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FOREWORD 

The 6th Computer Symposium, organised under the auspices of SAICS, carries on the 
tradition of providing an opportunity for the South African scientific computing 
community to present research material to their peers. 

It was heartening that 31 papers were offered for consideration. As before all these papers 
were refereed. Thereafter a selection committee chose 21 for presentation at the 
Symposium. 

Several new dimensions are present in the 1991 symposium: 

* The Symposium has been arranged for the day immediately after the SACLA 
conference. 

* It is being run over only 1 day in contrast to the 2-3 days of previous symposia. 

* I believe that it is first time that a Symposium has been held outside of the 
Transvaal. 

* Over 85 people will be attending. Nearly all will have attended both events. 

* A Sponsorship package for both SACLA and the Research Symposium was 
obtained. (This led to reduced hotel costs compared to previous symposia) 

A major expense is the production of the Proceedings of the Symposium. To ensure 
financial soundness authors have had to pay the page charge of R20 per page. 

A thought for the future would be consideration of a poster session at the Symposium. 
This could provide an alternative approach to presenting ideas or work. 

I would sincerely hope that the twinning of SACLA and the Research Symposium is 
considered successful enough for this combination survive. As to whether a Research 
Symposium should be run each year after SACLA, or only every second year, is a matter 
of need and taste. 

A challenge for the future is to encourage an even greater number of MSc & PhD 
students to attei:id the Symposium. Unlike this year, I would recommend that they be 
accommodated at the same cost as everyone else. Only if it is financially necessary 
should the sponsored number of students be limited. 

I would like to thank the other members of the organising committee and my colleagues 
at UCT for all the help that they have given me. A special word of thanks goes to Prof. 
Pieter Kritzinger who has provided me with invaluable help and ideas throughout the 
organisation of this 6th Research Symposium. 

MHLinck 
Symposium Chairman 
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Efficient Evaluation of Regular Path Programs 

Peter T. Wood 
Department of Computer Science 

University of Cape Town 
Rondebosch 7700, South Africa 

Abstract 

The next generation of query languages (or database systems should have the 
ability to express recursive queries , the efficient evaluation of which will be crucial to 
the success of these systems. One such query language which has been the subject 
of much rese arch is Datalog .  We define a class of Datalog programs, namely, the 
regular path programs, which can always be evaluated efficiently, in particular, when 
constants are present in a query. Efficient evaluation is ensured by reducing the 
number of arguments appearing in each predicate defined in the program. The class 
of regular path programs is incomparable to previous classes to which the technique 
of argument reduction has been applied. 

1 Introduction 

There is little doubt that the next generation of database systems should support query 
languages that are more powerful than those usually associated with relational databases . 
The language Datalog' is one of those that has received much attention in this regard 
[Ullm88] . Datalog has a Prolog-like syntax, but , unlike Prolog , is evaluated bottom-up 
rather than top-down. The reasons- for this are to ensure termination of queries and to 
exploit the efficiency of relational algebra for operations on sets of tuples [Ullm89] . 

Example 1 .1  Consider the following example taken from [Naug87] . Assume that the 
database comprises two relations: likes(X, Y ) ,  which states that person X likes product 
Y ,  and knows(X, Y ) ,  which states that person X knows person Y .  Suppose that people 
buy the products that they like, or those bought by someone they know. Then the following 
program P defines the relation buys(X, Y) of people X and the products Y they buy. 

buys(X, Y) : - likes (X, Y) .  
buys(X, Y)  : - knows(X, Z) , buys(Z, Y) .  

Note that this program is recursive, in that buys is computed in terms of itself. This is a 
capability not found in traditional query languages. 

ff we are interested in the entire buys relation, then we phrase the query ? - buys(X, Y) 
against the program. In order to evaluate this query bottom-up, the system would under­
take an iterative process known as semi-naive evaluation, in which successive approxima.. 
tions to the complete buys relation are computed. These approximations represent larger 
and larger subsets of the buys relation , with the final iteration producing the complete 
answer. The first approximation is the likes relation itself. Successive approximations 
are found by joining previous approximations of buys with knows (based on the common 
attribute Z) until no new tuples are found. D 
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One disadvantage of bottom-up methods is their inability in certain cases to "focus" 
the computation. For instance , if in the above example we wanted to know what John 
buys, rather than what everyone buys, then we would specify the query ? - buys(john, Y )  
instead of ? - buya(X, Y ) .  However , a simple-minded bottom-up evaluation would still 
compute the entire buys relation before selecting out those tuples whose first comporient 
is John . What is needed is a method analogous to pushing select operations into relational 
algebra expressions [Ullm88] , but one which works for recursive programs. 

