Building a secure database using self-protecting objects

M S Olivier and S H von Solms
Department of Computer Science
Rand Afrikaans University
Johannesburg *

May 23, 1991

Abstract

In current database systems the responsibility for enforcing security is often given to the various
application programs. Even where the Database Management System (DBMS) does supply security
mechanisms, a single application program often handles sensitive transactions for some users and
therefore needs a high clearance for accessing data—this may render the provided mechanisms
inadequate. Furthermore, the user’s identity is often concealed because the user has many ‘software
agents’ acting on its behalf—especially in distributed environments. A simple mapping between
subjects and objects is no longer possible.

We propose a model for extending Object-Oriented Database Systems to enable objects them-
selves to ensure security—ie to protect themselves. This extension is based on the concept of
‘baggage’—baggage is collected from all components involved in any request; this baggage may
then be verified by the objcct against its personal security profile before any method is executed.

Keywords: Security, Multilevel Secure Database, DBMS, Object-oriented, Path Context Model
(PCM)

1 Introduction

This paper describes a model to build a secure object-oriented database based on the Path Context
Model (PCM) (2,3,4]. We will refer to this model as SECDB (SECure DataBase).

Both the appeal and concerns regarding security of object-oriented databases are discussed
in [11]. On the positive side object-orientation supports encapsulation, the possibility to model
security in real-world terms and the potential of inheritance. On the negative side the main problem
occurs when a class and its superclass have different sensitivity levels: this may allow information
to flow from a higher sensitivity level to a lower level.

The necessary extensions to an object-oriented database to support security are considered.
Such extensions must fit as cleanly as possible into the object-oriented model. The proposed mech-
anisms are designed to be objects themselves, conforming to the normal object, class and inheritance
structures. Also, in line with the object-oriented database model, the security information must be
stored as part of the database, together with the data and code.

We will mainly be concerned with the secrecy aspect of security, although the proposed model
has some advantages regarding integrity.

The reader is referred to (8] for a discussion of the classical secure database implementation
strategies.

*Address correspondence to Martin Olivier, Department of Computer Science, Rand Afrikaans University, PO Box 52“
Johannesburg, 2000 South Africa; Email: Martin.Olivier@f{1.n7101.z5 fidonet.org

228

2 Object-oriented extensions

This section introduces the terminology used. The concept: are treated in more detail in subsequent
sections.

2.1 Object-oriented basics

We consider objects, classes, inheritance, methods and messages as the necessary ingredients of
object-orientation {14, pp 8-11]. Also, in a.secure system encapsulation [14, p 11] must be

enforced—that is an object’s instance variables must be hidden from all methods except the object’s
own methods.

4

2.2 Messages and baggage

Throughout this paper we use the term ‘message’ to refer to an active message: it starts to exist
when it is sent (by a user or from some method which is being executed). We will say a message
‘activates’ a method; messages sent by the executing method are ‘spawned’ by the original message;
the message directly responsible for sending a message will be referred to as the ‘spawning’ message.

Example Worker

/ GetRate
ProjectX =

B GetCost

GetRate”
GetDate

L

\ Clock

" GetDate

Figure 1: Messages illustrated

See figure 1. Suppose a user sends the message GetCost to an object ProjectX. The method
GetCost sends the message GetRate to the object Worker and then GetDate to the object Clock.
We say that GetCost spawned GetRate and GetDate. The spawning message of both GetRate and
GetDate is GetCost. Note that the message GetCost starts to exist when it is sent by the user;
GetRate exists until it returns an answer. After that GetDate starts to exist and ends its existance

229

when it returns the date. After this the GetCost message stops to exist when it returns its answer.
a ,

Messages are required to carry ‘baggage’ with them. SECDB is designed to support the baggage
concept as defined in the Path Context Model (PCM) (2,3,4). Informally, PCM requires that
‘baggage’ or information must be collected about all relevant software and hardware components
involved in the handling of any request. A profile is associated with every item in the system to
which access must be controlled—this profile specifies which components are required to take part
in the handling of the request and which components are not allowed to take part. A profile may,
for example, be defined to :

L. Allow access only if one of a few specified users has originated the request; but
2. Deny access if some non-encrypted communications line has been used to transmit the request.

We expand on this later; initially this baggage may be viewed as the ‘clearance level’ of the sender
or originator of the message: it is an indication of the trust associated with the request.

