
Volume 5 • Number 1

G.R. Finnie

P.S. Kritzinger

S.Berman

P.C. Pirow

C.H. Hoogendoorn

C Levieux

D. Podevyn

J. ·Roos

L.J. van der Vegte

~ ..

ISSN 0254-2757

QU/ESTIONES
INFORMATIC/E

April 1987

On Learning Styles and Novice Computer Use 1

Local Area Networks in Perspective 11

Semantic Information Management 19

Reard1 Computeraey 23

Experience with Teaching Software Engineering 36

FAlucation Rather than Training 41

Decaon·Tables ma~. Representation Formalism 46

The Protocol Specification Language ESTELLE S1

The Development of a Syntax Checker for LOTOS 63

· BOOK REVIEWS 71

QUlESTIONFS INFORMATICtE

An official publlcation of the Computer Society of South Africa and of the
South African Institute of Computer Scientis1s

'n Amptelike tydskrif van die Rekenaarvereniging van Suid-Africa en van die
Suid-Afrikaanse lmtituut van Rekenaarwetenskaplikes

Editor

Professor G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0105

Editorial Advisory Board

Professor D.W. Barron
Department of Mathematics
The University
Southampton S09 5NH, UK

Professor J.M. Bishop
Department of Computer Science
University of the Witwatersrand
1 Jans Smuts Avenue
2050 WITS

Professor K. MacGregor
Department of Computer Science
University of Cape Town
Private Bag
Rondebosch, 7700

Prof H. Messerschmidt
University of the Orange Free State
Bloemfontein, 9301

Dr P.C. Pirow
Graduate School of Bussiness Admin.
University of the Witwatersrand
P.O. Box 31170, Braamfontein, 2017

Professor S.H. von Solms
Department of Computer Science
Rand Afrikaans University
Auckland Park
Johannesburg, 2001

Professor M.H. Williams
Department of Computer Science
Herriot-Watt University, Edinburgh
Scotland

Qrculation and Production

Mr C.S.M. Mueller
Department of Computer Science
University of the Witwatersrand
2050 WITS

Subscriptions

Annual subscription are as follows:
SA US UK

Individuals R 10 $ 7 £ 5
Institutions R15 $14 £10

Qurestiones Informaticre is prepared by the Computer Science Department of the
University of the Witwatersrand and printed by Printed Matter, for the Computer
Society of South Africa and the South African Institute of Computer Scientists.

DECISION TABLES AS A KNOWLEDGE REPRESENTATION
FORMALISM

D. Podevyn
Department of Computer Science and Information Systems

University of South Africa

ABSTRACT

A knowledge engineering tool called GESS (General Expert System Shell) is presented which is used for
building different types of expert systems. Knowledge representation is based on direct extensions of the idea of
decision tables. It was found that this formalism reduces the knowledge acquisition bottleneck by assisting the
knowledge engineer in the structuring of knowledge because it enforces completeness and allows for automated
checking of contradictions and redundancies. It was also found that this formalism is quite flexible in expressing
knowledge and implementing different reasoning paradigms as is discussed in this paper. Complex systems have
been built with Gess using its capability of creating networks of decision tables and the accessibilty of the external
computer environment from within Gess.

1.INTRODUCTION

The formalism of decision tables (DT) was introduced to represent complex decision logic in
a systematic manner [5, 7]. Theoretically decision tables can model an entire program [6] and yet
they have been surprisingly neglected by many DP organisations [1].

However, the usefulness of the application of DT as a decision support technique was
demonstrated by Maes et al [8, 11]. They have also formed the basis of control structures in
user-oriented systems [4, 9]. We have taken this idea further by applying it in the field of
knowledge based systems and expert systems.

To our knowledge, other related work in the field of knowledge based systems is limited to
systems that allow the user to build decision trees [2, 12]. Decision trees have however the
disadvantage of becoming unwieldy when there are a substantial number of conditions and
actions. Another disadvantage is that they do not" force" the designer to look at every possible
combination of conditions, and some might be overlooked. This is definitely not the case with
decision tables. With Gess this completeness is checked by the system, together with the
checking for contradictions and redundancies.