Top-down methods are usually better in this respect . In our example , a top-down 
method would first find which products John likes, then whom John knows along with 
the products they like , and so on. One way to achieve such behaviour for bottom-up 
evaluation is to transform a given program so that its bottom-up evaluation mimics a 
top-down evaluation. This is the goal of a method known as Magic Sets [BMSU86,BR87J . 

Example 1.2 Given the above program P along with query ? - buya (John, Y) , Magic 
Sets produces the following : 

magic(john) . 
magic(Z) magic(X) , knows(X, Z) . 
buya(X, Y )  : - magic(X) , likes(X, Y ) .  
buys(X, Y )  : - magic(X) , knows(X, Z ) ,  buys(Z, Y ) .  
? - buys(john , Y ) .  

� 
The purpose of the first two rules is to compute all possible bindings of the first argument 
of buys that would be used in a top-down evaluation . This "magic" predicate is then 
substituted into each of the original rules in order to restril:t the bindings in a bottom-up 
computation. D 

However, the Magic Sets transformation in the above example is still not the most 
efficient possible . It is not hard to see that the recursive rule for buys is now redundant, 
since the transitive closure of the knows relation starting with John is computed by 
the second magic rule , from which all the products bought by John are found by the 
nonrecursive rule for buys. We can therefore transform the program to the following:  

magic(john) .  
magic(Z) : - magic(X) ,. knows (X, Z) . 
buys(john,  Y) : - magic(X) , likes(X, Y) .  
? - buys(john, Y) .  

Notice that the number of argument.a in the recursive predicate in the program (initially 
buys , now magic) bait been reduced from two to one. This technique, known as argu­
ment reduction or factoring, has been applied previously to various classes of Datalog 
programs [NRSU89a,NRSU89b] . In this paper, we apply the technique to a different class 
of programs, namely, the regular path programa. 

In the next section, we begin by defining the class of regular path programs. Section 3 
is devoted to the application of argument reduction to regular programs when constants 
are specified in queries. Our claim that this leads to efficient evaluation of such programs 
is explored in Section 4, where it is shown that the transformed programs are often con­
siderably less time consuming to evaluate than the original programs. Conclusions and 
topics for future research are discussed in Section 5 .  
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2 Regular Path Programs 

In the previous section, we saw one example of a regular path program; we now define the 
class of such programs exactly. The term regular path program is derived from the fact 
that there is a correspondence between these programs and the problem of finding paths 
which satisfy a given regular expression in a labelled , directed graph. This connection is 
explored in more detail in [Wood90] , although it should be noted that the regular path 
programs defined below differ from the programs defined in that paper. 

Essentially, we want to generalise programs such as that given in the previous section in 
two ways. Firstly, we would like to have more complicated rule structures as demonstrated 
by the following example. 

$ 

Example 2.1  Assume we have a semantic network in which the nodes represent instances , 
classes or properties, while edges from instances to classes are labelled with isa (classifica­
tion) , edges between classes are labelled with ako (generalisation) , and edges from either 
instances or classes to properties are labelled with can, has or is. The following program 
finds the relationship i_inherit between instances and the properties they inherit . 

Linherit (X, Y) : -
c...inherit(X, Y) : -
c...inherit(X, Y) · -
c...inherit(X, Y) : -
c...inherit (X, Y) 

isa(X, Z) , C-inherit (Z, Y). 
ako(X, Z) , c_inhen't (Z, Y ) .  
can(X, Y ) .  
has(X, Y ) . 
is(X, Y ) .  

Note that the above program displays a natural correspondence to the notion of a regular 
grammar . O 

A second way in,. which we would like to generalise programs is by adding arguments 
to predicates in order to pass more information among the rules . The following example 
demonstrates this ability. 

