
ISSN 0254-2757

QU/ESTIONES
INFORMATICJE

Volume 5 • Number 3 December 1987

M.E. Orlowska Common Approach to Some Informational Systems 1

S.P. Byron-Moore A Program Development Environment for Microcom-
puters 13

N.C.K. Phillips Pointers as a Data Type 21
S.W. Postma

P.J.S. Brower A Model to Evaluate the Success of Information Cen-
J.J. Groenewald tres in Organizations 24

J. Mende· Three Packaging Rules for Information System Design 32

T. D. Crossman A Comparison of Academic and Practitioner Percep-
tions of the Changing Role of the Systems Analyst: an
Empiral Study 36

P.J.S. Brower Strategic Planning Models for Information Systems 44

S.H. von Solms Generating Relations Using Formal Grammars 51

A.L. du Plessis The ELSIM Language: an FSM-Based Language for
C.H. Bornman ELSIM SEE 67

BOOK REVIEW 56

CONFERENCE ABSTRACTS 57

An official publication of the Computer Society of South Africa and of the South African
Institute of Computer Scientists

'n Amptelike tydskrif van die Rekenaarvereeneging van Suid-Afrika en van die Suid­
Afrikaanse Instituut van Rekenaarwetenska plikes

A PROGRAM DEVELOPMENT ENVIRONMENT FOR
MICROCOMPUTERS

S.P.Byron-Moore
Department a/Computing Science

University a/Zimbabwe

ABSTRACT

Any distractions in the working environment can affect the quality and quantity of output. For example, noise
may disturb a person's thought processes and lead to errors. In addition, the programmer is subject to other, less
tangible, distractions arising from the use of the software tools needed for the development process. This paper
examines the latter type of disturbance and discusses ways to minimise its detrimental effect on a programmer's
concentration.

Keywords Programming environment, microcomputer software.

1 INTRODUCTION

Although the programming environment has a significant effect on the software development
process, few programmers give much thought to its design. Many tolerate an unsuitable
environment without realising that it may influence the quality of the code they produce. This
paper examines the effect of the programming environment and the factors to consider when
setting it up. Finally, it looks at an example system to illustrate some of the points that have been
discussed.

2 SCOPE OF ARTICLE

2.1 Type of Programmer

We will look at the type of environment required by a serious program developer working on
a microcomputer. We define a 'serious' developer to be a person who wishes to produce efficient
programs for long term use. This excludes the 'quick and dirty' programmer, who for one reason
or another, 'jumps in the deep end' with little thought for program design and is happy with the
first version of his program that produces apparently correct answers. It also excludes the student
programmer, who may carry out a lot of program development but mainly produces programs
that will only be run once or twice.

We could expect the serious program developer to have a reasonable degree of technical
knowledge of the computer system that he is using; it is quite probable that program development
comprises a substantial part of his job. However, as his main aim·is program development, his
environment should allow him to achieve this aim with the minimum of distraction.

2.2 Development Environment

Our main interest is in a program development environment. Such an environment should
provide ready access to a good selection of flexible, easy to use software tools. Contrast this with
an execution environment which should allow for efficient execution of applications programs.
As Dolotta points out, 'program development and execution of the resulting programs are two
radically different functions'. For this reason, an environment designed for the joint aims of
program development and program execution is unlikely to be the most effective one for both
purposes.

3 PROGRAMMING ENVIRONMENT

3.1 Effect of the Environment

In recent years, there has been much interest in ergonomics and the computer workplace. It is

13 queationea infonnatice, 5, 3, pp 13-20, ilm 0254-27'7

widely recognised that a worker's efficiency and accuracy can be affected by his physical
environment [5,6]. For example, a program developer may suffer from physical distractions such
as noise, insufficient ventilation or heating, uncomfortable furniture and interruptions by others.

However, there are subtler intellectual distractions which may seriously disturb his thought
processes. For many computer systems, a conscious effort is needed to utilise both the operating
system and the software tools. Often, a programmer must refer to a manual for clarification of the
use of a particular utility. In many instances, he has to enter information that could have been
supplied by a program. Short term distractions like these may disturb the programmer's
concentration and lead to errors.

Potentially more serious are long term distractions. For example, if the developer needs a
programming aid that is not available, he may be forced to write one himself. This may divert
him from his principal task long enough to make him forget his overall development plan, thus
leading to bad design.

