Special Issue: SAICSIT '99
The South African Computer Journal
An official publication of the Computer Society of South Africa and the South African Institute of Computer Scientists

Die Suid-Afrikaanse Rekenaartydskrif
'n Amptelike publikasie van die Rekenaarvereniging van Suid-Afrika en die Suid-Afrikaanse Instituut vir Rekenaarwetenskaplike Verkeer

World-Wide Web: http://www.cs.up.ac.za/sacj/

Editor
Prof. Derrick G. Kourie
Department of Computer Science
University of Pretoria, Hatfield 0083
dkourie@cs.up.ac.za

Sub-editor: Information Systems
Prof. Niek du Plooy
Department of Informatics
University of Pretoria, Hatfield 0083
nduplooy@econ.up.ac.za

Production Editors
Andries Engelbrecht
Department of Computer Science
University of Pretoria, Hatfield 0083

Herna Viktor
Department of Informatics
University of Pretoria, Hatfield 0083
sacj_production@cs.up.ac.za

Editorial Board
Prof. Judith M. Bishop
University of Pretoria, South Africa
jbishop@cs.up.ac.za

Prof. Richard J. Boland
Case Western University, U.S.A.
boland@spider.cwry.edu

Prof. Trevor D. Crossman
University of Natal, South Africa
crossman@bis.und.ac.za

Prof. Donald D. Cowan
University of Waterloo, Canada
dcowan@csg.uwaterloo.ca

Prof. Jürg Gutknecht
ETH, Zürich, Switzerland
gutknecht@inf.eth.ch

Prof. R. Nigel Horspool
University of Victoria, Canada
nigelh@csr.csc.uvic.ca

Prof. Fred H. Lochovsky
University of Science and Technology, Hong Kong
fred@cs.ust.hk

Prof. Kalle Lyytinen
University of Jyvaskyla, Finland
kalle@cs.jyu.fi

Dr. Jonathan Miller
University of Cape Town, South Africa
jmiller@geb2.uct.ac.za

Prof. Mary L. Soffa
University of Pittsburgh, U.S.A.
soffa@cs.pitt.edu

Prof. Basie H. von Solms
Rand Afrikaanse Universiteit, South Africa
basie@rkw.rau.ac.za

Subscriptions

<table>
<thead>
<tr>
<th>Region</th>
<th>Annual</th>
<th>Single copy</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
<td>R80.00</td>
<td>R40.00</td>
</tr>
<tr>
<td>Elsewhere</td>
<td>US$40.00</td>
<td>US$20.00</td>
</tr>
</tbody>
</table>

An additional US$15 per year is charged for airmail outside Southern Africa.

+27 (11) 315-1319 Fax: +27 (11) 315-2276
Contents

Preface
P. Machanick ... 1

Research Articles

Active Learning: Issues and Challenges for Information Systems and Technology
RD Quilling, GJ Erwin and O Petkova ... 5

A Generic Modelling Framework for Interactive Authoring Support Environments
Paula Kotze ... 15

O Petkova and JD Roode ... 26

An Information-Theoretic Semantics for Belief Change
T Meyer ... 33

A Complexity Metrics Model for Software Correction
A Törn, T Andersson and K Enholt ... 40

A Conceptual Design for High-Volume Data Processing of Warehouse Database into Multidimensional Database
Paisarn Trakulsuk and Vichit Avatchanakorn ... 49

A Pragmatic Approach to Bitemporal Databases: Conceptualization, Representation and Visualisation
Chiyaba Njovu and WA Gray ... 58

A Building Recognition System
SP Levitt and B Dwolatzky ... 68

Computer Programming and Learning to Write
John Barrow ... 77

Co-operating to Learn using JAD Technologies
TA Thomas ... 87

Critical Success Factors for the Implementation of DSS at a Selection of Organisations in Kwazulu/Natal
URF Averweg and GJ Erwin ... 95

