
VI 

VI 

I 

PROCEEDINGS 

· VI 

HOT EL, 

CALE DON 

2 - 3 JULY 1991 

� - I 

VI 

VI 
EDITED BY VI 

M H Linck 

SPONSORE D 

B Y  

ISM 

FRDV· 

GENMIN 

DEPARTMENT OF COMPUTER SCIENCE • UNIVERSITY OF CAPE TOWN 



I 
I 



PROCEEDINGS / KONGRESOPSOMMINGS 

6th 

SOUTHERN AFRICAN COMPUTER 

SYMPOSI� 

6de 

SUIDELIKE-AFRIKAANSE 

REKENAARSIMPOSIUM 

De Overberger Hotel, Caledon 

2 - 3 JULY 1991 

SPONSORED by 

ISM 
FRD 

GENMIN 

EDITED by 

MHLINCK 

Department of Computer Science 

University of Cape Town 





TABLE OF CONTENTS 

Foreword 1 

Organising Committee 2 

Referees 3 

Program 5 

Papers (In order of presentation) 9 

"A value can belong to many types" 
B H Venter, University of Fort Hare 10 

"A Transputer Based Embedded Controller Development System" 
MR Webster, R G Harley, DC Levy & DR Woodward, 
University of Natal 16 

"Improving a Control and Sequencing Language" 
G Smit & C Fair, University of Cape Town 25 

"Design of an Object Orientated Framework/or Optimistic 
Parallel Simulation on Shared-Memory Computers" 
P Machanick, University of Witwatersrand 40 

"Using Statecharts to Design and Specify the GMA 
Direct-Manipulation User Interface" 
L van Zijl & D Mitton, University of Stellenbosch 51 

"Product Form Solutions/or Multiserver Centres 
with Heirarchical Classes of Customers" 
A Krzesinski, University of Stellenbosch and 
R Schassberger, Technische U niversitat Braunschweig 69 

"A Reusable Kernel for the Development of Control Software" 
W Fouche and Pde Villiers, University of Stellenbosch 83 

"An Implementation of Linda Tuple Space 
under the, Helios Operating System" 
PG Clayton, E P Wentworth, G C Wells and F de Heer-Menlah, 
Rhodes University 95 

"The Design and Analysis of Distributed Virtual Memory 
Consistency Protocols in an Object Orientated Operating System 
K Macgregor, University of Cape Town & R Campbell University 
of Illinois at Urbana-Champaign 107 



I ' 

"Concurrency Control Mecchanisms for Multidatabase Systems" 
A Deacon, University of Stellenbosch 

"Extending Local Recovery Techniques for Distributed Databases" 
H L Victor & M H R ennhackkamp, University of Stellenbosch 

"Analysing Routing Strategies in Sporadic Networks" 
S Melville, University of Natal 

The Design of a Speech Synthesis System for Afrikaans" 

1 18 

135 

148 

M J Wagener, University of P ort E lizabeth 167 

"Expert Systems for Management Control: A Multiexpert Architecture" 
V Ram, University of Natal 177 

"Integrating Simularity-Based and Explanation-Based Learning" 
G D  Oosthuizen and C A venant, University of P retoria 187 

"Efficient Evaluation of Regular Path Programs" 
P Wocxi, University of Cape Town 201 

"Object Orientation in Relational Databases" 
M Rennhackkamp, University of Stellenbosch 2 1 1  

"Building a secure database using self-protecting objects" 
M Olivier and SH von Solms, R and A frikaans University 228 

"Modelling the Algebra of Weakest Preconditions" 
C Brink and I R ewitsky, University of Cape Town 242 

"A Model Checker for Transition Systems" 
Pde Villiers, University of Stellenbosch. 262 

"A New Algorithm for Finding an Upper Bound of the Genus of a Graph" 
DI Carson and OR Oellennann, University of Natal 276 



FOREWORD 

The 6th Computer Symposium, organised under the auspices of SAICS, carries on the 
tradition of providing an opportunity for the South African scientific computing 
community to present research material to their peers. 

It was heartening that 31 papers were offered for consideration. As before all these papers 
were refereed. Thereafter a selection committee chose 21 for presentation at the 
Symposium. 

Several new dimensions are present in the 1991 symposium: 

* The Symposium has been arranged for the day immediately after the SACLA 
conference. 

* It is being run over only 1 day in contrast to the 2-3 days of previous symposia. 

* I believe that it is first time that a Symposium has been held outside of the 
Transvaal. 

* Over 85 people will be attending. Nearly all will have attended both events. 

* A Sponsorship package for both SACLA and the Research Symposium was 
obtained. (This led to reduced hotel costs compared to previous symposia) 

A major expense is the production of the Proceedings of the Symposium. To ensure 
financial soundness authors have had to pay the page charge of R20 per page. 

A thought for the future would be consideration of a poster session at the Symposium. 
This could provide an alternative approach to presenting ideas or work. 

I would sincerely hope that the twinning of SACLA and the Research Symposium is 
considered successful enough for this combination survive. As to whether a Research 
Symposium should be run each year after SACLA, or only every second year, is a matter 
of need and taste. 

A challenge for the future is to encourage an even greater number of MSc & PhD 
students to attei:id the Symposium. Unlike this year, I would recommend that they be 
accommodated at the same cost as everyone else. Only if it is financially necessary 
should the sponsored number of students be limited. 

I would like to thank the other members of the organising committee and my colleagues 
at UCT for all the help that they have given me. A special word of thanks goes to Prof. 
Pieter Kritzinger who has provided me with invaluable help and ideas throughout the 
organisation of this 6th Research Symposium. 

MHLinck 
Symposium Chairman 

1 



I I 

I/ 
SYMPOSIUM CHAIRMAN 

M H Linck, University of Cape Town 

ORGANISING COMMITTEE 

SPONSORS 

D Kourie, Pretoria University. 

