
VI

VI

I

PROCEEDINGS

· VI

HOT EL,

CALE DON

2 - 3 JULY 1991

� - I

VI

VI
EDITED BY VI

M H Linck

SPONSORE D

B Y

ISM

FRDV·

GENMIN

DEPARTMENT OF COMPUTER SCIENCE • UNIVERSITY OF CAPE TOWN

I
I

PROCEEDINGS / KONGRESOPSOMMINGS

6th

SOUTHERN AFRICAN COMPUTER

SYMPOSI�

6de

SUIDELIKE-AFRIKAANSE

REKENAARSIMPOSIUM

De Overberger Hotel, Caledon

2 - 3 JULY 1991

SPONSORED by

ISM
FRD

GENMIN

EDITED by

MHLINCK

Department of Computer Science

University of Cape Town

TABLE OF CONTENTS

Foreword 1

Organising Committee 2

Referees 3

Program 5

Papers (In order of presentation) 9

"A value can belong to many types"
B H Venter, University of Fort Hare 10

"A Transputer Based Embedded Controller Development System"
MR Webster, R G Harley, DC Levy & DR Woodward,
University of Natal 16

"Improving a Control and Sequencing Language"
G Smit & C Fair, University of Cape Town 25

"Design of an Object Orientated Framework/or Optimistic
Parallel Simulation on Shared-Memory Computers"
P Machanick, University of Witwatersrand 40

"Using Statecharts to Design and Specify the GMA
Direct-Manipulation User Interface"
L van Zijl & D Mitton, University of Stellenbosch 51

"Product Form Solutions/or Multiserver Centres
with Heirarchical Classes of Customers"
A Krzesinski, University of Stellenbosch and
R Schassberger, Technische U niversitat Braunschweig 69

"A Reusable Kernel for the Development of Control Software"
W Fouche and Pde Villiers, University of Stellenbosch 83

"An Implementation of Linda Tuple Space
under the, Helios Operating System"
PG Clayton, E P Wentworth, G C Wells and F de Heer-Menlah,
Rhodes University 95

"The Design and Analysis of Distributed Virtual Memory
Consistency Protocols in an Object Orientated Operating System
K Macgregor, University of Cape Town & R Campbell University
of Illinois at Urbana-Champaign 107

I '

"Concurrency Control Mecchanisms for Multidatabase Systems"
A Deacon, University of Stellenbosch

"Extending Local Recovery Techniques for Distributed Databases"
H L Victor & M H R ennhackkamp, University of Stellenbosch

"Analysing Routing Strategies in Sporadic Networks"
S Melville, University of Natal

The Design of a Speech Synthesis System for Afrikaans"

1 18

135

148

M J Wagener, University of P ort E lizabeth 167

"Expert Systems for Management Control: A Multiexpert Architecture"
V Ram, University of Natal 177

"Integrating Simularity-Based and Explanation-Based Learning"
G D Oosthuizen and C A venant, University of P retoria 187

"Efficient Evaluation of Regular Path Programs"
P Wocxi, University of Cape Town 201

"Object Orientation in Relational Databases"
M Rennhackkamp, University of Stellenbosch 2 1 1

"Building a secure database using self-protecting objects"
M Olivier and SH von Solms, R and A frikaans University 228

"Modelling the Algebra of Weakest Preconditions"
C Brink and I R ewitsky, University of Cape Town 242

"A Model Checker for Transition Systems"
Pde Villiers, University of Stellenbosch. 262

"A New Algorithm for Finding an Upper Bound of the Genus of a Graph"
DI Carson and OR Oellennann, University of Natal 276

FOREWORD

The 6th Computer Symposium, organised under the auspices of SAICS, carries on the
tradition of providing an opportunity for the South African scientific computing
community to present research material to their peers.

It was heartening that 31 papers were offered for consideration. As before all these papers
were refereed. Thereafter a selection committee chose 21 for presentation at the
Symposium.

Several new dimensions are present in the 1991 symposium:

* The Symposium has been arranged for the day immediately after the SACLA
conference.

* It is being run over only 1 day in contrast to the 2-3 days of previous symposia.

* I believe that it is first time that a Symposium has been held outside of the
Transvaal.

* Over 85 people will be attending. Nearly all will have attended both events.

* A Sponsorship package for both SACLA and the Research Symposium was
obtained. (This led to reduced hotel costs compared to previous symposia)

A major expense is the production of the Proceedings of the Symposium. To ensure
financial soundness authors have had to pay the page charge of R20 per page.

A thought for the future would be consideration of a poster session at the Symposium.
This could provide an alternative approach to presenting ideas or work.

