
POINTERS AS A DATA TYPE 

N.C.K. Phillips and S.W. Postma 
University of Natal 

Pieterma.ritzburg 3200 

1. INTRODUCTION 

The distinction between an abstract data type and an implementation of a data type is not as 
clear as is commonly thought. A hash table can be used to implement the type bag but few of our 
colleagues think of a hash table as itself being a data type. Similarly, pointers can be used to give 
a linked implementation of the data type list, but few of us seem to think of pointers as 
themselves forming a data type. However we shall give an algebraic specification of a pointer 
data type which is an abstraction of the representation of pointers in Pascal. The usual linked 
structures can then be specified abstractly via mutually recursive type specifications. In addition 
we shall describe a uniform method of constructing implementations of data type specifications 
via operations on strings. 

2. THE TYPE POINTER 

We give below an algebraic specification of the type pointer. Note that this type has two 
parameters, Heap and Item. The specification is sufficiently complete in the sense of Guttag [1] 
and safe in the sense of Phillips [8]. This implies that equality between pointers is implicitly 
considered to be a boolean valued operator of the type and that the axioms determine (up to 
isomorphism) a unique model whose objects of type pointer can be named by terms of the word 
algebra of the specification. 

Type (Heap of) Pointer (to Item): 
nil 
new(heap) 
mkpointto(pointer,item) 
pointsto(pointer) 
is-nil(pointer) 
is-new(pointer) 

-+ Pointer 
-+Pointer 
-+ Pointer U {undefined} 
-t Item U {undefined} 
-+Boolean 
-+Boolean 

For p,q in Pointer; g,h in Heap and i,j,k,l in Item: 

{ action of is-nil} 
1.1) is-nil(nil) = true 
1.2) is-nil(new(h)) = false 
1.3) is-nil(mkpointto(p,i)) = if is-nil(p) then undefined else false 

{ action of is-new} 
2.1) is-new(nil) = false 
2.2) is-new(new(h)) = true 
2.3) is-new(mkpointto(p,i)) = if is-nil(p) then undefined else false 

{ action of pointsto} 
3 .1) pointsto(nil) = undefined 
3.2) pointsto(new(h)) = undefined 
3.3) pointsto(mkpointto(p,i)) = if is-nil(p) then undefined else i 

{ action of equality between pointers} 
4.1) mkpointto(nil,i) = undefined 
4.2) mkpointto(mkpointto(new(h),i),j) = mkpointto(new(h),j) 
4.3) p=nil = is-nil(p) 
4.4) new(h) = new(g) = h =g 
4.5) mkpointto(p,i) = mkpointto(q,j) = if is-nil(p) or is-nil(q) then undefined 

else p = q and i = j 
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Some brief explanation will help comprehension of the axioms. New obtains new pointers in 
one-to-one correspondence with the elements of Heap. mkpointto(p,i) corresponds to Pascal's 
pA:=i. Pointsto(p) corresponds to Pascal's pA. Given sets Heap and Item, the data type can be 
modelled in an intuitively natural way, with the set of pointers taken to be (nil} u { (h;undefined): 
he Heap} u {(h,i): he Heap,i e Item}. In this model, pairs (h,undefined) play the role of new 
pointers and a pair (h,i) points to i. The operator new is implemented in the model by new(h) = 
(h,undefined). Some further discussion of the axioms is given in section 3 below. 

The extent of the role that formal specifications should play in developing computer 
applications has been argued widely. An excellent discussion of the issue is contained in [2]. 
However nobody denies that having to meet a formal specification reduces the possibility of 
implemention dependent results. This can be illustrated with our type Pointer. Neither UCSD 
Pascal N.I nor Turbo Pascal 3.0 conform to axiom 7 of our specification. The program below 
was run under both systems. 

program notsotrite( output); 
var p:Ainteger; 
begin 
p:= nil; 
writeln(pA ); 
end. 

