Proceedings

of the

1996 National Research and Development Conference

Industry meets Academia

Interaction Conference Centre, University of Natal, Durban.
26 & 27 September

Edited by
Vevek Ram
FOREWORD

This book is a collection of papers presented at the National Research and Development Conference of the Institute of Computer Scientists and Information Technologists, held on 26 & 27 September, at the Interaction Conference Centre, University of Natal, Durban. The Conference was organised by the Department of Computer Science and Information Systems of The University of Natal, Pietermaritzburg.

The papers contained herein range from serious technical research to work-in-progress reports of current research to industry and commercial practice and experience. It has been a difficult task maintaining an adequate and representative spread of interests and a high standard of scholarship at the same time. Nevertheless, the conference boasts a wide range of high quality papers. The program committee decided not only to accept papers that are publishable in their present form, but also papers which reflect this potential in order to encourage young researchers and to involve practitioners from commerce and industry.

The organisers would like to thank IBM South Africa for their generous sponsorship and all the members of the organising and program committees, and the referees for making the conference a success. The organisers are indebted to the Computer Society of South Africa (Natal Chapter) for promoting the conference among its members and also to the staff and management of the Interaction Conference Centre for their contribution to the success of the conference.

On behalf of the Organising Committee
Vevek Ram
Editor and Program Chair
Pietermaritzburg, September 1996
Organising Committee

Conference General Chairs
Mr Rob Dempster and Prof Peter Warren (UNP)

Organising Chair
Dr Don Petkov (UNP)

Secretariat
Mrs Jenny Wilson

Program Chair
Prof Vevek Ram (UNP)

Program Committee
Prof Peter Wentworth, Rhodes
Dr Milan Hajek, UDW
Prof Derek Smith, UCT
Prof Anthony Krzesinski, Stellenbosch
Dr Don Petkov, UNP
Mr Rob Dempster, UNP
Prof Peter Warren, UNP
Table of Contents

Foreword i
Organising Committee ii
List of Contributors vi

Keynote Speaker

The Role of Formalism in Engineering Interactive Systems
M D Harrison and D J Duke

Plenary

Industry-Academic-Government Cooperation to boost Technological Innovation and People Development in South Africa
Tjaart J Van Der Walt

Checklist support for ISO 9001 audits of Software Quality Management Systems
A J Walker

The IS Workers, they are a-changin’
Derek Smith

Research

Examination Timetabling
E Parkinson and P R Warren

Generating Compilers from Formal Semantics
H Venter

Efficient State-exploration
J. Geldenhuys

A Validation Model of the VMTP Transport Level Protocol
H.N. Roux and P.J.A. de Villiers

Intelligent Systems

Automated Network Management using Artificial Intelligence
M Watzenboeck

A framework for executing multiple computational intelligent programs using a computational network
H L Viktor and I Cloete

A Script-Based prototype for Dynamic Deadlock Avoidance
C N Blewett and G J Erwin

Parallelism: an effective Genetic Programming implementation on low-powered Mathematica workstations
H. Suleman and M. Hajek

Feature Extraction Preprocessors in Neural Networks for Image Recognition
D Moodley and V Ram

Real-Time Systems

The real-time control system model - an Holistic Approach to System Design
T Considine

Neural networks for process parameter identification and assisted controller tuning for control loops
M McLeod and VB Bajic

Reference Model for the Process Control Domain of Application
N Dhevcharran, A L Steenkamp and V Ram

Database Systems

The Pearl Algorithm as a method to extract information out of a database
J W Kruger

Theory meets Practice: Using Smith's Normalization in Complex Systems
A van der Merwe and W Labuschagne

A Comparison on Transaction Management Schemes in Multidatabase Systems
K Renaud and P Kotze

Education

Computer-based applications for engineering education
A C Hansen and P W L Lyne

Software Engineering Development Methodologies applied to Computer-Aided Instruction
R de Villiers and P Kotze

COBIE: A Cobol Integrated Environment
N Pillay

The Design and Usage of a new Southern African Information Systems Textbook
G J Erwin and C N Blewett

Teaching a first course in Compilers with a simple Compiler Construction Toolkit
G Ganchev

