
The South African Institute of Computer Scientists
and

Information Technologists

Proceedings

of the

1996 National Research and
Development Conference

Industry meets Academia

Interaction Conference Centre, University of Natal,
Durban.

26 & 27 September

Edited by

VevekRam

©1996 Copyrights reside with the original authors who may be contacted directly

ISBN 0-620-20568-7

Cover printed by Natal Printers (Pty) Ltd, Pietermaritzburg
Copying by the Multicopy Centre, University of Natal, Pietermaritzburg
Binding by Library Technical Services, University of Natal, Pietermaritzburg

The views expressed in this book are those of the individual authors

FOREWORD

This book is a collection of papers presented at the National Research and Development Conference
of the Institute of Computer Scientists and Information Technologists, held on 26 & 27 September,
at the Interaction Conference Centre, University of Natal, Durban. The Conference was organised by
the Department of Computer Science and Information Systems of The University: of Natal,
Pietennaritzburg.
The papers contained herein range from serious technical research to work-in-progress reports of
current research to industry and commercial practice and experience. It has been a difficult task
maintaining an adequate and representative spread of interests and a high standard of scholarship at
the same time. Nevertheless, the conference boasts a wide range of high quality papers. The program
committee decided not only to accept papers that are publishable in their present form, but also papers
which reflect this potential in order to encourage young researchers and to involve practitioners from
commerce and industry.
The organisers would like to thank IBM South Africa for their generous sponsorship and all the
members of the organising and program committees, and the referees for making the conference a
success. The organisers are indebted to the Computer Society of South Africa (Natal Chapter) for
promoting the conference among its members and also to the staff and management of the Interaction
Conference Centre for their contribution to the success of the conference.

On behalf of the Organising Committee
VevekRam

Editor and Program Chair
Pietennaritzburg, September 1996

Organising Committee

Conference General Chairs
Mr Rob Dempster and Prof Peter Warren (UNP)

Organising Chair
Dr Don Petkov (UNP)

Secretariat
Mrs Jenny Wilson

Program Chair
Prof V evek Ram (UNP)

Program Committee

Prof Peter Wentworth, Rhodes
Dr Milan Hajek, UDW
Prof Derek Smith, UCT
Prof Anthony Krzesinski, Stellenbosch
Dr Don Petkov, UNP
Mr Rob Dempster, UNP
Prof Peter Warren, UNP

ii

Foreword
Organising Committee
List of Contributors

Keynote Speaker

Table of Contents

The Role of Formalism in Engineering Interactive Systems
M D Harrison and D J Duke

Plenary

11

1

Industry-Academic-Government Cooperation to boost Technological Innovation 15
and People Development in South Africa
Tjaart J Van Der Walt

Checklist support for ISO 9001 audits of Software Quality Management Systems 17
AJWalker

The JS Workers, they are a-changin' 29
Derek Smith

Research

Examination Timetabling
E Parkinson and P R Warren

Generating Compilers from Formal Semantics
HVenter

Efficient State-exploration
J. Geldenhuys

A Validation Model of the VMTP Transport Level Protocol
H.N. Roux and P.J.A. de Villiers

Intelligent Systems

Automated Network Management using Artificial Intelligence
M Watzenboeck

A framework for executing multiple computational intelligent programs
using a comput�tional network
H L Viktor and I Cloete

A Script-Based prototype for Dynamic Deadlock Avoidance
C N Blewett and G J Erwin

Parallelism: an effective Genetic Programming implementation
on low-powered Mathematica workstations
H. Suleman and M. Hajek

Feature Extraction Preprocessors in Neural Networks for Image Recognition
D Moodley and V Ram

iii

35

43

63

75

87

89

95

107

113

Real-Time Systems

The real-time control system model - an Holistic Approach to System Design
T Considine

Neural networks for process parameter identification and assisted controller
tuning for control loops
M Mc�d and VB Bajic

Reference Model for the Process Control Domain of Application
N Dhevcharran, AL Steenkamp and V Ram

Database Systems

119

127

137

The Pearl Algorithm as a method to extract infomation out of a database 145
JWKruger

Theory meets Practice: Using Smith's Normalization in Complex Systems 151
A van der Merwe and W Labuschagne

A Comparison on Transaction Management Schemes in Multidatabase Systems · 159
K Renaud and P Kotze

Education

Computer-based applications for engineering education 171
AC Hansen and PW L Lyne

Software Engineering Development Methodologies applied to 179
Computer-Aided Instruction
R de Villiers and P Kotze

COBIE: A Cobol Integrated Environment 187
NPillay

The Design and Usage of a new Southern African Information Systems Textbook 195
G J Erwin and C N Blewett

Teaching a first course in Compilers with a simple Compiler Construction Toolkit 211
GGanchev

Teaching Turing Machines: Luxury or Necessity? 219
YVelinov

Practice and Experience

Lessons learnt from using C+ + and the Object Oriented Approach to 227
Software Development
R Mazhindu-Shumba

Parallel hierarchical algorithm for identification of large-scale industrial systems 235
B Jankovic and VB Bajic

iv

Information Technology and Organizational Issues

A cultural perspective on IT/End user relationships
AC Leonard

Information Security Management: The Second Generation
R Von Sohns

Project Management in Practice
M le Roux

A Case-Study of Internet Publishing
A Morris

The Role of IT in Business Process Reengineering
C Blewett, J Cansfield and L Gibson

Abstracts

243

257

267

271

285

On Total Systems Intervention as a Systemic Framework/or the Organisation 299
of the Model Base of a Decision Support Systems Generator
D Petkov and O Petkova

Modular Neural Networks Subroutines for Knowledge Extraction 300
AV ahed and I Cloete

Low�ost Medical Records System: A Model 30 I
0 A Dami and T Seipone

A Methodology for Integrating Legacy Systems with the Client/Server Environment 302
M Redelinghuys and AL Steenkamp

Information Systems Outsourcing and Organisational Structure 303
M Hart and Kvavatzandis

The relational organisation model 304
BLaauwen

The Practical Application of a New Class of Non-Linear Smoothers for 305
Digital Image Processing
E Cloete

A Technology Reference Model/or Client/Server Software Development 306
RC Nienaber

The Feasibility Problem in the Simplex Algorithm 307
T G Scott, J M Hattingh and T Steyn

Author Index 309

V

Vladimir B Bajic
Centre for Engineering Research,
Technikon Natal,
PO Box 953
Durban4000

C NBlewett
Department of Accounting
University of Natal
King George V A venue
Durban4001

Justin Cansfield
Department of Accounting
University of Natal
King George V A venue
Durban 4001

Tom Considine
Apron Services (Pty) Ltd
P O Johannesburg
International Airport
1600

Eric Cloete
School of Electrical Engineering
Cape Technikon
Box 65 2
Cape Town

I Cloete
Computer Science Department
University of Stellenbosch
Stellenbosch
7600

0 A Daini
Department of Computer Science
University of Botswana
Gaborone
Botswana

Nirvani Devcharan
Umgeni Water
Box9
Pietermaritzburg
3200

P J A de Villiers
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

List of Contributors

vi

Ruth de Villiers
Department of Computer Science and
Information Systems
UNISA
Box 392, Pretoria, 0001

G JErwin
Business Information Systems
University of Durban-Westville
Private Bag X54001
Durban4000

GGanchev
Computer Science Department
University of Botswana
PBag 0022
Gaberone, Botswana

J Geldenhuys
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

Louise Gibson
BIS, Dept Accounting & Finance
University of Durban
Pvt Bag XIO
Dalbridge 4014

Mike Hart
Department of Infonnation Systems
University of Cape Town
Rondebosch
7700

M. Hajek
Department of Computer Science
University of Durban-Westville
Pvt Bag X54001
Durban4000

AC Hansen
Dept of Agricultural Engineering
University of Natal
Private Bag XO 1
Scottsville 3209

