Table of Contents

Message from the SAICSIT President .. iv
Message from the Chairs .. vi
Conference Organisation .. vii
Referees ... viii

Keynote Speakers

Cyber-economies and the Real World .. xi
 Alan Dix

Computer-aided Instruction with Emphasis on Language Learning xiv
 Lut Baten

Internet and Security Trends .. xv
 Arthur Goldstuck

The Future of Data Compression in E-technology xvi
 Nigel Horspool

Strategic Planning for E-Commerce Systems: Towards an Inspirational Focus ... xvii
 Raymond Hackney

Research Papers

Human-Computer Interaction / Virtual Reality

The Development of a User Classification Model for a Multi-cultural Society 1
 M Streicher, J Wesson & A Calitz

Real-Time Facial Animation for Virtual Characters 11
 D Burford & E Blake

The Effects of Avatars on Co-presence in a Collaborative Virtual Environment 19
 J Casanueva & E Blake

Education

Structured Mapping of Digital Learning Systems ... 29
 E Cloete & L Miller

Formal Methods

The specification of a multi-level marketing business 35
 A van der Poll & P Kotzé

Finite state computational morphology - the case of the Zulu noun 45
 L Pretorius & S Bosch

Combining context provisions with graph grammar rewriting rules: the three-dimensional case .. 54
 A Barnard & E Ehlers

Human-Computer Interaction / Web Usability

Web Site Readability and Navigation Techniques: An Empirical Study 64
 P Licker, R Anderson, C Macintosh & A van Kets

Jiminy: Helping Users to Remember Their Passwords 73
 K Renaud & E Smith

Information Security

Computer Security: Hacking Tendencies, Criteria and Solutions 81
 M Botha & R von Solms

An access control architecture for XML documents in workflow environments ... 88
 R Botha & J Eloff
Graphics and Ethics
Model-based Segmentation of CT Images .. 96
O Marte & P Marais
Towards Teaching Computer Ethics ... 102
C de Ridder, L Pretorius & A Barnard

Human-Computer Interaction / Mobile Devices
Ubiquitous Computing and Cellular Handset Interfaces – are menus the best way forward? .. 111
G Marsden & M Jones
A Comparison of the Interface Effect on the Use of Mobile Devices 120
J Franken, A Stander, Z Booley, Z Isaacs & R Rose
The Effect of Colour, Luminance, Contrast, Icons, Forgiveness and Closure on ATM Interface Efficiency .. 129
A Stander, P van der Zee, & Y Wang

Object Orientation
JavaCloak - Considering the Limitations of Proxies for Facilitating Java Runtime Specialisation .. 139
K Renaud

Hardware
Hierarchical Level of Detail Optimization for Constant Frame Rate Rendering 147
S Nirenstein, E Blake, S Windberg & A Mason
A Proposal for Dynamic Access Lists for TCP/IP Packet Filtering 156
S Hazelhurst

Information Systems
The Use of Technology to Support Group Decision-Making in South Africa 165
J Nash, D Gwilt, A Ludwig & K Shaw
Creating high Performance I.S. Teams ... 172
D C Smith, M Becker, J Burns-Howell & J Kyriakides
Issues Affecting the Adoption of Data Mining in South Africa 182
M Hart, E Barker-Goldie, K Davies & A Theron

Information Systems / Management
Knowledge management: do we do what we preach? .. 191
M Handzic, C Van Toorn, & P Parkin
Information Systems Strategic Planning and IS Function Performance: An Empirical Study .. 197
J Cohen

Formal Methods
Implication in three-valued logics of partial information 207
A Britz
Optimal Multi-splitting of Numeric value ranges for Decision Tree Induction 212
P Lutu
Abstracts of Electronic Papers

Lessons learnt from an action research project running groupwork activities on the Internet: Lecturers' experiences .. 221
T Thomas & S Brown

A conceptual model for tracking a learners' progress in an outcomes-based environment
R Harmse & T Thomas

Introductory IT at a Tertiary Level – Is ICDL the Answer? 222
C Dixie & J Wesson

Formal usability testing – Informing design ... 222
D van Greunen & J Wesson

Effectively Exploiting Server Log Information for Large Scale Web Sites 223
B Wong & G Marsden

E von Solms & J Eloff

A Pattern Architecture, Using patterns to define an overall systems architecture .. 224
J van Zyl & A Walker

Real-time performance of OPC .. 224
S Kew, & B Dwolatzky

The Case for a Multiprocessor on a Die: MoaD .. 225
P Machanick

Further Cache and TLB Investigation of the RAMpage Memory Hierarchy 225
P Machanick & Z Patel

The Influence of Facilitation in a Group Decision Support Systems Environment ... 226
T Nepal & D Petkov

Managing the operational implications of Information Systems 226
B Potgieter

Finding Adjacencies in Non-Overlapping Polygons .. 226
J Adler, GD Christelis, JA Deney, GD Konidaris, G Lewis, AG Lipson, RL Phillips,
DK Scott-Dawkins, DA Shell, BV Strydom, WM Trakman & LD Van Gool
The South African Institute of Computer Scientists and Information Technologists (SAICSIT) was formed in 1982 and focuses on research and development in all fields of computing and information technology in South Africa. Now in the 20th year of its existence, SAICSIT has come of age, and through its flagship series of annual conferences provides a showcase of not only the best research from the Southern-African region, but also of international research, attracting contributions from far afield. SAICSIT does, however, not exist or operate in isolation.

