic values that play an important part in the development of the discipline. ... Students also need to develop the ability to ask serious questions about social impact and to evaluate proposed answers to those questions.

Computer Science and Information Systems curricula in South Africa however do not at present require the inclusion of CE in presentation of the subject matter. The situation seems to be similar to that reported by Clarke in 1992 [5]. A vast number of institutions in South Africa train computer professionals the required technical skills, without sufficient
emphasis on the ethical and social implications of their actions which are irrevocably intertwined in the career-path of a computer professional. If we are to adequately prepare our students for their future careers as responsible IT professionals, and if we are to consider the accreditation initiatives that are currently underway in the USA which will ensure that all future IT professionals are exposed to similar subject-related concepts, theories, and ethical concerns, we need to proceed with the teaching of CE in an integrated fashion.

10. References

[21] R. Riser and D. Gotterbarn; Ethics activities in computer science courses,