Example 2.2 Suppose we have an application involving a network with values labelling 
the edges connecting nodes. Assume that this information is stored as an edge relation 
e(X, Y, Z) ,  which states that there is an edge from X to Y labelled Z. If we want to find 
· all nodes that are connected by routes on which at most two alternating values are used, 
the following program will suffice. 

s(X, Y, U, V )  
t (X, Y, U, V )  
s(X, Y, U, V) 

e (X, Z, U) , t (Z, Y, U, V) . 
: - e(X, Z, V) , s(Z, Y, U, V) .  
: - e(X, Z, U) , e(Z, Y, V) . 

Note that the program still has a regular structure and contains mutually recursive pred­
icates s and t. The variables U and V are used to hold the pairs of edge labels, while the 
alternation of values is captured by the mutual recursion. O 

Before we proceed,  we need to introduce some standard terminology. Given a rule such 
as 

buys(X, Y) : - knows(X, Z) , buys(Z, Y ) .  
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the predicate to the left of : - is called the head of the rule, while those to the right 
constitute the body of the rule . Variables in a program are denoted by strings with an 

" initial upper case letter (e .g .  X) , while constants are numeric values or strings having an 
initial lower case letter (e .g .  john) . AB is common with Datalog, we assume that all rules 
are safe, that is , every variable appearing in the head of a rule also ap�ars somewhere 
in the body. We also assume that there are no constants in the rules , except possibly 
for the query clause. Predicates that correspond to relations stored in the database ( such 
as knows above) are called EDB predicates (extensional database predicates) ; those that 
are defined by rules (such as buys above) are called IDB predicates (intensional databases 
predicates) . We make the standard assumption that no EDB predicate appears in the 
head of any rule. 

Regular path programs are defined as follows: 

1 .  Rules must correspond to productions of a regular grammar; in other words , the 
body of each rule must comprise either (a) a single EDB predicate and a single IDB 
predicate (an internal rule) , or (b) one or more EDB predicates (an exit rule) . 

2 .  All IDB predicate occurrences must have the same number of arguments. 

3 .  Given an internal rule of the form 

s(X, Y, U, V)  : - e(X, Z, U) ,  t (Z, Y, U, V) .  

where s and t are IDB predicates , e and t have exactly one variable in common that 
does not appear in the head (Z above) . The position of this variable in t is called 
the linking position. 

4 .  The position in the head s corresponding to the linking position in t is occupied by 
a variable (X above) which appears only in e .  This is the source variable . 

5 .  The remaining positions in s must be occupied by variables appearing in the same 
positions in t-the persistent variables (Y , U and V above) . 

6 .  The source (or linking) position for each IDB predicate in the program must be the 
same. 

7 .  For the whole program there must be exactly one persistent position such that for 
every IDB predicate appearing in the body of a rule the variable occupying that 
position appears nowhere else in the body. This position is called the sin/c position, 
and in each rule the corresponding variable is called the sin/c variable. 

Example 2.3 Referring to the program in Example 2 . 1 ,  it is easy to see that it conforms 
to the definition of a regular path program. In each of the internal rules , Z is the linking 
variable, X is the source variable, and Y is the sink variable . There are no other persistent 
variables. 

Now turning to the first internal rule of Example 2 .2 ,  once again Z is the linking 
variable and X the source variable ; hence, Y ,  U and V are persistent variables. Because 
U also appears in e(X, Z, U) , the third argument position in IDB predicates cannot be the 
sink position. From the second internal rule, we establish that the fourth IDB argument 
position ( occupied by V )  also cannot be the sink position. Hence, Y is the sink variable 
in each of the internal rules. D 
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The reader should not be mistaken into thinking that the EDB predicate must always 
precede the IDB predicate in an internal rule. The rule 

s(X, Y, V )  : - t(X, Z, V ) , e(Z, Y, V) . 

where e is the EDB predicate, does not violate the definition : Z is the linking variable , Y 
the source variable, and X the sink variable. Some examples violating the definition are 
given below. 