I would sincerely hope that the twinning of SACLA and the Research Symposium is
considered successful enough for this combination survive. As to whether a Research
Symposium should be run each year after SACLA, or only every second year, is a matter
of need and taste.

A challenge for the future is to encourage an even greater number of MSc & PhD
students to attei:id the Symposium. Unlike this year, I would recommend that they be
accommodated at the same cost as everyone else. Only if it is financially necessary
should the sponsored number of students be limited.

I would like to thank the other members of the organising committee and my colleagues
at UCT for all the help that they have given me. A special word of thanks goes to Prof.
Pieter Kritzinger who has provided me with invaluable help and ideas throughout the
organisation of this 6th Research Symposium.

MHLinck
Symposium Chairman

1

I I

I/
SYMPOSIUM CHAIRMAN

M H Linck, University of Cape Town

ORGANISING COMMITTEE

SPONSORS

D Kourie, Pretoria University.

PS Kritzinger, University of Cape Town.

M H L inck, University of Cape Town.

ISM

GENMIN

FRD

2

LIST OF REFEREES FOR 6th RESEARCH SYMPOSIUM

NAME INSTITUTION

Barnard, E Pretoria

Becker, Ronnie UCT

Berman S UCT

Bishop, Judy Wits

Berman, Sonia UCT

Brink, Chris UCT

Bodde, Ryn Networks Systems

Bornman, Chris UNISA

Brower, Pict UOFS

Cherenack, Paul UCT

Cook Donald UCT

de Jaeger, Gerhard UCT

de Villiers, Pieter , Stellenbosch

Ehlers, Elize RAU

Eloff, Jan RAU

Finnie, Gavin Natal

Gaynor, N AECI

Hutchinson, Andrew UCT

Jourdan, D Pretoria

Kourie Derrick Pretoria

Kritzinger, Pieter UCT

Krzesinski, Tony Stellenbosch

Laing, Doug ISM

Labuschagne, Willem UNISA

Levy, Dave Natal

3

"'-··-"

MacGregor, Ken

Machanick, Philip

Mattison Keith

Messerschmidt, Hans

Mutch, Laurie

Neishlos, N

Oosthuizen, Deon

Peters Joseph

Ram,V

Postma, Stef

Rennhackkamp, Martin

Shochot, John

Silverberg, Roger

Smit, Riel

Smith, Dereck

Terry, Pat

van den Heever, Roelf

van Zijl, Lynette

Venter, Herman

Victor, Hema

von Solms, Basie

Wagenaar,M

Wentworth, Peter

Wheeler, Graham

Wood, Peter

UCT

Wits

UCT

UOFS

Shell

Wits

Pretoria

Simon Fraser

Natal, Pmb.

Natal, Pmb

Stellenbosch

Wits

Council for Mineral Technology

UCT

UCT

Rhodes

UP

Stellenbosch

Fort Hare

Stellenbosch

RAU

UPE

Rhodes

UCT

UCT

4

6TH RESEARCH SYMPOSIUM - 1991

FINAL PROGRAM

TUESDAY 2nd July 1991

10h00 - 13h00

13h00 - 13h50

Registration

PUB LUNCH

14h00 - 15h30 SESSION lA

Venue: Hassner

Chairman: Prof Basie von Solrns

14h00 - 14h30
"A value can belong to many types. "
B H Venter, University of Fort Hare

14h30 - 15h00
"A Transputer Based Embedded
Controller Development System"
MR Webster, R G Harley, DC Levy &
D R Woodward, University of Natal

15h00 - 15h30
"Improving a Control and Sequencing
Language"
G Smit and C Fair, University of Cape
Town

15h30 · 16h00 TEA

5

SESSION lB

Venue: Hassner C

Chainnan:Prof Roelf v d Reever

14h00 - 14h30
"Design of an Object Orientated
Framework/or Optimistic Parallel
Simulation on Shared-Memory
Computers" P Machanick, University of
Witwatersrand

14h30 - 15h00
"Using Statechans to Design and
Specify the GMA Direct-Manipulation
User Interface" L van Zijl & D Mitton,
University of Stellenbosch

15h00 - 15h30
"Product Form Solutions/or Multiserver
Centres with Heirarchical Classes of
Customers" A Krzesinski, University of
Stellenbosch and R Schassberger,
Technische Universitlit Braunschweig

16h00 · 17h30 SESSION 2A

Venue: Hassner

Chairman: Prof Derrick Kourie

16h00 - 16h30
"A Reusable Kernel for the Development
of Control Software" W Fouche and P de
Villiers, University of Stellenbosch

