

The South African
Computer Journal

· Die Suid-Afrikaanse
Rekenaartydskrif

An official publication of the Computer Society
of S~uth Africa and the South African Institute of

Computer Scientists

'n Amptelike publikasie van die Rekenaarverenging
van Suid-Afrika en die Suid-Afrikaanse Instituut

vir Rekenaarwetenskaplikes

Editor
Professor Derrick G Kourie
Department of Computer Science
University of Pretoria
Hatfield 0083
dkourie@dos-lan.cs.up.ac.za

Subeditor: Information Systems
Prof Lucas Introna
Department of Informatics
University of Pretoria
Hatfield 0083
lintrona@econ.up.ac.za

Production Editor
Dr Riel Smit
Mosaic Software (Pty) Ltd
P.O.Box 23906
Claremont 7735
gds@mosaic.co.za

World-Wide Web: http://www.mosaic.co.za/sacj/

Professor Judy M Bishop
University of Pretoria, South Africa
jbishop@c;s.up.ac.za

Professor Richard J Boland
Case Western Reserve University, USA
boland@spider.cwrv.edu

Professor Ian Cloete
University of Stellenbosch, South Africa
ian@cs.sun.ac.za

Professor Trevor D Crossman
University of Natal, South Africa
crossman@bis.und.ac.za

Professor Donald D Cowan
University of Waterloo, Canada
dcowan@csg.uwaterloo.ca

Professor Jtirg Gutknecht
ETH, Zlirich, Switzerland
gutknecht@inf eihz. ch

Editorial Board

Professor R Nigel Horspool
University of Victoria, Canada
nigelh@csr.csc.uvic.ca

Professor Fred H Lochovsky
University of Science and Technology, Hong Kong
fred@cs.ust.hk

Professor Kalle Lyytinen
University of Jyvaskyla, Finland
kalle@cs.jyu.fi

Doctor Jonathan ,Miller
University of Cape Town, South Africa.
jmiller@gsb2.uct.ac.za

Professor Mary L Soffa
University of Pittsburgh, USA
sojfa@cs.pitt.edu

Professor Basie H von Solms
Rand Afrik_aanse Universiteit, South Africa
basie@rkw.rau.ac.za

Subscriptions

Annual Single copy
Southern Africa: R50,00 R25,00
Elsewhere: $30,00 $15 ,00

An additional $15 per year is charged for airmail outside Southern Africa

to be sent to:
Computer Society of South Africa
Box 1714 Halfway House 1685

Phone: +27 (11) 315-1319 Fax: +27 (11) 315-2276

Editorial Notes

For two reasons, this edition of SACJ is far later than it
ought to have been. The first reason is that there have been
some personnel changes in the editorial team. Lucas In­
trona, having continued for some time as IS editm after
transferring to London, asked to. be relieved of his duties.
Niek du Plooy has kindly agreed to fulfill this role in a
temporary capacity until a suitable replacement for Lucas
can be found. Due to work J pressure, Riel Smit has also
withdrawn as production editor, and has been replaced by
John Botha. SACJ owes the two retired members a huge
debt of gratitude. During his period of tenure, Lucas did
sterling work in setting and maintaining a solid standard
for IS contributions. Riel put SACJ on a lbTp(path, and
has laboured diligently to produce an aesthetically pleas­
ing product. Thanks are also due to Niek and John for their
willingness to take over in their respective roles. Until fur­
ther notice, IS contributors may forward their submissions
directly to Niek at his address given on the front inside
cover. I shall put successful authors in touch with John
for further instructions regarding final preparation of their
manuscripts.

The second reason for a delay in this edition has to do
with authors who hav<? not scrupulously followed guide­
lines for producing their final submissions. There have
been a variety of problems ranging from missing citations
and inappropriate production of figures to incompatible
electronic file submissions. All of this, coupled with our
new production editor (who-despite an extremely busy
schedule-has valiantly climbed a steep lbTp(learning
curve) has resulted in an edition that should have been out
to press several weeks earlier.

The editorial team will be giving attention to the gen­
eral matter of format and submission procedures in future.
SACJ's citation and reference methods are somewhat ar­
chaic and will probably be revised. All the necessary in­
formation will be provided on the new SACJ web site at
www. cs. up. ac. za/ sacj I. The site will also contain
abstracts of articles in this anq future editions.

These are times of conflicting stresses on both the
academic and industrial IT communities. They are being
felt somewhat more acutely, in Southern Africa (and pre­
sumably fo other developing countries) than in the devel­
oped world. --Internationally there is tendency to cut back
on state financing of. universities and a seemingly insa­
tiable demand for IT graduates. Many companies snap
up new graduates at attractive salaries, positively discour­
aging full-time postgraduate studies. International recruit.:.
ment agencies scour the South African scene for qualified
candidates, luring some of our most promising young pro­
fessionals out of the country. Job-hopping, a drift from
academia to industry and from local industry to USA or

SACJ/SART, No·20, 1997

European industry seems to be the order of the day. De­
spite the availability of private colleges and institutes, vir­
tual or otherwise, there is a rush of students to university
and technikon IT departments, all hoping to get at the IT
honey-pot. University administrations are struggling to
correct the structural deficiencies of the past and to pro­
vide IT departments with sufficient resources to cope with
demand. As editor of SACJ, I have no particular compe­
tence authoritatively to sum up or analyze these tendencies,
but it does seem· to me desirable that someone ought to. do
so. Bodies such as SAICSIT, the CSSA, university author­
ities, IT industry and state representatives ought actively
to pursue joint strategies to ensure that our IT departments
are properly resourced and that (non-Zuma) measures are
taken to retain graduates in the country. It seems almost
redundant to attempt to spell out the consequences of inac­
tivity.

