
Volume 5 • Number 1

G.R. Finnie

P.S. Kritzinger

S.Berman

P.C. Pirow

C.H. Hoogendoorn

C Levieux

D. Podevyn

J. ·Roos

L.J. van der Vegte

~ ..

ISSN 0254-2757

QU/ESTIONES
INFORMATIC/E

April 1987

On Learning Styles and Novice Computer Use 1

Local Area Networks in Perspective 11

Semantic Information Management 19

Reard1 Computeraey 23

Experience with Teaching Software Engineering 36

FAlucation Rather than Training 41

Decaon·Tables ma~. Representation Formalism 46

The Protocol Specification Language ESTELLE S1

The Development of a Syntax Checker for LOTOS 63

· BOOK REVIEWS 71

QUlESTIONFS INFORMATICtE

An official publlcation of the Computer Society of South Africa and of the
South African Institute of Computer Scientis1s

'n Amptelike tydskrif van die Rekenaarvereniging van Suid-Africa en van die
Suid-Afrikaanse lmtituut van Rekenaarwetenskaplikes

Editor

Professor G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0105

Editorial Advisory Board

Professor D.W. Barron
Department of Mathematics
The University
Southampton S09 5NH, UK

Professor J.M. Bishop
Department of Computer Science
University of the Witwatersrand
1 Jans Smuts Avenue
2050 WITS

Professor K. MacGregor
Department of Computer Science
University of Cape Town
Private Bag
Rondebosch, 7700

Prof H. Messerschmidt
University of the Orange Free State
Bloemfontein, 9301

Dr P.C. Pirow
Graduate School of Bussiness Admin.
University of the Witwatersrand
P.O. Box 31170, Braamfontein, 2017

Professor S.H. von Solms
Department of Computer Science
Rand Afrikaans University
Auckland Park
Johannesburg, 2001

Professor M.H. Williams
Department of Computer Science
Herriot-Watt University, Edinburgh
Scotland

Qrculation and Production

Mr C.S.M. Mueller
Department of Computer Science
University of the Witwatersrand
2050 WITS

Subscriptions

Annual subscription are as follows:
SA US UK

Individuals R 10 $ 7 £ 5
Institutions R15 $14 £10

Qurestiones Informaticre is prepared by the Computer Science Department of the
University of the Witwatersrand and printed by Printed Matter, for the Computer
Society of South Africa and the South African Institute of Computer Scientists.

THE PROTOCOL SPECIFICATION LANGUAGE ESTELLE

Jan Roos
Computer Science Department,

University of Pretoria

ESTELLE is being developed by the International Standards Organisation (ISO), Technical Committee (TC)
97, Sub-committee (SC) 21, Working Group (WG) 1, Formal Definition Technique (FDT) Subgroup B to fulfil
the need for a protocol specification language. FDT Subgroup C is working on LOTOS as an alternative protocol
specification language and the International Telegraph and Telephone Consultative Committee (CCITT) has
developed SDL for the same purpose.

The purpose of this paper is to briefly introduce the language ESTELLE and to discuss the following:

- The characteristics of the language.
• The finite state machine orientation of the language.
• The formal semantics of the language constructs.
• The levels of abstraction provided by the language.
• Features enhancing protocol specification and verification.

- The current level of maturity of the language.

Some indications of the limitations of the language are given and the appendix contains a very simple skeleton
example of an ESTELLE specification.

1. INTRODUCTION

The need for formal description techniques (FDTs), to be used for protocol specification, has
long been recognised by the international standards community. The International Telegraph and
Telephone Consultative Committee (CCITT) produced SDL (Z.101 - Z.104) [1] as early as
1980 and the first FDT meeting of the International Standards Organisation (ISO) was also held
in 1980 [2]. FDTs are directed towards a number of goals. For example:

• to specify a protocol in an unambiguous, clear and complete way,
• to provide a basis for protocol analysis, verification, conformance testing and

implementation.