2. BASIC CONCEPTS IN GESS

2.1 Access to external data dictionary

Inputs and outputs for Gess decision tables are records which are described in an external
data dictionary. This also allows Gess to access external operational or corporate databases which
can then serve as " bulk" facts providers.

2.2 Network of decision tables

Gess uses the concept of subroutine decision tables invokable from conditions and/or
actions.

It renders complex tables simpler by reducing them to several smaller ones. In fact this has
proven to be so powerful that a test facility for running decision tables with test values was
seldom used because the tables could easily be desk-checked.

It allows one to use the top-down refinement technique to construct the application logic.
It provides for modularity - a subroutine table can be called from any other decision table.

This effectively allows one to create a network of decision tables, which is a powerful feature.

46
Ouoostiones lnformaticoo, Vol 5 No 1, PP 46-50, ISSN 0254-2757

2.3 The four basic programming concepts

The subroutine concept also allowed us to introduce the three basic constructs of sequence,
selection and iteration between decision tables. Together with the fact that calculations are
supported, this provides the theoretical foundation that any algorithm can be implemented.

In figure 1 we see that depending on the condition, either table TAB3, TAB2 and TABl will
be executed, and in that sequence, or T AB4 and TAB3 will be executed. Note that TAB 1 calls
itself recursively.

Through this important generalisation it is possible to implement different reasoning
paradigms such as forward and backward chaining and generate-and-test as will be shown in
section 3.

Record 1

TABl

1.B < 10 y N

S.TABl 3
S.TAB2 2
S.TAB3 1 2
S.TAB4 1

figure 1

2.4 Implementation

There are 2 basic parts in Gess. The first part is the compiler. It accesses the data dictionary
to check record and field names used in the DT, checks for completeness for the combinations of
conditions, checks for contradictions and redundancies and finally writes the compiled tables
onto the rule base in a specialised internal format (not program code). This format allows to sort
combinations and/or conditions according to frequency of use or other parameters.

The second part entails the use of the DT. This program consists also of 2 parts. The first
one is the Gess executer which loads the necessary DT and interpretes the internal format. The
second part is the master program.

This master program can be : replaced (user-rewritten),
simple/complex,
batch/online,
one/many.

This split between executer and master program gives Gess additional flexibility and al~o
allows for a high degree of integration with the external computer environment. In fact th~s
master program can range from a traditional application program (which consults the rule base ~ia

the executer) to a very simple master program that would call a first decision table to receive
names of records to read and names of tables to call and would then have a loop to call all these
tables sequentially. All the logic would thus be in the decision tables. .

Gess has a standard set of master programs, but nothing prevents the user from replacing
them with for instance a natural language interface program.

These are just a few basic examples of how the concept of the master program can be used.

47

3. EXPERIMENTS AND APPLICATIONS

3.1 Implementation of a backward chaining paradigm

Assume a set of rules like A~ B (A implies B)
B ->C
C,D ~ E (C AND D imply E)

Backward chaining then starts from a goal, say E. In order to prove E the third rule is used
so that the system now tries to prove C and D and so on.

A rule such as A implies B, becomes the following decision table.

A='N' y N N
A='Y' - y N

EXIT *

B= 'Y' *

SOLVE(A) *

The backward chaining is provided by the SOLVE(A) action, which is executed when it is
found that A is not evaluated yet. There are several implementations possible for SOL VE(A),
one of them is to put A on top of a stack which keeps track of goals still to be proven, then leave
this table and look for one which proves A.

It is important to remark that this basic table can easily be extended with more actions in
order to include explanation and a trace. The explanation can be used to justify conclusions
reached and the trace can be used to show the reasoning chain when asked for by the user.

A='N' y N N
A='Y' - y N

EXIT *

B='Y' *

TEXT= 'EXPLAIN' *
SOLVE(A) *

TRACE='RULEi' *

Note that everything that concerns the relationship between objects A and B is located
together in 1 table, in an easy to comprehend format. We call this a decision unit.