The UCSD program wrote 0, and Turbo program wrote 4146. However in HP 3000 Pascal 
the program aborted with the message 'error #24 : bounds violation'. 

3. MODELS AND IMPLEMENTATIONS 

The construction of correct specifications which adequately reflect and refine our intuition 
about a data type has turned out to be a tricky task for the human mind. Reasons for this and a 
design methodology to alleviate it are given in [3]. The difficulties have led to the production of 
automated systems for the interactive design and testing of specifications. OBJ [4] is such a 
system for data type specifications and AFFIRM [5] has also been used for this purpose. One can 
also attempt automatic generation of data type implementations from specifications and this has 
been described in [6] and [7]. Of course such automatically generated implementations are not 
likely to be efficient 

We mentioned earlier that our axioms determine (up to isomorphism) a unique model whose 
objects of the type specified are named by terms of the word algebra of the specification. This is 
in fact a general property of consistent specifications which are safe (but specifications which are 
sufficiently complete but not safe need not have this property). Indeed, any model which satisfies 
our specification contains this unique model and again this is true generally for safe 
specifications. Let us call this model the canonical model. Corresponding to it there is a general 
method of implementation which we shall now describe for our example Pointer. 

The objects which represent pointers are those strings in the word algebra which are terms of 
type Pointer. More precisely, the set of these objects is the set T defined below. 

(i) nil is in T 
(ii) if his in Heap then new(h) is in T, 
(iii) if tis in Tandi is in Item then mkpointto(t,i) is in T, 
(iv) only the strings given by (i) - (iii) above are in T. 

Now axioms 1.1- 1.3 of the specification can be taken to be recursive definitions of is-nil on 
T. Axioms 2.1 - 2.3 recursively define is-new on T and axioms 3.1 - 3.3 define pointsto. 
Axioms 4.1 - 4.5 determine a binary relation on T which is to be taken as the implementation of 
equality between pointers. Only a modicum of ingenuity is needed to program an equality test 
which conforms to axioms 4.1 - 4.5. 

Let us call this implementation the canonical implementation. Algebraists have terminology 
which aptly describes the relationship between canonical implementations and canonical models. 
The equality relation in the canonical implementation of a safe specification is a congruence 
relation with respect to the other operators, hence we can lift these operators to the congruence 
classes. The resulting algebra is the canonical model for the specification. 
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4. LINKED STRUCTURES 

In their seminal paper [1], Guttag and Homing state: "Theoretically, it would be possible to 
define several types at once via mutual recursion. It seems, however, that in general a clean 
separation of types leads to clearer specifications," We are not aware of any previously published 
examples of mutually recursively specified data types. Yet it is precisely this mutual recursion 
which makes the type pointer useful. Below we give a specification of a type Node. Node's 
parameters are Item, and Pointer with parameters Heap and Node itself. 

Type Node (ofltem, (Heap of) Pointer (to Node)): 

data(node) 
next(node) 
chgdata(node,item ) 
chgnext(node,pointer) 

~Item 
~ (Heap of) Pointer (to Node) 
~Node 
~Node 

For n,m in Node, pin Pointer and i in Item: 

1) data(chgdata(n,i)) = i 
2) next(chgdata(n,i)) = next(n) 
3) data(chgnext(n,p)) = data(n) 
4) next(chgnext(n,p)) = p 
5) n=m = data(n) = data(m) and next(n) = next(m) 

The axioms simply formalize our intuition that chgdata(n,i) and chgnext(n,p) behave like 
Pascal's n".data:= i and n".next := p and that a node is determined by its data and next fields. 
The specification formalizes nodes in a linked list of Item and such a linked list is formally a 
Pointer to a Node. Other familiar linked structures such as linked trees can be obtained by altering 
the specification of Node. 

While the notion of 'list' seems more abstract than that of 'linked list', we have shown above 
that linked lists can be specified as abstractly as lists. Thus in the area of specification there are 
shades of meaning to the term 'abstract' and perhaps abstraction,like beauty, lies largely in the 
eye of the beholder. 
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