Enhancing the Predictability of Two Popular Software Reliability Growth Models
Peter A Keiller and Thomas A Muzzuchi ... 105
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalised Unification of Finite Temporal Logic Formulas</td>
<td>Scott Hazelhurst</td>
<td>110</td>
</tr>
<tr>
<td>Harmonizing Global Internet Tax: A Collaborative Extranet Model</td>
<td>E Lawrence and B Garner</td>
<td>119</td>
</tr>
<tr>
<td>Improving Object Oriented Analysis by Explicit Change Analysis</td>
<td>Lui Yu, Siew Chee Kong, Yi Xun and Miao Yuan</td>
<td>128</td>
</tr>
<tr>
<td>Reconciling the Needs of New Information Systems Graduates and Their Employers in Small, Developed Countries</td>
<td>Rodney Turner and Glenn Lowry</td>
<td>136</td>
</tr>
<tr>
<td>Shortest Delay Scheduling Algorithm for Lossless Quality Transmission of Stored VBR Video under Limited Bandwidth</td>
<td>Fei Li, Yan Liu, Jack Yiu-Bun Lee and Ishfaq Ahmad</td>
<td>146</td>
</tr>
<tr>
<td>Software Croma Keying in an Immersive Virtual Environment</td>
<td>Frans van der Berg and Vali Lalioti</td>
<td>155</td>
</tr>
<tr>
<td>Some Automata-Theoretic Properties of (\cap)-NFA</td>
<td>Lynette van Zijl and Andries PJ van der Walt</td>
<td>163</td>
</tr>
<tr>
<td>The CILT Multi-Agent Learning System</td>
<td>Hema L Viktor</td>
<td>176</td>
</tr>
<tr>
<td>The Development of a Generic Framework for the Implementation of Cheap, Component-Based Virtual Video-Conferencing System</td>
<td>Soteri Panagou and Shaun Bangay</td>
<td>185</td>
</tr>
<tr>
<td>The Role of Experience in User Perceptions of Information Technology: An Empirical Examination</td>
<td>Meliha Handzic and Graham Low</td>
<td>194</td>
</tr>
<tr>
<td>What are Web Sites Used for: Cost Savings, Revenue Generating or Value Creating?</td>
<td>Man-Ying Lee</td>
<td>201</td>
</tr>
<tr>
<td>New Ideas Papers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approaches to Video Transmission over GSM Networks</td>
<td>Bing Du and Anthony Maeder</td>
<td>210</td>
</tr>
<tr>
<td>From Information Security Baselines to Information Security Profiles</td>
<td>Rossouw von Solms and Helen van der Haar</td>
<td>215</td>
</tr>
<tr>
<td>Grounded Theory Methodology in IS Research: Glaser versus Strauss</td>
<td>J Smit</td>
<td>219</td>
</tr>
<tr>
<td>Introducing a Continuum of Abstraction-Led Hierarchical Search Techniques</td>
<td>Robert Zimmer and Robert Holte</td>
<td>223</td>
</tr>
</tbody>
</table>
Multimedia as a Positive Force to Leverage Web Marketing, with Particular Reference to the Commercial Sector
Stan Shear
229

Understanding HCI Methodologies
Peter Warren
234

Electronically Published Papers

<table>
<thead>
<tr>
<th>Experience Papers</th>
<th></th>
</tr>
</thead>
</table>
| A Java Client/Server System for Accessing Arbitrary CANopen Fieldbus Devices via the Internet | **Dieter Bühler, Gerd Nusser, Gerhard Gruhler and Wolfgang Küchlin**
239 |
| An Object-Oriented Framework for Rapid Client-side Integration of Information Management Systems | **Ralf-Dieter Schimkat, Wolfgang Küchlin and Rainer Krautter**
244 |
| Distributed Operating Systems: A Study in Applicability | **Jürgen Prange and Judith Bishop**
249 |
| Formal Verification with Natural Language Specifications: Guidelines, Experiments and Lessons so far | **Alexander Holt**
253 |
| Introducing Research Methods to Computer Science Honours Students | **Vashti Galpin, Scott Hazelhurst, Conrad Mueller and Ian Sanders**
258 |
| Visualising Eventuality Structure | **ST Rock**
264 |

Electronically Published Papers
SAICSIT’99
South African Institute of Computer Scientists and Information Technologists
Annual Research Conference 17-19 November 1999
Prepare for the New Millennium
Is there life after y2k?
Mount Amanzi Lodge, Hartebeespoort, South Africa

Sponsors

http://www.cs.wits.ac.za/
PHDS research/PHDS.html

Think different.
Preface

Philip Machanick, Overall Chair: SAICSIT'99

Running SAICSIT'99, the annual research conference of the South African Institute for Computer Scientists and Information Technologists, has been quite an experience.

SAICSIT represents Computer Science and Information Systems academics and professionals, mainly those with an interest in research. When I took over as SAICSIT president at the end of 1998, the conference had not previously been run as an international event. I decided that South African academics had enough international contacts to put together an international programme committee, and a South African conference would be of interest to the rest of the world.

I felt that we could make this transition at relatively low cost, given that we could advertise via mailing lists, and encourage electronic submission of papers (to reduce costs of redistributing papers for review).

The first prediction turned out to be correct, and we were able to put together a strong programme committee.

As a result, we had an unprecedented flood of papers: 100 submitted from 21 countries. As papers started to come in, it became apparent that we needed more reviewers. It was then that the value of the combination of old-fashioned networking (people who know people) and new-fashioned networking (the Internet) became apparent. While the Internet made it possible to convert SAICSIT into an international event at relatively low cost, the unexpected number of papers made it essential to find many additional reviewers on short notice. Without the speed of e-mail to track people down and to distribute papers for review, the review process would have taken weeks longer, and it would have been much more difficult to track down as many new reviewers in so little time.

Even so, the number of referees who were willing to help on short notice was a pleasant surprise.

The accepted papers cover an interesting range of subjects, from management-interest Information Systems, to theoretical Computer Science, with subjects including database, Java, temporal logic and implications of e-commerce for tax.

In addition, we were very fortunate in being able invite the president of the ACM, Barbara Simons as a keynote speaker. Consequently, the programme for SAICSIT'99 should be very interesting to a wide range of participants.

We were only able to find place in the proceedings for 36 papers out of the 100 submitted, of which only 24 are full research papers. While this number of papers is in line with our expectation of how many papers would be accepted in each category, we did not have a hard cut-off on the number of papers, but accepted all papers which were good enough, based on the reviews. Final selection was made by myself as Programme Chair, and Derrick Kourie, as editor of the South African Computer Journal. Additional papers are published via the conference web site.