2.3 Profile objects

SECDB defines a profile as an object containing security information about protected information;
given the baggage carried by a message, a profile can use its security information to determine
whether the message may be allowed to access the protected information. The security information
will typically be allowing and prohibiting contexts as defined in PCM; initially this information
may be viewed as the ‘sensitivity level’ or ‘classification level’ of the information protected by the
specific profile—ie a restriction of who is allowed to access the information. Profiles are normal
objects—instances of profile classes—placing no additional requirements on the underlying system.

Since messages carry information they need protection and will therefore also have profiles
associated with them. The information carried by a message will typically consist of parameters;
however, the information can be much more subtle: the fact that a message has been sent can
compromise information. Note that messages are active entities which cannot be accessed (assuming’
that the operating system protects executing programs). Messages therefore do not pose a security
threat—the problem arises when such a message ‘drops’ information somewhere where it can be
accessed, eg by assigning it to a variable or by creating an object. So, whenever a message is sent,
profiles are taken along for all the information contained in it—contained directly in its parameters
or contained implicitly. These profiles carried by messages will then be associated with any objects
created or modified by that message. The profiles associated with a message will also be tagged
to messages spawned by it. This will ensure that the *-property (1] is not violated when messages
are sent between objects; simply put, this property requires that no user (or application) can write
information he has access to where someone without the proper authorization can then read it. We
will formalize this mechanism later. See section 5 for an example. ‘)

It is important to distinguish between baggage carried by messages and profiles carried by
messages. Baggage is a record of the path a request has followed, ie which user initiated the
request, which application programs were involved, which networks have taken part, etc. When a
message arrives at an object, the object’s profile(s) will look at this baggage to determine whether
access should be granted to the message. On the other hand, a message also carries profiles with it
to protect the information contained by the message. These profiles will have no influence on what
the message may or may not access; the profiles will rather be attached to any variables modified
or objects created by the message, controlling access to those variables and objects.

2.4 Gates

In SECDB a gate is a ‘boundary’ around every object in the system: whenever a message is sent to
an object, the message will be intercepted by the sending object’s gate and then by the receiving
object’s gate. The sending object’s gate will tag any profiles associated with the sending object

230

to the message. The receiving object’s gate will ask access permission from the receiving object’s
profile(s). The profile will make this decision based on the baggage sent with the message and its
internal profile information. If access is denied, it is the gate’s responsibility to handle the rejection
of the message. If access is allowed, the gate will associate any profiles carried by the message
with the instance variables changed or created in the receiving object (in addition to any existing
profiles).

3 Profiles

3.1 Description of profiles

Profiles will be defined for information in a SECDB database to ‘which access is restricted. Profiles
are objects containing access requirements: these requirements will typically consist of a list of
objects (users, programs, etc) that may access the information and a list of objects that may not
take part in a request to access the information. Based on the baggage carried by a message
and these requirements in a profile the profile can determine whether the message satisfies the
access requirements or not. PCM specifies that the access requirements must be in the form of a
Random Context Grammar (13]: it will specify which contexts (ie human, software and hardware
components) are required to be in the baggage and which contexts are not allowed to appear in
the baggage.

The profile may also support methods to dynamically modify the profile data; however, if such
mechanisms are too general, the resulting security may be too complex, reducing trust. We do not
consider meaningful restrictions to methods supported by profiles in the current study.

SECDB additionally requires that a profile object provides a method GrantAccess, which may
be called by the protected object’s gate and which will reply with a Yes or a No.

Note that the PCM requirement of a Random Context Grammar profile may be modified to
yield other interesting versions of SECDB; we discuss one such possibility later.

3.2 Profiles as objects

The implications of profiles being objects are
1. There are profile classes, subclasses and superclasses; and
2. Profile objects are protected by profiles themselves.

Considering (1), it is convenient to assume that a profile class has more restrictive access
requirements than its (profile) superclass, ie that each subclass has a higher (or equal) ‘sensitivity
level’ than its superclass. A hierarchy of profile classes then forms a partially ordered set of
‘sensitivity levels’. In order to guarantee this, SECDB requires that GrantAccess in any profile
subclass will send a message to GrantAccess in the superclass of the profile subclass; access will be
denied if it is denied by the superclass.