PS Kritzinger, University of Cape Town. 

M H L inck, University of Cape Town. 

ISM 

GENMIN 

FRD 

2 



LIST OF REFEREES FOR 6th RESEARCH SYMPOSIUM 

NAME INSTITUTION 

Barnard, E Pretoria 

Becker, Ronnie UCT 

Berman S UCT 

Bishop, Judy Wits 

Berman, Sonia UCT 

Brink, Chris UCT 

Bodde, Ryn Networks Systems 

Bornman, Chris UNISA 

Brower, Pict UOFS 

Cherenack, Paul UCT 

Cook Donald UCT 

de Jaeger, Gerhard UCT 

de Villiers, Pieter , Stellenbosch 

Ehlers, Elize RAU 

Eloff, Jan RAU 

Finnie, Gavin Natal 

Gaynor, N AECI 

Hutchinson, Andrew UCT 

Jourdan, D Pretoria 

Kourie Derrick Pretoria 

Kritzinger, Pieter UCT 

Krzesinski, Tony Stellenbosch 

Laing, Doug ISM 

Labuschagne, Willem UNISA 

Levy, Dave Natal 

3 

"'-··-" 



MacGregor, Ken 

Machanick, Philip 

Mattison Keith 

Messerschmidt, Hans 

Mutch, Laurie 

Neishlos, N 

Oosthuizen, Deon 

Peters Joseph 

Ram,V 

Postma, Stef 

Rennhackkamp, Martin 

Shochot, John 

Silverberg, Roger 

Smit, Riel 

Smith, Dereck 

Terry, Pat 

van den Heever, Roelf 

van Zijl, Lynette 

Venter, Herman 

Victor, Hema 

von Solms, Basie 

Wagenaar,M 

Wentworth, Peter 

Wheeler, Graham 

Wood, Peter 

UCT 

Wits 

UCT 

UOFS 

Shell 

Wits 

Pretoria 

Simon Fraser 

Natal, Pmb. 

Natal, Pmb 

Stellenbosch 

Wits 

Council for Mineral Technology 

UCT 

UCT 

Rhodes 

UP 

Stellenbosch 

Fort Hare 

Stellenbosch 

RAU 

UPE 

Rhodes 

UCT 

UCT 

4 



6TH RESEARCH SYMPOSIUM - 1991 

FINAL PROGRAM 

TUESDAY 2nd July 1991 

10h00 - 13h00 

13h00 - 13h50 

Registration 

PUB LUNCH 

14h00 - 15h30 SESSION lA 

Venue: Hassner 

Chairman: Prof Basie von Solrns 

14h00 - 14h30 
"A value can belong to many types. " 
B H Venter, University of Fort Hare 

14h30 - 15h00 
"A Transputer Based Embedded 
Controller Development System" 
MR Webster, R G Harley, DC Levy & 
D R Woodward, University of Natal 

15h00 - 15h30 
"Improving a Control and Sequencing 
Language" 
G Smit and C Fair, University of Cape 
Town 

15h30 · 16h00 TEA 

5 

SESSION lB 

Venue: Hassner C 

Chainnan:Prof Roelf v d Reever 

14h00 - 14h30 
"Design of an Object Orientated 
Framework/or Optimistic Parallel 
Simulation on Shared-Memory 
Computers" P Machanick, University of 
Witwatersrand 

14h30 - 15h00 
"Using Statechans to Design and 
Specify the GMA Direct-Manipulation 
User Interface" L van Zijl & D Mitton, 
University of Stellenbosch 

15h00 - 15h30 
"Product Form Solutions/or Multiserver 
Centres with Heirarchical Classes of 
Customers" A Krzesinski, University of 
Stellenbosch and R Schassberger, 
Technische Universitlit Braunschweig 



16h00 · 17h30 SESSION 2A 

Venue: Hassner 

Chairman: Prof Derrick Kourie 

16h00 - 16h30 
"A Reusable Kernel for the Development 
of Control Software" W Fouche and P de 
Villiers, University of Stellenbosch 

16h30 - 17h00 
"An Implementation of Linda Tuple 
Space under the Helios Operating 
System" P G  Clayton, E P Wentworth, G 
C Wells and F de-Heer-Menlah, Rhodes 
University 

17h00 - 17h30 
"The Design and Analysis of Distributed 
Virtual Memory Consistency Protocols 
in an Object Orientated Operating 
System" K MacGregor, University of 
Cape Town & R Campbell, University 
of lliinois at Urbana-Champaign 

19h30 

20h00 

PRE-DINNER DRINKS 

GALA CAPE DINNER 
(Men: Jackets & ties) 

6 



WEDNESDAY 3rd ,July 1991 

7h00 • 8h15 BREAKFAST 

8h15 - 9h45 SESSION 3A 

Venue: Hassner 

Chairman: Assoc Prof P Wood 

8h15 - 8h45 
"Concurrency Control Mechanisms for 
Multidatabase Systems" A Deacon, 
University of Stellenbosch 

8h45 - 9h15 
"Extending Local Recovery Techniques 
for Distributed Databases" H L Victor 
& M H Rennhackkamp, University of 
Stellenbosch 

9h15 - 9h45 
"Analysing Routing Strategies in 
Sporadic Networks" S Melville, 
University of Natal 

9h45 - 10h15 TEA 

10h15 - 11h00 SESSION 4 

Venue: Hassner 

Chairman: Prof P S Kritzinger 
Invited paper: E Coffman 

11h00 · 11h10 BREAK 

7 

SESSION 3B 

Venue: Hassner C 

Chairman: Prof G Finnie 

8h15 - 8h45 
The Design of a Speech Synthesis 
System for Afrikaans" M J Wagener, 
University of Port Elizabeth 

8h45 - 9h15 
"Expen Systems for Management 
Control: A Multiexpert Architecture" 
V Ram, University of Natal 

