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POL VGON SHADING ON VECTOR TYPE DEVICES 

ABSTRACT 

C F Scheepers 
Computer Science Division 

National Research Institute for Mathematical Sciences 
CSJR, PO BOX 395, Pretoria, 0001 

A method is presented whereby the interior of boundary-defined regions on vector type devices may be shaded 
using regular line, cross-hatch and dot patterns. Different shades are realized by changing shading parameters such 
as line width, distance between consecutive lines or dots, and orientation of patterns. 

The algorithm partitions any polygon (not necessarily convex), into mutually exclusive, pseudo-monotone 
polygons that can then be shaded independently using a fast procedure. The partitioning process is based on the 
topology of the polygon, and notions such as type-1 and type-2 critical points are introduced. 

Shading is frequently used in computer graphics applications, such as cartography, engineering graphics, art, 
animation and hidden-line removal. 
KEYWORDS AND PHRASES Computer graphics, shading, filling, monotone polygons, cartography, 
map-making. 

1. INTRODUCTION 

The shading of regions with a regular pattern of lines, dots or symbols is a task common to 
many applications in computer graphics. Examples of applications are choropleth maps in 
cartography [3], cross-sections in engineering drawings [11], scene enhancement in animation, 
and light intensity approximation after hidden-line removal in three-dimensional graphics. 

The outer and possible inner boundaries of regions are often represented by one or more 
simply-connected polygons. These polygons have non-self-intersecting edges connecting a 
sequence of outline coordinates. The sequence of outline coordinates (or vertices) is ordered in 
such a way that the significant region always lies to the same side of the edges that connect 
consecutive vertices. Following this convention and for the sake of convenience, the vertices on 
the outer boundary of a region are henceforth ordered in a clockwise direction. If a region 
contains holes or islands, it has inner boundaries. The vertices on inner boundaries should then 
be ordered in a counterclockwise direction in accordance with the convention (figure 1). 

I • 

figure 1 

I 
I 
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A Region with Islands 

The task at hand is to shade regions with sets of regular patterns, typically line, cross-hatch 
and dot patterns. The appearance of shading patterns is affected by changing input shading 
parameters such as line width and colour, distance between consecutive parallel lines, and angle 
of shading lines. Consequently, a dense pattern could be constructed that would appear darker 
than one with less density. 

The literature on region shading (filling) in a raster type environment is extensive (see [1]). 
The well-known polygon filling technique of scan-converting boundary-defined polygons and 
extensions to this technique, are discussed in [ 4, 5, 7, 10]. Although adaptable to a vector type 
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environment as in [2], these techniques are often not tailored to the whims of specific 
requirements in vector based systems. Brassel and Fegeas [1] note that cartographic applications 
such as map-making (typically requiring thousands of polygons with hundreds of vertices) can 
barely be realized successfully using this traditional approach. The reasons are twofold. Firstly, 
traditional algorithms are highly sensitive to the topology of regions and the density of shade 

lines, and secondly, these algorithms often use extensive extra storage and have a high order of 
complexity. 

On vector type devices, a different approach to the shading problem is necessary to enable 
efficient utilization of available devices. Brassel and Fegeas present a very elegant algorithm that 
handles shading in a way similar to the filling of an arbitrarily shaped container with water, using 
an influx pipe at the lowest point of the container (figure 2). Water will fill the container in the 
order of the labelled volumes. This analogy illustrates an approach to partition a polygon into 
more manageable subparts prior to shading. Lee [6] employs a similar technique, except that 
partitioning is more efficient even though a greater number of subparts result. Cromley [3] also 
refers to the Brassel-Fegeas algorithm and improves on the speed of the partitioning algorithm. 
For producing sparse shading patterns, Cromley's technique is more efficient than the previously 
mentioned algorithms. 

figure 2 

Order of Shading in the Brassel-Fegeas Algorithm 

The shading technique presented here is similar to the approach taken in these papers. A new 
partitioning algorithm extending on previous ideas and introducing some new concepts is 
presented. This algorithm yields less subparts after the partitioning process than the previous 
algorithms, resulting in faster shading of regions. 