Teaching Turing Machines: Luxury or Necessity?
Y Velinov

Practice and Experience

Lessons learnt from using C++ and the Object Oriented Approach to Software Development
R Mazhindu-Shumba

Parallel hierarchical algorithm for identification of large-scale industrial systems
B Jankovic and VB Bajic
Information Technology and Organizational Issues

A cultural perspective on IT/End user relationships
A C Leonard 243

Information Security Management: The Second Generation
R Von Solms 257

Project Management in Practice
M le Roux 267

A Case-Study of Internet Publishing
A Morris 271

The Role of IT in Business Process Reengineering
C Blewett, J Cansfield and L Gibson 285

Abstracts

On Total Systems Intervention as a Systemic Framework for the Organisation of the Model Base of a Decision Support Systems Generator
D Petkov and O Petkova 299

Modular Neural Networks Subroutines for Knowledge Extraction
A Vahed and I Cloete 300

Low-Cost Medical Records System: A Model
O A Dami and T Seipone 301

A Methodology for Integrating Legacy Systems with the Client/Server Environment
M Redelinghuys and A L Steenkamp 302

Information Systems Outsourcing and Organisational Structure
M Hart and Kavatzandis 303

The relational organisation model
B Laauwen 304

The Practical Application of a New Class of Non-Linear Smoothers for Digital Image Processing
E Cloete 305

A Technology Reference Model for Client/Server Software Development
R C Nienaber 306

The Feasibility Problem in the Simplex Algorithm
T G Scott, J M Hattingh and T Steyn 307

Author Index 309
List of Contributors

Vladimir B Bajic
Centre for Engineering Research,
Technikon Natal,
P O Box 953
Durban 4000

C N Blewett
Department of Accounting
University of Natal
King George V Avenue
Durban 4001

Justin Cansfield
Department of Accounting
University of Natal
King George V Avenue
Durban 4001

Tom Considine
Apron Services (Pty) Ltd
P O Johannesburg
International Airport
1600

Eric Cloete
School of Electrical Engineering
Cape Technikon
Box 652
Cape Town

I Cloete
Computer Science Department
University of Stellenbosch
Stellenbosch
7600

O A Daini
Department of Computer Science
University of Botswana
Gaborone
Botswana

Nirvani Devcharan
Umgeni Water
Box 9
Pietermaritzburg
3200

P J A de Villiers
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

Ruth de Villiers
Department of Computer Science and Information Systems
UNISA
Box 392, Pretoria, 0001

G J Erwin
Business Information Systems
University of Durban-Westville
Private Bag X54001
Durban 4000

G Ganchev
Computer Science Department
University of Botswana
P Bag 0022
Gaberone, Botswana

J Geldenhuys
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

Louise Gibson
BIS, Dept Accounting & Finance
University of Durban
Pvt Bag X10
Dalbridge 4014

Mike Hart
Department of Information Systems
University of Cape Town
Rondebosch
7700

M. Hajek
Department of Computer Science
University of Durban-Westville
P Bag X54001
Durban 4000

A C Hansen
Dept of Agricultural Engineering
University of Natal
Private Bag X01
Scottsville 3209

J M Hattingh
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom 2520
Boris Jankovic
Centre for Engineering Research, Technikon Natal
P O Box 953, Durban 4000

Paula Kotze
Department of Computer Science and Information Systems, UNISA
Box 392, Pretoria, 0001

J W Kruger
Vista University
Soweto Campus
Box 359, Westhoven 2124

A C Leonard
Dept of Informatics
University of Pretoria
Pretoria, 2000

Ben Laauwen
Laauwen and Associates
P O Box 13773, Sinoville, 0129

Mari Le Roux
Information technology, development: project leader
Telkom IT 1015
Box 2753, Pretoria 0001

P W L Lyne
Dept of Agricultural Engineering
University of Natal
Private Bag X01, Scottsville 3209

Rose Mazhindu-Shumba
Computer Science Department
University of Zimbabwe
Box MP167, Harare, Zimbabwe

Meredith McLeod
Centre for Engineering Research, Technikon Natal
P O Box 953, Durban 4000