16h30 - 17h00
"An Implementation of Linda Tuple
Space under the Helios Operating
System" P G Clayton, E P Wentworth, G
C Wells and F de-Heer-Menlah, Rhodes
University

17h00 - 17h30
"The Design and Analysis of Distributed
Virtual Memory Consistency Protocols
in an Object Orientated Operating
System" K MacGregor, University of
Cape Town & R Campbell, University
of lliinois at Urbana-Champaign

19h30

20h00

PRE-DINNER DRINKS

GALA CAPE DINNER
(Men: Jackets & ties)

6

WEDNESDAY 3rd ,July 1991

7h00 • 8h15 BREAKFAST

8h15 - 9h45 SESSION 3A

Venue: Hassner

Chairman: Assoc Prof P Wood

8h15 - 8h45
"Concurrency Control Mechanisms for
Multidatabase Systems" A Deacon,
University of Stellenbosch

8h45 - 9h15
"Extending Local Recovery Techniques
for Distributed Databases" H L Victor
& M H Rennhackkamp, University of
Stellenbosch

9h15 - 9h45
"Analysing Routing Strategies in
Sporadic Networks" S Melville,
University of Natal

9h45 - 10h15 TEA

10h15 - 11h00 SESSION 4

Venue: Hassner

Chairman: Prof P S Kritzinger
Invited paper: E Coffman

11h00 · 11h10 BREAK

7

SESSION 3B

Venue: Hassner C

Chairman: Prof G Finnie

8h15 - 8h45
The Design of a Speech Synthesis
System for Afrikaans" M J Wagener,
University of Port Elizabeth

8h45 - 9h15
"Expen Systems for Management
Control: A Multiexpert Architecture"
V Ram, University of Natal

9h15 - 9h45
"Integrating Simularity-Based and
Explanation-Based Learning"
G D Oosthuizen and C A venant,
University of Pretoria

11h10 • 12h40 SESSION SA

Venue: Hassner

Chairman: Prof C Bornman

11h10 - 11h40
"Efficient Evaluation of Regular Path
Programs"
P Wood, University of Cape Town

11h40 - 12h10
"Object Orientation in Relational
Databases"
M Rennhackkamp, University of
Stellenbosch

12h10 - 12h40
"Building a secure database using self­
protecting objects" M Olivier and S H
von Solms, Rand Afrikaans University

SESSION SB

Venue: Hassner C

Chairman: Prof A Krzesinski

11h10 - 11h40
"Modelling the Algebra of Weakest
Preconditions"
C Brink & I Rewitsky, University of
Cape Town

11h40 - 12h10
"A Model Checker for Transition
Systems"
P de Villiers, University of Stellenbosch

12h10 - 12h40
, "A New Algorithm for Finding an Upper

Bound of the Genus of a Graph"
D I Carson and O R Oellennann,
University of Natal

12h45-12h55 GENERAL MEETING of RESEARCH SYMPOSIUM ATTENDEES

Venue: Hassner

Chairman: Dr M H Linck

13h00 • 14h00 LUNCH

FINIS 6th COMPUTER SYMPOSIUM

8

PAPERS

ofthe

6TH RESEARCH SYMPOSIUM

9

Efficient Evaluation of Regular Path Programs

Peter T. Wood
Department of Computer Science

University of Cape Town
Rondebosch 7700, South Africa

Abstract

The next generation of query languages (or database systems should have the
ability to express recursive queries , the efficient evaluation of which will be crucial to
the success of these systems. One such query language which has been the subject
of much rese arch is Datalog . We define a class of Datalog programs, namely, the
regular path programs, which can always be evaluated efficiently, in particular, when
constants are present in a query. Efficient evaluation is ensured by reducing the
number of arguments appearing in each predicate defined in the program. The class
of regular path programs is incomparable to previous classes to which the technique
of argument reduction has been applied.

1 Introduction

There is little doubt that the next generation of database systems should support query
languages that are more powerful than those usually associated with relational databases .
The language Datalog' is one of those that has received much attention in this regard
[Ullm88] . Datalog has a Prolog-like syntax, but , unlike Prolog , is evaluated bottom-up
rather than top-down. The reasons- for this are to ensure termination of queries and to
exploit the efficiency of relational algebra for operations on sets of tuples [Ullm89] .

Example 1 .1 Consider the following example taken from [Naug87] . Assume that the
database comprises two relations: likes(X, Y) , which states that person X likes product
Y , and knows(X, Y) , which states that person X knows person Y . Suppose that people
buy the products that they like, or those bought by someone they know. Then the following
program P defines the relation buys(X, Y) of people X and the products Y they buy.

buys(X, Y) : - likes (X, Y) .
buys(X, Y) : - knows(X, Z) , buys(Z, Y) .