From (2) it follows that there is potentially an infinite chain of profiles. This problem is easily
(and soundly) solved by allowing one profile object to act as its own security profile—the problem
is similar to the one caused by the fact that classes are indeed objects and therefore instances of
some metaclass, which is again an object itself.

3.3 Associating profiles with information

In order to protect information, profiles are specified when a class is defined. The specified profile(s)
will then be used for all instantiations of that class.

An object may be viewed as a layered entity: The outermost layer contains those instance
variables and methods (and shares those class variables) defined in its class; the next layer those
defined in the superclass of its class, and so on up to the innermost level which contains the items

231

defined highest up in the class hierarchy. (In Smalltalk terminology (5], it contains the class variables
and methods defined in class Object.) Figure 2 illustrates this. Since information at different levels
in the class hierarchy may have different security requirements, different layers of an object may
be protected by different profiles.

Class hierarchy

Instantiation of PostGrad

- number
- degree

PreGrad PostGrad

&

Figure 2: Objects are layered entities

A profile may be associated with one of more of the following:
1. A layer of an object;
2. Specific methods of an object; and/or
3. Specific instance variables of an object.
In order to activate a method

1. Profile(s) protecting all object layers" surrounding the method must allow access;
2. The method’s specific profile must allow access; and
3. None of the instance variables accessed by the method must deny access.

Typically, a profile will be associated with the object reflecting the object’s overall ‘sensitivity’.
Profiles will be associated with the methods to implement role-based security: the set of operations
any user can perform on an object does not only depend on that user’s clearance level, but also on
the user’s function or role in the organization. Profiles which are associated with instance variables
will mainly be-used as an additional safeguard to ensure that no method accesses information which
the subject should not have access to.

An object, message or variable may have more than one profile associated with it, in which case
all the profiles must allow access before access will be granted for a message.

In figure 3 Object! is protected by both Profilel and Profile2, while Method! is additionally
protected by Profile? and Profile4. In order to activate Method!, permission will have to be obtained
from all four profiles; if any one denies access, Method! will not be activated.

232

Object

Memoc‘f

\ o

Figure 3: Multiple profiles

4 Gates

4.1 Operation of gates

A gate is a mechanism associated with every object, which will intercept any message leaving the
object or arriving at the object. Arriving messages will only be allowed to activate the called
method if permission can be obtained from the relevant profile(s). In the case of leaving messages,
the profiles associated with the sending object will be tagged to the message. Whenever an instance
variable with a profile is accessed, the message will be tagged with that profile. Messages spawned
by another message will be tagged with all the profiles associated with the spawning message. If a
spawned message returns a value, the spawning message will be tagged with the profiles carried by
the returning message; if no values are returned the spawning message will resume execution with
all the profiles it had when it spawned the returning message.

All messages crossing the borders between object layers will be checked by the gate, verifying
baggage when travelling inwards and attaching profiles when travelling outwards. In order to
reference any method or variable at an inner layer, all border crossings between the origin of the
reference and the referenced variable or method have to be checked. This ensures that information
does not flow to a lower classified class by means of inheritance.

4.2 Examples of message tagging

Assume we are working with a payroll system. All employee salaries are protected by a profile
P. The payroll object starts sending messages to all employee objects to determine their current
salaries. When these messages return the result (the salary) the profile P is attached to the returning
message. The payroll object inserts the salaries into its internal table—this implies that a variable
is being modified, causing the profile P to be attached to this-variable. Although the payroll object
now contains the sensitive salaries, it is not possible to retrieve them illegitemately from this object
because they-are still protected by their original profile P. If this payroll object now sends a message
to the cashbook object with this table as a parameter, the profile P will again be sent along and
(eventually) be attached to the cashbook’s variable(s) so that it will still not be possible to obtain
the sensitive salaries from the cashbook without the (original) authorization.

Another example of tagging profiles to messages is given in figure 4. There are three objects,
01, 02 and 093, six messages, M1 to M6, and eleven profiles, P! to PI1.