D Moodley
Computer Management Systems
Box 451, Umhlanga Rocks 4320

Andrew Morris
P O Box 34200, Rhodes Gift, 7707

R C Nienaber
Technikon Pretoria
Dept of Information Technology
Private Bag X680, Pretoria 0001

E Parkinson
Department of Computer Science
University of Port Elizabeth
Box 1600, Port Elizabeth 6000

Don Petkov
Department of Computer Science and Information Systems
University of Natal
P Bag x01, Scottsville 3209

Olga Petkov
Technikon Natal
Box 11078, Dorpspruit 3206, Pietermaritzburg

N Pillay
Technikon Natal
Box 11078, Dorpspruit 3206, Pietermaritzburg
V Ram
Department of Computer Science and
Information Systems
University of Natal
PBag x01
Scottsville 3209

H. Suleman
Department of Computer Science
University of Durban-Westville
Pvt Bag X54001
Durban 4000

Melinda Redelinghuys
Department of Computer Science and
Information Systems
UNISA
Box 392
Pretoria, 0001

A Vahed
Department of Computer Science
University of Western Cape
Private Bag X17
Bellville 7530

Karen Renaud
Computer Science and Information Systems
UNISA
Box 392
Pretoria, 0001

A Van der Merwe
Computer science and Informations Systems
UNISA
P O Box 392
Pretoria,0001

H N Roux
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

Tjaart J Van Der Walt
Foundation for Research and Development
Box 2600
Pretoria, 0001

T G Scott
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom
2520

K Vavatzandis
Department of Information Systems
University of Cape Town
Rondebosch
7700

T Seipone
Department of Computer Science
University of Botswana
Gaborone
Botswana

Y Velinov
Dept Computer Science
University of Natal
Private Bag X01
Scottsville 3209

Derek Smith
Department of Information Systems
University of Cape Town
Rondebosch
7700

H Venter
Department of Computer Science
University of Port Elizabeth
Box 1600
Port Elizabeth 6000

Anette L Steenkamp
Department of Computer Science and
Information Systems
UNISA
Box 392
Pretoria, 0001

H L Viktor
Computer Science Department
University of Stellenbosch
Stellenbosch
7600

T Steyn
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom 2520

R Von Solms
Department of Information Technology
Port Elizabeth Technikon
Private Bag X6011
Port Elizabeth 6000
A J Walker
Software Engineering Applications
Laboratory
Electrical Engineering
University of Witwatersrand
Johannesburg

P Warren
Computer Science Department
University of Natal
P/Bag X01
Scottsville 3209

Max Watzenboeck
University of Botswana
Private Bag 0022
Gaborone
Botswana
PROJECT MANAGEMENT IN CASE

Mari le Roux
Information Technology Development
Telkom SA Ltd, Pretoria
E-mail: lrouxm@telkom.co.za

Abstract

Thoughts are exchanged on Project Management in practice, specifically regarding projects analysed and systems developed with the Composer by IEF CASE tool. The information engineering methodology (IEM) that is being used includes all aspects around the project and the roles and responsibilities of team members.

Project management is NOT just acting according to the book in analysing a business area and developing a system. Use books only as guidelines. It is being pro-active and to manage a team to implement a solution according to the users' requirements. The importance of standards has to emphasised as well.

A proper analysis cuts down on maintenance time and effort after a computerised system has been implemented. The data model, which is the output from the analysis project, becomes the input for the construction project ... in the same CASE tool.

Abbreviations

BAA Business Area Analysis
BSD Business System Design
BSI Business System Implementation
CASE computer-aided software engineering
CRUD create, read, update, delete
DBA database administrator
DLC development life cycle
FPA function point analysis
IEF Information Engineering Facility™
IEM Information Engineering Methodology
IRM Integration Resource Management
JAD joint applications development
QA Quality assurance

Introduction

Where does a project start? It starts with the approval of a request for a solution. The project scope must be documented and this is when the project manager is appointed. Along with this appointment the user project manager is identified as well.

According to the book one has to start off with the analysis, report on the feasibility and then design, construct and implement the solution. To be more practical, first you have to realise that each project is unique. What has worked for another project may not work for your project, though you should still follow a generic plan and fill it in as you progress.