JMHattingh
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom 2520

Boris Jankovic
Centre for Engineering Research
Technikon Natal

P OBox 953 ,
Durban4000

Paula Kotze
Department of Computer Science and
Information Systems

UNISA
Box 392
Pretoria, 0001

JWKruger
Vista University
Soweto Campus
Box 359
Westhoven 2124

AC Leonard
Dept of Informatics
University of Pret6ria
Pretoria
2000

Ben Laauwen
Laauwen and Associates
PO Box 13773
Sinoville

0129

Mari Le Roux
Information technology, development: project
leader
Telkom IT 1015
Box 2753

Pretoria 0001

PWLLyne
Dept of Agricultural Engineering
University of Natal
Private Bag X O 1
Scottsville 3209

Rose Mazhindu-Shumba
Computer Science Department
University of Zimbabwe
BoxMP167

Harare, Zimbabwe

vii

Meredith McLeod
· Centre for Engineering Research,

Technikon Natal,
POBox953
Durban4000

DMoodley
Computer Management Systems
Box 451

Umhlanga Rocks
4320

Andrew Morris
POBox34200
Rhodes Gift
7707

RC Nienaber
Technikon Pretoria
Dept of Information Technology
Private Bag X680
Pretoria 0001

E Parkinson
Department of Computer Science
University of Port Elizabeth
Box 1600

Port Elizabeth 6000

Don Petkov
Department of Computer Science and
Information Systems

University of Natal
PBag xOl
Scottsville 3209

Olga Petkov
'rechnikon Natal
Box 11078

Dorpspruit 3206
Pietermaritzburg

N Pillay
Technikon Natal
Box 11078
Dorpspruit 3206
Pietermaritzburg

VRam
Department of Computer Science and
Information Systems
University ofNatal
PBag xOl
Scottsville 3209

Melinda Redelinghuys
Department of Computer Science and
Information Systems
UNISA
Box 392
Pretoria, 000 I

Karen Renaud
Computer Science and Information Systems
UNISA
Box 392
Pretoria, 0001

HNRoux
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

T G Scott
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom
25 20

T Seipone
Department of Computer Science
University of Botswana
Gaborone
Botswana

Derek Smith
Department of Information Systems
University of Cape Town
Rondebosch
7700

Anette L Steenkamp
Department of Computer Science and
Information Systems
UNISA
Box 392
Pretoria, 000 I

T Steyn
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom 25 20

viii

H. Soleman
Department of Computer Science
University of Durban-Westville
Pvt Bag X54001
Durban 4000

A Vahed
Department of Computer Science
University of Western Cape
Private Bag Xl 7
Beliville 7530

A Van der Merwe
Computer science and Informations Systems
UNISA
P0Box392
Pretoria,0001

Tjaart J Van Der Walt
Foundation for Research and Development
Box2600
Pretoria, 0001

K Vavatzandis
Department of Information Systems
University of Cape Town
Rondebosch
7700

Y Velinov
Dept Computer Science
University of Natal
Private Bag XOl
Scottsville 3209

HVenter
Department of Computer Science
University of Port Elizabeth
Box 1600
Port Elizabeth 6000

H L Viktor
Computer Science Department
University of Stellenbosch
Stellenbosch
7600

RVonSolms
Department of lnformation Technology
Port Elizabeth Technikon
Private Bag X6011
Port Elizabeth 6000

AJWalker
Software Engineering Applications
Laboratory
Electrical Engineering

University of Witwatersrand
Johannesburg

PWarren
Computer Science Department
University of Natal

P/Bag XOl
Scottsville 3209

ix

Max Watzenboeck
University of Botswana
Private Bag 0022
Gaberone
Botswana

The South African Institute of Computer Scientists
and

Information Technologists

· Proceedings

of the

1996 National Research and
Development Conference

Industry meets Academia

Interaction Conference Centre, University of Natal,
Durban.

26 & 27 September

Edited by
Vevek Ram

©1996 Copyrights reside with the original authors who may be contacted directly

ISBN 0-620-20568-7

Cover printed by Natal Printers (Pty) Ltd, Pietermaritzburg
Copying by the Multicopy Centre, University of Natal, Pietermaritzburg
Binding by Library Technical Services, University of Natal, Pietermaritzburg

The views expressed in this book are those of the individual authors

FOREWORD

This book is a collection of papers presented at the National Research and Development Conference
of the Institute of Computer Scientists and Information Technologists, held on 26 & 27 September,
at the Interaction Conference Centre, University of Natal, Durban. The Conference was organised by
the Department of Computer Science and Information Systems of The University of Natal,
Pietermaritzburg.
The papers contained herein range from serious technical research to work-in-progress reports of
current research to industry and commercial practice and experience. It has been a difficult task
maintaining an adequate and representative spread of interests and a high standard of scholarship at
the same time. Nevertheless, the conference boasts a wide range of high quality papers. The program
committee decided not only to accept papers that are publishable in their present form, but also papers
which reflect this potential in order to encourage young researchers and to involve practitioners from
commerce and industry.
The organisers would like to thank IBM South Africa for their generous sponsorship and all the
members of the organising and program committees, and the referees for making the conference a
success. The organisers are indebted to the Computer Society of South Africa (Natal Chapter) for
promoting the conference among its members and also to the staff and management of the Interaction
Conference Centre for their contribution to the success of the conference.

On behalf of the Organising Committee
VevekRam

Editor and Program Chair
Pietermaritzburg, September 1996

Organising Committee

Conference General Chairs
Mr Rob Dempster and Prof Peter Warren (UNP)

Organising Chair
Dr Don Petkov (UNP)

Secretariat
Mrs Jenny Wilson

Program Chair
Prof Vevek Ram (UNP)

Program Committee

Prof Peter Wentworth, Rhodes
Dr Milan Hajek, UDW
Prof Derek Smith, UCT
Prof Anthony Krzesinski, Stellenbosch
Dr Don Petkov, UNP
Mr Rob Dempster, UNP
Prof Peter Warren, UNP

ii

Foreword
Organising Committee
List of Contributors

Keynote Speaker

Table of Contents

The Role of Formalism in Engineering Interactive Systems
MD Harrison and D J Duke

Plenary

11

1

Industry-Academic-Government Cooperation to boost Technological Innovation 15
and People Development in South Africa
Tjaart J Van Der Walt

Checklist support for ISO 9001 audits of Software Quality Management Systems 17
AJWalker

The IS Workers, they are a-changin' 29
Derek Smith

Research

Examination Timetabling
E Parkinson and P R Warren

Generating Compilers from Formal Semantics
HVenter

Efficient State-exploration
J. Geldenhuys

A Validation Model of the VMTP Transport Level Protocol
H.N. Roux and P.J.A. de Villiers

Intelligent Systems

Automated Network Management using Artificial Intelligence
M Watzenboeck

A framework for executing multiple computational intelligent programs
using a computa,tional network
H L Viktor and I Cloete

A Script-Based prototype for Dynamic Deadlock Avoidance
C N Blewett and G J Erwin

Parallelism: an effective Genetic Programming implementation
on low-powered Mathematica workstations

H. Suleman and M. Hajek

Feature Extraction Preprocessors in Neural Networks for Image Recognition
D Moodley and V Ram

iii

35

43

63

75

87

89

95

107

113

Real-Time Systems

The real-time control system model - an Holistic Approach to System Design
T Considine

Neural networks for process parameter identification and assisted controller
tuning for control loops
M McL�od and VB Bajic

Reference Model for the Process Control Domain of Application
N Dhevcharran, AL Steenkamp and V Ram

Database Systems

The Pearl Algorithm as a method to extract infomation out of a database
JWKruger

Theory meets Practice: Using Smith's Normalization in Complex Systems
A van der Meiwe and W Labuschagne

A Comparison on Transaction Management Schemes in Multidatabase Systems
K Renaud and P Kotze

Education

1 19

127

137

145

151

159

Computer-based applications for engineering education 17 1
A C Hansen and P W L Lyne

Software Engineering Development Methodologies applied to 179
Computer-Aided Instruction
R de Villiers and P Kotze

COBIE: A Cobol Integrated Environment 187
NPillay

The Design and Usage of a new Southern African Information Systems Textbook 195
G J Erwin and C N Blewett

Teaching a first course in Compilers with a simple Compiler Construction Toolkit 2 1 1
G Ganchev

