
ISSN 0254-2757

QU/ESTIONES
INFORMATICJE

Volume 5 • Number 2 October 1987

M.J. Wagener Rekenaar Spaaksintese: Die Omskakeling van Teks na 1
Klank

E.C. Anderssen A CAI Model of Space and Time with Special Refer- 7
S.H. von Sohns ence to Field Battles

H.A. Goosen A Model for Fault-Tolernat Computer Systems 16
C.H. Hoogendoorn

E.M. Ehlers Random Context Structure Grammars 23
S.H. von Solms

C.S.M. Mueller Set-Oriented Functional Style of Programming 29

P.J.S. Brower User Attitudes: Main Reason Why Information Sys- 40
terns Fail

C.F. Sc beepers Polygon Shading on Vector Type Devices 46

G.R. Finnie Novive Attitude Changes During a First Course in 56
Computing: A Case Study

P.O. Clayton Hands-On Microprogramming for Computer Science 63
Students

BOOK REVIEW 39

CONFERENCE ANNOUNCEMENT 68

An official publication of the Computer Society of South Africa and of the South African
Institute of Computer Scientists

'n Amptelike tydskrif van die Rekenaarvereeneging van Suid-Afrika en van die Suid­
Afrikaanse Instituut van Rekenaarwetenskaplikes

I

QUJESTIONES INFORMATICJE

An official publication of the Computer Society of South Africa
and of the South African Institute or Computer Scientists

'n Amptelike tydskrlt van die Rekenaarverenlglng van Sold-Africa
en van- die Suld-Afrlkaanse lnstltuut van Rekenaarwetenskaplikes

Editor

Professor G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0105

Editorial Advisory Board

Professor D.W. Barron
Department of Mathematics
The University
Southampton S09 5NH, UK

Professor J.M. Bishop
Department of Computer Science
University of the Witwatersrand
1 Jans Smuts Avenue
2050 WITS •

Professor K. MacGregor
Department of Computer Science
University of Cape Town
Private Bag
Rondebosch, 7700

Prof H. Messerschmidt
University of the Orange Free State
Bloemfontein, 9301

Dr P.C. Pirow
Graduate School of Bussiness Admin.
University of the Witwatersrand
P.O. Box 31170, Braamfontein, 2017

Professor S.H. von Solms
Department of Computer Science
Rand Afrikaans University
Auckland Park
Johannesburg, 2001

Professor M.H. Williams
Department of Computer Science
Herriot-Watt University, Edinburgh
Scotland

Production

Mr C.S.M. Mueller
Department of Computer Science
University of the Witwatersrand
2050 WITS

Subscriptions

Annual subscription are as follows:
SA US UK

Individuals R 10 $ 7 £ 5
Institutions Rl5 $14 £10

Computer Society of South Africa
Box 1714 Halfway House

Qu2stlones Informatlcz ls prepared by the CompQ.ter Science Department of the
University of the Witwatersrand and printed by Printed Matter, for the Computer
Society or South Africa and the South African Institute or Computer Scientists.

POL VGON SHADING ON VECTOR TYPE DEVICES

ABSTRACT

C F Scheepers
Computer Science Division

National Research Institute for Mathematical Sciences
CSJR, PO BOX 395, Pretoria, 0001

A method is presented whereby the interior of boundary-defined regions on vector type devices may be shaded
using regular line, cross-hatch and dot patterns. Different shades are realized by changing shading parameters such
as line width, distance between consecutive lines or dots, and orientation of patterns.

The algorithm partitions any polygon (not necessarily convex), into mutually exclusive, pseudo-monotone
polygons that can then be shaded independently using a fast procedure. The partitioning process is based on the
topology of the polygon, and notions such as type-1 and type-2 critical points are introduced.

Shading is frequently used in computer graphics applications, such as cartography, engineering graphics, art,
animation and hidden-line removal.
KEYWORDS AND PHRASES Computer graphics, shading, filling, monotone polygons, cartography,
map-making.

1. INTRODUCTION

The shading of regions with a regular pattern of lines, dots or symbols is a task common to
many applications in computer graphics. Examples of applications are choropleth maps in
cartography [3], cross-sections in engineering drawings [11], scene enhancement in animation,
and light intensity approximation after hidden-line removal in three-dimensional graphics.

