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1. Introduction 

In [8] the design and implementation in Prolog 
of a trace generator for CSP specifications was 
described in some detail. Since then, the 
generator has been used in various contexts, and 
some efforts at enhancements have been made. 
This has provided several insights into the nature 
of traces, and their value and drawbacks in 
software development. The purpose of this paper 
is to outline these experiences and insights. 

In the section 2. of this paper a brief review 
of CSP is given in order to define tenninology. 
This is followed in section 3. by an overview of 
the Prolog trace generator. Section 4. then gives 
a critical cvaluat_ion of trace generation, both 
with respect to the particular Prolog 
implementation, and from a wider perspective. 

2. Overview of CSP 

The CSP language is intended to describe the 
behavior of processes which communicate (or 
interact) with one another. A process thus 
described is said to have been defined in CSP. 
Such a definition involves references to 
interactions (or events) between the process and 
its environment, and also to subprocesses of the 
process defined. When an event occurs, a process 
evolves (or enters) a subprocess, which may in 
tum be defined in CSP. 

Events arc considered to be· atomic and 
synchronous. A trace of a process is any finite 
event sequence which may be exchanged . 
between the process and its environment over an 
arbitrary time period. Every subtrace, including 
the empty subtracc, is also considered to be a 
trace of the process. The entire set of traces 
which a process may potentially accept is called 
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its trace set, and the set of events in the trace set 
is called the process's alphabet. One way of 
defining a deterministic process is to explicitly 
specify its trace set, as well as its alphabet; 
defining non-detenninistic processes requires 
additional infonnation. 

CSP is a notation which implicitly and 
compactly defines the trace set of a process. A 
subset of its operators arc used to express non­
dctenninism. The language consists of a set of 
symbols to represent events in the alphabet of a 
process, a set of symbols to represent 
(sub)processes and a set of operator symbols 
some of which allow for the expression of non­
detenninism. A definition of a process involves 
valid strings of these symbols. 

3. The trace generator 

The Prolog trace generator code and its input are 
placed in two separate files called the generator 
file and the specifications fil c respecti vcl y. Once 
these files have been consulted into the Prolog 
environment, and the generator has been 
activated, the user is prompted for the name of a 
process to be traced. Resulting output appears on 
screen, but can easily be directed to a file (e.g. 
using the Prolog tell predicate). 

3.1 Specifications file 
Appendix A gives the BNF for the variation of 
CSP which is required in the specifications file. 
Operator symbols differ slightly from the original 
CSP notation [5] to accommodate keyboard and 
Prolog implementation peculiarities. The 
following table summarises the semantics of CSP 
constructs implemented by the trace generator. 
The symbol m denotes a main process name, p 
and q denote process names, e and f denote 
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events, X denotes a variable, s is as set name 
and c is a channel name. 

Construct 

m := q. 
e --> p 
e --> PI I--> q 
p <> q 
PI-I q 
P II q 
P Ill q 
p ->q 
p;q 
p <* b *> q 
p \ s 
X:s --> p(X) 
c%e 
s? X 
stop 
skip 

Meaning 

m is defined by q 
e then p 
e then p choice f then ·q 
p choice q 
p or q (non-deterministic) 
p concurrent with q 
p interleaved with q 
p interrupted by q 
p followed by q 

If b then p else q 
p without elements of s 
X from s then p 
output e on channel c 
input X on channel s 
deadlocked process 
process terminating 
successfully 

The interested reader is referred to [5] for the 
precise semantics of these operators, and for 
valid CSP expressions as a whole. 

Certain constructs may only be used in 
conjunction with appropriate set declarations in 
the specifications file. Such declarations consist 
of a Prolog structure composed of a functor and 
2 parameters. The first parameter is a set name 
and the second is a list of events. For the 
constructs, p\s, X:s-->p(X) and s?X, Appendix A 
shows the corresponding functors as hide, sort 
and chan_alpha respectively. In each case, the 
list denotes the set of events to be hidden, the 
set of events to be chosen from, or a channel 
alphabet respectively. The set name, s, is an 
appropriate name chosen by the user. In the case 
of the construct pllq the alphabets of both p and 
q must be specified, using alpha as the functor, 
p and q as the set names, and the alphabets of p 
and q in the respective lists. 