All distractions divert the developer's attention his main objective - that of producing an
efficient, easy-to-use program in a reasonable time ~pan. They may cause frustration as they
delay the developer and make his task unduly difficult Certainly, they waste the developer's time

and disturb his concentration.
With suitable planning of the programming environment, many intellectual distractions can

be avoided or, at least, minimised. For example, the provision of good on-line help files will
reduce the need for reference to manuals, careful design of software tools will ensure that user
input is never requested needlessly.

Linhart [2] maintains that 'A good programming environment can affect programming ease
and code quality more than you might imagine If a system is comfortable and easy to use, you
will use it more frequently and produce better work with it'. This brings us to another point that
of motivation. If a developer finds his programming environment not conducive to software
development, he may decide, consciously or unconsciously, to avoid contact with this

environment whenever possible.

3.2 Software Tools

Clearly, the development environment must be carefully designed and the software tools
themselves must be carefully chosen. As with any other implements, it is important that they
should be:

• easy to use
• appropriate
• readily available

To ensure ease of use, it is preferable that they are:

• consistent

To provide a flexible development environment which can be tailored to suit a particular
user's requirements, it is desirable that:

• a wide range of tools be available
• each tool perform one task only
• there is a method by which the software tools can communicate

3.2.2 Ease of Use

Software utilities must be easy to use if they are to help the developer without distracting him
from his main task.

3.2.3 Appropriateness

An inappropriate implement may slow down the completion of a job and may cause the result
to be less desirable. Anyone who has tried painting window frames with a large paint brush will
verify this!

14

3.2.4 Avallabllity

Lack of availability can cause a worker to use an inappropriate tool or to avoid doing the job
that requires the use of that tool.

3.2.5 Consistency of Tools

If the user-interface of the utilities is consistent, then a new or infrequently used tool will
appear familiar to the developer and he should experience little difficulty in using it.

The user of a consistent set of implements is less likely to make errors. Consider a car driver
- in principle, he should be able to drive any car. However, if he drives a car with a different
layout of controls to the car he is used to, he is likely to make mistakes, for example, turning on
the windscreen wipers instead of indicating a right turn.

In a development environment, software tools should have a consistent methcxl of prompting
a user for information. For example, either upper or lower case input should be accepted unless
there is a specific need for case-dependent entry.

Consistency is desirable in error reporting, with similar programs reporting errors in a
similar way. For example, assume that we have an assembler which finds as many errors as
possible in one assembly and reports these to the user as a list of messages of the form:

Line xx Error nn

where xx and nn are integers. Our compiler, on the other hand, detects one error and
immediately invokes an editor program, with the cursor positioned at the suspected error
location. A message is displayed on the editor screen to indicate the nature of the error, for
example,

'"do" expected'

These two error reporting methods are radically different. The compiler program has a
communication channel with the editor, the assembler does not. The compiler reports one error at
a time, the assembler locates as many errors as it can and reports these all together. Even the
format of the error message is different; cryptic in the case of the assembler, less so for the
compiler. A developer who uses these two programs in rapid succession will mentally have to
adapt to their different interfaces. This tiring and distracting adaptation would have been avoided
if both programs had had consistent error reporting methods.

3.2.6 Range of Tools

A development environment must provide a wide range of software tools. A developer will
then have the flexibility to select utilities which are both suitable for his work and satisfy his
personal preferences.

It is essential that an index of these utilities be provided, otherwise the developer may forget
(or not realise) what is available and may needlessly search elsewhere for an appropriate tool.
This index should be readily accessible and easy to reference. To retain its value, it must be
regularly updated.

One programming environment that provides a wide range of software tools is "The
Programmer's Workbench UNIX system" [1]. It was designed to offer a uniform set of tools for
program development on certain mini-computers. In the microcomputer world, it is fairly easy to
collect a range of utilities at a low cost. MS-DOS and CP/M users, for example, can obtain free
public domain software from 'PC-Blue' and 'SIG/M' respectively [10]. In recent years,
microcomputer software vendors have reduced their prices and aimed for a high volume of sales.
The main problem is how to collect a set of software which satisfies the criteria of section 3.2.1.
Software from different suppliers will not have a consistent interface. Establishing
communications between programs from different sources may be difficult, if not impossible. A
developer has the choice of obtaining software tools which satisfy the requirements as far as
possible or producing his own software tools.