The outer and possible inner boundaries of regions are often represented by one or more
simply-connected polygons. These polygons have non-self-intersecting edges connecting a
sequence of outline coordinates. The sequence of outline coordinates (or vertices) is ordered in
such a way that the significant region always lies to the same side of the edges that connect
consecutive vertices. Following this convention and for the sake of convenience, the vertices on
the outer boundary of a region are henceforth ordered in a clockwise direction. If a region
contains holes or islands, it has inner boundaries. The vertices on inner boundaries should then
be ordered in a counterclockwise direction in accordance with the convention (figure 1).

I •

figure 1

I
I

I '

A Region with Islands

The task at hand is to shade regions with sets of regular patterns, typically line, cross-hatch
and dot patterns. The appearance of shading patterns is affected by changing input shading
parameters such as line width and colour, distance between consecutive parallel lines, and angle
of shading lines. Consequently, a dense pattern could be constructed that would appear darker
than one with less density.

The literature on region shading (filling) in a raster type environment is extensive (see [1]).
The well-known polygon filling technique of scan-converting boundary-defined polygons and
extensions to this technique, are discussed in [4, 5, 7, 10]. Although adaptable to a vector type

46 qua:stioncs infonnatice, 5, 2, pp 46-55, issn 0254-2757

environment as in [2], these techniques are often not tailored to the whims of specific
requirements in vector based systems. Brassel and Fegeas [1] note that cartographic applications
such as map-making (typically requiring thousands of polygons with hundreds of vertices) can
barely be realized successfully using this traditional approach. The reasons are twofold. Firstly,
traditional algorithms are highly sensitive to the topology of regions and the density of shade

lines, and secondly, these algorithms often use extensive extra storage and have a high order of
complexity.

On vector type devices, a different approach to the shading problem is necessary to enable
efficient utilization of available devices. Brassel and Fegeas present a very elegant algorithm that
handles shading in a way similar to the filling of an arbitrarily shaped container with water, using
an influx pipe at the lowest point of the container (figure 2). Water will fill the container in the
order of the labelled volumes. This analogy illustrates an approach to partition a polygon into
more manageable subparts prior to shading. Lee [6] employs a similar technique, except that
partitioning is more efficient even though a greater number of subparts result. Cromley [3] also
refers to the Brassel-Fegeas algorithm and improves on the speed of the partitioning algorithm.
For producing sparse shading patterns, Cromley's technique is more efficient than the previously
mentioned algorithms.

figure 2

Order of Shading in the Brassel-Fegeas Algorithm

The shading technique presented here is similar to the approach taken in these papers. A new
partitioning algorithm extending on previous ideas and introducing some new concepts is
presented. This algorithm yields less subparts after the partitioning process than the previous
algorithms, resulting in faster shading of regions.

2. TERMINOLOGY

A simply-connected polygon P is represented by an ordered list of its n vertices (V 0• V 1, •• ,

V n-I) and consists of a circular sequence of edges

(V1, V1+1), for i = 0,1, ... ,n-l (index addition/subtraction modulo n),

each edge being a line segment connecting consecutive vertices. The polygon will divide the
plane into two regions, the interior and exterior regions. According to the convention presented in
the introduction, the order of occurrence of the vertices identifies whether the interior or exterior
of the polygon forms part of the region to be shaded.

Consider a region R whose outer boundary is represented by polygon P0. If this region

contains x islands Pl' P 2, ... , P x to be excluded from shading, the vertices of island or inner
boundaries are ordered in an opposite direction to the vertices of the outer boundary. Thus the
region R is represented by a path-connected point set [6] composed of simply-connected
polygons P0, P1, ... , Px, where P0 is the outer boundary polygon and P1, ... ,Px are islands.

If a polygon Pis considered topologically, three types of vertices can be identified with
respect to the Y-axis. A vertex Vi of P is called a peak if both y(V 1_1) and y(V i+I) are less than
y(V.) and is called a pit if both y(V1_1) and y(Vi+I) are greater than y(V1) [3, 6]. These vertices are
jointly called critical vertices, whereas vertices that are neither peaks nor pits are referred to as

47

non-critical vertices (see figure 3a).
A polygon containing only two critical vertices, the ones with minimum and maximum

y-coordinates, is called monotone [6]. An example of a monotone polygon is illustrated in figure
3b. Note that for any closed polygon, there exist as many peaks as pits [3].