3.2 Generator output 
The output of the trace generator for a given 
process is the set of all recursion traces of that 
process, as defined below. It also indicates where 
subprocesses that have been explicitly named in 
the specification file are entered, as the process 
rolls forward in accepting a given trace. 

Note that in accepting a trace t, a process Po 
will evolve into a sequence of subprocesses, 
some of which may be explicitly named, while 
others are parenthesised process definitions. 
(Refer to the production for <proc> in Appendix 
A.) Denote the sequence of explicilly named 
processes (including the initial process p0) by 
<Po,Pi-.P.>. Now t will be called a recursion 
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trace of Po if either of the conditions 1 to 3 
below hold: 
I. All processes in <p0,p1 •• p •. 1> are different but 

p. = Pt for some k = 0, .. n-1. 
2. 1. does not hold, but p. is either the stop or 

skip process, or a named but undefined 
process in the specifications file. 

3. Po is defined as q1 op q2, where: 
- q, and q2 are named processes 
- op is either ; or II or Ill 
- t1 and t2 are recursion traces of q, and q2 

respectively 
- t is the result of combining t, and t2 as 

prescribed by op. 
It can easily be shown that the output of the 

generator (in terms of recursion traces 
interspersed with indications of entry points to 
subprocedures) provides sufficient information to 
deduce the entire trace set of the traced process. 
Of course, this is subject to the restriction that 
all subprocesses have to be explicitly defined in 
the specifications file. 

3.3 Generator code 
The overall structure of the generator code has 
been discussed in some detail in [8], and will not 
be repeated here. It is observed, however, that 
the generator regards the specifications file as 
Prolog facts. This is accomplished, inter alia, by 
defining as Prolog operators various symbols and 
operators used in the BNF in appendix A. 
Furthermore, lists, process names, channel 
names, etc. are all required to be valid Prolog 
constructs. 

Another feature of the generator is its ability 
to perform arithmetic operations on the 
parameters of process names. This is important 
when specifying and generating traces for 
recursive-type definitions such as : 
p(X) := e --> p(X+I). 

4. Critical evaluation 

The trace generator has been through a number 
of minor revisions, and has been used in a 
variety of contexts. The purpose of this section 
is to outline some of the lessons learned and 
experiences gained in this process. In 4.1 issues 
relating specifically to the fact that the generator 
has been implemented in Prolog are addressed. 
In 4.2 some observations about trace generation 
in general are made. 

4.1 Prolog issues 
In this section, three issues in relation to the use 
of Prolog as an implementation language for the 
trace generator are considered, namely its 
portability, flexibility and efficiency. 



Portability 
The trace generator was implemented on a 
mainframe using Waterloo Prolog, version 1.7. 
Except for the use of operators, the code adheres 
to Core Prolog described in [3]. However, in 
porting the code onto various Core Prolog PC 
implementations, the operators proved to be the 
main difficulty. In A.D.A. Prolog it was not 
possible, for example, to use symbols such as I, ; 
and \ as operators, and alternatives had to be 
chosen. Similar problems have arisen with Arity 
Prolog. As a consequence, the contents of the 
specifications file looks less like the original 
CSP notation than the initial mainframe 
implementation. 

Flexibility 
Prolog provides considerable flexibility in a 
number of dimensions for the trace generation 
problem space. To date it has been found 
relatively easy to enrich the operator set as the 
requirements arise, without disturbing the overall 
structure of the code. Thus, the ability to handle 
constructs such as p <* b *> q have been easily 
added to the original code. Other enhancements 
include the ability to handle the channel input 
and output notations (c?X and c%e) and 
enriching the allowable range of arithmetic 
operations performed on arguments of process 
names. 