Derrick Kourie
EDITOR

1

Word Prediction Strategies in Program Editing Environments

Ian Sanders Chia-Ling Tsai
Department of Computer Science, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg

Abstract

The goal of this research is to demonstrate that word prediction in a constrained domain like a programming language can be done

effectively and hence has the potential to facilitate typing for disabled people who are motor-impaired with regard to typing. This

paper presents a set of word prediction strategies for a programming editor. In order to evaluate the effectiveness of these strategies, a
system which simulates a Turbo Pascal editor was developed. The strategies are found to be efficient and improve the accuracy of word

prediction to various degrees. Although the system is a simulator of a Turbo Pascal editor, the applicability of each of the strategies is

not confined to the syntax of this language and, therefore, they can be implemented on any language-directed editors. The results could
also have relevance for other text generation systems where the aim is to save the user effort.

Keywords: Disabled users, word prediction, prediction strategies, predictive editors

Computing Review Categories: K4, 12

Received: 1211995, Accepted: 6/1997, Final version: 7/1997.

1 Introduction

Computers are becoming almost indispensable in modem
life and are used by people from all walks of life. A very
common activity in computer usage is that of text genera­
tion - writing electronic mail, preparing reports and de­
veloping ptograms. In this area of text generation, the key­
board is widely accepted because of its low-cost and easy­
to-use features. People with motor disabilities (for exam­
ple, someone who has been affected by polio in their hands
or arms and whose motor abilities have been impaired) of­
ten cannot type at a reasonable speed, and the communica­
tion process with computer systems becomes a painstaking
process via a keyboard. In some instances a pointing de­
vice (mouse, etc.) and appropriate software are a good way
to address the problem and, in addition, several systems
(touch screens, voice recognition systems, etc.) and tech­
niques have been developed, especially for disabled peo­
ple, to improve the rate of text generation through different
input devices. Unfortunately these input devices, e.g. eye
typer [8], are often costly for target users.

Programming (a specific type of text generation) is an
area where motor-impaired people can be gainfully em­
ployed if some way of addressing their difficulties with us­
ing a keyboard (or other text generation environment) can
be found. The premise of this paper is that programming
can be made more efficient for a motor-impaired person us­
ing a keyboard by predicting the next word to be typed by
the programmer. The prediction strategies presented here
could also be useful in a keyboard plus pointer type of sys­
tem or indeed any system which is intended for text gener­
ation in a constrained domain.

Predictive editors (for example, R-K Button [3], a
UNIX interface and Reactive Keyboard [4], a general pur­
pose editor) have been implemented as tools that adopt pre­
diction strategies to speed up typing by reducing the num­
ber of keystrokes required. Some of these have already

18

found application as environments for physically disabled
people. These tools have proved to be a hindrance to good
or touch-type typists, but are useful writing tools for fair
to poor typists, and are almost indispensable for disabled
people [4].

This research is aimed at investigating approaches to
make the typing of programs in some programming lan­
guage a more simple task for motor-impaired users. The
idea is to use information about the language being typed
and the programmer's "style" to accurately predict the next
word or pattern to be typed. This implies an editor which
is a combination of a language-directed editor and a text­
prediction system or editor. Language-directed editors
[2, 5, 7, 9] generally concentrate on the efficient editing
of syntactically and semantically correct programs with­
out the intervention of the compiler (See also Welsh et al
[10]). These editors concentrate mainly on the correct form
of the program and do not place much emphasis on saving
keystrokes by predicting the next word - variable name,
variable type, etc. - that the programmer will type.

This paper discusses some strategies for the prediction
of the next word to be typed by a programmer. The strate­
gies were tested by developing a simulation of a predictive
editor for the Turbo Pascal programming language. The
prediction strategies (discussed in section 2 and section 3)
are based on some of the features of the language and the
programmer's use of variables, types, etc., and are used
to guide the prediction. The simulation works as if the
program was typed in from beginning to end in one ses­
sion and records the number of key strokes which could be
saved and the number of accurate predictions which would
have been made by a system using the strategies. An editor
which implemented these strategies would clearly not have
this restriction but as the strategies are based on the content
of the program there should still be keystroke savings. The
experiment which was performed to test the strategies is
described in section 4.