If we firstly assume that all messages return values and that the message M/ is sent to object
01, the sequence of events will be as follows:

233

@ '

Figure 4: Tagging profiles to messages

¢

234

Note the following (numbers refer to the Remark column in the table above)

Object Active message Profiles tagged to message Remark

01 M1 = 1
02 M3 P1 2
03 M6 P1,P3,P2 3
02 M3 P1,P3,P2,P8 4
01 Ml P1,P3,P2,P8,P3,P2 5
02 M4 P1,P3,P2,P8,P3,P2,P1
03 M5 P1,P3,P2,P8P3,P2,P1,P2
02 M4 P1,P3,P2,P8,P3P2,P1,P2P9, P8

01 M1 P1,P3,P2,P8,P3P2,P1,P2, P9, P8,P2

7
. We assume that the message starts without any profiles attached to it.

Sending the message M3 to object O2 causes the activity to ‘leave’ object Of and be trans-
ferred to object O2. The ‘leaving’ of OI causes O!’s profile P! to be attached to the message.

Object O2 now send the message M6 to 03. This message first ‘leaves’ the layer of O2 which
is protected by P3and then the layer protected by P2 causing both P9 and P2 to be attached
to the message. P/ is still attached to the message because the message was spawned by M3
of 02 which which PI was then associated.

- Control now returns to method M3 of object O2. Since information is returned (our initial

assumption), this information ‘leaves’ the layer protected by profile P8, causing P8 to be
attached to the message.

. Control has now returned from M3 of 02. Again, since the message returned a value to M1

of OI, ‘leaving’ from M3 caused profiles P and P2 to be attached to the message. (Note
that P3 and P2 are already attached to the message—in an optimized environment it is not
necessary to attach them again.)

If we assume, on the other hand, that no messages return values, the sequence of events will be

as follows if the message M ! is sent to object OI:

Object Active message Profiles tagged to message Remark
01 Ml =
02 M3 P1

03 M6 P1,P3,P2

02 M3 Pl 1
01 M1 -

02 M4 P1

03 M5 P1,P2

02 M4 P1 3
01 M1 = El

Note the following (numbers refer to the Remark column in the table above):
1.

Control returned to method MY, object O2 from method M6, object 03. Since no value
is returned (our assumption) M3 resumes execution with the profiles it had before sending
message M6.

M 1 resumes execution with the profiles it had before sending message M9.

3. M/ resumes execution with the profiles it had before sending message M35.

M1 resumes execution with the profiles it had before sending message MJ4.

4.3 Problems posed by gates

The concept of a gate is the only real deviation in SECDB from the classical object-oriented concept
and (not surprisingly) poses the most challenges. These challenges include

235

1. Handling of messages when access is denied;

2. Cooperation with the object’s profile, especially when the profile requires information from
the object in order to decide whether access should be granted; and

3. Logical integration into the object-oriented model, especially where such a model is described
formally.

Problem (1) can be treated like a normal failure to complete execution of a method, eg when the
hardware fails or the disk media is unreadable. This will typically involve abortion of the current
transaction and rolling the database back. We do not go into further details here.

Polyinstantiation is often used to solve (1): different ‘slots’ for a single field are maintained for
every clearance level; when a process with clearance level n writes a value to a field, any other
process with clearance level n (or higher) can read that value. However, if a process with clearance
level m, where m is more trusted than n, writes a value to the same field, all processes at clearance
level m and higher will be returned this value when they read the field, while all processes at
clearance levels n to m — 1 will still be returned the value written by the process at level n. (See
[12] for a description of polyinstantiation in object-oriented systems.) Polyinstantiation has to be
adapted to be useable in SECDB since data is not necessarily classified at different levels in the
PCM model. This means that it is not always possible to determine (and, in any case, it might
be dangerous when it is possible) how many ‘slots’ may exist for the same value. Polyinstantiation
will have to be done by attaching ‘cascading’ profiles to a polyinstantiated object—one level of
profile for every copy of the object. If a profile denies access, the profile one level down the cascade
is asked for access; this process is continued until a profile allows access; in this case access will be
granted to the (copy of the) object on the same level as the granting profile. Only if none of the
profiles grant access, will the request be denied. We do not discuss cascaded profiles further in this
paper.