3.2 Forward chaining paradigm

This is the natural execution mode of decision tables, whereby data triggers conditions which
then select certain actions such as calling other tables, updating some records or reaching some
conclusions.

3.3 Generate-and-test paradigm

To test the versatility of Gess a simplified version of the expert system GAl [3] was
emulated in Gess. GAl is an expert system which infers complete molecular structures from
measurements of molecular pieces. GAl was chosen because it uses a generate-and-test

48

paradigm.
A simplified version of GA 1 has been successfully implemented in Gess using 7 tables.

3.4 Reasoning under uncertainty

We also found that different methods were possible to implement reasoning under
uncertainty in Gess.

With the first method we structure one of the I/0 records as in figure 2, where PROBi is
probability (or certainty factor) number i and T ABi is the name of the decision table which
represents hypothesis i. Thus the system currently " believes" hypothesis T ABi with probability
PROBi.

Record 1 PROB1 I TAB1 I PROB2 I TAB2 I PROB3 I TAB3 I
figure 2

This RECORD 1 which partially plays the role of blackboard [3] can be updated by decision
tables representing the hypothesis the system is trying to prove. Probabilities can be changed or
hypothesis added or deleted from this " blackboard" record.

Another method is a combination of the above method and the earlier mentioned backward
chaining implementation.

A=O y N N N N
0 <A< 0.5 - y N N N
0.5 ~A< 1 - - y N N

A= 1 - - - y N

EXIT *
B = B + 0.2 *
B = B + 0.5 *

8=1 *
SOLVE(A) *

figure 3

Here A and B do not just use YES or No, but certainty or probability factors. In the example
an arbitrary formula is used to update the certainty factor of B, but any formula can be used.
Remark that we still have all the relevant information concerning the relationship between A and
B located in one decision unit.

A third method is the application of fuzzy sets which are implemented in a similar way as in
figure 3, but where we generalise the mapping function between A and B.

The implementation in Gess of these 3 methods is quite straigthforward and provides an
elegant way to deal with reasoning under uncertainty, whilst at the same time allowing an easy
integration of explanatory text for each decision or action as explained in section 3.1. .

Using the methods mentioned above, several small expert systems have been or are bemg
implemented in Gess (e.g. car-engine adviser, student curriculum adviser).

49

4. PERFORMANCE

Gess is written in PL/1 and runs on IBM mainframes. The compiler comprises about 500k
bytes and the executer, about 80k bytes. If you disregard the loading time of a cluster of decision
tables, which can be as small as 50ms if they are all in one physical 1/0 block, then the average
execution time of a table with 10 conditions and 10 actions is about 5ms on an IBM 3033U. This
increases linearly with the number of conditions and actions.

5. CONCLUSIONS

Gess, based on decision tables, has a different approach to expert systems. However, by
extending this basic idea we have created a general purpose tool which allows us to build
powerful systems.

The knowledge representation is straightforward and is quickly grasped, even by non-DP
people. It has been our experience that one quickly finds new and unforeseen ways of applying
Gess, helped by this format of extended decision tables which eases the knowledge acquisition
and representation problem and forces one to be systematic.

Another important feature of Gess is its close integration with the external computer
environment (databases, application programs). This allows Gess to access and handle large
knowledge bases and actually run on its own (batch mode).

On the other hand, it has been pointed out that decision tables can have some ambiguity.
Solutions have been proposed for that [10] in the form of adding weights to conditions and
combinations. This is one of the extensions currently being investigated. Other extensions are
implementing an automated trace facility and extending the learning capabilities which are now
limited to updating the facts data~ase (records) and not the rule database (decision tables).