Note that this program is recursive, in that buys is computed in terms of itself. This is a
capability not found in traditional query languages.

ff we are interested in the entire buys relation, then we phrase the query ? - buys(X, Y)
against the program. In order to evaluate this query bottom-up, the system would under­
take an iterative process known as semi-naive evaluation, in which successive approxima..
tions to the complete buys relation are computed. These approximations represent larger
and larger subsets of the buys relation , with the final iteration producing the complete
answer. The first approximation is the likes relation itself. Successive approximations
are found by joining previous approximations of buys with knows (based on the common
attribute Z) until no new tuples are found. D

201

One disadvantage of bottom-up methods is their inability in certain cases to "focus"
the computation. For instance , if in the above example we wanted to know what John
buys, rather than what everyone buys, then we would specify the query ? - buys(john, Y)
instead of ? - buya(X, Y) . However , a simple-minded bottom-up evaluation would still
compute the entire buys relation before selecting out those tuples whose first comporient
is John . What is needed is a method analogous to pushing select operations into relational
algebra expressions [Ullm88] , but one which works for recursive programs.

Top-down methods are usually better in this respect . In our example , a top-down
method would first find which products John likes, then whom John knows along with
the products they like , and so on. One way to achieve such behaviour for bottom-up
evaluation is to transform a given program so that its bottom-up evaluation mimics a
top-down evaluation. This is the goal of a method known as Magic Sets [BMSU86,BR87J .

Example 1.2 Given the above program P along with query ? - buya (John, Y) , Magic
Sets produces the following :

magic(john) .
magic(Z) magic(X) , knows(X, Z) .
buya(X, Y) : - magic(X) , likes(X, Y) .
buys(X, Y) : - magic(X) , knows(X, Z) , buys(Z, Y) .
? - buys(john , Y) .

�
The purpose of the first two rules is to compute all possible bindings of the first argument
of buys that would be used in a top-down evaluation . This "magic" predicate is then
substituted into each of the original rules in order to restril:t the bindings in a bottom-up
computation. D

However, the Magic Sets transformation in the above example is still not the most
efficient possible . It is not hard to see that the recursive rule for buys is now redundant,
since the transitive closure of the knows relation starting with John is computed by
the second magic rule , from which all the products bought by John are found by the
nonrecursive rule for buys. We can therefore transform the program to the following:

magic(john) .
magic(Z) : - magic(X) ,. knows (X, Z) .
buys(john, Y) : - magic(X) , likes(X, Y) .
? - buys(john, Y) .

Notice that the number of argument.a in the recursive predicate in the program (initially
buys , now magic) bait been reduced from two to one. This technique, known as argu­
ment reduction or factoring, has been applied previously to various classes of Datalog
programs [NRSU89a,NRSU89b] . In this paper, we apply the technique to a different class
of programs, namely, the regular path programa.

In the next section, we begin by defining the class of regular path programs. Section 3
is devoted to the application of argument reduction to regular programs when constants
are specified in queries. Our claim that this leads to efficient evaluation of such programs
is explored in Section 4, where it is shown that the transformed programs are often con­
siderably less time consuming to evaluate than the original programs. Conclusions and
topics for future research are discussed in Section 5 .

202

2 Regular Path Programs

In the previous section, we saw one example of a regular path program; we now define the
class of such programs exactly. The term regular path program is derived from the fact
that there is a correspondence between these programs and the problem of finding paths
which satisfy a given regular expression in a labelled , directed graph. This connection is
explored in more detail in [Wood90] , although it should be noted that the regular path
programs defined below differ from the programs defined in that paper.

Essentially, we want to generalise programs such as that given in the previous section in
two ways. Firstly, we would like to have more complicated rule structures as demonstrated
by the following example.

$

Example 2.1 Assume we have a semantic network in which the nodes represent instances ,
classes or properties, while edges from instances to classes are labelled with isa (classifica­
tion) , edges between classes are labelled with ako (generalisation) , and edges from either
instances or classes to properties are labelled with can, has or is. The following program
finds the relationship i_inherit between instances and the properties they inherit .

Linherit (X, Y) : -
c...inherit(X, Y) : -
c...inherit(X, Y) · -
c...inherit(X, Y) : -
c...inherit (X, Y)

isa(X, Z) , C-inherit (Z, Y).
ako(X, Z) , c_inhen't (Z, Y) .
can(X, Y) .
has(X, Y) .
is(X, Y) .

Note that the above program displays a natural correspondence to the notion of a regular
grammar . O

A second way in,. which we would like to generalise programs is by adding arguments
to predicates in order to pass more information among the rules . The following example
demonstrates this ability.