SACJ/SART, No 20, 1997

The results (see section 4) achieved show that mak­
ing use of program structure and knowledge of what the
programmer has done in the past can lead to accurate pre­
dictions and save on the number of keystrokes which must
be typed. An editor using these ideas could be of immense
benefit to a disabled programmer who has difficulty in typ­
ing - up to 40% of his/her typing could be saved by us­
ing these strategies. This figure could be potentially be in­
creased by using programming templates but this is future
research.

2 Prediction Strategies

Programs are highly structured text which must obey var­
ious rules to be syntactically and semantically correct.
Language-directed editors make use of this structure to de­
velop correct programs (after parsing) and this use of struc­
ture can be expanded upon by a text predictor which dis­
allows predictions of words (or templates/patterns) which
are syntactically impossible at the point of editing.

The variable names and types declared by program­
mers are often used repeatedly in programs and sometimes
even across programs by the same programmer. A system
which can accurately predict which of the names or types
(or other parts of the program) the programmer wishes to
use at any point in the program has the potential to save the
programmer a considerable amount of typing. These ideas
lead to the hypotheses discussed below which could lead
to strategies for reducing typing.

1. The locality hypothesis states that at certain parts of
a program some words are inhibited and these words
should be excluded from the set of words from which
the predictor is allowed to choose.

2. The recency hypothesis states that a word that the user
has typed in the recent past is likely to be used again
in the near future.

3. The repetitiveness hypothesis states that if a word has
appeared frequently in the past, the word is likely to
be used again in the future.

4. The optimality hypothesis states that a system should
be able to apply locality, recency and repetitiveness
together in order to achieve the best perf9rmance in
terms of accuracy for text prediction.

5. The continuation hypothesis states that predictions
done on very similar programs (programs with very
similar variables names, type declarations, etc.) can
be improved if information gained in one program is
carried over to the other programs.
The locality hypothesis should prevent the predictor

from making predictions which are syntactically impossi­
ble at the point of editing. For instance, the word while
cannot be a candidate for the predicted word if the pre­
diction takes place in the declaration part of the program.
The ideas behind the recency and repetitiveness hypothe­
ses originate from Lerner's research on the automated cus­
tomization of structure editors [6]. The application of these
two ideas to text or word prediction will hopefully increase
the accuracy of prediction and thus ease the task of the

SACJ/SART, No 20, 1997

programmer. The optimality hypothesis is based on the
idea that if recency and repetitiveness are helpful then there
should be some way of maximising the usefulness of these
strategies by combining them. The continuation hypothe­
sis again originates from Lerner's work on automated cus- ·
tomization [6]. Very often a set of programs with similar
variables are developed by a single programmer for a spe­
cial purpose. The idea here is to treat a set of similar pro­
grams as a unit rather than as a number of discrete parts and
thus achieve better predictions overall. Strategies based on
these hypotheses should lead to good prediction and thus a
saving of effort by the programmer.

3 Implementation of Prediction Strategies

In order to test the ideas discussed above, a system which
simulates a predictive editor for a block-structured lan­
guage, in this case Turbo Pascal, was developed. Although
the system simulates a Turbo Pascal editor the ideas should
be applicable to other languages.

Basically the simulator works by reading sample pro­
grams in as though they were typed in from first line to last
line by a programmer. It is also possible to order the lines
of code in the test data to simulate a programmer typing in
"stubs" before going back and filling in the details of the
various procedures and functions. Other modes of input
can also be modeled.

As each word is encountered - the first letter of the
word is encountered - the system predicts which word
is to appear (in a full system, which word the program­
mer is about to type). If the prediction is correct then the
word is accepted and input moves to the next word. If the
prediction is not correct then further predictions are con­
sidered. This is done by considering the next letter in the
current word. In a full editor using these strategies this
would be when the programmer types the next letter in the
word which he/she is entering. The reason that prediction
is handled in this way is that if an incorrect prediction is
offered then the programmer has to indicate that it is incor­
rect - this means another keypress or some other action.
Using the next letter of the current word to indicate that
the prediction was incorrect and at the same time to acti­
vate the next prediction is an efficient way of handling this
problem. Clearly in a full editor the programmer would
still have to accept the prediction offered, if it is correct,
but this is more efficient than typing the complete word.
This acceptance could be the typing of a valid program
character which would be the separator (a space, comma
or colon for example) between the word being predicted
and the next word in the program.

This process of predicting the word to be typed, based
on what has been seen so far, is continued until the com­
plete word has been read by the simulator or until an accu­
rate prediction based on the portion of the word read so far
is made. This will then be repeated for all other words in
the program.

The simulator works with a dictionary of words which
can be predicted. The dictionary is initialised with the key

19

words of the target language and updated as the simula­
tor encounters new words in the program being processed
(equivalent to the programmer typing new words in his/her
program).

The simulator does not measure issues like the number
of times a programmer makes mistakes and has to _correct
them or model .how a programmer would move about in a
full editor but it does give a measure of how well the pre­
dictions work and how many keystrokes could potentially
be saved in such an editor.