2. TERMINOLOGY 

A simply-connected polygon P is represented by an ordered list of its n vertices (V 0• V 1, •• , 

V n-I) and consists of a circular sequence of edges 

(V1, V1+1), for i = 0,1, ... ,n-l (index addition/subtraction modulo n), 

each edge being a line segment connecting consecutive vertices. The polygon will divide the 
plane into two regions, the interior and exterior regions. According to the convention presented in 
the introduction, the order of occurrence of the vertices identifies whether the interior or exterior 
of the polygon forms part of the region to be shaded. 

Consider a region R whose outer boundary is represented by polygon P0. If this region 

contains x islands Pl' P 2, ... , P x to be excluded from shading, the vertices of island or inner 
boundaries are ordered in an opposite direction to the vertices of the outer boundary. Thus the 
region R is represented by a path-connected point set [6] composed of simply-connected 
polygons P0, P1, ... , Px, where P0 is the outer boundary polygon and P1, ... ,Px are islands. 

If a polygon Pis considered topologically, three types of vertices can be identified with 
respect to the Y-axis. A vertex Vi of P is called a peak if both y(V 1_1) and y(V i+I) are less than 
y(V.) and is called a pit if both y(V1_1) and y(Vi+I) are greater than y(V1) [3, 6]. These vertices are 
jointly called critical vertices, whereas vertices that are neither peaks nor pits are referred to as 
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non-critical vertices (see figure 3a). 
A polygon containing only two critical vertices, the ones with minimum and maximum 

y-coordinates, is called monotone [ 6]. An example of a monotone polygon is illustrated in figure 
3b. Note that for any closed polygon, there exist as many peaks as pits [3]. 

PIT 

figure 3 
(a) Peak, Pit and Non-Critical Vertices 

(b) A Monotone Polygon 

Following this terminology, a peak of type- I is a peak of the inner region of R and a peak of 
type-2 is a peak of outer region of R. Similarly, a pit of the inner region of R is called a type-I pit 
and a pit of the outer region of Risa type-2 pit (figure 4). 

Furthermore, a polygon is called pseudo-monotone if it contains exactly two non-crossing, 
non-descending routes from its minimum vertex to its maximum vertex [9]. This notion is 
illustrated in figure 5, where a hypothetical region has been partitioned into mutually exclusive, 
pseudo-monotone polygons. A pseudo-montone polygon can be shaded in linear time. 

PIAlc I 

PIT I 

figure 4 

Distinction between Type-I and Type-2 Critical Vertices 
,\ 

G 

figure 5 
Partitioning into Pseudo-Monotone Polygons 
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3. POLYGON PARTITIONING 

Assume that shading lines are parallel to the x-axis, since if they are not, the polygons 
P0, ... ,P x representing region R can always be rotated accordingly. Assume furthermore that 
none of the vertices have the same y-coordinates. Given these assumptions, the partitioning 
algorithm may now be presented. 

In an initialization phase, the N vertices of all polygons P 0 ... P x are ranked according to their 
y-coordinates, the vertex with minimum y-coordinate having a rank of 1. Then, all vertices of R 
are classified as being peaks, pits or non-critical vertices. Furthermore, during this process a 

distinction is made between type-I and type-2 peaks and pits (Program A). Note that during the 
ranking process, vertices that have the same y-coordinates are naturally separated by assigning 
consecutive ranks to the vertices. Therefore, the second assumption above may be relaxed. 