Example 2.2 Suppose we have an application involving a network with values labelling
the edges connecting nodes. Assume that this information is stored as an edge relation
e(X, Y, Z) , which states that there is an edge from X to Y labelled Z. If we want to find
· all nodes that are connected by routes on which at most two alternating values are used,
the following program will suffice.

s(X, Y, U, V)
t (X, Y, U, V)
s(X, Y, U, V)

e (X, Z, U) , t (Z, Y, U, V) .
: - e(X, Z, V) , s(Z, Y, U, V) .
: - e(X, Z, U) , e(Z, Y, V) .

Note that the program still has a regular structure and contains mutually recursive pred­
icates s and t. The variables U and V are used to hold the pairs of edge labels, while the
alternation of values is captured by the mutual recursion. O

Before we proceed, we need to introduce some standard terminology. Given a rule such
as

buys(X, Y) : - knows(X, Z) , buys(Z, Y) .

203

the predicate to the left of : - is called the head of the rule, while those to the right
constitute the body of the rule . Variables in a program are denoted by strings with an

" initial upper case letter (e .g . X) , while constants are numeric values or strings having an
initial lower case letter (e .g . john) . AB is common with Datalog, we assume that all rules
are safe, that is , every variable appearing in the head of a rule also ap�ars somewhere
in the body. We also assume that there are no constants in the rules , except possibly
for the query clause. Predicates that correspond to relations stored in the database (such
as knows above) are called EDB predicates (extensional database predicates) ; those that
are defined by rules (such as buys above) are called IDB predicates (intensional databases
predicates) . We make the standard assumption that no EDB predicate appears in the
head of any rule.

Regular path programs are defined as follows:

1 . Rules must correspond to productions of a regular grammar; in other words , the
body of each rule must comprise either (a) a single EDB predicate and a single IDB
predicate (an internal rule) , or (b) one or more EDB predicates (an exit rule) .

2 . All IDB predicate occurrences must have the same number of arguments.

3 . Given an internal rule of the form

s(X, Y, U, V) : - e(X, Z, U) , t (Z, Y, U, V) .

where s and t are IDB predicates , e and t have exactly one variable in common that
does not appear in the head (Z above) . The position of this variable in t is called
the linking position.

4 . The position in the head s corresponding to the linking position in t is occupied by
a variable (X above) which appears only in e . This is the source variable .

5 . The remaining positions in s must be occupied by variables appearing in the same
positions in t-the persistent variables (Y , U and V above) .

6 . The source (or linking) position for each IDB predicate in the program must be the
same.

7 . For the whole program there must be exactly one persistent position such that for
every IDB predicate appearing in the body of a rule the variable occupying that
position appears nowhere else in the body. This position is called the sin/c position,
and in each rule the corresponding variable is called the sin/c variable.

Example 2.3 Referring to the program in Example 2 . 1 , it is easy to see that it conforms
to the definition of a regular path program. In each of the internal rules , Z is the linking
variable, X is the source variable, and Y is the sink variable . There are no other persistent
variables.

Now turning to the first internal rule of Example 2 .2 , once again Z is the linking
variable and X the source variable ; hence, Y , U and V are persistent variables. Because
U also appears in e(X, Z, U) , the third argument position in IDB predicates cannot be the
sink position. From the second internal rule, we establish that the fourth IDB argument
position (occupied by V) also cannot be the sink position. Hence, Y is the sink variable
in each of the internal rules. D

204

The reader should not be mistaken into thinking that the EDB predicate must always
precede the IDB predicate in an internal rule. The rule

s(X, Y, V) : - t(X, Z, V) , e(Z, Y, V) .

where e is the EDB predicate, does not violate the definition : Z is the linking variable , Y
the source variable, and X the sink variable. Some examples violating the definition are
given below.

Example 2.4 The pair of internal rules

s(X, Y, V) : - e(X, Z, U) , t (Z, Y, V) .
t (X, Y, V) : - e(X, Z, V) , s(X,,Y, Z) .

violates item (6) in the definition, since the source position is 1 in the first rule and 3 in
the second. On the other hand, the pair of rules

s(X, Y, V) : - e(X, Z, U) , t(Z, Y, V) .
t (X, Y, V) : - e(X, Z, Y) , s(Z, Y, V) .

violates item (7) , since the first rule implies that the sink position must be 2 , while the
second rule implies it must be 3. O

The definition of regular path programs can be extended in a number of ways. Firstly,
we can allow a chain of EDB predicates of the form

rather than the single EDB predicate e(X, Z) in an internal rule . It is also possible to
allow tuples of variables rather than single variables for source and sink variables . We do
not use these extensions in the remainder of the paper as they tend to make the notation
more difficult to follow.

