The South African Institute of Computer Scientists
and
Information Technologists

Proceedings

of the

1996 National Research and Development Conference

Industry meets Academia

Interaction Conference Centre, University of Natal,
Durban.
26 & 27 September

Edited by
Vevek Ram
FOREWORD

This book is a collection of papers presented at the National Research and Development Conference of the Institute of Computer Scientists and Information Technologists, held on 26 & 27 September, at the Interaction Conference Centre, University of Natal, Durban. The Conference was organised by the Department of Computer Science and Information Systems of The University of Natal, Pietermaritzburg.

The papers contained herein range from serious technical research to work-in-progress reports of current research to industry and commercial practice and experience. It has been a difficult task maintaining an adequate and representative spread of interests and a high standard of scholarship at the same time. Nevertheless, the conference boasts a wide range of high quality papers. The program committee decided not only to accept papers that are publishable in their present form, but also papers which reflect this potential in order to encourage young researchers and to involve practitioners from commerce and industry.

The organisers would like to thank IBM South Africa for their generous sponsorship and all the members of the organising and program committees, and the referees for making the conference a success. The organisers are indebted to the Computer Society of South Africa (Natal Chapter) for promoting the conference among its members and also to the staff and management of the Interaction Conference Centre for their contribution to the success of the conference.

On behalf of the Organising Committee
Vevek Ram
Editor and Program Chair
Pietermaritzburg, September 1996
Organising Committee

Conference General Chairs
Mr Rob Dempster and Prof Peter Warren (UNP)

Organising Chair
Dr Don Petkov (UNP)

Secretariat
Mrs Jenny Wilson

Program Chair
Prof Vevek Ram (UNP)

Program Committee
Prof Peter Wentworth, Rhodes
Dr Milan Hajek, UDW
Prof Derek Smith, UCT
Prof Anthony Krzesinski, Stellenbosch
Dr Don Petkov, UNP
Mr Rob Dempster, UNP
Prof Peter Warren, UNP
Table of Contents

Foreword i
Organising Committee ii
List of Contributors vi

Keynote Speaker

The Role of Formalism in Engineering Interactive Systems 1
M D Harrison and D J Duke

Plenary

Industry-Academic-Government Cooperation to boost Technological Innovation and People Development in South Africa 15
Tjaart J Van Der Walt

Checklist support for ISO 9001 audits of Software Quality Management Systems 17
A J Walker

The IS Workers, they are a-changin' 29
Derek Smith

Research

Examination Timetabling 35
E Parkinson and P R Warren

Generating Compilers from Formal Semantics 43
H Venter

Efficient State-exploration 63
J. Geldenhuys

A Validation Model of the VMTP Transport Level Protocol 75
H.N. Roux and P.J.A. de Villiers

Intelligent Systems

Automated Network Management using Artificial Intelligence 87
M Watzenboeck

A framework for executing multiple computational intelligent programs using a computational network 89
H L Viktor and I Cloete

A Script-Based prototype for Dynamic Deadlock Avoidance 95
C N Blewett and G J Erwin

Parallelism: an effective Genetic Programming implementation on low-powered Mathematica workstations 107
H. Suleman and M. Hajek

Feature Extraction Preprocessors in Neural Networks for Image Recognition 113
D Moodley and V Ram

iii
Real-Time Systems

- *The real-time control system model - an Holistic Approach to System Design*
 T Considine

- *Neural networks for process parameter identification and assisted controller tuning for control loops*
 M McLeod and VB Bajic

- *Reference Model for the Process Control Domain of Application*
 N Dhevcharran, A L Steenkamp and V Ram

Database Systems

- *The Pearl Algorithm as a method to extract information out of a database*
 J W Kruger

- *Theory meets Practice: Using Smith's Normalization in Complex Systems*
 A van der Merwe and W Labuschagne

- *A Comparison on Transaction Management Schemes in Multidatabase Systems*
 K Renaud and P Kotze

Education

- *Computer-based applications for engineering education*
 A C Hansen and P W L Lyne