PIT

figure 3
(a) Peak, Pit and Non-Critical Vertices

(b) A Monotone Polygon

Following this terminology, a peak of type- I is a peak of the inner region of R and a peak of
type-2 is a peak of outer region of R. Similarly, a pit of the inner region of R is called a type-I pit
and a pit of the outer region of Risa type-2 pit (figure 4).

Furthermore, a polygon is called pseudo-monotone if it contains exactly two non-crossing,
non-descending routes from its minimum vertex to its maximum vertex [9]. This notion is
illustrated in figure 5, where a hypothetical region has been partitioned into mutually exclusive,
pseudo-monotone polygons. A pseudo-montone polygon can be shaded in linear time.

PIAlc I

PIT I

figure 4

Distinction between Type-I and Type-2 Critical Vertices
,\

G

figure 5
Partitioning into Pseudo-Monotone Polygons

48

3. POLYGON PARTITIONING

Assume that shading lines are parallel to the x-axis, since if they are not, the polygons
P0, ... ,P x representing region R can always be rotated accordingly. Assume furthermore that
none of the vertices have the same y-coordinates. Given these assumptions, the partitioning
algorithm may now be presented.

In an initialization phase, the N vertices of all polygons P 0 ... P x are ranked according to their
y-coordinates, the vertex with minimum y-coordinate having a rank of 1. Then, all vertices of R
are classified as being peaks, pits or non-critical vertices. Furthermore, during this process a

distinction is made between type-I and type-2 peaks and pits (Program A). Note that during the
ranking process, vertices that have the same y-coordinates are naturally separated by assigning
consecutive ranks to the vertices. Therefore, the second assumption above may be relaxed.

If region R is now considered to be a piece of paper (possibly with holes cut into it), then
using a pair of scissors, it would be easy to 'cut away' pseudo-monotone polygons (pmp's) from
R in the following way: Start cutting at a critical vertex of type-2 in a horizontal direction until the
end of the paper in that particular direction is reached. Repeat this process for all type-2 critical
vertices. The result would yield a number of oddly shaped pieces of paper that are all pmp's
(Program B). Note that by using this method, the number of pmp's extracted is:

n(pmp) = n(type-2 critical points)+ 1 - n(islands)

As an example, consider the region illustrated in figure 5. Vertices F, L, J, M, I and Bare all
type-2 critical vertices. The proposed cuts are also illustrated, yielding six pmp's. The actual
cutting directions chosen here is of no interest as a change in direction would still result in six

pmp's.
To present the partitioning process more precisely, consider the following programs:

PROGRAM A;
Input

A list of the N vertices of polygons P 0 •.• P x representing region R (vlist).
OuJput

Lists of ranks, classifications and types of Vi, rank(.), class(.) and type(.)
respectively.

Functions
. PRED(.) and SUCC(.) denoting the predecessor and successor of vertices on the

boundary sequence respectively.
Procedures

• SORT(.) that sons a list in ascending order.
• CNODE(from, to, use, new), a procedure that creates a node [new] on the line

through points [from] and [to], [new] being the horizontal cut-off point of [use] on
the line.

Program block
BEGIN

(* determine ranks *)
FORiFROM 1 TON DO

rank(Vi) := i;
ENDFOR;
SORT(rank); (* ranks list is sorted using y(Vi) as keys *)

(* determine classifications *)
FORiFROM 1 TON DO

IF y(PRED(Vi)) < y(V) AND y(SUCC(Vi)) < y(Vi)

THEN class(Vi) := peak;
ELSIF y(PRED(V)) > y(V) AND y(SUCC(Vi)) > y(V)

THEN class(V) := pit;

ELSE class(Vi) := non-critical;
ENDIF;

ENDFOR;

49

(* determine types *)
FORiFROM 1 TON DO

IF class(Vi) = non-critical THEN type(Vi) := nil;
ELSE

Vi := Vi; Succ := SUCC(Vi);
Pred := PRED(Vi);
CNODE(Vi, Succ, Pred, Test); (* See figure 6 *)
IF class(i) = peak THEN

IF x(Test) > x(PRED(Vi)) THEN type(Vi) := typel;

ELSE type(V) := type2;
ENDIF;

ELSIF class(i) = pit THEN
IF x(Test) < x(PRED(Vi)) THEN type(Vi) := typel;

ELSE type(Vi) := type2;
ENDIF;

ENDIF;
ENDIF;

ENDFOR;
ENDPROORAM.