The locality strategy was implemented by using a field
in the word records to show the location restriction(s) of
the words in the dictionary. If a word is syntactically im­
possible at the point of editing, the word will not be re­
garded as a valid match. A data type, for example, can
never appear in the body of a Pascal program. Among
those valid matches, if a word is appropriate to be the first
word of a new line and the cursor is not on the first word,
its confidence value will be lower than those valid words
which have no location restrictions. A word can have more
than one location restriction. The word var, for example,
is restricted to being the first word of a line (no words can
come before it in a valid Turbo Pascal statement) and it
must appear in the declaration section of a program.

The recency strategy is applied by checking if a word
in the dictionary has occurred recently - by recent is
meant that it has been read from a line which appears in a
range of lines read just before the current line from the test
data. The line number of the last occurrence of the word is
subtracted from the current line number. The smaller the
result is, the more recently the word has occurred, and the
higher the confidence value will be. If the last occurrence
of a word is beyond a certain range the recency value is
set to zero, and the word is not considered as being recent.
This range is termed the scope of the recency.

To implement the repetitiveness strategy, a frequency
counter is added ,to the record of the word. Every time a
word is found in the test data file, the frequency counter
of that word increases by one. The greater the frequency
counter, the higher the confidence value.

To pursue the optimality of the accuracy of the predic­
tions different combinations of recency and repetitiveness
need to be tested. The system was designed to be able to
deal with this.

To implement dictionary sharing (testing the continu­
ation hypothesis), each word in the dictionary is assigned
an attribute, e.g. variable, type, etc., and only those words
with a variable attribute and their frequencies are exported
to a file at the end of a run. If the system requires infor­
mation from the previous simulation, the file, where those
words and their frequencies are stored, is read into the dic­
tionary.

The simulator predicts every single input word in four
different ways, namely using a first-word strategy (that is
effectively no prediction at all), using the locality strat­
egy, using the locality and recency strategies, and using
the locality and repetitiveness strategies. Using the first­
word strategy, a prediction is chosen based on the first valid
match (using then-gram technique [4]) found in the dictio-

20

nary. This strategy employs no heuristics for predictions.
Using the locality strategy, the system precludes some pre­
dictions that are syntactically impossible - the first syn­
tactically correct match is selected. Every valid match is
assigned a confidence value which depends solely on the
location constraints - 0 if the word is disallowed at this
part of the program, 100 if it is only allowed in the cur­
rent position (in the declarations or header section) and
50 in other cases. The higher the confidence value is,
the more likely the word can be chosen as the predicted
word. Thus predictions are based on the confidence values
of valid matches. Using the recency strategy, the confi­
dence value becomes a function of locality and recency.
Based on the confidence value obtained from locality, the
value increases accordingly if the match word appeared in
the recent past - a word in the most recently read line
will been given the maximum confidence value, a word
which appears at the maximum distance (which is within
the recency scope) from the current line is given the lowest
confidence value. Words outside the scope of the recency
strategy are given a O confidence value. Using the repeti­
tiveness strategy, the same principle as recency is applied,
and the confidence value becomes a function of locality
and the frequency of the valid match.

The locality strategy precludes impossible predictions
in an attempt to improve the accuracy, whereas recency and
repetitiveness strategies attempt to improve the accuracy
by selecting the valid match with the highest confidence
value. The reason for applying recency and repetitiveness
strategies separately is that their effects on the predictive
editor were unknown initially, and it was thus initially dif­
ficult to determine the confidence value as a function in­
volving recency and repetitiveness. After the evaluation of
these strategies, further research was done to investigate
the optimal function of confidence value in terms of local­
ity, recency and repetitiveness.

4 The Experiment

Design

The test data in this experiment are Turbo Pascal programs
written by various users. The only restriction being that the
programs must compile and run in the Turbo Pascal envi­
ronment. The data set consists of 89 programs which range
in length from 14 lines of text to 3241 lines of text. Note
that the number of text lines is not always exactly the same
as valid lines of code - some programmers may put more
than one line of code per text line - but the number of
text lines does give some indication of the size of the pro­
gram. In the test set there are eleven programs which have
very similar variables and type names and were written by
one programmer working on a research project. These pro­
grams were used to test the idea of dictionary sharing.

For each prediction method, the output from the sim­
ulator consists of four figures, namely the number of keys
pressed, the number of keystrokes saved, the number of
predictions made and the number of predictions accepted.
The first two figures are for the computation of the percent-

SACJ/SART, No 20, 1997

age of keystrokes saved out of total keystrokes required -
a good reflection of the effectiveness of the strategies. The
last two figures are for computation of the percentage of
predictions accepted out of total predictions made - the
accuracy of the strategies. The total number of keystrokes
required excludes white space and comments.

The whole experiment was broken down into three
stages. The first stage is for the evaluation of the effective­
ness of the four strategies, i.e. first-word, locality, recency
and repetitiveness. In the second stage, recency and repet­
itiveness were combined in various manners to attempt to
find the best way to integrate recency and repetitiveness
together on one system in order to improve the result ob­
tained in the first stage. In the last stage, the testing was
concentrated on evaluation of the continuation hypothesis
- dictionary sharing.