Example 2.4 The pair of internal rules 

s(X, Y, V ) : - e(X, Z, U) , t (Z, Y, V) . 
t (X, Y, V ) : - e(X, Z, V ) , s(X,,Y, Z) . 

violates item (6) in the definition, since the source position is 1 in the first rule and 3 in 
the second. On the other hand, the pair of rules 

s(X, Y, V) : - e(X, Z, U) , t(Z, Y, V) . 
t (X, Y, V) : - e(X, Z, Y ) , s(Z, Y, V) .  

violates item (7) , since the first rule implies that the sink position must be 2 ,  while the 
second rule implies it must be 3. O 

The definition of regular path programs can be extended in a number of ways. Firstly, 
we can allow a chain of EDB predicates of the form 

rather than the single EDB predicate e(X, Z) in an internal rule . It is also possible to 
allow tuples of variables rather than single variables for source and sink variables . We do 
not use these extensions in the remainder of the paper as they tend to make the notation 
more difficult to follow.  

In the  next section , we consider regular path programs with queries in  which constants 
appear,  for example, ? - buys(john, Y) or ? - s(X, t/0 ,  U, vo) . If the constant appears in 
the source position, we call the program right-linear ; if constants appear in one or more 
of the persistent positions, the program is called left-linear. These terms are consistent 
with those used in [NRSU89a] . 

3 Argument Reduction 

We now turn our attention to ways in which a left- or right-linear regular path program 
can be rewritten so that its evaluation can be performed more efficiently. In this section, 
we show that the techniques presented in [NRSU89a) can be extended to apply to these 
programs. 

3.1 Left-Linear Programs 
If any persistent variables are bound to constants in a query to a regular path program P, 
we simply substitute the constant.a for the corresponding variables in all EDB predicates 
in P and delete the variables wherever else they appear in P. 
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Example 3.1  Consider the program of Example 2 .2  in which argument positions 2 ,  3 
and 4 are persistent .  If we have the query s(X, Yo ,  U, vo) ,  then the program is rewritten 
as follows. 

s(X, U) 
t(X, U) : ­
s(X, U) 

e(X, .Z, U) , t (.Z, U) . 
e(X, .Z, vo) , s(.Z, U) . 
e(X, .Z, U) , e(.Z, Yo , vo) .  

All occurrences of Y and V in IDB predicates have been deleted , while all occurrences of 
Y and V in EDB predicates have been replaced by Yo and vo ,  respectively. As a result, 
the number of arguments in each IDB predicate occurrence ' has been reduced from four 
to two. D 

Given a regular path program P, we can always rewrite it so that ( 1 )  each rule uses 
the same set of variables in its head, and (2) the source variable appears in the first 
argument position of each IDB predicate in the head, the sink variable appears in the 
second position ,  and the remaining persistent variables appear in the same order in each 
rule. We will assume this standard form from now on. 

Let the query to the program be given by ? - q(X, V ) ,  the tuple of persistent variables 
being V .  We assume that W = W1 , . . .  , W"' is the subtuple of variables in V that are 
bound to constants w, , 1 :5 i � m, in the query, and that 8 is the substitution that 
replaces each W, by w, , 1 � i � m. Let V - W denote the removal of all variables in W 
from V .  The general method is as follows. 

1 .  Given an exit rule of the form 

t (X, V )  

where t1 , . . .  , e1c are e (EDB) literals, -transform i t  to 

2. Given an internal rule of the form 

t (X, V )  : - e (X, .Z, U) , s(.Z, V ) . 

where U appears in V ,  transform it to 

t (X, V - W) : - e(X, .Z, 8(U)) , s (.Z, V - W ) .  

The query q(X, V - tf' )  is now applied to the transformed program. 

3.2 Right-Linear Programs 
If the source variable X in a query q(X, Y, V) is bound to a constant , we apply a trans­
formation based on that of Magic Sets [BMSU86,BR87) , similar to the technique in 
[NRSU89aJ . The first step in such a transformation is the top-down propagation of the 
binding patterns through a program P, leading to an adorned program po.d. (Ullm88J , in 
which each IDB predicate p has an adornment a indicating which arguments of p are 
bound and which are free. For example, p1,1 means that the first argument of p is bound 
while the second is free. 
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Example 3.2 Consider again the program P of Example 2 .2 .  If we assume that the query 
is ? - s(zo , Y, U, V ) , then the adorned program patl is as follows. 

s"III (X, Y, U, V)  
t6N (X, Y, U, V) 
sl,Jf)6 (X, Y, U, V) 
tl,Jf)" (X, Y, U, V )  
s6111 (X, Y, U ,  V) 
s61'6 (X, Y, U, V )  

e(X, Z, U) , t61'f (Z, Y, U, V) . 
- e(X, Z, V ) , s1,Jf)b (Z, Y, U, V ) .  

e(X, Z, U) , t61'6 (z, Y, U, V) .  
- e(X, Z, V) , s1,Jf)b (Z, Y, U, V) . 
- e(X, Z, U ) ,  e(Z, Y, V) .  

e(X, Z, U) , e (Z, Y, V) .  

