
Volume 6 • Number 3

ISSN 0254-2757

QU/ESTIONES
INFORMATICJE

November 1988

T McDonald A Proposed Computer Network for R~rchers 95

TH C Smith F'mding a Cheap Matching 100

P J S Brower Ranking Infonnation System Problems in a User Environment 104

S W Postma . The ParaDel Conditional 109
N C K Phillips

D G Kourie Experiences in CSP Trace Generation 113
R J van den Heever

G de V de Kock Die Meting van Sukses van Naam~g.,algoritmes in 119
'n Genealogiese Data~ ·

R Short Learning the First Step in Requirements Specification 123

E C Anderssen Frame Clipping of Polygons 129
S Hvon Solms

The official journal of the Computer Society of South Mrica and of the South African
lmtitute of Computer Scientists

Die amptelike vaktydskrif van die Rekenaarvereniging van Suid-Afrika en van die
Suid:-Afrikaanse Instituut van Rekenaarwetenskaplikes

QUJESTIONES INFORMATICJE

The officia l journal of the Computer Society of South Africa and of the South
African Institute of Computer Scientists

Die amptelike vaktydskrif van die Rekenaarvereniging van Suid-Afrika en van die
Suid-Afrikaanse Instituut van Rekenaarwetenskaplikes

Editor

Professor J M Bishop
Department of Computer Science
University of the Witwatersrand
Johannes burg
Wits
2050

Editorial Advisory Board

Professor D W Barron
Department of Mathematics
The University
Southampton 809 5NH
UNITED KINGDOM

Professor G Wiechers
77 Christine Road
Lyn wood Glen
Pretoria
0081

Professor K MacGregor
Department of Computer Science
University of Cape Town
Private Bag
Rondebosch
7700

Professor H J Messerschmidt
Die Universiteit van die Oranje-Vrystaat
Bloemfontein
9301

Dr PC Pirow
Graduate School of Business Admin.
University of the Witwatersrand
PO Box 31170
Braamfontein
2017

Professor S H van Solms
Departement van Rekenaarwetenskap
Randse Afrikaanse Universiteit
Auckland Park
Johannesburg
2001

Professor M H Williams
Department of Computer Science
Herriot-Watt University
Edinburgh
Scotland

Production

Mr Q H Gee
Department of Computer Science
University of the Witwatersrand
Johannes burg
Wits
2050

Subscriptions

The annual subscription is
SA US UK

Individuals R20 $7 £5
Institutions R30 $14 £10

to be sent to:
Computer Society of South Africa
Box 1714 Halfway House 1685

Qurestiones Informaticre is prepared by the Computer Science Department of the
University of the Witwatersrand an~ printed by Printed Matter, for the Computer

Society of South Africa and the South African Institute of Computer Scientists.

Experiences in CSP Trace Generation

D G Kourie and R J van den Heever
Department of Computer Science, University of Pretoria, Hatfield, Pretoria 0083

Abstract

Experiences and insights gained from implementing and using a Prolog trace generator for CSP
specifications are discussed. The use of Prolog as an implementation language is evaluated. The value of
trace generation as both an educational tool and a practical software development tool are considered.
Keywords: Trace, trace generation, Prolog, specification, verification, validation, software development
tool
Computing Review Category: D.2.2

Received August 1988, Accepted October 1988

1. Introduction

In [8] the design and implementation in Prolog
of a trace generator for CSP specifications was
described in some detail. Since then, the
generator has been used in various contexts, and
some efforts at enhancements have been made.
This has provided several insights into the nature
of traces, and their value and drawbacks in
software development. The purpose of this paper
is to outline these experiences and insights.

In the section 2. of this paper a brief review
of CSP is given in order to define tenninology.
This is followed in section 3. by an overview of
the Prolog trace generator. Section 4. then gives
a critical cvaluat_ion of trace generation, both
with respect to the particular Prolog
implementation, and from a wider perspective.

2. Overview of CSP

The CSP language is intended to describe the
behavior of processes which communicate (or
interact) with one another. A process thus
described is said to have been defined in CSP.
Such a definition involves references to
interactions (or events) between the process and
its environment, and also to subprocesses of the
process defined. When an event occurs, a process
evolves (or enters) a subprocess, which may in
tum be defined in CSP.