Results
Phase 1 - Testing the strategies

The locality hypothesis claims that the accuracy of the pre­
diction should be increased if syntactically incorrect pre­
dictions can be inhibited. In this experiment the recency
and repetitiveness strategies are applied after the locality
strategy as this seems to be an appropriate way to apply
the strategies. Various recency scopes were tested but only
four are reported here. Recency(20) assigns recency values
only to those words which occurred within the previous
20 lines, while recency(70) does the same thing to words
within the previous 70 lines. Similarly for Recency(05)
and Recency(IO). The results of the first phase of test­
ing are shown in Table 1. The probabilities given here
are based on the zero hypothesis that the various strategies
are no better than simply picking the first word which be­
gins with the correct letter (the current letter being typed).
The statistics are calculated using random sampling tech­
niques as discussed by Box et al [1] - reference distribu­
tion based on random sampling, internal estimate of a. The
probabilities reported give the probability that the result re­
turned by applying a strategy could be simply a random re­
sult returned by the zero hypothesis - a result within the
range of results expected if no prediction strategies were
applied. This means that a high probability value indicates
that there is no significant difference between the strategy
and the zero hypothesis. A low probability value indicates
that the results are statistically significantly different from
the zero hypothesis. This means that there is a statistically
significant difference in the results. The smaller the prob­
ability the greater the confidence level of the difference.

(Note: In all of the tables the % Keys Saved and %Pre­
dictions accepted refer to the averages over the test. Also
note that the variances have not been converted to percent­
ages although the averages have.) This table shows that the
locality hypothesis offers slight improvements (but with
fairly low confidence). Recency(20), Recency(70) and
Repetitiveness offer much better performance (improved
key stroke savings and better prediction) and with much
higher confidence. This makes sense as once a word has
been encountered, the strategies should offer the word as
a valid prediction and if it is correctly offered there should

SACJ/SART, No 20, 1997

Table 1. Results of comparing the four strategies
Strategy % Keys Saved Probability % Predictions Probability

Variance Accepted
Variance

None 32.9 - 43.l -
0.(161 0.071

Locality 34.3 0.060 46.5 0.018
0.064 0.083

Recency(20) 38.l $ O.IKII 56.1 $ 0.001
0.071 0.076

Recency(70) 38.3 $ 0.IKII 56.8 $ O.IKII
0.072 0.1175

Repetitiveness 37.8 $ 0.IKII 55.1 $ O.IKII
0.071 0.080

be keystroke savings.

Table 2 shows the results of comparing the only local­
ity strategy to the locality strategy plus Recency(20), Re­
cency(70) and Repetitiveness. From this table it is clear
that there are statistically significant benefits to applying
the recency or repetitiveness strategies after the locality
strategy. Table 3 shows the results of comparing the re-

Table 2. Results of comparing Locality to the other strategies
Strategy % Keys Saved Probability % Predictions Probability

Variance Accepted
Variance

Locality 34.3 - 46.5 -
0.064 0.083

Recency(20) 31!.l $ 0.IKII 56.l $ O.IKII
0.071 0.076

Recency(70) 38.3 $ O.IKH 56.8 $ O.IKII
0.072 0.1175

Repetitiveness 37.8 $ O.(Kll 55.1 $ O.IKH
0.071 0.080

cency strategy using only the 20 most recently typed lines
compared to recency using 5, 10 and 70 lines and the
repetitiveness strategy. The very small differences between

Table 3. Results of comparing Recency, and Repetitiveness
Strategy % Keys Saved Probability % Predictions Probability

Variance Accepted
Variance

Recency(20) 38.1 - 56.1 -
0.()71 0.076

Recency(05) 37.2 0.215 53.1! (l.020
0.068 (l.01!0

Recency(IO) 37.7 0.380 55.2 0.215
0.070 0.077

Recency(70) 31!.3 ~ 0.4<Kl 56.8 0.275
0.072 0.()75

Repetitiveness 37.8 0.380 55.1 0.11!5
0.071 ().(}!!0

mean values of recency(10), Recency(20) and Recency(70)
could reveal an aspect of programming - in general, pro­
grammers tend to use a group of words/variables inten­
sively over a very small part of a program. Therefore,
considering words which are used within the larger scope
of the previous 70 lines does not promote the accuracy of
the prediction. In addition, the fact that the prediction ac­
curacy for Recency(05) is significantly worse appears to
indicates that one should not use too small a range for pre­
diction. Due to the fact that there was no significant differ­
ence in the larger prediction scopes, Recency(20) was used
throughout the rest of the experiment.

The performance of the recency strategy with respect
to effectiveness and accuracy is slightly (but not signifi­
cantly) better than that of the repetitiveness strategy in gen­
eral. Again, this could be explained by the programming
characteristic mentioned before; words are more localized
than globalised.

21

Another issue which was tested was to determine how
much difference the order of typing in the lines of the pro­
gram would make to the prediction and key saving. This
test was accomplished by reordering the lines of code in
some of the test programs. An attempt was made to model
a logical way of entering the code - for instance typing
in the "stubs" (or procedures and functions and then going
back and filling in the details. Ten programs were changed
in this way and processed using the simulator. In all cases
there was no significant difference in either key savings or
prediction accuracy. This appears to indicate that the pre­
diction strategies are robust enough to be used in a real
editor. Clearly this still needs to be tested.