We believe that we have put together a quality programme, and hope you will agree.

Acknowledgments

I would like to thank the South African Computer Journal production team, Andries Engelbrecht and Herna Viktor, respectively from the Department of Computer Science and Informatics, University of Pretoria, for their work on producing the proceedings.

The reviewers listed overleaf did an excellent job: many wrote very detailed reports, sometimes after being called in on very short notice. Inevitably, there were some glitches resulting from the unexpected workload, but the buck stops with the programme chair: I promise to do better next time.

I would also like to thank my own department for putting up with the extra work and expense that running a conference entails. I tried not to burden them with too much extra work, but our secretaries, Zahn Gowar and Leanne Reddy, inevitably had to take on some extra work. John Ostrowick provided valuable assistance with design of our web pages and call for papers poster. Carol Kemick, who handles our finances and membership records, did a fine job of keeping up with the demands of the conference.

Finally, I would like to thank our sponsors, whose contribution made this conference been possible:

- PricewaterhouseCoopers - sponsored generous prizes and the conference banquet
- National Research Foundation (NRF) - provided financial support
- University of the Witwatersrand - provided financial support
- Programme for Highly Dependable Systems, University of the Witwatersrand - provided financial support
- Standard Bank - provided financial support
Editorial

- Apple Computer – provided equipment for the conference
- Qualica – provided technical support including helping with the conference web site

Web Site

For more information about SAICSIT, including a pointer to the conference site, see <http://www.saicsit.org.za>.

Referees

- Department of Computer Science, University of Pretoria
 - Derrick Kourie
 - Bruce Watson
 - Vali Lalioti
 - Andries Engelbrecht
 - Ivan Mphahlele
- German National Research Center for Information Technology - GMD
 - Gernot Goebbels
- School of Math Stat and IT, Natal University Pietermaritzburg
 - Peter Warren
- Graduate School of Business, University of Cape Town
 - Kurt April
- CSIR
 - James Jardine
- Department of Computer Science, Rhodes University
 - Shaun Bangay
 - Peter Clayton
 - John Ebden
 - Richard Foss
 - George Wells
 - Peter Wentworth
- Information Technology Division, Rhodes University
 - Caro Watkins
- Department of Information Systems, Rhodes University
 - Brenda Mallinson
 - Dave Sewry
- Department of Informatics, University of Pretoria
 - Carina de Villiers
 - Herna Viktor
 - Niek du Plooy
 - Elsje van Rooyen
 - Machdel Matthee
 - Alan Abrahams
 - Jackie Phahlamohlaka
- School of Information Technology & Engineering, University of Ottawa
 - Stan Szpakowicz
 - Dwight Makaroff
- Department of Information Systems, Victoria University
 - Glenn Lowry
 - Peter Shackleton
 - Tas Adam
 - Alastair Wallace
 - Stephen Burgess
 - Dave Burgess
 - Julie Fisher
 - Jerzy Lepa
 - Geoff Sandy
 - Rod Turner
 - Alastair Wallace
 - Andrew Wenn
- Peninsula School of Computing and Information Technology, Monash University
 - Ainslie Ellis
- School of Information Management and Systems, Monash University
 - Angela Carbone
- School of Computer Science & Software Engineering, Monash University
 - Dianne Hagan
 - Judy Sheard
- School of Management Information Systems, Deakin University
 - John Lamp
 - David Mackay
 - Philip Joyce
– Marie van der Klooster
– Bill Hewett
– Jennie Carroll
– Rodney Carr

• Computer and Automation Research Institute, Hungarian Academy of Sciences
 – Ferenc Vajda

• Department of Computer Science, University of the Witwatersrand
 – Ian Sanders
 – David Lubinsky
 – Conrad Mueller
 – Yinong Chen
 – Bob Baber
 – Vashti Galpin
 – Andras Salamon
 – Scott Hazelhurst
 – Philip Machanick
 – Zoltan Fazekas

• Department of Electrical Engineering, University of the Witwatersrand
 – Barry Dwolatzky
 – Farzin Aghdasi

• Department of Mathematics, University of the Witwatersrand
 – Jonathan Burgess

• School of Law, University of the Witwatersrand
 – Victoria Bronstein

• Edward Nathan & Friedland Attorneys, Johannesburg
 – Justine White

• Department of Information Systems & Technology, University of Durban-Westville
 – Geoff Erwin

• Department of Computer Science, Clemson University, Clemson, SC
 – Karen Hay

• Logical SA
 – Philip Green

• Department of Computer Science, University of Bristol
 – Alan Chalmers

• Department of Systems and Computer Science, Howard University, Washington, D.C
 – Todd Shurn
 – John Trimble

• Department of Computer Science, University of Cape Town
 – Sonia Berman

• King’s College, London
 – Peter Wood

• Department of Information Systems, University of Cape Town
 – Paul Licker
 – Steve Erlank
 – Alemayehu Molla

• Department of Department of Mathematics and Applied Mathematics, University of Cape Town
 – Ingrid Rewitzky
 – Peter Jipsen
 – Renkuan Guo

• Department of Information Systems, University of the Western Cape
 – Andy Bytheway