- *Software Engineering Development Methodologies applied to Computer-Aided Instruction*
 R de Villiers and P Kotze

- *COBIE: A Cobol Integrated Environment*
 N Pillay

- *The Design and Usage of a new Southern African Information Systems Textbook*
 G J Erwin and C N Blewett

- *Teaching a first course in Compilers with a simple Compiler Construction Toolkit*
 G Ganchev

- *Teaching Turing Machines: Luxury or Necessity?*
 Y Velinov

Practice and Experience

- *Lessons learnt from using C++ and the Object Oriented Approach to Software Development*
 R Mazhindu-Shumba

- *Parallel hierarchical algorithm for identification of large-scale industrial systems*
 B Jankovic and VB Bajic
Information Technology and Organizational Issues

A cultural perspective on IT/End user relationships
A C Leonard 243

Information Security Management: The Second Generation
R Von Solms 257

Project Management in Practice
M le Roux 267

A Case-Study of Internet Publishing
A Morris 271

The Role of IT in Business Process Reengineering
C Blewett, J Cansfield and L Gibson 285

Abstracts

On Total Systems Intervention as a Systemic Framework for the Organisation of the Model Base of a Decision Support Systems Generator
D Petkov and O Petkova 299

Modular Neural Networks Subroutines for Knowledge Extraction
A Vahed and I Cloete 300

Low-Cost Medical Records System: A Model
O A Dami and T Seipone 301

A Methodology for Integrating Legacy Systems with the Client/Server Environment
M Redelinghuys and A L Steenkamp 302

Information Systems Outsourcing and Organisational Structure
M Hart and Ksavatzandis 303

The relational organisation model
B Laauwen 304

The Practical Application of a New Class of Non-Linear Smoothers for Digital Image Processing
E Cloete 305

A Technology Reference Model for Client/Server Software Development
R C Nienaber 306

The Feasibility Problem in the Simplex Algorithm
T G Scott, J M Hattingh and T Steyn 307

Author Index 309
List of Contributors

Vladimir B Bajic
Centre for Engineering Research,
Technikon Natal,
P O Box 953
Durban 4000

Ruth de Villiers
Department of Computer Science and
Information Systems
UNISA
Box 392, Pretoria, 0001

C N Blewett
Department of Accounting
University of Natal
King George V Avenue
Durban 4001

G J Erwin
Business Information Systems
University of Durban-Westville
Private Bag X54001
Durban 4000

Justin Cansfield
Department of Accounting
University of Natal
King George V Avenue
Durban 4001

G Ganchev
Computer Science Department
University of Botswana
PBag 0022
Gaberone, Botswana

Tom Considine
Apron Services (Pty) Ltd
P O Johannesburg
International Airport
1600

J Geldenhuys
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

Eric Cloete
School of Electrical Engineering
Cape Technikon
Box 652
Cape Town

Louise Gibson
BIS, Dept Accounting & Finance
University of Durban
Pvt Bag X10
Dalbridge 4014

I Cloete
Computer Science Department
University of Stellenbosch
Stellenbosch
7600

Mike Hart
Department of Information Systems
University of Cape Town
Rondebosch
7700

O A Daini
Department of Computer Science
University of Botswana
Gaborone
Botswana

M. Hajek
Department of Computer Science
University of Durban-Westville
Pvt Bag X54001
Durban 4000

Nirvani Devcharan
Umgeni Water
Box 9
Pietermaritzburg
3200

A C Hansen
Dept of Agricultural Engineering
University of Natal
Private Bag X01
Scottsville 3209

P J A de Villiers
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

J M Hattingh
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom 2520
Boris Jankovic
Centre for Engineering Research
Technikon Natal
P O Box 953,
Durban 4000

Paula Kotze
Department of Computer Science and
Information Systems
UNISA
Box 392
Pretoria, 0001

J W Kruger
Vista University
Soweto Campus
Box 359
Westhoven 2124

A C Leonard
Dept of Informatics
University of Pretoria
Pretoria.
2000

Ben Laauwen
Laauwen and Associates
P O Box 13773
Sinoville
0129

Mari Le Roux
Information technology, development: project
leader
Telkom IT 1015
Box 2753
Pretoria 0001

