
GENERATING RELATIONS USING FORMAL GRAMMARS

S.H. von Solms
Rand Afrikaans University

P.O. Box 524, Johannesburg

Financial assistance from the Cowicil for Scientific and Industrial Research and the Ernest Oppenheimer Memorial
Trust in South Africa is acknowledged.

SUMMARY

Grammars generating 2-dimensional arrays have been studied by many people [1, 2, 3, 4). One effort was
Random Context Array Grammars [4], where different types of context conditions placed on the production, were
used to control the generating process.

Relations, as used in relational data bases, can be considered as rectangular arrays, and therefore it should be
possible to generate and manipulate relations using 2-dimensional Grammars.

Simple Relation Grammars generate relations, and can simulate some unary operations like select and
project on these relations.

Extended Relation Grammars also generate relations, but these relations can communicate with each other
within a "Extended Relation Schema (ERS)". Within such an ERS binary operations like union and join can be
simulated.

This paper is a summary of a research project of which certain parts have already been submitted for
publication.

1. Simple Relation Grammars

In this section we will only give an informal description of the definition and operation of a
Simple Relation Grammar (SRO). A detailed discussion of SRG's can be found in [5].

An SRO is a 4-tuple G = (VN, VT, P, S).
i) where VN=VN1uVN2 u VN3 u S.

• VN1 is a finite set of "entities". Entities are the basic symbols of an SRO. An entity is
a string consisting of a finite number of characters from, for example, the ASCII set.
"JONES" is an entity. In an SRG, entities are generated, replaced, etc., and can be
seen as the "data" going into a relational data base.

• VNz is a finite set of "column headings", representing the attribute columns of a
relation. An element of VNz is a 4-tuple c = (e1, x1, x2, x3), where

e1 E VN1, i.e. an entity. e1 is the "absolute name" of the column heading.
x1 E {Y,N}, indicating whether this column represents a primary key or not.
x2 E {Y,N}, indicating whether duplicates are allowed in this column, or not.
x3 E {Y,N}, indicating whether an entry in this column is compulsory, or not.

(DEPT, Y, N, Y) is a valid element of VNz if 'DEPT' E VN1. In
this case, DEPT is a key attribute. For every ci E VNz, 3 Di 1: VN1
called the domain of Ci.

All entities appearing in the column with heading Ci must come from Di.
• VN3 is a set of utility (auxiliary) symbols.

ii) S = {B,N}, is the set of start symbols. We assume that Sis surrounded by
"background" symbols. As a structure is generated from S, these "background"
symbols are replaced by symbols from G.
A derivation in G consists of 2 steps: (The productions of G are discussed below).

Step 1: Generation of the column headings (attributes). During this step, symbols
from VNz will be introduced checking, for example, for duplication of "absolute
names". A finite number of symbols from VN2 will be generated, representing the

attributes and their specifications.

51 qua:stioncs infonnaticz, S, 3, pp 51-55, ism 02S4-2757

After Step 1 we may, for example, have

(ID-NR~rN.Y) l(NAME.N.Y.Y)l l(STREET.N.Y.Y)I (AGE.N.Y.Y)

where {"ID-NR", "NAME", "STREET'', "AGE"} 1;;; VNp and N is the start symool for
generating tuples.

Step 2: Generation of the actual rows (tuples) of the relation.

After Step 2, we may have

(ID-NR,Y,N,Y) (NAME,N,Y,Y) (STREET,N,Y,Y) (AGE,N,Y,Y)
234 JONES BWE 30
1s4 BLACK ACORN 50
N -

where { '234', '784'} 1;;; D (ID-NR,Y,N,Y) 1;;; VN1, etc.

During Step 2, the restrictions as specified by the column headings, for example, no
duplications or compulsory entry, are checked and enforced by the productions of the
Grammar.

iv) P consists of a set of productions of the form:

a) A ~ a ((P1)h, (P2)v, (P3)g; (F1\, (F2)v, (F3)g) ,Pi, Fi 1;;; VN,
where 1 <= length(a) <= 2 andl <= i <= 3.
The production aoove means A can be replaced by a if -

i) all elements of P1 and no elements of F1 appear in the same horizontal row as A,
ii) all elements of P2 and no elements of F2 appear in the same vertical column as A.
iii) all elements of P3 and no elements ofF3 appear (somewhere/anywhere) in the

picture (structure) in which A resides presently.

P1/F 1 is called the horizontal permitting/forbidding context.
P21F2 is called the vertical permitting/forbidding context.
P3/F3 is called the global permitting/forbidding context.

If length (a) = 2, i.e. a= X1X2, X1, X2 e VN, then a background symbol
must appear immediately to the right of A. A is replaced by X 1 and the background
symbol by X2.

If length (a)= 1, i.e. a= X1, X1 e VN, then A can be replaced by X1, even if
none of the other symbols bordering X1 is a background symbol.

This means in effect that a string can only "grow" at the right most end of the
string if a production of type (a) is used.

