
Volume 6 • Number 1

B H Venter

B H Venter

SH von Solms
D P de Villiers

P S Kritzinger

J Mende

P J Smit

D P de Villiers
SH von Solms

ISSN 0254-2757

QU/ESTIONES
INFORMATIC/E

May 1988

A Detailed Look at Operating System Processes 2

A New General-Purpose Operating System 8

Protection Graph Rewriting Grammars and the Take/Grant 15
Security Model

Protocol Performance Using Image Protocols 19

A-Structural Model of Information Syste~ Theory 28

The Use of Colour in Raster Graphics 33

Using NLC-Grammars to Fonnalise the Take/Grant and Send/ 54
Receive Security Models

BOOKREVIEW 53

The official journal of the Computer Society of South Africa and of the South African
Institute of Computer Scientists

Die amptelike vaktydskrif van die Rekenaarvereeniging van Suid-Afrika en van die
Suid-Afrikaanse lnstituut van Rekenaarwetenskaplikes

QUJESTIONES INFORMATICJE

The official Journal of the Computer Society of South Africa and of the South
African Institute of Computer Scientists

Die amptelike vaktydskrif van die Rekenaarvereniging van Sold-Africa en van die
Suid-Afrikaanse Instituut van Rekenaarwetenskaplikes

Editor

Professor J M Bishop
Department of Computer Science
University of the Witwatersrand
Johannesburg
Wits
2050

Editorial Advisory Board

Professor D W Barron
Department of Mathematics
The University
Southampton S09 5NH
UNITED KINGDOM

Professor G Wiechers
77 Christine Road
Lynwood Glen
Pretoria
0081

Professor K MacGregor

'1
I

Department of Computer Science '\
University of Cape Town
Private Bag
Rondebosch
7700

Professor H J Messerschmidt
Die Universiteit van die Oranje-Vrystaat
Bloemfontein
9301

~ -tl /~rut /,§ti~"', fa41
1

;ffaci . !

J:r~

(;1tC1. f /7,fv{.,til
/

Dr PC Pirow
Graduate School of Business AdminX
University of the Witwatersrand I \
PO Box 31170
Braamfontein
2017

Professor S H von Solms
Departement van Rekenaarwetenskap
Randse Afrikaanse Universiteit
Auckland Park
Johannesburg
2001

Professor M H Williams 1
1

Department of Computer Science
Herriot-Watt University
Edinburgh
Scotland

Production

MrQHGee
Department of Computer Science
University of the Witwater~rand
Johannesburg
Wits
2050

Subscriptions

The annual subscription is

Individuals
Institutions

to be sent to:

SA US UK
1'.20 $ 7 £ 5
R30 $14 £10

Computer Society of South Africa
Box 1714 Halfway House 1685

I"' Qurestiones Informaticre is prepared by the Computer Science Department of the
University of the Witwatersrand and printed by Printed Matter, for the Computer
Society of South Africa and the South African Institute of Computer Scientists.

Editorial

Volume six of QI heralds several changes. The most visible is the change in format The black on red cover
has been changed to a more readable blue on white, but we have retained the style of the old cover, for the sake
of continuity. The papers are now set in a tighter format, using double columns, which will enable more
papers to be published for the same cost.

For authors, the most significant change is that as from Volume 6 Number 2 (the next issue), a charge will be
made for typesetting. The charge is quite modest - R20 per page - and will enable us to keep up the high
standards that we have become used to with QI. It is worth recording that the alternative to this suggestion
was that authors should present camera-ready typescript, as is done for QU<£stiones Mathematicce. Given that
document preparation and electronic typesetting is one of the areas of computer science that we can feel proud
of, it seemed right that our journal should use the most modem techniques available. Fortunately, the two
controlling bodies, the CSSA and SAICS, eventually agreed to our proposal and the result is the professional
journal you have in front of you now.

Supporters of QI may be interested in a few statistics that I compiled when I took over the editorship from
Gerrit Wiechers in April this year. In the past two years (June 1985 to June 1988), 73 papers have been
received. Of these 39 (53%) have appeared, 19 have been rejected or withdrawn (26%) and 15 (21 %) are either
with authors for changes or with referees. If we look at the complete picture for Volumes 4 and 5, we find the
following:

Volume Issues
5 3
4 3

P.c1pers
27*
21

Pages
220
136

Ave. pages per paper
7.7
6.4

Although this issue contains one very long paper of 18 pages, the future policy of QI will be to restrict papers
to 6 or 7 printed pages, and prospective authors are asked to bear this in mind when submitting papers.

For the future, we arc hoping to move towards more special issues. Many of the papers being published at the
moment were presented at the 4th SA Computer Symposium in 1987. Instead of continuing the policy of
allowing such papers to be accepted by QI without further refereeing, we are hoping to negotiate with
Conference organisers to produce special issues of QI. Thus the proceedings would ab initio be typeset by QI
and all the papers would be in a single issue. Given the competitive charges of QI, there will be financial
gains for both parties in such an arrangement.

As this is my first editorial, it is fitting that it should close with a tribute to the previous QI team. My
predecessor as editor was Gerrit Wiechers. Gerrit took over the editorship in 1980 and served the journal well
over the years. With his leadership, the number and quality of the papers increased to its present healthy state.
I must also extend a big thank you to Conrad Mueller and the University of the Witwatersrand who pioneered
desk top publishing of QI in August 1985, using the IBM mainframe and its laser writer. Without Conrad's
diligence and the excellent facilities provided by the Wits Computer Centre and subsequently the Computer
Science Department, QI would easily have degenerated into a second-rate magazine. Quintin Gee, also of the
Wits Computer Science Department, has taken over from Conrad and has raised the production quality of QI to
new heights, as this issue testifies.