Events arc considered to be· atomic and
synchronous. A trace of a process is any finite
event sequence which may be exchanged .
between the process and its environment over an
arbitrary time period. Every subtrace, including
the empty subtracc, is also considered to be a
trace of the process. The entire set of traces
which a process may potentially accept is called

Quxstioncs Informatica: 6 (3) 113-118, November 1988

its trace set, and the set of events in the trace set
is called the process's alphabet. One way of
defining a deterministic process is to explicitly
specify its trace set, as well as its alphabet;
defining non-detenninistic processes requires
additional infonnation.

CSP is a notation which implicitly and
compactly defines the trace set of a process. A
subset of its operators arc used to express non­
dctenninism. The language consists of a set of
symbols to represent events in the alphabet of a
process, a set of symbols to represent
(sub)processes and a set of operator symbols
some of which allow for the expression of non­
detenninism. A definition of a process involves
valid strings of these symbols.

3. The trace generator

The Prolog trace generator code and its input are
placed in two separate files called the generator
file and the specifications fil c respecti vcl y. Once
these files have been consulted into the Prolog
environment, and the generator has been
activated, the user is prompted for the name of a
process to be traced. Resulting output appears on
screen, but can easily be directed to a file (e.g.
using the Prolog tell predicate).

3.1 Specifications file
Appendix A gives the BNF for the variation of
CSP which is required in the specifications file.
Operator symbols differ slightly from the original
CSP notation [5] to accommodate keyboard and
Prolog implementation peculiarities. The
following table summarises the semantics of CSP
constructs implemented by the trace generator.
The symbol m denotes a main process name, p
and q denote process names, e and f denote

113

Experiences in CSP Trace Generation

D G Kourie and R J van den Heever
Department of Computer Science, University of Pretoria, Hatfield, Pretoria 0083

Abstract

Experiences and insights gained from implementing and using a Prolog trace generator for CSP
specifications are discussed. The use of Prolog as an implementation language is evaluated. The value of
trace generation as both an educational tool and a practical software development tool are considered.
Keywords: Trace, trace generation, Pro/og, specification, verification, validation, software development
tool
Computing Review Category: D.2.2

Received August 1988, Accepted October 1988

1. Introduction

In [8] the design and implementation in Prolog
of a trace generator for CSP specifications was
described in some detail. Since then, the
generator has been used in various contexts, and
some efforts at enhancements have been made.
This has provided several insights into the nature
of traces, and their value and drawbacks in
software development. The purpose of this paper
is to outline these experiences and insights.

In the section 2. of this paper a brief review
of CSP is given in order to define terminology.
This is followed in section 3. by an overview of
the Prolog trace generator. Section 4. then gives
a critical evaluat_ion of trace generation, both
with respect to the particular Prolog
implementation, and from a wider perspective.

2. Overview of CSP

The CSP language is intended to describe the
behavior of processes which communicate (or
interact) with one another. A process thus
described is said to have been defined in CSP.
Such a definition involves references to
interactions (or events) between the process and
its environment, and also to subprocesses of the
process defined. When an event occurs, a process
evolves (or enters) a subprocess, which may in
tum be defined in CSP.

Events arc considered to be· atomic and
synchronous. A trace of a process is any finite
event sequence which may be exchanged
between the process and its environment over an
arbitrary time period. Every subtracc, including
the empty subtracc, is also considered to be a
trace of the process. The entire set of traces
which a process may potentially accept is called

Quxstioncs Informaticx 6 (3) 113-118, November 1988

its trace set, and the set of events in the trace set
is called the process's alphabet. One way of
defining a deterministic process is to explicitly
specify its trace set, as well as its alphabet;
defining non-deterministic processes requires
additional information.

CSP is a notation which implicitly and
compactly defines the trace set of a process. A
subset of its operators arc used to express non­
determinism. The language consists of a set of
symbols to represent events in the alphabet of a
process, a set of symbols to represent
(sub)processes and a set of operator symbols
some of which allow for the expression of non­
determinism. A definition of a process involves
valid strings of these symbols.

3. The trace generator

The Prolog trace generator code and its input are
placed in two separate files called the generator
file and the specifications file respectively. Once
these files have been consulted into the Prolog
environment, and the generator has been
activated, the user is prompted for the name of a
process to be traced. Resulting output appears on
screen, but can easily be directed to a file (e.g.
using the Prolog tell predicate).