P W L Lyne
Dept of Agricultural Engineering
University of Natal
Private Bag X01
Scottsville 3209

Rose Mazhindu-Shumba
Computer Science Department
University of Zimbabwe
Box MP167
Harare, Zimbabwe

Meredith McLeod
Centre for Engineering Research,
Technikon Natal,
P O Box 953
Durban 4000

D Moodley
Computer Management Systems
Box 451
Umhlanga Rocks
4320

Andrew Morris
P O Box 34200
Rhodes Gift
7707

R C Nienaber
Technikon Pretoria
Dept of Information Technology
Private Bag X680
Pretoria 0001

E Parkinson
Department of Computer Science
University of Port Elizabeth
Box 1600
Port Elizabeth 6000

Don Petkov
Department of Computer Science and
Information Systems
University of Natal
PBag x01
Scottsville 3209

Olga Petkov
Technikon Natal
Box 11078
Dorpspruit 3206
Pietermaritzburg

N Pillay
Technikon Natal
Box 11078
Dorpspruit 3206
Pietermaritzburg
V Ram
Department of Computer Science and Information Systems
University of Natal
PBag x01
Scottsville 3209

H. Suleman
Department of Computer Science
University of Durban-Westville
Pvt Bag X54001
Durban 4000

Melinda Redelinghuys
Department of Computer Science and Information Systems
UNISA
Box 392
Pretoria, 0001

A Vahed
Department of Computer Science
University of Western Cape
Private Bag X17
Bellville 7530

Karen Renaud
Computer Science and Information Systems
UNISA
Box 392
Pretoria, 0001

A Van der Merwe
Computer science and Informations Systems
UNISA
P O Box 392
Pretoria,0001

H N Roux
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

Tjaart J Van Der Walt
Foundation for Research and Development
Box 2600
Pretoria, 0001

T G Scott
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom
2520

K Vavatzandis
Department of Information Systems
University of Cape Town
Rondebosch
7700

T Seipone
Department of Computer Science
University of Botswana
Gaborone
Botswana

Y Velinov
Dept Computer Science
University of Natal
Private Bag X01
Scottsville 3209

Derek Smith
Department of Information Systems
University of Cape Town
Rondebosch
7700

H Venter
Department of Computer Science
University of Port Elizabeth
Box 1600
Port Elizabeth 6000

Anette L Steenkamp
Department of Computer Science and Information Systems
UNISA
Box 392
Pretoria, 0001

H L Viktor
Computer Science Department
University of Stellenbosch
Stellenbosch
7600

T Steyn
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom 2520

R Von Solms
Department of Information Technology
Port Elizabeth Technikon
Private Bag X6011
Port Elizabeth 6000

viii
Checklist support for ISO 9001 audits of software quality management systems

AJ Walker
Software Engineering Applications Laboratory
Electrical Engineering, University of the Witwatersrand, Johannesburg, South Africa

Abstract: This paper presents an overview of a national project to develop a checklist to support audits and assessments of quality management systems in the field of software in terms of the compliance requirements of the ISO 9001 international standard for quality management. This national project is reviewed in terms of: project requirements, quality objectives and quality management practices; participation by industry locally and internationally; the use of the Internet for communication and document distribution; the product development and review process; the trialling (or validation) of the product; the incorporation of guidance from the Software Engineering standards emerging from ISO/IEC/JTC1/SC7. These standards offer guidance on international good practices over a broad range of topics, and the medium and long-term benefits and impact of the development of this product.

1 Introduction

ISO 9001 [1] has emerged as the undisputed international benchmark for quality management. Since its introduction in 1987 enterprises in more than 70 countries have established quality management systems based on the ISO 9000 family of International Standards. Tens of thousands of these organisations (more than 100 000 by end 1995) have invested in independent verification by registration - or certification - bodies that their quality systems conform to ISO 9000 standards. The ISO 9000 certificates then issued by the registrars to these enterprises can be used by the latter to create confidence among their clients in their ability to deliver goods and services that meet the clients requirements. The number of ISO 9000 certificates issued world-wide is expected to exceed 250 000 by the year 2000.