I look forward to your help and support in the future. Long live QI!

Judy M Bishop
Editor
June 1988

Qmestiones InformaticIB 6 1 1988

Using NLC-Grammars to Formalise the Take/Grant and
Send/Receive Security Models

D P de Villiers and S H von Solrns
Department of Computer Science, Rand Afrikaans University, PO Box 524, Johannesburg, 2000

Abstract

In this paper the Send/Receive and Take/Grant logical security models are formalised using results from formal
language theory. By using the graph rewriting facilities of NLC-grammars, and by extending these facilities to
take different types of context conditions into account, the actions within the Send/Receive and Take/Grant
models are simulated.
Keywords: Graph grammars, Node-Label-Controlled graph grammars, Grammatical protection systems,
Take/Grant models, Send/Receive models

Received March 1987,AcceptedJuly 1987

1. Introduction

The goal of this study is the definition of a context­
dependent logical security model. This model will
use the current state of the protected environment to
determine whether a new access relation between two
entities in the environment may be established, or
whether such an existing relationship may be altered.
Furthermore, when new entities are introduced into
the environment, the current protection state will
also be used in determining the relationship between
the new and existing entities. A motivation for this
is to formalise the definition of the access rights of
new users in a protected system. Instead of having to
manually determine the access rights of each user,
the protection system will define the access rights in
view of the current system context. This study will
provide the basis for a logical formulation of such a
model.

Firstly, current models of access control were
studied, to find a suitable framework for development
of the envisaged model. It was found that the T/G
(Take/Grant) and S/R (Send/Receive) models [4,3]
showed promise, for the following reasons

- it is possible to ignore the subject/object
distinction.

- the graph-theoretic approach and related graph­
rewriting rules pointed to the possible incorporation
of a suitable graph grammar, that would make a large
body of proven theory available for use in the study.

- the T/G and S/R models arc enjoying considerable
attention. New results, that appear quite frequently,
may lead to new ideas in this study.

We will now give short summaries, first of the
T/G model (from [4)), and then of the S/R model
(from [3]).

The object of the T/G model is to model a
protection system. This is done by using a two­
coloured, directed graph, wherein subjects and objects

Qu:estiones lnformatic:e 6 (1) 54-62, May 1988 54

are represented by different coloured nodes of the
graph, and where the capability of node a to access
node b is indicated by an edge from a to b. The set a
of rights that a can exercise in accessing b (such as
read, write) is denoted by labelling the edge from a to
b with a, as follows:

a
o-----o
a b

The set a of rights is a subset of the fixed and
finite set of rights R = {read, write, append, execute
(programs), take, grant}. The read, write, append and
execute rights are called the inert rights, while the
take and grant rights may be seen as "active" rights,
in that they allow the modification of the protection
graph structure.

The T/G model also defines certain graph rewriting
rules, two of which correspond to the take and grant
rights. Informally, if node a has the take right to
node b, and the grant right to node c, node a may
take any subset of the rights of node b for itself, and
give (grant) any subset of its own rights to node c.

There are two more rewriting rules in this
formulation of the T/G model, namely the create and
remove rules. The create rule adds a new node to the
graph, with a labelled edge from the node that
initiated the creation operation to the newly created
node. The remove rule alters the labelling of an edge
of the graph (i.e. an alteration of the access rights of
the start node of the edge) by removing a subset of
rights from the set of rights denoted by the edge
label.

The T/G operations will later be more formally
defined.

Like the Take/Grant (T/G) model, the purpose of
the Send/Receive model is the modelling of the
transfer of access rights between subjects in a
protected system.

In the S/R model for protection, several
shortcomings of the Take/Grant model are addressed,
including selectivity, locality/modularity, and
unidirectionality of flow of rights (see [3] for more
detail).

We shall now give a brief definition of the S/R
model, from [3]. In this model, a protected system
consists of typed objects. With each object x we
associate a set of (attribute, value) tuples, describing
the attributes of the object, as well as a (possibly
empty) set of (object, access right set) tuples, called
tickets, which denotes the fact that x can access the
given object with any of the rights in the set access
right set. The access right set is a subset of a fixed
and finite set of rights R = {read, write, append,
execute (programs), send, receive}. Finally, an object
also possesses a (potentially empty) set of rule
rights, called activators/rules. An activator takes the
following (simplified) form:
CAN A(ai, ... , aJ IF Q(ai, ... , aJ.
This means that the holder of the activator may
perform action A on the arguments (logical
entities/objects) a 1, ... , a k, provided that the
predicate Q is satisfied.

In the rest of this paper, we shall refer to acti valors
as rules.

Three basic rules are defined in the S/R model.
The first rule, called the CAN-SEND rule,

facilitates the control of movement of rights out of
an object's domain, enabling the holder thereof to
send rights to another object. The rule takes the
following form:

CAN SEND p:P TO s:S IF Q(p, s).
p and s are free variables and are only present if they
are used within the predicate Q. P and S arc tuples,
called templates, of the form (T, R), where (for P) T
represents the type of the object p, and R represents
the set of rights of p that may be sent to the object
s. These templates (called patterns in [3]) are matched
by a ticket (object, access right set) when the object
is of type T and the access right set is contained in
the set R. S will always have the form (T, send).
This type of rule may be activated only if its holder
possesses tickets that match P and S, and Q(p, s) is
satisfied.