Teaching Turing Machines: Luxury or Necessity? 219
YVelinov

Practice and Experience

Lessons learnt from using C + + and the Object Oriented Approach to 227
Software Development
R Mazhindu-Shumba

Parallel hierarchical algorithm for identification of large-scale industrial systems 23 5
B J ankovic and VB Bajic

iv

Information Technology and Organizational Issues

A cultural perspective on IT/E.nd user relationships
A C Leonard

Information Security Management: The Second Generation
R Von Sohns

Project Management in Practice
M leRoux

A Case-Study of Internet Publishing
A Morris

The Role of IT in Business Process Reengineering
C Blewett, J Cansfield and L Gibson

Abstracts

243

257

267

271

285

On Total Systems Intervention as a Systemic Framework for the Organisation 299
of the Model Base of a Decision Support Systems Generator
D Petkov and O Petkova

Modular Neural Networks Subroutines for Knowledge Extraction 300
A V ahed and I Cloete

Low�Cost Medical JJ:ecords System: A Model 301
O A Daini and T Seipone

A Methodology for Integrating Legacy Systems with the Client/Server Environment 302
M Redelinghuys and AL Steenkamp

Information Systems Outsourcing and Organisational Structure 303
M Hart and K vavatzandis

The relational organisation model 304
BLaauwen

The Practical Application of a New Class of Non-Linear Smoothers for 305
Digital Image Processing
E Cloete

A Technology Reference Mode/for Client/Server Software Development 306
R C Nienaber

The Feasibility Problem in the Simplex Algorithm 307
T G Scott, J M Hattingh and T Steyn

Author Index 309

v

Vladimir B Bajic
Centre for Engineering Research,
Technikon Natal,
P OBox 953
Durban4000
C NBlewett
Department of Accounting
University of Natal
King George V A venue
Durban4001

Justin Cansfield
Department of Accounting
University of Natal
King George V Avenue
Durban 4001
Tom Considine
Apron Services (Pty) Ltd
P O Johannesburg
International Airport
1600
Eric Cloete
School of Electrical Engineering
Cape Technikon
Box 652
Cape Town
I Cloete
Computer Science Department
University of Stellenbosch
Stellenbosch
7600
O A Daini
Department of Computer Science
University of Botswana
Gaborone
Botswana
Nirvani Devcharan
Umgeni Water
Box9
Pietermaritzburg
3200
P J A de Villiers
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700

List of Contributors

vi

Ruth de Villiers
Department of Computer Science and
Information Systems
UNI SA
Box 392 , Pretoria, 0001
GJErwin
Business Information Systems
University of Durban-Westville
Private Bag X54001
Durban4000
G Ganchev
Computer Science Department
University of Botswana
PBag 0022
Gaberone, Botswana
J Geldenhuys
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700
Louise Gibson
BIS, Dept Accounting & Finance
University of Durban
Pvt Bag XI O
Dalbridge 4014
Mike Hart
Department of Information Systems
University of Cape Town
Rondebosch
7700
M. Hajek
Department of Computer Science
University of Durban-Westville
Pvt Bag X54001
Durban4000
AC Hansen
Dept of Agricultural Engineering
University of Natal
Private Bag XO 1
Scottsville 3209
JMHattingh
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom 25 20

Boris Jankovic
Centre for Engineering Research
Technikon Natal
P O Box 953,
Durban 4000
Paula Kotze
Department of Computer Science and
Information Systems
UNI SA
Box 392
Pretoria, 0001
JWKruger
Vista University
Soweto Campus
Box 359
Westhoven 2124
AC Leonard
Dept of Informatics
University of Pretoria
Pretoria
2000
Ben Laauwen
Laauwen and Associates
P O Box 13773
Sinoville
0129
Mari Le Roux
Information technology, development: project
leader
Telkom IT 1015
Box 2753
Pretoria 0001
PW L Lyne
Dept of Agricultural Engineering
University of Natal
Private Bag XO 1
Scottsville 3209
Rose Mazhindu-Shumba
Computer Science Department
University of Zimbabwe
Box MP167
Harare, Zimbabwe

vii

Meredith McLeod
Centre for Engineering Research,
Technikon Natal,
P O Box 953
Durban 4000
D Moodley
Computer Management Systems
Box451
Umhlanga Rocks
4320

Andrew Morris
P OBox34200
Rhodes Gift
7707

RC Nienaber
Technikon Pretoria
Dept of Information Technology
Private Bag X680 ·
Pretoria 0001
E Parkinson
Department of Computer Science
University of Port Elizabeth
Box 1600
Port Elizabeth 6000
Don Petkov
Department of Computer Science and
Information Systems
University of Natal
PBag xOl
Scottsville 3209
Olga Petkov
Technikon Natal
Box 11078
Dorpspruit 3206
Pietermaritzburg
N Pillay
Technikon Natal
Box 11078
Dorpspruit 3206
Pietermaritzburg

VRam
Department of Computer Science and
Information Systems
University of Natal
PBag xOl
Scottsville 3209
Melinda Redelinghuys
Department of Computer Science and
Information Systems
UNI SA
Box392
Pretoria, 0001
Karen Renaud
Computer Science and Information Systems
UNI SA
Box 392
Pretoria, 0001
HNRoux
Department of Computer Science
University of Stellenbosch
Stellenbosch
7700
T G Scott
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom
2520
T Seipone
Department of Computer Science
University of Botswana
Gaborone
Botswana
Derek Smith
Department of Information Systems
University of Cape Town
Rondebosch
7700
Anette L Steenkamp
Department of Computer Science and
Information Systems
UNI SA
Box 392
Pretoria, 000 I
T Steyn
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom 2520

viii

H. Soleman
Department of Computer Science
University of Durban-Westville
Pvt Bag X 54001
Durban4000

A Vahed
Department of Computer Science
University of Western Cape
Private Bag X 17
Beliville 7530

A Van der Merwe
Computer science and Informations Systems
UNI SA
P0Box392
Pretoria,0001
Tjaart J Van Der Walt
Foundation for Research and Development
Box2600
Pretoria, 0001

K Vavatzandis
Department of Information Systems
University of Cape Town
Rondebosch
7700
Y Velinov
Dept Computer Science
University of Natal
Private Bag XOl
Scottsville 3209
ff Venter
Department of Computer Science
University of Port Elizabeth
Box 1600
Port Elizabeth 6000
H L Viktor
Computer Science Department
University of Stellenbosch
Stellenbosch
7600

R Von Solms
Department of Information Technology
Port Elizabeth Technikon
Private Bag X6011
Port Elizabeth 6000

AJWalker
Software Engineering Applications
Laboratory
Electrical Engineering
University of Witwatersrand
Johannesburg

PWarren
Computer Science Department
University of Natal
P/Bag XOl
Scottsville 3209

ix

Max Watzenboeck
University of Botswana
Private Bag 0022
Gaberone
Botswana

THE ROLE OF FORMALISM IN ENGINEERING INTERACTIVE SYSTEMS

Abstract

M.D. Harrison and DJ. Duke
Department of Computer Science

University of York
Heslington, York, YOl 5DD, U.K.

This paper is concerned with the role of formal notations and methods in engineering interactive systems.
It begins by briefly reviewing the role of formal methods in Human Computer Interaction. The objective
of capturing requirements for interactive systems, particularly those requirements that are concerned with
folding a user orientated perspective into the design, is then discussed. An object oriented specification
technique is introduced to emphasise human interaction with the system and to provide a first step towards
specifying user requirements. The paper concludes by discussing the use of this approach to support design
refinement and to check that specifications satisfy interaction requirements.

Introduction

Formalism is commonplace in Human Computer Interaction.

• Domain modellers or task analysts use it to describe the work system in which a computer based
artifact, or network of artifacts, resides. Here the purpose of the notation is precise description of
work objectives, procedures for achieving these objectives, and general organizational and commu­
nication characteristics associated with the system. The role of the formalism is to aid the capture of
the important concepts succinctly. The formalism also plays a role in checking consistency and ac­
cessibility of knowledge structures, see for example the TAKD notation (Diaper, 1989), or the TAG
notation (Green et al., 1988). The task structure incorporating plans of how tasks should be carried
out, may also be linked to a system model. For example Baber and Stanton use a state-transition dia­
gram (Baber and Stanton, 1994)) in order to assess potential failures, and their impact, that might
occur in execution of these plans.