More than 50 years have passed since the first electronic computer appeared in our society. In the intervening years technological development has been exponential. Over the last 20 years there has been a vast growth and pervasiveness of computing and information technology throughout the world. This has led into the expansion and consolidation of research into a diversity of new technologies and applications in diverse cultural environments. During this period huge strides have also been made in the development of computing devices. The processing speed of computers has increased thousand-fold and memory capacity from megabytes to gigabytes in the last decade alone. The Southern African region did not miss out on these developments.

It is hardly possible for such quantitative expansion not to bring a change in quality. Initially computers had been developed mainly for purposes such as automation for the improvement of processing, labour-reduction in production and automation control of machinery, with artificial intelligence, which made great strides in the 1980s, seen as the ultimate field to which computers could be applied. As we moved into the 1990s it was recognized that such an automation route was not the only direction in the improvement of computers. The expansion of processing power has enabled image data to be incorporated into computer systems, mainly for the purpose of improving human utilisation. For most computer technologies of the 1990s, including the Internet and virtual reality, automation was not the ultimate purpose. Humans were increasingly actively involved in the information-processing loop. This involvement has gradually increased as we move into the 21st century. Development of computer technology based not on automation, but on interaction, is now fully established.

The method of interaction has significantly changed as well. The expansion of computer ability means that the same function can be performed far more cheaply and on smaller computers than ever before. The advent of portable and mobile computers and pervasive computing devices is ample evidence of this. The need for users to be at the same location as a computer in order to reap the benefits of software installed on that computer is becoming an obsolete notion. Time and space are no longer constraints. One of the most discussed impacts of computing and information technology is communication and the easy accessibility of information. This changes the emphasis for research and development – issues such as cultural, political, and economic differences must, for example, be accommodated in ways that researchers have not previously considered. Our goal should be to enable users to benefit from technological advances, hence matching the skills, needs, and expectations of users of available technologies to their immense possibilities.
The conference theme for the SAICSIT 2001 Conference – *Hardware, Software and Peopleware: The Reality in the Real Millennium* – aims to reflect technological developments in all aspects related to computerised systems or computing devices, and especially reflect the fact that each influences the others.

Not only has SAICSIT come of age in the 21st century, but so has the research and development community in Southern Africa. The outstanding quality of papers submitted to SAICSIT 2001, of which only a small selection is published in this collection, illustrates both the exciting and developing nature of the field in our region. I hope that you will enjoy SAICSIT 2001 and that it will provide opportunities to cultivate and grow the seeds of discussion on innovative and new developments in computing and information technology.

Paula Kotzé
SAICSIT President
Running this conference has been rewarding, exciting and exhausting. The response to the call for papers we sent out in March was overwhelming. We received 64 paper submissions for our main conference and twelve for the postgraduate symposium. We had a panel of internationally recognized reviewers, both local and international. The response from the reviewers was impressive – accepting a variety of papers and mostly returning the reviews long before the due date. We were struck, once again, by the sheer magnanimity of academia – as busy as we all are, we still manage to contribute fully to a conference such as SAICSIT.

After an exhaustive review process, where each paper was reviewed by at least three reviewers, the program committee accepted 26 full research papers and 14 electronic papers. Five papers were referred to the postgraduate symposium, since they represented work in progress – not yet ready for presentation to a full conference but which nevertheless represented sound and relevant research. The papers published in this volume therefore represent research of an internationally high standard and we are proud to publish it. Full electronic papers will be available on the conference web site (http://www.cs.unisa.ac.za/saicsit2001/).

Computer Science and Information Systems academics in South Africa labour under difficult circumstances. The popularity of IT courses stems from the fact that IT qualifications are in high demand in industry, which leads in turn to a shortage of IT academic staff to teach the courses, even when posts are available. The net result is that fewer people teach more courses to more students. IT departments thus rake in ever-increasing amounts of state subsidy for their universities. These profits, euphemistically labelled “contribution to overhead costs”, are deployed in various ways: cross-subsidization of non-profitable departments; maintenance of general facilities; salaries for administrative personnel, etc. Sweeteners of generous physical resources for the IT departments may be provided. We have yet to hear of a University in South Africa where significant concessions have been made in terms of industry-related remuneration. At best, small subventions are provided. As a result, shortages of quality staff remain acute in most IT departments – especially at senior teaching levels. What is even worse is that academics in these departments have to motivate the value of their conference contributions and other IT outputs to selection committees, often dominated by sceptical academic power-brokers from the more traditional departments whose continued survival is underwritten by IT’s contribution to overhead costs.¹

The papers published in this volume are conclusive evidence of the indefatigability and pertinacity of Computer Science and Information Systems academics and technologists in South Africa. We are proud to be part of such a prestigious and innovative group of people.