3.2. 7 One-Task, One-Program

Well known proponents of good programming practice agree that one program should

15

perform one function. Kemigan and Plauger [3], for example, believe that it is better to produce a
set of separate tools which work together, rather than to build a complicated program. The
writers of the UNIX system decided to 'Make each program do one thing well. To do a new job,
build afresh rather than complicate old programs by adding new "features'" [4].

The main advantages of 'one-task, one-program' are:

• a program which is designed and written for one specific job is more likely to be
efficient than a program which has several functions and tries to be 'all things to all
men'

• a small single purpose program is less likely to contain errors than a large
multi-purpose program

• it is better to write a new program to do a new job rather than adding extra features to
an existing program, since this may lead to performance degradation or the
introduction of errors.

The 'one program, one job' approach may not be as arduous as it appears at first sight.
Assume that we have a program for job A and we want a second program for job B, where job B
is related to job A. If the original program is well written, it may be possible to extract portions of
code from it which are relevant to a program for job B. This speeds up the process of writing the
program for job B.

3.2.8 Communications between Software Tools

To provide maximum flexibility in the development environment, there must be a means to
allow a software tool to pass information to another tool. The idea of communications between
programs is not new. It is a central design feature of the UNIX operating system which was
originally developed in 1969. More recently, in 1983, William Gates, Chairman of Microsoft
Corporation, stated that 'Apple and Microsoft are in agreement that the best solution (i.e. method

for software development) is to have multiple products (programs) that can easily pass data back
and forth' [7].

If inter-program communications are provided there is no need for large unwieldy programs
to be written. Instead, a number of small, efficient single-purpose tools can be provided as
suggested in section 3.2.7. The developer can use these separately or combine them if required.

Some operating systems, such as UNIX and MS-DOS 3.0 allow a program to communicate
with other programs by means of pipes. If the developer does not have an operating system with
this facility, it is still possible for communication to take place between programs. One way of
doing this is to pass the information via a disc file. This tends to be slow and is only feasible if a
hard disc or a disc drive emulator board is used for the transfer. A better method is to pass the
information from one program to another via locations in memory. To do this requires a
knowledge of the hardware configuration and the operating system, as both these factors may
affect the position of memory locations suitable for such a transfer. If the user is allowed to
define the memory locations for information transfer and he is supplied with a list of parameters
which can be input and output by each program then it is possible to set up communications links
between programs.

4 AN EXAMPLE

4.1 Background

In the Department of Computing Science at the University of Zimbabwe, we have put a
considerable; amount of effort into producing a development environment which satisfies the
above flexibility criteria and seeks to minimise the intellectual distractions to the programmer.
Although the current system is still being perfected, we feel that we have made significant
advances.

4.2 Implementation of Compiler/Assembler

During the program debugging/testing stage, a considerable amount of time is spent in the
edit-compile loop. This is basically non-productive time, which should be minimised to allow the

16

developer to get on with the more important task of program testing.
Traditionally, the programmer compiles his program and locates one or more syntax errors.

Then he invokes an editor program, while remembering the location and type of each error. For
each error, he must position the cursor suitably and make the necessary corrections. This method
is slow, error prone and full of distractions.

Firstly, the programmer has to remember or write down the position and nature of each error
- a task which diverts his attention from the program he is working on. At this stage,
transcription errors can easily creep in. Which programmer has not searched, fruitlessly, for a
syntax error in the wrong part of his program, because he wrongly copied down or read back the
position of an error?

Next, he has to position the cursor at the error location. This may involve typing an editor
command such as 'search' or 'move to line X'. Again, this involves the developer in effort which
is peripheral to his program development task. Furthermore, a mistake made while issuing such a
command will delay the error removal process.

Hopefully, having removed all the errors indicated by the compiler, the developer must now
leave the editor and recompile. The compiler might be invoked by typing a command line or by
typing a batch file name (if a batch file has been set up to initiate compilation). The command line

may be quite complicated especially if command line options have to be included. Whichever the
case, an operating system command has to be typed to start compilation. The input of this
command can become a monotonous and time consuming task, especially if many recompilations
are needed. Certainly, it can distract the user's concentration.