The ISO 9001 standard is a generic model for quality assurance in design development, production, installation and servicing. The requirements of the standard have to be interpreted by each organisation wishing to be registered formally as evidence of meeting its requirements.

While the primary market demand for ISO 9001 has come from the manufacturing sector, the standard is now being applied to all aspects of economic activity, including software development, health care, security services, project management, and many others.

The development of software was regarded as sufficiently important for ISO to release a guidance document in 1991 providing an interpretation of the application of ISO 9001 to the development of software products and services (ISO 9000-3)[2]. This initiative was followed up in the UK by the Department of Trade and Industry who developed a sector-specific registration scheme for the software industry, known as the TickIT Scheme. Today this scheme has registered more than 900 companies in the UK alone, with strong interest in the scheme being shown in many European countries and Australia.

With the exception of the TickIT scheme [3], there is little commonality in the approach to auditing software companies against the requirements of ISO 9001. This lack of uniformity creates a serious problem for companies which seek registration to ISO 9001 in the field of software development, since there is a large gap between the ISO 9001 clauses and their interpretation for the field of software. So much so that this creates considerable problems for those who create and maintain software quality management systems against the ISO 9001 standard, and those who interpret those requirements for compliance purposes (quality systems auditors).

One of the commonly used tools in quality management is a checklist, which may contain a set of criteria against which the efficacy of a process is judged.

Remarkably there is no internationally (or nationally) agreed Checklist against which compliance of software systems to the requirements of ISO 9001 can be assessed.
In view of this a project was initiated in November 1994 by the Software Engineering Applications Laboratory (SEAL) to develop a national standard (or more accurately *Recommended Practice*) under the auspices of the South African Bureau of Standards Technical Committee for Information Technology (TC71.1) for this purpose.

This paper presents an overview of this national project in terms of:

- project requirements, quality objectives and quality management practices
- participation by industry locally and internationally,
- the use of the Internet for communication and document distribution
- the product development and review process
- the trialling (or validation) of the product
- the incorporation of guidance from the Software Engineering standards emerging from ISO/IEC/JTC1/SC7. These standards offer guidance on international good practices over a broad range of topics.
- the medium and long-term benefits and impact of the development of this product.

2 A checklist for auditing software quality management systems

At the May 1995 meeting of SABS National Committee for Information Technology (TC71.1) launched a project to develop a checklist for auditing software systems in terms of the requirements of the international standard for quality management ISO 9001. The goal of the standard is to provide a common framework for assessments and follow-up audits for companies engaged in the development of software for supply to an external customer, or where software is developed on a large scale for internal applications.

It was believed that such a tool would go a long way to reducing the all too frequent adversarial relationship between the quality assurance manager on the one part, the software developers on the second part, and the external quality system auditors on the third part. Although there is a considerable need in this area, an investigation revealed that there were no suitable checklists for this purpose available, either locally or internationally.

Current international practice is, however, moving towards the use of checklists for conducting assessments/audits of ISO 9000 quality management systems, largely to bring harmony to audit and assessment practice.

In view of this the main purpose of this project is to development a checklist to support ISO 9001 compliant audits and assessments of organisations or organisational units engaged in software development where the customer for the developed software product or service may be internal or external to that organisational unit.

It is believed that this checklist will be useful to

- internal quality system auditors and quality managers, and
- to individuals or bodies who conduct 2nd or 3rd party surveillance assessments/audits of quality management systems in the software industry.
3 Project requirements

3.1 Product requirements

The first task of the project team was to develop, review and approve the Requirement Specification for the Checklist. These requirements were categorised into those which can be considered as functional and non-functional.

Functional requirements are tangible and can be measured, while non-functional requirements can be viewed as desirable goals or objectives for the project - nice to have but impossible to measure.