In conclusion, we would like to thank the conference chair, Prof Paula Kotzé, for her support. We also specially thank Prof Derrick Kourie for his substantial contribution. Finally, to all of you, contributors, presenters, reviewers and organisers – a big thank you – without you this conference could not be successful.

Enjoy the Conference!
Karen Renaud & Andries Barnard

¹ This taken almost verbatim from Professor Derrick Kourie’s SACLA 2001 paper titled: “The Benefits of Bad Teaching”.

v1
Conference Organisation

General Chair
Paula Kotzé

Sponsor Liaison
Paula Kotzé, Chris Bornman

Programme Chairs
Karen Renaud
Andries Barnard

Secretarial & Finances
Christa Prinsloo, Elmarie Havenga

Organising Committee
Chairs
Lucas Venter, Alta van der Merwe

Marketing & Public Relations
Klarissa Engelbrecht, Elmarie van Solms, Adriaan Pottas, Mac van der Merwe

Art and Design
Tersia Parsons

Audio Visual
Tobie van Dyk, Andre van der Poll, Mac van der Merwe

Program Committee

Bob Baber – McMaster University, Canada
Andries Barnard – University of South Africa
Judy Bishop – University of Pretoria
Andy Bytheway – University of the Western Cape
Andre Calitz – University of Port Elizabeth
Elsabe Cloete – University of South Africa
Carina de Villiers – University of Pretoria
Alan Dix – Lancaster University, United Kingdom
Jan Eloff – Rand Afrikaans University
Andries Engelbrecht – University of Pretoria
Chris Johnson – University of Glasgow, United Kingdom
Paul Licker – University of Cape Town
Paula Kotzé – University of South Africa
Derrick Kourie – University of Pretoria
Philip Machanick – University of the Witwatersrand
Gary Marsden – University of Cape Town
Don Petkov – University of Natal Pietermaritzburg
Karen Renaud – University of South Africa
Ian Sanders – University of the Witwatersrand
Derrick Smith – University of Cape Town
Harold Thimbleby – Middlesex University, United Kingdom
Theda Thomas – Port Elizabeth Technikon
Herna Viktor – University of Pretoria, South Africa
Bruce Watson – Universities of Pretoria and Eindhoven
Janet Wesson – University of Port Elizabeth
Referees

Conference
Sponsors

UNISA ABSA Microsoft ORACLE NRF
Keynote Abstracts
Optimal Multi-splitting of Numeric Ranges for Decision Tree Induction

P.E.N. Lutu
Department of Computer Science & Information Systems
Vista University, Mamelodi Campus
lutu-p@marlin.vista.ac.za

Abstract: Data mining is the process of extracting informative patterns from data stored in a database or data warehouse. Decision tree induction algorithms, from the area of machine learning are well suited for building classification models in data mining. The handling of continuous-valued attributes in decision tree induction has received a lot of research attention in recent years. Typically, an evaluation function is used to dynamically select the best multi-split for the range of values of a continuous-valued attribute. This paper discusses useful and well behaved evaluation functions and proposes an algorithm for optimal multi-splitting.

Key words: Knowledge discovery in databases, machine learning, data mining, decision tree induction, classification.

Computing Review Categories: H.2.8, I.2.6

1. Introduction: Machine Learning and Data Mining

Knowledge Discovery in Databases (KDD), is the non-trivial process of identifying valid, novel, potentially useful and ultimately understandable patterns in data [Fayyad 1996]. Data mining, which is one step of the overall KDD process, is the act of extracting useful and informative patterns from data. It may be done for purposes of seeking knowledge about concepts (classification), taxonomies (clustering) or regularities in data. Data mining tasks typically require the efficient handling of large sets of data consisting of both nominal (categorical) and continuous (integer or real) valued attributes.

Inductive learning algorithms, from the area of machine learning, are well suited for adaptation for data mining, for classification purposes. Inductive learning is learning by generalisation. The learner is presented with many training examples about a concept in a specific domain. From these examples, the learner creates and stores a representation of the acquired knowledge, which it can later apply to generalise about unseen instances in the domain. Classification problems may be stated as follows (Quinlan 1988)

Given: a collection of entities (and their attributes), whose class membership is known
Find: a (set of) classification rule(s) that will assign any entity to its class.