3.1 Specifications file
Appendix A gives the BNF for the variation of
CSP which is required in the specifications file.
Operator symbols differ slightly from the original
CSP notation [5] to accommodate keyboard and
Prolog implementation peculiarities. The
following table summarises the semantics of CSP
constructs implemented by the trace generator.
The symbol m denotes a main process name, p
and q denote process names, e and f denote

113

events, X denotes a variable, s is as set name
and c is a channel name.

Construct

m := q.
e --> p
e --> PI I--> q
p <> q
PI-I q
P II q
P Ill q
p ->q
p;q
p <* b *> q
p \ s
X:s --> p(X)
c%e
s? X
stop
skip

Meaning

m is defined by q
e then p
e then p choice f then ·q
p choice q
p or q (non-deterministic)
p concurrent with q
p interleaved with q
p interrupted by q
p followed by q

If b then p else q
p without elements of s
X from s then p
output e on channel c
input X on channel s
deadlocked process
process terminating
successfully

The interested reader is referred to [5] for the
precise semantics of these operators, and for
valid CSP expressions as a whole.

Certain constructs may only be used in
conjunction with appropriate set declarations in
the specifications file. Such declarations consist
of a Prolog structure composed of a functor and
2 parameters. The first parameter is a set name
and the second is a list of events. For the
constructs, p\s, X:s-->p(X) and s?X, Appendix A
shows the corresponding functors as hide, sort
and chan_alpha respectively. In each case, the
list denotes the set of events to be hidden, the
set of events to be chosen from, or a channel
alphabet respectively. The set name, s, is an
appropriate name chosen by the user. In the case
of the construct pllq the alphabets of both p and
q must be specified, using alpha as the functor,
p and q as the set names, and the alphabets of p
and q in the respective lists.

3.2 Generator output
The output of the trace generator for a given
process is the set of all recursion traces of that
process, as defined below. It also indicates where
subprocesses that have been explicitly named in
the specification file are entered, as the process
rolls forward in accepting a given trace.

Note that in accepting a trace t, a process Po
will evolve into a sequence of subprocesses,
some of which may be explicitly named, while
others are parenthesised process definitions.
(Refer to the production for <proc> in Appendix
A.) Denote the sequence of explicilly named
processes (including the initial process p0) by
<Po,Pi-.P.>. Now t will be called a recursion

Qua:stiones Informatica: 6 (3) 114

trace of Po if either of the conditions 1 to 3
below hold:
I. All processes in <p0,p1 •• p •. 1> are different but

p. = Pt for some k = 0, .. n-1.
2. 1. does not hold, but p. is either the stop or

skip process, or a named but undefined
process in the specifications file.

3. Po is defined as q1 op q2, where:
- q, and q2 are named processes
- op is either ; or II or Ill
- t1 and t2 are recursion traces of q, and q2

respectively
- t is the result of combining t, and t2 as

prescribed by op.
It can easily be shown that the output of the

generator (in terms of recursion traces
interspersed with indications of entry points to
subprocedures) provides sufficient information to
deduce the entire trace set of the traced process.
Of course, this is subject to the restriction that
all subprocesses have to be explicitly defined in
the specifications file.

3.3 Generator code
The overall structure of the generator code has
been discussed in some detail in [8], and will not
be repeated here. It is observed, however, that
the generator regards the specifications file as
Prolog facts. This is accomplished, inter alia, by
defining as Prolog operators various symbols and
operators used in the BNF in appendix A.
Furthermore, lists, process names, channel
names, etc. are all required to be valid Prolog
constructs.

Another feature of the generator is its ability
to perform arithmetic operations on the
parameters of process names. This is important
when specifying and generating traces for
recursive-type definitions such as :
p(X) := e --> p(X+I).

4. Critical evaluation

The trace generator has been through a number
of minor revisions, and has been used in a
variety of contexts. The purpose of this section
is to outline some of the lessons learned and
experiences gained in this process. In 4.1 issues
relating specifically to the fact that the generator
has been implemented in Prolog are addressed.
In 4.2 some observations about trace generation
in general are made.

4.1 Prolog issues
In this section, three issues in relation to the use
of Prolog as an implementation language for the
trace generator are considered, namely its
portability, flexibility and efficiency.