• Cognitive modellers use formalism to assess what cognitive resources are required to understand and
use the system. Here the formalism is required to provide conceptual clarity as well as to represent
scenarios for simulation. Task Action Grammar was designed to capture the competence of a user
(Green et al., 1988)). From another angle, Young and his colleagues use formalism to describe the
domain and device characteristics of a system prior to using a planning system (the SOAR system)
which simulates some aspects of cognition, to emulate what the planner would do to achieve certain
objectives, and to compare a designer's idealised description of the behaviour of the system with
what the simulator in fact produces (Young and Whittington, 1990).

• Specifiers or modellers of dialogue use a formal notation to describe the dialogue and to create
the c}:laracteristic ("look and feel") of a particular application. Here the role of the formalism is
to provide a basis for interpretation of the dialogue description which can be prototyped accurately
and quickly (Green, 1987).

• Software (or more generally systems) engineers use formalism to describe the characteristics of an
interactive system in order to facilitate its accurate construction and maintenance. Here there are a
number of roles for the formalism, and it is these roles that will form the basis for this paper.

The advantage of a formal notation is that it is associated with a clearly defined meaning, often expressed
mathematically, and may also be connected with rules for proving properties (about timing or consistency
for example) of expressions of the language. The theme of this paper is the role of formal notations in
engineering interactive systems. Here We ate tntrticularly concerned with the use of formal notations to
represent interactive systems and what propetties may be conveniently represented within them. There

Saicsit '96 1

are two reasons for representing interactive systems. The first is to provide a means of analyzing an ex­
isting system so that it becomes possible to check it for properties such as completeness or consistency.
The second is to provide a representation that supports the conceptualization and refinement of interactive
systems. Preoccupation with the analysis of specifications leads to an emphasis on design techniques that
are rigorous rather than exploratory.

To support the special requirements of interactive systems, extensions and styles of specification have been
specially developed. In particular any specification technique must take account at some level of the whole
system: human, software and hardware. Formal notations are required that can express an "interactive
view" of many agents to an interactive system, as we are interested in expressing user requirements of
specifications as well as refining and checking specifications.

In the next section we identify briefly the role of formal notations in software engineering. We then discuss
HCI specification and the role of formal notations in expressing interactive systems. In this context the
problem of folding user or task issues as requirements into specifications will be articulated. We introduce
a number of properties that we might want to prove true of interactive systems.

In the following section we present a specification structuring notion, that of interactor, that can be used to
capture essential characteristics of interactive systems and use it to specify a simple system employing a
hybrid of two existing systems engineering notations. Issues concerned with the refinement of formal spe­
cification of interactive systems are then introduced, discussing in particular the relationship of top-down
and bottom-up techniques and refinement. We also discuss mechanisms for producing prototypes from
specifications. Finally, work in progress demonstrating the validity of properties of interactive systems is
presented.

Engineering Interactive Systems

The argument for the use of formal notations in the engineering of interactive systems is that informal
techniques often lack precision, and this can lead to ambiguity, and therefore to systems that fail to meet
requirements. This failure can be expensive to deal with downstream during the implementation and val-

, idation phases of the design and implementation lifecycle. The use of formal notations in some safety crit­
ical systems has been justified on this basis (Hall, 1990) despite reasonable concerns about relative cost of
the specification phase. Formal notations are regarded (possibly mistakenly, according to (Hall, 1990)) as
difficult to understand and are often used in an obscure style. In the main, however, where these notations
are used in practice, their practical role has been to assist the designer and implementer in understanding
the system.

It is also recognized that two further goals may be achievable if formal notations are used. The first possib­
ility is that system specification may be progressively transformed, preserving correctness, into an execut­
able program. Refinement rules and properties are difficult to apply and prove. Their use and application
could be much improved through the development of appropriate formal methods and the use of software
tools that are currently unavailable. The second goal is that properties or requirements of a specification
may be proved to be discharged by the program. It is clear that though both goals are desirable, extensive
automatic tool support would be required to make them feasible.

A variety of formal approaches are being developed. There are a number of distinctions (see also (Gaudel ,
1994; Vissers et al., 1991)) that can be made between them:

2

1. between model based specifications, in which established theories are incorporated, and algebraic
specifications which permit the introduction of new theories ;

2. where there is good support for conceptualization versus an adequate proof theory (supporting veri­
fication) ;

3. where the specification describes the internal behaviour such as state of the system versus where the
specification describes external behaviour such as communication between processes;

Saicsit '96

4. whether the specification notation is textual or diagrammatic as is the case with approaches such as
statecharts (Harel, 1 987) or Petri nets (Palanque and Bastide, 1 994).

The means of breaking the specification down into components in order to support abstraction and mod­
ularization in large scale specifications is also a key and somewhat neglected aspect of their design. The
formal specification notation to be described in this paper, uses an object structure with the aim of deal­
ing with problems of scale and providing a structure that corresponds to the way in which a presentation
(display for example) is constructed.

Folding the user into the system

Role of formalism

The problem of Human Computer Interaction is to take the view of the user or user team in relation to the
design of a computer system, in order to make the system more "natural", "usable", "human-error toler­
ant" etc. The concern of much applied psychology within HCI has been the individual behaviour of human
users of computer systems, producing methods for experimenting with systems and theories for address­
ing the needs and resources of these users. More recently this study has been broadened, recognizing the
limitations of a simple individual cognitive view, and incorporating a broader und�rstanding of external
considerations (Suchman, 1 987; Hutchins, 1 994; Nardi, 1 996). Ethnography, organizational psychology
and other organisational theories have had a role here. The difficulty with much of this work is that the
connection between insights into human behaviour and the design of computer systems is difficult to forge.
Much of the work that is done is at the level of post-hoc "holistic" evaluation. The problem we are con­
cerned with is how this user view of a computer system may be incorporated into the representation of the
system.

As has already been noted in the Introduction, there are a variety of formalisms available for describing
aspects of the HCI problem. In many cases, the primary purpose of the formalism is to act as a check for
the cognitive modeller or work modeller. Hence Task Action Grammar (Payne and Green, 1 986) is used to

·. represent the competence of a user and can be used by the psychologist to analyze informally the consist­
ency of the interface. A task analysis notation such as TKS (Johnson et al., 1 988) may be used to express
what is required in order to perform the set of tasks of the system. Notations also play an implementational
role. So for example Young and Blandford's (Blandford and Young, 1 993) Instruction Language is used
to help the cognitive modeller conceptualize the problem but is also the representation that will be used
by the SOAR system in simulation.This paper is concerned with software engineering notations with an
emphasis on their ability to provide the possibility of more automatic checking of the artifact and thereby
to assist the design process.

The role of formal specification is to make precise the behaviour of an artifact ;so that an implementer may
construct a system appropriately. In the case of specification, where details of the state of the system and
operations on the state of the system ate expressed explicitly (as an abstract data type, for example), em­
phasis is on the ability to demonstrate that refinement to implementation preserves the requirements of the
specification. However, it is also concerned with properties of specifications including general properties
of consistenqy and completeness, as well as more specific properties of a particular specification. In the
case of specifications where the concern is with external behaviour, the purpose of the specification is to
show that certain properties are true of the system, for example it is deadlock free.

It will be necessary to structure a specification so that those perceivable aspects of the state (display, for
example) may be reasoned about as well as those actions that the user carries out in order to invoke the
f4nctionality of the system. In practice, existing methods of specification are adequate for the purpose of
feasoning. We shall adopt a particular approach to illustrate the technique. This approach is based on a
structuring mechanism (interactor) which makes interactive behaviour explicit at an object level without
compromising the use of existing and well-founded formal specification techniques.

Saicsit '96 3

Interaction Requirements

Given a specification of an interactive system, requirements may be expressed that concern the resources
and capacities of the user. We list some typical generic requirements.

