The South African Institute of Computer Scientists
and
Information Technologists

Proceedings

of the

1996 National Research and
Development Conference

Industry meets Academia

Interaction Conference Centre, University of Natal,
Durban.
26 & 27 September

Edited by
Vevek Ram
FOREWORD

This book is a collection of papers presented at the National Research and Development Conference of the Institute of Computer Scientists and Information Technologists, held on 26 & 27 September, at the Interaction Conference Centre, University of Natal, Durban. The Conference was organised by the Department of Computer Science and Information Systems of The University of Natal, Pietermaritzburg.

The papers contained herein range from serious technical research to work-in-progress reports of current research to industry and commercial practice and experience. It has been a difficult task maintaining an adequate and representative spread of interests and a high standard of scholarship at the same time. Nevertheless, the conference boasts a wide range of high quality papers. The program committee decided not only to accept papers that are publishable in their present form, but also papers which reflect this potential in order to encourage young researchers and to involve practitioners from commerce and industry.

The organisers would like to thank IBM South Africa for their generous sponsorship and all the members of the organising and program committees, and the referees for making the conference a success. The organisers are indebted to the Computer Society of South Africa (Natal Chapter) for promoting the conference among its members and also to the staff and management of the Interaction Conference Centre for their contribution to the success of the conference.

On behalf of the Organising Committee
Vevek Ram
Editor and Program Chair
Pietermaritzburg, September 1996
Organising Committee

Conference General Chairs
Mr Rob Dempster and Prof Peter Warren (UNP)

Organising Chair
Dr Don Petkov (UNP)

Secretariat
Mrs Jenny Wilson

Program Chair
Prof Vevek Ram (UNP)

Program Committee
Prof Peter Wentworth, Rhodes
Dr Milan Hajek, UDW
Prof Derek Smith, UCT
Prof Anthony Krzesinski, Stellenbosch
Dr Don Petkov, UNP
Mr Rob Dempster, UNP
Prof Peter Warren, UNP
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>i</td>
</tr>
<tr>
<td>Organising Committee</td>
<td>ii</td>
</tr>
<tr>
<td>List of Contributors</td>
<td>vi</td>
</tr>
<tr>
<td>Keynote Speaker</td>
<td></td>
</tr>
<tr>
<td>The Role of Formalism in Engineering Interactive Systems</td>
<td>1</td>
</tr>
<tr>
<td>M D Harrison and D J Duke</td>
<td></td>
</tr>
<tr>
<td>Plenary</td>
<td></td>
</tr>
<tr>
<td>Industry-Academic-Government Cooperation to boost Technological Innovation and People Development in South Africa</td>
<td>15</td>
</tr>
<tr>
<td>Tjaart J Van Der Walt</td>
<td></td>
</tr>
<tr>
<td>Checklist support for ISO 9001 audits of Software Quality Management Systems</td>
<td>17</td>
</tr>
<tr>
<td>A J Walker</td>
<td></td>
</tr>
<tr>
<td>The IS Workers, they are a-changin'</td>
<td>29</td>
</tr>
<tr>
<td>Derek Smith</td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td></td>
</tr>
<tr>
<td>Examination Timetabling</td>
<td>35</td>
</tr>
<tr>
<td>E Parkinson and P R Warren</td>
<td></td>
</tr>
<tr>
<td>Generating Compilers from Formal Semantics</td>
<td>43</td>
</tr>
<tr>
<td>H Venter</td>
<td></td>
</tr>
<tr>
<td>Efficient State-exploration</td>
<td>63</td>
</tr>
<tr>
<td>J. Geldenhuys</td>
<td></td>
</tr>
<tr>
<td>A Validation Model of the VMTP Transport Level Protocol</td>
<td>75</td>
</tr>
<tr>
<td>H.N. Roux and P.J.A. de Villiers</td>
<td></td>
</tr>
<tr>
<td>Intelligent Systems</td>
<td></td>
</tr>
<tr>
<td>Automated Network Management using Artificial Intelligence</td>
<td>87</td>
</tr>
<tr>
<td>M Watzenboeck</td>
<td></td>
</tr>
<tr>
<td>A framework for executing multiple computational intelligent programs using a computational network</td>
<td>89</td>
</tr>
<tr>
<td>H L Viktor and I Cloete</td>
<td></td>
</tr>
<tr>
<td>A Script-Based prototype for Dynamic Deadlock Avoidance</td>
<td>95</td>
</tr>
<tr>
<td>C N Blewett and G J Erwin</td>
<td></td>
</tr>
<tr>
<td>Parallelism: an effective Genetic Programming implementation on low-powered Mathematica workstations</td>
<td>107</td>
</tr>
<tr>
<td>H. Suleman and M. Hajek</td>
<td></td>
</tr>
<tr>
<td>Feature Extraction Preprocessors in Neural Networks for Image Recognition</td>
<td>113</td>
</tr>
<tr>
<td>D Moodley and V Ram</td>
<td></td>
</tr>
</tbody>
</table>
Real-Time Systems