We were initially impressed with Turbo Pascals' method of error removal [8]. In this
system, when an error is detected, the editor is automatically invoked and the cursor is positioned
at the error location. This technique seemed to offer a vast improvement on the traditional method
described above, as it reduced both the amount of user effort and the time lag in locating an error.
However, repeated usage of the Turbo system showed it to be rather restrictive so we began
looking at similar, but more flexible methods of error removal. The method that we currently
prefer is implemented for an assembler-editor system devised by Ridler (9]. In this system, if a
syntax error is detected in an assembly language program, the developer is informed and given
three choices:

• to abort the assembly at that point
• to continue the assembly and search for the next syntax error (if any)
• to invoke an editor program, with the editor's cursor positioned at the location of the

suspected error

This assembler/editor system runs under CP/M 2.2 and the error row and column are passed
from the assembler to the editor via unused locations in high memory. This transfer of
information would be simpler using an operating system that provides pipes.

The system removes from the user the distraction of noting the position and type of an error.
It saves time and effort in locating the error with an editor. It also retains flexibility by allowing
the developer to:

• choose whether he wishes to use the assembler-editor link:
• choose the editor he wishes to use as part of the assembler- editor system (providing of

course that this editor is able to accept a row and column number for initial cursor
positioning)

• locate one error per compilation and immediately edit to correct this, or to collect a
batch of several errors together before editing

• ignore an error and continue searching for later errors

An alternative method of error removal would be to scan an entire program, locate all syntax
errors and then pass details of all the errors to an editor which then positions the cursor at each
error in tum. This would avoid the need to recompile after removing one error and may save
time, especially when dealing with long programs.

There are problems with this technique; for instance, how should information about multiple
errors be passed to an editor? The compiler could store the position and type of each error in a
file. Using a suitable editor (for example, an editor with its own macro-language which allows
fairly complex manipulations to take place), it would be possible to read the error data from this
file, position the cursor suitably, allowing the user to correct the error and repeat this process
until the error file is exhausted. Furthermore, the user can print the error file if so desired.

With this method, spurious errors can be a problem. For example, consider a program with

17

one syntax error which gives rise to a number of spurious error messages. The programmer is
led to examine the site of each spurious error in tum. An annoying waste of time!

As we have no practical experience in handling multiple errors by this means, it is impossible
to say whether the advantages of such a method outweigh the disadvantages or vice versa.

4.2.1 Choice of Editor

The choice of an editor program depends very much on personal preference. This is
definitely a case where "one man's meat is another man's poison"! An editor is the most
frequently used tool in a development environment so it is most important that a programmer is
able to choose an editor that he likes. For this reason, a compiler with a built-in editor is not
desirable. It would be useful if every editor was supplied with a facility to enable the user to
specify the initial position of the cursor. It would then be a simple matter to include it in the type
of system described above.

4.2.2 Error Removal

The compiler should be tolerant enough to allow a user to ignore an error and continue with
compilation. A developer may wish to ignore an error if he realises that its cause lies elsewhere.
He may be uncertain of the reason for a particular error and thus may decide to remove all the
obvious errors first and later return to the problem error(s). Turbo Pascal, for example, does not
allow the user to ignore an error and continue compilation. If a user cannot spot the cause of an
error immediately, he may have to leave his microcomputer and consult a manual. This has to be
done before he can proceed to remove other errors.

4.2.3 Experience

Experience with our own editor/assembler system has shown it to be a versatile development
aid. Ideally, and with consistency in mind, we would like to develop a similar system for each
compiler program that we use.

4.2.4 The Operating System

In many instances, the operating system is a major cause of distraction during program
development. If, at each stage in the edit-compile-test process, the programmer has to think about
and type operating system commands then his attention will be diverted from the program he is
developing. One means of avoiding this distraction is to place a shell around the operating
system.

4.3.1 A Menu-Driven Shell

In the Department of Computing Science at the University of Zimbabwe, we decided to use a
menu-driven interface to our operating system. Our aim was to make it easy for a developer to
issue an operating system command. He should be able to give a command with the minimum of
keystrokes (few program developers are trained typists!), without having to worry whether he
has the format of the command correct, and certainly without reference to a manual. Overall, he
should be able to issue an operating system command without undue fuss and distractions.

One of the main arguments against menu driven systems is that they are unduly rigid,
allowing· the user little flexibility. To avoid this problem we decided that our interface should:

• allow user definition of the menu hierarchy
• allow user definition of the menu contents
• allow user definition of the action of each menu choice
• provide for user-definable default values

With these provisos, the developer can tailor the menu system to his individual requirements.
If his requirements change, it is a simple matter to change the menu definitions accordingly.