In the query, only X is bound so we start with the adornment bff/ for s .  Given that X is 
bound in the first rule, by the time t is evaluated in a top-down evaluation , Z and U will 
also be bound ; hence the adornment b/1,/for t. This process'Continues until all adornments 
which are generated in a top-down manner for all IDB predicates have been considered. 
D 

The second step in the transformation is to use the standard technique to derive the 
set of magic rules for patl [BMSU86] . The following example demonstrates the method. 

Example 3.3 We use the adorned program patl from the previous example . The magic 
rules are used to compute botto�up those bindings for variables that would have been 
used in a top-down computation.  These bindings are represented by �called magic 
predicates , one for each adorned version of an IDB predicate in patl . The magic predicates 
are formed by prefixing m_ to the IDB predicates. We first generate a rule for the constant 
in the query : 

m..s6111 (zo)  

For each internal rule in patl of  the form 

ta 1 (X, Y, V) , : - e(X, Z, U) , sa2 (Z, Y, V ) .  

we generate its magic rule by (i) prefixing both s and t with m-, (ii) deleting all free 
variables in s and t , and (iii) exchanging m_s and m_t. The reason for step (ii) is that we 
are interested only in bound variables, while that for step (iii) is that we want to simulate 
top-down evaluation by bottom-up evaluation . This gives rise to the following set of magic 
rules: 

D 

m..t6N ( Z, U) 
m..a1,Jf)b (Z, U, V )  : -
m..t1,Jf)b (Z, U, V )  : -
m..s1,Jf)b ( Z, U, V) 

m..s6111 (X) , e (X, Z, U) .  
m..t61'f (X, U) , e (X, Z, V) . 
m..s61'6 (X, U, V) ,  e(X, Z, U) . 
m..t61'6 (X, U, V) , e(X, Z, V) .  

In the final step of the transformation, magic predicates are introduced into the exit 
rules of patl _ Unlike in the usual Magic Sets algorithm, only the magic rules and these 
modified exit rules are used to answer the original query. 

Example 3.4 Continuing with our running example, we must substitute each of m-s"III 
and m_sl,Jf)6 into the exit rule of the program, giving :  
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s(Y, U, V) : - m_,1>61 (X) , e(X, Z, U) , e(Z, Y,V) .  
s(Y, U, V) : - m_,bfl,b (X, U, V) , e(X, Z, U) , e(Z, Y, V) . 

Note once again that the number of arguments in all IDB predicates has been reduced by 
the transformation. D 

We now summarise the general method . Given a program P and query q(xo ,  Y, V ) ,  P 
is rewritten as follows. 

1 .  Generate the adorned program pad from P and the query. 

2. Generate the magic rules from pa.cl. according to the algorithm in [BMSU86J . 

3 .  For each exit rule in pad. of the form 

e1 , . . .  , e1c . 

where €1 , . • .  , €1c are e (EDB) literals,  generate the rule 

where U is the tuple of persistent variables bound according to a:.  

The query q(Y, V)  is now applied to the generated program. 
In common with [NRSU89a] , the above �ethod has the advantage over Magic Sets that 

magic predicates are substituted into exit rules alone, the remaining rules of the original 
program being discarded. 

4 Efficient Evaluation 

The technique of argument reduction has been shown to speed up the evaluation of a 
range of Datalog programs. The programs to which the technique is applied in [NRSU89b] 
generalise the one-sided programs of [Naug87] , the separable programs of [Naug88] , and the 
right- , left- and combined-linear programs of [NRSU89a] . These programs are the so-called 
RLC-stable programs: those containing only right-linear , left-linear and combined-linear 
rules in terms of a single IDB predicate and one exit rule1 . For these programs it has been 
proved that the evaluation of a program P transformed by argument reduction is never 
less efficient than the evaluation of P transformed by the Magic Sets algorithm, which is 
the best general purpose technique for speeding up evaluation of Datalog programs. In 
fact ,  as shown in [NRSU89b] , programs transformed by argument reduction can lead to 
an order of magnitude improvement over Magic Sets in terms of evaluation efficiency. 