• Information presented by the system should be relevant to the performance of the tasks that tlre sys­
tem is designed to support.

• Immediately relevant commands should be directly accessible in the current mode.

• It should be possible to recover to a previous state when a mistake is made.

System support for the prevention of slips of action may be achieved by ensuring that the effects of actions
are visible to the operator of the system. As shall be seen, the mechanism of interactors is designed to
support this requirement by providing a structure that will encourage systems designers to ensure that the
internal operations of the system are made visible to the operator. In practice the visibility of actions is
often related to the context of the task that is being carried out. Mistakes may be protected against by
providing a clearly visible model of how the system works.

Actions that are taking place in the system should be clearly visible in the "rendering" of the system. This
idea is made explicit in notions of:

• visibility that requires that attributes of the state are perceivable in the presentation;

• predictability (Harrison, 1 992), that takes into account the fact that the state of the system may affect
the consequence of operations without the operator being aware of the state that has these effects.

A system may be more tolerant to mistakes if it is consistent. Consistency is a system property that supports
appropriate model general ization and thus teduces the likelihood of etrot. It is a notion that should be used
, carefully because inappropriate or partia1 consistencies may have the effect of leading to f nappropriate
generalization (see (Grudin, 1 989)).

Mechanisms for incorporating requirements

The problem is to develop a model of the system that will make it possible to demonstrate that user require­
ments are satisfied. At one level, the concern is to express the interactive behaviour of the system in more
detail than is the convention within the formal specification of systems, see for example (Bowen, 1992). It
is also necessary to capture properties in the specification that may only have significance in understand­
ing how the system is perceived. Hence, in the notion of interactor introduced next, a rendering defines
those elements of the state that are perceivable (perhaps audible), and a theory of presentations (Duke and
Harrison, 1994) defines specific characteristics of perception of different modalities, for example the way
those modalities are "chunked".

Further, we might wish to take into account other external aspects of a system. For example, we may wish
to define those aspects of the system that are relevant in the performance of particular tasks. For example,
Roast (Roast, 1 993) describes a notion of template to capture those aspects of the display and state of a
system that are relevant to a particular task.

Interactors

The question we consider now is how formal specification notations may be used to describe interactive
behaviour appropriately. Interactors provide a meatts of bridging between the requirements of the user and
the specification of interactive system that is used for implementation. The usabil ity or human error prop­
erties, considered above, become more specific and can be expressed in terms of particular apphcations.

4 Saicsit '96

The term interactor has also been used to describe a class of low level generic objects that are instanti­
ated to an implementation (Myers, 1 990) (here the term widget is sometimes used). Hence an interaction
object might include a generic menu widget for example that is instantiated to the particular menu when
constructing the system. The notion of interaction object represents a useful structure for thinking and
re<;1soning about the behaviour of interactive systems in general.

A number of other approaches have been taken to specifying interactor like objects (see for example (Fa­
conti and Paterno, 1 990)). We use a hybrid style of specification, linking state information and behavioural
information. The two models each emphasizes different aspects of interaction, and the formalisms used
to express the models afford different approaches to the construction and analysis of specifications.

Specifying Interactors

This interactor model is developed in order to express useful properties of interactive behaviour (Dix et al . ,
1 987). The model (Duke and Harrison, 1993) is based on states, commands, events and renderings. These
ideas have been used to expose the properties expressed above as predictability and visibility. It is also
based on the structuring of model based specification around object oriented concepts, in particular the
Object Z notion of Duke and others (Duke and Duke, 1994). In outline, an interactor consists of an internal

events .. •

Figure 1 : The Interactor.

state which is reflected through a rendering relation onto some perceivable representation . The interface
between an interactor and its environment consists of a set of events. There are two kinds of events : stimuli
�re caused by agents within the environment and bring about state changes, while responses are events
generated by the interactor.

interactor [press-button] --------------------­
attributes

I vis !enabled : JIB
actions

press

axioms
1 . enabled = X =} [pressJenabled = X

The state of an interactor is modelled by a set of typed attributes (variables) such as 'selected' . In the ex­
ample, this variable takes on a boolean value (true or false) to represent when the button has been selected
by the user. This property of a button (that is, whether it is currently selected or not) can be perceived
visually, hence the the boxed vis annotation . Such perceivable variables are called percepts, and make up
the presentation component of the interactor. One action, press, is available in the interface of the inter­
actor. Its effect is to toggle the button between being enabled or not enabled. This behaviour is described
precisely by axiom 1 , which uses a modal predicate that reads: if the value of the variable 'enabled' is
giyen by X, then in the state that arises after the action 'press' has been performed, the value of 'enabled'
will be the negation of X. In general, predicates of the form P =} [A]Q mean that in any situation where
'P' is true, performing the action 'A' wilI bring about a situation where 'Q' is true.

The button-press interactor can be inherited by other system components that might respond to the 'en­
abled' state in application-specific ways. IJi this approach different copies of an inherited interactor can

Saicsit '96 5

be distinguished by giving them names, either individually, or by 'tagging' a collection of interactors with
values drawn from a set.

We now consider an interactor w�ich uses press-button. This specification manages an incoming messages
queue. It also supports two buttons that can be pressed by the user. 'clear' clears the visible message from
the queue. 'goto' has a more complicated role and is used when a message of priority 2 or 3 is used .. In
fact only the behaviour of the clear button is established at this point, since the goto button has an effect on
the display which would involve a further interactor. The specification is actually based on a real system
concerned with air traffic control, and the messages refer to incoming flights maintained in a stack. We
can describe the specification more rigorously.

We assume the existence of a type 'msg' to represent messages, and a function pr: msg ---+ N that takes
each message to its priority level . At this point we are not interested in the contents of particular messages,
simply in their existence and priority level. The msgs interactor appears below. It includes two copies of
the button interactor to represent the clear �nd goto controls. The state of the msgs interactor is determined
by three variables, representing the queue of messages, (queue) the displayed message (mesg), and the
number of messages (nr-msgs). Of these, the latter two are derived from the first and together form the
presentation of the interactor (via the visual modality). One new action is introduced by the theory - it can
receive a message (recv). However note that the two actions clear.press and goto.press are also available
within msgs on account of interactor inclusion.

interactor [msgs] ______________________ _
attributes

clear : press-button
goto : press-button
queue : seq msg
�esg : [msg]
@r-msgs : N

actions
recv : msg

axioms
1 . mesg = nil {::} queue = ()
2 : queue -=J () => mesg = hd queue
3. nr-msgs = fen queue
4. V i ,j E queue. i � j => pr(queue(i)) � pr(queue(j))
5 . queue = x => [recv.m]queue =
(x r {m1 E ran x I pr(m1

) � pr(m) })""" [mt ' (x r .{.m1 E ran x I pr(m1
) > pr(m) })

6. queue = (mesg) ----s => [clear.press]queue = s
7. clear.enabled {::} queue -=J ()
8. goto.enabled {::} pr(mesg) E {2 , 3}

Because the message queue can be empty, the perceivable message is represented by an optional value;
for any type T, the type [T] is the set of values defined by T plus a distinguished 'nil' value. Axiom 1
establishes that the visible message is nil if and only if the queue is empty, and if the queue is non-empty
axiom 2 requires that the message displayed is at the front of the queue. Axiom 2 connects the length of
the queue to the 'number of messages' value displayed in the message area.

Each message in the queue has a priority level, pr(m). The queue is organized so that a11 priority 1 messages
appear before priority 2 which in turn appear before priority level 3 messages (axiom 4). Axiom 5 states
that as new messages a�rive they are placed in the queue after all other messages pf their priority but before
any messages whose priority]eve] is higher. This is expressed by splitting the me,ssage queue into two parts
- those messages whos�priority is the same as or lower than the priority of the received message, and those
with a .higher priority - find inserting the new message between these sections tq construct the new queue.
The remaining three axioms express the connection between the buttons and thd message queue; axiom 6

6 Saicsit '96 .

says that pressing the clear button removes the first message from the queue (and consequently changes
the visible message, through axioms 1 and 4). Further (axiom 7) the clear key is only enabled if the
queue is non-empty. Finally the 'goto' key becomes enabled if the message refers to some level 2 or level
3 message.