I PEAKS I ,-..........

PROGRAM B;

lnpUJ:

TEST

TEs,:, j PITS j _? ___ _
succ

r PRED ,)...,

V1
figure 6

/ Vi)

(fiJ'E ~D

~
Slice

Determining the Types of Peaks and Pits

• A list of the N vertices of polygons P 0 ... P x representing a region R (vlist).
• The lists of ranks, classes and types output by PROGRAM A.

0U1pUJ
Two lists of vertices defining the left and right routes of a pmp (leftr and rightr
respectively).

Storage
• Two lists, one containing all type-I pits in ascending order of ranks (plist) and the

other containing all type-2 pits in ascending order of ranks (qlist).
• A list of all type-2 peaks (rlist), as well as a list of markers associated with every

type-2 peak (mark(.)).
• A stack with potential maximum sizes equal to the total number of type-2 pits in R,

where the stack is empty initially (vstack).
• Two temporary variables (Curl and Curr) representing vertices currently under

consideration.
Functions

• MINI(a,b), returns the lower of two vertices [a] and [b].
• PRED(.), SUCC(.) and CNODE(...) as in PROGRAM A.
• TYPE2PEAK(x), true if vertex [x] is a type-2 peak.
• INLIST(list,point), true if vertex [point] is in [list].

50

Procedures
• PROCEDURE ADDLIST(list, point);

BEGIN
\code to add [point] at the end of [list]\

ENDPROCEDURE;
• PROCEDURE CUTTOLEFf;

BEGIN
(* Cut to the left edge to extract a pmp *)
CNODE(PRED(Curl), Curl, Min, New);
ADDLIST(leftr, New);
mark(Min) := New; (* Associate Min with New *)

END PROCEDURE;
• PROCEDURE CUTTORIGHT; (* Cut to the right edge *)

BEGIN
CNODE(SUCC(Curr), Curr, Min, New);
ADDLIST(rightr, New); mark(Min) := New;

ENDPROCEDURE;
• PROCEDURE INSINUATE (x);

BEGIN
\ code to check if insinuation occurs (see figure 7) All elements in qlist with
ranks smaller than x is possible insinuation points\
IF\ insinuation occurs \ THEN

\ code to remove the insinuation point (Inpnt) from qlist as a type-2 pit can
'insinuate' only once\
CNODE(PRED(Curl), Curl, Inpnt, New);
ADDLIST(leftr, New); ADDLIST(leftr, Inpnt);
\ code to push New and Inpnt onto vstack \
Curl := SUCC(Inpnt);

ELSE
IF flag THEN Curl := SUCC(Curl)
ELSE Curr := PRED(Curr);
ENDIF;

ENDIF;
ENDPROCEDURE;

• PROCEDURE XTRACT;
BEGIN

LOOP
Min := MINI(Curl, Curr);
IF Curl = Min THEN flag := true; ADDLIST(leftr, Min);
ELSE flag := false; ADDLIST(rightr, Min);
ENDIF;
IF TYPE2PEAK(Min) THEN

IF INLIST(rlist, Min) THEN
\ code to remove Min from rlist \
IF flag THEN CUTTORIGHT;
ELSE CUTTOLEFf END IF;
EXITLOOP;

ELSE (* Peak has already been used to cut from *),
New := mark(Min);
IF flag THEN ADDLIST(leftr, New); Curl:= SUCC(New);
ELSE ADDLIST(rightr, New); Curr := PRED(New);
ENDIF;

ENDIF;
ELSE (* Min is not a type-2 peak *)

IF Curl = Curr THEN EXITLOOP
ELSE INSINUATE(rank(Min)) ENDIF;

ENDIF;
ENDLOOP;

END PROCEDURE;