The FDT field is increasingly popular amongst computer scientists and a fair amount of
research has been done over the last 5 years. The FDT produced by ISO Technical Committee
(TC) 97, Sub-committee (SC) 21, Working Group (WG) 1, FDT Subgroup Bis ESTELLE.
FDT Subgroup C is working on LOTOS as an alternative. ESTELLE is based on an extended
finite state machine concept and LOTOS on the temporal ordering of interaction primitives. Both
these FDTs have already been circulated in draft proposal form and are very close to completion.

An FDT provides a way for describing the set of observations that can be made of the system
specified. In principle, any well defined language could be used for specification (e.g. Temporal
Logic, ESTELLE, LOTOS, SDL, CHILL, ADA, assembler). Programming languages generally
have a limited degree of appropriateness to the protocol specification task. Special purpose FDTs
like ESTELLE, LOTOS and SDL were therefore developed to provide for this need.

ESTELLE, LOTOS and SDL are languages which can be interpreted mechanically whereas
implicit FDTs, like Temporal Logic, do not give an explicit model of the system being specified.
Instead, a specification is expressed in terms of properties and invariant conditions of the system
[3].

There are many possible specifications of a system. These specifications can be at different
levels of detail. The more detailed a specification becomes the less freedom is le~t to th_e
implementer of the specification. Ultimately a specification should not provide mo_r~ de~1l than 1s
absolutely required to fully specify the functionality of the system. Such a specification leaves
maximum freedom of implementation. . .

This paper discusses the FDT ESTELLE and highlights its virtues as a protocol spec1ficat1<?n
technique. The paper concludes with a brief skeleton example of the use of the language m
Appendix A.

51
Qua,stiones Informatica,, Vol 5 No 1, PP 51-62, ISSN 0254-2757

2. THE LANGUAGE ESTELLE

ESTELLE is an extension of a subset of PASCAL which allows the components of a data
communication protocol to be modelled as a hierarchy of modules each of which is specified as
an extended finite state machine. Because of its PASCAL nature it is generally more acceptable to
most protocol experts than is LOTOS, which is more mathematical in nature.

The language enforces a general specification structure which results in a fairly readable
specification. The ability to partition a specification into nested modules and to interconnect them
through channels allows for reasonable flexibility in modelling a protocol. Each of these modules
forms a separately compilable unit.

In ESTELLE the module at the highest level is the specification itself. The specification can
be one module or can be refined into a set of nested modules.

The general structure of a module is:

Header
Parameter list
Interaction point list
Export variable list

end;
Body

Declaration-part
constant
type
var
procedures and functions
channel definitions
module definition
internal interaction point definitions
state set definition
use clause parts

Initialisation-part
Transition-part
Termination-part

end;

A module consists of a header and one or more body-parts. This facility is useful to
support different protocol classes from the same header. The module header may define a formal
parameter list used to pass parameters to a module when it is initialised and may define a list of
export variables to be shared between parent and child modules. The module header will also
include a list of all the module's interaction points with the outside world. Each interaction point
is a full duplex interface and is connected to an interaction point in another module through a
channel. Interaction points, parameters and export variables are specified as lists in the module
header definition and are similar to the formal parameter lists found in function and procedure
headings of PASCAL.

All parts of a body are optional. The declaration-part consists of parts such as constant and
type definitions, variable declarations and procedure and function definitions, which are derived
directly from PASCAL. Additional parts unique to ESTELLE are the channel and module
definitions, internal interaction point definitions, state set definition and use clause parts. The
module definition part can contain further child modules or reference them as external. (A module
can be defined as a process or an activity. Processes may run in parallel with other processes on
the same level of the hierarchy whereas activities which are children of the same parent may not
run in parallel. The purpose of this distinction is to resolve synchronisation issues.) The state set
definition defines all the states to be used in the Finite State Machines (FSM) and the use clause
provides access to the export variables of child modules.

The initialisation-part and termination-part of a module are used to specify procedures to be
executed automatically during creation of an instance of a module or during the termination
thereof. The initialisation-part also sets the initial state of the module's FSM and connects the
module's interaction points with other external or internal interaction points. (An interaction point
is external to a module if it is defined in the module header and it is internal to a module if it is
defined in the declaration part of that module. The attach operation is used to connect external

52

interaction points of a parent module to the external interaction points of a child module whereas
the connect operation is used to connect all other interaction points.)