If region R is now considered to be a piece of paper (possibly with holes cut into it), then 
using a pair of scissors, it would be easy to 'cut away' pseudo-monotone polygons (pmp's) from 
R in the following way: Start cutting at a critical vertex of type-2 in a horizontal direction until the 
end of the paper in that particular direction is reached. Repeat this process for all type-2 critical 
vertices. The result would yield a number of oddly shaped pieces of paper that are all pmp's 
(Program B). Note that by using this method, the number of pmp's extracted is: 

n(pmp) = n(type-2 critical points)+ 1 - n(islands) 

As an example, consider the region illustrated in figure 5. Vertices F, L, J, M, I and Bare all 
type-2 critical vertices. The proposed cuts are also illustrated, yielding six pmp's. The actual 
cutting directions chosen here is of no interest as a change in direction would still result in six 

pmp's. 
To present the partitioning process more precisely, consider the following programs: 

PROGRAM A; 
Input 

A list of the N vertices of polygons P 0 •.• P x representing region R (vlist). 
OuJput 

Lists of ranks, classifications and types of Vi, rank(.), class(.) and type(.) 
respectively. 

Functions 
. PRED(.) and SUCC(.) denoting the predecessor and successor of vertices on the 

boundary sequence respectively. 
Procedures 

• SORT(.) that sons a list in ascending order. 
• CNODE(from, to, use, new), a procedure that creates a node [new] on the line 

through points [from] and [to], [new] being the horizontal cut-off point of [use] on 
the line. 

Program block 
BEGIN 

(* determine ranks *) 
FORiFROM 1 TON DO 

rank(Vi) := i; 
ENDFOR; 
SORT(rank); (* ranks list is sorted using y(Vi) as keys *) 

(* determine classifications *) 
FORiFROM 1 TON DO 

IF y(PRED(Vi)) < y(V) AND y(SUCC(Vi)) < y(Vi) 

THEN class(Vi) := peak; 
ELSIF y(PRED(V)) > y(V) AND y(SUCC(Vi)) > y(V) 

THEN class(V) := pit; 

ELSE class(Vi) := non-critical; 
ENDIF; 

ENDFOR; 
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(* determine types *) 
FORiFROM 1 TON DO 

IF class(Vi) = non-critical THEN type(Vi) := nil; 
ELSE 

Vi := Vi; Succ := SUCC( Vi); 
Pred := PRED(Vi); 
CNODE(Vi, Succ, Pred, Test); (* See figure 6 *) 
IF class(i) = peak THEN 

IF x(Test) > x(PRED(Vi)) THEN type(Vi) := typel; 

ELSE type(V) := type2; 
ENDIF; 

ELSIF class(i) = pit THEN 
IF x(Test) < x(PRED(Vi)) THEN type(Vi) := typel; 

ELSE type(Vi) := type2; 
ENDIF; 

ENDIF; 
ENDIF; 

ENDFOR; 
ENDPROORAM. 

I PEAKS I ,-.......... 

PROGRAM B; 

lnpUJ: 

TEST 

TEs,:, j PITS j _? ___ _ 
succ 

r PRED ,)..., 

V1 
figure 6 

/ Vi ) 

(fiJ'E ~D 

~ 
Slice 

Determining the Types of Peaks and Pits 

• A list of the N vertices of polygons P 0 ... P x representing a region R (vlist). 
• The lists of ranks, classes and types output by PROGRAM A. 

0U1pUJ 
Two lists of vertices defining the left and right routes of a pmp (leftr and rightr 
respectively). 

Storage 
• Two lists, one containing all type-I pits in ascending order of ranks (plist) and the 

other containing all type-2 pits in ascending order of ranks (qlist). 
• A list of all type-2 peaks (rlist), as well as a list of markers associated with every 

type-2 peak (mark(.)). 
• A stack with potential maximum sizes equal to the total number of type-2 pits in R, 

where the stack is empty initially (vstack). 
• Two temporary variables (Curl and Curr) representing vertices currently under 

consideration. 
Functions 

• MINI(a,b), returns the lower of two vertices [a] and [b]. 
• PRED(.), SUCC(.) and CNODE( ... ) as in PROGRAM A. 
• TYPE2PEAK(x), true if vertex [x] is a type-2 peak. 
• INLIST(list,point), true if vertex [point] is in [list]. 
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Procedures 
• PROCEDURE ADDLIST(list, point); 