The following functional requirements were identified:

a. The requirements of ISO 9001 (as indicated by the 'shall' in each clause) will be probed by a searching question (or series of questions) to identify the extent of compliance of the system under review.

b. The Checklist will address the domain of software.

c. The development of the Checklist questions will be strongly guided by current and emerging international good practices, and will seek to use compliance indicators being used for this purpose elsewhere.

d. The Checklist shall be available in both hardcopy and electronic format.

e. The layout of the Checklist will be guided by applicable SABS Recommended Practices i.e. ARP 013: Drafting and Presentation of Standards [4].

f. The header of the Checklist table will support the conduct of the audit/assessment, and make provision for recording:
 i. Client
 ii. Date
 iii. Reference number for the assessment/audit
 iv. Person(s) interviewed (Shown as a table, with the headings of name, initials, function).
 v. Auditor(s)/Assessor(s)
 vi. The columns of the Checklist table will support the conduct of the audit/assessment by making provision for: Auditor initials, Assesseee/ Auditee initials, Checklist/ Compliance question, Company document identification, Result: [Categories A and B: Compliance; N - Non-compliance] [Categories C - F: P - Present; A - Absent] X - Not applicable, Implementation/ Observation/ Comments, Implementation Result, expressed in the [Categories A and B: Compliance; N - Non-compliance] [Categories C - F: P - Present; A - Absent] X - Not applicable, Reference to Findings Report

The following non-functional requirements were identified:

a. The use of the Checklist will serve to:
 i. enhance customer confidence in the client quality management system
 ii. improve the effectiveness and efficiency of audits/assessments
 iii. improve the objectivity of the assessment/audit

b. That international recognition of the product will be promoted.
3.2 Quality requirements

Beside identifying technical requirements for the product, quality objectives were identified for the process applied to the development of the Checklist and extent to which the product meet the technical requirements.

3.2.1 Project quality objectives

The quality requirements for the process applied to developing the Checklist were defined as:

a. To manage this product development in compliance with ISO 9001 requirements.

b. The Committee Draft stage will be used to apply the Checklist in practical assessment/auditing situations to determine the utility of the questions and to elicit feedback for validation purposes.

3.2.2 Product quality objectives

On the other hand, the quality objectives for the questions comprising the Checklist were required to demonstrate [5]:

a. **Objectivity**: a question is objective if it is possible to provide the answer without the opinion of the Checklist user.

b. **Completeness**: a question is complete if all the components needed to specify its meaning are present.

c. **Repeatability**: a question is repeatable if applied several times by the same Checklist user produces always the same answer.

d. **Reproducibility**: a question is reproducible if applied by different users always produces the same answer.

e. **Usefulness**: a question is useful if its answer contributes to the evaluation process.

f. **Measurability**: a question is measurable if it is possible to determine the attributes and their measures.

g. **Specific**: a question results in an attainable response.

h. **All the shall requirements of ISO 9001 are addressed in the Checklist.**

The extent to which these quality characteristics are exhibited by the Checklist questions may be evaluated by field trialling and by the application of formal inspection and review techniques.

4 Local and international collaboration

The project drew upon the following resources:

a. **Core Group Members**: (13) Individuals who are software quality system managers in local companies.

b. **Extended Core Group Members**: These include colleagues overseas experienced in software quality management (9) and a number of individuals locally who have shown interest in trialling the product in their companies (3 at the present time).

c. **Organisational Representatives of the SABS TC71.1 Information Technology Committee**: This group of individuals are responsible for approval of the developed product.
5 Project practices

5.1 Project communication

Project communication depends heavily upon the use of the Internet for communication and document distribution.

The SEAL File Server is the repository of the project documents and records.

All core group members have username and password access to the management products, technical products and records supported on the SEAL File Server.

The emerging Checklist technical products publicly available and are accessible using anonymous FTP access to the SEAL File Server thereby providing access to the Checklist products for trialling and validation. (See Appendix A).

A mail list has been created to support exchange of information and ideas between core and extended core group members. (See Appendix B)

5.2 Document management and control

The ISO 9001 Clause 4.5 document control requirements are comprehensively applied to all documents and recorded emanating from the project.