Portability
The trace generator was implemented on a
mainframe using Waterloo Prolog, version 1.7.
Except for the use of operators, the code adheres
to Core Prolog described in [3]. However, in
porting the code onto various Core Prolog PC
implementations, the operators proved to be the
main difficulty. In A.D.A. Prolog it was not
possible, for example, to use symbols such as I, ;
and \ as operators, and alternatives had to be
chosen. Similar problems have arisen with Arity
Prolog. As a consequence, the contents of the
specifications file looks less like the original
CSP notation than the initial mainframe
implementation.

Flexibility
Prolog provides considerable flexibility in a
number of dimensions for the trace generation
problem space. To date it has been found
relatively easy to enrich the operator set as the
requirements arise, without disturbing the overall
structure of the code. Thus, the ability to handle
constructs such as p <* b *> q have been easily
added to the original code. Other enhancements
include the ability to handle the channel input
and output notations (c?X and c%e) and
enriching the allowable range of arithmetic
operations performed on arguments of process
names.

Another area of flexibility relates to the
contents in the specifications file. Because this is
actually Prolog code, a Prolog programmer can
enrich the code. in a number of ways. For
example, process definitions need not necessarily
be given as facts, but can be stated as rules.
Hence it is perfectly legitimate to include process
definitions of the form :

proc(X) := :- condition] (X).

proc(X) := :- conditionN(X).
Because the conditions tested by condition! to
conditionN need not necessarily be mutually
exclusive, the foregoing is more general than an
if..then .. else construction and can in fact form the
basis for the implementation of LOTOS guards
[6] - something not provided for in the definition
of CSP [5]. In a similar way, an set declaration
need not be limited to an instantiated list in its
second parameter, but can be constructed by the
Prolog code thus :

alpha(proc, List) :- make_list(List).
where make_list generates the required List in
some or other way (e.g. recursively, or
interactively with the user).

Finally, with minor adaptations to the driver
procedures, the generator can be used to ask
existence questions about recursion traces. The

Qu:estiones Informaticre 6 (3) 115

simplest such question would be to establish
whether a given event sequence constitutes a
trace for a given process. More sophisticated
questions would be to ask for a recursion trace
(or traces) of a given length, or containing a
given subtrace, or conlaining a given number of
occurrences of a given event, etc. Disregarding
efficiency matters, the limitations here are
determined by the ingenuity and effort available
for writing Prolog list manipulation procedures.

Efficiency
Prolog is generally acknowledged to be less
efficient in terms of time and space than
conventional programming languages. From a
practical point of view, the inefficient utilisation
of space appears to be the more serious problem,
in that stack space overflow errors occur
whenever the number of recursion traces implied
by the specification becomes too large. The
problem can be slightly alleviated by
implementing a number of well-known space
optimising strategics. For example, difference
lists [I] can be used for concatenation when
dealing with the followed by operator, and
careful use of the cut predicate can avoid
unnecessary backtracking.

However, such measures merely postpone
space/time problems, allowing specifications
which are only slightly larger to be traced. The
complexity inherent in the problem of generating
all recursion traces is such that efficiency
problems seem inevitable at some point,
irrespective of implementation language and
hardware. These matters will be addressed below.

4.2 General issues

Theoretical considerations
The space / time complexity of any algorithm
which seeks to generate all recursion traces for a
process is directly related to the number of
recursion traces which have to be generated. This
number tends to explode combinatorially when
certain operators are used. The worst offender in
this regard is the interleaving operator.

Consider, for example, a process defined as p
:= q Ill r. and let n(.) and l(.) be functions
mapping processes to the associated number of
recursion traces and average recursion trace
length (rounded to the nearest integer)
respectively. If a recursion trace of q of length
l(q) is interleaved with a recursion trace of r of
length l(r), then recursion traces of p will be
oblained of length l(q)+l(r). Such an interleaving
can take place in /(q/• 1MC11q1 different ways. Hence,
an order of magnititude estimate of n(p) and l(p)
are respectively given by :

n(p) = n(q)*n(r)*l(qJ+l(rJCl(qJ• and
l(p) = l(q) + l(r). Thus, not only does the
number of interleavings grow combinatorially
with respect to the lengths of recursion traces of
contributing processes, but the average length of
the new recursion traces also increases.
Consequently, if more than two processes are
joined by means of the interleaving operator the
number of recursion traces can quickly become
unmanageable.