The transition-part is really the heart of the module and is used to represent the FSM of the
module. Each module's FSM reacts to events received through channels from other modules. A
FSM is specified in the following way:

In ESTELLE the FSM diagram:

+-----------+ receive EVENT 1 +-----------+
I I AND seq_no < 7 I
I STATE A +--------------------->+ STATE B
I I output EVENT_2 I
+-----+-----+ seq_no := seq_no + 1 +-----------+

V

receive EVENT 1
AND seq_no >= 7
output EVENT_3

+-----+-----+

STATE C

+-----------+

is specified as:

from STATE A
when EVENT 1

provided seq_no < 7
to STATE B

begin
output EVENT_2;
seq_no := seq_no + 1;

end;
provided seq_no >= 7

to STATE C
begin

output EVENT_3;
end;

(* Transition 1 *)

(* Transition 2 *)

The from-clause specifies the current state, the when-clause the event, the to-clause the next
state and the provided-clause specifies a boolean expression which must be true for the transition
to take place. The from-, to-, when- and provided-clauses can be used in any order and can be
nested as shown above. An example of such an FSM implementation can be seen in Appendix A.

This section very briefly introduced some of the structural aspects of the ESTELLE FDT and
the interested reader is referred to references [4] and [5] for more detail.

3. CHARACTERISTICS OF THE LANGUAGE

Generally the language was designed to favour the specification of sound, well structured,
verifiable protocols. Although the eventual implementation of the protocol was not suppo~ed to
be of major importance, it is important that the concepts of the protocol are .conveyed. rn the
clearest possible way and that the resultant specification should enhance its analy.s1~ and
verification. In order to reach these goals the following are some of the major charactenstlcs of
the language:

53

• The finite state machine orientation of the language.
• The formal semantics that exist for all language constructs.
• The support of levels of abstraction of the protocol.
• The features enhancing protocol specification and verification.

3.1 The finite state machine orientation of the language

For many years a finite state machine (FSM) approach has been used for modelling
communication protocols. Especially in the areas of protocol verification and implementation
FSM techniques are often used. It was therefore natural for a specification technique to use the
FSM modelling approach.

The FSM basis of the language obviously makes it very useful in FSM-based protocol
verification exercises, such as global state exploration. The FSM basis is also easily understood
by the protocol implementer and although a protocol specification does not suggest any
implementation detail, the FSM structure enhances the portability of the specification to an
implementation.

3.2 Formal semantics of ESTELLE language constructs

The formal semantics of ESTELLE language constructs were not present in the first draft
proposal of the language but its importance was soon recognised and they are now part of the
language.

Formal semantics are required in order to provide a consistent language definition and to
clearly determine the expressive power of the language. This provides for the proper definition of
the language itself and forms the basis for the analysis and testing of a specification.

ESTELLE uses a subset of PASCAL as basis and extends this basis with the necessary
statements to support its requirements. The full PASCAL subset as well as all additions are fully
defined through a meta language. In doing so various proposed ESTELLE constructs or
statements had to be changed, or even removed, because of the complexity involved in the
definition of their semantics.

3.3 Support of levels of abstraction of the protocol

It is very important that a protocol specification technique allows the specifier to specify only
issues of importance at the particular level of the specification. It thereby hides detail that is not of
importance at that level. This divide-and-conquer technique implies that it should also be possible
to fully specify all relevant components or sub-components of a protocol and to specify their
interactions. The components or sub-components in ESTELLE are the modules as discussed
earlier.

Experienced protocol specifiers/implementers will appreciate the importance of the explicit
definition of all communication channels interconnecting the different modules and the outside
environment. All interactions on each channel and their flow directions are also specified.
Because of the dynamic nature of a protocol structure it is important to specify the effect of
interactions to be queued or already queued, both for new instantiations and for terminated
instantiations of modules.

The danger of too much refinement is that it tends to provide unnecessary detail which
restricts clarity and freedom of implementation.