• Department of Electrical Engineering and Computer Science, The George Washington University, Washington, DC
 – Rachelle Heller

• School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology
 – Ian Macdonald

• Electrical and Electronic Systems Engineering, Queensland University of Technology
 – Anthony Maeder

• Computer Science Department, Åbo Akademi
 – Aimo Törn
 – Kaisa Sere
 – Mats Aspnas

• Division of Informatics, University of Edinburgh
 – Graeme Ritchie
 – Arturo Espinosa-Romero
 – Jon Oberlander
Editorial

- Chris Brew
- Alexander Holt

• Department of Computer Science and Engineering, Helsinki University of Technology
 - Tommi Junttila
 - Nisse Husberg

• Technical University of Budapest, Department of Measurement and Information Systems
 - Andras Pataricza

• NASA-Goddard Space Flight Center
 - Nigel Ziyad

• Department of Computer Science & Information Systems, University of Port Elizabeth
 - Janet Wesson
 - Leon Nicholls

• Computer Technology Department, Indiana University Purdue University Indianapolis
 - Tim Price

• Department of Electrical Engineering and Computer Science, The University of Michigan
 - Trevor Mudge

• Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
 - David Forsyth

• School of Computer Science, University of Birmingham
 - Mark Ryan

• Faculty of Mathematics, Computer Science, Physics & Astronomy, University of Amsterdam
 - Carlos Areces

• Department of Computer Science, Universidade do Vale do Rio dos Sinos - UNISINOS Rio Grande do Sul
 - Marcelo Walter

• School of Information Technology & Mathematical Sciences, University of Ballarat
 - Binh Pham
Research Article

Some Automata-Theoretic Properties of \(\cap\)-NFA

Lynette van Zijla\(^4\) and Andries P.J. van der Walt\(^6\)

Department of Computer Science, Stellenbosch University, \(^4\)lynette@cs.sun.ac.za, \(^6\)apjw@land.sun.ac.za

Abstract

We prove that the shortest word accepted by an \(n\)-state intersection selective nondeterministic automaton with nonempty language can be of length \(O(e^{\sqrt{n \log n}})\).

Keywords: Nondeterminism, automata theory
Computing Review Categories: F.1.1, F.4.3

1 Introduction

Traditional nondeterministic finite automata [6] allow for a nondeterministic choice of one particular path from the union of all possible sets of paths at a certain point. Selective nondeterministic automata, on the other hand, perform a given associative and commutative binary operation * on all possible sets of paths, and then make the nondeterministic choice from this resultant set. In this sense the traditional NFA is a selective NFA with the set operation taken as union. The succinctness properties of selective NFAs were investigated in detail in [8].

In this paper, we consider some well-known automata-theoretic properties of traditional NFAs, and investigate those properties in the case of selective nondeterministic automata, with the * operation taken as intersection (\(\cap\)-NFAs). In particular, if \(M\) is a traditional NFA with \(n\) states and \(L(M) \neq \emptyset\), then it is known that \(M\) accepts a word of length strictly less than \(n\) [3]. In this article we prove that this property does not hold for \(\cap\)-NFAs.

We give a formal definition of selective nondeterministic finite automata (or \(*\)-NFA) and \(\cap\)-NFA in section 2. In section 3 we show that it is possible to find an \(n\) state \(\cap\)-NFA which accepts a non-empty language \(L(M)\), in which the shortest word has length \(O(e^{\sqrt{n \log n}})\).

2 Definition of \(\cap\)-NFAs

The formal definition of the \(*\)-NFA is identical to the well-known definition for the traditional NFA except that the union operation is replaced by the \(*\) operation, where \(*\) is any associative commutative binary operation on sets.

Definition 1 A \(*\)-NFA \(M\) is a 6-tuple \(M = (Q, \Sigma, \delta, q_0, F, *)\), where \(Q\) is the finite non-empty set of states, \(\Sigma\) is the finite non-empty input alphabet, \(q_0 \in Q\) is the start state and \(F \subseteq Q\) is the set of final states. \(\delta\) is the transition function such that \(\delta : Q \times \Sigma \rightarrow 2^Q\), and \(*\) is any associative commutative binary operation on sets.

The transition function \(\delta\) can be extended to \(\delta : 2^Q \times \Sigma \rightarrow 2^Q\) by defining

\[\delta(A, a) = \bigcup_{q \in A} \delta(q, a)\]

for any \(a \in \Sigma\) and \(A \in 2^Q\).

The extension of \(\delta\) to \(\delta^* : 2^Q \times \Sigma^* \rightarrow 2^Q\) is straightforward.

A selective nondeterministic intersection NFA (\(\cap\)-NFA) is defined as in definition 1 above, but with \(*\) taken as intersection.

Acceptance for an \(\cap\)-NFA is defined as follows:

Definition 2 Let \(M\) be an \(\cap\)-NFA \(M = (Q, \Sigma, \delta, q_0, F, \cap)\), and let \(w\) be a word in \(\Sigma^*\). Then \(M\) accepts \(w\) iff the final state set \(F\) is contained in \(\delta^*(q_0, w)\); that is, if \(F \subseteq \delta^*(q_0, w)\).