BEGIN 
\code to add [point] at the end of [list]\ 

ENDPROCEDURE; 
• PROCEDURE CUTTOLEFf; 

BEGIN 
(* Cut to the left edge to extract a pmp *) 
CNODE(PRED(Curl), Curl, Min, New); 
ADDLIST(leftr, New); 
mark(Min) := New; (* Associate Min with New *) 

END PROCEDURE; 
• PROCEDURE CUTTORIGHT; (* Cut to the right edge *) 

BEGIN 
CNODE(SUCC(Curr), Curr, Min, New); 
ADDLIST(rightr, New); mark(Min) := New; 

ENDPROCEDURE; 
• PROCEDURE INSINUATE (x); 

BEGIN 
\ code to check if insinuation occurs (see figure 7) All elements in qlist with 
ranks smaller than x is possible insinuation points\ 
IF\ insinuation occurs \ THEN 

\ code to remove the insinuation point (Inpnt) from qlist as a type-2 pit can 
'insinuate' only once\ 
CNODE(PRED(Curl), Curl, Inpnt, New); 
ADDLIST(leftr, New); ADDLIST(leftr, Inpnt); 
\ code to push New and Inpnt onto vstack \ 
Curl := SUCC(Inpnt); 

ELSE 
IF flag THEN Curl := SUCC(Curl) 
ELSE Curr := PRED(Curr); 
ENDIF; 

ENDIF; 
ENDPROCEDURE; 

• PROCEDURE XTRACT; 
BEGIN 

LOOP 
Min := MINI(Curl, Curr); 
IF Curl = Min THEN flag := true; ADDLIST(leftr, Min); 
ELSE flag := false; ADDLIST(rightr, Min); 
ENDIF; 
IF TYPE2PEAK(Min) THEN 

IF INLIST(rlist, Min) THEN 
\ code to remove Min from rlist \ 
IF flag THEN CUTTORIGHT; 
ELSE CUTTOLEFf END IF; 
EXITLOOP; 

ELSE (* Peak has already been used to cut from *), 
New := mark(Min); 
IF flag THEN ADDLIST(leftr, New); Curl:= SUCC(New); 
ELSE ADDLIST(rightr, New); Curr := PRED(New); 
ENDIF; 

ENDIF; 
ELSE (* Min is not a type-2 peak *) 

IF Curl = Curr THEN EXITLOOP 
ELSE INSINUATE(rank(Min)) ENDIF; 

ENDIF; 
ENDLOOP; 

END PROCEDURE; 
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Program block (Execute for every pmp to be extracted) 
BEGIN 

IF NOT empty (plist) THEN 
leftr := rightr := empty; 
Curl := SUCC(plist(l)); Curr:= PRED(PLIST(l)); 
ADDLIST(leftr, plist(l)); ADDLIST(rightr, plist(l)); 
\ code to remove the first element from plist \ 
XlRACT; 

ELSIF NOT empty (vstack) THEN 
\ code to pop insinuation vertex Inpnt and point New\ 
Curl := SUCC(New); Curr := PRED(lnpnt); XTRACT; 

ENDIF; 
ENDPRCXiRAM; 

MIN ------

figure 7 
An Insinuation of a Type-2 Pit Occurs if the Vertex Lies within the Coloured Area 

4. POLYGON SHADING 

The pseudo-monotone polygons are shaded in a way very similar to the technique used in 
[1,3] for shading trapezoids or triangles. The left and right routes that have been introduced in the 
discussion above are used as left and right shading limits. Instead of intersecting each shading 
line with these limits to determine the shading line end points, an incremental displacement along 
each shading edge is calculated. 