3.4 Features enhancing protocol specification and verification

Most of the features of ESTELLE already mentioned, like its finite state orientation, its rigid
structure, its well defined interaction points and channels, etc. enhance sound 'programming'
techniques when specifying protocols. These features generally enhance readability,
maintainability as well as verifiability.

Other rules which serve the purpose of enforcing sound 'programming' practices are:

54

• The strong typed environment of PASCAL is retained providing many static
specification errors to be discovered by the compiler.

• The fact that the major state of a module's FSM can only be changed by one
construction namely the to-clause. This prevents the specifier from changing the
major state in awkward places not clearly 'visible' to the reader, and it also
simplifies protocol verification through reachability analysis.

• The fact that no interactions may be specified in a module's termination part. This
prevents the specifier from finally specifying 'unnoticed' interactions in some
'hidden' portion of the specification.

• Any function referenced in the predicate contained in a provided clause must not
have side effects. If the values of variables could be changed by functions referenced
in predicates and if all the criteria for selecting one or more transitions were not
satisfied during the selection process, then these side effects could influence the
selection of transitions in an unpredictable or 'hidden' way. This feature prevents the
specifier from specifying transition criteria in a non-obvious or faulty way.

4. THE LEVEL OF MATURITY OF ESTELLE

The second draft proposal on ESTELLE was scheduled for completion in June 1986.
Because this draft proposal will include most of the comments made on the first draft proposal it
is expected to be accepted.

Already many groups throughout the world are working on syntax checkers, compilers, test
facilities, protocol design tools, simulation facilities, verification facilities, etc. all based on
ESTELLE. Such products, although initially aimed at a specialised environment, are also soon
expected on the market.

5. ESTELLE LIMITATIONS

A question that arises is whether ESTELLE will fully provide for all the needs of a protocol
specification FDT. Although it is still too early to definitively comment on this issue some initial
concerns may be mentioned:

• Because SDL, the FDT of CCITT, is also based on the FSM model but uses a
different language, it is felt that ESTELLE is not sufficiently different to justify its
existence.

• Another concern is the length of ESTELLE specifications. It is generally felt that a
specification of excessive length prohibits a clear understanding of its contents and is
consequently error-prone and difficult to use for verification and testing.

• Because ESTELLE provides for only the FSM modelling concept and it is modelled
so closely to specific implementation techniques, it is true to say that it restricts the
specifier to a specific approach and can be regarded as an implementation-oriented
style of specification. In this regard it has been suggested that ESTELLE should be
regarded as an implementation description technique, instead of a specification­
oriented formal technique.

6. CONCLUSION

The need for formal protocol specification languages is no longer contested. It is of~en
concluded that the mere process of specifying a protocol in an FDT is in itself worthwhile,
because it helps the specifier to fully understand the protocol being specified.

The development of ESTELLE is certainly a major accomplishment and i~ wi~l ~e v_ery usef~l
in the data communication arena. It is however also clear that ESTELLE has its hm1tat1ons and it
should therefore be applied only where suitable. It should be accepted that other FDTs like
LOTOS, etc. do play an important complementary role.

55

REFERENCES

1. Dickson Gary J., Chazal Pierre E., [1983], Status of CCITT Description Techniques and Application to
Protocol Specification., Proceedings of the IEEE, 71, 12, December.

2. Vissers Chris A., Tenney Richard L., Bochmann Gregor V., [1983], Formal Description Techniques.,
Proceedings of the IEEE, 71, 12, December.

3. Hailpem Brent T., [1982], Verifying Concurrent Processes Using Temporal Logic. Lecture notes in Computer
Science 129, Springer-Verlag.

4. Linn Richard J. Jr., [1986], A Tutorial on the Features and Facilities of ESTELLE. ISO/TC 97/SC 21/WG 1
Project 20, UMASS 2, Febr. 25.

5. ISO/TC 97/SC 21, [1986], Information Processing Systems - Open Systems Interconnection - ESTELLE
- A Formal Description Technique based on an Extended State Transition model. Draft, UMASS 1, ISO/TC
97/SC 21 N DP9074, March 13.

APPENDIX A

ESTELLE example

A portion of a subset of the layer 2 protocol of X.25, namely LAPB, will be specified as
example.