The second rule enforces control over the
movement of rights into an object's domain,
enabling its holder to receive rights from another
object. The rule takes the following form:

CAN RECEIVE p:(T, R) FROM s:{T, receive) IF
Q(p, s).
This rule may be activated only if its holder
possesses the receive right to the object s from
which it wants to receive a ticket of the form (T, R),
and if the predicate Q is satisfied.

Finally, there is a CREA TE operation for the
creation of new objects. It is assumed that if an
object x wants to create a new object y, x receives
the tickets (y, send), (y, receive), and y receives the
tickets (x, send), (x, receive), so that full

Qu:estiones Informatica: 6 1 1988 55

bidirectional transfer of rights is possible. The form
of the CAN-CREATE rule is not defined in [3]-, and
for the purposes of this article we define it as
follows:

CAN CREATE p:(T, 1{} WHEN (T, create) IF Q(p,
s).
This means that the holder of the rule can create an
object p of type T subject to the condition that the
predicate Q is satisfied. The set 1{_ is a subset of the
set of rights possessed by the holder of the CAN­
CREA TE rule.

Finally, in order for a ticket (t, r) to be transferred
from an object x to an object y, the following must
be true:
- x must possess the tickets (t, r) and (y, send), as
well as an appropriate CAN-SEND rule, that is
satisfied by these tickets.
- y must possess the ticket (x, receive), as well as an
appropriate CAN-RECEIVE rule, that is satisfied by
the tickets (x, receive) and (t, r).

As was said earlier, the incorporation of a formal
graph grammar is indicated by the graph-theoretic
approach and rewriting rules of the T/G model. Of
existing graph grammars, the so-called NLC-(Node­
Label Controlled) grammars (1) seem to be the most
applicable. An important motivation is that the
grammars were extended by von Solms [6,7 ,8) to
include permitting and forbidding node contexts in
their productions. As context dependency is a
fundamental aspect of the grammar to be used, the
grammar was found to be very acceptable in this
regard

We shall now proceed with the necessary
definitions for simulating the T/G model, and then
discuss some of the aspects of the resulting model,
which we will call the CSM (Context-dependent
Security Model). This model is fully described in
[10).

2. Extending NLC-grammars to Fonnalise
the T/G Model

For the definition of a node-labelled undirected graph,
an NLC grammar and related concepts, see [I].

Definition 2.1 (from [1])
A NLC-grammar with node context is a system

G = (I., .1, P, C, Z) where
I. is a nonempty finite set of labels, called the total

alphabet
fl is a nonempty finite subset of I., called the

terminal alphabet
P is a finite set of productions, of the fonn (d, D,

(I.1 ; I.i)) with
d E I.
D a graph over l:
I.i,I.i ~ I.
I.1 n I.i = 0, where

l:1 is called the permitting- and l: 2 the
forbidding (node) context

C is a subset of :E x :E, called the connection
relation

Z is a graph over l:, called the axiom.

Definition 2.2
Let R be a finite, nonempty set of symbols, called
the set of rights. Let H be a graph over :E, and let e =

0 0

11 /2 be a subgraph of H, consisting
of any two connected nodes of H and the edge
between them. We associate with the edge of e an a.
i;;;;; R, called the edge classification. We denote this by
a tuple ((1, 12 , a), called an edge context. The edge
context is denoted graphically by adding the labels
/ 1,a. to the edge, as follows:

11,a
0>------<0

11 12

The edge context (/2 , / 1, P) is written
12,P

O>------<O

12 11

We say that 11 owns the set a of rights with respect
to /2• The "owner" of the rights is therefore indicated
by being the first element of the tuple.

The set AH of all possible edge contexts of a graph
H is defined as

o-----o
AH= { (/;, /j, a) I /; /i is an edge of H, i

;t j, a. ~RJ,
where R is the set of rights associated with the
grammar that generated H.

For a grammar G, Aa is defined as
Aa = ((/;, /j, Cl) I/;, /j, E !:., l; ;t lj, Cl CR},

where R is the set of rights associated with G.

Definition 2.3
A NLC-grammar with node- and edge context is a
system

G = (:E, !1, P, C, Z, R) where
I: is a nonempty finite set of labels, called the total

alphabet
L1 is a nonempty finite subset of I:, called the

terminal alphabet
P is a finite set of productions, of the form
(d, D, (!.1 ; l:i) , (A1; A2)) with

de I:
D a graph over I:, where with every edge of D
we associate an edge classification a E R,
applicable to one of the nodes of the edge.
!:.1,~ CI:
!:.1nki=0
I: 1 is called the permtttmg and :E 2 the
forbidding node context

Qua:stiones Informatica: 6 1 1988 56

A1.A2 !;;: Aa. A1 and A2 is called the permitting
and forbidding edge contexts, respectively.
Also,A1 nA2 = 0

C is a subset of !:. x !:. , called the connection
relation

Z is a graph over !:., called the axiom
R is a finite, nonempty set of symbols, called the

set of rights.
The meaning of the permitting and forbidding

node/edge contexts in definition 2.3 is as follows: A
production may be applied if

- all of the nodes specified in the permitting node
context !.1 appear somewhere in the current graph

- none of the nodes specified in the forbidding node
context ki appears anywhere in the current graph

- for every edge context (11, /2, a) that appears in
the set A1 of permitting edge contexts, there exists an
edge somewhere in the current graph between two
nodes labelled /1 and 12, having an edge classification
ex.