Assume that apart from being parallel to the x-axis, all shading lines are also placed on 
integer y-axis values. (If this is not true, all vertices of polygons P0 ••• Px can always be scaled 
accordingly). Consider the left route of a hypothetical pmp as illustrated in figure 8a. Let Li 

denote left end points of shading lines. Then by calculating xCLi) and yCLi) once for each shading 
limit, with repeated additions of~ and <ly, 

<lx = x(L2) - x(L1) 
dy = y(L2) - y(L1) = 1 (from the assumption), 

it is simple and fast to determine the other values of Li : Let DX=x(B)-x(A) and DY =y(B)-y(A), 
then 

y(L1) = CEILING(y(A)) 

x(L1) = x(A) + (y(L1)- y(A))*DX/DY 
and 

dx =DX/DY 

dy = 1. 
Hence, the shading line end points are: 

x(Li) = x(Li-1) + dx 
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y(Li) = Y(4-1) + 1, 
for i = 2 ... COUNT, where COUNT= FLOOR(y(B)) - CEILING(y(A)) + 1 

A similar approach is taken to determine positions on a conceptual shading line for the 
placement of dots or symbols [8]. Using the parameters illustrated in figure8b (density, 
indentation and distance between consecutive shading lines), it is possible to construct many 
different dot and symbol patterns (see figures 9 and 10). 

I 

I 

/> / LEFT 
B SHADING 
L1 LIMITS 

DOTS OR SYMBOLS 

-~ENS~ ___ _c __ _ 
I 

-1-----·--~-
I I --t,----·----
1 I 
't' CONSECUTIVE 

INDENTATION SHADING 
LINES 

figure 8 
(a) Determining Shading Line End Points 

(b) Parameters to Control the Shading Using Dots or Symbols 

5. IMPLEMENTATION 

The shading technique described above has been implemented on a PERKIN-ELMER 
(3200-series) mini-computer in a locally developed procedural language called SCRAP. Using 
storage management facilities, it was possible to provide for regions with any number of islands 
and any number of vertices (only restricted by the storage available). This facility is required in a 
cartographic system currently being developed where geographical regions often contain a large 
number of islands, and the total number of vertices describing a region can be in the order of 
thousands. 

The procedure first eliminates duplicate vertices on the boundaries of polygons representing 
the region, and then processes the island boundaries by reordering them in an opposite direction 
to the order of· the outline boundary. Depending on the required parameters for shading, whether 
for shading lines or dot patterns, the boundary vertices are scaled and rotated so that conceptual 
shading line segments are always horizontal and fall on integer y-coordinates. Following this, the 
initialization phase requires a single O(n LOG n) sort on y-coordinates. These sorted coordinates 
are used to classify peak, pit and non-critical vertices of all polygons in an order O(n) process. 
The region to be shaded is then partitioned into pseudo-monotone polygons that can be shaded in 
linear time. Note that in the above discussion, no reference has been made to the fact that shading 
line segments should be rotated and scaled back to the original coordinate system. This is not 
necessary as the shading line end points can be calculated directly in the original coordinate 
system (see [8]). 

Comparing this technique with the Brassel-Fegeas algorithm, it is obvious that the pmp 
partitioning algorithm is more effective. Apart from only requiring a single sort (as opposed to 
two sorts in the Brassel-Fegeas algorithm), this algorithm partitions a region into 

N(pmp~s) = N(type-2 pits and peaks) + 1 - N(islands). 

The Brassel-Fegeas algorithm on the other hand, partitions the same region into N 
trapezoids, where 
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N(trapezoids) = N(vertices) - 1 + N(islands). 

The reduction in the number of subparts that a partitioning process requires forms the 
strength of the new algorithm as the number of subparts may be considered as an overhead of the 
algorithm (see [6]). 

Furthermore, the Brassel-Fegeas algorithm uses all outline vertices to test for insinuation, 
making it a very time intensive process. In the present algorithm, which uses the classifications 
of vertices, the test for insinuation is highly optimized as the vertices to be considered each time 
are limited. 