9h15 - 9h45 
"Integrating Simularity-Based and 
Explanation-Based Learning" 
G D Oosthuizen and C A venant, 
University of Pretoria 



11h10 • 12h40 SESSION SA 

Venue: Hassner 

Chairman: Prof C Bornman 

11h10 - 11h40 
"Efficient Evaluation of Regular Path 
Programs" 
P Wood, University of Cape Town 

11h40 - 12h10 
"Object Orientation in Relational 
Databases" 
M Rennhackkamp, University of 
Stellenbosch 

12h10 - 12h40 
"Building a secure database using self­
protecting objects" M Olivier and S H 
von Solms, Rand Afrikaans University 

SESSION SB 

Venue: Hassner C 

Chairman: Prof A Krzesinski 

11h10 - 11h40 
"Modelling the Algebra of Weakest 
Preconditions" 
C Brink & I Rewitsky, University of 
Cape Town 

11h40 - 12h10 
"A Model Checker for Transition 
Systems" 
P de Villiers, University of Stellenbosch 

12h10 - 12h40 
, "A New Algorithm for Finding an Upper 

Bound of the Genus of a Graph" 
D I Carson and O R Oellennann, 
University of Natal 

12h45-12h55 GENERAL MEETING of RESEARCH SYMPOSIUM ATTENDEES 

Venue: Hassner 

Chairman: Dr M H Linck 

13h00 • 14h00 LUNCH 

FINIS 6th COMPUTER SYMPOSIUM 

8 



PAPERS 

ofthe 

6TH RESEARCH SYMPOSIUM 

9 



A Model Checker for Transition Systems, 

'P.J .A. de Villiers 
Institute for Applied Computer Science 

University of Stellenbosch, Stellenbosch 7600 

July 1991 

Abstract 

A model checker automatically determines whether a model of a re­
active system satisfies its specification. Temporal logic is used to spec­
ify the intended behaviour of a reactive system which is modelled as a 
transition system. Fast state space exploration is mandatory, the main 
problem being to determine the uniqueness of each newly generated 
state. Traditional model checkers can analyse about 104 states in an 
acceptable amount of time. A model checker which incorporates three 
new ideas has been implemented. ( 1) A bit vector technique used by 
Holzmann in a fast protocol validation system is combined with model 
checking to produce a system capable of analysing about 107 reachable 
states. (2) Since state spaces are sparse and clustered, larger problems 
are handled by using paging techniques. (3) Traditional model check­
ers often search subspaces unnecessarily when temporal operators are 
nested. A top-down technique called subproblem detection is used wh�ch 
avoids this. 

1 Introduction 

Model checking was introduced by Clarke et al.[3, 4]. The technique has been used 
successfully to verify non-trivial systems such as hardware modules[l] by represent­
ing the system to be verified by some mathematical abstraction which is automat­
ically checked against its specification. A transition system is used to represent a 
reactive system and the branching time temporal l(?giC CTL(3] as a specification 
language. In principle model checking is a powerful verification technique. The the­
oretical foundations of model checking have been investigated thoroughly(6, 5, 12] 
and efficient implementation techniques are now required to put it into practice. 

Three ideas are proposed in this paper to improve the performance of model 
checkers. Firstly, a bit vector technique used by Holzmann(8] to implement a fast 
protocol validation system is combined with model checking to speed up state gen­
eration. Secondly, large state spaces are handled by using a paging technique and 
thirdly, a technique called subproblem detection is used to handle nested modalities 
more efficiently. 

262 



2 A Transition System as Computational Model 

The transition system used here is similar in spirit to the system described in [11]. 
A. transition system which illustrates the mutual exclusion problem for two con­
current processes is given in Figure 1. A simple modelling language is used which 
is sufficiently powerful for the current purpose. Two process variables pl and p2 
describe two concurrent processes. Each process can each be in states O (inside its 
non-critical section), 1 (trying to enter its critical section) or 2 (inside its critical 
section). The variable x, which can be in states O or L represents a semaphore 
which is used to enforce mutual exclusion between the processes. The state of the 
transition system is defined by its state vector s = (pl,p2,x), with the start state 
being (0,0,l ). Transitions are denoted by (guard) - (act-ion). A transition may 
only be selected for execution when it is enabled, which means that its guard must 
evaluate to true in the current state-we say that the guard matches the current 
state. To evaluate the guard of a transition, its components are compared against 
the corresponding components of the current state, the symbol ··*" meaning that 
the corresponding component may have any value allowed by its range definition. 
To execute a transition its action vector is added to the state vector. For example, 
if the current state is (0,1)), the first transition in Figure 1 will be enabled and if 
the transition is executed, the state vector will change to ( 1,1,1 ). The components 
of action vectors may have any integer values as long as executing the transition 
does not violate the restrictions placed on the values of individual variables. If more 
than one transition is enabled in a given state the nondeterminism must be resolved 
by exploring all possibilities. The specification given after the keyword '"SPEC" will 
be explained in Section 4.4. 

Figure 2 shows the reachability graph of unique states which can be computed 
by executing the transition system of Figure 1. The reachability graph is a compact 
representation of the reachability tree which can often be infinite. When necessary 
the reachability tree is reduced to be finite as will be explained in Sections 3 and 4. 

3 Temporal Logic 

The language of branching time propositional temporal logic is used as a specification 
language for reactive systems. Broadly speaking, a temporal logic extends classical 
propositional logic by adding certain non-truthfunctional temporal operators, such 
as always, sometimes, next or until. Validity in such a logic is governed by the 
assumptions made about the nature of time. Since the execution of a reactive 
system is usually non-deterministic this means that at any given time instant there 
are various different "possible futures". Therefore it is natural to use a branching 
time temporal logic and the logic CTL ( Computation Tree Logic) is adopted as first 
defined in [3]. Time is modelled as an infinite· tree of discrete time instants, each 
time instant corresponding to a state in the execution of a transition system. 