In the next section , we consider regular path programs with queries in which constants
appear, for example, ? - buys(john, Y) or ? - s(X, t/0 , U, vo) . If the constant appears in
the source position, we call the program right-linear ; if constants appear in one or more
of the persistent positions, the program is called left-linear. These terms are consistent
with those used in [NRSU89a] .

3 Argument Reduction

We now turn our attention to ways in which a left- or right-linear regular path program
can be rewritten so that its evaluation can be performed more efficiently. In this section,
we show that the techniques presented in [NRSU89a) can be extended to apply to these
programs.

3.1 Left-Linear Programs
If any persistent variables are bound to constants in a query to a regular path program P,
we simply substitute the constant.a for the corresponding variables in all EDB predicates
in P and delete the variables wherever else they appear in P.

205

Example 3.1 Consider the program of Example 2 .2 in which argument positions 2 , 3
and 4 are persistent . If we have the query s(X, Yo , U, vo) , then the program is rewritten
as follows.

s(X, U)
t(X, U) : ­
s(X, U)

e(X, .Z, U) , t (.Z, U) .
e(X, .Z, vo) , s(.Z, U) .
e(X, .Z, U) , e(.Z, Yo , vo) .

All occurrences of Y and V in IDB predicates have been deleted , while all occurrences of
Y and V in EDB predicates have been replaced by Yo and vo , respectively. As a result,
the number of arguments in each IDB predicate occurrence ' has been reduced from four
to two. D

Given a regular path program P, we can always rewrite it so that (1) each rule uses
the same set of variables in its head, and (2) the source variable appears in the first
argument position of each IDB predicate in the head, the sink variable appears in the
second position , and the remaining persistent variables appear in the same order in each
rule. We will assume this standard form from now on.

Let the query to the program be given by ? - q(X, V) , the tuple of persistent variables
being V . We assume that W = W1 , . . . , W"' is the subtuple of variables in V that are
bound to constants w, , 1 :5 i � m, in the query, and that 8 is the substitution that
replaces each W, by w, , 1 � i � m. Let V - W denote the removal of all variables in W
from V . The general method is as follows.

1 . Given an exit rule of the form

t (X, V)

where t1 , . . . , e1c are e (EDB) literals, -transform i t to

2. Given an internal rule of the form

t (X, V) : - e (X, .Z, U) , s(.Z, V) .

where U appears in V , transform it to

t (X, V - W) : - e(X, .Z, 8(U)) , s (.Z, V - W) .

The query q(X, V - tf') is now applied to the transformed program.

3.2 Right-Linear Programs
If the source variable X in a query q(X, Y, V) is bound to a constant , we apply a trans­
formation based on that of Magic Sets [BMSU86,BR87) , similar to the technique in
[NRSU89aJ . The first step in such a transformation is the top-down propagation of the
binding patterns through a program P, leading to an adorned program po.d. (Ullm88J , in
which each IDB predicate p has an adornment a indicating which arguments of p are
bound and which are free. For example, p1,1 means that the first argument of p is bound
while the second is free.

206

Example 3.2 Consider again the program P of Example 2 .2 . If we assume that the query
is ? - s(zo , Y, U, V) , then the adorned program patl is as follows.

s"III (X, Y, U, V)
t6N (X, Y, U, V)
sl,Jf)6 (X, Y, U, V)
tl,Jf)" (X, Y, U, V)
s6111 (X, Y, U , V)
s61'6 (X, Y, U, V)

e(X, Z, U) , t61'f (Z, Y, U, V) .
- e(X, Z, V) , s1,Jf)b (Z, Y, U, V) .

e(X, Z, U) , t61'6 (z, Y, U, V) .
- e(X, Z, V) , s1,Jf)b (Z, Y, U, V) .
- e(X, Z, U) , e(Z, Y, V) .

e(X, Z, U) , e (Z, Y, V) .

In the query, only X is bound so we start with the adornment bff/ for s . Given that X is
bound in the first rule, by the time t is evaluated in a top-down evaluation , Z and U will
also be bound ; hence the adornment b/1,/for t. This process'Continues until all adornments
which are generated in a top-down manner for all IDB predicates have been considered.
D

The second step in the transformation is to use the standard technique to derive the
set of magic rules for patl [BMSU86] . The following example demonstrates the method.