The receipt of a message may require that the displayed message changes; for example, if the current mes­
sage has priority 2 and a priority 1 message arrives:

pr(mesg) = 2 I\ pr (m) = 1 :::} [recv.m]mesg = m

A formal proof of this property is not difficult and will be demonstrated later; we need to apply axioms 5,
4, and then 2.

Elsewhere we discuss a specific approach to relating formalised task descriptions to interactor style system
models of interactive systems (Fields et al., l 995b).

Refinement and Prototyping

An important concern in the development of formal specifications is the means by which the specifica­
tion is converted into an executing system. There are two aspects to this problem. The first is how the
specification can be re.fined into a correct program. The second is whether and when the specification can
be executed directly so that the developer may get the look and feel of the system at an early stage and
possibly use it for evaluation and iteration.

Refinement

Rigorous software development is concerned with demonstrating that a program correctly implements a
specification, either through a process of verification (see next section) or through the systematic derivation
of program from specification by valid refinement transformations (Morgan, 1 994). Refinement involves
the construction of data structures and operations that are closer to the level of the machine than those in
the original problem description. These transformations, when applied to the design state, assume that the
specification of the system is primarily concerned with the functional behaviour of the system rather than
its interface behaviour. In the case of data refinement, the data in the original specification must map to
data in the refined specification, and the operations on the refined specification must mirror the behaviour
of the original operations. In practice data refinement usually involves the addition of new operations. It
is also necessary that the new specification is conservative in the sense that the properties of the operations
defined in the original specification must be true also of the mirrored operations in the new one. Opera­
tional refinement, on the other hand, is concerned with the implementation of operations. It requires that a
refined operation be defined on at least the states of the original but be more determined over these states,
hence restricting the generality of the original operation.

In the development of most sorts of systems, the interaction between the user and the system should also
be taken into account in an analogous process of refinement. How is the specification of the presentation
and the actions or events involved in interactive behaviour affected by refinement transformations? At a
gross level of specification we are concerned about whether the semantics interpreted by the user from the
perceivable data correspond to what the system supports. This problem of interface refinement has been
considered at varying levels of detail by Bramwell (who cal ls it enhancement) (Bramwe11, 1995), Dix,
Duke and Harrison (Harrison and Dix, 1990; Duke and Harrison, 1995). There are three corresponding
aspects to interface refinement. We shall first describe these concepts and then typical examples:

/

• data refinement: (see for example: (Duke and Harrison,, 1 995)) as data is refined to more concrete
representations is there a corresponding refinement of the presentation?

• trace refinement: (see for example : (Bramwell , 1 995)) as the system is refined, the cJass of beha­
viours that can be engaged in is limited. Here the word trace is used to mean a sequential event

Saicsit '96
'----'-------- -�-......_.___.__. - - --·--··--��1.......-. ---···- -_J ------'- - ·--�" �---�� ·-··'--- -�-

7

structure. This can happen in two ways: (1) more abstract specifications of behaviour may include
non deterministic behaviour, for example the choice about how certain events occur may be delayed,
and as the system is refined these behaviours may become more explicit; (2) the system will be de­
signed to support particular tasks and these tasks may l imit the possible behaviours of the system
under design.

/

• event structure refinement: here a single event, or trace of events, may be replaced by a structure of
events that is more detailed.

We can elaborate each in terms of an example.

Data Refinement

An abstract model of a file system may represent a file as an uninterpreted, atomic, value. A refinement of
a file system, so that file concatenation may be described in terms of the explicit structure of the file, rep­
resents the file as a sequence of records. Further operations may be introduced that use this same structure.
The problem now arises that a corresponding "refinement" of the presentation of the specification may lead
to a representation that is inconsistent with, say, the desk top analogy that is being used in the presenta­
tion. The introduced operations may have no analogue in the desk top metaphor: It is therefore necessary
to preserve appropriate presentation style characteristics as the specification of the data structures are en­
riched and refined. (Duke and Harrison, 1 995) describes a mechanism for preserving the conformance of
these specifications.

Trace Refinement

An example, of trace refinement may be illustrated by an Automatic Tel ler Machine (ATM). Suppose the
specified system supports inserting a card, a Personal Identity Number (PIN), requesting a facility, reGeiv­
ing the result requested and returning the Card. Trace refinement of a specification may take place (1) so
that the ATM may support more precisely the tasks for which it is intended. Hence the specification of the
ATM will be designed to prevent the user from engaging in events that are not appropriate to a task once a
particular option is chosen from a menu; and (2) to ensure that, for cash withdrawal , the card is withdrawn
after the cash is taken. Even though either trace makes sense in the design of the ATM, the removal of the
trace in which cash is withdrawn first will avoid premature closure, see (Fields et al . , l 995b), where the
customer takes the money and leaves without collecting the card. Hence trace refinement involves redu­
cing the set of traces that represent the behaviour of the system, the events that may be engaged in remain
the same.

Event Structure Refinement

In the case of event structure refinement, the same example of the cash dispenser may be used again. It is
normal to consider actions at a high 1evel in the initial stages of specification development. Hence entering
a PIN can be considered as a single action. In subsequent stages of refinement, the PIN entry may be
considered as four numeric actions and be considered in terms of the possibility of recovery. So entering
a PIN will involve a behaviour that allows the four digits to be ih!setted in sequence, and in addition the
behaviour associated with a cancel action that allows the user to start the PIN entry again at any point in the
sequence. In both cases, trace refinement and ever1t structure refinement, it is most usual that functional
behaviour will not be affected by particular choices at the refinement stage. Here refinement may involve
adding events that express the more detailed behaviour.

8 Saicsit '96

Prototyping

The top-down philosophy of system design is appropriate only in theory. In practice, because users and
context are involved, it is important that the system be evaluated early, possibly experimentally. A number
of systems exist which provide a basis for exploring a user interface, see for example Myers (Myers, 1 988).
The problem in the context of formal specification is whether it is possible to get an impression of an
interactive system on the basis of executing the formal specification. Little research relates to this problem
in the broader context of full specifications of interactive systems. A broader range of systems have been
designed to be driven by dialogue specifications, see for example an early review by Mark Green (Green,
1 986).

More relevant is work by Alexander (Alexander, 1 987). This approach uses the Me Too system for execut­
ing VDM like specifrcations. Dialogue is described using CSP and events are linked to functions with pre­
and post-conditions described in terms of VDM. Related research has been carried out at York with iterat­
ive evaluation of interactive systems in mind. Johnson (Johnson and Harrison, 1 992) links temporal logic
as a means of specifying interactive systems with a screen presentation system Presenter (Took, 1 990).
This provides a means of getting a rapid look and feel of a specification. The problem with this approach
is that it is necessary to map models, such as interactors, into a logic based executable specification. Roast
takes this work a small step further, though the l ink with a good quality presentation is not so well estab­
lished. He links a model and properties by which the model is constrained into a working prototype (Roast,
1 993). Here Roast uses a specially developed logic called interaction logic.

The link between specification and rapid prototyping is an important one. Much more research needs do­
ing that supports sufficient input/output resolution to be used a "sketch" of the interface so that it may be
valuable from the point of view of evaluation with users beyond existing paper techniques.

Checking Properties

As discussed earlier, interactor based system engineering is designed to support the specification of in­
t�ractive systems. One objective of this process is to capture user centred properties and concepts in the
specification. It is also an objective that there should be sufficient detail of the design to provide a basis
for accurate implementation of the specified system. Hence it should be possible to use interactor notions
to specify different aspects of the interactive system and to verify them against properties. In this con­
text the interactor structuring notion that supports hybrid specification techniques (in a variety of forms)
is designed to support all aspects of the specification. These interactors are used ,to describe both function
and interface, whereas the LOTOS style approach is designed for the purpose of constructing a user in­
terface system (UIS) that intervenes between the user and the functional core. In the case of the LOTOS
style interactor the aim of the structure is to provide a m�chanism for emphasizing perceivable and user
accessible components of the state and system function.