Another area of flexibility relates to the 
contents in the specifications file. Because this is 
actually Prolog code, a Prolog programmer can 
enrich the code. in a number of ways. For 
example, process definitions need not necessarily 
be given as facts, but can be stated as rules. 
Hence it is perfectly legitimate to include process 
definitions of the form : 

proc(X) := ..... :- condition] (X). 

proc(X) := ..... :- conditionN(X). 
Because the conditions tested by condition! to 
conditionN need not necessarily be mutually 
exclusive, the foregoing is more general than an 
if..then .. else construction and can in fact form the 
basis for the implementation of LOTOS guards 
[6] - something not provided for in the definition 
of CSP [5]. In a similar way, an set declaration 
need not be limited to an instantiated list in its 
second parameter, but can be constructed by the 
Prolog code thus : 

alpha(proc, List) :- make_list(List). 
where make_list generates the required List in 
some or other way (e.g. recursively, or 
interactively with the user). 

Finally, with minor adaptations to the driver 
procedures, the generator can be used to ask 
existence questions about recursion traces. The 
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simplest such question would be to establish 
whether a given event sequence constitutes a 
trace for a given process. More sophisticated 
questions would be to ask for a recursion trace 
(or traces) of a given length, or containing a 
given subtrace, or conlaining a given number of 
occurrences of a given event, etc. Disregarding 
efficiency matters, the limitations here are 
determined by the ingenuity and effort available 
for writing Prolog list manipulation procedures. 

Efficiency 
Prolog is generally acknowledged to be less 
efficient in terms of time and space than 
conventional programming languages. From a 
practical point of view, the inefficient utilisation 
of space appears to be the more serious problem, 
in that stack space overflow errors occur 
whenever the number of recursion traces implied 
by the specification becomes too large. The 
problem can be slightly alleviated by 
implementing a number of well-known space 
optimising strategics. For example, difference 
lists [I] can be used for concatenation when 
dealing with the followed by operator, and 
careful use of the cut predicate can avoid 
unnecessary backtracking. 

However, such measures merely postpone 
space/time problems, allowing specifications 
which are only slightly larger to be traced. The 
complexity inherent in the problem of generating 
all recursion traces is such that efficiency 
problems seem inevitable at some point, 
irrespective of implementation language and 
hardware. These matters will be addressed below. 

4.2 General issues 

Theoretical considerations 
The space / time complexity of any algorithm 
which seeks to generate all recursion traces for a 
process is directly related to the number of 
recursion traces which have to be generated. This 
number tends to explode combinatorially when 
certain operators are used. The worst offender in 
this regard is the interleaving operator. 

Consider, for example, a process defined as p 
:= q Ill r. and let n(.) and l(.) be functions 
mapping processes to the associated number of 
recursion traces and average recursion trace 
length (rounded to the nearest integer) 
respectively. If a recursion trace of q of length 
l(q) is interleaved with a recursion trace of r of 
length l(r), then recursion traces of p will be 
oblained of length l(q)+l(r). Such an interleaving 
can take place in /(q/• 1MC11q1 different ways. Hence, 
an order of magnititude estimate of n(p) and l(p) 
are respectively given by : 



n(p) = n(q)*n(r)*l(qJ+l(rJCl(qJ• and 
l(p) = l(q) + l(r). Thus, not only does the 
number of interleavings grow combinatorially 
with respect to the lengths of recursion traces of 
contributing processes, but the average length of 
the new recursion traces also increases. 
Consequently, if more than two processes are 
joined by means of the interleaving operator the 
number of recursion traces can quickly become 
unmanageable. 

The foregoing expressions also form 
approximate worst case upper bounds for n(p) 
and l(p) when p := q II r. The number of 
recursion traces implied by the concurrency 
operator are constrained in proportion to the 
number of synchronising events which have to 
match in the underlying interleavings of the 
traces of q and r. Whenever a set of 
interleavings have a common prefix succeeded 
by non-matching synchronising events they 
'degenerate' into a single concurrency recursion 
trace - namely a trace consisting of the prefix 
followed by deadlock. 

Clearly, then, the liberal use of interleaving 
and concurrency operators can easily result in 
specifications for which the problem of finding 
all recursion traces is not practical. 

Other CSP operators which also lead to large 
numbers of traces, but are somewhat less 
offensive than the interleaving and concurrency 
operators are the interrupt operator, and the use 
of the set choice and input notations. In the latter 
two cases, the number of recursion traces is 
dependent on the size of the associated event 
sets. In the former case, if p := q -> r, then 
n(p) is approximately l(q) * n(q) * n(r). 