A further issue which appeared to warrant investiga­
tion was whether the size of the input program affected the
performance of the prediction strategies. To test this the
programs in the test set were divided up into 4 groups -
trivial (25 programs, 0 - 50 lines in length), small (25 pro­
grams, 51 - 150 lines in length), medium (25 programs,
151 - 450 lines in length) and large (14 programs, >450
lines in length). The results of this test are shown in Table
4. The data in this table show no clear trends and there are

Table 4. Results for programs of different lengths - using
Recency(20)

Strategy % Keys Saved Probability % Predictions Probability
Variance Accepted

Variance
All programs 38.1 - 59.4 -

0.071 0.076

Trivial 34.8 0.185 55.3 0.310
0.070 0.076

Small 35.3 0.038 59.7 0.017
0.051 0.()49

Medium 41.4 0.027 53.3 0,()45
0.(165 0.070

Large 42.5 0.017 56.5 0.()45
0.(166 0.102

no really significant differences to what is measured over
the entire test set (all 89 programs). It does, however, seem
that larger programs can benefit more from key savings -
this could possibly be explained by the fact that variables
are used more often, can thus be predicted later and once
predicted then key savings can occur.

One further test was made in this section of the exper­
iment. Nine of the programs from the test set were edited
and the variable names in these programs were changed to
be only two letters long and so that many of the variable
names started with the same letter. Also many of the local
variables were changed to be global variables. This sim­
ulates a "bad programming style". The null hypothesis in
this case is that the strategies would make no difference.
Table 5 presents the results of this test. These results seem
to indicate that there is some benefit given to programmers
using descriptive variables names and local variables.

Table 5. Results of comparing "Bad style" using Recency(20)
Strategy % Keys Saved Prohahility % Predictions Prohahility

Variance Accepted
Variance

Good style 3!U - 59.4 -
0.()49 0.054

Bad style 32.2 0.()15 54.4 0.065
0.058 0.074

22

Phase 2 - Optimality

The optimality hypothesis states that a system should be
able to apply locality, recency and repetitiveness together
to improve the results obtained from locality with recency
or locality with repetitiveness. In this stage, three methods
were applied to pursue the optimality of the outcome. The
first method applied repetitiveness after recency (rec+rep)
to reduce the conflicts between valid matches with max­
imum confidence value (obtained from locality and re­
cency). Basically .here the frequency count was used as
a "tie-breaker" for words with the same prediction confi­
dence value based on locality and recency. The second
method is similar to rec+rep except that recency was ap­
plied as a tie-breaker after repetitiveness (rep+rec) if nec­
essary. The third method (both) was to attempt to combine
recency and frequency for the computation of the confi­
dence value. This was done by simply adding the con­
fidence values from the two strategies. This could result
in a word which has occurred frequently but not recently
being given a higher prediction confidence level that one
which had appeared on the last line typed. Clearly there
are cases w~en this would not be desirable. The results of
this test are presented in Table 6. From this table, the data

Table 6. Results of comparing optimality strategies
Strategy % Keys Saved Prohahility % Predictions Prohahility

Variance Accepted
Variance

Rccency(20) 38.1 - 56.1 -

0.071 0.076
rec+rep 38.4 0.380 56.9 0.240

0.074 0.074
rep+rec 38.0 ~ 0.41XI 55.7 0.350

0.072 0.077
hoth 38.4 0.380 57.0 0.215

0.074 0.074

suggest that both is the best strategy, but none of the com­
bined strategies appears to offer a statistically significant
improvement over Recency(20). Since these predictions
were done on programs whose structures are confined by
the syntax of the language, the very subtle improvement
rec+rep and both appears explainable. In a program there
are normally a limited number of words on a line, and the
chance of having two or more different words on the same
line starting with the same character is slim. Therefore, in
most of the predictions only one valid match has the maxi­
mum confidence value and, therefore, the recency strategy
is often applied without the reinforcement of repetitive­
ness. Similarly, rep+rec normally applied repetitiveness
alone. Occasionally, however, both strategies would have
been applied. The data from Table 6 show no dramatic
improvements and other methods should be sought to in­
tegrate these two strategies (recency and repetitiveness) to
improve the results to a greater extent.

Phase 3 - Continuation

The continuation strategy is based on the premise that pre­
dictions done on similar programs, i.e. programs with very
similar variables, sharing the same dictionary should have
better results than on programs using their own dictionar­
ies.