Note that in the case where the final state \(F\) contains only one state (that is, \(F = \{q\}\) for some \(q \in Q\)), the definition of acceptance for the traditional NFA and the \(\cap\)-NFAs is equivalent.

Theorem 1 Let \(L(M)\) be a language accepted by a \(*\)-NFA \(M\). Then there exists a dfa \(M'\) that accepts \(L(M)\).

Proof: See [8].

Example 1 Let \(M\) be a traditional NFA defined by

\[M = (\{q_1, q_2, q_3\}, \{a\}, \delta, q_1, \{q_3\})\]

with \(\delta\) given by

\[
\begin{array}{c}
q_1 \quad a \\
q_1 \\
q_1, q_2, q_3
\end{array}
\]

Then the DFA equivalent to \(M\) is given by

\[
\begin{array}{c}
q_1 \\
q_1, q_2, q_3
\end{array}
\]
On the other hand, suppose that M were an \cap-NFA. Then its equivalent DFA (with non-reachable states removed) would be given by

![Diagram](image.png)

It should be clear that the traditional NFA simply takes its nondeterministic choices from the union of its possibilities, while the \cap-NFA prunes its possibilities using the corresponding set operation.

The interested reader may note at this point an analogy between boolean automata [5] (or alternating automata [11]) and \cap-NFAs. Boolean automata allow any combination of boolean operators in their transition function, and in that sense is more general than the \cap-NFAs proposed above. Indeed, it can be shown that there are boolean automata with n states for which the corresponding minimal DFA has $O(2^n)$ states [5]. We show in [8] that boolean automata correspond to \cap-NFAs with a transition function from the set of states to the powerset of the powerset of states (called \cap-SNFAs).

It can be shown (see [8]) that an n-state boolean automaton with no negation and only the OR operation in the boolean formulae of the transition function can be simulated by an n-state \cup-NFA, and vice versa. The \cap-NFA has no such direct translation into a one operation boolean automaton which preserves the number of states.

3 The Shortest Word Accepted by an n-state Unary \cap-NFA

It is trivial to construct an example of an n-state unary \cap-NFA which accepts a non-empty language such that the shortest word in this language has length greater or equal to n: the shortest word accepted by the \cap-NFA in example 1 has length three.

The interesting question is, how long could such a shortest word could be in the general case? We first prove that it is possible to construct a unary \cap-NFA M with an equivalent minimal DFA with $O(e^{\sqrt{n\log n}})$ states. Using this construction, we show that it is possible to choose a final state set for M such that the shortest word accepted by M is of length $O(e^{\sqrt{n\log n}})$.

We use n-state \cap-NFAs with a special form of the transition function, namely, for every $q_i \in Q$ we assume that $\delta(q_i, a)$ is one of those n subsets of Q which has cardinality $n - 1$, and we assume that all the entries in the transition table are distinct (see example 2 below). Then the complement of each entry in the transition table defines a permutation of the states of Q (the reader may consult [7] for more information on permutations). We set up a specific permutation for which we prove a bound on the first possible position where a repetition can occur. This result translates back directly to the \cap-NFA.

Example 2 (n-NFA) Let $n = 4$. An example of the special form of the transition function as described above is given by

<table>
<thead>
<tr>
<th>δ</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1</td>
<td>${q_1, q_3, q_4}$</td>
</tr>
<tr>
<td>q_2</td>
<td>${q_2, q_3, q_4}$</td>
</tr>
<tr>
<td>q_3</td>
<td>${q_1, q_2, q_4}$</td>
</tr>
<tr>
<td>q_4</td>
<td>${q_1, q_2, q_3}$</td>
</tr>
</tbody>
</table>

We first establish some notation; let $n > 1$ be arbitrary but fixed for the following discussion.

- Let $Q = \{1, 2, \ldots, n\}$, and let $A_i = Q \setminus \{i\}$ for $1 \leq i \leq n$.
- For π a permutation on Q, we indicate the image of j under the permutation by $\pi(j)$. Therefore,
 \[A_{\pi(j)} = Q \setminus \{\pi(j)\}. \]
- A cycle of length k of the permutation π is given by
 \[(j \pi(j) \pi^2(j) \ldots \pi^{k-1}(j)), \]
 where $\pi^k(j) = j$, and $\pi^m(j) \neq j$ for $1 \leq m < k$.
- The order of a permutation, indicated by $o(\pi)$, is the least common multiple of all its cycle lengths.
- For a subset $B = \{i_1, \ldots, i_k\}$ of Q and permutation π on Q, we define $\pi(B)$ as
 \[\pi(B) = \{\pi(i_1), \pi(i_2), \ldots, \pi(i_k)\} = \bigcup_{i \in B} \{\pi(i)\}. \]

- We indicate the complement over Q of a set $B \subseteq Q$ by $c(B)$.

Let $M_n = (Q, \{a\}, \delta, q_0, F, c)$ be a unary \cap-NFA with state set Q, alphabet $\{a\}$, initial state $q_0 \in Q$ and final state set $F \subseteq Q$. We assume that δ has the special form

\[\delta(i, a) = A_{\pi(i)} \]

where π is some permutation of Q.

We first establish the relationship between the transition function δ of M_n and a permutation of a subset B of the states of M_n.