- for every edge context (/1, /2 , P) that appears in the
set A2 of forbidding edge contexts, there does not
exist an edge anywhere in the current graph between
two nodes labelled /3 and /4 , having an edge
classification p.

Three types of productions can be identified:
1. Normal productions
2. Edge generation productions
3. Edge removal productions.

A direct derivation step is performed by applying a
normal production. Let H be a graph over I:, with v
E VH, and 'l'H(v) = /. Choose a production (/, D, (I:1

; ~) , (A1 ; Ai)) E PH, the contexts of which are all
satisfied. Apply the production as follows:
(i) Remove v and all edges incident to v from H,
resulting in the graph H\v.
(ii) Replace v with an isomorphic copy D of D.
(iii) Establish edges between H\v and D in the
following manner:

Let x E Vo, y E VH\v, with '¥ 0 (x) = /1 and
'l'u(y) = [z.
Create an edge between x and y iff there was
an edge between y and v in Hand (/1, /2) E C.

In order to prevent unauthorised access from talcing
place, connection of nodes in H\v to nodes in D may
be forced to be done explicitly. In such a situation,
step (iii) in the application of a normal production,
as defined above, would be replaced by
(iii) Establish edges between H\v and v in the
following manner:

Let XE VH\v•
Create an edge between x and v iff there was
an edge between x and v in H.

The set of connection relations, C, would therefore
not be used at this stage in the determination of
connections between nodes in H\v and nodes in D.
After (the modified) step (iii) has been executed, any

node in H\v wishing to gain access to a node in D
would explicitly initiate an edge creation production
to create an edge to the node in D. In this way all
access to new nodes can be simply but rigorously
controlled.

The different types of productions will now be
discussed in greater detail.

1. A normal production
is of the form

(/, D, (~ ; ~ , (A1 ; A-i)) _
where D is an arbitrary graph over the set I:. Let D
be the isomorphic copy of D that is to replace v;
then V O n V ffiv = 0. This type of production is
denoted by P n·

This type of production is used where at least one
new node is to be introduced into the graph (created).
The graph D may consist of one or more nodes, and
may contain isolated (unconnected) nodes. A normal
production cannot establish edges between existing
nodes in the graph; the edge generation production is
to be used in such a case.

2. An edge generation production
is of the form

li,a
o-----o

(Ii, 11 12, (I:1 ; ~ , (A1 ; A-i))

Of------0

with /1 12 E A2, rt p E R, 12 E I:1, and
is denoted by P 8•

It is assumed that identical labels in the above
production refer to the same nodes.

The function of this type of production is the
generation of an edge between two existing nodes
labelled / 1 and /2 • This does not exclude the
possibility that an edge between the nodes /1 and /2

already exists, although we shall see later that it is
possible to establish a precondition that no edge may
exist between two nodes at the time that a new edge
is added between the two nodes.

The creation of the edge is initiated by the node
labelled /1 in order to gain access to the node labelled
/2• The owner of the edge (/1) gives the take, grant, as
well as all other "inert" (read, write, append, execute)
rights to the edge classification.

The edge generation production can be graphically
illustrated as follows:

/1,Cl

0 0 0 0

/1 /2 ~ /1 12
where the nodes labelled /1 and /2 are existing nodes
in an arbitrary graph.

3. An edge removal production
is of the form

Quzstiones Informaticz 6 1 1988 57

li,0
0------0

(/1, 11 12, (I:1 ; I:z) , (A1 ; Az))
with (11.lz,P) e Ai,~ e R, and is denoted by Pr

It is assumed that identical labels in the above
production refer to the same nodes.

The function of the edge removal production is to
remove an existing edge from the graph, in order to
indicate that no relation between the two nodes exists
anymore.

The edge removal production can be graphically
illustrated as follows:

11,P 11,0
0 0 o------0

/1 /2 ~ /i /2
where the nodes labelled /1 and /2 are existing and
connected nodes in an arbitrary graph.

A fourth production type may also be introduced.

4. Edge classiracation update production
This type of production is of the form

li,P
0 0

(Ii, 11 /2, (I:1 ; I:z), (A1 ; A2)) with
(l1h,Y) e Ai, and is denoted by Pu.

It is assumed that identical labels in the above
production refer to the same nodes.

The function of this type of production is to reflect
a change in the relationship between two nodes by
altering the edge classification, while leaving the
nodes and the edge between them intact. When the
edge classification becomes empty, it is indicated
that no relationship between the two nodes currently
exists, although the edge between the nodes is still
shown.

The edge classification update production can be
graphically illustrated as follows:

li,y li,P
0 0 0 0

'1 ~ ~ '1 ~
where the nodes labelled 11 and /2 are existing
(connected) nodes in an arbitrary graph.

Another way to handle the removal of edges is to
use the edge classification update production to.
modify the classification of an edge to be the empty
set. In this case, an empty edge classification will
denote the situation in which no relation is defined
between two nodes, although an edge is shown
between them.