LAPB is a variation of HDLC and is a data link protocol used in a point-to-point
environment. A very basic knowledge of LAPB is assumed.

The subset that will be specified allows only for the transmission of the frame types SABM,
U A, I RR and RNR.

A.1 The structure of the LAPB specification

A.1.1 The environment structure

+-------------+
I
I HOST(l)
I process
+------+------+

H

H
+------+------+

LAPB(l)
process

+------+------+
L I

I
L (1) I

+-------------+
H0ST(2)

process
+------+------+

H

H
+------+------+

LAPB (2)
process

+------+------+
I L

I
I L (2)

+------+--------------------------+------+

LINE
process

+--+
Each LAPB process has a H interaction point to interface to the HOST process (which

implies the higher layer protocols) and a L interaction point to interface to the LINE process.
Each HOST process has a H interaction point and the LINE process has two interaction points,
L(l) and L(2), each to a LAPB process.

56

A.1.2 LAPS structure

Each LAPB process can be substructured as follows:

I H
+--------+-------------------------------+

I H
+----+-----+ +--------+
I Data I s s I I
I transfer+----------+ Timer I
I activity I /activity!
+----+-----+

I L LAPB
+--------+

+--------+-------------------------------+
I L

LAPB is substructured into a data_ transfer and timer component, each with their shown
interaction points.

A.1.3 Main specification structure

The main specification is a special type of module and its structure is shown below:

Specification (Name)
Body

Declaration-part
OPTIONAL Initialisation-part
EMPTY Transition-part
NO Termination-part

end;

A.1.4 Module structure

The reader is referred to section 2 of the paper for an example of the module structure. All
modules are defined in the declaration-part of the main specification or in the declaration-part of
other modules.

A.2 The specification of LAPB

A.2.1 Main specification

Specification LAPB;

const
window

type
entity_no_type
bit
byte
message
sequencenr
FrarneKind

= 7;

1.. 2;
0 .. 1;
o .. 255;
string;
0 .. window;
(I,RR,RNR,SABM,UA);

57

frame= record
address:
ControlField:

kind:
seq:

byte;
record

FrameKind;
sequencenr;

NextFrameExpected: sequencenr;
pfbit: bit;

end;
info: message;

end; (* frame *)

(* Notice that all messages that can flow on each *)
(* channel and the direction of flow are specified. *)

channel H_channel(user,provider);
by user:

HostMessage_event(m: message);
Busy_event;
NotBusy_event;

by provider:
response_event(m: message);
DisableHost_event;
EnableHost_event;

channel L_channel(user,provider);
by user:

request_event(f: frame};
by provider:

FrameArrival_event(f: frame};
ChksumErr event;
InvalidFrame_event;

(* Module header definitions. *)
(* Note that each of these module headers has a *)
(* corresponding module body and the interaction *)
(* points listed in the module header are external *}
(* to each particular module. *)

module HOST_type process(host_id: entity_no_type);
inter H: H_channel(user) common queue;

end;

module LAPB_type process(lapb_id: entity_no_type);
inter H: H_channel(provider) common queue;

L: L_channel(user) common queue;
end;

module LINE_type process;
inter L:array[entity_no_type] of L_channel(provider)

common queue;
end;

(* Module body definition.
(* All modules are defined as external
(* specified in later sections.

body HOST_body for HOST_type; external;

body LAPB_body for LAPB_type; external;

58

*)
and they are *}

*)

body LINE_body for LINE_type; external;

var (* Declares all processes in the system. *)
HOST: array[entity_no_type] of HOST_type;
LAPB: array[entity_no_type] of LAPB_type;
LINE: LINE_type;

(* Initialisation-part. *)

initialise
begin

(* Instantiate all active processes. *)
init LINE with LINE_body;
all i: entity_no_type do

begin
init HOST[i] with HOST_body(i);
init LAPB[i] with LAPB_body(i);
(* Interconnect the processes as required. *)
connect HOST[i] .H to LAPB[i] .H;
connect LAPB[i] .L to LINE.L[i];

end;
end;

end. (* Specification. *)