CROSS- SECTIONS 

SOLIDS 

figure 9 
Examples of Different Dot Pattern Shading 

I 

Y. ,, 

figure 1 Oa 

Examples of Results Obtained with the Pmp Partioning Algorithm 

6. CONCLUDING REMARKS 

An efficient technique for shading regions on vector type devices has been presented. This 
algorithm uses the topology of the region to partition it into less complex subparts that are then 
shaded by means of a fast procedure. 

Using shading parameters, many different regular shading patterns may be constructed, 
making this technique very useful in a number of different computer graphics applications. 
Although the algorithm has been designed specifically for vector type devices, it can also be used 
for shading on raster type devices, where shading lines may be viewed as scan lines. 

54 





NOTES FOR CONTRIBUTORS 

The purpose of the journal will be to pub­
lish original papers in any field of computing. 
Papers submitted may be research articles, 
review artilces and exploratory articles of gen­
eral interest to readers of the journal. The pre­
ferred languages of the journal will be the 
congress languages of IFIP although papers in 
other languages will not be precluded. 

Manuscripts should be submitted in tripli-
cate to: 

Prof. G. Wiechers 
INFOPLAN 
Private Bag 3002 
Monument Park 0105 
South Africa 

Form of manuscript 
Manuscripts should be in double-space typ­

ing on one side only of sheets of A4 size with 
wide margins. Manuscripts produced using 
the Apple Macintosh will be welcomed. 
Authors should write concisely. 

The first page should include the article title 
(which should be brief), the author's name 
and affiliation and address. Each paper must 
be accompanied by an abstract less than 200 
words which will be printed at the beginning 
of the paper, together with an appropriate key 
word list and a list of relevant Computing Re­
view categories. 

Table~ and figures 
-Tables and figures should not be included 

in the text, although tables and figures should 
be referred to in the printed text. Tables should 
be typed on separate sheets and should be 
numbered consecutively and titled. 

Figures should also be supplied on separate 
sheets, and each should be clearly identified 
on the back in pencil and the authors name and 
figure number. Original line drawings (not 
photocopies) should be submitted· and should 
include all the relevant details. Drawings etc., 
should be submitted and should include all rel­
evant details. Photographs as illustrations 
should be avoided. if possible. If this cannot be 

avoided, glossy bromide prints are required. 

Symbols 
Mathematical and other symbols may be ei­

ther handwritten or typewritten. Greek letters 
and unusual symbols should be identified in 
the margin. Distinction should be made be­
tween capital and lower case letters; between 
the letter O and zero; between the letter I, the 
number one and prime; between K and kappa. 

References 
References should be listed at the end of the 

manuscript in alphabetic order of the author's 
name, and cited in the text in square brackets. 
Journal references should be arranged thus: 

1. Ashcroft E. and Manna Z., The Trans­
lation of 'GOTO' Programs to 'WHILE' 
programs., Proceedings of IFIP Con­
gress 71, North-Holland, Amsterdam, 
250-255, 1972. 

2. Bohm C. and Jacopini G., Flow Dia­
grams, Turing Machines and Languages 
with only Two Formation Rules., 
Comm. ACM, 9, 366-371, 1966. 

3. Ginsburg S., Mathematical Theory of 
Context-free Languages, McGraw Hill, 
New York, 1966. 

Proofs 
Proofs will be sent to the author to ensure 

that the papers have been correctly typeset and 
not for the addition of new material or major 
amendment to the texts. Excessive alterations 
may be disallowed. Corrected proofs must be 
returned to the production manager within 
three days to minimize the risk of the author's 
contribution having to be held over to a later 
issue. 

Only orginal papers will be accepted, and 
copyright in published papers will be vested in 
the publisher. · 

Letters 
A section of "Letters to the Editor" (each 

limited to about 500 words) will provide a for­
um for discussion of recent problems. 

I 

• I 