Replacing single symbols within a string by another single symbol can happen
anywhere in the string.

b) A J. a ((P1)h, (P2)v, (P3)_g; (Fi\, (F2)v, (F3)g) , where length (a)= 2.The
definition and meaning of Pi, Fi, 1 <= i <= 3, are precisely as in (a).

The production means:
Suppose a= X1X2, and a background symbol appears immediately

"below" A. A can be replaced by X1, and the background symbol by X2, if the
context conditions as described in (a) holds.

52

Note that this class of productions gives an SRG its "2-dimensional"
character, because a structure can now "grow" both horizontally and vertically.

Any structure consisting of symbols of VT will be in the language generated
byG.

v) Informally we can define the language generated by an SRG G = (VN,VT, P, S) as the
set of all rectangular arrays consisting of elements of VT which can be generated from S
using productions from P.

2. Generation vs Controlling power

In an SRG we are more concerned with the controlling power of the grammar, as opposed
to the generating power. We therefore investigate the power of productions to control and
monitor the generative process, and will not be so interested in the actual formal language
generated by the grammar. For this reason, the relations generated by SRG's will, in a certain
sense, be artificial, because we have little control over the specific "value" of an entity
generated in a specific position.

Productions are therefore defined in terms of their controlling power, and the specific
values on the left and righthand side of the productions will seldom be explicitly specified.

3. Selection and Projection.

In an SRG G = (VN, VT, P, S) the selection operation, i.e. selecting tuples satisfying
some set criteria, can be simulated by "marking", with a distinctive mark, those tuples (or part
of tuples) satisfying the set criteria.

Given a generated relation, SRG productions can for example do the following:

i) Mark all entities, i.e. all attributes, of the tuple with primary key equal to ei.
ii) Mark all entities of all tuples having a value Ci for attribute Cj,

Using the different permitting and forbidding context conditions of the productions, this is
done very easily and clearly. Just as easily, the result can be projected over specified attributes
by "de-marking" the non required column entities.

4. Summary

We introduced a formal mechanism, SRG, to generate and manipulate relations. The
selection and projection operations are possible, but in a "primitive way" - "marking" the
relevant tuples.

Extended Relation Grammars [6] allow binary operations like union and join, and generate
the result of the operation. Therefore, instead of "marking" the result, a new relation is
generated containing precisely the result of the specific binary operation.

5. Extended Relation Grammars (6]

An SRG can generate a single rectangular array representing a relation, and can simulate
simple unary operations on the resulting relation. No communication with other relations is
possible.

To investigate binary operations we need more than one relation. We need a way of
distinguishing between these different relations, as well as a way to communicate between
these different relations.

We extend the definition of an SRG to provide these facilities, and call the resulting
version an Extended Relation Grammar.

53

5.1 Suppose Gi = (VNi, V~, pi, Si), 1.$ i .$ n, are n SRG's. We give every one a umque
index by replacing every

c = (e, XI, x2, x3) e VN2 ~ VNi by
c = (e, XI, x2, x3, i), 1 ~ ~-

This provided every potential header element c from Gi with an index i, uniquely
relating it to Gi and distinguishing it from the header element of Gj, i =t=j. We can refer
to this index by c(5).

n .
5.2 Let G = U VN1,

i=l

Suppose
(1) A @ a ((P1)h, (P2\, (P3)1; (F1)h, (F2)v, (F3)1),
is a production from pi, ® can be ~ indicating a "horizontal" production of! indicating
a "vertical" production.

Change production (1) to
(1) A© a ((PI)h, (P2)v, (P3)1, (P4)g; (F1)h, (F2)v, (F3)1, (F4)g),
where P4, F4 ~G.
P4 is called the global permitting context, and F4 the global forbidding context.

n .
Because P4, F4 ~ G = U VN1. information can be communicated between different

i=l
structures (relations).

5.3 Apply the changes described in 5.1 and 5.2 to all relevant elements and productions
from all Gi, Each Gi has now became an ERG.
We can therefore imagine some "active environment" in which a number of ERG's are
operating. Each ERG can still only generate a single structure (relation), but this
generation can be influenced by other structures already existing in the active
environment.
In discussing ERG's, we will assume such an "active environment" as defined in the
next section.

5.4 Note that if for any ERG G, P4 = F4 = 0 for all productions in G, G cannot
communicate with any other structure, and acts precisely like an SRG.

6. Extended Relation Schemas (ERS)

An Extended Relation Grammar can generate a single relation, but can communicate with
other relations using its global context. Of course, to communicate with other relations, more
than one relation has to exist.

An Extended Relation Schema (ERS) is a set of relations together with the ERG's
generating them. The relations in an ERS can communicate with each other via their global
contexts, and can influence the operation of each other.