Typically, the learning algorithm is supplied with a set of training examples, specifying the attribute values and class membership for each example, and a representation of the concept to be learned. The learner then constructs a model of the knowledge it acquires from the training set. Decision trees [Breiman et al 1984], [Quinlan1986] are commonly used to model this knowledge. For decision tree induction, the learner constructs a decision tree in which the non-leaf nodes are tests on the attributes values, and the leaf nodes are the classes. Determining the class of an instance is then a matter of starting at the root node of the tree, performing the test at the node, and branching to the root node of the selected sub-tree until a leaf node is reached.

The issue of scalability comes into play when attempting to adapt machine learning algorithms to data mining. In machine learning, researchers mostly deal with flat files and algorithms that run in minutes or seconds on a desktop computer. A training set of say 100,000 instances with a few dozen attributes is the beginning of the range “very large” data sets. The database community deals with gigabyte databases. “Very large” to a database practitioner usually means databases (warehouses) of 100GB or larger. However, it is very unlikely that all the data in a database (warehouse) would be mined simultaneously. In practice, pre-processing techniques reduce by orders of magnitude, the size of the data set presented to the data mining algorithm.

For scaling machine learning algorithms, the issue is not one of speeding up a slow algorithm, but rather, one of turning an impracticable algorithm into a practicable one. The crucial issue is not “how fast” you can run on a certain problem, but “how large” a problem you can feasibly deal with [Provost and Kolluri 1999]. From the point of view of complexity analysis, the limiting factor of the data set is the number of examples. A large number of examples introduces problems with
both time and space complexity. Time complexity deals with growth rate of the execution time as the number of examples, number of attributes and number of attribute values increase. Space complexity deals with the amount of storage space required while the algorithm is executing.

This paper discusses the optimal generation of multiple intervals for continuous valued attributes. Most commercially available decision tree learners handle continuous valued attributes by employing binary splitting, which results in two intervals. Even though we do not expect multi-splitting to increase the prediction accuracy of a decision tree, intuitively we expect that decision trees that employ multi-splitting will be more comprehensible to the user. Dynamic programming [Elomaa & Rousu 1999], [Fulton, Kasif & Salzberg 1995] has been proposed as an efficient method for the optimal generation of multiple intervals. This is an attempt to improve on the time and space complexity of machine learning and data mining algorithms when dealing with continuous-valued attributes. This paper proposes the use of heuristic search as an alternative to dynamic programming. Section 2 discusses currently available methods for handling continuous-valued attributes. Section 3 discusses attribute evaluation functions commonly employed in decision tree induction and multi-splitting. Section 4 discusses currently available algorithms for generating optimal multi-splits of numeric value ranges. Section 5 proposes the use of heuristic search to obtain optimal multi-splits of numeric value ranges.

2. Handling Continuous-valued Attributes

2.1 Attribute Selection in Decision Tree Induction

For decision tree induction, the learner constructs a decision tree in which the non-leaf nodes are tests on the attributes values, and the leaf nodes are the classes. The training set normally consists of both nominal (categorical) and continuous-valued attributes. The most crucial step in decision tree induction is the selection of the attribute on which to branch. An attribute evaluation function is used for this purpose. The evaluation function used, typically measures the reduction in class impurity if the attribute were selected for branching, or partitioning the training set. The attribute which produces the lowest impurity partition is selected for branching [Breiman 1984]. The evaluation function has to be supplied with discrete values for all attributes in the training set. This is not a problem for nominal attributes but, for continuous-valued attributes, this poses a challenge.

A continuous-valued attribute takes on numeric values (integer or real). In general, it is an attribute that has a linearly ordered range of values. Such an attribute is typically handled by partitioning its range into sub-ranges, in order to discretise its values. During decision tree generation, all continuous-valued attributes are discretised prior to attribute evaluation and selection. At each attribute selection step, the discretisation process needs to be performed.

A function commonly used as a measure of impurity is the entropy function

\[H(S) = \sum_{i=1}^{m} P(C_i, S) \log_2 P(C_i, S) \]

where \(P(C_i, S) \) is the proportion of examples in \(S \) with class \(C_i \), and \(m \) is the total number of classes. \(H(S) \) measures the class coherence (or class impurity) in the set \(S \) of examples. The goodness of a split on a discrete-valued attribute \(A \), is then measured using the average class entropy function \(ACE \), as:

\[ACE(A; \cup S_j) = \sum_{j=1}^{k} \frac{|S_j|}{|S|} H(S_j) \]

where:

- \(H(S_j) \) is the impurity in the subset of examples \(S_j \) having the same value for attribute \(A \), and \(\cup S_j = S \) denotes the \(k \) disjoint subsets of the partition induced by the discrete values for attribute \(A \), and \(|S_j| \) denotes the size of subset \(S_j \).