The same techniques have also been used to model the whole domain of the system before commitment to
whether components are to be expressed in software or are to be carried out by the users of the system (see
Fields, Harrison and Wright, (Fields et al., 1 995a)). Interactors have also been used to describe aspects of
the users cognition and the interaction between the user and the system. This notion, called syndesis, is
described in (Puke (Duke, 1 995)). Here the proposed advantage is that syndesis enables both the system
and the cognitive modeling to be provided in the same language using the same tools and supporting the
same checking procedures.

This section of the paper is concerned with the question of how to validate or verify properties of the spe­
cification: If a system is to exhibit these properties then either there should be a method for ensuring that a
particular system captures them (in other words, the properties are used generatively) or it should be pos­
sible to check that a specification, in some form of completeness, exhibits the properties. Here we shall
discuss properties that relate more specifically to the system under consideration than the generic proper­
ties that we have been discussing so far.

Three types of argument are illustrated here tr, shuw how at1 1Hientd6r specification rnay be used: an in-

Saicsit '96 9

formal argument based on the formal specification; an informal argument based on a diagram that graph­
ically represents event behaviour; a formal argument based on natural deduction. We shall focus on the
'msgs' interactor that deals with the receipt, queueing and display of incoming messages. They approaches
are illustrated by asking three questions of the specification:

1. Can the user perceive all relevant parts of the system state possibly through the use of commands
that change the perceivable state?

This question can be dealt with by inspecting the specification. Only one message (mesg) can be observed
at a time. It is an invariant (axiom 2) that it is always the first message in the queue. If the operator is to
perceive other messages then the queue itself must change. New messages of higher priority displace the
first message; older messages can only be observed by removing the currently displayed message. These
actions cannot be undone.

This level of discussion is adequate to assure the system developer of the scope of the possible implement­
ation based on this specification. More rigorous argument would be unnecessary and perhaps error prone.
Properties may also be checked more formally using the same specification.

2. Is it possible for a message to be lost, that is discarded, accidentally?

A first approach to this might be based on the idea of choosing a scenario which represents a situation in
which a message may be lost. This can be done informally using a diagram to indicate event behaviour.

clear the message

user actions

r
mesg =_hd(M)

system actions

ueue = M queue =
(x) /\M

press the clear button

queue = M
"ta � -

Figure 2 : Poset model of a scenario involving message loss.

This graphic description of a scenario uses the action description provided in the interactor and visualizes a
partially ordered set to describe one possible behaviour. The scenario suggests that a high priority message
may be lost if it is received at 'about' the time that a user is clearing a displayed message. A user starts
executing the clear action, either not noticing that a new message suddenly appears on the display, or not
able to stop a process of having committed to an action.The dashed line between the events 'mesg = x'
and 'press the clear button' indicates the course of the scenario. The result of the action is that the queue is
unchanged, consequently the user may not even notice that a message has been lost. It is possible that the
unchanged message line will be attributed either to a mis-hit of the clear button or to a fault in the system.
Clearly such a scenario involves making assumptions about (a) user behaviour and (b) user capabilities.
While these may need to be validated by user modellers or expetit11etttation, for the purpose of reasoning
about interaction, such assumptions can he seen as a form of best- (or worst-) case analysis.

3� Proving question 2 by natural deduction

A formal proof can be done by natural deduction. The property can be expressed as a hypothesis to the
effect that if a message is received of higher priority than that on the display, and the user subsequently

10 Saicsit '96

presses the clear button, then the message will be the same as that before the new message.

H: pr(x) > pr(mesg) /\ queue = M :::} [recv(x)] [clear]queue = M

Proof of this property uses axiom 5 from the 'msgs' interactor. The axiom is used to prove a lemma that
states that if the priority of a received message is greater than the currently displayed message then the
incoming message is added to the queue. We demonstrate the rigorous proof of the property, using the
lemma, by means of a tableau method for modal action logic (Atkinson and Cunningham, 199 1) .

Lemma: pr(x) > pr(mesg) /\ queue = M :::} [recv(x)]queue = (x) ,....._ M

Proof:

From axiom 2 the value of mesg is the head of the queue, and from axiom 4 no other message in the queue
can have a higher priority. Axiom 5 says that a new message is inserted between those of higher or equal
priority and those of lower priority. Since the assumption is that there are no higher priority messages in
the queue, the new message must be appended to the front.

The proof follows by negating the hypothesis (H) and then attempting to show that this contradicts the
axioms of the msg interactor. At each step we can develop one of the axioms, expressing it either as a
disjunction or conjunction; the former results in a branch in the tableau. Developing a modal formula
involving action A opens up a new tableau which contains those axioms earlier in the tree that are prefixed
with [A]. A branch is closed (shown by a box) when it contradicts axioms further up the tree.

(1) pr(x) > pr(mesg)
(2) queue = M
(3) -, [recv.x] [clear] queue = M

I
develop lemma

I I
(4) -, (queue = M A pr(x) > pr(mesg)) (5) [recv.x] queue = (x) Ee

1 & 2
M

I develoo steo (3) I [recv.x]
I

(6) -, [clear] queue = M
(7) queue = (x) ffi M

develop axiom 6 1
I I

(8) -, queue = (x) Ee (9) [clear] queue = M
M D 7 I develop step (6) I [clear]

Figure 3: Tableau proof of simple property.

(10) -, queue = M
(1 1) queue = M

D 1 0 & 1 1

Scenarios may be investigated in terms of the paths generated in more detail and this is where other ap­
proaches may provide a better pay-off. In practice it may not be obvious that there are interesting scenarios

/that fail to satisfy given requirements. Paterno and others (Coutaz et al., 1995) take a LOTOS specifica­
tion to describe the interface between application and user. The interface is described in terms of a set of
processes also called interactors. The architectural structure reflected by these processes is constructed by
means of a set of heuristics associating the process decomposition with the task structure of the system.
The processes in the system therefore have a structure in relation to each other that reflects tasks and the
resources that are required by the user in order to carry out the task.

Saicsit '96 1 1

The sorts of property that this work deals with are:

1 . that a particular user action will always result in a particular application input (roughly reachability) ;

2 . that all user actions have a corresponding interface appearance (roughly visibility) ;
. "

3 . that a user action is reflected in an interface appearance immediately before any further user· action
is permitted (continuous feedback) ;

4. that user actions are available to recover from an error (recoverability).

These properties are expressed in terms of ACTL and the LOTOS description is transformed into the un­
derlying model of ACTL using a tool from the LITE toolset and checked using a model checker, for rel­
evant work see (Coutaz et al., 1 995).

It is clear that although these are general properties they can in practice be tailored to the requirements
of the particular system being specified. In fact most of these properties presume some idea of state. In
an interactor description as described above the appropriate property would say something about the rela­
tionship between user action and the interface appearance. For example, the interface appearance should
reflect a property of the state of the system.

Conclusions

Within HCI in general, there is still a substantial gulf between the concerns of behavioural scientists · and
those of computer scientists. There have been some promising attempts to offer hands between communit­
ies but these offers are still little understood or accepted. We propose that putting user requirements on a
more precise footing will help bridge the gulf between the scientists/engineers.

In the paper we have illustrated the sorts of characteristics of interactive systems (visibility, predictability,
consistency) that may lead to easier use or less human error prone behaviour. Whet_her or not these prop­
erties actually lead to these characteristics involves a broader interdisciplinary concern ; we have alluded
to some of the work that is continuing to bring this broader human behavioural context. The notion of
interactor can be seen as a mechanism that forces the system designer to take a more user centred view
and eases the expression of some user related properties. Given this type of specification, it then becomes
easier to check that these properties hold and to recognise interface constraints as the engineer moves to
implement the system. A continuing concern is to develop a more systematic understanding of how spe­
cification might be scoped so that human behaviour can be addressed more adequately. An aim then in the
context of specification is to produce system specifications that are more readily accessible to designers
and are more easily connected with behavioural techniques. There is a need to show how interactor spe­
cifications scale up and to demonstrate convincing case studies of the verification of system specification
against user relevant properties.