This strategy was tested by running the simulator on

SACJ/SART, No 20, 1997

eleven programs developed by the same programmer for
use on an image processing research project. Inspec­
tion of the programs shows that similar variable names do
in fact occur in the programs (Object, Image, size,
percent, dim, value, found, etc.). As the simulator
executes it adds each word it encounters in processing a
program to a C(?mmon dictionary which is used for all later
programs. The null hypothesis here is that there will be
no difference in applying the prediction strategies without
a common dictionary (standard processing) as compared
with using a common dictionary. Table 7 presents the re­
sults of this experiment. There does seem to be some evi-

Table 7. Results of the continuation experiment
Strategy % Predictions Accepted Probability

Variance
Standard processing 55.6 -

0.052
Shared Dictionary 58.5 0.115

0.057

dence of improved predictions using the shared dictionary
but this is not highly statistically significant (possibly due
to the small sample size). Inspection of the raw data shows
that the use of the shared dictionary means that fewer pre­
dictions are made overall but that a greater percentage of
the predictions made are accepted. This agrees with what
would be expected. More often a word is matched on the
first prediction as it is taken from the shared dictionary.
Without the shared dictionary a word which had not ap­
peared before in a program would have to "guessed at" a
number of times before being added to the list of words
found and made available for later predictions. Thus the
shared dictionary means fewer predictions and a greater
percentage of good predictions.

5 Future Work

This research concentrated on trying to save typing by us­
ing knowledge of the programmer's use of variables, types
etc. and the target language. The simulator did not in­
clude generating correct parse trees reflecting the structure
of the language - something which is done by language­
directed editors. A full working editor should include text
prediction for variables, types, etc. and parse tree gener­
ation. Such a system is still to be implemented but this
research has proved its potential usefulness

Another area which should be investigated is that of
programmer pattern prediction. For instance, being able to
predict the pattern var: =var op something based
on what the programmer has done before. This is a non­
trivial problem which, if it can be solved, will offer enor­
mous additional benefits to a disabled (or any) program­
mer. A related issue to consider would be to see whether
applying semantic knowledge would improve accuracy.
For example, if the types of the variables declared so far are
known then it might be possible to restrict the predictions
to those that would be type correct in the current context.

A different area which could be a useful avenue of re­
search would be to test the strategies presented in this paper

SACJ/SART, No 20, 1997

in a different text generation environment - a windowing
environment for example.

6 Conclusion

The results achieved here are very promising - the accu­
racy of the prediction of the next word to be typed can. be
dramatically improved if the information about when and
how often a word is used is taken into account and com­
bined with the syntax of the language. This research did
not include the construct-based template-creation or tree­
building methods of language-directed editors. Instead it
concentrated on word prediction (variables, types, etc.) -
something which the other systems do not tackle. Using
the approaches suggested in the paper, prediction accura­
cies of between 43% and 59% and typing-savings of 32%
to 40% can be expected. A system designed using these
ideas could thus be of immense benefit to a motor-impaired
programmer, allowing him/her to perform much more ef­
fectively and thus fulfill a more active role in society. The
strategies discussed here do not have to be restricted to be­
ing implemented in a keyboard driven text based editor but
could also be incorporated into a point-and-click environ­
ment. The important issue is that "accurate" prediction can
save effort.

Acknowledgements: The authors would like to thank
the referees and the editor of SACJ for their very helpful
comments; Anjana Mistri for her work on the project and
Scott Hazelhurst and Philip Machanick for proofreading
the paper.

References

1. G E P Box, W G Hunter, and J S Hunter. Statistics
for Experimenters: An Introduction to Design, Data
Analysis and Model Building. Wiley-Interscience,
1978.

2. F J Budinsky, RC Holt, and S G Zaky. 'SRE- a
syntax recognizing editor'. Software-Practice and
Experience, 15(5):489-497, (1985).

3. J Darragh. Adaptive predictive text generation and the
reactive keyboard. Master's thesis, Computer Science
Dept., University of Calgary, 1988.

4. J Darragh, I Witten, and M James. 'The reac-
tive keyboard: A predictive typing aid'. Computer,
23(11):41-48, (1990).

5. C N Fischer, G F Johnson, J Mauney, A Pal, and D L
Stock. 'The Poe language-based editor project'. In
ACM SIGSOFTISIGPI.AN software engineering sym­
posium on practical software development environ­
ment Proceedings, pp. 21-30, (1984).

6. B S Lerner. 'Automated customization of structure
editors'. International Journal of Man-Machine Stud­
i~, 37:529-563, (1992).

7. R Mora and P Feiler. 'An incremental programming
environment'. IEEE Trans. Software Engineering,
SE-7:472-482, (1981).

23

8. J Preece. Human-Computer Interaction. Addison­
Wesley, 1994.

9. T Teitelbaum and T Reps. 'The Cornell Program
Synthesizer: A syntax-directed programming envi­
ronment'. Communications of the ACM, 24(9):563-
573, (1981).

10. J Welsh, ll Broom, and D Kiong. 'A design rationale
for a language-based editor'. Software-Practice and
Experience, 21(9):923-948, (1991).

24
SACJ/SART, No 20, 1997

Notes for Contributors

The prime purpose of the journal is to publish original re­
search papers in the fields of Computer Science and In­
formation Systems, as well as shorter technical research
notes. However, non-refereed review and exploratory arti­
cles of interest to the journal's readers will be considered
for publication under sections marked as Communications
_or Viewpoints. While English is the preferred language
of the journal, papers in Afrikaans will also be accepted.
Typed manuscripts for review should be submitted in trip­
licate to the editor.