Example 3.3 We use the adorned program patl from the previous example . The magic
rules are used to compute botto�up those bindings for variables that would have been
used in a top-down computation. These bindings are represented by �called magic
predicates , one for each adorned version of an IDB predicate in patl . The magic predicates
are formed by prefixing m_ to the IDB predicates. We first generate a rule for the constant
in the query :

m..s6111 (zo)

For each internal rule in patl of the form

ta 1 (X, Y, V) , : - e(X, Z, U) , sa2 (Z, Y, V) .

we generate its magic rule by (i) prefixing both s and t with m-, (ii) deleting all free
variables in s and t , and (iii) exchanging m_s and m_t. The reason for step (ii) is that we
are interested only in bound variables, while that for step (iii) is that we want to simulate
top-down evaluation by bottom-up evaluation . This gives rise to the following set of magic
rules:

D

m..t6N (Z, U)
m..a1,Jf)b (Z, U, V) : -
m..t1,Jf)b (Z, U, V) : -
m..s1,Jf)b (Z, U, V)

m..s6111 (X) , e (X, Z, U) .
m..t61'f (X, U) , e (X, Z, V) .
m..s61'6 (X, U, V) , e(X, Z, U) .
m..t61'6 (X, U, V) , e(X, Z, V) .

In the final step of the transformation, magic predicates are introduced into the exit
rules of patl _ Unlike in the usual Magic Sets algorithm, only the magic rules and these
modified exit rules are used to answer the original query.

Example 3.4 Continuing with our running example, we must substitute each of m-s"III
and m_sl,Jf)6 into the exit rule of the program, giving :

207

s(Y, U, V) : - m_,1>61 (X) , e(X, Z, U) , e(Z, Y,V) .
s(Y, U, V) : - m_,bfl,b (X, U, V) , e(X, Z, U) , e(Z, Y, V) .

Note once again that the number of arguments in all IDB predicates has been reduced by
the transformation. D

We now summarise the general method . Given a program P and query q(xo , Y, V) , P
is rewritten as follows.

1 . Generate the adorned program pad from P and the query.

2. Generate the magic rules from pa.cl. according to the algorithm in [BMSU86J .

3 . For each exit rule in pad. of the form

e1 , . . . , e1c .

where €1 , . • . , €1c are e (EDB) literals, generate the rule

where U is the tuple of persistent variables bound according to a:.

The query q(Y, V) is now applied to the generated program.
In common with [NRSU89a] , the above �ethod has the advantage over Magic Sets that

magic predicates are substituted into exit rules alone, the remaining rules of the original
program being discarded.

4 Efficient Evaluation

The technique of argument reduction has been shown to speed up the evaluation of a
range of Datalog programs. The programs to which the technique is applied in [NRSU89b]
generalise the one-sided programs of [Naug87] , the separable programs of [Naug88] , and the
right- , left- and combined-linear programs of [NRSU89a] . These programs are the so-called
RLC-stable programs: those containing only right-linear , left-linear and combined-linear
rules in terms of a single IDB predicate and one exit rule1 . For these programs it has been
proved that the evaluation of a program P transformed by argument reduction is never
less efficient than the evaluation of P transformed by the Magic Sets algorithm, which is
the best general purpose technique for speeding up evaluation of Datalog programs. In
fact , as shown in [NRSU89b] , programs transformed by argument reduction can lead to
an order of magnitude improvement over Magic Sets in terms of evaluation efficiency.

We have already seen that regular path programs can contain multiple exit rules {Ex­
ample 2 . 1) , as well as more than one IDB predicate and mutually recursive rules (Exam­
ple 2 .2) . Thus, there are regular path programs that are not RLC-stable. On the other
hand , regular path programs do not contain combined-linear rules , so there are RLC-stable
programs that are not regular path programs.

We show below by means of an example that , given a regular path program that is
not RLC-stable , the transformations described in this paper can also lead to an order of
magnitude improvement over Magic Sets in terms of evaluation efficiency.

1 There are other restrictions aa well

208

Example 4..1 Once again, we consider the program P of Example 2 .2 , excluding the
persistent variables U and V which are not needed for the present purpose:

s (X, Y) e(X, Z) , t (Z, Y) .
t (X, Y) : - e(X, Z) , s(Z, Y) .
s(X, Y) : - e(X, Z) , e (Z, Y) .

Assume that the query is ? - s{zo , Y) and that the relation e contains the 2 n + 1 tuples
{ (xi , Zi+1) I O $ i $ 2n - 1 } . The program pad is as follows:

sbf (X, Y) e(X, Z) , tbf (Z, Y) .
tbf (X, Y) : - e(X, Z) , sbf (Z, Y) .
ii (X, Y) : - e(X, Z) , e(Z, Y) .:

From P4d we get the following magic rules:

m_sbf (xo) .
m_tbf (Z)
m_sbf (Z)

m...sbf (X) , e(X, Z) .
m-1.bf (X) , e(X, Z) .