Lemma 1 In the unary \cap-NFA M_n defined above, $\delta(B, a) = c(\pi(B))$ for any non-empty subset B of Q.

164

SACJ / SART, No 24, 1999
Proof:
\[\delta(B, a^k) = \bigcap_{j \in B} \delta(j, a) \quad (\text{since } M_n \text{ is an } \cap\text{-NFA}) \]
\[= \bigcap_{j \in B} A \cup_c(j) \quad (\text{by (3)}) \]
\[= c(\bigcup_{j \in B} A \cup_c(j)) \quad (\text{De Morgan}) \]
\[= c(\bigcup_{j \in B} \{c(j)\}) \quad (\text{by (1)}) \]
\[= c(\bigcup_{j \in B} \{c(j)\}) \quad (\text{by (2)}) \]
\[\square \]

Lemma 2 \(c(\pi(B)) = c(\pi(c(B))) \) for any \(B \subseteq Q \).

Proof: \(\pi \) is a bijection of \(Q \); hence, since \(B \) and \(c(B) \) are disjoint, it follows that \(\pi(c(B)) \) and \(c(\pi(B)) \) are disjoint. Moreover, \(B \cup c(B) = Q \) and hence \(\pi(B) \cup \pi(c(B)) = Q \). It follows that \(c(\pi(B)) = c(\pi(c(B))) \).

We can now show that the behaviour of \(M_n \) on a word of length \(k \) can be described by \(k \) applications of the permutation on \(B \):

Theorem 2 For any non-empty subset \(B \) of \(Q \),
\[\delta(B, a^k) = \begin{cases} \pi^k(B) & \text{if } k \text{ is even} \\ c(\pi^k(B)) & \text{if } k \text{ is odd} \end{cases} \]

Proof:
\[\delta(B, a^k) = \delta(\ldots \delta(\delta(B, a), a), a) \quad (\text{by lemma 1}) \]
\[= c(\bigcup_{j \in B} \{c(\pi(\pi(\ldots(\pi(c(B)))))))\}) \quad (\text{by reordering and lemma 2}) \]
\[= c^k(\pi(B)) \]
\[= \begin{cases} \pi^k(B) & \text{if } k \text{ is even} \\ c(\pi^k(B)) & \text{if } k \text{ is odd} \end{cases} \]
\[\square \]

Corollary 1 Suppose \(o(\pi) = k \). If \(k \) is even, then \(\delta(B, a^k) = B \); in any event, \(\delta(B, a^k) = B \).

Given the relationship between the transition function of \(M_n \) and the permutation as described above, we want to choose a \(B \) from which one could construct a long sequence before the first repetition occurs (that would enable us to find a long sequence of states in the DFA equivalent to \(M_n \), before any cycle occurs). Such a \(B \) is described in theorem 3 below.

Theorem 3 Suppose that \(n = r_1 + r_2 + \ldots + r_k \), such that for each \(i \) the \(r_i \) are mutually relatively prime, \(r_i > 2 \) and odd. Let \(\pi \) be the permutation
\[(1 2 \ldots r_i 1)(r_1 + 1)(r_1 + r_2)\ldots((r_1 + \ldots + r_{k-1} + 1)\ldots n). \]

Suppose \(B \subseteq Q \) contains at least one and at most \(r_j - 1 \) consecutive elements of the \(j \)-th cycle, with \(1 \leq j \leq k \). Then the sequence
\[\pi^0(B), c(\pi(B)), \pi^2(B), c(\pi^2(B)), \ldots, c(\pi^{2r_1r_2\ldots r_{k-1} - 1}(B)) \]
contains no repetition.

Proof: The order of the permutation \(\pi \) is the least common multiple of its cycle lengths. Since the \(r_i \) are odd and relatively prime, it follows that
\[o(\pi) = \text{lcm}(r_1, r_2, \ldots, r_k) = r_1r_2\ldots r_k, \]
which is odd.
Since \(o(\pi) \) is odd, the sequence has the form
\[\pi^0(B), c(\pi(B)), \pi^2(B), \ldots, \pi^{o(\pi) - 1}(B), c(\pi^{o(\pi)}(B)), \]
\[\pi^{o(\pi) + 1}(B), \ldots, c(\pi^{2r_1r_2\ldots r_{k-1} - 1}(B)). \]

But \(\pi^{o(\pi) + j}(B) \) is simply \(\pi^j(B) \), and hence \(c(\pi^{o(\pi) + j}(B)) = c(\pi^j(B)) \). By rewriting and rearranging the sequence we get
\[\pi^0(B), c(\pi(B)), \ldots, \pi^{o(\pi) - 1}(B), c(\pi^0(B)), \]
\[c(\pi^1(B)), \ldots, c(\pi^{o(\pi) - 1}(B)). \]

From the way in which \(B \) was chosen, it follows that there can be no repetition of the form \(\pi^j(B) = \pi^k(B) \) for \(0 \leq j < k \leq o(\pi) - 1 \). Similarly, there can be no repetition of the form \(c(\pi^j(B)) = c(\pi^k(B)) \) for \(0 \leq j < k \leq o(\pi) - 1 \). The only other possibility is that there is a repetition of the form \(\pi^j(B) = c(\pi^k(B)) \) for \(0 \leq j < k \leq o(\pi) - 1 \). But since \(\pi^j(B) \) and \(c(\pi^k(B)) \) contain the same number of elements from each cycle of \(\pi \), and all the cycles of \(\pi \) have odd length (by the construction of \(\pi \)), it follows that \(\pi^j(B) \) and \(c(\pi^k(B)) \) contain different numbers of elements from each cycle. Therefore, there can be no repetition of the form \(\pi^j(B) = c(\pi^k(B)) \) for \(0 \leq j < k \leq o(\pi) - 1 \).