2.2 Binary Discretisation of Continuous-valued Attributes

In practice, the discretisation of a continuous-valued attribute may be binary or \(k \)-ary, also known as multi-splitting. For binary discretisation, a threshold value, \(T \), for the continuous valued attribute, \(A \), is determined, and the test \(A \leq T \) is assigned to the left branch, while \(A > T \) is assigned to the right branch of the tree. The threshold value, \(T \), is called a cut point. Suppose we are to select an attribute for branching at a node, having a set \(S \)
of N examples. For each continuous-valued attribute, A, we select the 'best' cut point \(T_A \) from its range of values by evaluating each candidate cut point in the range of values. The examples are first sorted into ascending order by their value on attribute A, and the mid point between each successive pair of examples, in the sorted sequence, is evaluated as a potential cut point. Figure 1 illustrates the idea.

Figure 1: Illustration of a Cut point

\(V_1, V_2, V_3, V_4 \) are the values of attribute A. \(\text{val}_A(e_i) \) denotes the value of attribute A for training example \(e_i \). T is the cut point currently being evaluated.

For each continuous valued attribute, at most N-1 evaluations must take place. For each evaluation of a candidate cut point, T, the data are partitioned into two subsets \(S_1 \) and \(S_2 \) and the partition is evaluated. Using the ACE evaluation function, the partition is evaluated as:

\[
\text{ACE}(A; S_1 \cup S_2) = \frac{|S_1|}{S} \text{H}(S_1) + \frac{|S_2|}{S} \text{H}(S_2)
\]

The cut point for which \(\text{ACE}(A; S_1 \cup S_2) \) is minimum, is selected as the best cut point for binary discretisation. Fayyad and Irani (1992) have used this evaluation function for binary discretisation and for multi-splitting.

One of the main problems with this selection criterion is that it is relatively expensive. Although it is polynomial in complexity, it must be evaluated at least N-1 times for each continuous valued attribute, at each attribute selection step. For practical machine learning and especially data mining applications, N is typically very large. An improvement to this has been proposed by Fayyad and Irani (1992) by observing that only boundary points need be considered as candidate cut points. The notion of a boundary point is captured in the definition below [Fayyad & Irani 1992], [Elomaa & Rousu 1999].

Definition 1: Boundary Point

Let \(\text{val}_A(e_i) \) denote the value of attribute A for the training example \(e_i \). Given a sequence S of examples, sorted in ascending order, by their values of attribute A, then:

1. The maximum value in \(S \) for attribute A, is a boundary point.
2. A value T in the range of attribute A is a boundary point if in the sequence S, there exist two examples \(e_1, e_2 \), having different classes, such that:

 \[\text{val}_A(e_1) = T < \text{val}_A(e_2) \]

 and there exists no other example \(e' \) in S, such that:

 \[\text{val}_A(e_1) < \text{val}_A(e') < \text{val}_A(e_2) \].

In other words, T is a boundary point if it falls between two consecutive examples that do not fall in the same class. Figure 2 illustrates the idea.

Fayyad and Irani (1992) have proved that, if T minimises \(\text{ACE}(A; S_1 \cup S_2) \) then T is a boundary cut point. Based on this observation, they have proposed an algorithm that incrementally computes the class entropy \(\text{ACE}(A; S_1 \cup S_2) \) for all boundary cut-points. With this scheme, great computational savings are achieved by eliminating the need to consider N-1 candidate cut points. The binarisation algorithm only needs to evaluate B (B<<N) boundary points in order to select the best cut-point.

Figure 2: Illustration of a boundary point.

\(T_{A_1} \) is a boundary point as it does not split any examples in the same class. \(T_{A_2} \) is not a boundary point.

2.3 Generating Multiple Numeric Intervals

In multi-splitting, the range of a continuous-valued attribute is discretised into k intervals, k \(\geq 2 \). Algorithms for multi-splitting attempt to obtain the best k-ary split of the numeric range, using some evaluation function.

Several evaluation functions for selecting the best k-partition for a continuous valued
attribute have been reported in the literature. Fayyad and Irani (1992) have shown that, for binary discretisation, the average class entropy function $ACE(A; S_i \cup S_j)$, is convex downward between boundary points and will therefore have a minimum value at a boundary point. Elomaa and Rousu (1999) have proved that, in the general case, $ACE(A; \cup S_i)$ will minimise at boundary points. They have analysed a class of cumulative, useful and well-behaved evaluation functions and proved that these functions minimise at boundary points. These functions are discussed in the next section.

The use of boundary points as cut points in multi-splitting has been investigated by Elomaa and Rousu (1999). They propose that prior to the discretisation of a numeric attribute, the training examples should be divided into B blocks after sorting. The block borders are the boundary points, $\{T_1, ..., T_B\}$ for the numeric value range of the attribute, A. If, in isolation, attribute A has predictive power, i.e. if its values directly correlate with the example set's classification, then the number of blocks, B, satisfies $B \ll N$ [Fayyad & Irani, 1992]. In practical machine learning and data mining a multi-split of arity B could still be too large and impractical, in the sense that it would result in incomprehensible trees. It then becomes necessary to determine the best k-split where $k < B$.