263 



MODEL 
PROCESS 

p l : 0 . .  2 ;  

p2 : 0 . .  2 
VAR 

X 0 . .  1 
TRANS 

( 0 , * '  * ) 

( 1 ,  * '  1 )  
( 2 ,  * '  * ) 

( * , 0 ,  * ) 

( * , 1 ,  1 )  

( * , 2 ,  * ) 

START 
( 0 , 0 , 1 ) 

SPEC 
AG ( ( p 1  = 

END . 

- > ( 1 ,  0 ,  0 ) ; 
- > ( 1 ,  0 , - 1 ) ; 
- > ( -2 ,  0 ,  1 )  ; 
- > ( 0 ,  1 ,  0 ) ; 
- > ( 0 ,  1 ,  - 1 ) ; 
- > ( 0 , -2 ,  1 )  

1 )  = >  AF (p 1 = 2 ) ) 

Figure 1 :  A transition system representing the mutual exclusion problem 

( 2 , 1 ,0 )  ( 1 ,2 ,0 )  

Figure 2 :  Reachability graph of a transition system 

264 



3 . 1  Basic Concepts 

The language of classical propositional logi c is adopted wholesale . As is customary 
in modal- type logics it is next assumed t hat there is a set 5 of states such that 
every atomic proposition is or is not true at a particular s tate . The states are 
related to each other by an accessibility relation. In modal logics the set of s tates , 
together with the accessibility relation and the assignment of t ruth values to atomic 
propositions in  every state ,  is called a Kripke structure.  Some propert ies are usually 
ascribed to t he accessibility relation; depending on what t hese are , different modal 
logics arise . Here the accessibility relation structures the set of states into a t ree , the 
branches representing all possible execution sequences from some init ial s tate . The 
truth value of a compound formula at a given state may depend on the truth values 
of some of i ts  subformulae at other states furt�er down the tree . To express this i t  
i s  necessary to quantify over the states in  any particular execution sequence , and 
also over execu tion sequences. For the first purpose the notation of modal logic is 
used-;'D " for ;'always" , ··0" for ·'somet imes" and "O" for ·'next" .  For the second 
purpose t he s tandard notation of firs t -order logic is used-··V" for ·'for all'' and "3" 
for " there i s" . F inally, these different quantifiers are combined to obtain s ix different 
modali ties : VD , VO , VO , 3 0 ,  30 and 30 . Thus "VDo"  would say that formula o i s  
t rue for all states in  every execution sequence , ·'VOo" says that in every execution 
sequence there is some state in which o i s  true , "VOo" says that o i s  t rue in every 
immediate successor state , and so on. 

In the more technical sec tion 3 .2 below an until operator i s  introduced to increase 
the expressiveness of the language . Roughly, ·'o U ;3" is t he claim that ;3 will be 
true at some point in the future, and up to the immediately preceding point o will 
be t rue. Again ,  this may be preceded by V or 3 ,  indicating respectively that the 
claim holds for all oi only some execution sequences . 

3 . 2  T he B ranching Time Logic CTL 

The alphabet of CTL comprises : a set  of variables P = {P1 , P2 ,  . .  , , pn , · · · } ;  the 
constants t rue and false ;  t he connectives -, and A; the temporal operators V, 3, 0 
and U with parentheses and square brackets as punctuation symbols . 
Any variable by i tself is a formula. If o and ;3 are formulae , t hen so are :  

,o ,  o J\ ;3 ,  VOo ,  :loo ,  V (o U ;3] , :l (o U ,6] ,  

and nothing else i s  a formula. To define validity our assumptions concerning t ime are 
packed into the formal definit ion of a Kripke structure. It is a t riple /( = ( S, R, v )  
such t hat : 

• S is a finite set , t he elements of which are called s ta tes .  There 1s some 
distinguished s tate s0 E 5, called the initial s tate. 

265 



• R is an adjacency relation over S ,  such that ( S, R)  is a tree, with root node 
So . 

• v :  P x S - {O ,  1 }  is an assignment of some truth value ( 0  or 1 )  to  every 
variable at every s tate .  

A path is a branch of the t ree ( 5, R )-an infinite sequence of states ( so ,  s 1 , . . .  ) s tar­
t ing with t he root node so and such that ('ti ) [ (  S i ,  Si+ i ) E R] . A path from a given 
s tate s i s  a branch of the sub tree with s as root . 

Having assumed an assignment of t ruth values to  every atomic formula at every 
s tate an inductive definition can be given of what it means for any compound 
formula n to  be t rue at some state s. Such a fact i s  indicated by "s I= a" and the 
fact  that o is not t rue at s by "s lfo a" . Inductively then , for any state s :  s I= t rue ,  
and s lfo J alse ;  for any atomic formula p, and any state s :  s I=  p iff v(p ,  s )  = 1 ;  for 
any formulae o and /3 , and any state s :  

• s I= • a iff  s 1:fo a 

• s I= Q /\ {3 i ff s I= Q and s I= {3 

• s I= 'iOo iff for every s tate t such that ( s ,  t )  E R we have t I= o· 

• s I= 30n iff there exis ts  a state t such Jhat ( s ,  t )  E R and t I= o 

• s I= 't(o U /3] iff for ·all paths ( to ( =  s ) , t i , tz ,  . . .  ) from s ( 3 i ) (i � 0 and ti I= i3 
and ('tj ) [O � j < i implies tj I= o)] 

• s I= :l ( n U /3] iff t here exists  a path ( t0 ( = s ) ,  t 1 , t2 , . • •  ) from s such that 
( 3 i ) (i � 0 and ti I= /3 and ('tj ) [O � j < i implies tj I= o]] 

The other propositional connectives , V ( "or'' ) ,  � ( "impli es" ) and � ( "iff" ) 
may be defined from --, and /\ in the ordinary textbook way. The remaining four 
of t he six modalities mentioned in  Sect ion 3 . 1  can now be introduced by definition: 
'tOn iff 't[true U a] ; 300 iff 3 [true U a] ; 'tDo iff , 30,n and 3Dn  iff --,'fO,o .  