The result follows.

\[\square \]

Theorem 4 Suppose that \(n = r_1 + r_2 + \ldots + r_k \), such that for each \(i \) the \(r_i \) are mutually relatively prime, \(r_i > 2 \) and odd. Let \(\pi \) be the permutation
\[(1 2 \ldots r_i 1)(r_1 + 1)(r_1 + r_2)\ldots((r_1 + \ldots + r_{k-1} + 1)\ldots n). \]

Suppose \(B \subseteq Q \) contains at least one and at most \(r_j - 1 \) consecutive elements of the \(j \)-th cycle, with \(1 \leq j \leq k \), while \(|B| \leq \lfloor n/2 \rfloor \).

Let \(M \) be an \(n \)-state unary \(\cap\text{-NFA} \) such that \(M = \{(0, 1, 2, \ldots, n), \{a\}, \delta, 0, F, \gamma\} \), where \(0 \) is a dummy start state such that \(\delta(0, a) = B \) and \(\delta \) has the special form given in (3). Then it is possible to find a final state set \(F \) such that the minimal DFA \(M' \) equivalent to \(M \) has \(2r_1r_2 \ldots r_k \) states.

Proof: We have shown in theorem 3 that the cycle length of \(M \) is \(2r_1r_2 \ldots r_k \), and it simply remains to find a final state set \(F \) such that the DFA equivalent to \(M \) is minimal. Since the cycle length is independent of the choice of final states we are at liberty to make any choice of final states which will lead to a minimal DFA. Consider the last element in the sequence in theorem 3 above:
\[c(\pi(2r_1r_2\ldots r_{k-1} - 1)(B)). \]

In the DFA \(M' \), this element corresponds to a compound state \(S = [s_1, s_2, \ldots, s_m] \). Choose the final state set
Research Article

F of M as $F = \{s_1, s_2, \ldots, s_m\}$. By the acceptance condition for an \cap-NFA, the only final states in the DFA are those which contain all of the s_i in F. But if B has cardinality $|B| \leq n/2$, then $|c(\pi^i(B))| \geq n/2$ for any i; hence the only state in the DFA which can contain all the s_i in F is $[S]$.

It follows that M' has only one final state, and since there is only one final state in the cyclic unary DFA, it follows that M' is minimal, and the theorem holds.

The length of the sequence in theorem 4 above is given by $\sum_{i=0}^{n-1} \mu_i$.

Finding a good approximation for $F(n)$ is known as Landau’s problem [4]; Chrobak [2] uses the approximation $F(n) = \frac{1}{6} n \log n + O(n)$.

We can now show that there is an \cap-NFA M which is minimal, and hence the sequence contains no repetition.

Theorem 4 For any $n \geq 1$ there is an \cap-NFA M with $n + 1$ states such that the minimal DFA equivalent to M has $O(F(n))$ states.

Proof: Suppose $F(n) = \frac{1}{6} n \log n + O(n)$.

where $r_1 + r_2 + \ldots + r_k = n$, and let σ be the permutation $(1 \ldots r_1)(r_1 + 1 \ldots r_1 + r_2) \ldots (r_1 + \ldots + r_k - 1 \ldots n)$. Then $\sigma(\pi) = \frac{1}{6} n \log n + O(n)$.

Suppose now that $B \subseteq Q$ contains exactly one element of each cycle. Then the sequence $B, c(\pi(B)), \pi^2(B), c(\pi^3(B)), \ldots, c(\pi^{F(n)-1}(B))$ if $F(n)$ is even, and

$B, c(\pi(B)), \pi^2(B), c(\pi^3(B)), \ldots, \pi^{F(n)-1}(B)$

if $F(n)$ is odd, contains no repetition. To see this, note that there can be no repetition of the form $\pi^i(B) = \pi^j(B)$ for $i < j < F(n)$, since $\sigma(\pi) = F(n)$ and B contains exactly one element from each cycle. Similarly, there can be no repetition of the form $c(\pi^i(B)) = c(\pi^j(B))$. It remains to show that there can be no repetition of the form $\pi^i(B) = c(\pi^j(B))$ for $i < j < F(n)$. Note that B (and hence $\pi^j(B)$) contains exactly one element from each cycle, and therefore $\pi^j(B)$ and $c(\pi^j(B))$ cannot contain the same number of elements unless all the cycles have length two. This is clearly impossible by the definition of $F(n)$, and hence the sequence contains no repetition.

Let M be an $n + 1$-state unary \cap-NFA such that $M = \{(0, 1, 2, \ldots, n), \{\alpha\}, 0, F, \cap\}$, where 0 is a dummy start state such that $\delta(0, a) = B$ and δ has the special form given in (3). We claim that it is possible to find a final state set F such that the minimal DFA M' equivalent to M has $O(F(n))$ states.