The relation m_{bf contains the n values { z1 , zs , . . . , z2n- 1 } , while m .. .1il contains the n + 1
values {zo , z2 , . . . , z2n } . Substituting the magic predicate into the exit rule according to
the method of Section 3 .2 yields the following :

sbf (Y) : - m...sbf (X) , e(X, Z) , e (Z, Y) .

The relation sbf contains the values {z2 , x4 , . . . , Z2n} , which is the answer t o the query.
On the other hand, the Magic Sets algorithm produces

sbf (X, Y) : - m...sbf (X) , e (X, Z) , e(Z, Y) .

where sbf containes the tuples { (z2i , z2,+2) I O $ i $ n - 1 } . So in both cases the relation
for sbf contains n tuples . But now M-agic Sets goes on to substitute magic predicates into
the internal rules of the program as well , yielding:

s"I (X, Y) m_sbf (X) , e(X, Z) , t"I (Z, Y) .
t"l (X, Y) : - m_tbf (X) , e(X, Z) , s"l (Z, Y) .

Here ab/ contains the tuples { (z21 , z2;) I O $ i < j � n} , while t"f contains the tuples
{ {z2,-1 , z2;-1) 1 1 $ i < j $ n} . These two relations together contain exactly n2 tuples,
an order of magnitude larger than the relations in the program transformed by argument
reduction. D

5 Conclusion

We have defined a class of Datalog programs, the regular path. programs, whose efficiency
of evaluation can often be improved significantly by applying the technique of argument re­
duction. This class of programs is incomparable to previous classes to which this technique
has been applied.

It has been shown that bottom-up evaluation using the Magic Sets transformation
followed by semi-naive evaluation is never less efficient than top-down evaluation [Ullm89] .
On the other hand, Magic Sets does not perform as well as it might for certain classes

209

of programs and it is highly unlikely that any single method will prove to be the most
efficient for all programs. This has led to the search for subclasses of programs which are
amenable to specialised techniques for improving evaluation efficiency. One such class of
programs are the RLC-stable programs [NRSU89b] . The regular path programs defined
in this paper now provide another such class.

One obvious area of future research is to attempt to establish whether the class of
regular path programs can be integrated with the RLC-stable programs, thereby producing
a strictly broader class of programs to which argument reduction can be applied.

References

[BMSU86] F . Bancilhon , D. Maier , Y. Sagiv and J .D . Ullman, "Magic Sets and Other
Strange Ways To Implement Logic Programs," Proc. 5th A CM Symp. on Prin­
ciples of Database Systems, 1986, pp. 1-15 .

[BR87] C. Beeri and R. Ramakrishnan, "On the Power of Magic ," Proc. 6th A CM
Symp. on Principles of Database Systems, 1987 , pp. 269-283.

[Naug87] J . F . Naughton, "One-Sided Recursions," Proc. 6th A CM SIGA C T-SIGMOD­
SIGA R T Symp. on Principles of Database Systems, 1987, pp. 34�348 .

[Naug88] J . F . Naughton, "Compiling Seplµ'able Recursions," Proc. A CM SIGMOD Int.
Con/. on Man agement of Data, 1988 , pp. 3 12-319.

[NRSU89a] J . F . Naughton , R. Ramakrishnan , Y. Sagiv and J .D . Ullman, "Efficient Eval­
uation of right-, left- , and combined-linear rules," Proc. A CM SIGMOD Int.
Con/. on Management of Data, 1989, pp. 235-242 .

[NRSU89b] J . F . Naughton, R. Ramakrishnan , Y. Sagiv and J .D . Ullman, "Argument
Reduction by Factoring ," Proc. 1 5th Int. Con/. on Very Large Data Bases,
1989, pp. 173-182 .

[Ullm88] J .D . Ullman, " Principles of Database and Knowledge-Base Systems, Vol. I &
II," Computer Science Press, Potomac, Md. , 1988 .

[Ullm89] J .D . Ullman, "Bottom-up Beats Toirdown for Datalog ," Proc . 8th A CM
SIGA CT-SIGMOD-SIGA RT Symp. on Principles of Database Systems, 1989,
pp. 14�149.

[Wood90] P.T . Wood , "Factoring Augmented Regular Chain Programs," Proc. 1 6th Int.
Con/. on, Very Large Data Bases, 1 990, pp. 255-263 .

210

	1991_SAICSIT_Wood
	Front_Page.pdf
	Front_Page