From a theoretical point of view, then, the 
following claims regarding computability and 
tractability may be made. (Cf. [4] for an 
explanation of these concepts.) These claims 
assume that alphabets of processes are finite, and 
that traces are not represented in some closed 
form (such as using t" to denote a trace 
consisting of O or more concatenations of trace 
t). 
• Since traces may potentially be infinite in 
number, the general problem of trace set 
generation is clearly noncomputable. 
• By limiting the problem to the generation of 
recursion traces of processes the problem appears 
to be computable but intractable. 
• Hence the problem of inferring the trace set of 
a process from the recursion trace set is itself 
noncomputable. 

The claim, therefore, that the trace set of a 
process can be inferred from the set of recursion 
traces should be seen in this light. In principle, a 
generalised algorithm can be written to generate 
all traces up to a given length from the recursion 
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traces of a process. However, it is not possible to 
write a generalised algorithm to generate all 
traces. 

The problem of whether a generalised 
algorithm can be written to generate the trace set 
of any process in a closed form from the 
process's recursion traces is a matter for further 
study. 

Practical considerations 
In the light of the foregoing it might seem that a 
trace generator can at best serve as a teaching 
tool, dealing with toy problems only. However, 
in many applications recourse to reduction and 
segmentation strategies render it a practical tool 
for software development. These strategies will 
now be discussed. 
Often the dimensions of a problem can be 
reduced without losing any of its essential 
characteristics. For example, the dining 
philosopher problem defined in [5] required the 
use of 9 concurrency operators (8 of which act 
as interleaving operators) if there are 5 
philosophers. If the problem is reduced to 2 
philosophers, the number of concurrency 
operators reduces to 2 (1 of· which acts as an 
interleaving operator). While such a reduction in 
the dimensions does not necessarily replace the 
need for formal arguments to guarentee liveness 
and/or other properties in the larger system, the 
resulting recursion traces may well provided 
insights as to how these arguments can be made. 
Indeed, the very process of thinking about how 
to reduce the dimensions serves to fix the 
intellect on important characteristics of the 
problem. In a similar vein, it has frequently been 
found that when using the choice set notation, 
the number events in the associated event set 
may be drastically reduced without losing useful 
information. 

Another way in which recursion traces may 
be limited is by tracing only parts of a system at 
a time, i.e. by segmenting the problem. Consider, 
for example, the specification p := q -> r. 
Knowing a priori that r interrupts q, it may often 
be more useful to know what the individual 
traces of q and r look like separately, rather than 
to know exactly where r's traces interrupt those 
of q. To take a concrete example, if n(q) = 10, 
l(q) = 5, and n(r) = 10, then separate traces of q 
and r result in n(q) + n(r) = 20 traces versus a 
total of approximately n(q) * n(r) * l(q) = 500 
for all those of p. 

Clearly, even more dramatic reductions occur 
when segmentation is applied to processes using 
the interleaving operator. Note, however, that 
segmentation tends to loose its value when the 
process to be segmented is itself a subprocess of 
some larger process. This tends to be the case 



with the interleaving operator, as in the dining 
philosophers problem. In isolation, the 
interleaving operator merely indicates that the 
argument processes function totally 
independently, and the resulting traces are 
usually only of limited value. 

Nevertheless, an analyses of the segmented 
recursion traces frequently enhances insight into 
a specification. Consequently, it may be 
worlhwhile to design a generator which functions 
in two modes, one which generates all recursion 
traces, and one which automatically applies 
segmentation, based on selected operators, to 
components of a specified process. 

Software development 
Frequently cited properties of high quality 
software include such characteristics as 
maintainability, reliability, readability, 
extendability, etc. (See, for example, (7).) 
Melhodological approaches which promote these 
qualities include stepwise refinement, designing 
the solution space as close a possible to the 
problem space, and unambiguous specification of 
the problem. CSP is well-suited to support these 
methodological approaches, particularly in the 
domain of real-time interactive systems. The 
trace generator in turn, tends to encourage and 
promote the use of CSP in a number of ways. 