Problem (2)—cooperation between an object and its profile—can be illustrated as follows: Sup-
pose some user must have access to every non-manager’s employee information. The profile for
the employee objects must then first determine whether a specific employee is a manager before
granting access. If the fact whether an employee is a manager or not forms part of the employee
information, this implies that a profile must sometimes access an object which may not be accessed
by the sender of the original message. A similar, but slightly more difficult restriction to solve
by ad hoc programming, is a rule allowing access to a salary if and only if the salary is less than
$100 000. In order to handle this kind of restriction, SECDB allows a profile to access an object
(by sending messages to it) without getting permission from a profile. To ensure that profiles are
not used to extract protected information from an object, access to the profile may be restricted
to come from gates (and possibly from some other highly trusted objects, but not from arbitrary
objects).

5 Example

The example in figure 5 is intended to illustrate profiles, profile classes and hierarchies of profiles.
In a real application we would like to see a classification scheme based on functions (or roles) in
the organization, rather than on traditional classification levels. In figure 5 SECURITY PROFILE
is the primitive security profile class. UNCLASSIFIED, RESTRICTED, SYS_ADMIN, etc, are all pro-
file (sub) classes. SECURITY_PROFILE, UNCLASSIFIED, RESTRICTED, CONFIDENTIAL, SECRET and
TOP_SECRET form a non-decreasing sequence of profile classes. SYS_ADMIN also offers at least as
much protection as SECURITY_PROFILE. However, no such relationship exists necessarily between
SYS_ADMIN and UNCLASSIFIED, RESTRICTED, etc. In the example this is used where some profile
classes are intended to protect information according to the classification level of the information
and another class, SYS_ADMIN, is used to protect system structures, such as profile objects.
EMPLOYEE_CLASS describes a class of employee objects. When defining this class, the system
security officer decided to link it to the CONF_PROFILE profile. Every instance of EMPLOYEE_.CLASS,

236

Secunty_Profile

Y

Unclassified Sys_Admin
|
Restricted ‘
|
' SA_Praofile [
Contfidential ‘ __,,’l
Secret Conf_Profile ‘ ‘
|
Top_Secret -
T
......................... e
------------ g

Figure 5: Example

237

E£mpioyee_Class

,4| Emp_Rec

Object

Subclass
Instantiation
Profile link

such as EMP _REC, will then be associated with CONF_PROFILE.

6 Model characteristics

In SECDB a previously defined and instantiated security profile is specified (or inherited) for every
class whenever such a class is defined.

Subclasses of a class will, by default, inherit the profile of the superclass. A security profile may,
however, be specified when defining a subclass, overriding the inherited profile. Viewing an object as
a layered entity implies that security (both the simple security property and the *-property) [1] will
not be compromised, even if the subclass has less restricting access requirements than its superclass.
The simple security property requires that subjects should not have access to information they do
not have permission to access and the *-property requires, as mentioned earlier, that no subject
can write information where another subject without the proper authorization can then read it.

The simple security property and the *-property have to be demonstrated for two cases:

1. Where messages are sent from one object to another (possibly at different classification levels);
and

2. Where an object inherits a message or variable from some superclass (again possibly at a
different classification level).

The following arguments do this for the respective cases.

1. When messages are sent from one object to another, the gate/profile combination(s) of every
object will ensure the simple security property. Since information sent along with any message
carries with it the profile of any object it leaves, the *-property is ensured: any access to that
object will have to go through the original containing object’s profile, implying that a lower
“clearance” level will still not be allowed to access it, although it may now be contained in
an object with a lower classification level.

2. When a message or variable is inherited from a superclass, the profile specified in that super-
class will be associated with the corresponding layer of the object. Information contained may
therefore not be accessed without permission from that security profile, ensuring the simple
security property. Also, any information leaving that layer will be tagged with that layer’s
profile, ensuring the *-property.

7 PCM in the SECDB environment

As we indicated at the start, SECDB has been designed to use PCM. The primary advantage of
PCM is its ability to enforce security in potentially non-secure environments, especially in network
environments where the identity of the originator of a request is often concealed by layers of appli-
cation software, network servers and system software. SECDB also shows promise in a distributed
database where multiple system security officers may be involved. (The original description of PCM
uses the term ‘“object’ to refer to a static entity and the term ‘subject’ to refer to a dynamic entity;
we use the term ‘static entity’ in this section to avoid confusion in the object-oriented context.)
PCM uses three concepts:

1. A baggage collector to collect ‘baggage’ about all software and hardware involved in handling
a request; baggage is defined as ‘the minimum amount of information that has to be collected
and must accompany the access request on its route in order that responsibility and access
authority checking can be performed even though various transformations or domain crossings
may occur’;

2. A profile for a static entity which specifies which items are required to take part in handling
a request and/or which items are not allowed to take part when accessing this entity; and

238

3. A validator to compare collected baggage to the accessed static entity’s profile.

In SECDB, to fit the object-oriented model, the profile data (containing the allowing and
prohibiting contexts) and the validator have been merged into a single profile object.