The real-time control system model - an Holistic Approach to System Design
T Considine

119

Neural networks for process parameter identification and assisted controller tuning for control loops
M McLeod and VB Bajic

127

Reference Model for the Process Control Domain of Application
N Dhevcharran, A L Steenkamp and V Ram

137

Database Systems

The Pearl Algorithm as a method to extract information out of a database
J W Kruger

145

Theory meets Practice: Using Smith's Normalization in Complex Systems
A van der Merwe and W Labuschagne

151

A Comparison on Transaction Management Schemes in Multidatabase Systems
K Renaud and P Kotze

159

Education

Computer-based applications for engineering education
A C Hansen and P W L Lyne

171

Software Engineering Development Methodologies applied to Computer-Aided Instruction
R de Villiers and P Kotze

179

COBIE: A Cobol Integrated Environment
N Pillay

187

The Design and Usage of a new Southern African Information Systems Textbook
G J Erwin and C N Blewett

195

Teaching a first course in Compilers with a simple Compiler Construction Toolkit
G Ganchev

211

Teaching Turing Machines: Luxury or Necessity?
Y Velinov

219

Practice and Experience

Lessons learnt from using C++ and the Object Oriented Approach to Software Development
R Mazhindu-Shumba

227

Parallel hierarchical algorithm for identification of large-scale industrial systems
B Jankovic and VB Bajic

235
Information Technology and Organizational Issues

A cultural perspective on IT/End user relationships
A C Leonard 243

Information Security Management: The Second Generation
R Von Solms 257

Project Management in Practice
M le Roux 267

A Case-Study of Internet Publishing
A Morris 271

The Role of IT in Business Process Reengineering
C Blewett, J Cansfield and L Gibson 285

Abstracts

On Total Systems Intervention as a Systemic Framework for the Organisation of the Model Base of a Decision Support Systems Generator
D Petkov and O Petkova 299

Modular Neural Networks Subroutines for Knowledge Extraction
A Vahed and I Cloete 300

Low-Cost Medical Records System: A Model
O A Dami and T Seipone 301

A Methodology for Integrating Legacy Systems with the Client/Server Environment
M Redelinghuys and A L Steenkamp 302

Information Systems Outsourcing and Organisational Structure
M Hart and Kvavatzandis 303

The relational organisation model
B Laauwen 304

The Practical Application of a New Class of Non-Linear Smoothers for Digital Image Processing
E Cloete 305

A Technology Reference Model for Client/Server Software Development
R C Nienaber 306

The Feasibility Problem in the Simplex Algorithm
T G Scott, J M Hattingh and T Steyn 307

Author Index 309
List of Contributors

Vladimir B Bajic
Centre for Engineering Research,
Technikon Natal,
P O Box 953
Durban 4000

C N Blewett
Department of Accounting
University of Natal
King George V Avenue
Durban 4001

Justin Cansfield
Department of Accounting
University of Natal
King George V Avenue
Durban 4001

Tom Considine
Apron Services (Pty) Ltd
P O Johannesburg
International Airport
1600

Eric Cloete
School of Electrical Engineering
Cape Technikon
Box 652
Cape Town

I Cloete
Computer Science Department
University of Stellenbosch
Stellenbosch
7600

O A Daini
Department of Computer Science
University of Botswana
Gaborone
Botswana

Nirvani Devcharan
Umgeni Water
Box 9
Pietermaritzburg
3200

P J A de Villiers
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

Ruth de Villiers
Department of Computer Science and
Information Systems
UNISA
Box 392, Pretoria, 0001

G J Erwin
Business Information Systems
University of Durban-Westville
Private Bag X54001
Durban 4000

G Ganchev
Computer Science Department
University of Botswana
P Bag 0022
Gaberone, Botswana

J Geldenhuys
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

Louise Gibson
BIS, Dept Accounting & Finance
University of Durban
Pvt Bag X10
Dalbridge 4014

Mike Hart
Department of Information Systems
University of Cape Town
Rondebosch
7700

M. Hajek
Department of Computer Science
University of Durban-Westville
P Bag X54001
Durban 4000

A C Hansen
Dept of Agricultural Engineering
University of Natal
Private Bag X01
Scottsville 3209