You may be lucky to be able to select your team members, though more often you have to take who is available. After the office has been set up, every team member has to study the project standards, e.g. Naming Conventions. This is extremely important for the team to be able to speak and understand the same language amongst each other but also with other developers and the maintenance team. Standards are NOT rigid rules; it is a basis or a guideline to work with. Now the team has to be organised and responsibilities assigned to team members with the relevant skills.
Often skills may be needed that can not be taught in formal training and then a consultant is appointed as an extra team member.

<table>
<thead>
<tr>
<th>Roles</th>
<th>User</th>
<th>Analyst</th>
<th>Project Manager</th>
<th>DBA</th>
<th>IRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiate project</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scope project</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interview users</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Define model</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyse processes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facilitate QA reviews</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Report progress</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design database</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Design dialogs</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Examples of Roles and Responsibilities

It is amazing how much more effective a team operates if everybody knows what is expected from everybody.

Analysis

Identify and contact people that may provide input to the analysis process.

Now we start to touch the CASE tool. Questions are prepared and afterwards the answers are analysed and entered into the analysis toolset of Composer by IEF. It will depend on your type of project whether you conduct interviews or facilitate JAD sessions or both. The project we completed just now is a tool to support information architecture functions, the entry-point of all development projects. It provides a centralised corporate, as well as hierarchical view of where projects, applications, business objects and objectives of our company reside. It is a specialised field and therefore it was more worthwhile to interview strategists and information managers of different business units separately, opposed to facilitating JAD sessions with groups of users. It was more personal and valuable information was gathered in this manner.

How can CASE tools help this project phase?

After the interviews, a visual layout is designed from the data. The following day can the business expert already review if all the input was interpreted correctly.

After each session this data model grows and becomes more complete. When sign-off time comes, a proper QA session is arranged with the integration resource management section to confirm standards, conformity and to ensure that duplication is managed in a controlled environment. The bottom line is - everybody speaks the same language.

Deliverables

Documentation needs to be done and approved at various checkpoints during the DLC. The most important document about your project is the project definition or project charter. This is done up front about your project and can't be done from within the tool. As nobody enjoys doing documentation, the tool comes in handy with some diagrams. The descriptions and activities were entered during the analysis phase and can now just be extracted in a presentable format and circulated for approval or passed of information. The CRUD matrix and dialog flows can also be accessed through the tool.
A feasibility study report is compiled after the analysis to document the decisions that are made in workshops held with the following sections: capacity planning, business efficiency, networks, business continuity, software support, operations and production. It includes the acceptance of the continuation of the development project and confirms the implementation platform. You have to involve people from other sections from the start in your project. It won’t help much that you have this brilliant hi-tech system but the production and network’s sections can’t help with the roll-out throughout the company. What if the capacity planning section tells you what there isn’t space for your users’ precious data?

The approved data model is called the business model and is the direct deliverable of the BAA. It will now be scrutinised to optimise normalisation and to add special design features. The crux of this CASE tool is that the analysis is used as INPUT for the design and construction phase. Multiple business systems may be identified for possible implementation. These BSI projects can run simultaneously or be completed in sequence.

The implemented system is the ultimate deliverable!

Checkpoints

Reviews should be conducted throughout the project to ensure quality and to confirm that the contents are according to the user’s specifications.

Types of meetings:
- Business user reviews: confirms requirements, accepts prototype, confirms test scripts, approval
- Management reviews: determine scope of BAA and BSI
- Integration reviews: QA, scrutinise design, query duplication
- Function point count: determine productivity figures
- Technical reviews: focus on performance and operational requirements, prepare for production

Why is time keeping important?

You have to practise to schedule better and more realistic. You need history to become more experienced. A baseline is established in the company and each new project can be measured against these productivity figures. A function point count is done on each project on two occasions: after the analysis (the FPA can be used to schedule the construction phase) and after implementation. Better results are achieved when detailed time allocations are reflected against the activities.

The project manager would monitor the tasks. It is the project manager’s responsibility to enable the team to do their work and straighten out problems before it can impact the schedule.

References