The foregoing expressions also form
approximate worst case upper bounds for n(p)
and l(p) when p := q II r. The number of
recursion traces implied by the concurrency
operator are constrained in proportion to the
number of synchronising events which have to
match in the underlying interleavings of the
traces of q and r. Whenever a set of
interleavings have a common prefix succeeded
by non-matching synchronising events they
'degenerate' into a single concurrency recursion
trace - namely a trace consisting of the prefix
followed by deadlock.

Clearly, then, the liberal use of interleaving
and concurrency operators can easily result in
specifications for which the problem of finding
all recursion traces is not practical.

Other CSP operators which also lead to large
numbers of traces, but are somewhat less
offensive than the interleaving and concurrency
operators are the interrupt operator, and the use
of the set choice and input notations. In the latter
two cases, the number of recursion traces is
dependent on the size of the associated event
sets. In the former case, if p := q -> r, then
n(p) is approximately l(q) * n(q) * n(r).

From a theoretical point of view, then, the
following claims regarding computability and
tractability may be made. (Cf. [4] for an
explanation of these concepts.) These claims
assume that alphabets of processes are finite, and
that traces are not represented in some closed
form (such as using t" to denote a trace
consisting of O or more concatenations of trace
t).
• Since traces may potentially be infinite in
number, the general problem of trace set
generation is clearly noncomputable.
• By limiting the problem to the generation of
recursion traces of processes the problem appears
to be computable but intractable.
• Hence the problem of inferring the trace set of
a process from the recursion trace set is itself
noncomputable.

The claim, therefore, that the trace set of a
process can be inferred from the set of recursion
traces should be seen in this light. In principle, a
generalised algorithm can be written to generate
all traces up to a given length from the recursion

Qu:cstioncs Informatica! 6 (3) 116

traces of a process. However, it is not possible to
write a generalised algorithm to generate all
traces.

The problem of whether a generalised
algorithm can be written to generate the trace set
of any process in a closed form from the
process's recursion traces is a matter for further
study.

Practical considerations
In the light of the foregoing it might seem that a
trace generator can at best serve as a teaching
tool, dealing with toy problems only. However,
in many applications recourse to reduction and
segmentation strategies render it a practical tool
for software development. These strategies will
now be discussed.
Often the dimensions of a problem can be
reduced without losing any of its essential
characteristics. For example, the dining
philosopher problem defined in [5] required the
use of 9 concurrency operators (8 of which act
as interleaving operators) if there are 5
philosophers. If the problem is reduced to 2
philosophers, the number of concurrency
operators reduces to 2 (1 of· which acts as an
interleaving operator). While such a reduction in
the dimensions does not necessarily replace the
need for formal arguments to guarentee liveness
and/or other properties in the larger system, the
resulting recursion traces may well provided
insights as to how these arguments can be made.
Indeed, the very process of thinking about how
to reduce the dimensions serves to fix the
intellect on important characteristics of the
problem. In a similar vein, it has frequently been
found that when using the choice set notation,
the number events in the associated event set
may be drastically reduced without losing useful
information.

Another way in which recursion traces may
be limited is by tracing only parts of a system at
a time, i.e. by segmenting the problem. Consider,
for example, the specification p := q -> r.
Knowing a priori that r interrupts q, it may often
be more useful to know what the individual
traces of q and r look like separately, rather than
to know exactly where r's traces interrupt those
of q. To take a concrete example, if n(q) = 10,
l(q) = 5, and n(r) = 10, then separate traces of q
and r result in n(q) + n(r) = 20 traces versus a
total of approximately n(q) * n(r) * l(q) = 500
for all those of p.

Clearly, even more dramatic reductions occur
when segmentation is applied to processes using
the interleaving operator. Note, however, that
segmentation tends to loose its value when the
process to be segmented is itself a subprocess of
some larger process. This tends to be the case

with the interleaving operator, as in the dining
philosophers problem. In isolation, the
interleaving operator merely indicates that the
argument processes function totally
independently, and the resulting traces are
usually only of limited value.

Nevertheless, an analyses of the segmented
recursion traces frequently enhances insight into
a specification. Consequently, it may be
worlhwhile to design a generator which functions
in two modes, one which generates all recursion
traces, and one which automatically applies
segmentation, based on selected operators, to
components of a specified process.

Software development
Frequently cited properties of high quality
software include such characteristics as
maintainability, reliability, readability,
extendability, etc. (See, for example, (7).)
Melhodological approaches which promote these
qualities include stepwise refinement, designing
the solution space as close a possible to the
problem space, and unambiguous specification of
the problem. CSP is well-suited to support these
methodological approaches, particularly in the
domain of real-time interactive systems. The
trace generator in turn, tends to encourage and
promote the use of CSP in a number of ways.