Briefly, the impact of such compliance includes:

a. Revision control is applied to all documents.

b. All documents and records are numbered and recorded in the project Master Document List.

c. Documents are 'issued' by placing them on the SEAL File Server and then issuing an e-mail 'Document Issue Notice' which advises members of the Document Name, Revision, Number and file path. Each individual is responsible for downloading the updated documents using ftp.

5.3 Configuration management

All projects artefacts are supported by a Configuration Management Plan, which describes the:

a. Document naming conventions

b. Record naming conventions

c. Description of project directory structure

d. Archiving arrangements

These conventions were defined at the start of the project and have ensured a common understanding of the project artefacts as the project has evolved.

5.4 Project tracking and control

The Project Management Plan supports details of the following:

a. Project dependencies

b. Human resources required
c. Human resources available

d. Team roles and responsibilities

e. Hardware and software required

f. Any training needs

g. The Work breakdown Structure (WBS), obligations and schedule, and log of completed tasks

Items a) - f) were assembled at the start of the project and are largely static. The WBS is actively managed as the project evolves.

5.5 Product reviews

Three types of reviews are used in the project:

a. Project reviews: These are undertaken in the context of formal meetings of the core group members. The purpose of the meeting is to review the status of the project and to plan in detail the next phase of product development.

i. Meeting Inputs: Meeting agenda, minutes of last meeting, Project work breakdown structure schedule and log of completed activities

ii. Meeting outputs: Meeting minutes; updated Project work breakdown schedule and log

b. Product development meetings: These are undertaken by small taskgroups comprising 4 or 5 core group members. They are held specifically to technically elaborate the Checklist questions.

i. Meeting inputs: Applicable software engineering standards, ISO 9000 series quality assurance and quality management standards; current revision Checklist questions.

ii. Meeting outputs: Next revision Checklist questions.

c. Product inspection meetings: These are undertaken by small task groups comprising 4 core group members. Formal product inspection methods are used. The primary purpose of the meeting is to apply quality control measures to the Checklist questions and to provide confidence that the product technical and quality requirements are met.

i. Meeting inputs: Current revision Checklist questions; forms for recording inspection and review decisions;

ii. Meeting outputs: Next revision Checklist questions; quality records comprising the completed inspection and review forms.

5.6 Product development management

Developing national or international standards is unavoidably a resource intensive and time-consuming process. The goal is to achieve consensus amongst the various stakeholders on the technical attributes of a new product - which may exert a considerable impact on prevailing practices, particularly if the standard affects contractual arrangements or legislation.

In view of this management authorisation operates on a number of different levels and is governed by product progress through the Working Draft, Committee Draft and Draft SA Standard stages, which are formally governed by SABS Recommended Practice ARP 017 [6].

a. New Work Item (NWI)
The requirements specification for the proposed Checklist was assembled and submitted to SABS Information Technology (TC71.1) in June 1995. The NWI proposal was formally approved in November of the same year.

b. Working Draft Stage (WD)

The first project-level meeting was held in early December 1995 where the team concentrated on two tasks: refining the product requirements and secondly, defining the project and product quality criteria. Effort was then committed to developing the front-end support document (i.e. front page, table of contents, and supporting information), the Checklist framework, and a basic set of questions to support ISO 9001. The output of this stage was Rev 0.20 comprising 21 documents, including the Introduction and a document supporting each clause of ISO 9001.

This task was completed by the target date (1 April 1996) and the product set was released as the Working Draft for a 6 week formal review period. A Call for Review was extended to the Core, Extended Core (electronic format) and to members of TC71.1 (circulated using hard copy).

The scope of the review was defined as the structure of the Checklist, rather than the detail supplied in the Checklist questions - which would be subjected to retailed review in the CD stage.

c. Committee Draft Stage (CD)

The project is presently in this stage of development. Effort is being devoted to the elaboration of the Checklist questions taking account of relevant international standards in Software Engineering (used as a source of indicators on good industry practices) and standards dealing with quality assurance (ISO 9001) and Quality Management (largely covered by the ISO 9004 series).