Form ,of Manuscript

Manuscripts for review should be prepared according to the
following guidelines.

• Use wide margins and 1 ! or double spacing.

• The first page should include:
•

- title (as brief as possible);

- author's initials and surname;

- author's affiliation and address;

- an abstract of less than 200 words;

- an appropriate keyword list;

- a list of relevant Computing Review Categories.

• Tables and figures should be numbered and titled.

• References should be listed at the end of the text in
alphabetic order of the (first) author's surname, and
should be cited in the text in square brackets [1-3].
References should take the form shown at the end of
these notes.

Manuscripts accepted for publication should comply with
the above guidelines (except for the spacing requirements),
and may be provided in one of the following formats (listed
in order of preference):

1. As (a) lbTJ3X file(s), either on a diskette, or via e­
mail/ftp - a lbTJ3X style file is available. from the pro­
duction editor;

2. As an ASCII file accompanied by a hard-copy show­
ing formatting intentions: '

• Tables and figures should be original line draw­
ings/printouts, (not photocopies) on separate
sheets of paper, clearly numbered on the back
and ready for cutting and pasting. Figure titles
should appear in the text where the figures are to
be placed.

• Mathematical. and other symbols may be either
handwritten or typed. Greek letters and unusual
symbols should be identified in the margin, if
they are not clear in the text.

Contact the production editor for markup instructions.

3. In exceptional cases camera-ready format may be ac­
cepted - a detailed page specification is available from
the production editor; '

Authors of accepted papers will be required to sign a copy­
right transfer form.

Charges

Charges per final page will be levied on papers accepted
for publication. They will be scaled to reflect typesetting,
reproduction and other costs. Currently, the minimum rate
is R30-00 per final page for lbTJ3X or camera-ready contri­
butions that require no further attention. The maximum is
R120-00 per page (charges include VAT).

These charges may be waived upon request of the au­
thor and at the discretion of the editor.

Proofs
Proofs of accepted papers in category 2 above may be sent
to the author to ensure that typesetting is correct, and not
for addition of new material or major amendments to the
text. Corrected proofs should be returned to the production
editor within three days.

Note that, in the case of camera-ready submissions, it
is the author's responsibility to ensure that such submis­
sions are error-free. Camera-ready submissions will only
be accepted if they are in strict accordance with the detailed
guidelines.

Letters and Communications
Letters to the editor are welcomed. They should be signed,
and should be limited to less than about 500 words.

Announcements and communications of interest to the
readership will be considered for publication in a separate
section of the journal. Communications may also reflect
minor research contributions. However, such communica­
tions will not be refereed and will not be deemed as fully­
fledged publications for state subsidy purposes.

Book reviews
Contributions in this regard will be welcomed. Views and
opinions expressed in such reviews should, however, be re­
garded as those of the reviewer alone.

Advertisement
Placement of advertisements at RI000-00 per full page per
issue and R500-00 per half page per issue will be consid­
ered. These charges exclude specialized production costs
which will be borne by the advertiser. Enquiries should be
directed to the editor.

References

1. E Ashcroft and Z Manna. 'The translation of 'goto'
programs to 'while' programs'. In Proceedings of IFIP
Congress 71, pp. 250-255, Amsterdam, (1972). North­
Holland.

2. C Bohm ~d G Jacopini. 'Flow diagrams, turing ma­
chines and languages with only two formation rules'.
Communications of the ACM, 9:366-371, (1966).

3. S Ginsburg. Mathematical theory of context free lan­
guages. McGraw Hill, New York, 1966.

Editorial

South African
Computer

Journal

Number 20, December 1997
ISSN 1015-7999

Contents

DG Kourie
Research Contributions
The Abstraction-First Approach to Encouraging Reuse

Suid-Afrikaanse
Rekenaar­

tydskrif

Nommer20, Desember 1997
ISSN 1015-7999

P Machanick . 2

Secure Mobile Nodes in Federated Databases
MS Olivier . 1 I

Word Prediction Strategies in Program Editing.Environments
I Sanders and C Tsai 18

A Computerised-consultation Service for the Computerisation of the Very Small Small-
busin'ess Enterprise . .

C\Y_Rensleigh and MS Olivier , · 25

Some Typical Phases of a Business Transformation Project: The First Steps Toward a
Methodology? .

D Remtnyi · · '36

Technical Reports ..
Theory Meets Practice: Using s·mith's Normahzation irt Complex Systems

AJ van der Merwe and WA Labuschagne 44

Applying Software Engineeril)g Methods .to Instructional Systems Development
P Kotze and R de Villiers' 49

Communications and Viewpoints
Mobile Agents at ISADS 97 . . .

I Vosloo ... ' · : A57

The Recovery Problem in Multidatabase Syster1s,--Chfracteristics and Solutions
K Renaud and Paula ~otze' · A62

~ ! I I "t: ,· ' ,· \ <