The trace generator may be used (reducing
and segmenting the problem where possible) to
test the validity of CSP definitions. This leads
into an interactive process, where visual
representation of the recursion traces implied by
a proposed specification invariably results in
revisions, until a satisfactory specification is
obtained. Since the meaning of traces tends to be
easier to understand than the CSP specification
as such, it has been found that end-users may
frequently be involved in this interactive
validation process at the level of functional
specifications. At more detailed levels of
specification, traces tend to facilitate
unambiguous communication between various
parties in the software development team.

Note that a CSP specification at the functional
level typically describes, at a high level of
abstraction, how an envisaged system should
interact with the environment. Small
subcomponents of the system and their
interaction arc not at issue. Hence, the events in
the traces tend to be input and output
information - in effect a statement of what output
should result from a given set of input events. A
stepwise refinement methodology involves
successively refining the functional specification
into increasingly detailed CSP specifications at
the design level. The CSP concealment operator
provides an approach to check the consistency of

Qu:estiones lnformatic:e 6 (3) 117

a refined specification with one at a higher level
of abstraction. (Cf. (9) where a similar approach
is followed for ESTELLE specifications.) In
principle, an extension to the trace generator
could provide for the automation of such
consistency checking.

Once tracing has taken place at a given level
of abstraction, not only has the specifier been
forced to continually and critically re-evaluate
his initial perception of the problem; there is the
bonus of having a set of recursion traces for
various segments of the specification which serve
as the basis for test scenarios in the final phases
of software development. Consequently testing
turns out to be much more structured than
previously.

5. Conclusion

The value one attaches to a trace generator
critically depends on the value attached to fonnal
specification in general. The case for fonnal
specification is well-documented in the literature
and will not be repeated here. Neither will the
relative merits of the various formal specification
techniques be evaluated, apart from the claim
that CSP provides fairly easy entree to the
general domain. (See, for example, [2] or [10)
for evaluation criteria.)

Experience with the CSP trace generator has
shown it to be an excellent aid for introducing
CSP to the novice specifier. It has successfully
been used to teach CSP not only to Computer
Science students, but also to experienced
software engineers working on projects within
the R&D section of Pretoria University's
Computer Science department. This has resulted
in the evolution of a software development
methodology which incorporates a CSP definition
of critical parts of the problem as part of the
functional specifications of each project.

In summary, then, recursive trace generation,
Lhough intractable in the general case, has proved
to be a practical aid both for teaching and for
software development.

References

(1) I. Bratko, (1986], Prolog Programming for
Artificial Intelligence, Addison-Wesley.
(2) N.D. Birrel and M.A. Ould, (1985), A
Practical Handbook for Software Development,
Cambridge University Press.
(3] W.F. Clocksin and C.S. Mellish, (1984)
Programming in PROLOG, Springer-Verlag.
[4] D. Harel, (1987], A/gorithmics : the Spirit of
Computing, Addison-Wesley.

[5] C.A.R. Hoare, [1985], Communicating
Sequential Processes, Prentice-Hall International
Series in Computer Science.
[6] ISO/I'C 97/SC 21/WG l/Nl573 /DP 8807,
[1986], Information processing systems - open
systems interconnection - LOTOS - a formal
description technique based on observational
behaviour'.
[7] B. Kitchenham, [1987], Software Quality
Modelling, Measurement and Prediction,
Software Engineering Journal, 2(4), 105-113.
[8] D.G. Kourie, [1987], The Design and Use of
a Prolog Trace Generator for CSP, Software -
Practice and Experience, 17(7), 423-438.
[9] H. Ural and R.L. Probert, [1986] Step-wise
Validation of Communication Protocols and
Services', Computer Networks and ISDN Systems,
11, 183-202.
[10] P. Zave, [1988], Assessment, Software
Engineering Notes, 13(1), 40-43.