J M Hattingh
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom 2520
Boris Jankovic
Centre for Engineering Research
Technikon Natal
P O Box 953,
Durban 4000

Paula Kotze
Department of Computer Science and
Information Systems
UNISA
Box 392
Pretoria, 0001

J W Kruger
Vista University
Soweto Campus
Box 359
Westhoven 2124

A C Leonard
Dept of Informatics
University of Pretoria
Pretoria, 2000

Ben Laauwen
Laauwen and Associates
P O Box 13773
Sinoville
0129

Mari Le Roux
Information technology, development: project leader
Telkom IT 1015
Box 2753
Pretoria 0001

P W L Lyne
Dept of Agricultural Engineering
University of Natal
Private Bag X01
Scottsville 3209

Rose Mazhindu-Shumba
Computer Science Department
University of Zimbabwe
Box MP167
Harare, Zimbabwe

Meredith McLeod
Centre for Engineering Research,
Technikon Natal,
P O Box 953
Durban 4000

D Moodley
Computer Management Systems
Box 451
Umhlanga Rocks
4320

Andrew Morris
P O Box 34200
Rhodes Gift
7707

R C Nienaber
Technikon Pretoria
Dept of Information Technology
Private Bag X680
Pretoria 0001

E Parkinson
Department of Computer Science
University of Port Elizabeth
Box 1600
Port Elizabeth 6000

Don Petkov
Department of Computer Science and
Information Systems
University of Natal
PBag x01
Scottsville 3209

Olga Petkov
Technikon Natal
Box 11078
Dorpspruit 3206
Pietermaritzburg

N Pillay
Technikon Natal
Box 11078
Dorpspruit 3206
Pietermaritzburg
V Ram
Department of Computer Science and Information Systems
University of Natal
P Bag x01
Scottsville 3209

Melinda Redelinghuys
Department of Computer Science and Information Systems
UNISA
Box 392
Pretoria, 0001

Karen Renaud
Computer Science and Information Systems
UNISA
Box 392
Pretoria, 0001

H N Roux
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

T G Scott
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom
2520

T Seipone
Department of Computer Science
University of Botswana
Gaborone
Botswana

Derek Smith
Department of Information Systems
University of Cape Town
Rondebosch
7700

Anette L Steenkamp
Department of Computer Science and Information Systems
UNISA
Box 392
Pretoria, 0001

T Steyn
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom 2520

H. Suleman
Department of Computer Science
University of Durban-Westville
Pvt Bag X54001
Durban 4000

A Vahed
Department of Computer Science
University of Western Cape
Private Bag X17
Bellville 7530

A Van der Merwe
Computer science and Information Systems
UNISA
P O Box 392
Pretoria, 0001

Tjaart J Van Der Walt
Foundation for Research and Development
Box 2600
Pretoria, 0001

K Vavatzandis
Department of Information Systems
University of Cape Town
Rondebosch
7700

Y Velinov
Dept Computer Science
University of Natal
Private Bag X01
Scottsville 3209

H Venter
Department of Computer Science
University of Port Elizabeth
Box 1600
Port Elizabeth 6000

H L Viktor
Computer Science Department
University of Stellenbosch
Stellenbosch
7600

R Von Solms
Department of Information Technology
Port Elizabeth Technikon
Private Bag X6011
Port Elizabeth 6000
AUTOMATED NETWORK MANAGEMENT USING ARTIFICIAL INTELLIGENCE

M. Watzenboeck
University of Botswana-Gaborone
E-mail: watzenbo@noka'. ub. bw

Abstract
Automating network management is regarded as a prerequisite for further plant automation. Artificial intelligence techniques, such as case based reasoning, topological reasoning and automated learning enable automated network and plant operations and also support tool development for general automation.

1 INTRODUCTION
The approach presented here was initiated by Sumitomo Metals and IBM Japan in 1987. It has achieved a satisfactory level of automated network operations in 1989. Since then the main emphasis lies with tool development for plant operations automation and cooperation enablers.

2 AUTOMATING AUTOMATION
2.1 Case-based Reasoning for Network Automation
The implementation of a computerized helpdesk via case-based reasoning was used a vehicle to achieve the automation of network functions, such as performance monitoring, defective path bypassing and overcoming slowdown effects by buffer size management. Since the AAAI-91 the productivity increase in knowledge engineering by separating knowledge into generic and episodic knowledge is studied worldwide and led among many others to Petrak's VIE-CBR[1].