We have already seen that regular path programs can contain multiple exit rules {Ex­
ample 2 . 1 ) , as well as more than one IDB predicate and mutually recursive rules (Exam­
ple 2 .2) . Thus, there are regular path programs that are not RLC-stable. On the other 
hand , regular path programs do not contain combined-linear rules , so there are RLC-stable 
programs that are not regular path programs. 

We show below by means of an example that , given a regular path program that is 
not RLC-stable , the transformations described in this paper can also lead to an order of 
magnitude improvement over Magic Sets in terms of evaluation efficiency. 

1 There are other restrictions aa well 
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Example 4..1 Once again, we consider the program P of Example 2 .2 ,  excluding the 
persistent variables U and V which are not needed for the present purpose: 

s (X, Y )  e(X, Z) , t (Z, Y ) .  
t (X, Y )  : - e(X, Z) , s(Z, Y ) .  
s(X, Y )  : - e(X, Z) , e (Z, Y ) .  

Assume that the query is ? - s{zo ,  Y) and that the relation e contains the 2 n  + 1 tuples 
{ (xi , Zi+1 ) I O  $ i $ 2n - 1 } .  The program pad is as follows: 

sbf (X, Y )  e(X, Z) , tbf (Z, Y ) .  
tbf (X, Y )  : - e(X, Z) , sbf (Z, Y ) .  
ii (X, Y )  : - e(X, Z) , e(Z, Y) .: 

From P4d we get the following magic rules: 

m_sbf (xo) . 
m_tbf (Z) 
m_sbf (Z) 

m...sbf (X) , e(X, Z) . 
m-1.bf (X) , e(X, Z) . 

The relation m_{bf contains the n values { z1 , zs , . . .  , z2n- 1 } ,  while m .. .1il contains the n +  1 
values {zo ,  z2 , . . .  , z2n } .  Substituting the magic predicate into the exit rule according to 
the method of Section 3 .2  yields the following :  

sbf (Y )  : - m...sbf (X) , e(X, Z) , e (Z, Y ) .  

The relation sbf contains the values {z2 , x4 , . . .  , Z2n} , which is the answer t o  the query. 
On the other hand, the Magic Sets algorithm produces 

sbf (X, Y )  : - m...sbf (X) , e (X, Z) , e(Z, Y ) . 

where sbf containes the tuples { (z2i ,  z2,+2 ) I O $ i $ n - 1 } .  So in both cases the relation 
for sbf contains n tuples . But now M-agic Sets goes on to substitute magic predicates into 
the internal rules of the program as well , yielding: 

s"I (X, Y )  m_sbf (X) , e(X, Z) , t"I (Z, Y ) .  
t"l (X, Y )  : - m_tbf (X) , e(X, Z) , s"l (Z, Y ) . 

Here ab/ contains the tuples { (z21 , z2; )  I O  $ i < j � n} , while t"f contains the tuples 
{ {z2,-1 , z2;-1 ) 1 1  $ i < j $ n} . These two relations together contain exactly n2 tuples, 
an order of magnitude larger than the relations in the program transformed by argument 
reduction. D 

5 Conclusion 

We have defined a class of Datalog programs, the regular path. programs, whose efficiency 
of evaluation can often be improved significantly by applying the technique of argument re­
duction. This class of programs is incomparable to previous classes to which this technique 
has been applied. 

It has been shown that bottom-up evaluation using the Magic Sets transformation 
followed by semi-naive evaluation is never less efficient than top-down evaluation [Ullm89] . 
On the other hand, Magic Sets does not perform as well as it might for certain classes 
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of programs and it is highly unlikely that any single method will prove to be the most 
efficient for all programs. This has led to the search for subclasses of programs which are 
amenable to specialised techniques for improving evaluation efficiency. One such class of 
programs are the RLC-stable programs [NRSU89b] . The regular path programs defined 
in this paper now provide another such class. 

One obvious area of future research is  to attempt to establish whether the class of 
regular path programs can be integrated with the RLC-stable programs, thereby producing 
a strictly broader class of programs to which argument reduction can be applied. 
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