3. Attribute Evaluation Functions

3.1 Well-behaved and Useful Functions

Definition 2: Convex Downward Functions

Breiman et al (1984) have established that an attribute evaluation function F should be strictly concave (convex downward) i.e. should be twice differentiable and the second derivative should be negative. They have further established that for any tree node t, and any split s, if the evaluation function F is used, the decrease in impurity, $\Delta I(s, t) = I(t) - F(s, t) \geq 0$, where $I(s)$ measures the impurity before splitting. In other words, the impurity as measured by $\Delta I(s, t)$, can never increase due to splitting.

Definition 3: Cumulative Functions

Let $\cup S_i$ be a partition of an arbitrary example set S. An evaluation function F is cumulative if there exists a function f such that

$$F(A; \cup S_i) = c \cdot \sum f(S_i)$$

where c is an arbitrary coefficient whose value may depend on the whole data set S but not on its partitions.

Definition 4: Useful and Well-behaved Functions

Let

1. $\tau = \{T_1, ..., T_B\}$ be the boundary points in an example set S.
2. $F(A; T)$ denote the value of the evaluation function F, for the binary partition that is defined by cut point T.
3. $F(A; T_1, ..., T_{k-1})$ denote the value of the evaluation function F, for the k-partition defined by the cut points $\{T_1, ..., T_{k-1}\}$

An evaluation function F, is useful, in binary partitioning, if there exists a value T in τ such that T minimises $F(A, T)$. An evaluation function is well-behaved if for any k, $1 \leq k \leq B$ there exists at most k values τ' such that τ' minimises $F(A; T_1, ..., T_{k-1})$.

If a useful function is also cumulative, then it is also well-behaved with respect to multi-way partition evaluation. Elomaa & Rousu (1999) have shown that, for any cumulative and useful function F, there exists a partition of an arbitrary example set, such that it minimises the value of F with the corresponding cut points being situated at boundary points.

3.2 Entropy-based Evaluation Functions

The most commonly used attribute evaluation functions build upon impurity measures [Breiman et al 1984], which are functions that try to estimate the class coherence in a given set of examples. The average entropy function $ACE(A; \cup S_i)$ may be used to evaluate partitions in multi-splitting as it is well-behaved. Fayyad and Irani (1992), have used this evaluation function in a scheme that employs recursive binarisation.

The information gain function, IG, of ID3 [Quinlan 1993] and Gain Ratio function, GR, of C4.5 [Quinlan 1996] are also useful in partition evaluation. The information gain is defined as:

$$IG(A; \cup S_i) = H(S) - ACE(A; \cup S_i)$$

The intent here is to maximise the value of the function. Note that IG measures the decrease in impurity as discussed in section 3.1. The function IG, tends to favour excessively multi-
valued nominal attributes and large arity multi­
splits. To correct this shortcoming, Quinlan suggested dividing the IG measure of a
partition by the term:

\[g(A; \cup S_i) = - \sum \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|} \]

The resulting evaluation function is known as
the gain ratio GR:

\[GR(A; \cup S_i) = \frac{IG(A; \cup S_i)}{g(A; \cup S_i)} \]

Even though GR is not convex, its optimal
partitions are defined on boundary points.
However, since GR is not cumulative, it
cannot be employed in incremental evaluation
schemes [Elomaa & Rousu 1999].

Lopez de Mantras (1991) has proposed the
Normalised Distance Measure, ND, as an
alternative to the IG and GR evaluation
functions. The measure can be expressed in
terms of IG as:

\[ND(A; \cup S_i) = 1 - \frac{IG(A; \cup S_i)}{g(A; \cup S_i)} \]

where

\[g(A; \cup S_i) = \sum_{i=1}^{k} \sum_{j=1}^{m} \frac{M(j, S_i)}{|S|} \log_2 \frac{M(j, S_i)}{|S|} \]

k is the partition arity, m is the number of
classes and M(j, Si) is the number of examples
of class j in S. The intent is to minimise the
value of ND(A; \cup S_i) \in [0,1] or equally
maximise 1 - ND(A; \cup S_i). As with GR, ND is
not convex and it is not cumulative, but its
optimal partitions are on boundary points.
[Elomaa & Rousu 1999].

The Gini index (of diversity) or quadratic
entropy is defined as:

\[GI(A; \cup S_i) = \sum \frac{|S_i|}{|S|} \cdot gini(S_i) \]

where gini is the impurity measure

\[gini(S) = \sum_{j=1}^{m} P(C_j, S) (1 - P(C_j, S)) \]

The GI function is known to be convex and
therefore useful. Since the function is also
cumulative, it is well-behaved.