2.2 Multimeda Front-Ends for Network Management Systems
Shared knowledge of network data enable the most productive use for network management, if skill differences in interpretation through different users are bridged by multimedia support.

2.3 Integrating a Communications Network for Manufacturing Applications
The EPRIT Project 7096 Computer Integrated Manufacturing and Engineering(CIME) started in 1993 and is based on an open software platform and using standard interfaces (MAP 3.0). The network management component supports the configuration of the network, monitors its performance, localizes and diagnoses defects and suggests repair actions. Flexible manufacturing is supported by Agile Intelligent Manufacturing Systems (AIMS). Those comprise self-controlling production islands and autonomous-cooperative structures supporting man-machine communication. The peripheral system parts such as CAD, production planning and maintenance are fully integrated[5].

2.4 Group Decision Support and Quality Management
The quality of a product or a service is ensured through quality control measurements (ISO9001) and guidance (ISO8402). Total quality management changes the focus from the defect-free product to the process. Permanent quality monitoring and improvement becomes an obligation of top management. Process improvements require the participation of all people engaged in the process. The performance of networks is benchmarked against service level agreements. Deviations may necessitate negotiations for new agreements if technical solutions are out of sight. Lincoln[1] argues: "The parallel between the structures of advanced production plants and Japanese organization is explained by the substitution in both cases of a social for a technological imperative." Greene R.[2] describes the AI based social delivery vehicles suitable for this approach: auxiliary knowledge engineers, application qualification tours, tool courses, group readings and coding sessions in AI and cognition improvement trainings.
SUMITOMO METALS NETWORK AUTOMATION

In 1988 Sumitomo Metals needed to control more than 1000 terminals attached to dual IBM hosts in an SNA environment with response time requirements below 0.8 seconds. NetView is the product family offering SNA Management Services. The used version resides on hosts and supports management tasks, such as configuration, problem and change management, performance monitoring and tuning, accounting and general network operation. All managed objects are connected to VTAM mostly via NCP. VTAM is the control point for management. NetView monitors the network via Session Awareness(SAW), receipt of VTAM messages, reports from the network components and NetView's command capability. The protocol used is the Network Management Transport Vector(NMVT). Filters can be applied to the NMVT messages. In order to support Sumitomo's RYO VTAM a gateway has been built to make the non-SNA devices emulate SNA devices. NMVT does not have such a clean information model as Internet's SNMP and ISO CMIP. Corresponding to their information model but less structured the NMVT carries protocol messages and their permitted values require lengthy search procedures. Alert and Response Time monitoring were the major applications for NMVT. Basic Alert subvector and Generic Alert Subvector identify among others alerttype, cause of alert and component type. The actual response data is contained in the RTM subvector. Syntax and semantics of the various objects and their attributes are defined at multiple places and make specifications hard to manage. The availability of products for all seven SNA-layers was decisive for the chosen approach.

AUTOMATED OPERATIONS USING AI

4.1 A Model for Managing Communication Objects

On the level of the information model no correspondence between SNA's NMTV patchwork and TCP/IP's Management Information Base(MIB) was achieved and the so the ISO standard Abstract Syntax Notation One(ASN.1) was not applied for describing the NMTV protocol. The identification of OPS5(=KnowledgeTool) modules with network management agents allowed dividing the function of network monitoring into logical modules. Automated Network Administration <=> Management Application(Management Agent) <=> Managed Object(Monitoring Agent).

The Management Agent employs a Summarization Monitoring Agent(NetView) to collect and filter the network monitoring information from various Monitoring Agents which are responsible for one or multiple managed objects. All these functions are provided through Netview.

4.2 The Access to Monitoring Agents

Each network addressable unit in a SNA environment is called a node. In a node there is always a Monitoring Agent, which the SNA terminology calls Physical Unit(PU). A Management Agent is a pre-configured listener for the monitored information. The change of pre-selected states in the managed objects triggers events which are forwarded to the listener without an explicit read request. The events are conveyed in terms of event codes and event arguments, similar to error codes of computer programs. The accessible information is modeled as hierarchical objects, the attributes having complicated data types. The protocol allows searching by filters or browsing through the hierarchy.

5. Case Based Reasoning for Helpdesk Functions

This function is achieved by a 'fusion' of database and expert system technology. The structure of each LHS in a rule is restricted to three conditions fitting into a mask of 214 bytes each and the RHS is restricted to maximally three actions with maximally 199 bytes, thus allowing the storage of all rules in a relational database. This allows a straightforward implementation of a learning helpdesk through rule updates in the relational rule data base.

BIBLIOGRAPHY