Although it may seem that the edge removal
production, in contrast to the edge classification
update production, would make it possible to
distinguish between an isolated node and a node that
is connected but with no defined access relations,
there is no practical difference between these two
situations.

Another remark that is relevant to productions, is
that in the NLC-grammars, the sets V ffiv and V 0

must be disjoint, i.e. the only node of the graph (to
which the production will be applied) that may
appear in the right-hand side of the production is the
node that appears on the left-hand side of the
production, i.e. the node to be replaced. This
condition is removed from the CSM, so that the
necessary T/G operations may be naturally modelled.
It is possible, however, to replace any production
that does not obey this rule with a set of productions
that do. For more detail, see [8].

Lastly, the following note can be made about the
labels of nodes. It is assumed that every label denotes
a class of node, e.g. the class of all students. In order
to be able to refer in a production to a specific node,
a production must first be executed that assigns a
unique label to the node. Identification of the node
that should receive the unique label can be done by
using the node and edge contexts. When the
operations necessitating the unique identification of
the node have been carried out, the original label of
the node may be restored.

3. Modelling of the T/G operations in the
modified NLC-grammar

The basic T/G operations will now be formalised in
the modified NLC-grammar.

There are four basic operations in the T/G model,
namely the Take, Grant, Create, and Remove
operations. They are defined as follows: [3)

Let H be graph, with x, y, and z E V8 , \J'H(x) = Ii,
\J'H(Y) = /2, and \J'H(z) = /3.
LetR= {t,g,c,d,r,w,a,e} with
t = "take" right
g = "grant" right
c;;;; "create" right
d = "remove" ("delete") right
r = "recd' right
w = "write" right
a = "append' right
e ;;;; "execute" right

1. Take
Let there be an edge between x and y with edge
classification a. with t E a, as well as an edge
between y and z with an edge classification f3 with y
k f3. An application of the Take rule establishes a
new edge between x and z with classification y. The
rule can be read as "x takes (y to z) from y". The
graphical representation of this rule is as follows:

___ fi..;t __ _

11,a 12,P 11,a. 12,P I
o~---{o}---------<o Of------tO>----o

11 12 /3=>/1 /2

This operation is modelled in the CSM by means
of the following production:

Quiestiones lnformaticie 6 1 1988 58

o~----o
PgEPH=(/1,l1 /3,(;),

li,a. l2,f3 li,o
0 0 0 0 0 0

U1 l2 l2 /3) ; U1 /3))
V o k R, t E a, using the graphical representation of
a production, and
Pg = (/i, (/i, l3, y), (;), U1, l2, a.), (l2, /3, P) ; U1, /3,
o)) Vo c;;:R, t E a
using the "edge context" representation of a
production. The graphical representation will be used
in the rest of this paper, because it is more legible.

2. Grant
Let there be an edge between x and y with edge
classification a, with g E a., as well as an edge
between x and z with edge classifcation p, with that y
k f3. The Grant rule defines a new edge between y
and z with classification y. This operation can be read
as "x grants (y to z) to y". The graphical
representation is as follows:
___ l1_.6 __ ---~1..6 __ _

I l2,Y I
0>------<01----0 0>-------tOi-------sO

l 1 12 l3 => l 1 12 /3

The following CSM production models this
operation:

12,Y
0 0

Pg E PH = (/2, /2 /3, (;),
11,a. l1,f3 /2,8

0 0 0 0 0 0

U1 12, Li /3) ; (/2 /3))
V 8 k R, g E a., y k p.

3.Create
Let there be a node x E V H in the current graph. The
Create rule adds a new node n, with \J'H(n) = /4, to the
graph, and creates a new edge with classification A
between x and n. This can be read as "x creates (A to
n)". The graphical representation of this rule is as
follows:

0 0>------0

11 => 11 /4

The following CSM production models this
operation:

o-----o
Pn E PH= {/1, /1 /4, {; /4), {;))

4. Remove
Let there be an edge between x and n with an edge
classification a., with p k a.. The Remove operation
removes the set f3 of rights from a. This rule may be
read as "x removes (f3 ton)". This operation can be

handled by the CSM edge classification update
production. The graphical representation is as
follows:

li,a. li.a.-P
0 0 0 0

11 l4 => 11 /4

The following CSM production models this
operation:

11,a.-P 11,a.
0 0 0 0

Pu E PH== (Ii, /1 l4, (;), (11 /4 ;))

A similar operation can be used for the addition of
rights to an existing edge classification.

The basic T/G operations have now been defined.
Note that the node- and edge contexts in the above
operations may contain additional nodes and/or edge
contexts in real situations, in order to model other
constraints dictated by such a situation.

We now proceed to extend the CSM to model the
S/R situation. This model is fully described in [11].

4. Extending NLC-grammars to Formalise
the SIR Model

Definition 4.1
Let R be a finite, nonempty set of symbols, called
the set of rights. Let H be a graph over l:, and let

0 0

e == 11 12

be a subgraph of H, consisting of any two connected
nodes of Hand the edge between them. We associate
with the edge of e an a, a Panda X ~ R. a, P and x
together constitute the classification of the edge.

We denote this by a tuple (/1, 12, a, p, X), called an
edge context. The edge context is denoted graphically
by adding the labels /1,a,P,X to the edge, as follows:

li,a.,P,x
0-------0

11 '2·
We say that 11 owns the set a. of rights with respect

to 12 and the set P serves the function of qualifying
the rights in a.. That is, if there are any rights within
a. that operate on other rights, then the rights that are
operated upon is given in p and X respectively, as
will be shown later. The "owner" of the rights is
indicated by being the first element of the tuple.