For example, a certain variable X, appearing somewhere in relation R1, may appear in the
global forbidding context of all other relations in the schema. This will prevent any other
relation from doing anything, until Xis rewritten in RI,

In the same way, RI can "block" itself by introducing a variable, say X. This X appears in
the forbidding global context of all but one of the productions, for example production i, of
the grammar generating RI·

This production i has a Y in its permitting global context.
Y can only be generated by the ERG generating another relation, for example R2.

54

R1 is therefore "blocked", waiting for R2's grammar to introduce a Y. Only then can the
generation of R1 continue.

ERG's in an ERS can therefore synchronize and influence their mutual generation
processes.

An Extended Relation Schema is therefore the "active" environment referred to in the
previous chapter.

7. Binary Operations - Union and Join

Using this global context, relations in an ERS can now communicate with each other.
Using these facilities, binary operations can be simulated.
We will not describe the detail of these simulations. A thorough discussion is given in [6].

8. Uses of ERS's

Presently, ERS' s are used to describe processes within the computer environment The 2-
phase protocol used in transaction management in distributed databases, had been successfully
simulated.

References

1 Milgram D.L. and Rosenfeld A., [1971], Array Automata and Array Grammar, IFIP 71,
North Holland.

2 Siromoney R., Subraman K.G. and Rangarajan K., [1079], Rectangular Array with
Tables, International Journal of Computer Mathematics, Sec. A, 6.

3 Siromoney R. and Siromoney G., [1977], Extended Controlled Table L-Arrays,
Information and Control, 35, 2.

4. Von Solms S.H., [1980], Random Context Array Grammars, IFIP 80, North Holland.
5 Von Solms, S.H., Simple Relation Grammars (Submitted)
6 Von Solms, S.H., Extended Relation Grammars (In Preparation).

55

BOOK REVIEW:
A Model Implementation of Standard Pascal, Jim Welsh and Atholl
Hay, Prentice-Hall 1986, ISBN 0-13-586454-2, 483 pages.

Reviewed by: Willem van Biljon, !TR, University of Stellenbosch

This book consists of three Pascal programs: a Standard Pascal compiler, a P-code
interpreter and a post-mortem generator. The compiler accepts the full set of Standard Pascal as
described in the British and International standards BS 6192 and ISO 7185, and performs all the
enforced syntactic and semantic checks on a source program. It produces an equivalent program
in P-code in a CodeFile, together with a NameFile listing all identifiers used, a DataMap file
describing the representation and memory map of the identifiers, and a CodeMap file providing
information on the source line number to P-code mapping.

The interpreter accepts the P-code produced by the compiler and executes it, performing all
the enforced run-time checks on the executing program. In the event of a program failure the
interpreter produces a CorpseFile which is a memory image of the program at the time of the
failure.

The post-mortem generator accepts the CorpseFile of a program as well as its NameFile and
Data.Map files, and produces a source-level procedure call trace-back and symbolic variable dump
for each called procedure.

The book has two levels. Firstly it presents a full operational definition of Standard Pascal
and secondly, it provides an example of a large program written in Pascal.

On the first level it supercedes the well-known Pascal P4 compiler from ETH Zurich written
for bootstrapping purposes by Urs Ammann and well documented by Pemberton and Daniels in
[1] and [2]. It is interesting to see how some of the more interesting features of Standard Pascal
that were either not defined when the P4 compiler was written, or were just left out of that
compiler, are implemented. This includes features such as file management, procedures and
functions as parameters, and conformant arrays.

On the second level, the book provides a well-documented example of a non-trivial task
solved in Pascal. In this sense it highlights both the elegance of Pascal, especially its data
structures, and the major failing of Pascal - its lack of a module construct. The program was
modularly written throughout, but this programmer-enforced structure could have been far more
elegant had some module construct been present in the language.

The book is not perfect. Although generally well-documented, some extra comments about
the various data structures would have been welcomed, relieving the reader of time-consuming
cross-examination of the declarations and code. There are also some minor inconsistencies in the
use of the of the error procedure. C.A.R. Hoare (series editor of the Prentice-Hall Computer
Science series) does, however, invite reader's comments and corrections to be sent to Software -
Practice and Experience.

A model Implementation of Standard Pascal has a number of applications. It provides
students with an example of a bootstrapped recursive-descent compiler (complementing the
examples of YACC-generated LALR parsers that have become available). It also provides, due to
its modularity, a front-end for more sophisticated code generation techniques. Such code
generators could immediately be tested for correctness using the interpreter as execution model.
Finally, the post-mortem generator could provide some useful insights into the construction of
symbolic debuggers.

I recommend this book to the student of compiler theory who is interested to see an example
of a well-written Pascal compiler, and to anyone looking towards the implementation of a
Standard Pascal compiler.

References

1. Pemberton S. and Daniels M. C.,[1982], Pascal implementation: The P4 Compiler, Ellis
Horwood Limited.

2. Pemberton S. and Daniels M. C., [1982], Pascal Implementation: Compiler and
Assembler/Interpreter, Ellis Horwood Limited.

5 6 quzstiones infonnaticc, 5, 3, pp 56, issn 0254-Z757