3 .3  Specification 

By the inductive definition of I= every CTL formula n is or i s  not true at any s tate 
s in a Kripke s t ructure l(. Because of the forward looking nature of the temporal 
operators i t  is necessary, for unspecified o ,  to have full knowledge of the dis t ribution 
of t ruth values to atomic formulae at all s tates in the subtree with root s in order to  
deduce t he t ruth value of n at s .  Conversely, of  course, i f  we do know that o is t rue 
at s we know something about the subtree with root s. The convention is adopted 
of saying t hat a sub tree with root s has property n if the state s i t self has property 
o, whi ch is  to  say that o is  t rue at s. In particular then , a Kripke s tructure l( has 
property n iff n is t rue at the root node so . 

266 



A combination of t ransition system and logic is now possible . A reactive system 
is represented by a transition system from which an execution tree can be computed. 
Repetitive sequences of states are discarded according to the rules of fai rness ( see 
Sect ion 4 . 3 )  and thus t he t ree can be reduced to be finite without losing important 
information. S imple tests on the variables of the transition system are used to 
determine the truth value of atomic propositions . The reduced tree may thus be 
regarded as a Kripke structure , and desirable properties of the reactive system 
are expressed as CTL formulae .  The CTL formula therefore represents a property 
the system should have while the ( finite ) execution tree of the reactive sys tem 
represents a Kripke structure. The model checker can now determine whether the 
given reactive system has the specified property by checkipg whether the formula is 
t rue at t he root node of the tree . Temporal logic can be used to express important 
properties ofreactive systems such as freedom from deadlock , absence of starvation 
and responsiveness .  The CTL formula appearing after the keyword "' S P EC"  in 
Figure 1 captures absence of starvation for process 1 of the given transition system . 
( For practical reasons a slightly different notation is used in  the computerised system 
for CTL--"AG" meaning "VD"  and "AF" meaning "VO" ) .  CTL is therefore seen 
as a query language to formulate questions about the system being studied , as 
suggested by Everi t t [7] .  A list of properties which are relevant for reactive systems 
is given in [ 1 0] . 

4 A n  Efficient Model C hecker 

The model checker described here executes the transit ion system in order to explore 
various paths while determining the truth value of the CTL formula. The paths 
explored are determi:ned by the specific CTL formula. For example, the formula 
VDa will force the model checker to explore all paths leading from the init ial s tate 
( unless the formula is found to be violated before all paths have been explored ) ,  
whi le the formula 30a will allow the model checker t o  stop as soon as some path 
is found which leads to a state in  which a is  true. 

Although in theory efficient model checking algorithms exist  for some suitably 
rest ricted temporal logi cs such as CTL,  little has been reported about the perfor­
mance of model checker implementations . Even recently published algori thms such 
as t he algorithm given in [ 1 2] are inefficient and i t  was therefore decided to explore 
the various possibilities of designing a model checker which would be efficient enough 

, to verify real reactive systems such as large protocols . The success of model check­
ing depends on efficient s tate space exploration techniques . Such techniques have 
been investigated t horoughly in the field of protocol validation and thi s  experience 
influenced t he design of t he model checker described here . 

Many protocol validators generate states dynamically, testing each s tate against 
a predefined set of correctness criteria known as state properties . To avoid analysing 
unnecessary s tates it is necessary to determine whether each newly generated state 

267 



had been visited before . It is thus necessary to compare each new state to all 
previously generated s tates . Therefore all unique states must be stored and as the 
number of s tates increases i t  takes progressively longer to determine the uniqueness 
of a s tate .  It  was determined experimentally that state comparison is the most 
t ime consuming operation in t raditional protocol validators [8] . About 100 states 
per second can be processed on medium scale machines ,  rendering the technique 
impractical for systems which generate more than about 104 s tates . 

Traditional model checkers (3, 4, 1 ,  1 2] compute a reachabili ty graph which is 
s tored in memory. Computation of this graph leads to  a similar efficiency problem: 
each new state must be compared against all previous s tates to  ensure uniqueness .  
Although few measurements of the performance of model checkers exist , this simi­
larit y  between model checkers and protocol validators suggest s  that systems which 
generate more than about 1 04 states cannot be analysed by t raditional model check­
ers . Burch et  al. [2] showed that one large problem could be analysed by represent ­
ing the s tate space symbolically. However, only the potential size of the state space 
( 1 Q20 ) i s  given and not the number of actually reachable s tates . Furthermore , the 
technique i s  not generally applicable and more research will be required to determine 
i t s  usefulness in pract ice .  

Fortunately Holzmann recently found a new method of searching large state 
spaces [8 , 9] which leads to a significant improvement in performance. S tates are 
generated dynamically by representing the- system by a state vector model. The 
t radi t ional method of determining uniqueness of s tates is replaced by a very efficient 
one . The new technique requires a large vector of bits  to, be maintained in memory 
to keep t rack of previously generated states but , even so , much larger systems can 
be analysed b efore space becomes a problem . Holzmann measured the performance 
of t he technique and showed t hat i t  can be used to  analyse protocols generating up 
to  1 07 s tates .  