The output of this stage will be Revision 0.30 of the product set with development taking place over the period June to September 1996. Formal inspection reviews will be conducted on the 20 sub-products during a 3-day workshop scheduled from 4 - 6 November 1996.

While this stage is in progress the various sub-products comprising the Checklist will be tested (trialled, or validated) against the technical requirements and quality criteria.

The product (Revision 0.3) will be formally released in late November for a project level review with electronic distribution to core and extended core members, and hard copy distribution to TC71.1 members.

Should this review elicit only minor comment the product will be updated to take account of these concerns, and then forwarded to the Draft South African Standard stage.

d. Draft SA Standard Stage (DSS)

This stage is regarded as a formality in which only changes of an editorial nature are allowed. If serious technical concerns are raised the product is returned for a further CD review.

6 Product trialling and validation

The development path taken by this project is unusual in the emphasis placed on active testing of the product at each stage of the standardisation process. Indeed, the only way in serious feedback can be elicited is by testing the subproducts in actual audit or assessment situations.

The net result of this process is to enhance confidence in the use of the Checklist.
7 Medium to long-term benefits

This project is being viewed as a potential prototype of how standardisation activities might be conducted on a wider scale in this country in future.

The following aspects of the process are novel to this project:

a. the use of a formal quality management system to support the product development at all stages of the process.

b. the exclusive electronic networks for exchange and distribution of documentation and for project communication. Paper based documentation is only used where the project has to interface to the wider, non-electronic world.

A major consequence of applying these support processes to the project has been to dramatically reduce the development and review cycle, making it feasible to undertake the necessary technical development and review activity in a tight timeframe of 24 months, from initial New Work Item submission to SABS, to issue of the Checklist as a National Standard.

8 Impact of emerging SE standards

The questions in the Checklist are subdivided into two key categories: those which test compliance to a standard (ISO 9001) and those which offer guidance on the implementation of ISO 9001 in the software domain.

Until very recently, there were few software engineering standards which could be regarded as international, the most influential being the US Department of Defence MIL SPEC standards, and secondly the IEEE Software Engineering standards series.

The problem with the Military standards is that they are geared to the needs of that specific sector i.e. mission critical, long lifecycle products. There are exceedingly few instances of the MIL Standards being voluntarily applied in the commercial domain - largely on account of the perceived higher development cost.

While the IEEE standards have been available for a decade or more, they have not been widely applied outside of the quasi-classified product community, and essentially unknown or at best ignored by the commercial software sector.

Both standards series suffer from the limitation that they are regarded as industry specific and controlled by a powerful stakeholder i.e. the defence community.

The software engineering standards being assembled by the Software Engineering Standards Committee (SC7) operate under the Joint Technical Committee for Information Technology (JTC1) run under the auspices of the International Organisation for Standardisation (ISO) and the International Electrotechnical Commission (IEC).

SC7 presently supports 9 active workgroups resourced by ~200 international SE technical experts from 22 countries in the following technical areas:

a. **WG2: System Software Documentation:** Development of standards for the documentation of software systems.

b. **WG4: Tools and Environment:** Development of standards and technical reports for tools and Computer Aided Software/System Engineering (CASE) environments.
c. **WG6: Evaluation and Metrics:**
Development of standards and technical reports for software products evaluation and metrics for software products and processes.

d. **WG7: Life Cycle Management:**
Development of standards and technical reports on Life Cycle Management.

e. **WG8: Support of Life Cycle Processes:**
Development of standards and technical reports on Life Cycle Management processes.

f. **WG9: Software Integrity:**
Preparation of standards, technical reports, and guidance documents related to software integrity at the system and system interface level. In this context, software integrity is defined as ensuring the containment of risk or confining the risk exposure in software.

g. **WG10: Software Process Assessment:**
Development of standards and guidelines covering methods, practices and application of process assessment in software product procurement, development, delivery, operation, evolution and related service support.

h. **WG11: Software Engineering Data Definition and Representation:**
Development of standards and technical reports to define the data used and produced by software engineering processes, establish representations for communication by both humans and machines, and define data interchange formats.

i. **WG12: Functional size measurements:**
To establish a set of practical standards for functional size measurement. Functional size measurement is a general term for methods of sizing software from an external viewpoint and encompasses methods such as Function Point Analysis.

