The South African Institute for Computer Scientists and Information Technologists

ANNUAL RESEARCH AND DEVELOPMENT SYMPOSIUM

23-24 NOVEMBER 1998
CAPE TOWN
Van Riebeek hotel in Gordons Bay

Hosted by the University of Cape Town in association with the CSSA,
Foreshore campus University for CHE and
The University of Natal

PROCEEDINGS

EDITED BY
D. PETKOV AND L. VENTER

SPONSORED BY

ABSAGroup
The South African Institute for Computer Scientists and Information Technologists

ANNUAL RESEARCH AND DEVELOPMENT SYMPOSIUM

23-24 NOVEMBER 1998
CAPE TOWN
Van Riebeeck hotel in Gordons Bay

Hosted by the University of Cape Town in association with the CSSA, Potchefstroom University for CHE and The University of Natal

GENERAL CHAIR: PROF G. HATTINGH, PU CHE

PROGRAMME CO-CHAIRS:
PROF. L VENTER, PU CHE (Vaal Triangle), PROF. D. PETKOV, UN-PMB

LOCAL ORGANISING CHAIR: PROF. P. LICKER, UCT - IS

PROCEEDINGS

EDITED BY
D. PETKOV AND L. VENTER

SYMPOSIUM THEME:
Development of a quality academic CS/IS infrastructure in South Africa

SPONSORED BY
Copyrights reside with the original authors who may be contacted directly.

Edited by Prof. D. Petkov and Prof. L. Venter
Van Reebek Hotel, Gordons Bay, 23-24 November 1998

Keywords: Computer Science, Information Systems, Software Engineering.

The views expressed in this book are those of the individual authors and not of the South African Institute for Computer Scientists and Information Technologists.

Office of SAICSIT: Prof. J.M. Hatting, Department of Computer Science and Information Systems, Potchefstroom University for CHE, Private Bag X6001, Potchefstroom, 2520, RSA.

Produced by the Library Copy Centre, University of Natal, Pietermaritzburg.
FOREWORD

The South African Institute for Computer Scientists and Information Technologists (SAICSIT) promotes the cooperation of academics and industry in the area of research and development in Computer Science, Information Systems and Technology and Software Engineering. The culmination of its activities throughout the year is the annual research symposium. This book is a collection of papers presented at the 1998 such event taking place on the 23rd and 24th of November in Gordons Bay, Cape Town. The Conference is hosted by the Department of Information Systems, University of Cape Town in cooperation with the Department of Computer Science, Potchefstroom University for CHE and Department of Computer Science and Information Systems of the University of Natal, Pietermaritzburg.

There are a total of 46 papers. The speakers represent practitioners and academics from all the major Universities and Technikons in the country. The number of industry based authors has increased compared to previous years.

We would like to express our gratitude to the referees and the paper contributors for their hard work on the papers included in this volume. The Organising and Programme Committees would like to thank the keynote speaker, Prof M.C Jackson, Dean, University of Lincolnshire and Humberside, United Kingdom, President of the International Federation for Systems Research as well as the Computer Society of South Africa and The University of Cape Town for the cooperation as well as the management and staff of the Potchefstroom University for CHE and the University of Natal for their support and for making this event a success.

Giel Hattingh, Paul Licker, Lucas Venter and Don Petkov
Table of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lynette Drevin: Activities of IFIP wg 11.8 (computer security education) & IT related ethics education in Southern Africa</td>
<td>1</td>
</tr>
<tr>
<td>Reinhardt A. Botha and Jan H.P. Elof: exA Security Interpretation of the Workflow Reference Model</td>
<td>3</td>
</tr>
<tr>
<td>Willem Krige and Rossouw von Solms: Effective information security monitoring using data logs</td>
<td>9</td>
</tr>
<tr>
<td>Carl Papenfus and Reinhardt A. Botha: A shell-based approach to information security</td>
<td>15</td>
</tr>
<tr>
<td>Walter Smuts: A 6-Dimensional Security Classification for Information</td>
<td>20</td>
</tr>
<tr>
<td>Philip Machanick and Pierre Salverda: Implications of emerging DRAM technologies for the RAM page Memory hierarchy</td>
<td>27</td>
</tr>
<tr>
<td>Susan Brown: Practical Experience in Running a Virtual Class to Facilitate On-Campus Under Graduate Teaching</td>
<td>41</td>
</tr>
<tr>
<td>H.D. Masethe, T.A Dandadzi: Quality Academic Development of CS/IS Infrastructure in South Africa</td>
<td>49</td>
</tr>
<tr>
<td>Philip Machanick: The Skills Hierarchy and Curriculum</td>
<td>54</td>
</tr>
<tr>
<td>Theda Thomas: Handling diversity in Information Systems and Computer Science Students: A social Constructivist Perspective</td>
<td>63</td>
</tr>
<tr>
<td>Udo Averweg and G J Erwin: Critical success factors for implementation of Decision support systems</td>
<td>70</td>
</tr>
<tr>
<td>Magda Huisman: A conceptual model for the adoption and use of case technology</td>
<td>78</td>
</tr>
<tr>
<td>Paul S. Licker: A Framework for Information Systems and National Development Research</td>
<td>79</td>
</tr>
<tr>
<td>K. Niki Kunene and Don Petkov: On problem structuring in an Electronic Brainstorming (EBS) environment</td>
<td>89</td>
</tr>
</tbody>
</table>
Derek Smith: Characteristics of high-performing Information Systems Project Managers and Project Teams 90