A.2.2 LAPB body specification

body LAPB_body for LAPB_type;

const
t1 =

type
(* The indicates: to be provided

channel S_channel(user,provider);
by user:

set_timer_request_event;
reset_timer_request_event;

by provider:
timeout response_event;

(* Module header definition. *)

at implementation time. *)

module timer_type activity(timeout_time: integer);
inter S: S_channel(provider) individual queue;

end;

module data_transfer_type activity
(data_transfer_id: entity_no_type);

inter H: H_channel(provider) common queue;
L: L_channel(user) common queue;
S: S_channel(user) individual queue;

end;
(* The interpretation of common and individual queues *)
(* as defined above is: the Hand L channel interactions*)
(* will share the same common queue while the S channel *)
(* interactions will have their own individual queue. *)

59

(* Module body definition. *)

body timer_body for timer_type; external;
body data_transfer_body for data_transfer_type; external;

var
data_transfer: data_transfer_type;
timer: timer_type;

(* Initialisation-part. *)
initialise

begin
(* Instantiate all active activities. *)
init data_transfer with

data_transfer_body(data_transfer_id);
init timer with timer_body(tl);

(* Interconnect the activities/processes as required. *)
connect data_transfer.S to timer.S;
attach H to data_transfer.H;
attach L to data_transfer.L;

end;

end; (* LAPB_body *)

A.2.3 Data-transfer body specHication

The following FSM performs the connection function of the LAPB subset and will be

illustrated in the specification of the data transfer module.

+------------+ receive SABM
send UA +------------+

BEGIN +------------------------------>+ I
I reset variables I CONNECTED I

+-----+------+ +--->+ I
I I +------------+
I receive host message I
I send SABM I
I set timer I receive SABM
V receive UA or I send UA

+-----+------+ reset variables I reset variables
I +--------------------------+
I CONNECTING I reset timer
I +<---+
+--+---------+ I

I
I

+--------------+
timeout
send SABM
set timer

60

factor between males and females. From Table 5 it can be observed that the reduction in these
differences is primarily due to strong changes in attitude within the male group. Male subjects
showed a greater negative change on the first factor on first contact with computers and a strong

increase on the negative views of computing between the second and third surveys. The male
subjects evidently had higher expectations of the value of computers which were nullified by
hands-on experience.

females
Factor 1
Factor 2
Fact or3
Factor4

males
Factor 1
Factor 2
Factor 3
Factor4

CONCLUSIONS

Short Term Rest of Course
(1st/2nd Survey) (2nd/3rd Survey)

n =27 n=22
X t X t

-.23 1.55 -.09 0.62
-.14 0.84 +.12 0.69
-.57 3.11 ** +.13 0.65

+.28 1.65 -.13 0.75

Short Term Rest of Course
(1st/2nd Survey) (2nd/3rd Survey)

n =65 n=62
X t X t

-.52 4.47** -.05 0.44
-.21 1.37 +.43 3.53**
-.40 3.16** -.01 0.03

+.23 2.00* +.08 0.81

*: p < 0.05
**: p < 0.01

table 5
Attitude Change in Males and Females

Long Tenn
(1st/3rd Survey)

n=26
X t

-.31 2.17*
-.08 0.15
-.46 2.01*
+.08 0.45

Long Tenn
(1st/3rd Survey)

n=74
X t

-.46 4.03**
+.13 1.18
-.33 2.39*
+.24 2.86**

As noted in the introduction, attitude can play a significant part in the successful
implementation and use of computer systems. Kerlinger [9:495] defines attitude as " ... an
enduring structure of beliefs that predisposes the individual to behave selectively towards attitude
referents" and it is probable that attitudes formed by first contact with computers within an
educational setting could well influence later acceptance and use of computers in business.

This study identified four components in the attitude towards computers construct, the
structure of which agrees with earlier work. Although the dimensions extracted in a factor
analysis are dependent on the items available in the survey instrument, it is apparent that attitude
towards computers consists of both negative and positive aspects. For this reason, a simple
pro-con attitude scale is unlikely to provide sufficient insight for studies of the role of attitudes in
computer use.