The trace generator may be used (reducing 
and segmenting the problem where possible) to 
test the validity of CSP definitions. This leads 
into an interactive process, where visual 
representation of the recursion traces implied by 
a proposed specification invariably results in 
revisions, until a satisfactory specification is 
obtained. Since the meaning of traces tends to be 
easier to understand than the CSP specification 
as such, it has been found that end-users may 
frequently be involved in this interactive 
validation process at the level of functional 
specifications. At more detailed levels of 
specification, traces tend to facilitate 
unambiguous communication between various 
parties in the software development team. 

Note that a CSP specification at the functional 
level typically describes, at a high level of 
abstraction, how an envisaged system should 
interact with the environment. Small 
subcomponents of the system and their 
interaction arc not at issue. Hence, the events in 
the traces tend to be input and output 
information - in effect a statement of what output 
should result from a given set of input events. A 
stepwise refinement methodology involves 
successively refining the functional specification 
into increasingly detailed CSP specifications at 
the design level. The CSP concealment operator 
provides an approach to check the consistency of 
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a refined specification with one at a higher level 
of abstraction. (Cf. (9) where a similar approach 
is followed for ESTELLE specifications.) In 
principle, an extension to the trace generator 
could provide for the automation of such 
consistency checking. 

Once tracing has taken place at a given level 
of abstraction, not only has the specifier been 
forced to continually and critically re-evaluate 
his initial perception of the problem; there is the 
bonus of having a set of recursion traces for 
various segments of the specification which serve 
as the basis for test scenarios in the final phases 
of software development. Consequently testing 
turns out to be much more structured than 
previously. 

5. Conclusion 

The value one attaches to a trace generator 
critically depends on the value attached to fonnal 
specification in general. The case for fonnal 
specification is well-documented in the literature 
and will not be repeated here. Neither will the 
relative merits of the various formal specification 
techniques be evaluated, apart from the claim 
that CSP provides fairly easy entree to the 
general domain. (See, for example, [2] or [10) 
for evaluation criteria.) 

Experience with the CSP trace generator has 
shown it to be an excellent aid for introducing 
CSP to the novice specifier. It has successfully 
been used to teach CSP not only to Computer 
Science students, but also to experienced 
software engineers working on projects within 
the R&D section of Pretoria University's 
Computer Science department. This has resulted 
in the evolution of a software development 
methodology which incorporates a CSP definition 
of critical parts of the problem as part of the 
functional specifications of each project. 

In summary, then, recursive trace generation, 
Lhough intractable in the general case, has proved 
to be a practical aid both for teaching and for 
software development. 
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Appendix A 

KEY: 
1. @ is used for choice 
2. { ... } is used for O or more occurcnces 
3. Symbols enclosed in angle brackets are non­

terminal. Exceptions are <> and <* and *> 
which are terminal symbols 

4. Prolog terms etc. are also terminal symbols 

<definition> = <proc_name> := <proc_def> . 
{ <subproc _def>} 
{<set_ declare>} 

<proc_def> = <proc> <proc_op> <proc>@ 
<proc_name> II <proc_name>@ 
<guarded_exp> { I <g'UlU'ded_exp>} @ 
<proc> \ <set_name>@ 
<set_ choice_ expression> 

<subproc _def> = <definition> 

<set_declare> = alpha(<set_name>, <list>) .@ 
sort (<set name>, <list>) . @ 
chan_alpha (<set=naine>, <list>) . @ 
hide (<set_name>, <list>) . 

<proc> = <proc _name> @ 
( <proc _ def> ) 
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<proc_op> = <> @ 
/-/@ 
/II @ 
->@ 
:@ 
<* <condition> *> 

<g'UlU'ded_exp> = 
<event> --> {<event> -->} <proc> 

<set_ choice _expression> = 
<variable> : <set_name> --> <proc> 

<event> = any valid prolog term @ 
<chan_name> % any valid prolog term@ 
<chan name> ? <variable> 

<list> = any valid prolog list of terms 
<proc_name> = any valid prolog structure@ 

any valid prolog atom 
<chan_name> = any valid prolog structure@ 

any valid prolog atom 
<set_name> = any valid pr_olog structure@ 

any valid prolog atom 
<condition> = any valid prolog goal 
<variable> = any valid prolog variable 
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