Although PCM may be used to protect non-object-oriented databases, the object-oriented model
i1s more appropriate, because

e Of the similarity between messages in the two models;
e Of the ability to store data, methods and security information as one coherent unit; and

e In the case of the object-oriented model it is possible to consider security implications at any
abstraction level—specifically it is possible to implement role-based security; in the case of
other models one can usually only make decisions on whether a subject is allowed to read
and /or write specific data records or fields.

In an object-oriented database messages, can origiﬁat.e from objects inside the database or from
external sources. Although not the primary goal, SECDB can be used to ensure that requests
follow an approved route through the database: some objects are for internal use only, or for use
by specific other objects; it is simple to add restrictions to SECDB profiles to ensure that a request
only comes via an acceptable predecessor helping to ensure the integrity of the database.

8 Implementation considerations

We do not address the implementation considerations in detail in this paper. However, it must be
admitted that a straightforward implementation of the model could be inefficient. Here we point
out four areas where optimization shows promise.

Firstly, an object protected by multiple profiles requires extensive checking. If some of the
associated profiles have stricter requirements than other associated profiles, the less strict profiles
may be ignored. The ordering imposed on profile subclasses stated that a subclass has stricter
access requirements than.its superclass(es). This means that if a profile from somewhere low in
the hierarchy has granted access, the profiles from higher in the hierarchy (instances of ancestor
classes) nced not be asked for their permission.

Secondly, checks that messages sent’inside the environment conform to the profile restrictions
can often be done statically (at compile time or system configuration time).

Thirdly, the need for a profile to send a message to its superclass’ GrantAccess can also be
eliminated in some cases: if it is possible to check statically that the access requirements set by a
profile class are indeed as least as strict as the requirements set by its superclass.

Lastly, it is unnecessary to tag a profile to a message if the specific profile (or an instance of a
decendant class) is already tagged to the message.

It is also worth pointing out that the association of a profile with an object is not expensive: this
association can be done by having a pointer (often from the class and not the individual objects) to

the relevant profile. This will not require much more memory than a simple sensitivity level would
have taken.

9 Comparison with other models

Very few models have been proposed for secure object-oriented databases.

One promising model for a secure object-oriented database system was proposed by Keefe, Tsai
and Thuraisingham (7]. Their model, known as SODA, assigns a classification (sensitivity) level
to a protected object. Every message which travels through the system, carries with it a current
classification level and a clearance level. The current classification level is adjusted whenever an
object with a higher classification is accessed. Rules, based on the current classification level and the

239

clearance level and on an object’s classification level, determine whether access should be granted
to an object.

It can be shown that SODA is similar to a special case of SECDB: define baggage to consist of
1. The clearance level of the sender of a message; and
2. The sensitivity level of any information accessed

and define profiles to contain the sensitivity levels of objects they protect. Note however, that
the primary concern in SODA is the protection of variables and objects, whereas methods are the
primary concern in SECDB, with variables and objects secondary.

SORION [12] is another multilevel secure object-oriented data model. This model assigns
security levels to subjects and entities. A set of rules based on these security levels restricts access.

The access control language of Mizuno and Oldehoeft [10] is based on extended access control
lists (ACLs): a four-tuple ACL entry

1. Specifies which user may activate a method;

2. Through which class the request may come;

3. Through which specific object (class instance) the request may come; and

4. Lastly names the protected method.

SECDB is more general; however note that SECDB does not consider classes encountered on the
route of the request, but rather objects—ie instances of classes.

Two other methods which may be used to ensure that a request follows an acceptable internal
route through the database have been suggested in the literature: views [6] and a law-based ap-
proach [9]. In the case of views, an object may define different views—or interfaces—for different
objects. A profile in SECDB can specify which objects may access the protected object and also
which methods are available to those objects, similar to the view concept. However, this speci-
fication in SECDB is not limited to the immediate predecessor object involved in a request. In
the law-based approach a set of Prolog rules or laws may be specified to manage the exchange of

messages in the system. This is a very general (and powerful) mechanism, enabling (and aimed at)
the specification of basic properties, such as inheritance.