Appendix A

KEY:
1. @ is used for choice
2. { ... } is used for O or more occurcnces
3. Symbols enclosed in angle brackets are non­

terminal. Exceptions are <> and <* and *>
which are terminal symbols

4. Prolog terms etc. are also terminal symbols

<definition> = <proc_name> := <proc_def> .
{ <subproc _def>}
{<set_ declare>}

<proc_def> = <proc> <proc_op> <proc>@
<proc_name> II <proc_name>@
<guarded_exp> { I <g'UlU'ded_exp>} @
<proc> \ <set_name>@
<set_ choice_ expression>

<subproc _def> = <definition>

<set_declare> = alpha(<set_name>, <list>) .@
sort (<set name>, <list>) . @
chan_alpha (<set=naine>, <list>) . @
hide (<set_name>, <list>) .

<proc> = <proc _name> @
(<proc _ def>)

Quzstiones lnformaticz 6 (3) 118

<proc_op> = <> @
/-/@
/II @
->@
:@
<* <condition> *>

<g'UlU'ded_exp> =
<event> --> {<event> -->} <proc>

<set_ choice _expression> =
<variable> : <set_name> --> <proc>

<event> = any valid prolog term @
<chan_name> % any valid prolog term@
<chan name> ? <variable>

<list> = any valid prolog list of terms
<proc_name> = any valid prolog structure@

any valid prolog atom
<chan_name> = any valid prolog structure@

any valid prolog atom
<set_name> = any valid pr_olog structure@

any valid prolog atom
<condition> = any valid prolog goal
<variable> = any valid prolog variable

NOTES FOR CONTRIBUTORS

The purpose of the journal will be to pub­
lish original papers in any field of computing.
Papers submitted may be research articles,
review articles and exploratory articles of gen­
eral interest to readers of the journal. The pre­
f erred languages of the journal will be the
congress languages of IFIP although papers in
other languages will not be precluded.

Manuscripts should be submitted in tripli-
cate to:

Professor J M Bisho:13 Y, C - <.ow,z;;. E
Department of Computer Science
Universit o~the itwatersrand
Jo~an sb}lrg I
"vv1 (____ \
2 50

Fonn of manuscript
Manuscripts should be in double-space typ­

ing on one side only of sheets of A4 size with
wide margins.

The first page should include the article title
(which should be brief), the author's name
and affiliation and address. Each paper must
be accompanied by an abstract less than 200
words which will be printed at the beginning
of the paper, together with an appropriate key
word list and a list of relevant Computing Re­
view Categories.

Manuscripts may be provided on disc ~

possible. If this cannot be avoided, glossy
bromide prints are required.

Symbols
Mathematical and other symbols may be ei­

ther ·handwritten or typewritten. Greek letters
and unusual symbols ' should be identified in
the margin. Distinction should be made be­
tween capital and lower case letters; between
the letter O and zero; between the letter I, the
number one and prime; between K and kappa.

References
References should be listed at the end of the

manuscript in alphabetic order of the author's
name, and cited in the text in square brackets.
J oumal references should be arranged thus:

[l] E. Ashcroft and Z. Manna, [1972],
The Translation of 'GOTO' Programs
to 'WHILE' programs, Proceedings of
IFIP Congress 71, North-Holland,
Amsterdam, 250-255.

[2] C. Bohm and G. Jacopini, [1966],
Flow Diagrams, Turing Machines and
Languages with ·only Two Formation
Rules, Comm. ACM, 9, 366-371.

[3] S. Ginsburg, [1966], Mathematical
Theory of Context-free Languages,
McGraw Hill, New York.

· in ASCil., Proofs
formati ~ ~ a r;" - -f /i';f'ur ~~Proofs will be sent to the author to ensure

For authors wishinfl r v1dd' camera- that the papers have been correctly typeset and
ready copy, a page specification is free ly not for the addition of new material or major
available on request from the Editor. amendment to the texts. Excessive alterations

Tables and figures
Tables and figures should not be included

in the text, although tables and figures should
be referred to in the printed text. Tables
should be typed on separate sheets and should
be numbered consecutively and titled.

Figures should also be supplied on separate
sheets, and each should be .clearly identified
on the back in pencil with the authors name
and figure number. Original line drawings
(not photocopies) should be submitted and
should include all the relevant details. Photo­

raphs as illustrations should be avoided if
4

~

may be disallowed. Corrected proofs must be
returned to the production manager within
three days to minimise the risk of the author's
contribution having to be held over to a later
issue.

Only original papers will be accepted, and
copyright in published papers will be vested in
the ~ublisher.

Letterli
A section of "Letters to the Editor" (each

limited to about 500 words) will provide a fo­
rum for discussio-.