51

Program block (Execute for every pmp to be extracted)
BEGIN

IF NOT empty (plist) THEN
leftr := rightr := empty;
Curl := SUCC(plist(l)); Curr:= PRED(PLIST(l));
ADDLIST(leftr, plist(l)); ADDLIST(rightr, plist(l));
\ code to remove the first element from plist \
XlRACT;

ELSIF NOT empty (vstack) THEN
\ code to pop insinuation vertex Inpnt and point New\
Curl := SUCC(New); Curr := PRED(lnpnt); XTRACT;

ENDIF;
ENDPRCXiRAM;

MIN ------

figure 7
An Insinuation of a Type-2 Pit Occurs if the Vertex Lies within the Coloured Area

4. POLYGON SHADING

The pseudo-monotone polygons are shaded in a way very similar to the technique used in
[1,3] for shading trapezoids or triangles. The left and right routes that have been introduced in the
discussion above are used as left and right shading limits. Instead of intersecting each shading
line with these limits to determine the shading line end points, an incremental displacement along
each shading edge is calculated.

Assume that apart from being parallel to the x-axis, all shading lines are also placed on
integer y-axis values. (If this is not true, all vertices of polygons P0 ••• Px can always be scaled
accordingly). Consider the left route of a hypothetical pmp as illustrated in figure 8a. Let Li

denote left end points of shading lines. Then by calculating xCLi) and yCLi) once for each shading
limit, with repeated additions of~ and <ly,

<lx = x(L2) - x(L1)
dy = y(L2) - y(L1) = 1 (from the assumption),

it is simple and fast to determine the other values of Li : Let DX=x(B)-x(A) and DY =y(B)-y(A),
then

y(L1) = CEILING(y(A))

x(L1) = x(A) + (y(L1)- y(A))*DX/DY
and

dx =DX/DY

dy = 1.
Hence, the shading line end points are:

x(Li) = x(Li-1) + dx

52

y(Li) = Y(4-1) + 1,
for i = 2 ... COUNT, where COUNT= FLOOR(y(B)) - CEILING(y(A)) + 1

A similar approach is taken to determine positions on a conceptual shading line for the
placement of dots or symbols [8]. Using the parameters illustrated in figure8b (density,
indentation and distance between consecutive shading lines), it is possible to construct many
different dot and symbol patterns (see figures 9 and 10).

I

I

/> / LEFT
B SHADING
L1 LIMITS

DOTS OR SYMBOLS

-~ENS~ ___ _c __ _
I

-1-----·--~-
I I --t,----·----
1 I
't' CONSECUTIVE

INDENTATION SHADING
LINES

figure 8
(a) Determining Shading Line End Points

(b) Parameters to Control the Shading Using Dots or Symbols

5. IMPLEMENTATION

The shading technique described above has been implemented on a PERKIN-ELMER
(3200-series) mini-computer in a locally developed procedural language called SCRAP. Using
storage management facilities, it was possible to provide for regions with any number of islands
and any number of vertices (only restricted by the storage available). This facility is required in a
cartographic system currently being developed where geographical regions often contain a large
number of islands, and the total number of vertices describing a region can be in the order of
thousands.

The procedure first eliminates duplicate vertices on the boundaries of polygons representing
the region, and then processes the island boundaries by reordering them in an opposite direction
to the order of· the outline boundary. Depending on the required parameters for shading, whether
for shading lines or dot patterns, the boundary vertices are scaled and rotated so that conceptual
shading line segments are always horizontal and fall on integer y-coordinates. Following this, the
initialization phase requires a single O(n LOG n) sort on y-coordinates. These sorted coordinates
are used to classify peak, pit and non-critical vertices of all polygons in an order O(n) process.
The region to be shaded is then partitioned into pseudo-monotone polygons that can be shaded in
linear time. Note that in the above discussion, no reference has been made to the fact that shading
line segments should be rotated and scaled back to the original coordinate system. This is not
necessary as the shading line end points can be calculated directly in the original coordinate
system (see [8]).

Comparing this technique with the Brassel-Fegeas algorithm, it is obvious that the pmp
partitioning algorithm is more effective. Apart from only requiring a single sort (as opposed to
two sorts in the Brassel-Fegeas algorithm), this algorithm partitions a region into

N(pmp~s) = N(type-2 pits and peaks) + 1 - N(islands).