The model checker described here uses t hi s  efficient method to speed up the 
computation of the reachability graph .  In addition ,  it is unnecessary to store the 
reachabili ty  graph because model checking can be  done while generating the reach­
ability graph. This approach has several important advantages .  Firstly, space is 
saved because no reachability graph is s tored explici t ly. Secondly, the t ruth value 
of many temporal formulae can be determined without  generating the ent ire reach­
abilit y  graph .  An example of such a formula is 30a which will be satisfied as soon 
as a s tate i s  found in which a is  t rue . This makes the model checker faster .  Thirdly, 
p roblems whi ch generate a reachability graph which is too large for the available 
memory space could sometimes'be analysed because it may be unnecessary to gener­
at.e t he enti re grap h. ,To put  these ideas into pract ice two problems had to  be solved,  
namely, how to  handle fairness constraints  and nested formulae without storing the 
reachability graph explicitly. 

268 



0 

s Bit vec tor 

- n -

Figure 3 :  The bit vector technique 

4 . 1  Fast State Comparison 

As explained in Section 2 the state of a transition system is described by its s tate 
vector . The state vec tor as well as the guards and actions are represented by 
bitstrings of fixed length .  The start state is assigned to the state vector to initialise 
a given transition system . To execute the t ransit ion system the guard of each 
transition is  compared to the contents of the state vector until one is found to 
match .  That t ransition is then selected and a new state is generated by adding the 
corresponding action to the state vector, and the process is repeated to execute a 
depth-first search of the state space . Each state is viewed as a (unique ) index into 
a large array of bits ( called a bit vector) as illustrated in Figure 3. As each new 
state is generated t he corresponding bit in the bit vector is set to record the fact 
that such a state has been generated . The bit vector is used to determine whether 
a newly generated state is unique or not . 

Unfortunately it is not enough to keep track of states which have been visited. 
The current execution path needs to be recorded in order to detect loops . This is 
important to handle fairness as will be explained in Section 4.3 .  A s tack of state 
records is t herefore kept to record ,the current execution path .  To decide whether 
a state is on the stack ,  t he entire stack must be searched-a relatively expensive 
operation . However, a state can only be on the stack if i t  has b een visited before 
and therefore the bit vector provides a fast way of avoiding a stack search when 
it is unnecessary. Because loops are detected, t he model checking algorithm will 
always terminate and when a specification is violated a counterexample is given 
which helps t he user to  find his error. 

4.2  Model C hecking Algorithm 

The language used for presenting the algorithm i s  ( more or less) s tandard Modula-2 ,  
for which see [ 1 3] .  

For brevity  only a description of the various procedures used in  the code i s  given 
and declarations are left out . With respect to the algorithm of Figure 4 ,  note that 

• There are two modes of operation: trans denoting that transitions are being 

269 



LOOP 
CASE mode OF 
trans : 

IF  ( i  <= transMax )  THEN 
IF Enabled ( i )  THEN 

stack [depth] . index : = i+ 1 ; 
s : = Action ( i ) ; 
IF  StateVis it edBefore THEN 

IF Stacked ( s )  THEN ( •  loop detected • )  
mode : = pred 

ELSE ( •  visited on earl ier path • )  
WITH st ack [depth] DO 

s : = st ate ; i : = index 
END 

END 
ELSE ( •  unique state • )  

value : = TruthValue (sf ) ; 
MarkSt ateAsVis ited ;  
I F  value = T THEN 

Updat eStack ( sf ) ; mod� : = pred 
ELSIF  value = F THEN 

mode : = pred 
END 

END 
ELSE ( •  next trans it ion • )  

INC ( i ) ; mode : = trans 
END 

ELSE ( •  no more trans itions • )  
value : = FinalValue (sf ) ; 
DEC (depth) ; 
mode : = pred 

END I 
pred : 

I F  StackEmpty THEN RETURN value = T 
ELSE 

WITH stack [depth] DO 
s : = state ; i : = index 

END ; 
AdaptControlinfo 

END 
END 

END 

Figure 4: Model Checking Algorithm 

270 



t ested in order to  generate new states and pred indicating a backt rack  oper­
ation to a predecessor s tate . 

• A s tack of s tate records is kep t ,  each stack entry representing a state along 
the current path .  Each record contains two fields :  state-a s tate descrip tor 
and index-indicating which transit ion to try next . 

• Each s tate i s  mapped onto a unique bit in a vector of bit s  and State Visited 1 s  
a test to determine whether the bit corresponding to the state s is set . 

• Procedure Enabled returns TRUE if the guard of t ransition i evaluates to true 
in the current state s, and FAL S E  otherwise .  

• Procedure Action returns a new state which is derived from the cu rrent s tate 
s by adding each component of the action vector of transition i to each com­
ponent of s .  

• Procedure Stacked returns TRUE i f  s tate s has been visited before along the 
current path, and FAL S E  otherwise .  

• Procedure Truth Value returns the truth value of formula sf in the current 
s tate ,  t hree values being possible: F (false ) ,  T ( true )  or U (undefined ) .  

• For every unique state generated the mode i s  changed depending on the truth 
value of sf. When no further state exploration is necessary the mode is changed 
to pred. While value is U s tate exploration is allowed to proceed . Procedure 
UpdateStack has to do with fairness for which see Section 4 .3 .  

• Procedure FinalValue determines the final truth value of  the formula in  the 
current s tate once it is known that all paths leading from s tate s have been 
explored . It depends on value and on the formula. For example if value is U 
and the formula is 30a, value is changed to  F. 

• Whenever a predecessor s tate is entered AdaptControllnfo changes the values 
of mode, value and depth depending on whether more s tate exploration is . 
necessary or not . 