The set AH of all possible edge contexts of a graph
H, and the set A0 of all possible edge contexts of all
graphs generated by a grammar G, is defined in the
sane manner as in the CSM.

Before we define the grammar that will be used to
formalise the S/R model (we shall call it the ECSM
- Extended Context-dependent Security Model), a few
other preliminary definitions are necessary. We
associate with each label l in the protection graph a

Qua:stiones Informatica: 6 l 1988 59

set of attributes, denoted by l {Ai, ... , Ai}. The value
of the attribute A; is denoted by a;. The set of all
possible values of an attribute a; is denoted by 'IX.A;).
We define the attribute set JI as the set of all
possible attributes in the system. The power set of
JI denoted by 1':;l).

Dermition 4.2
An attributed label l is a label that has associated
with it a set of attributes, denoted by
/{Ai, ... , Ai},
such that A1, ... , Ai e JI, le l:, where JI is a set of
attributes, and l: is a nonempty, finite set of node
labels.

Dermition 4.3
A NLC-grammar with node- and edge context is a
system

G == (l:, A, P, C, Z, R, ;if) where
l: is nonempty finite set of attributed labels, called
the total alphabet
A is a nonempty finite subset of l:, called the
terminal alphabet
P is a finite set of productions, of the form

(d, D, (l:1 ; l:i) , (A1 ; Ai))
d E L
D a graph over l:, where with every edge D we
associate an edge classification a, p, x with a,
P, X ~ R, applicable to one of the nodes of
the edge;
l:1.l:i ~ :E
l:1 n l:i == 0
l: 1 is called the permitting and l: 2 the
forbidding node context
A 1,A 2 ~ Ao. A 1 and A 2 are called the
permitting and forbidding edge contexts,
respectively. Also, A1 n A2 == 0.

C is a subset of l: x 1:: called the connection relation
Z is a graph over l:, called the axiom
R is a finite, nonempty set of symbols, called the set
of rights
JI is a finite, nonempty set of attributes.

Definition 4.4
Let x,y e VH, where H is a graph over :E, with 'l'H(x)
= l1 and 'f'u(Y) = /2• We say that x matches y if

i) /1 == 12
ii) The value a; of every attribute A; of /1 is
the same as the value of the corresponding
attribute of 12•

The meaning of the permitting and forbidding
node/edge contexts in definition 4.4 is as follows. A
production may be applied if

- all of the nodes specified in the permitting node
context I:1 are matched by nodes in the current graph

- none of the nodes specified in the forbidding node
context l:2 is matched by any of the nodes in the
current !,'T'aph

- for every edge context (Ii, 12, a, /3, x) that appears
in the set A1 of permitting edge contexts, there exists
an edge somewhere in the current graph between two
nodes labelled /1 and /2 having an edge classification

a, /3. X·
- for every edge context (/3, /4, e, cj>, y) that appears

in the set A2 of forbidding edge contexts, there does
not exist an edge anywhere in the current graph
between two nodes labelled /3 and /4, having an edge
classification e, cj>, y.

As in the CSM, four types of productions can be
identified:
1. Normal prcxluctions
2. Edge generation productions
3. Edge removal prcxluctions
4. Edge classification update productions.

A direct derivation step is performed by following
the same steps as in the CSM.

The different types of productions will now be
discussed in greater detail.

1. A normal production
is of the form

(/, D, (l:1 ; l:z) , (A1 ; A2))
where D is an arbitrary graph over the set l:. Let D
be the isomorphic copy of D that is to replace v,
with V O n V H\v = 0. This type of production is
denoted by P n·

This type of production is used where at least one
new node is to be introduced into the graph (created).
The graph D may consist of one or more nodes, and
may contain isolated (unconnected) nodes. A normal
production cannot establish edges between existing
nodes in the graph; the edge generation production is
to be used in such a case.

2. An edge generation production
is of the form

/1,a,/3,x
o-----o

(/1, /1 /2, (l:1; .tz), (A1; A2))

with/1 /2 e A2, V e,cj>,ye R, /2 e l:1,
and is denoted by Pg·

It is assumed that identical labels in the above
production refer to the sane nodes.

The function of this type of production is the
generation of an edge between two existing nodes
labelled /1 and /2• The creation of the edge is initiated
by the node labelled /1 in order to gain access to the
node labelled /2• The owner of the edge (/1) gives the
send and receive, as well as all other "inert" (read,
write, append, execute) rights to the edge
classification.

The edge generation production can be graphically
illustrated as follows:

Quiestiones lnformaticie 6 1 1988 60

11,a,/3.x
0 0 0 0

11 12 => /1 /2
where the nodes labelled /1 and /2 are existing nodes
in an arbitrary graph.

3. An edge removal production
is of the form

/1,0,0,0
o-------0

U1, /1 /2, (l:1 ; l:z) , (A1 ; A2))
with (/1,/2,a,/3,x) e A1, a,/3,X e R, and is denoted by
Pr

It is assumed that identical labels in the above
production refer to the same nodes.

The function of the edge removal production is to
remove an existing edge from the graph, in order to
indicate that no relation between the two nodes exists
anymore.