The Brassel-Fegeas algorithm on the other hand, partitions the same region into N
trapezoids, where

53

N(trapezoids) = N(vertices) - 1 + N(islands).

The reduction in the number of subparts that a partitioning process requires forms the
strength of the new algorithm as the number of subparts may be considered as an overhead of the
algorithm (see [6]).

Furthermore, the Brassel-Fegeas algorithm uses all outline vertices to test for insinuation,
making it a very time intensive process. In the present algorithm, which uses the classifications
of vertices, the test for insinuation is highly optimized as the vertices to be considered each time
are limited.

CROSS- SECTIONS

SOLIDS

figure 9
Examples of Different Dot Pattern Shading

I

Y. ,,

figure 1 Oa

Examples of Results Obtained with the Pmp Partioning Algorithm

6. CONCLUDING REMARKS

An efficient technique for shading regions on vector type devices has been presented. This
algorithm uses the topology of the region to partition it into less complex subparts that are then
shaded by means of a fast procedure.

Using shading parameters, many different regular shading patterns may be constructed,
making this technique very useful in a number of different computer graphics applications.
Although the algorithm has been designed specifically for vector type devices, it can also be used
for shading on raster type devices, where shading lines may be viewed as scan lines.

54

NOTES FOR CONTRIBUTORS

The purpose of the journal will be to pub­
lish original papers in any field of computing.
Papers submitted may be research articles,
review artilces and exploratory articles of gen­
eral interest to readers of the journal. The pre­
ferred languages of the journal will be the
congress languages of IFIP although papers in
other languages will not be precluded.

Manuscripts should be submitted in tripli-
cate to:

Prof. G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0105
South Africa

Form of manuscript
Manuscripts should be in double-space typ­

ing on one side only of sheets of A4 size with
wide margins. Manuscripts produced using
the Apple Macintosh will be welcomed.
Authors should write concisely.

The first page should include the article title
(which should be brief), the author's name
and affiliation and address. Each paper must
be accompanied by an abstract less than 200
words which will be printed at the beginning
of the paper, together with an appropriate key
word list and a list of relevant Computing Re­
view categories.

Table~ and figures
-Tables and figures should not be included

in the text, although tables and figures should
be referred to in the printed text. Tables should
be typed on separate sheets and should be
numbered consecutively and titled.

Figures should also be supplied on separate
sheets, and each should be clearly identified
on the back in pencil and the authors name and
figure number. Original line drawings (not
photocopies) should be submitted· and should
include all the relevant details. Drawings etc.,
should be submitted and should include all rel­
evant details. Photographs as illustrations
should be avoided. if possible. If this cannot be

avoided, glossy bromide prints are required.

Symbols
Mathematical and other symbols may be ei­

ther handwritten or typewritten. Greek letters
and unusual symbols should be identified in
the margin. Distinction should be made be­
tween capital and lower case letters; between
the letter O and zero; between the letter I, the
number one and prime; between K and kappa.

References
References should be listed at the end of the

manuscript in alphabetic order of the author's
name, and cited in the text in square brackets.
Journal references should be arranged thus:

1. Ashcroft E. and Manna Z., The Trans­
lation of 'GOTO' Programs to 'WHILE'
programs., Proceedings of IFIP Con­
gress 71, North-Holland, Amsterdam,
250-255, 1972.

2. Bohm C. and Jacopini G., Flow Dia­
grams, Turing Machines and Languages
with only Two Formation Rules.,
Comm. ACM, 9, 366-371, 1966.

3. Ginsburg S., Mathematical Theory of
Context-free Languages, McGraw Hill,
New York, 1966.

Proofs
Proofs will be sent to the author to ensure

that the papers have been correctly typeset and
not for the addition of new material or major
amendment to the texts. Excessive alterations
may be disallowed. Corrected proofs must be
returned to the production manager within
three days to minimize the risk of the author's
contribution having to be held over to a later
issue.

Only orginal papers will be accepted, and
copyright in published papers will be vested in
the publisher. ·

Letters
A section of "Letters to the Editor" (each

limited to about 500 words) will provide a for­
um for discussion of recent problems.

I

• I