10 Further research

Research still remains to be done in the following areas
1. Automating profile generation and automated validation of profiles (for consistency);
2. Identification of unnecessary baggage in order to keep baggage as small as possible;
3. Implications of multiple inheritance on the model; and
4. Designing a notation for specifying security constraints (especially in real-world systems).
)

. The model should be applicable to distributed systems where requests may come from many
sites, oftem not even directly connected to the database site. However, the distributed systems
may operate concurrently, and the effects of this on the model should be investigated.

11 Conclusion

Object-oriented systems is based on the premise that objects are self-contained entities consisting
of data and code. It is meaningful to expect that objects should also have the responsibility to
protect themselves. Further, protection in object-oriented systems must fit as cleanly as possible
into the generally accepted object-oriented paradigm. In this paper we have proposed a model,
SECDB, for supporting security in an object-oriented database, which satisfies these criteria.

240

SECDB is based on the Path Context Model (PCM), which means that the entire access path
is taken into account when it is decided whether a request should be allowed to proceed. This
information collected while traversing the access path, is known as baggage. Two concepts are
added to the object-oriented paradigm: profiles and gates. Profiles contain criteria for restricting
access to an associated object. Gates are mechanisms which will compare baggage accompanying a
request to the relevant profile(s), and then either allow or disallow the request to proceed. Profiles
are objects themselves. They are also designed to be inherited by a subclass similar to the way
instance variables are inherited.

Although SECDB is based on PCM, properties of traditional security models such as the Bell
and LaPadula model can still be supported. We illustrated this by indicating how SECDB can
emulate SODA, a model for a secure object-oriented database based on the Bell and LaPadula
model. i

References

(1] DE Bell and LJ LaPadula, “Secure computer system: unified exposition and Multics interpre-
tation”, Rep. ESD-TR-75-306, March 1976, MITRE Corporation

(2] WH Boshoff and SH von Solms, “A Path Context Model for Addressing Security in Potentially
Non-secure Environments”, Computers & Securtly, 8, 1989, 417-425

(3] WH Boshoff and SH von Solms, “Application of a Path Context Approach to Computer
Security Fundamentals”, Information Age, 12, 2, April 1990, 83-90

(4) WH Boshoff, A Path Contezt Model for Computer Security Phenomena in Potentially Non-
Secure Environments, Ph.D Dissertation, Rand Afrikaans University, 1989

(5] A Goldberg and D Robson, Smalltalk 80: The Language and its Implementation, Addison—
Wesley, 1983

(6] B Hailpern and H Ossher, “Extending Objects to Support Multiple Interfaces and Access
Control”, IEEE transactions on Software Engineering, 16, 11 (November 1990), 1247-1257

(7] TF Keefe, WT Tsai and MB Thuraisingham, “SODA: A Secure Object-oriented Database
System”, Computers & Security, 8 {1989), 517-533

(8] C Laferriere, “A Discussion of Implementation Strategies for Secure Database Management
Systems”, Computers & Security, 9, 1990, 235-244

(9] NH Minsky and D Rozenshtein, “A Law-Based Approach to Object-Oriented Programming”,
Proceedings of the Conference on Object-Oriented Programming Systems, Languages and Ap-
plications, ACM, October 1987, 482493

(10] M Mizuno and AE Oldehoeft, “An Access Control Language for Object-Oriented Programming
Systems”, Journal of Systems Software, 13, 1990, 3-12

(11) DL Spooner, “The Impact of Inheritance on Security in Object-Oriented Database Systems”,
pp 141-15Qin Landwehr, CE, Database Security II: Status and Prospects, North-Holland, 1989

(12] MB Thuraisingham, “Mandatory Security in Object-Oriented Database Systems”, Proceedings
of the Conference on Object-Oriented Programming Systems, Languages and Applications,
ACM, October 1989, 203-210

(13] APJ Van der Walt, “Random Context Languages Symposium on Formal Languages”, Ober-
wolfach, West Germany, 1970

(14] P Wegner, “Concepts and Paradigms of Object-Oriented Programming”, OOPS Messenger,
1, 1 (1990), 7-87

241