We know that the cycle length of M is at least $F(n)$. Select the final state set F such that the last and second last element of the sequence above. Then, by the same reasoning as in the proof of theorem 4, it follows that the DFA M' is minimal.

The result holds.

We illustrate our result with an example.

Example 3 Construct an \cap-NFA M such that

<table>
<thead>
<tr>
<th>δ</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>${1, 2, 5, 6}$</td>
</tr>
<tr>
<td>1</td>
<td>${2, 3, 4, 6, 7, 8}$</td>
</tr>
<tr>
<td>2</td>
<td>${1, 2, 4, 5, 6, 7, 8}$</td>
</tr>
<tr>
<td>3</td>
<td>${2, 3, 4, 5, 6, 7, 8}$</td>
</tr>
</tbody>
</table>

Note that we chose $\delta(0, a) = \{1, 2, 5, 6\}$. Then $|B| = 8/2 = 4$, and B contains at least one and at most two elements from the first cycle, and at least one and at most four elements from the second cycle.

We refrain from listing the DFA equivalent to M in full, giving only the first four and the last four states:

δ | α |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>${1, 2, 5, 6}$</td>
</tr>
<tr>
<td>$1, 2, 5, 6$</td>
<td>${1, 4, 5, 8}$</td>
</tr>
<tr>
<td>$1, 4, 5, 8$</td>
<td>${1, 3, 7, 8}$</td>
</tr>
<tr>
<td>$1, 3, 7, 8$</td>
<td>${3, 5, 6, 7}$</td>
</tr>
<tr>
<td>$3, 5, 6, 7$</td>
<td>${2, 3, 4, 5}$</td>
</tr>
</tbody>
</table>

Excluding the dummy start state 0, the DFA has exactly thirty states; that is, $2 \times (3 \times 5)$. Choose the final state set of M as $F = \{2, 6, 7, 8\}$. Then the final states of the DFA are those which contain all of the elements of F; hence, the only final state in the DFA is the state $\{2, 6, 7, 8\}$.

The shortest word accepted by M' has length 30.
Theorem 6 There is a unary \(\cap \)-NFA \(M \) which accepts a non-empty language \(L \) such that the shortest word in \(L \) has length \(O(e^\sqrt{\log n}) \).

Proof: Directly from theorem 5.

4 Conclusion

We illustrated a new automata-theoretic property of selective nondeterministic intersection automata (\(\cap \)-nfas), namely, we showed an \(\cap \)-nfa \(M \) with \(n \) states such that the length of the shortest word in \(L(M) \) is \(O(e^\sqrt{\log n}) \).

References

Notes for Contributors

The prime purpose of the journal is to publish original research papers in the fields of Computer Science and Information Systems, as well as shorter technical research notes. However, non-refereed review and exploratory articles of interest to the journal’s readers will be considered for publication under sections marked as Communications of Viewpoints. While English is the preferred language of the journal, papers in Afrikaans will also be accepted. Typed manuscripts for review should be submitted in triplicate to the editor.

Form of Manuscript

Manuscripts for review should be prepared according to the following guidelines:

- Use wide margins and 1½ or double spacing.
- The first page should include:
 - the title (as brief as possible)
 - the author’s initials and surname
 - the author’s affiliation and address
 - an abstract of less than 200 words
 - an appropriate keyword list
 - a list of relevant Computing Review Categories
 - Tables and figures should be numbered and titled.
- References should be listed at the end of the text in alphabetic order of the (first) author’s surname, and should be cited in the text according to the Harvard method.

Manuscripts accepted for publication should comply with guidelines as set out on the SACJ web page,

http://www.cs.up.ac.za/sacj

which gives a number of examples.

SACJ is produced using the \TeX document preparation system, in particular \TeX 2e. Previous versions were produced using a style file for a much older version of \TeX, which is no longer supported.

Please see the web site for further information on how to produce manuscripts which have been accepted for publication.

Authors of accepted publications will be required to sign a copyright transfer form.

Charges

Charges per final page will be levied on papers accepted for publication. They will be scaled to reflect typesetting, reproduction and other costs. Currently, the minimum rate is R30.00 per final page for contributions which require no further attention. The maximum is R120.00, prices inclusive of VAT.

These charges may be waived upon request of the author and the discretion of the editor.

Proofs

Proofs of accepted papers may be sent to the author to ensure that typesetting is correct, and not for addition of new material or major amendments to the text. Corrected proofs should be returned to the production editor within three days.

Letters and Communications

Letters to the editor are welcomed. They should be signed, and should be limited to about 500 words. Announcements and communications of interest to the readership will be considered for publication in a separate section of the journal. Communications may also reflect minor research contributions. However, such communications will not be refereed and will not be deemed as fully-fledged publications for state subsidy purposes.

Book Reviews

Contributions in this regard will be welcomed. Views and opinions expressed in such reviews should, however, be regarded as those of the reviewer alone.

Advertisement

Placement of advertisements at R1000.00 per full page per issue and R500.00 per half page per issue will be considered. These charges exclude specialised production costs, which will be borne by the advertiser. Enquiries should be directed to the editor.