The lack of a control group in the study of attitude change makes it impossible to confirm
causal relationships and these findings should be considered as possible indicators within the
context of a case study. Although a control group would have been eminently desirable, finding a
suitable group of similar students and providing the course input without hands-on computer use

is not feasible within the undergraduate commerce course structure. Discussions with the
students involved suggest that actual computer use is a major factor in attitude change, but there
is no empirical evidence to directly support this. The strong negative changes in attitude
observed in this student sample are perturbing from an educational viewpoint. It would appear
possible that hands-on use of computers, even with the more user-friendly systems, could have
significant negative influence on an individual's perception of the value of computers. If such
direct contact is required, it might be necessary to consider new approaches to cushion the
computer shock experienced by novices or, at least, provide as gentle an introduction as possible.

The reversal of changes in the negative dimension (Factor 2) suggests that the teaching of
conventional programming languages such as COBOL might be counter-productive. Most

aspects of commerce do not require such programming ability and, unless students intend to
follow careers in computing, it could be that introductory computer courses for business students

61

to CONNECTING
when S.timeout_response_event

begin
f.ControlField.kind = SABM;
output L.request_event(f);
output S.set_timer_request_event;

end;

end; (* data transfer body. *)

62

NOTES FOR CONTRIBUTORS

The purpose of the journal will be to pub­
lish original papers in any field of computing.
Papers submitted may be research articles,
review artilces and exploratory articles of gen­
eral interest to readers of the journal. The pre­
f erred languages of the journal will be the
congress languages of IFIP although papers in
other languages will not be precluded.

Manuscripts should be submitted in tripli-
cate to:

Prof. G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0105
South Africa

Form of manuscript
Manuscripts should be in double-space typ­

ing on one side only of sheets of A4 size with
wide margins. Manuscripts produced using
the Apple Macintosh will be welcomed.
Authors should write concisely.

The first page should include the article title
(which should be brief), the author's name
and affiliation and address. Each paper must
be accompanied by an abstract less than 200
words which will be printed at the beginning
of the paper, together with an appropriate key
word list and a list of relevant Computing Re­
view categories.

Tables and figures
Tables and figures should not be included

in the text, although tables and figures should
be referred to in the printed text Tables should
be typed on separate sheets and should be
numbered consecutively and titled.

Figures should also be supplied on separate
sheets, and each should be clearly identified
on the back in pencil and the authors name and
figure number. Original line drawings (not
photocopies) should be submitted and should
include all the relevant details. Drawings etc.,
should be submitted and should include all rel­
evant details. Photographs as illustrations
should be avoided if possible. If this cannot be

avoided, glossy bromide prints are required.

Symbols
Mathematical and other symbols may be ei­

ther handwritten or typewritten. Greek letters
and unusual symbols should be identified in
the margin. Distinction should be made be­
tween capital and lower case letters; between
the letter O and zero; between the letter I, the
number one and prime; between K and kappa.

References
References should be listed at the end of the

manuscript in alphabetic order of the author's
name, and cited in the text in square brackets.
Journal references should be arranged thus:

1. Ashcroft E. and Manna Z., The Trans­
lation of 'GOTO' Programs to 'WHILE'
programs., Proceedings of IFIP Con­
gress 71, North-Holland, Amsterdam,
250-255, 1972.

2. Bohm C. and Jacopini G., Flow Dia­
grams, Turing Machines and Languages
with only Two Formation Rules.,
Comm. ACM, 9, 366-371, 1966.

3. Ginsburg S., Mathematical Theory of
Context-free Languages, McGraw Hill,
NewYork, 1966.

Proofs
Proofs will be sent to the author to ensure

that the papers have been correctly typeset and
not for the addition of new material or major
amendment to the texts. Excessive alterations
may be disallowed. Corrected proofs must be
returned to the production manager within
three days to minimize the risk of the author's
contribution having to be held over to a later
issue.

Only orginal papers will be accepted, and
copyright in published papen w.m. be vested in
the publisher.

Letters
A section -0f "Letters to the EditDr" (each

limited to about 500 words) 'Will prcwide a for­
um for discussion of recent pioblems.