The SEAL Server is the national repository of these standards in electronic format where they are in Working Draft (WD), committee (CD) or Draft International Stages (DIS). (Once a standard reaches the stage of International Standard (IS) then it can only be obtained from the ISO head office in Geneva or from the national standards body (i.e. SABS).

Standards in electronic format are also subject to copyright protection, and are only made available for review or to support standards development activity.

At the present time there are 53 standards in various stages of development from WD to IS. This high level of activity places a tremendous review burden on local technical experts. To put this issue in perspective, the flagship Standards Committee is TC 176 which dealt with the ongoing development of the ISO 9000 series. TC 176 supports a work group per standard document, while in the SC7 context each work group might have between 3 and 30 standards to manage!

9 Lessons learned

Many software developers might react to a project of this nature with a big yawn. The processes described above seem to be a far cry from the chaotic practices of the conventional software development enterprise.

The project and its context i.e. the development of national and international standards in software engineering, must be taken seriously for the following reasons:

a. South Africa is now part of the world community - and conditions affecting our capacity and capability for international trade are vitally important to the national survival and well-being.
b. Compliance to the requirements of the ISO 9001 standards is a given condition for doing business with much of the industrialised world - as many companies in this country are discovering to their cost.

c. The software engineering series of ISO \IEC\JTC1\SC7 are being used as compliance indicators when evaluating the effectiveness of quality management systems of software companies seeking ISO 9001 certification.

d. The flagship standard of the SC7 series (ISO 12207 [7]) is now a required reference point for the development of all future ISO SE standards and is exerting a strong influence on the process model under consideration for the next revision of ISO 9001, due for release in 2000.

e. There strong moves in large local corporate users of Information Technology to take software quality management seriously. Evidence of this is the number of instances which ISO 9001 requirements are now indicated in contracts from software product and service suppliers.

Tertiary education in this country, with a couple of exceptions, is largely ignorant of the pressures being brought to bear on local companies. In view of this new graduates need to be technically skilled and wellversed and experienced in key project support processes (i.e. software project management, software quality assurance, software configuration management and requirements management.)

10 Acknowledgements

The author gladly acknowledges the strong support from the core and extended group members comprising the Checklist development team, and in particular the Project Leader of SABS TC71.1 (Mr Wotjek Skowronski) for his constant support and encouragement in the development of this national standard.

11 References

Contact Details: Professor A.J. Walker, Software Engineering Applications Laboratory, Electrical Engineering, University of the Witwatersrand, Private Bag 3, P.O. Wits, 2050, Johannesburg, South
Appendix A: Access to the Checklist

The audit Checklist can be downloaded from the SEAL Server via FTP at the following site:

seal.ee.wits.ac.za

The files are available in the directory:

ftp/pub/iso-acl/install

The following files must be downloaded:

- isoacl2p.exe - Self-extracting archive of Revision 0.2+ of the Word for Windows 6.0 files for the ISO 9001 Audit Checklist for Software product.

- instal2p.txt - Installation instructions

- review2p.txt - Product review invitation form

For convenience the file ISOACL2P.EXE is also supplied in uue encoded format, as a file named ISOACL2P.UUE.

The de-archived files will occupy about 2.5 M Bytes of file space.

The file format is Word for Windows Version 6.0.

Appendix B: Subscribing to the Checklist mail list

All details concerning product updates are distributed using the SEAL Mail List Server.

To receive these notices on a regular basis and to participate in discussions with others users we ask you to subscribe to the Mail List.

This registration is performed by sending an e-mail note as follows:

E-mail address: mail-list@seal.ee.wits.ac.za

Subject:
Copies to:
Message:

subscribe iso-acl

(No other information must appear in the body of the message).