There are important gaps in the sorts of analyses that are being pursued here. For example, there is little
attention paid to real-time properties (with the recent exception of an unpublished workshop on time at
the University of Glasgow) although formal approaches to real-time systems abound. It is still unclear
whether there are special characteristics of multi-modal systems such as virtual reality systems and what
user requirements are relevant here. A recent paper frotn the Amodeus 2 group has made an initial step in
this direction (Duke and Harrison, 1994; Duke, 1 995). There is a1so 1 itt1e attention to group interaction .
Recent work by Dix is promising in that it concerns a temporal logic in which liv�ness and safety properties
may be expressed in terms of single users or groups of users (Dix, 1 994).

Acknowledgments

Much of the work reported in this survey has been carried out within CEC funded projects (Esprit Basic
Actions Amodeus (3066) and Amodeus 2 (7040)) . We thank Praxis Systems pk for giving us access to
system descriptions that have enabled us to ch�ck our techniques in a industrial setting.

12 Saicsit '96

References

Alexander, H. (1987). Formally-Based Tools and Techniques for Human-Computer Dialogues. Ellis Hor­
wood Ltd.

Atkinson, W. and Cunningham, J. (1 99 1). Proving properties of safety-critical systems. Software Engin­
eering Journal.

Baber, C. and Stanton, N. (1994). Task analysis for error identification: a methodology for designing
error-tolerant consumer products. Ergonomics, 37(1 1) : 1 923- 194 1 .

Blandford, A. and Young, R. (1993). Developing runnable user models : Separating the problem solving
techniques from the domain knowledge. In Alty, J . , Diaper, D., and Guest, S. , editors, People and
Computers VIII, pages 1 1 1- 1 22. Cambridge University Press.

Bowen, J. (1 992) . X: Why Z? Computer Graphics Forum, 1 1 (4) :22 1-234.
Bramwell, C. (1 995). Formal aspects of the Design Rationale of Interactive Systems. PhD thesis, Dept.

Computer Science, University of York.
Coutaz, J . , Duke, D., Faconti, G., Harrison, M., Mezzanotte, M., Nigay, L., Paterno' , F., and Salber, D.

(1995). Theoretical framework with reference model and multi-agent presentations. Technical Re­
port D9, ESPRIT BRA 7040 Amodeus-2.

Diaper, D. (1989). Task Analysis for Human Computer Interaction. Ellis Horwood.
Dix, A. (1994). LADA - a logic for the analysis of distributed actions. In Paterno, F., editor, Proc Euro­

graphics Workshop on Design Specification and Verification of Interactive Systems, Italy, pages 1 97-
2 1 4. Eurographics.

Dix, A. J., Harrison, M. D., Runciman, C., and Thimbleby, H. W. (1987). Interaction models and the
principled design of interactive systems. In Nichols, H. and Simpson, D. S., editors, European Software
Engineering Conference, pages 1 27-1 35. Springer Lecture Notes.

Duke, D. (1 995). Reasoning about gestural interaction. Computer Graphics Forum, 1 4(3).
Duke, D. and Duke, R. (1 994). Towards a semantics for object-z. In Bjorner, D., Hoare, C., and Lang­

maack, _H., editors, Proceedings of VDM'90: VDM and Z!, number 428, pages 242-262. Lecture Notes
in Computer Science.

Duke, D. and Harrison, M. (1 993). Abstract interaction objects. Computer Graphics Forum, 1 2(3) : 25-36.
Duke, D. and Harrison, M. (1994). A theory of presentations. In FME'94: Industrial Benefit of Formal

Methods, volume 873 of Lecture Notes in Computer Science, pages 27 1-290. Springer-Verlag.
Duke, D. and Harrison, M. (1 995) . Mapping user requirements to implementations. Software Engineering

Journal, 1 0(1) : 1 3-20.
Faconti, G. and Paterno, F. (1 990). An approach to the formal specification of the components of an in­

teraction. In Vandoni, C. and Duce, D., editors, Eurographics 90, pages 48 1-494. North-Holland.
Fields, B., Harrison, M., and Wright, P. (l 995a). Applying formal methods to improve usability. In IEEE

Workshop on Software Engineering and Human Computer Interaction: Joint Research Issues, Sor­
rento, number 896, pages 1 85-1 95. Springer-Verlag. Lecture Notes in Computer Science.

Fields, R., Wright, P., and Harrison, M. (l 995b). A task centered approach to analysing human error tol­
erance requirements. In Proceedings of IEEE Symp�sium RE'95, pages 18-26.

Gaudel, M.-C. (1994). Formal specification techniques. In 16th IEEE International Conference on Soft­
ware Engineering, pages 223-232. IEEE.

Green, M. (1986). A survey of three dialogue models. ACM Trans. on Graphics, 5(3) :244-275.
Green, M. (1987). Directions for user interface management systems research. ACM Computer Graphics,

2 1 (2) : 1 1 3-1 1 6.
Green, T. R. G., Schiele, F., and Payne, S. J. (1 988). Formalisable models of user knowledge in human­

computer interaction . In van de Veer, G. C., Green, T. R. G., Hoc, J. M., and Murray, D., editors,
Working with Computers: Theory versus Outcome, pages 3-46. Academic Press.

Grudin, J. (1989). The case against user interface cottsisteticy. Communications of the A CM, 4(3) :245-
264.

Hall, J. (1 990). Seven myths of formal methods. IEEE Software, pages 65-68.
Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer Program­

ming, 8:23 1 -274.
Harrison, M. (1 992). Engineering 1-tuman Error Tolerant Software. In Nichols, editor, Proceedings of the

Z User Conference, pages 1 9 1-204. Springer-Verlag.
Harrison, M. D. and Dix, A. J. (1990). A state model of direct manipulation. In Harrisbn, M. D. and

Thimbleby, H. W., editors, Formal Methods in Human Computer Interaction, pages 1 29-1 5 1 . Cam-

Saicsit '96 13

bridge University Press.
Hutchins, E. (1994). Cognition in the Wild. MIT Press.
Johnson, C. and Harrison, M. (1992). Using temporal logic to support the specification and prototyping

of interactive control systems. International Journal of Man-Machine Studies, 37: 357-385.
Johnson, P., Johnson, H., Waddington, R., and Shouls, A. (1 988). Task�related knowledge structures:

analysis, modelling and application. In Jones, D. M. and Winder, R., editors, People and Computers
IV. Cambridge University Press.

Morgan, C. C. (1994). Programming from Specifications. Prentice-Hall International. 2nd Edition.
Myers, B. (1988). Creating user interfaces by demonstration. Academic Press.
Myers, B. (1990). A new model for handling input. A CM Transactions on Information Systems, 8(3) :289-

320.
Nardi, B., editor (1996). Context and cognition: a theory of human computer interaction. MIT Press.
Palanque, P. and Bastide, R. (1994). Petri net based design of user-driven interfaces using the interact­

ive co-operating objects formalism. In Paterno, F., editor, Proc Eurographics Workshop on Design
Specification and Verification of Interactive Systems, Italy, pages 2 1 5-228. Eurographics.

Payne, S. J. and Green, T. R. G. (1986). Task-action grammars: a model of mental representation of task
languages. Human-Computer Interaction, 2(2) :93-1 33.

Roast, C. (1993). Executing Models in Human Computer Interaction. PhD thesis, Dept. Computer Sci­
ence, University of York.

Suchman, L. (1987). Plans and Situated Actions: The Problem of Human Machine Interaction. Cambridge
University Press.

Took, R. K. (1990). Surface interaction: A paradigm model for separating application and interface. In
Chew, J. and Whiteside, J., editors, Proceedings of CHI '90, pages 35-42. ACM Press.

Vissers, C. A., Scollo, G., van Sinderen, M., and Brinksma, E. (199 1). Specification styles in distributed
systems design and verification. Theoretical Computer Science, (89): 179-206.

Young, R. and Whittington, J. (1990). Using a knowledge analysis to predict conceptual errors in text­
editor usage. In Chew, J. and Whiteside, J . . editors, CH/'90 Conference Proceedings, pages 91-97.
Addison Wesley.

14 Saicsit '96

	1996_“SAICSIT”_26_27_Harrison
	Blank Page