The edge removal production can be graphically
illustrated as follows:

/1,a,/3,x /1,0,0,0
0 0 o------0
l 1 12 => /1 /2

where the nodes labelled /1 and /2 are existing and
connected nodes in an arbitrary graph.

4. F.dge classification update production
This type of production is of the form

/1,a,/3,x
0 0

(/1, 11 /2, (l:1 ; l:z), (A, ; A2)) with
(/1,/2,e,<j>,y) e A1, while at least one of the following
statements is true:

i) a ~e
ii) /3 ""4>
iii) X~Y

This type of production is denoted by Pu·
It is assumed that identical labels in the above

production refer to the sane nodes.
The function of this type of production is to reflect

a change in the relationship between two nodes by
altering the edge classification, while leaving the
nodes and the edge between then intact. When all the
sets in the edge classification becomes empty, it is
indicated that no relationship between the two nodes
currently exists, although the edge between the nodes
is still shown.

The edge classification update production can be
graphically illustrated as follows:

/1,e,4>,y /1,a,/3,y
o~-----o o,----~o

/ 1 / 2 => /1 l2

where the node labelled /1 and /2 are existing
(connected) nodes in an arbitrary graph.

The observations that were noted in relation to the
CSM productions also apply here.

5. Modelling the SIR Operations within the
NLC-grammars

Let H be a graph, with x, y, and z e Vg, '¥g(x) = z,,
'Pg(y) = 12, 'P(z) = /3.

Before we start to model the S/R operations in the
defined grammar, a brief explanation of the edge
classification is in order. We said that, given an edge
between two nodes labelled '1 and 12 with edge
context (/1, a, p, X), the role of the sets P and Xis to
qualify certain rights within the set a. We now
define these sets to be used as follows: if the send
right appears within a, the set p contains the set of
rights that /1 may send to 12. Likewise for X and the
receive right if receive e a, X contains the set of
rights that /1 may receive from 12• If any other rights
appear within a, they have their usual meaning, and
need not be qualified.

1.Send
Let there be an edge between x and y with edge
context (11, 12, a, p, x) with send e a. Let there also
be an edge between x and z with edge context (ii, /3,

e, q,, y) with 1l c e and Tl c p. Lastly, let there be
another edge between y and x with edge context (12,

Ii, t, 'I', K) with receive e t, 1l c K.

The send operation establishes a new edge between
y and z with edge context (l2, /3, Tl, 0, 0). (The
reason for the empty sets in this context is that they
correspond to qualifiers or rules in the S/R model,
and the transportation of these rules is not possible
in our formulation of the model). In this production,
x sends y the set Tl of rights, which x has on z, for y
to operate on z. The graphical representation of this
operation is as follows:

__ I1 ... -t-,(j),...y __ _

I li,a,P,x

[::l12
--~1~--

111,a,p,X 12,11,0,0 I

We mcxlel this operation by means of the following
production:

l2,1l,0,0
o-----o

Pg e Pg= ([2, 12 /3, (;),

11,a,P,x li,e,q,;y /2,t,'1', K

o-----o o-----o o-----o
W1 12, 11 /3, Z2 Z1 J ;))

with 1l c E, 11 c p, Tl c K, send e a, receive e t.

2. Receive
Let there be and edge between x and y with edge
context (/1, /2, a, p, x) with that receive e a. Let
there also be an edge between y and z with edge
context ([2 , /3 , £, q,, y), with Tl c E, and 11 c X·
Lastly, let there be another edge between x and y

Qmcstiones Informatica! 6 1 1988 61

with edge context (12, li, t, 'I', 1e) with send e t, 11 c
'1'·

The receive operation establishes a new edge
between x and z with edge context (11, 13, Tl, 0, 0).
(The reason for the empty sets in this context is the
same as given above). In this production, x receives

from y the set 11 of rights with which to operate on
z. The graphical representation of this operation is as
follows:

__ lJ~-
Z1,a,P,x 1 11,a,P,X 12,e,q,;y I

1 ~~.l,'l',lC

We model this operation by means of the following
production:

o-----o
Pg E Pg= (/1, 11 /3, (;),

li,a,P,x /2,E,q>,y /2,l,'1',K
0----00----00----0

W1 l2, l2 l3, 12 11 l ;))
with 11 c E, 11 c X, Tl c 'I', send e t, receive e a.

3. Create
Let x be a node in a graph H. The Create operation
adds a new node n to the graph, with 'Pg(n) = /4, as
well as one edge between x and n with edge context
(/1, /4, a, P, X) with a= R, P = X = R - {send,
receive}, and a second edge between n and x with
edge context (14, li, e, q,, y) such that e = a, q, = p, y =
x (this is done to make full bidirectional transfer of
rights possible). This operation is denoted
graphically a follows:

J.i,e,(j).y
I 14,a,p,X

This operation is implemented by the following
prcxluction:

Pn E P11 = (/1, /1

with /4 E l:i,

6. Conclusion

~.E,(j),Y

I !4,Cl,~,X I
0>------0

[4, (;) ' (;))

There are still some issues to be investigated, and the
most important of these would be the development
of a grammar suitable for the mcxlclling of protection
heuristics, and for the definition of a security model
that incorp:irates the use of expert systems theory.