REFERENCES

1. Chvalovsky V., [1979], Problems with decision tables, CACM 19, 12, pp 705-707.
2. Expert Ease, [1984], Which computer, pp 68,70-71.
3. Hayes-Roth F., Waterman D.A., Lenat D.B., [1983], Building expert systems, 1, Addison-Wesley, Reading,

Massachusetts.
4. Higgs J.E., [1982], Decision tables in real time systems, Proceedings of the first annual con/. on computers

and communications, pp131-136.
5. Kirk H.W., [1965], Use of decision tables in computer programming, CACM, 8,1, pp 41-43.
6. Lew A., [1982], On the emulation of flowcharts by decision tables, CACM, 25, 12, pp 895-905.
7. London K.R., [1972], Decision tables, Auerbach publ., Princeton.
8. Maes R., Vanthienen J., Verhelst M., [1981], Procedural decision support through the use of PRODEMO,

Procedures 2nd int. conj. on information systems, Cambridge, Mass., pp135-152.
9. Reinwald L.T. and Soland R.M., [1966], Conversion of limited-entry decision tables to optimal computer

prgrams, 1. minimum average time processing, Journal of the ACM, 13, 3, pp 339-358.
10. Schneider M.L., [1985], Weighted decision tables - an alternative solution for ambiguity, The computer

journal, 28, 4, pp 366-371.
11. Verhelst M., [1980], De praktijk vam beslissingstabel/en, Kluwer, Amsterdam.
12. Warner E., [1985], TI software aids decisions, Computerworld, 9, 14, pp 69-90

50

NOTES FOR CONTRIBUTORS

The purpose of the journal will be to pub­
lish original papers in any field of computing.
Papers submitted may be research articles,
review artilces and exploratory articles of gen­
eral interest to readers of the journal. The pre­
f erred languages of the journal will be the
congress languages of IFIP although papers in
other languages will not be precluded.

Manuscripts should be submitted in tripli-
cate to:

Prof. G. Wiechers
INFOPLAN
Private Bag 3002
Monument Park 0105
South Africa

Form of manuscript
Manuscripts should be in double-space typ­

ing on one side only of sheets of A4 size with
wide margins. Manuscripts produced using
the Apple Macintosh will be welcomed.
Authors should write concisely.

The first page should include the article title
(which should be brief), the author's name
and affiliation and address. Each paper must
be accompanied by an abstract less than 200
words which will be printed at the beginning
of the paper, together with an appropriate key
word list and a list of relevant Computing Re­
view categories.

Tables and figures
Tables and figures should not be included

in the text, although tables and figures should
be referred to in the printed text Tables should
be typed on separate sheets and should be
numbered consecutively and titled.

Figures should also be supplied on separate
sheets, and each should be clearly identified
on the back in pencil and the authors name and
figure number. Original line drawings (not
photocopies) should be submitted and should
include all the relevant details. Drawings etc.,
should be submitted and should include all rel­
evant details. Photographs as illustrations
should be avoided if possible. If this cannot be

avoided, glossy bromide prints are required.

Symbols
Mathematical and other symbols may be ei­

ther handwritten or typewritten. Greek letters
and unusual symbols should be identified in
the margin. Distinction should be made be­
tween capital and lower case letters; between
the letter O and zero; between the letter I, the
number one and prime; between K and kappa.

References
References should be listed at the end of the

manuscript in alphabetic order of the author's
name, and cited in the text in square brackets.
Journal references should be arranged thus:

1. Ashcroft E. and Manna Z., The Trans­
lation of 'GOTO' Programs to 'WHILE'
programs., Proceedings of IFIP Con­
gress 71, North-Holland, Amsterdam,
250-255, 1972.

2. Bohm C. and Jacopini G., Flow Dia­
grams, Turing Machines and Languages
with only Two Formation Rules.,
Comm. ACM, 9, 366-371, 1966.

3. Ginsburg S., Mathematical Theory of
Context-free Languages, McGraw Hill,
NewYork, 1966.

Proofs
Proofs will be sent to the author to ensure

that the papers have been correctly typeset and
not for the addition of new material or major
amendment to the texts. Excessive alterations
may be disallowed. Corrected proofs must be
returned to the production manager within
three days to minimize the risk of the author's
contribution having to be held over to a later
issue.

Only orginal papers will be accepted, and
copyright in published papen w.m. be vested in
the publisher.

Letters
A section -0f "Letters to the EditDr" (each

limited to about 500 words) 'Will prcwide a for­
um for discussion of recent pioblems.