3.3 Other Evaluation functions

Stemming from the work of Wallace and
Freeman (1987) on the Minimum Description
Length Principle (MDL) and Rissanen (1989)
on the Message Length Principle (MML),
several researchers have explored MDL/MML
decision tree learning. Here, the intent is to
minimise the coding length of examples. A
cost function is used to evaluate attributes and
the attribute which gives the least rise to the
total coding length of examples is chosen for
the evolving tree. The cost function used in
MDL is useful and well-behaved [Elomaa &
Rousu 1999].

In learning decision trees of limited depth eg.
one and two-level decision trees (Iba &
Langley 1992; Holte 1993; Elomaa 1994;
Auer, Holte & Maas 1995), the process entails
optimal multi-splitting of a numeric domain.
The evaluation function to be optimised is the
Training Set Error, TSE: the number of
training instances falsely classified by the
decision tree. The evaluation function TSE is
useful and well-behaved [Elomaa & Rousu
1999].

4. Optimal multi-splitting of
numeric value ranges

4.1 Recursive Binarisation

Fayyad and Irani (1992) have proposed a
multi-splitting algorithm based on binary
discretisation. The algorithm is applied
recursively, during tree construction, always
selecting the best cut point from all boundary
points. As in binary discretisation, the measure
ACE(A; S_1 \cup S_2) for average class entropy is
used to select the best cut point. A criterion is
applied to decide when to refrain from further
binary partitioning of a given interval.
Incremental evaluation of ACE(A; S_1 \cup S_2),
further enhances the algorithm’s efficiency.

4.2 Incremental Evaluation

Fulton, Kasif & Salzberg (1995) have
proposed an algorithm for efficiently finding
optimal multi­splits for a class of evaluation
functions. This algorithm examines all
potential cut points within the example
sequence in order to obtain the optimal multi­
split by a cumulative evaluation function. They give the recurrence by which the impurities of the candidate cut point can be calculated from those for lower arity partitions, during the process. Hence, given a value \(k \), the algorithm can chose in time \(O(n^k) \), the partition with the lowest impurity, from among all those that have at most \(k \) intervals. Elomaa and Rousu (1999) have extended this scheme to a faster algorithm. Instead of evaluating the cut points between every pair of examples, only boundary points are evaluated. This is accomplished by pre-processing the data into blocks, where a block is defined by boundary points. Pre-processing of the data into blocks can be done in linear time, since it requires a single pass through the example set. Any of the evaluation functions discussed in the last section may be used to evaluate partitions.

Elomaa and Rousu have shown that, given blocks \(i \) through \(j \) in the sorted sequence of examples, we may denote the impurity that results when the blocks are partitioned into \(k \) intervals by \(\text{impurity}(k, \cdot i, j) \). The recurrence for impurity calculation is then given as:

\[
\text{impurity}(k, 1, j) =
\begin{cases}
\min \{ \text{impurity}(k-1, 1, i) + \text{impurity}(1, i+1, j) \} & \text{if } k \leq j \\
\infty & \text{otherwise}
\end{cases}
\]

Using dynamic programming, they have proposed an \(O(kB^2) \) algorithm which can find an optimal multi-partition of at most arity \(k \), where \(B \) is the number of blocks in the range. In comparison, with binary splitting using blocks, the time to find the optimal binary split is \(O(B) \).

5. Heuristic Search for Optimal Multi-splits

5.1 Heuristic Evaluation functions

As an alternative to dynamic programming, this paper proposes heuristic search. Heuristic search requires the use of a state evaluation function \(f(n) = g(n) + h(n) \), where \(n \) is any state encountered in the search, \(g(n) \) is the cost of \(n \) from the start state, and \(h(n) \) is the heuristic estimate of going from the \(n \) to the goal state. A search algorithm is \textit{admissible} if, for any graph, it always terminates in the optimal solution path whenever a path from the start state to the goal state exists. Heuristic search also employs a function \(f^*(n) = g^*(n) + h^*(n) \), where \(g^*(n) \) is the cost of the shortest path from the start state to node \(n \), and \(h^*(n) \) is the actual cost of the shortest path from \(n \) to the goal state. \(f^*(n) \) is then the actual cost of the optimal path from the start to the goal state. If an algorithm uses best-first-search with an evaluation function \(f(n) = g(n) + h(n) \), where \(h(n) \leq h^*(n) \), then the algorithm is \textit{admissible}. A heuristic is \textit{monotonic}, or locally admissible, if it consistently finds the minimal path to each state it encounters in the search. A heuristic function \(h \) is \textit{monotone} if

1. for all states \(n_i \) and \(n_j \), where \(n_j \) is a descendant of \(n_i \), \(h(n_j) \leq \text{cost}(n_i, n_j) \), where \(\text{cost}(n_i, n_j) \) is the actual cost of going from state \(n_i \) to \(n_j \).
2. the heuristic evaluation of the goal state is zero, ie. \(h(\text{goal}) = 0 \).