References

[l] D. Janssens and G. Rozenberg, [1980], On the
structure of Node-Label-Controlled graph languages,
Information Sciences, 20, 191-216.
[2] R.J. Lipton and L. Snyder, [1977], A linear time
algorithm for deciding subject security, Jourpal of
the Association for Computing Machinery, 24 (3),
455-464.
[3] N.H. Minsky, [1984], Selective and locally
controlled transport of privileges, ACM Transactions
on Programming Languages and Systems, 6 (4),
573-602.
[4] L. Snyder, [1981], Formal models of capability­
based protection systems, IEEE Transactions on
Computers, C-30 (3), 172-181.
(5] L.Snyder, [1981]; Theft and conspiracy in the
Take-Grant model, Journal of Computer and System
Sciences, 23, 333-347.

[6] S.H. von Solms, [1984], Node-Label-Controlled
graph grammars with context conditions,
International Journal of Computer Mathematics, 13.
[7] S.H. von Solms, [1980], Rewriting systems
with limited distance Permitting context,
International Journal of Computer Mathematics, 8
(A), 223-231.
[8] S.H. von Solms, [1982], Rewriting systems
with limited distance forbidding context,
International Journal of Computer Mathematics, 11
(A), 227-239.
[9] D.P. De Villiers, [1986], Logiese Sekuriteits­
model gebaseer op NLC-grammatikas, M.Sc.
Dissertation, Rand Afrikaans University.
[10) D.P. de Villiers and S.H. von Solms, A logical
security model based on NLC-grammars, Submitted.
[11] D.P. de Villiers and S.H. von Solms,
Formalizing the Send/Receive security model using
NLC-grammars, Submitted.

SOUTH AFRICAN INSTITUTE OF COMPUTER SCIENTISTS

Mrs S Berman
Prof C H Bornman
Mr M J Chapman
Mr AK Cooper
MrW A Cronin
Mr WR Jones
MrSMKaplan
Prof P S Kritzinger
Mr D N Lubowitz
Prof K J MacGregor
MrDJMalan
MrRJMann
Mr J C Marnewick
Mr S A Matsoukis

Quiestiones Informatic~ 6 1 1988

Members in Arrears

62

Mr G D Oosthuizen
MrR PPerold
Mrs A E G Potgieter
Mr C D Reynecke
Mrs C M Richfield
MrISShaw
Mej F Spoelstra
Mrs LStoch
MrTTurton
Mr W van Biljon
Prof R van den Reever
Mr W L van Nickcrk
Dr DE Wolvaardt
Prof JS Wolvaardt

NOTES FOR CONTRIBUTORS

The purpose of the journal will be to pub­
lish original papers in any field of computing.
Papers submitted may be research articles,
review articles and exploratory articles of gen­
eral interest to readers of the journal. The pre­
ferred languages of the journal will be the
congress languages of IFIP although papers in
other languages will not be precluded.

Manuscripts should be submitted in tripli-
cate to:

Professor J M Bishop
Department of Computer Science
University of the Witwatersrand
Johannesburg
Wits
2050

Form of manuscript
Manuscripts should be in double-space typ­

ing on one side only of sheets of A4 size with
wide margins.

The first page should include the article title
(which should be brief), the author's name
and affiliation and address. Each paper must
be accompanied by an abstract less than 200
words which will be printed at the beginning
of the paper, together with an appropriate key
word list and a list of relevant Computing Re­
view Categories.

Manuscripts may be provided on disc us­
ing any Apple Macintosh package or in ASCII
format.

For authors wishing to provide camera­
ready copy, a page specification is freely
available on request from the Editor.

Tables and figures
Tables and figures should not be included

in the text, although tables and figures should
be referred to in the printed text. Tables
should be typed on separate sheets and should
be numbered consecutively and titled.

Figures should also be supplied on separate
sheets, and each should be clearly identified
on the back in pencil with the authors name
and figure number. Original line drawings
(not photocopies) should be submitted and
should include all the relevant details. Photo­
graphs as illustrations should be avoided if

possible. If this cannot be avoided, glossy
bromide prints are required.

Symbols
Mathematical and other symbols may be ei­

ther handwritten or typewritten. Greek letters
and unusual symbols should be identified in
the margin. Distinction should be made be­
tween capital and lower case letters; between
the letter O and zero; between the letter I, the
number one and prime; between K and kappa.

References
References should be listed at the end of the

manuscript in alphabetic order of the author's
name, and cited in the text in square brackets.
Journal references should be arranged thus:

[l] E. Ashcroft and Z. Manna, [1972],
The Translation of 'GOTO' Programs
to 'WHILE' programs, Proceedings of
IFIP Congress 71, North-Holland,
Amsterdam, 250-255.

[2] C. Bohm and G. Jacopini, [1966],
Flow Diagrams, Turing Machines and
Languages with only Two Formation
Rules, Comm. ACM, 9, 366-371.

[3] S. Ginsburg, [1966], Mathematical
Theory of Context-free Languages,
McGraw Hill, New York.

Proofs
Proofs will be sent to the author to ensure

that the papers have been correctly typeset and
not for the addition of new material or major
amendment to the texts. Excessive alterations
may be disallowed. Corrected proofs must be
returned to the production manager within
three days to minimise the risk of the author's
contribution having to be held over to a later
issue.

Only original papers will be accepted, and
copyright in published papers will be vested in
the publisher.

Letters
A section of "Letters to the Editor" (each

limited to about 500 words) will provide a fo­
rum for discussion of recent problems.