4.3 Fairness 

In the present context fairness means that if a t ransition is enabled it should even­
tually be allowed to o ccur .  Fairness concerns the behaviour of t he t ransition system 
when certain paths are executed repeatedly and non-determinist ic choices occur . 
Consider Figure 2 again. The execution path ( 0 , 0 , 1 ) -. ( 1 , 0 , 1 ) -. ( 1 , 1 , 1 ) -... 
( 1 ,  2 ,  0 ) -. ( 1 ,  0 ,  1 ) --. ( 1 ,  1 ,  1 )  · · · is an example of an unfair path .  If the t ransition 
which leads to  s tate ( 1 ,  1 ,  1) is  always chosen at s tate ( 1 , 0 , 1 ) ,  process 1 will never 
be able to execute.  The system will therefore never reach s tate ( 2 ,  0, 0 ) .  Under these 

27 1 



circumstances the given specification will not be sat isfied . The model checker must 
ignore such unfair behaviour because the transition system is meant to be fair .  

The various temporal formulae can be classified into two groups according to 
their behaviour with respect to fairness :  

1 .  VD a ,  30a and 3 (  aU /3)  

2 .  3 D a ,  VOa and V( aU /3)  

The formulae in group 1 need no special treatment . To handle the second 
group , however , fairness must be considered. Consider the formula VOa.  Suppose 
t he truth value of t he given formula must be determined in state s. Therefore each 
path leading from state s must lead to  a state in which a holds . If some path leads 
back to s wi thout reaching a s tate in which a is t rue , it is necessary to know whether 
some other pat h  s tarting at s can lead to a state in which a is t rue because ,  if so , 
t he first path  represents an unfair path and can be ignored .  On the other hand if  
a s tate in whi ch a holds cannot be reached from s ,  the given formula is false in s .  
To keep track  of this is simple if the reachabili ty graph is kep t in memory. If  the 
reachability graph i s  generated on the fly fairness is handled by keeping information 
about fairness on the s tack .  

4.4 S ubproblem Detect ion 

Sometimes t he t ruth value of  a temporal formula deper:ids on the t ruth value of 
another temporal formula. For example The CTL formula given in Figure 1 spec ifies 
absence of starvation for process 1 :  whenever process 1 is  t rying to enter i t s  cri t ical 
sec tion (pl  = 1 ) ,  it will eventually reach it (pl = 2 ) .  Nested formulae can be handled 
in different ways . A simple method is to  break formulae down into subformulae 
which are then handled in a bot tom-up way but  much unnecessary work i s  normally 
done t hat way. 

The problem can be solved more efficiently in a top-down fashion by computing 
truth values only when necessary. Consider the CTL formula given in Figure 1 
again .  To determine t he truth value of t hi s  formula in state s the model checker will 
explore all paths leading from s while checking that i"n each state along every path 
the argument to  VD i s  t rue. The implication makes i t  unnecessary to determine 
t he truth value of t he nested modality  in any s tate in which pl # 1 .  If pl = 1 
however , t he t ruth value of VO(pl  = 2 )  is needed . Tuominen gives a top-down 
model checking algorithm[ l 2] but t he t ruth values of some subformulae are st ill 
computed unnecessaFily. For example, t he truth value of the nested modali ty in 
the given example will b e  recomputed in all s tates while it is often possible to  
deduce i t s  value from some earlier s tate .  Figure 2 provides an example. The t ruth 
value of t he subformula VO(pl = 2 )  will be needed i n  s tates ( 1 , 0 , 1 ) ,  ( 1 ,  1 ,  1 )  and 
( 1 ,  2 ,  0 ) .  However, since t he latter t wo states are reachable from the s tate ( 1 ,  0, 1 ) ,  

272 



i t  is unnecessary to determine the truth value of the nes ted modali ty in all three 
s tates . If the subformula is true in state ( 1 ,  0 ,  1 )  it is bound to be true in the other 
t wo s tates . If it is false in s tate ( 1 ,  0, 1 )  the main formula is invalidated and therefore 
the other two states can be ignored. 

A new technique called subproblem detection is proposed which exploits  such 
contextual information to  avoid a significant amount of unnecessary processing. 
Whenever the truth value of some subformula cannot be determined directly in 
state s the subformula and state s are remembered as a subproblem to be analysed 
at a later s tage . The subformula is assumed to be true and the model checker 
proceeds.  In the given example it was necessary to analyse the same subformula in 
three different s tates . For each unique subformula a list of states is kep t in which 
its truth value must be  determined. Several simplifications are now possible. For 
example, as soon as the specification is found to be violated any subproblems which 
have been generated need not be analysed any further. Furthermore , the set of states 
Vs visited in order to compute the truth value of a subformula in s tate s is recorded 
in the bi t vec tor. The truth value of the same subformula in some other state s' can 
then often be deduced from its truth value in s if s' E Vs . The technique has been 
implemented and found to improve the speed of the model checker significantly. 

Another advantage of the technique of subproblem detection is that it provides 
a natural way to parallelise the model checker: a main processor can be used to 
detect subproblems while several "worker" processors are used to  solve subproblems.  
Results  are returned to t he main processor which keeps t rack of everything in order 
to determine the final result . Communicat ion overhead is low since little information 
needs to be exhanged among processors . To solve a particular subproblem a worker 
processor needs to know only the s tart s tate and t he particular subformula. The 
returned result is simply the truth value of the particular subformula in the s tart 
s tate . As an added bonus , a parallel version of the model checker will be using the 
memory of several machines as � combined resource. S t ates generated in order to 
detect a particular subp roblem need not be  regenerated by t he processor which is 
used to  solve t he subproblem . S imilarly different s tate spaces are usually generated 
to solve different subproblems .  A parallel version of t he model checker based on a 
number of interconnected workstations is current ly being developed . 

· 4 . 5  Using Paging to Save More Space 

Traditional model checkers keep information about each unique s tate in memory 
in t he form of a s tate graph .  For large s tate spaces this  graph will be too large 
to fit into memory. However, because s tate generation is so slow when traditional 
methods are used-typically about 100 states per second-a space problem is not 
encountered in prac tice; problems large enough to cause a space problem cannot 
even be considered because too much processing t ime will be required .  