18

4.3.2 Example Menu-Driven System

Our menu system comprises a main menu program and a number of optional submenus. For
each of these, the menu display and underlying operating system commands may be defined by
the developer using a special set-up program. The number of levels and the relationships between
menus at various levels is also decided by the user. In addition, there is a special submenu which
allows the user to specify various default values for use by the menu system.

The user selects a menu choice by depressing a single key. When he sets up the menu
system, he must specify, for each menu choice, the character to be used to select that choice.
Normally, we set up menus to use a mnemonic letter as the menu choice selector. For example,
'C' for compile, 'E' for edit and 'X' for execute. These selectors, if sensibly chosen, aid the
user's memory. Numerals may be used as the selector characters if desired but this is not
recommended, since it involves greater effort to use a menu which does not take advantage of
mnemonics.

The special 'defaults' submenu allows a menu user to set a default pathname. If the menu
system requires a file name, the user may type this in its full form or, to save effort, he may type
a carriage return, in which case the default values are used. This can save a lot of effort during
program development when it is common for the user to deal with one file repeatedly. For
example, assume that a developer has typed a program into the file 'b:test.pas'. It is likely that he
will have to edit 'b:test.pas' to remove errors and then compile the program stored in that file.
Under normal circumstances, this process will be repeated several times and each time the user
will have to type in the file name; Using the menu system, the programmer should set the default
drive = b, default name = test and default extension = pas. Then, when he invokes the editor or
compiler and is asked for a filename, he has only to type a carriage return. This is far less taxing
for the user than explicitly typing the filename.

The defaults can be used for part of a file name. If a user is prompted for a file name but only
enters part of it, then the other parts are filled in by the menu system, using the default values.
For example: if the user is asked to provide the name of a file for compilation and he types in
'test', with no extension or drive descriptor, then the default drive value and the default extension
value will be used automatically. This is useful in cases where the developer is working with a
number of different files, which are all on the same disc and/or have the same extension.

A problem arises if a user requires a command that is not included in a menu. One solution is
to provide a menu choice to return to the operating system prompt. Although we usually include
such a menu choice for flexibility, it is not the ideal solution as the user is forced to type the entire
operating system command explicitly - the situation that we were trying to avoid. Another
alternative is to allow the user to define the contents of the menus. This facility is included in our
menu system. However, there are occasions when a user will give a particular command
repeatedly in one session and then not use it again for a long time. If it is only needed on a
temporary basis, it might not be worth including this command in a permanent menu.

Provision for a temporary menu choice is needed. For this reason, we decided to include a
'default command' in our 'defaults' menu. This allows the user to temporarily specify any
operating system command as a 'default command' which can then be invoked with a few
keypresses. This facility worked well and we were soon asked to extend it to allow a user to
define two default commands. Our current system offers this choice. However, it seems that
several default commands would not be excessive.

5 CONCLUSION

The efficient production of high quality software depends on the provision of a good
programming environment. Although effort is needed to set this up, a serious program developer
should find that it is effort well spent, saving him time, unnecessary exertion and many
headaches!

REFERENCES

1. T. A. Dolotta, R. C. Haight, J.R. Mashey, [1978], UNIX Time- Sharing System: The
Programmer's Workbench, The Bell System Technical Journal, 51, 6, Jul-Aug, Part 2,
2177-2200.

2. J. Linhart, {1983], Managing Software Development with C, Byte-the Small Systems

19

Journal, 8, 8, Aug,172-182.
3. B. W. Kemigan, P. J.Plauger, [1976], Software Tools, Addison- Wesley,
4. M. D. Mcilroy, E. N. Pinson, B. A. Tague, [1978], UNIX Time- Sharing System:

Foreword, The Bell System Technical Journal, 51, 6, Jul-Aug, Part 2, 1899-1904.
5. E. Maloney, [1981], Video Dismay Tenninals, Microcomputing, S, 1, July.
6. C. Mackay, [1980], Human/actors aspects of visual display unit operation, Health and

Safety Executive, Her Majesty's Stationery Office.
7. W. Gates, [1983], The Future of Software Design, Byte-the Small Systems Journal, 8, 8,

Aug, 401-403.
8. Borland International, [1985], Turbo Pascal Version 3.0 Reference Manual.
9. P. F. Ridler Personal conversations.

10. PC-Blue, New York Amateur Computer Club, Box 106, Church Street Station, NY
10008, USA.

11. SIG/M, Box 97, Iselin, NJ 08030, USA.

20