Lucas Venêr: INST AP: Experiences in building a multimedia application 102

Scott Hazelhurst, Anton Fatti, and Andrew Henwood: Binary Decision Diagram Representations of Firewall and Router Access Lists 103

Andre Joubert and Annelie Jordaan: Hardware System interfacing with Delphi 3 to achieve quality academic integration between the fields of Computer Systems and Software Engineering 113

Borislav Roussev: Experience with Java in an Advanced Operating Systems Module 121

Conrad Mueller: A Static Programming Paradigm 122

Sipho Langa: Management Aspects of Client/Server Computing 130

T Nepal and T Andrew: An Integrated Research Programme in AI applied to Telecommunications at ML Sultan Technikon 135

Yuri Velinov: Electronic lectures for the mathematical subjects in Computer Science 136

Philip Machanick: Disk delay lines 142

D Petkov and O Petkova: One way to make better decisions related to IT Outsourcing 145

Jay van Zyl: Quality Learning, Learning Quality 153

Matthew O Adigun: A Case for Reuse Technology as a CS/IS Training Infrastructure 162

Andy Bytheway and Grant Hearn: Academic CS/IS Infrastructure in South Africa: An exploratory stakeholder perspective 171

Chantel van Niekerk: The Academic Institution and Software Vendor Partnership 172

Christopher Chalmers: Quality aspects of the development of a rule-based architecture 173

Rudi Harmse: Managing large programming classes using computer mediated communication and cognitive modelling techniques 174
Michael Muller: How to gain Quality when developing a Repository Driven User Interface

Elsabe Cloete and Lucas Venter: Reducing Fractal Encoding Complexities

Jean Bilbrough and Ian Sanders: Partial Edge Visibility in Linear Time

Philip Machanick: Design of a scalable Video on Demand architecture

Freddie Janssen: Quality considerations of Real Time access to Multidimensional Matrices

Machiel Kruger and Giel Hattingh: A Partitioning Scheme for Solving the Exact k-item 0-1 Knapsack Problem

Ian Sanders: Non-orthogonal Ray Guarding

Fanie Terblanche and Giel Hattingh: Response surface analysis as a technique for the visualization of linear models and data

Olga Petkova and Dewald Roode: A pluralist systemic framework for the evaluation of factors affecting software development productivity

Peter Warren and Marcel Viljoen: Design patterns for user interfaces

Andre de Waal and Giel Hattingh: Refuting conjectures in first order theories

Edna Randiki: Error analysis in Selected Medical Devices and Information Systems
A CONCEPTUAL MODEL FOR THE ADOPTION AND USE OF CASE TECHNOLOGY

H.M. Huisman
Department of Computer Science and IS
Potchefstroom University for CHE
Private Bag X6001
Potchefstroom
2531

Abstract

The software crisis has been well documented. Software is being delivered late, over budget and full of residual faults.

In an attempt to solve these problems, CASE technology has been developed. CASE technology provides computer-aided support for every phase in the software development process. The developers of CASE technology claim that these tools will increase software development effectiveness, in terms of the quality of the developed systems, and the productivity of the developers. This claim is confirmed by most empirical studies in the literature which indicate a positive rather than negative impact of CASE technology on the software development process.

In light of the above, it is surprising that the actual use of CASE technology has been much less than one would expect. It is reported by Kemerer that one year after introduction, 70% of the CASE technology are never used, 25% are used by only one group and 5% are widely used but not to capacity. Many other studies emphasise this trend. CASE technology is very costly, and this non use phenomenon causes organisations to suffer large financial losses.

Thus although CASE technology can improve the software development process, it is not used by the software development community. A conceptual model was developed to address this contradiction. The model is based on research in information system implementation, the innovation diffusion theory, organisational theory, and the economics of technology standards. CASE technology is viewed as a contingent innovation, meaning that a primary adopter (i.e. IT manager) has to make a decision to adopt CASE technology, and then a group of secondary adopters (i.e. system developers) has to adopt and use the CASE technology. Because CASE technology is viewed as a contingent innovation, the meso level of innovation theories is applied, rather than the micro or macro levels.

Prior research on CASE technology adoption, has mainly been descriptive. This model offers a theoretical orientation and attempts to explain factors affecting adoption and use of CASE technology.