Model checkers capable of  processing a t  least several t housand s tates per sec­
ond on a modern works tation can be built by using t he bit vector technique. It 

273 



is t hus possible t o  analyse much larger s tate spaces in an acceptable amount of 
t ime. But  larger problems require huge virtual address spaces to accomodate the 
bitvector-too large to  be supported directly by currently available operating sys­
tems . Fortunately t he bit vec tor i s  extremely sparse and clustered [8) and t herefore 
multi- level paging techniques can be used to handle large bit vectors . A virtual 
address space supported by disk slows down the model checker to  an unacceptable 
speed[8 ]  and therefore pages are allocated dynamically in memory as needed . The 
technique is used to  save memory. It depends on the fact that only a small frag­
ment of t he virtual address space is usually needed . Results  obtained thus far are 
encouraging but  more experimentation will be required to determine the success of 
thi s  technique. 

5 Conclusion 

A transition system is  used to  model the dynamic properties of a sys tem. Figure 1 
shows typical input accepted by the model checker . The execution tree of the tran­
s i t ion system is generated dynamically while i t  is being verified whether the given 
specification is satisfied . To avoid storing the reachability graph explicitly a new 
technique was developed to handle fairness . To handle nesting another technique 
( called subproblem detection ) was developed . It has several other advantages related 
to  model checking in  general . A paging technique is used to save space in order to 
handle even larger problems . 

A model checker based on the suggested design has been implemented and used 
to verify several systems , t he largest thus  far being a model of the X.2 1 protocol . 
Systems which generate no more than a few thousand states can be analysed by 
using a personal computer, but  a more powerful machine is necessary to analyse 
larger systems . The suggested techniques enable us to process about 3000 s tates 
per second on a workstat ion based on t he Motorola 88K processor . Litt le has been 
reported about the efficiency of other model checkers except that about 100 states 
per second seems to be the norm using a typical workstation. 

6 Acknowledgements 

Several people have contributed ideas to  t he model checker described in  thi s  paper. 
S pecific acknowledgements are due to  Professor Chris Brink of the University of 
Cape  Town, and the following people from t he University of S teHenbosch:  Dieter 
Barnard,  Werner Fouche , P ieter Muller and Willem Visser . 

References 

[ 1 ]  M .  C .  B rowne, "An Improved Algorithm for t he Automatic Verification of Fi­
nite S t ate  Systems Using Temporal Logic" , in Proceedings of the Symposium on 

274 



Logic in Computer Science, (Washington D . C. ) ,  pp .  260-266, IEEE Computer 
Society Press , June 16-·1 8 1986 .  

[2] J .  Burch,  E .  Clarke ,  K .  McMillan, D.  Dill,  and L .  Hwang,  "Symbolic Model 
Checking : 1020 S tates and Beyond" , in Proceedings of the 5- th IEEE Sympo­
sium on Logic in Computer Science, ( Philadelphia) , pp . 428-439, June 1990 .  

[3] E .  Clarke and E .  Emerson, "Design and Synthesis o f  Synchronization Skeletons 
using Branching Time Temporal Logic'' , in Proceedings of IBAf Workshop on 
Logic of Programs, ( D .  Kozen , ed . ) ,  pp . 52-7 1 ,  Lecture Notes in Computer 
S cience, 13 1 ,  1 98 1 .  

I 

[4] E .  Clarke, E .  Emerson , and A .  Sistla, "Automatic Verification of Finite State 
Concurrent Systems Using Temporal Logic Specifications :  A Practical Ap­
proach" , Proceedings 1 0th A C/vf Symposium on Principles of Programming 
Languages, p p .  1 1 7-126 ,  1983 . 

(5] E .  A .  Emerson and J .  Y. Halpern , "' Sometimes ' and 'not never ' revisi ted: on 
branching versus linear time temporal logic ." , Journal of the A CM, vol. 33,  
no. 1 ,  p p .  1 5 1-178,  January 1986 .  

[6 ]  E .  Emerson and C.  Lei ,  '' ;\fodalities for Model Checking: Branching Time 
S trikes Back" , Science of Computer Programming, no. 8, pp . 275-306,  1987. 

(7] H. Everi t t ,  "Temporal Logic as an Aid to  Validating Communication Proto­
cols'\ in Proceedings of the A ustralian Software Engineering Conference, ( Can­
berra) ,  pp .  293-305,  May 1 1- 1 3  1988 . 

[8] G .  J .  Holzmanri, "An Improved Reachability Analysis Technique" , Software 
Practice and Experience, vol . 18 ,  no . 2 ,  pp . 137-16 1 ,  February 1 988 .  

(9) G .  Holzmann,  "Algorithms for Automatic Protocol Verification" , A T&T Tech­
nical Journal, pp . 32-44,  January /February 1990 .  

( 1 0] z .  Manna and A. Pnueli , "Completing the Temporal Picture" , Research Re­
port S TAN- CS-89- 1 296,  Department of Computer S cience, S tanford, California. 
94305 , December 1 989 . 

( 1 1] A. P nueli , "Applications of temporal logic to the specification and verification 
of reactive systems: A survey of current trends" , in  Current Trends in Con­
currency, ( J .  de B akker , W.  de Roever, and G.  Rozenberg, eds . ) ,  p p .  5 1 0-584, 
Lecture Notes in Computer S cience, 224, Springer Verlag, 1 986.  

( 1 2] H .  Tuominen, "Logic  in Petri Net Analysis" , Research Report 5 ,  Helsinki Uni­
versity of Technology, Department of Computer S cience, Digital Systems Lab­
oratory, O ta.niemi , O takaa.ri 5 A SF-02 150 ESP O O ,  FINLAND ,  January 1988 . 

[ 1 3] N .  Wirth ,  Programming in Modula-2. Springer-Verlag, 2 ed . ,  1 983 .  

275 


	1991_SAICSIT_Villiers
	Front_Page.pdf
	Front_Page