It is argued in the next section that the class of evaluation functions \(F \) can be used in heuristic search for optimal multi-splits.

5.2 Heuristic Search for Optimal Multi-splits

For heuristic search, the problem of finding the optimal multi-split may be stated as follows:

'Find that combination of at most \(k \) cut points \(\tau' \subseteq \tau \), where \(\tau = \{T_0, \ldots, T_B\} \), that minimises the impurity measure \(F(A; \cup S_j) \), for the partition \(\cup S_j \) induced by \(\tau' \)'.

A state is represented by the cut points that define the partition induced by the cut points. The initial state is one where no splitting has taken place, therefore it is represented by the cut points \(\{T_0, T_B\} \). The descendant states are successively generated by including one of the remaining boundary points \(\{T_0, T_{B-1}\} \). Each of these states defines a unique partition. Given the cumulativity property for the evaluation function \(F \), and the fact that splitting can never increase the impurity, we can conclude that \(F(A; \cup S_j) \leq F(A; \cup S_i) \), where \(j \) is a descendant state of state \(i \).

The state evaluation function to be used should measure the amount of impurity to be removed in order to reach the goal state. The split that moves us closest to the goal is then chosen. We can therefore define \(h(n) \) as:

\[
h(n) = F(A; p:n) - F(A; p:\text{goal}) \]

where \(F(A; p:n) \) denotes the evaluation of the
function F for the partition at state n. Here, 'goal' denotes the state for which a split of arity B has been reached. $g(n)$ can be used to measure the arity of the split. When employed with the best-first search algorithm [Pearl 1984] the proposed heuristic is monotonic and admissible since it will terminate on the optimal path to the split which has arity B, with $h(\text{goal}) = 0$.

5.3 Time and Space Complexity for Heuristic Search

For the search scheme discussed in the last section, we can see that all the states at level k in the search tree define partitions of arity k or less. The best partition of arity k or less will therefore be found at level k of the search tree. For small k, the optimal multi-split will be found high up in the tree, while for large k, the optimal multi-split will be much lower down. At each level k of the tree, $B - k$ partitions are generated and evaluated. The asymptotic time complexity is therefore $O(kB)$. In the worst case, when all possible arities must be generated, this becomes $O(B^2)$. The preprocessing of data into blocks as proposed by Elomaa & Rousu (1999) is illustrated in Figure 3. This eliminates the need to examine each individual example in S.

The space requirements for the algorithm are very modest. The open list can never be larger that B, the maximum number of descendant states. The closed list will hold only the path to the goal, at most k states. A state is simply represented by the cut points that define its partition. Global data structures are used to store the data indicated in Figure 3, for each continuous-valued attribute.

<table>
<thead>
<tr>
<th>Block B_1 (v_i, v_f)</th>
<th>Block B_2 (v_i, v_f)</th>
<th>Block B_b (v_{i-}, v_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>class freq.</td>
<td>class freq.</td>
<td>class freq.</td>
</tr>
<tr>
<td>C_1 freq(C_1)</td>
<td>C_1 freq(C_1)</td>
<td>C_1 freq(C_1)</td>
</tr>
<tr>
<td>C_2 freq(C_2)</td>
<td>C_2 freq(C_2)</td>
<td>C_2 freq(C_2)</td>
</tr>
<tr>
<td>C_3 freq(C_3)</td>
<td>C_3 freq(C_3)</td>
<td>C_3 freq(C_3)</td>
</tr>
<tr>
<td>C_n freq(C_n)</td>
<td>C_n freq(C_n)</td>
<td>C_n freq(C_n)</td>
</tr>
</tbody>
</table>

Figure 3: Pre-processing data into blocks
For each block, the values for the attribute and the class frequencies are recorded.

6. Conclusions

Well-behaved functions are clearly the only reasonable ones to use in multi-splitting [Fayyad & Irani 1992], [Breiman 1996]. The discussion in section 5 of this paper has shown that, when well-behaved functions are used in multi-splitting, well understood and efficient methods for obtaining optimal solutions can be used. Multi-splitting is definitely slower than binarisation, and it does not result in improved prediction accuracy. However, intuitively, it would appear that multi-splitting produces more compact and comprehensible trees than binary splitting. Theoretically, it would appear that heuristic search performs better than dynamic programming, for generation of optimal multi-splits. An experimental system is currently being implemented at Vista University, in order to perform empirical studies of both methods.

7. Acknowledgements

Acknowledgements are due to Dr. R. Anguelov and Dr. R. Kasonga, Department of Mathematics & Statistics, Vista University, for many useful insights given on the mathematical and statistical aspects of this research.

8. References

3, sept 1999.

